WO2009021367A1 - Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication - Google Patents

Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication Download PDF

Info

Publication number
WO2009021367A1
WO2009021367A1 PCT/CN2007/003248 CN2007003248W WO2009021367A1 WO 2009021367 A1 WO2009021367 A1 WO 2009021367A1 CN 2007003248 W CN2007003248 W CN 2007003248W WO 2009021367 A1 WO2009021367 A1 WO 2009021367A1
Authority
WO
WIPO (PCT)
Prior art keywords
red phosphor
phosphor powder
emitting diode
phosphor
calcined
Prior art date
Application number
PCT/CN2007/003248
Other languages
English (en)
Chinese (zh)
Inventor
Rui Li
Original Assignee
Rui Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rui Li filed Critical Rui Li
Publication of WO2009021367A1 publication Critical patent/WO2009021367A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates

Definitions

  • the present invention relates to a phosphor for a light-emitting diode (LED), and more particularly to a red phosphor for a light-emitting diode and other preparation methods.
  • LEDs light-emitting diodes
  • Traditional lighting technology LEDs have small and effective effects, strong power saving, low pollution, long life, fast response, and maintenance-free.
  • the power consumption at the same height is only 'normal. 1/8 - 1/10 of incandescent lamps can last for more than 80,000 hours. It is used in a wide range of applications including urban landscape lighting, large curtain displays, traffic lights, LCD backlights, instrumentation indicators, vehicle lighting, aerospace, military, industrial and home, and is moving towards alternative lighting. It is the new generation of light source in the 21st century.
  • the first one is to use a violet or near-ultraviolet (350-410mm) InGaN tube chip to excite three primary color phosphors to realize white LEDs, so that the color reduction and color rendering index of white LEDs will be better.
  • a large increase (Ra > 90), you can also get a low color temperature white LED device, both methods use red phosphor.
  • the main choice of white LEDs made with purple or near-violet chips BaMgAl, 0 O 17 :Eu 2+ is a blue phosphor
  • Al 3+ is a green phosphor
  • Y 2 0 2 S:Eu 3+ is a red phosphor.
  • the luminous efficiency of the red phosphor Y 2 0 2 S:Eu 3+ is only 1/8 of that of the blue and green phosphors.
  • the red phosphor used in the blue LED chip is mostly binary alumina sulfide MS: Eu 2+ (M is one or more of alkaline earth metal ions Mg, Ca, Sr, Ba), MS: Eu 2+ and Y 2 0 2 S:
  • MS Eu 2+
  • Y 2 0 2 S The stability of Eu 3+ is poor, which seriously affects the lifetime of white LED devices. Therefore, it is necessary to find a red phosphor with strong absorption in the near ultraviolet region and blue region and stable stability. Very necessary.
  • red phosphor contains MoO 3 , Eu 2 0 3 , and also contains one or more of oxides and fluorides of Ca, Sr, Cd, but does not involve tungstate and a new synthesis method.
  • red phosphor A x B y C z _ 2y (M0 4 ) 2 _ ⁇ xy2 : 2D, which contains one or more stalks of Li, Na, Eu, Y, Gd , Lu—one or more, which must have Eu, contain one or more of Mg, C, Sr, and also contain one or more of LiF, NaF, KF, where M is io or W or both The mixture, but not related to tungstate and new synthetic methods.
  • the phosphors disclosed in the above two documents are not directed to white light emitting diodes, and they are phosphors for phosphors, displays, televisions, and the like.
  • Patent "a red phosphor for LED and its preparation method and electric light source made" (Application No.: 200310101629.7, Authorization No.
  • the luminescent properties of phosphors are greatly influenced by their particle size, shape and particle size distribution, so a suitable preparation method is necessary.
  • the phosphors for synthesizing LEDs mostly adopt the solid phase method.
  • the sample particles obtained by this method are large, the crystal structure is destroyed after ball milling, the luminous efficiency is lowered, the shape is irregular, the particle size distribution range is large, and the synthesis temperature is high. High energy consumption, in line with the energy saving concept of LED Back.
  • the phosphor is mixed with the epoxy resin or the silica gel slurry, the large particle phosphor has a faster sedimentation rate than the small particle phosphor. After the system is cured, the uneven size and spatial distribution will affect the color of the entire LED.
  • Sol-gel technology has low synthesis temperature, small size, uniformity and controllability, and the shape is spherical, which reduces the light scattering of the illuminant and minimizes the irregular shape of the luminescent layer.
  • the phosphor has high resolution and luminous efficiency, which in turn extends the life of the device. Summary of the invention
  • an object of the present invention is to provide a red phosphor for a light-emitting diode which has strong excitation absorption in a near-ultraviolet region and a blue region of 350 to 500 nm, and has high luminous intensity, and The color purity is high; the present invention also provides a method for preparing the phosphor.
  • the invention adopts EIJ 3+ as an activator, the process is simple, the obtained product particles are small and uniform, the luminescence brightness is high, the color purity is good, and the stability is good; the phosphor disclosed by the invention has strong intensity in the range of 350 ⁇ 500 rim.
  • the present invention uses a sol-gel wet chemical method to obtain a red phosphor having a small and uniform particle size and a synthesis temperature lower than that of the conventional solid phase method by 200 to 300 ⁇ , but having a high luminescence intensity.
  • the XRD pattern was burned for 5 h at 900 Torr.
  • FIG. 2 Scanning electron microscopy (SEM) image of the sample obtained by the sol-gel method (a) and the solid phase method (b) at 90 CTC for 5 h.
  • Detailed ways (a) L ai . 2 Eu 0 .8 (Mo04) 3 5 900 ° C; (b) Y ⁇ Eu ⁇ MoO ⁇ , 900 ° C; (c) Yo. 8 Eu 1 . 2 ( Mo0 4 ) 3 , 700'C; (d) Gd 8 Eu 1 2
  • the red phosphor of the present invention is a solid solution, and the general formula of the solid solution can be expressed as follows:
  • R is one or a mixture of Sc, Y, La, Gd, and Lu.
  • the cation is replaced by an equivalent, and the total number of mole fractions is unchanged;
  • A is Sm, one of Bi Species or two, when used in combination, the cations are equivalently substituted for the sum of their mole fractions;
  • a transparent solution was prepared by ultrasonic dispersion using NH 3 , H 2 0 or a mass ratio of 1% to 10 °/.
  • the alkaline solution such as NaOH, KOH, Na 2 C0 3 is adjusted to pH 7 ⁇ 8, and kept at 60'C ⁇ 90'C in an oven or water bath for 24-72 hours.
  • the sample is gradually changed from transparent solution to light brown sol brown yellow gel. Heat up to 100-48 ° C for 12-48 hours to obtain black dry glue.
  • the sample is taken out and baked in an electric furnace, and finally calcined at 450 ⁇ 600'C for 1.5-hour in a high-temperature furnace, and then calcined at 600'C ⁇ 1100'C for l ⁇ 10h. A red phosphor sample is required.
  • Figure 1 shows the XRD pattern of the sample 1 ⁇ . 2 £ ⁇ . 8 (; ⁇ 100 4 ) 3 at 900 ° C.
  • the fluorescence spectrum is shown in Figure 3 (a), where the left side is the excitation spectrum (at 395 nm). It has a strong absorption at 465 nm, matching the wavelength of the chip emission of violet and blue GaN-based LEDs, and its emission spectrum on the right, with a main peak at 616 nm.
  • La 2 O 3 , Eu 2 O 3 may be directly substituted with their nitrates, and may be replaced by carbonates ;
  • Example 2
  • the black rubber was slightly baked in an electric furnace, carbonized and calcined at 450 ° C for 5 h in a high temperature furnace, and then the sample was calcined at 900 ° C for 3 h to obtain a desired red phosphor, which is shown in FIG.
  • the RD pattern of the phosphor at 900 ° C, its particle size and morphology were observed by scanning electron microscopy, '' as shown in Figure 2 (a).
  • the black dry glue was slightly baked in an electric furnace, carbonized and calcined at 500 ° C for 3 h in a tempering furnace, and then the samples were respectively calcined at 900 ° C and 800 Torr; 3 h to obtain the desired red phosphor.
  • Their fluorescence spectra are shown in Fig. 3 (d) and (e) respectively. It can be seen from the figure that their fluorescence spectra are different. Their main emission peaks are all at 616am, but the phosphors obtained at 900'C are The relative intensity of luminescence is higher than 800 °C, and there is a shoulder at 626 nm. This is mainly because Gd ⁇ Eu ⁇ CMoO ⁇ is calcined at 900'C and 800'C.
  • the structure of the desired red phosphor is different. They are orthogonal structures and monoclinic structures, respectively.
  • Example 5 Example 5:
  • a molybdate red phosphor which is a solid solution R 2 .
  • the solid solution can be expressed as Eu 2 (Mo0 4 ) 3 .
  • Measure 0.02mol/L of Eu(N0 3 ) 3 solution 63.5ml, add 0.9347g of citric acid, (H4)6Mo 7 O 24 4H 2 O 0.3361g, ultrasonically disperse to make a transparent solution, adjust with ⁇ 3 ⁇ 4 ⁇ 2 0 ⁇ ⁇ 7.2, kept in an oven at 60 ° C for two days, heated to 120 ° C and dried for one day to obtain a black dry glue.
  • a molybdate red phosphor which is a solid solution y Eu x A y (M 0 O 4 ) 3 , wherein R is Sc, 63.2 ml of 0.02 mol L of Eu(NO 3 ) 3 solution, 0.32 ml of 0.01 mol/L Sc(NO 3 ) 3 solution, 0.9347 g of citric acid, ( ⁇ 4) ⁇ ⁇ 7 0 24 ⁇ 4 ⁇ 2 0 0.3361 g, Ultrasonic dispersion to make a transparent solution, NH 3 3 ⁇ 4O was adjusted to pH 7.2, kept in an oven at 60 ° C for two days, and heated to 120 ° C for one day to obtain a black dry glue.
  • Example 8 The black dry glue was then slightly baked on an electric furnace, carbonized and calcined at 500 ° C for 3 h in a high temperature furnace, and then the sample was calcined at 900 ° C for 3 h to obtain the desired red phosphor.
  • Example 8 The black dry glue was then slightly baked on an electric furnace, carbonized and calcined at 500 ° C for 3 h in a high temperature furnace, and then the sample was calcined at 900 ° C for 3 h to obtain the desired red phosphor.
  • Example 8
  • the black dry glue was then slightly baked on an electric furnace, carbonized and calcined at 500 ° C for 3 h in a high temperature furnace, and then the sample was calcined at 950 Torr for 3 h to obtain the desired red phosphor.
  • Example 9 The black dry glue was then slightly baked on an electric furnace, carbonized and calcined at 500 ° C for 3 h in a high temperature furnace, and then the sample was calcined at 950 Torr for 3 h to obtain the desired red phosphor.
  • Example 9 Example 9: .
  • the solid solution can be represented by (Y a4 Lao. 6 ) 08 Eu 12 (MoO 4 ) 2 (WO 4 ).
  • tungstate red phosphor which is a solid solution ⁇ y Eu x A y ( 0 4 ) 3 wherein R is Gd, Measure 0.02 mol L of Eu(N0 3 ) 3 solution (39 ml), 0.01 mol/L of Gd(N0 3 ) 3 solution (52 ml), and add 0.9343 g of citric acid, 0 ⁇ . 0 41 ⁇ 12 ,>3 ⁇ 40 0.4836g ultrasonic dispersion to make a transparent solution, adjust pH-7.6 with KOH of 5% by mass, keep it in the oven at 60 ° C for two days, heat up to keep dry - day, get black dry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

La présente invention concerne une poudre de phosphore rouge utilisée dans les diodes électroluminescentes (DEL) et son procédé de fabrication. La formule empirique de la poudre de phosphore est R2-x-yEuxAy(MO4)3, où 0 < x ≤ 2, R correspond à l'un des éléments suivants : Y, Sc, La, Gd ou à un mélange de deux de ces éléments; lorsque R est un mélange, les cations sont substitués de façon équivalente et le nombre total de moles de R est constant; A représente un ou deux des éléments suivants : Sm, Bi, 0 ≤ y ≤ 3, et lorsque A est un mélange, les cations sont substitués de façon équivalente et le nombre total de moles de A est constant; M représente un ou deux des éléments suivants : Mo, W. La taille des particules de la poudre de phosphore est inférieure à 2 µm, le principal pic d'émission se situe à 616 nm et la température de synthèse varie de 650 à 1 000 °C. La poudre de phosphore rouge de la présente invention présente une forte absorption de la lumière excitatrice à 370-500 nm dans le proche ultraviolet et près du bleu, présente une forte intensité lumineuse, une bonne pureté des couleurs et une bonne stabilité. Selon la présente invention, ce phosphore rouge d'une grande luminosité est obtenu par une méthode sol-gel dans laquelle de l'acide citrique est utilisé en tant qu'agent complexant, la température réactionnelle de la présente invention est bien inférieure à celle de la réaction en phase solide et les particules de la poudre de phosphore sont de petite taille, homogènes et quasi sphériques. Cette poudre de phosphore est d'une grande pureté, présente un rendement quantique élevé, se révèle extrêmement lumineuse et peut être utilisée dans des applications telles que les diodes électroluminescentes (DEL) et les lampes fluorescentes qui seront excitées par de la lumière de l'ultraviolet proche et par de la lumière proche du bleu.
PCT/CN2007/003248 2007-08-13 2007-11-16 Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication WO2009021367A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710142956.5 2007-08-13
CNA2007101429565A CN101092563A (zh) 2007-08-13 2007-08-13 一种发光二级管(led)用的荧光粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2009021367A1 true WO2009021367A1 (fr) 2009-02-19

Family

ID=38991007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003248 WO2009021367A1 (fr) 2007-08-13 2007-11-16 Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN101092563A (fr)
WO (1) WO2009021367A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740366A (zh) * 2014-01-17 2014-04-23 内蒙古工业大学 类面包圈形CaMoO4及Eu3+掺杂CaMoO4发光材料的制备方法
CN104818017A (zh) * 2015-03-31 2015-08-05 江苏师范大学 一种白光led用钼酸盐基红色荧光粉及其制备方法
CN111285674A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
CN111778025A (zh) * 2020-07-27 2020-10-16 江西理工大学 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
NO20200998A1 (en) * 2020-09-11 2022-03-14 Univ Of South Eastern Norway A novel method for boarding excitation peak of Eu3+ doped phosphor for laser excite lighting and display application as well as a material produced by the method
NO20200999A1 (en) * 2020-09-11 2022-03-14 Univ Of South Eastern Norway A new red-emitting phosphor material based on Eu3+ doped Y2(MoyW1-yO4)3 for solid-state lighting and display applications

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071022A (zh) * 2010-11-29 2011-05-25 天津理工大学 一种黄绿光可强激发的钼酸盐红色荧光材料及其制备方法
CN102260501B (zh) * 2011-05-17 2013-12-04 内蒙古大学 一种红色纳米荧光材料的制备方法
JP5845965B2 (ja) * 2012-02-24 2016-01-20 富士ゼロックス株式会社 静電荷像現像用透明トナー、静電荷像現像剤、トナーカートリッジ、画像形成方法及び画像形成装置
CN102637792A (zh) * 2012-05-14 2012-08-15 上海祥羚光电科技发展有限公司 一种白光led用荧光粉预制薄膜的制备方法
CN102709448A (zh) * 2012-06-26 2012-10-03 上海祥羚光电科技发展有限公司 一种白光led封装结构及封装方法
CN103050609A (zh) * 2012-07-17 2013-04-17 上海祥羚光电科技发展有限公司 一种led用白光芯片的制备方法
JP6384893B2 (ja) * 2013-10-23 2018-09-05 株式会社光波 単結晶蛍光体及び発光装置
CN105733582B (zh) * 2016-02-26 2019-04-02 阜阳师范学院 一种稀土磷酸盐绿色荧光粉及其制备方法
CN105907393A (zh) * 2016-06-17 2016-08-31 赣州有色冶金研究所 钨/钼酸盐基红色荧光粉材料及其制备方法和系统
CN107565128B (zh) * 2016-06-30 2020-02-21 中国科学院大连化学物理研究所 一种Li3Cr(MoO4)3在锂离子电池正极中的应用
CN107565129B (zh) * 2016-06-30 2020-04-21 中国科学院大连化学物理研究所 一种LiCr(MoO4)2在锂离子电池正极中的应用
CN108531178A (zh) * 2018-03-23 2018-09-14 重庆文理学院 一种铕掺杂钨酸钆荧光粉的制备方法
CN109266347A (zh) * 2018-11-23 2019-01-25 陕西科技大学 一种能被蓝光芯片有效激发的红色荧光粉及其制备方法
CN111117617B (zh) * 2019-12-31 2021-07-06 同济大学 一种钨酸盐基上转换发光温度传感材料及其制备方法
CN113104898B (zh) * 2020-09-16 2022-09-23 烟台大学 Li2Fe3(MoO4)4在锂离子电池负极中的应用
CN117801818A (zh) * 2024-03-01 2024-04-02 上海昌赟新能源科技有限公司 一种基于Y3+和Eu3+共掺杂负热膨胀基质的双波长响应红色荧光材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347958A (zh) * 2001-11-16 2002-05-08 清华大学 一种纳米级钼酸盐基质上转换荧光材料及其制备方法
CN1468934A (zh) * 2003-06-16 2004-01-21 中国科学院长春应用化学研究所 钨酸盐发光薄膜的制备方法
JP2004269834A (ja) * 2003-03-06 2004-09-30 Kasei Optonix Co Ltd 赤色発光蛍光体及びこれを用いた発光素子
CN1539914A (zh) * 2003-10-23 2004-10-27 北京有色金属研究总院 一种led用红色荧光粉及其制备方法和所制成的电光源
CN1918263A (zh) * 2004-02-18 2007-02-21 昭和电工株式会社 荧光粉、其制造方法及利用该荧光粉的发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347958A (zh) * 2001-11-16 2002-05-08 清华大学 一种纳米级钼酸盐基质上转换荧光材料及其制备方法
JP2004269834A (ja) * 2003-03-06 2004-09-30 Kasei Optonix Co Ltd 赤色発光蛍光体及びこれを用いた発光素子
CN1468934A (zh) * 2003-06-16 2004-01-21 中国科学院长春应用化学研究所 钨酸盐发光薄膜的制备方法
CN1539914A (zh) * 2003-10-23 2004-10-27 北京有色金属研究总院 一种led用红色荧光粉及其制备方法和所制成的电光源
CN1918263A (zh) * 2004-02-18 2007-02-21 昭和电工株式会社 荧光粉、其制造方法及利用该荧光粉的发光装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740366A (zh) * 2014-01-17 2014-04-23 内蒙古工业大学 类面包圈形CaMoO4及Eu3+掺杂CaMoO4发光材料的制备方法
CN103740366B (zh) * 2014-01-17 2016-05-11 内蒙古工业大学 类面包圈形CaMoO4及Eu3+掺杂CaMoO4发光材料的制备方法
CN104818017A (zh) * 2015-03-31 2015-08-05 江苏师范大学 一种白光led用钼酸盐基红色荧光粉及其制备方法
CN104818017B (zh) * 2015-03-31 2016-06-22 江苏师范大学 一种白光led用钼酸盐基红色荧光粉及其制备方法
CN111285674A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN111778025A (zh) * 2020-07-27 2020-10-16 江西理工大学 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法
CN111778025B (zh) * 2020-07-27 2022-07-08 江西理工大学 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法
NO20200998A1 (en) * 2020-09-11 2022-03-14 Univ Of South Eastern Norway A novel method for boarding excitation peak of Eu3+ doped phosphor for laser excite lighting and display application as well as a material produced by the method
NO20200999A1 (en) * 2020-09-11 2022-03-14 Univ Of South Eastern Norway A new red-emitting phosphor material based on Eu3+ doped Y2(MoyW1-yO4)3 for solid-state lighting and display applications
NO346944B1 (en) * 2020-09-11 2023-03-13 Univ Of South Eastern Norway A new red-emitting phosphor material based on Eu3+ doped Y2(MoyW1-yO4)3 for solid-state lighting and display applications

Also Published As

Publication number Publication date
CN101092563A (zh) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2009021367A1 (fr) Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication
Guo et al. Preparation and luminescent properties of phosphor MGd2 (MoO4) 4: Eu3+ (M= Ca, Sr and Ba)
Liu et al. Luminescent properties of Eu3+ and Sm3+ activated M2SiO4 (M= Ba, Sr and Ca) red-emitting phosphors for WLEDs
Xia et al. Luminescence and energy transfer studies of Eu3+-Tb3+ co-doped transparent glass ceramics containing BaMoO4 crystallites
CN113185977B (zh) 一种铕掺杂的超宽带红色荧光材料及其制备方法和应用
CN103627392B (zh) 一种锑酸盐基红色荧光粉及其制备方法和应用
CN102719242B (zh) 一种含氟化物Mn4+掺杂的红光材料及其制备方法
CN101402857B (zh) 一种led用红色发光材料及其制备方法
Song et al. Preparation of a novel red KBaGd (MoO4) 3: Eu3+ phosphor by sol-gel method and its luminescent properties
CN102585831B (zh) 一种铕离子激活的氟钼酸盐红色荧光粉、制备方法及应用
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
CN103059849B (zh) 一种Eu2+激活的硅磷酸盐绿色荧光粉、制备方法及应用
CN108300467A (zh) 一种白光led用蓝光荧光粉及制备方法和白光led发光装置
CN113292997B (zh) 一种双有序复合钙钛矿红色荧光粉及其制备方法
CN109957403A (zh) 一种Eu3+激活氟硼酸锶钡红色荧光粉及其制备与应用
CN114395393A (zh) 一种Eu3+掺杂的红色荧光粉及其制备方法
CN102373062B (zh) 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
CN104910914A (zh) 一种镧硼钒酸盐基红色荧光材料及其制备方法
CN104312584A (zh) 一种钼酸盐基红色荧光粉及其制备方法
CN103965897A (zh) 一种led用铝硅酸盐黄绿色荧光粉及其制备方法
Zhao et al. Enhanced effect of co-doping of Ln3+ on the luminescent properties of BaSiO3: Eu3+ red phosphors
CN107286935B (zh) 一种多元素掺杂的钨钼酸盐红色荧光粉
CN100595258C (zh) 一种碱土卤硅酸盐荧光粉及其制备方法
CN105567221A (zh) 红光荧光材料及其制备方法、应用、白光led设备
CN106590657B (zh) 一种镥铝酸盐绿色荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07816854

Country of ref document: EP

Kind code of ref document: A1