CN111285674A - 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统 - Google Patents

大功率激光照明用超薄荧光陶瓷、制备方法及光学系统 Download PDF

Info

Publication number
CN111285674A
CN111285674A CN201811496873.0A CN201811496873A CN111285674A CN 111285674 A CN111285674 A CN 111285674A CN 201811496873 A CN201811496873 A CN 201811496873A CN 111285674 A CN111285674 A CN 111285674A
Authority
CN
China
Prior art keywords
fluorescent ceramic
ceramic
equal
fluorescent
power laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811496873.0A
Other languages
English (en)
Inventor
王红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aviation Electric Co Ltd
Original Assignee
Shanghai Aviation Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aviation Electric Co Ltd filed Critical Shanghai Aviation Electric Co Ltd
Priority to CN201811496873.0A priority Critical patent/CN111285674A/zh
Publication of CN111285674A publication Critical patent/CN111285674A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开大功率激光照明用超薄荧光陶瓷,包含有,荧光陶瓷的化学组成为(CexReyY1‑x‑y)3Al5O12,其中,Re为Gd或Tb,x、y的取值范围为:0.005≤x≤0.05,0.05≤y≤0.25。本发明的有益效果在于:无需压力直接获得超薄陶瓷,陶瓷表面缺陷少、烧结温度低、晶粒尺寸小,具有良好的耐蓝光辐照能力和抗热冲击性,可承受的辐照功率密度≥25W/mm2,满足大功率激光照明使用。

Description

大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
技术领域
本发明涉及激光照明用荧光材料领域,特别地是,大功率激光照明用超薄荧光陶瓷、制备方法及光学系统。
背景技术
目前,LED用荧光材料受到的蓝光光功率密度大部分在1W/mm2以下,而激光照明通常会采用多颗激光器汇聚(单颗激光器光功率密度约1.5W/mm2),其荧光材料需要承受的蓝光辐照功率密度远高于白光LED。因此激光照明用荧光材料需具备优异的耐蓝光辐照能力、温度淬灭特性和抗热冲击性。
作为接受蓝色光而发出黄色光的荧光体,Ce:YAG由于具有发光效率高、化学稳定性好、无毒无辐射、自身寿命长等优势,其黄色荧光粉已经成功商业化应用于激光照明。但是由于荧光粉颗粒的大量表面缺陷、分散不均匀导致白光色温不一致,且树脂黄变导致光效衰减和色坐标漂移,影响激光照明产品的使用效果和寿命。YAG基荧光陶瓷具有高化学组成均一性、高热导率和耐热老化等特点,可以提升器件使用寿命及稳定性,成为室外激光照明用黄色荧光材料的首选。
根据荧光陶瓷在LED照明中厚度与出光白光特性的关系研究,科研人员发现:当荧光陶瓷掺杂浓度一定时,随着荧光陶瓷厚度的增加,蓝光被荧光陶瓷大量吸收后激发出更多的黄光,光效随之增加,并且荧光陶瓷的封装厚度存在最佳值,此时的光效最大;然而,当封装厚度大于最佳厚度时,由于荧光陶瓷对蓝光和黄光的吸收和散射增强,光效也随之减小。通过实验室研究发现激光照明用荧光陶瓷的厚度与白光特性也存在与LED相似的表现,其最佳厚度小于1mm。通常薄片状陶瓷采用干压或者流延成型。中国发明专利申请CN102924072A公开的“一种白光LED用YAG透明陶瓷及其制备方法”、中国发明专利申请CN105503188A公开的“一种LED用荧光透明陶瓷薄片的制备方法”分别采用干压法和凝胶注模法制备得到厚度≤1mm的YAG透明荧光陶瓷,但前者需要长时间后加工减薄,后者以氧化物为原料需经球磨并引入烧结助剂,荧光体的晶粒尺寸偏大导致可承受的蓝光辐照功率密度和抗热冲击性降低,不利于高功率激光照明使用。
发明内容
本发明所要解决的技术问题是克服现有荧光陶瓷的辐照功率密度较低的问题,而提供一种新型的大功率激光照明用超薄荧光陶瓷。
为了实现上述目的,本发明的技术方案是这样实现的:大功率激光照明用超薄荧光陶瓷,包含有,荧光陶瓷的化学组成为(CexReyY1-x-y)3Al5O12,其中,Re为Gd或Tb,x、y的取值范围为:0.005≤x≤0.05,0.05≤y≤0.25。
作为大功率激光照明用超薄荧光陶瓷的优选方案,荧光陶瓷的平均晶粒尺寸≤5μm。
作为大功率激光照明用超薄荧光陶瓷的优选方案,荧光陶瓷为平板状,厚度d的的取值范围为:0.2≤d≤1.0mm。
作为大功率激光照明用超薄荧光陶瓷的优选方案,用于激发荧光陶瓷的激光波长范围为420-500nm,并且荧光陶瓷在激光的激发下所形成的发射光波的波长范围为450-750nm。
本发明还提供大功率激光照明用超薄荧光陶瓷的制备方法,用于上述荧光陶瓷。包含有以下步骤,
步骤S1,制备荧光粉体:根据(CexReyY1-x-y)3Al5O12的计量配比,其中,Re为Gd或Tb,x、y的取值范围为:0.005≤x≤0.05,0.05≤y≤0.25,以氧化物和硝酸盐为原料,采用金属离子络合剂络合后,经过自组装法,得到荧光粉体;
步骤S2,制备水性浆料:荧光粉体内添加分散剂、环氧树脂及固化剂,经过搅拌分散,得到水性浆料;
步骤S3,制备陶瓷素坯:将水性浆料真空除泡后注入板状模具中成型,得到陶瓷素坯;以及,
步骤S4,真空烧结陶瓷素坯,得到荧光陶瓷。
作为大功率激光照明用超薄荧光陶瓷的制备方法的优选方案,步骤S1中,荧光粉体的粒径范围为100-500nm。
作为大功率激光照明用超薄荧光陶瓷的制备方法的优选方案,步骤S4中,板状模具的内部具有模具垫条,根据垫条厚度调整素坯厚度在0.2~1.0mm可控。
作为大功率激光照明用超薄荧光陶瓷的制备方法的优选方案,步骤S4中,板状模具为硬化有机材质,诸如,尼龙、聚四氟乙烯。
作为大功率激光照明用超薄荧光陶瓷的制备方法的优选方案,还包含有,步骤S5,荧光陶瓷的上表面覆盖增透膜层(BLUE PASS),荧光陶瓷的下表面覆盖镀银层。
本发明进一步地提供一种光学系统,包含有,
激发光源,其产生蓝光LD;以及,
上述荧光陶瓷;
在蓝光LD的激发下,荧光陶瓷产生的发射光与蓝光LD混合成白光,承受的辐照功率密度≥25W/mm2
与现有技术相比,本发明的有益效果至少在于:无需压力直接获得超薄陶瓷,陶瓷表面缺陷少、烧结温度低、晶粒尺寸小,具有良好的耐蓝光辐照能力和抗热冲击性,可承受的辐照功率密度≥25W/mm2,满足大功率激光照明使用。
附图说明
图1为本发明中荧光陶瓷断面的扫描电镜照片。
图2为本发明中光学系统的结构示意图及辐照功率密度测试。
具体实施方式
下面通过具体的实施方式结合附图对本发明作进一步详细说明。
实施例1:
以Y2O3、CeO2和Al(NO3)3•9H2O为原料配成pH值为3-4的硝酸盐溶液,采用柠檬酸(CA)溶解至硝酸盐溶液中作为金属离子络合剂,按照(Ce0.08Y0.92)3Al5O12透明陶瓷的化学配比混合搅拌得到透明溶液。将混合透明溶液转移到特氟隆内衬反应釜中,经150℃保温超过6h,自组装合成粒径在100-500nm范围的荧光粉体。将粉体添加一定量的分散剂、环氧树脂、固化剂,搅拌分散获得均匀水性浆料。再将水性浆料真空除泡后,注入夹有垫条的板状组合模具中成型,得到陶瓷陶瓷素坯。将所述素坯经真空烧结制得超薄陶瓷荧光体,厚度为0.4mm。
将超薄陶瓷荧光体Ce:YAG的光入射面镀一层蓝光增透膜,光出射面分别依次镀介质反射膜层和银层,并焊接在铜质散热基座中。利用两个bank共16颗LD(额定功率为4W,共64W)作为蓝光激发光源,调整蓝光辐照功率密度为30W/mm2,蓝光激发荧光体发射黄光,获得稳定的大功率激光白光照明。
请参见图1,图中示出的是荧光陶瓷断面的扫描电镜照片,荧光陶瓷的平均晶粒尺寸≤5μm。
实施例2:
以Y2O3、Gd2O3、CeO2和Al(NO3)3•9H2O为原料配成pH值为3~4的硝酸盐溶液,采用柠檬酸(CA)溶解至硝酸盐溶液中作为金属离子络合剂,按照(Ce0.08Gd0.20Y0.72)3Al5O12透明陶瓷的化学配比混合搅拌得到透明溶液。将混合透明溶液转移到特氟隆内衬反应釜中,经150℃保温超过6h,自组装合成粒径在100-500nm范围的荧光粉体。将粉体添加一定量的分散剂、环氧树脂、固化剂,搅拌分散获得均匀水性浆料。再将水性浆料真空除泡后,注入夹有垫条的板状组合模具中成型,得到陶瓷陶瓷素坯。将所述素坯经真空烧结制得超薄陶瓷荧光体,厚度为0.5mm。
将超薄陶瓷荧光体Ce:YAG的光入射面镀一层蓝光增透膜,光出射面分别依次镀介质反射膜层和银层,并焊接在铜质散热基座中。利用两个bank共16颗LD(额定功率为4W,共64W)作为蓝光激发光源,调整蓝光辐照功率密度为25W/mm2,蓝光激发荧光体发射黄光,获得稳定的大功率激光白光照明。
请参见图2,图中示出的是一种光学系统的结构示意图及辐照功率密度测试。蓝光激光器的蓝光LD依次经过准直透镜、匀光片到达荧光陶瓷。荧光陶瓷产生的发射光与蓝光LD混合成白光,承受的辐照功率密度≥25W/mm2
以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.大功率激光照明用超薄荧光陶瓷,其特征在于,包含有,荧光陶瓷的化学组成为(CexReyY1-x-y)3Al5O12,其中,Re为Gd或Tb,x、y的取值范围为:0.005≤x≤0.05,0.05≤y≤0.25。
2.根据权利要求1所述的大功率激光照明用超薄荧光陶瓷,其特征在于,荧光陶瓷的平均晶粒尺寸≤5μm。
3.根据权利要求1或2所述的大功率激光照明用超薄荧光陶瓷,其特征在于,荧光陶瓷为平板状,厚度d的的取值范围为:0.2≤d≤1.0mm。
4.根据权利要求1所述的大功率激光照明用超薄荧光陶瓷,其特征在于,用于激发荧光陶瓷的激光波长范围为420-500nm,并且荧光陶瓷在激光的激发下所形成的发射光波的波长范围为450-750nm。
5.大功率激光照明用超薄荧光陶瓷的制备方法,用于制备权利要求1至4中任意一项所述的荧光陶瓷,其特征在于,包含有以下步骤,
步骤S1,制备荧光粉体:根据(CexReyY1-x-y)3Al5O12的计量配比,其中,Re为Gd或Tb,x、y的取值范围为:0.005≤x≤0.05,0.05≤y≤0.25,以氧化物和硝酸盐为原料,采用金属离子络合剂络合后,经过自组装法,得到荧光粉体;
步骤S2,制备水性浆料:荧光粉体内添加分散剂、环氧树脂及固化剂,经过搅拌分散,得到水性浆料;
步骤S3,制备陶瓷素坯:将水性浆料真空除泡后注入板状模具中成型,得到陶瓷素坯;以及,
步骤S4,真空烧结陶瓷素坯,得到荧光陶瓷。
6.根据权利要求5所述的大功率激光照明用超薄荧光陶瓷的制备方法,其特征在于,步骤S1中,荧光粉体的粒径范围为100-500nm。
7.根据权利要求5所述的大功率激光照明用超薄荧光陶瓷的制备方法,其特征在于,步骤S4中,板状模具的内部具有模具垫条,根据垫条厚度调整素坯厚度在0.2~1.0mm可控。
8.根据权利要求5所述的大功率激光照明用超薄荧光陶瓷的制备方法,其特征在于,步骤S4中,板状模具为硬化有机材质,诸如,尼龙、聚四氟乙烯。
9.根据权利要求5所述的大功率激光照明用超薄荧光陶瓷的制备方法,其特征在于,还包含有,
步骤S5,荧光陶瓷的上表面覆盖增透膜层(BLUE PASS),荧光陶瓷的下表面覆盖镀银层。
10.光学系统,其特征在于,包含有,
激发光源,其产生蓝光LD;以及,
权利要求1至4中任意一项所述的荧光陶瓷;
在蓝光LD的激发下,荧光陶瓷产生的发射光与蓝光LD混合成白光,承受的辐照功率密度≥25W/mm2
CN201811496873.0A 2018-12-07 2018-12-07 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统 Pending CN111285674A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811496873.0A CN111285674A (zh) 2018-12-07 2018-12-07 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811496873.0A CN111285674A (zh) 2018-12-07 2018-12-07 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统

Publications (1)

Publication Number Publication Date
CN111285674A true CN111285674A (zh) 2020-06-16

Family

ID=71022125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811496873.0A Pending CN111285674A (zh) 2018-12-07 2018-12-07 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统

Country Status (1)

Country Link
CN (1) CN111285674A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266239A (zh) * 2020-10-19 2021-01-26 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN115784742A (zh) * 2022-12-08 2023-03-14 宜宾红星电子有限公司 高红外透过率透明陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021367A1 (fr) * 2007-08-13 2009-02-19 Rui Li Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN104449718A (zh) * 2013-09-16 2015-03-25 中国科学院上海硅酸盐研究所 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
WO2015184614A1 (zh) * 2014-06-05 2015-12-10 上海富迪照明电器有限公司 大功率高温白光led封装及其制作方法
CN105503188A (zh) * 2015-12-08 2016-04-20 中国科学院上海硅酸盐研究所 一种led用荧光透明陶瓷薄片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021367A1 (fr) * 2007-08-13 2009-02-19 Rui Li Poudre de phosphore rouge utilisée dans les diodes électroluminescentes (del) et son procédé de fabrication
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN104449718A (zh) * 2013-09-16 2015-03-25 中国科学院上海硅酸盐研究所 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
WO2015184614A1 (zh) * 2014-06-05 2015-12-10 上海富迪照明电器有限公司 大功率高温白光led封装及其制作方法
CN105503188A (zh) * 2015-12-08 2016-04-20 中国科学院上海硅酸盐研究所 一种led用荧光透明陶瓷薄片的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266239A (zh) * 2020-10-19 2021-01-26 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN112266239B (zh) * 2020-10-19 2022-11-25 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN115784742A (zh) * 2022-12-08 2023-03-14 宜宾红星电子有限公司 高红外透过率透明陶瓷的制备方法
CN115784742B (zh) * 2022-12-08 2023-11-21 宜宾红星电子有限公司 高红外透过率透明陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN1323441C (zh) 发光装置及其制造方法
US8791485B2 (en) LED encapsulation resin body, LED device, and method for manufacturing LED device
JP5454473B2 (ja) 蛍光体セラミックス及びその製造方法、並びに発光素子
EP2368963A2 (en) Complex crystal phosphor, light emitting device, surface light source apparatus, display apparatus, and lighting device
US8344407B2 (en) White light source, backlight, liquid crystal display apparatus, and illuminating apparatus
EP2028697A1 (en) Light-emitting device mounting substrate, light-emitting device package body, display and illuminating device
EP2752897A1 (en) Led device manufacturing method and fluorescent material-dispersed solution used in same
JP2017501264A (ja) Eu2+活性化蛍光体
KR101973916B1 (ko) 형광체 및 그것을 이용한 발광 장치
CN100565000C (zh) 利用yag透明陶瓷制备白光led的方法
US10591137B2 (en) Wavelength converter and light-emitting device having same
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
CN111285674A (zh) 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
JP5529932B2 (ja) 蛍光層、その製造方法およびその用途
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
EP2733190B1 (en) Phosphor composition and light emitting device package having the same
JP5004616B2 (ja) 蛍光体とその製造方法および波長変換器ならびに発光装置
WO2019031016A1 (ja) 波長変換部材および発光装置
CN111285683A (zh) 具有高稳定性的大功率激光照明用荧光陶瓷及其制备方法
EP2913379A1 (en) Thorium-doped garnet-based phosphor, and light-emitting device using same
EP1849192B1 (en) White light emitting device
CN112174647B (zh) 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置
CN113024252A (zh) 白光激光照明用多级孔结构陶瓷荧光体及其制备方法
CN216134094U (zh) 一种高功率激光照明用阵列式陶瓷光转换器
CN113024242A (zh) 获得高流明激光照明的超细陶瓷荧光体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200616

RJ01 Rejection of invention patent application after publication