CN112174647B - 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置 - Google Patents

用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置 Download PDF

Info

Publication number
CN112174647B
CN112174647B CN201910600609.5A CN201910600609A CN112174647B CN 112174647 B CN112174647 B CN 112174647B CN 201910600609 A CN201910600609 A CN 201910600609A CN 112174647 B CN112174647 B CN 112174647B
Authority
CN
China
Prior art keywords
phase
fluorescent
oxide
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910600609.5A
Other languages
English (en)
Other versions
CN112174647A (zh
Inventor
朱锦超
曾庆兵
朱宁
李春晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aviation Electric Co Ltd
Original Assignee
Shanghai Aviation Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aviation Electric Co Ltd filed Critical Shanghai Aviation Electric Co Ltd
Priority to CN201910600609.5A priority Critical patent/CN112174647B/zh
Publication of CN112174647A publication Critical patent/CN112174647A/zh
Application granted granted Critical
Publication of CN112174647B publication Critical patent/CN112174647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

本发明公开用于白光照明的低温共烧荧光陶瓷复合体。所述荧光陶瓷复合体具有钇铝石榴石结构的荧光相、氧化物散光相如Y2O3、氧化物高热导相如Al2O3、低熔点无机玻璃相如高硼硅酸盐。所述散光相、高热导相分布均匀且环绕在所述荧光相的周围,所述无机玻璃相通过低温烧结将荧光相、散光相、高热导相粘接在一起形成陶瓷块体材料。通过低温共烧制备的荧光陶瓷块体材料,不仅具有较高的发光效率,而且具有良好的匀光性能和抗热冲击性能。本发明的有益效果在于:有效解决当前白光激光照明中荧光材料的出白光不均匀、抗热冲击性能弱的问题,具有成本低和360度发光更均匀的特点。

Description

用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源 装置
技术领域
本发明涉及激光照明领域,特别地是,用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置。
背景技术
相对于LED光源产品只适用于中低亮度领域,激光照明光源则可以适用于所有亮度需求的场合,尤其在高亮、高光效等远程照明领域具有无可比拟的优势。激光器光斑的蓝光功率密度是LED的十倍甚至几十倍,同时,由于激光器的激光光斑存在能量密度分布不均的情况,传统的荧光粉加硅胶和环氧树脂的封装方式导致器件发光时产生的热量无法及时有效散出,使光源亮度下降,带来了色漂移和寿命缩短等问题。利用荧光陶瓷替代荧光粉加胶的封装方式可提升散热效果,但陶瓷晶粒对高度聚束的蓝光散光效果不佳,容易出现白光不均匀和光晕色差。利用玻璃粉来粘接荧光粉,可有效避免传统硅胶和树脂易受光和热影响而老化过快的问题。
当前有关荧光玻璃专利主要集中在荧光玻璃的组成和制备工艺技术上。国内外的技术专家已经先后开发了磷酸盐、硼磷酸盐、硼硅酸盐、硼铝酸盐、碲酸盐等玻璃体系。荧光片的制备技术一般采取两步法,第一步合成基质玻璃,采用水淬法、熔融法、溶胶凝胶发和化学气相沉积法,第二步荧光片的制备,采用共烧结法、丝网印刷法、流延法、涂覆法。本发明人提出,在高效荧光相中引入低熔点无机玻璃相,以改善传统荧光粉加胶封装方式的局限性,同时引入散光和导热功能的粉体颗粒,实现荧光体的均匀出光,从而提高激光照明光源装置的使用寿命和出光均匀性。
发明内容
本发明的第1目的在于,提供具有优异发光效率的石榴石荧光相(YAG基),同时引入氧化物散光相如Y2O3。该氧化物散光相具有较高的折射率>1.8且晶粒尺寸小于1000nm,能对进入荧光相内部的蓝光激发光以及荧光相的发射光引起以Reyleigh散射和Mie散射为主的散射,使发光区域的光强和颜色更均匀。
本发明的第2目的在于,在荧光粉中引入无机玻璃相,同时引入高热导相如Al2O3,该复合相三维相互包围均匀分布,有效改善传统粉加胶封装方式散热不良的缺点,使得该陶瓷复合体耐热性优良、适宜与蓝色发光元件组合构成高效率的白色发光装置的光转换用构件。
为了实现这一目的,本发明的技术方案如下:用于白光照明的低温共烧荧光陶瓷复合体,所述低温共烧荧光陶瓷复合体具有荧光相、氧化物散光相、高热导相和氧化物无机玻璃相。其中,荧光相体积分数50~90%,氧化物散光相的体积分数1.0~20%,氧化物高热导相的体积分数5~20%,氧化物无机玻璃相的体积分数0.1~10%。
作为用于白光照明的低温共烧荧光陶瓷复合体的优选方案,
所述荧光相基质为具有钇铝石榴石结构或镥铝石榴石结构的荧光粉,掺杂离子至少含有Ce,还可以含有Gd、Tb、Mn、Sm、Pr、Cr中的一种或多种。所述荧光相的发射光谱的峰值波长530-570nm,主波长560-590nm,且能够与蓝光配色复配出射白光。
所述原材料氧化物散光相的折射率为1.8~2.7,进一步地,散光相选自Y2O3、La2O3等镧系稀土氧化物、TeO2、ZrO2、TiO2、ZnO、Nb2O5、Ta2O5、HfO2中的一种或多种,晶粒尺寸≤1000nm,优选的50~800nm,相邻的氧化物散光相颗粒之间的距离为小于20µm,优选的小于5.0µm。
所述原材料高热导相,选用Al2O3、Bi2O3、Cr2O3、MnO2、Sb2O3、Co2O3、TiO2、Ag2O的一种或多种,进一步地,所述氧化物高热导相的晶粒尺寸小于2000nm,更进一步地,所述氧化物高热导相的晶粒尺寸为50~500nm。
所述原材料无机玻璃相,其特征在于熔点低于1300℃,进一步地,熔点低于1000℃,优选高硼硅酸盐玻璃体系。
用于白光照明的低温共烧荧光陶瓷复合体的制备方法,包含有以下步骤
步骤S1,称取原材料;
步骤S2,混料;
步骤S3,干燥过筛;
步骤S4,压片成型;
步骤S5,烧结成陶瓷块;
步骤S6,退火得到低温共烧荧光陶瓷复合体。
作为用于白光照明的低温共烧荧光陶瓷复合体的制备方法的优选方案,步骤S1中,原材料为蓝光激发的荧光粉或荧光粉混合物,该荧光粉能与蓝光复合出射白光,且荧光粉的粒径D50为1~50µm,优选的10~30µm。
作为用于白光照明的低温共烧荧光陶瓷复合体的制备方法的优选方案,步骤S5中,采用真空二步烧结:在真空炉中,真空度为10-2~10-4Pa,第一步先将烧结温度升至700~1300℃,烧结保温时间为0.5~5h,第二步将烧结温度降至500~1000℃,烧结保温时间为0.5~10h;进一步地,第二步的烧结保温为600~800℃,烧结保温时间为1~5h。
作为用于白光照明的低温共烧荧光陶瓷复合体的制备方法的优选方案,步骤S5中,采用等离子体烧结炉进行烧结:真空度为10-2~10-3Pa,烧结压力50~80MPa,升温速率100~200℃/min,烧结温度700~1200℃,烧结保温时间为1~30min。。
作为用于白光照明的低温共烧荧光陶瓷复合体的制备方法的优选方案,步骤S6中,采用马弗炉,保温温度为200~800℃,保温时间为0.5~10h,优选地,保温温度为300~500℃,保温时间为1~6h。
本发明还提供光源装置,包含有,
蓝光激发器,波长为380~520nm;以及,
前述陶瓷复合体。
与现有技术相比,本发明的有益效果至少在于:
1)在荧光相中引入无机玻璃相和高热导相,比陶瓷成本低,比传统粉加胶更耐蓝光辐照,使用寿命更长;
2) 在荧光相中引入了散光相,能够显著改善激光器蓝光能量分布不均带来的局部色差和光晕的问题,更易实现与蓝光混合出射均匀白光。
除了上面所描述的本发明解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果之外,本发明所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将结合附图作出进一步详细的说明。
附图说明
图1为本发明的实施例2陶瓷复合体的正交偏光下的500X光学显微镜照片。
图2为含有本发明的低温共烧陶瓷的发光装置示意图(透射式)。
图3为含有本发明的低温共烧陶瓷的发光装置示意图(反射式)。
具体实施方式
下面通过具体的实施方式结合附图对本发明作进一步详细说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
比较例1:
采用商用YAG:Ce荧光粉加胶封装,荧光粉粒度D50为20μm,利用环氧树脂封装固化,将所得到的块体材料进行切磨抛加工处理,得到0.2mm厚度的白光照明用荧光块体材料。
实施例1
本实施例荧光粉同比较例,荧光粉体积分数为80%;选取氧化物散光相Y2O3(D50为0.5µm),体积含量为15%;选取高硼硅酸盐为无机玻璃相,体积分数为5%。置于3D混料机干混20h,压力成型,然后在850℃下真空炉烧结1h,在700℃下保温4h,最后经马弗炉350℃退火2h。经减薄抛光得到0.2mm厚度的白光照明用低温共烧荧光陶瓷复合体。
实施例2
本实施例荧光粉同比较例,荧光粉体积分数为72%;选取氧化物散光相Y2O3(D50为0.5µm),体积含量为10%;选取高硼硅酸盐为无机玻璃相,体积分数为8%,选取高热导相Al2O3(D50为0.3μm),体积分数为10%。置于3D混料机干混20h,压力成型,然后在850℃下真空炉烧结1h,在700℃下保温4h,最后经马弗炉350℃退火2h。经减薄抛光得到0.2mm厚度的白光照明用低温共烧荧光陶瓷复合体。
实施例3
本实施例荧光粉同比较例,荧光粉体积分数为65%;选取氧化物散光相Y2O3(D50为0.1µm),体积含量为10%;选取高硼硅酸盐为无机玻璃相,体积分数为10%,选取高热导相Al2O3(D50为0.5μm),体积分数为15%。置于3D混料机干混20h,压力成型,然后在850℃下真空炉烧结1h,在700℃下保温4h,最后经马弗炉380℃退火2h。经减薄抛光得到0.2mm厚度的白光照明用低温共烧荧光陶瓷复合体。
实施例4
本实施例荧光粉同比较例,荧光粉体积分数为85%;选取氧化物散光相Y2O3(D50为0.1µm),体积含量为5%;选取高硼硅酸盐为无机玻璃相,体积分数为5%,选取高热导相Al2O3(D50为0.5μm),体积分数为5%。置于3D混料机干混20h,放入模具,加压60MPa,然后以150℃/min的速度升温至800℃,保温15min,最后经马弗炉350℃退火2h。经减薄抛光得到0.2mm厚度的白光照明用低温共烧荧光陶瓷复合体。
表1为比较例及实施例1~4低温共烧陶瓷组分、制备工艺参数及其发光强度
Figure SMS_1
这些实施例荧光陶瓷复合体的主要制备工艺参数和出光均匀性测试结果,如表1所示。与比较例相比,实施例1~4的不同区域的白光色温方差均有明显改善,实施例2具有较佳的出光照度。由图1所示实施例2在500X正交偏光下的光学显微镜照片,显示固体相与玻璃相是均匀分布,且无明显气泡。含有该陶瓷复合体的光源装置示意图,请参见图2和3,将上述陶瓷复合体的底面镀银并焊接在铜质散热基座5中,可以通过透射式或者反射式光路实现白光照明。利用单颗或多颗激光器1作为激发光源,经透镜2准直、聚束以及匀光装置3匀光后照射至该陶瓷复合体4表面,该陶瓷复合体将激发光源波长6转换为橙光,剩余蓝光与陶瓷片发射光混合获得亮度高的均匀白光7。
以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.用于白光照明的低温共烧荧光陶瓷复合体,其特征在于,所述低温共烧荧光陶瓷复合体具有钇铝石榴石结构的荧光相、氧化物散光相、氧化物高热导相和氧化物无机玻璃相,荧光相的体积分数50~90%,氧化物散光相的体积分数1~20%,氧化物高热导相的体积分数5~20%,氧化物无机玻璃相的体积分数0.1~10%;
荧光相为蓝光激发的荧光粉或荧光粉混合物,掺杂离子至少含有Ce;
所述氧化物散光相选自Y2O3、镧系稀土氧化物、TeO2、ZrO2、TiO2、ZnO、Nb2O5、Ta2O5、HfO2中的一种或多种;
氧化物高热导相选用Al2O3、Bi2O3、Cr2O3、MnO2、Sb2O3、Co2O3、TiO2、Ag2O的一种或多种;
氧化物无机玻璃相为熔点低于1000℃的高硼硅酸盐玻璃体系。
2.用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,包含有以下步骤,
步骤S1,称取原材料;
步骤S2,混料;
步骤S3,干燥过筛;
步骤S4,压片成型;
步骤S5,烧结成陶瓷块;
步骤S6,退火得到低温共烧荧光陶瓷复合体;
步骤S1中,原材料具有钇铝石榴石结构的荧光相、氧化物散光相、氧化物高热导相和氧化物无机玻璃相,荧光相的体积分数50~90%,氧化物散光相的体积分数1~20%,氧化物高热导相的体积分数5~20%,氧化物无机玻璃相的体积分数0.1~10%;荧光相为蓝光激发的荧光粉或荧光粉混合物,掺杂离子至少含有Ce,荧光相的发射光谱的峰值波长530-570nm,主波长560-590nm,且荧光粉的粒径D50为1~50µm;氧化物散光相的折射率为1.8~2.7,氧化物散光相选自Y2O3、镧系稀土氧化物、TeO2、ZrO2、TiO2、ZnO、Nb2O5、Ta2O5、HfO2中的一种或多种,晶粒尺寸≤1000nm,相邻的氧化物散光相颗粒之间的距离为小于20µm;氧化物高热导相选用Al2O3、Bi2O3、Cr2O3、MnO2、Sb2O3、Co2O3、TiO2、Ag2O的一种或多种,氧化物高热导相的晶粒尺寸小于2000nm;氧化物无机玻璃相为熔点低于1000℃的高硼硅酸盐玻璃体系。
3.根据权利要求2所述的用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,步骤S5中,采用真空二步烧结:在真空炉中,真空度为10-2~10-4Pa,第一步先将烧结温度升至700~1300℃,烧结保温时间为0.5~5h,第二步将烧结温度降至500~1000℃,烧结保温时间为0.5~10h。
4.根据权利要求3所述的用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,步骤S5中,第二步的烧结保温为600~800℃,烧结保温时间为1~5h。
5.根据权利要求2所述的用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,步骤S5中,采用等离子体烧结炉进行烧结:真空度为10-2~10-3Pa,烧结压力50~80MPa,升温速率100~200℃/min,烧结温度700~1200℃,烧结保温时间为1~30min。
6.根据权利要求2所述的用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,步骤S6中,采用马弗炉,保温温度为200~800℃,保温时间为0.5~10h。
7.根据权利要求6所述的用于白光照明的低温共烧荧光陶瓷复合体的制备方法,其特征在于,步骤S6中,采用马弗炉,保温温度为300~500℃,保温时间为1~6h。
8.光源装置,其特征在于,包含有,
蓝光激发器;以及,
权利要求1所述的陶瓷复合体。
CN201910600609.5A 2019-07-04 2019-07-04 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置 Active CN112174647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910600609.5A CN112174647B (zh) 2019-07-04 2019-07-04 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910600609.5A CN112174647B (zh) 2019-07-04 2019-07-04 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置

Publications (2)

Publication Number Publication Date
CN112174647A CN112174647A (zh) 2021-01-05
CN112174647B true CN112174647B (zh) 2023-06-09

Family

ID=73915434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910600609.5A Active CN112174647B (zh) 2019-07-04 2019-07-04 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置

Country Status (1)

Country Link
CN (1) CN112174647B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032491A (ja) * 2004-07-13 2006-02-02 Lite-On Technology Corp 色彩温度調整可能な白色光発光方法及び白色光発光装置
CN101572262A (zh) * 2008-04-28 2009-11-04 吴明番 宽谱白光发光二极管
CN104193346A (zh) * 2014-08-21 2014-12-10 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763719B2 (ja) * 2000-02-02 2006-04-05 独立行政法人科学技術振興機構 オキシ窒化物ガラスを母体材料とした蛍光体
CN102574368A (zh) * 2009-09-25 2012-07-11 海洋王照明科技股份有限公司 发光玻璃、其制造方法及发光装置
JP2014022412A (ja) * 2012-07-12 2014-02-03 Nemoto Lumi-Materials Co Ltd 蛍光体分散無機ガラスプレート
JP2014099625A (ja) * 2013-12-17 2014-05-29 Dexerials Corp 発光色変換部材及びその製造方法、並びに発光素子
CN109721250B (zh) * 2016-12-01 2021-11-26 天津理工大学 用低熔点玻璃粉制备发光玻璃陶瓷的方法
CN107265873A (zh) * 2017-06-08 2017-10-20 上海应用技术大学 一种白光led封装用低熔点荧光玻璃片及其制备方法
CN107892487B (zh) * 2017-11-01 2020-02-18 上海应用技术大学 一种基于低熔点硼硅酸盐玻璃粉的远程荧光片的制备方法
CN109896851B (zh) * 2017-12-07 2023-02-10 上海航空电器有限公司 具有浓度梯度的陶瓷复合体、制备方法及光源装置
CN109896852B (zh) * 2017-12-07 2022-03-25 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032491A (ja) * 2004-07-13 2006-02-02 Lite-On Technology Corp 色彩温度調整可能な白色光発光方法及び白色光発光装置
CN101572262A (zh) * 2008-04-28 2009-11-04 吴明番 宽谱白光发光二极管
CN104193346A (zh) * 2014-08-21 2014-12-10 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法

Also Published As

Publication number Publication date
CN112174647A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN107540368B (zh) 复相半透明荧光陶瓷的制备方法和led模组
CN101605866B (zh) 包含复合物单片陶瓷发光转换器的照明系统
CN1769231B (zh) 玻璃或玻璃陶瓷
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN106145922A (zh) 一种led用yag透明荧光陶瓷的制备方法
CN101164379A (zh) 包括红色发射陶瓷发光转换器的照明系统
JP2009524235A (ja) シート状系抗体、その製造方法、及びそれを用いた発光装置
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
EP2894211A1 (en) Ceramic phosphor plate and lighting device including the same
CN109798457B (zh) 一种透射式蓝光激光照明组件
CN104609848B (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
JP7212319B2 (ja) 波長変換部材及び発光装置
WO2021037226A1 (zh) 荧光陶瓷及其制备方法、光源装置
CN109896853B (zh) 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
JP2018043912A (ja) 光変換部材、照明光源および光変換部材の製造方法
JP2011091068A (ja) 発光色変換部材及びその製造方法、並びに発光素子
CN112159209A (zh) 高显指高热导荧光陶瓷、制备方法及在激光显示中的应用
JP2019105826A (ja) 波長変換部材及びその製造方法、並びに発光装置
WO2009083867A1 (en) Color filter for a light emitting device
Tian et al. Optimization of Ce3+ concentration and Y4MgSi3O13 phase in Mg2+‐Si4+ Co‐doped Ce: YAG ceramic phosphors
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN112174647B (zh) 用于白光照明的低温共烧荧光陶瓷复合体、制备方法及光源装置
JP2019019011A (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
WO2019116916A1 (ja) 波長変換部材及びその製造方法、並びに発光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant