WO2015184614A1 - 大功率高温白光led封装及其制作方法 - Google Patents

大功率高温白光led封装及其制作方法 Download PDF

Info

Publication number
WO2015184614A1
WO2015184614A1 PCT/CN2014/079243 CN2014079243W WO2015184614A1 WO 2015184614 A1 WO2015184614 A1 WO 2015184614A1 CN 2014079243 W CN2014079243 W CN 2014079243W WO 2015184614 A1 WO2015184614 A1 WO 2015184614A1
Authority
WO
WIPO (PCT)
Prior art keywords
led package
yag
bracket
temperature white
white led
Prior art date
Application number
PCT/CN2014/079243
Other languages
English (en)
French (fr)
Inventor
梁月山
曹顿华
马可军
Original Assignee
上海富迪照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海富迪照明电器有限公司 filed Critical 上海富迪照明电器有限公司
Priority to PCT/CN2014/079243 priority Critical patent/WO2015184614A1/zh
Priority to CN201480000542.7A priority patent/CN105431503B/zh
Publication of WO2015184614A1 publication Critical patent/WO2015184614A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to the technical field of LED illumination, in particular to a high-power high-temperature white LED package structure and a manufacturing method thereof.
  • LEDs are solid-state semiconductor devices that convert electrical energy directly into light energy. Compared with traditional incandescent lamps and fluorescent lamps, white LEDs have the advantages of low power consumption, high luminous efficiency, long service life, energy saving and environmental protection. Therefore, they are widely used not only in the field of daily lighting, but also in the field of display devices. At present, the technology for obtaining white LEDs can be divided into two categories, namely: (1) mixing with three kinds of LED chips emitting red, green and blue light; (2) exciting with monochromatic (blue or ultraviolet) LED chips. Suitable fluorescent material.
  • white LEDs mainly use a blue LED chip and a yellow-emitting phosphor Ce:YAG which can be effectively excited by blue light, and then use a lens principle to mix complementary yellow and blue light to obtain white light.
  • conventional phosphors have disadvantages such as low excitation efficiency, low light conversion efficiency, and poor uniformity.
  • epoxy resin or silica gel mixed with phosphors tends to age at high temperatures, resulting in a decrease in transmittance, which ultimately affects white light devices. Light output efficiency.
  • the present invention provides a high power high temperature white LED package and a method of fabricating the same.
  • the technical problem to be solved by the present invention is that the existing white light LED has low excitation efficiency and light conversion efficiency, poor uniformity, and the epoxy resin or the silica gel is easily aged at a high temperature to lower the light transmittance and have a short service life.
  • the technical solution of the present invention is: a high power high temperature white LED package, including a blue chip, a Ce:YAG solid fluorescent material, and a package bracket surrounding the blue chip and the Ce:YAG solid fluorescent material;
  • the Ce:YAG solid fluorescent material is coated on the blue chip.
  • the high-power high-temperature white LED package further includes a heat-conducting substrate, and the heat-conductive substrate is attached to the blue chip.
  • the surface of the Ce:YAG solid fluorescent material is provided with a red light film, and the red light film can convert part of blue light into red light having an emission band of 580 nm to 660 nm.
  • the thermal expansion coefficient of the package holder is equivalent to the thermal expansion coefficient of the Ce:YAG solid fluorescent material.
  • the package bracket is any one of a molybdenum bracket, an invar alloy bracket, an aluminum nitride bracket, an aluminum bracket, a copper bracket or a glass bracket.
  • the blue chip is a gallium nitride based blue chip.
  • the Ce:YAG solid fluorescent material is any one of a Ce:YAG fluorescent single crystal, a Ce:YAG fluorescent polycrystal, a Ce:YAG fluorescent ceramic, or a Ce:YAG fluorescent glass.
  • the chemical composition of the main component of the Ce:YAG solid fluorescent material is: (Y 1-xm A x Ce m ) 3 (Al 1-y B y ) 5 O 12 , wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ m ⁇ 0.05; wherein A is one of Lu, Tb, Pr, La, Gd; B is one of Ga, Ti, Mn, Cr, Zr.
  • the invention also discloses a manufacturing method of a high-power high-temperature white LED package, comprising the following steps:
  • step B cutting and polishing the Ce:YAG solid fluorescent material prepared in step A to obtain a solid fluorescent sheet of a desired size
  • step C The soldering paste inside the package holder obtained in step C is soldered, and then the blue chip and the solid fluorescent sheet are closely attached and fixed in the bracket, wherein the blue chip is fixed on the lower part of the bracket, and the solid fluorescent sheet is fixed on the upper part of the bracket; finally, The fixed device is baked in a 180-260 degree high temperature oven for 2-30 seconds to form an integral package structure.
  • step D includes the following steps:
  • the invention provides a high-power high-temperature white LED package and a manufacturing method thereof, which directly adheres a solid fluorescent material and a high-power blue chip through a bracket structure, and utilizes a lens principle to convert blue and solid fluorescent light of the chip.
  • the material turns yellowish green light and mixes to give white light.
  • the high-power high-temperature white LED package structure does not require the use of adhesives, has high fluorescence efficiency, can work at temperatures greater than 150 degrees, is energy-saving and environmentally friendly, and greatly improves the service life of LED lighting equipment.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of the present invention.
  • the bracket is square frame-shaped, and a step is formed inside;
  • the obtained high-power high-temperature white LED package structure is shown in FIG. 1 .
  • bracket 3 is a square frame shape, and the frame thickness is 0.3 mm;
  • the obtained high-power high-temperature white LED package structure is shown in FIG. 2 .
  • the bracket is strip-shaped to avoid short circuit of the chip, and the thickness of the frame is 0.5 mm;
  • a 45 watt high power blue chip 1 having a size of 5*5 mm is fixed on the lower portion of the holder 3, and the fluorescent wafer 2 is fixed on the upper portion of the holder 3, and the blue chip is fixed. 1 is closely adhered to the fluorescent wafer 2, and the fixed device is baked in a 230-degree high-temperature furnace for 10 seconds, and finally the device is integrally soldered on the heat-conductive substrate 6 to form a high-power high-temperature white LED overall package structure.
  • a red light film 7 is added on the surface of the fluorescent wafer.
  • the obtained high-power high-temperature white LED package structure is shown in FIG.
  • the bracket is in a square frame shape, and a step is formed inside;
  • the bracket is a rectangular frame shape, and a step is formed inside;
  • the bracket has a square frame shape, and the frame thickness is 0.3 mm;
  • the bracket is a rectangular frame shape, and a step is formed inside;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种大功率高温白光LED封装,包括蓝光芯片(1)、Ce:YAG固态荧光材料(2),以及包围该蓝光芯片和Ce:YAG固态荧光材料(2)的封装支架(3);该Ce:YAG固态荧光材料(2)覆盖贴合于蓝光芯片(1)上。一种大功率高温白光LED封装的制作方法。采用上述技术方案制成的大功率高温白光LED封装通过支架结构直接贴合固态荧光材料与大功率蓝光芯片(1),利用透镜原理将芯片的蓝光和晶片转化发出的黄绿光并予以混合,得到白光。该大功率高温白光LED封装结构无需使用黏合剂,具有高荧光效率,可以在大于150度的温度下工作。

Description

大功率高温白光LED封装及其制作方法 技术领域
本发明涉及LED照明技术领域,特别涉及大功率高温白光LED封装结构及制作方法。
背景技术
LED是一种固态的半导体器件,它可以直接把电能转化为光能。与传统的白炽灯、荧光灯相比,白光LED具有耗电量小、发光效率高、使用寿命长、节能环保等优点,因此其不仅在日常照明领域得到广泛的应用,而且进入显示设备领域。目前,获取白光LED的技术可以分为两大类,即:(1)采用发射红、绿、蓝色光线的三种LED芯片混合;(2)采用单色(蓝光或紫外光)LED芯片激发适当的荧光材料。目前,白光LED主要是利用蓝光LED芯片和可被蓝光有效激发的、发黄光的荧光粉Ce:YAG结合,再利用透镜原理将互补的黄光和蓝光予以混合,从而得到白光。但是传统荧光粉存在激发效率和光转换效率低、均匀性差等缺点,尤其在大功率照明领域,由于混合荧光粉的环氧树脂或者硅胶在高温下容易老化使透过率下降,最终严重影响白光器件的出光效率。
技术问题
为了解决上述问题,本发明提供一种大功率高温白光LED封装及其制作方法。本发明要解决的技术问题是:现有白光LED激发效率和光转换效率低、均匀性差、环氧树脂或者硅胶在高温下容易老化使光透过率下降并且使用寿命短。
技术解决方案
为了实现上述技术目的,本发明的技术方案是:大功率高温白光LED封装,包括蓝光芯片、Ce:YAG固态荧光材料,以及包围所述蓝光芯片和Ce:YAG固态荧光材料的封装支架;所述Ce:YAG固态荧光材料覆盖贴合于蓝光芯片上。
上述方案中,所述大功率高温白光LED封装还包括导热基板,所述导热基板与所述蓝光芯片贴合。
上述方案中,所述Ce:YAG固态荧光材料的表面设有红光膜,所述红光膜可将部分蓝光转换为发光波段为580nm到660nm的红光。
上述方案中,所述封装支架的热膨胀系数与Ce:YAG固态荧光材料的热膨胀系数相当。
上述方案中,所述封装支架为钼支架、因瓦合金支架、氮化铝支架、铝支架、铜支架或玻璃支架中的任意一种。
上述方案中,所述蓝光芯片为氮化镓基蓝光芯片。
上述方案中,所述Ce:YAG固态荧光材料为Ce:YAG荧光单晶、Ce:YAG荧光多晶、Ce:YAG荧光陶瓷或Ce:YAG荧光玻璃中的任意一种。
上述方案中,所述Ce:YAG固态荧光材料主体成分化学式为:(Y1-x-mAxCem)3(Al1-yBy)5O12,其中,0≤x≤1,0≤y≤1,0≤m≤0.05;其中A为Lu、Tb、Pr、La、Gd中的一种;B为Ga、Ti、Mn、Cr、Zr中的一种。
本发明还公开了大功率高温白光LED封装的制作方法,包括以下步骤:
A.制作Ce:YAG固态荧光材料;
B.对步骤A制得的Ce:YAG固态荧光材料切磨抛光得到所需尺寸的固态荧光片;
C.制作封装支架;
D.在步骤C制得的封装支架内部镀锡膏,然后将蓝光芯片和固态荧光片贴紧后固定在支架内,其中蓝光芯片固定在支架下部,固态荧光片固定于支架上部;最后,将固定好的器件放入180-260度高温炉内烘烤2-30秒,形成整体封装结构。
上述方案中,所述步骤D后包括以下步骤:
E.将封装结构的下部蓝光芯片端固定于导热基板上;
F.在固态荧光片的表面增加红光膜。
有益效果
本发明的优点和有益效果在于:本发明提供一种大功率高温白光LED封装及其制作方法,通过支架结构直接贴合固态荧光材料与大功率蓝光芯片,利用透镜原理将芯片的蓝光和固态荧光材料转化发出的黄绿光并予以混合,得到白光。该大功率高温白光LED封装结构无需使用黏合剂,具有高荧光效率,可以在大于150度的温度下工作,节能环保并且大幅提高LED照明设备的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1的结构示意图
图2为本发明实施例2的结构示意图
图3为本发明实施例3的结构示意图
图中:1、蓝光芯片2、Ce:YAG固态荧光片3、封装支架4、电极5、焊锡6、导热基板7、红光膜
本发明的实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
(1)通过提拉法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为5*5毫米,厚度0.3毫米的荧光晶片2;
(3)制作因瓦合金封装支架3,支架为正方形框状,内部形成一台阶;
(4)在封装支架内部镀锡膏5,将尺寸为5*5毫米的20瓦大功率蓝光芯片1固定在支架3下部,将荧光晶片2固定在支架3上部,并使蓝光芯片1与荧光晶片2紧密贴合,最后将固定好的器件放入220度高温炉内烘烤10秒,形成大功率高温白光LED整体封装结构。
所得的大功率高温白光LED封装结构如图1所示。
实施例2
(1)通过提拉法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为3*3毫米,厚度0.3毫米的荧光晶片2;
(3)制作钼金属封装支架3,支架为正方形框状,边框厚度为0.3毫米;
(4)在封装支架内部镀锡膏5,将尺寸为3*3毫米的5瓦大功率蓝光芯片1固定在支架3下部,将荧光晶片2固定在支架3上部,并使蓝光芯片1与荧光晶片2紧密贴合,将固定好的器件放入215度高温炉内烘烤10秒,形成大功率高温白光LED整体封装结构。
(5)将大功率高温白光LED整体封装结构的下部蓝光芯片端固定于导热基板6上。
所得的大功率高温白光LED封装结构如图2所示。
实施例3
(1)通过温度梯度法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为5*5毫米,厚度0.3毫米的荧光晶片2;
(3)制作因瓦合金封装支架3,支架为条状,以避免芯片短路,边框厚度为0.5毫米;
(4)在因瓦合金支架3内侧镀锡膏5,将尺寸为5*5毫米的45瓦大功率蓝光芯片1固定在支架3下部,将荧光晶片2固定在支架3上部,并使蓝光芯片1与荧光晶片2紧密贴合,将固定好的器件放入230度高温炉内烘烤10秒,最后将器件整体焊接在导热基板6上,形成大功率高温白光LED整体封装结构。
(5)在荧光晶片的表面上增加红光膜7。
所得的大功率高温白光LED封装结构如图3所示。
实施例4
(1)通过泡生法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为5*5毫米,厚度0.3毫米的荧光晶片;
(3)制作因瓦合金封装支架,支架为正方形框状,内部形成一台阶;
(4)在封装支架内部镀锡膏,将尺寸为5*5毫米的20瓦大功率蓝光芯片固定在支架下部,将荧光晶片固定在支架上部,并使蓝光芯片与荧光晶片紧密贴合,最后将固定好的器件放入220度高温炉内烘烤10秒,形成大功率高温白光LED整体封装结构。
实施例5
(1)通过高温烧结方法得到Ce:YAG透明陶瓷片;
(2)对步骤(1)得到的Ce:YAG透明陶瓷片切磨抛光得到尺寸为1*5毫米,厚度0.35毫米的陶瓷荧光片;
(3)制作钼封装支架,支架为长方形框状,内部形成一台阶;
(4)在封装支架内部镀锡膏,将尺寸为1*5毫米的5瓦大功率蓝光芯片固定在支架下部,将陶瓷荧光片固定在支架上部,并使蓝光芯片与陶瓷荧光片紧密贴合,最后将固定好的器件放入220度高温炉内烘烤10秒,形成大功率高温白光LED整体封装结构。
实施例6
(1)通过提拉法生长Ce:YAG单晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为3*3毫米,厚度0.3毫米的荧光晶片;
(3)制作钼金属封装支架,支架为正方形框状,边框厚度为0.3毫米;
(4)在封装支架内部镀锡膏,将尺寸为3*3毫米的3瓦大功率蓝光芯片固定在支架下部,将荧光晶片固定在支架上部,并使蓝光芯片与荧光晶片紧密贴合,将固定好的器件放入215度高温炉内烘烤10秒。
(5)在固态荧光晶体表面增加红光膜,形成大功率高温白光LED整体封装结构。
实施例7
(1)通过高温烧结方法得到Ce:YAG多晶荧光体;
(2)对步骤(1)得到的Ce:YAG多晶荧光体切磨抛光得到尺寸为1*5毫米,厚度0.35毫米的多晶荧光片;
(3)制作钼封装支架,支架为长方形框状,内部形成一台阶;
(4)在封装支架内部镀锡膏,将尺寸为1*5毫米的5瓦大功率蓝光芯片固定在支架下部,将多晶荧光片固定在支架上部,并使蓝光芯片与多晶荧光片紧密贴合,最后将固定好的器件放入220度高温炉内烘烤10秒,形成大功率高温白光LED整体封装结构。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 大功率高温白光LED封装,包括蓝光芯片、Ce:YAG固态荧光材料,以及包围所述蓝光芯片和Ce:YAG固态荧光材料的封装支架;所述Ce:YAG固态荧光材料覆盖贴合于蓝光芯片上。
  2. 根据权利要求1所述的大功率高温白光LED封装,其特征在于,所述大功率高温白光LED封装还包括导热基板,所述导热基板与所述蓝光芯片贴合。
  3. 根据权利要求1所述的大功率高温白光LED封装,其特征在于,所述Ce:YAG固态荧光材料的表面设有红光膜,所述红光膜可将部分蓝光转换为发光波段为580nm到660nm的红光。
  4. 根据权利要求1~3任一所述的大功率高温白光LED封装,其特征在于,所述封装支架的热膨胀系数与Ce:YAG固态荧光材料的热膨胀系数相当。
  5. 根据权利要求4所述的大功率高温白光LED封装,其特征在于,所述封装支架为钼支架、因瓦合金支架、氮化铝支架、铝支架、铜支架或玻璃支架中的任意一种。
  6. 根据权利要求1~3任一所述的大功率高温白光LED封装,其特征在于,所述蓝光芯片为氮化镓基蓝光芯片。
  7. 根据权利要求1~3任一所述的大功率高温白光LED封装,其特征在于,所述Ce:YAG固态荧光材料为Ce:YAG荧光单晶、Ce:YAG荧光多晶、Ce:YAG荧光陶瓷或Ce:YAG荧光玻璃中的任意一种。
  8. 根据权利要求7所述的大功率高温白光LED封装,其特征在于,所述Ce:YAG固态荧光材料主体成分化学式为:(Y1-x-mAxCem)3(Al1-yBy)5O12,其中,0≤x≤1,0≤y≤1,0≤m≤0.05;其中A为Lu、Tb、Pr、La、Gd中的一种;B为Ga、Ti、Mn、Cr、Zr中的一种。
  9. 权利要求1所述的大功率高温白光LED封装的制作方法,其特征在于,包括以下步骤:
    A.制作Ce:YAG固态荧光材料;
    B.对步骤A制得的Ce:YAG固态荧光材料切磨抛光得到所需尺寸的固态荧光片;
    C.制作封装支架;
    D.在步骤C制得的封装支架内部镀锡膏,然后将蓝光芯片和固态荧光片贴紧后固定在支架内,其中蓝光芯片固定在支架下部,固态荧光片固定于支架上部;最后,将固定好的器件放入180-260度高温炉内烘烤2-30秒,形成整体封装结构。
  10. 根据权利要求9所述的大功率高温白光LED封装的制作方法,其特征在于,所述步骤D后包括以下步骤:
    E.将封装结构的下部蓝光芯片端固定于导热基板上;
    F.在固态荧光片的表面增加红光膜。
PCT/CN2014/079243 2014-06-05 2014-06-05 大功率高温白光led封装及其制作方法 WO2015184614A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/079243 WO2015184614A1 (zh) 2014-06-05 2014-06-05 大功率高温白光led封装及其制作方法
CN201480000542.7A CN105431503B (zh) 2014-06-05 2014-06-05 大功率高温白光led封装及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079243 WO2015184614A1 (zh) 2014-06-05 2014-06-05 大功率高温白光led封装及其制作方法

Publications (1)

Publication Number Publication Date
WO2015184614A1 true WO2015184614A1 (zh) 2015-12-10

Family

ID=54765952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079243 WO2015184614A1 (zh) 2014-06-05 2014-06-05 大功率高温白光led封装及其制作方法

Country Status (2)

Country Link
CN (1) CN105431503B (zh)
WO (1) WO2015184614A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285674A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
CN111333417A (zh) * 2020-03-09 2020-06-26 西北工业大学 一种共晶荧光复合陶瓷及其制备方法和应用
CN113025306A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 自带复合抛物面集光能力的荧光体及其制备方法
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
US20080182127A1 (en) * 2004-04-27 2008-07-31 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
CN102299237A (zh) * 2010-06-22 2011-12-28 日东电工株式会社 半导体发光器件
CN202221781U (zh) * 2011-08-19 2012-05-16 中山大学 一种白光led封装结构
CN102782082A (zh) * 2010-07-14 2012-11-14 日本电气硝子株式会社 荧光体复合部件、led器件和荧光体复合部件的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859865B (zh) * 2010-05-26 2013-01-09 上海嘉利莱实业有限公司 一种大功率白光led器件的无金线封装方法及白光led器件
CN101872831A (zh) * 2010-05-26 2010-10-27 上海嘉利莱实业有限公司 一种适用于白光led的单晶荧光材料
WO2013161683A1 (ja) * 2012-04-24 2013-10-31 株式会社光波 蛍光体及びその製造方法、並びに発光装置
CN102903831A (zh) * 2012-05-15 2013-01-30 北京工业大学 一种白光led的结构及制备工艺
CN104818024B (zh) * 2013-04-10 2017-10-24 中国科学院福建物质结构研究所 包含固态透明荧光材料的白光led及其制备方法
CN204289523U (zh) * 2014-06-05 2015-04-22 上海富迪照明电器有限公司 大功率高温白光led封装

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182127A1 (en) * 2004-04-27 2008-07-31 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN102299237A (zh) * 2010-06-22 2011-12-28 日东电工株式会社 半导体发光器件
CN102782082A (zh) * 2010-07-14 2012-11-14 日本电气硝子株式会社 荧光体复合部件、led器件和荧光体复合部件的制造方法
CN202221781U (zh) * 2011-08-19 2012-05-16 中山大学 一种白光led封装结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285674A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 大功率激光照明用超薄荧光陶瓷、制备方法及光学系统
CN113025306A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 自带复合抛物面集光能力的荧光体及其制备方法
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN113025306B (zh) * 2019-12-09 2023-07-21 上海航空电器有限公司 自带复合抛物面集光能力的荧光体及其制备方法
CN111333417A (zh) * 2020-03-09 2020-06-26 西北工业大学 一种共晶荧光复合陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN105431503B (zh) 2018-05-04
CN105431503A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
WO2015184614A1 (zh) 大功率高温白光led封装及其制作方法
WO2015184618A1 (zh) 基于固态荧光材料的嵌入式白光led封装结构及其制作方法
CN204289503U (zh) 基于固态荧光材料的嵌入式白光led封装结构
CN102795841A (zh) 一种氧化铝基陶瓷和一种陶瓷散热基板及其制备方法
WO2014007451A1 (ko) 조명 장치
CN204029855U (zh) 一种led灯
CN204289523U (zh) 大功率高温白光led封装
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
WO2013172619A1 (ko) 형광체 담지용 저온 소성 유리 조성물 및 파장 변환기, 그것을 포함하는 발광 장치
CN106698933A (zh) 一种透明低熔点的微晶玻璃及其制备方法和应用
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
CN210272351U (zh) 一种高流明密度高显指白光led光源模组
CN212570992U (zh) 一种大功率可调色led灯珠
CN110642642B (zh) 一种复合荧光薄膜及其制备方法和激光显示的应用
CN108527960B (zh) 一种荧光陶瓷与蓝宝石复合陶瓷材料及其制备方法
CN203118943U (zh) 一种cob灯源板结构
WO2022077886A1 (zh) 一种无机材料封装的白光led芯片、器件及其制备方法与应用
WO2021093564A1 (zh) 红光发光模块及其制备方法
CN204361095U (zh) 一种基于远程荧光粉激发的hv-cob led光源
Hou et al. Development of the research on high-power WLEDs
CN206207025U (zh) 模组结构与led路灯
CN110993771B (zh) 全光谱荧光玻璃、其制备方法、封装散热结构及led灯
CN114530440A (zh) 一种超大功率白光led光源模组及封装方法
TWI740329B (zh) 螢光玻璃複合材料、包含其之螢光玻璃基板及光轉換裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000542.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 31-03-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 14893789

Country of ref document: EP

Kind code of ref document: A1