WO2020015428A1 - 半导体发光二极管装置和灯具 - Google Patents

半导体发光二极管装置和灯具 Download PDF

Info

Publication number
WO2020015428A1
WO2020015428A1 PCT/CN2019/084594 CN2019084594W WO2020015428A1 WO 2020015428 A1 WO2020015428 A1 WO 2020015428A1 CN 2019084594 W CN2019084594 W CN 2019084594W WO 2020015428 A1 WO2020015428 A1 WO 2020015428A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
blue
light source
light
led chip
Prior art date
Application number
PCT/CN2019/084594
Other languages
English (en)
French (fr)
Inventor
林金填
蔡金兰
Original Assignee
旭宇光电(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭宇光电(深圳)股份有限公司 filed Critical 旭宇光电(深圳)股份有限公司
Publication of WO2020015428A1 publication Critical patent/WO2020015428A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention belongs to the technical field of semiconductor devices, and particularly relates to a semiconductor light emitting diode device and a lamp.
  • LEDs Semiconductor light emitting diodes
  • LEDs are gradually replacing traditional light sources as the mainstream of lighting sources.
  • the application field requires LED to gradually develop towards customized and intelligent direction. Based on the above applications, combined with the requirements of intelligent related technologies, dimmable LED technology has become a hotspot and mainstream trend in the industry.
  • the realization of the existing dimmable white light LED mainly realizes the realization of various color temperatures and various explicit white lights by controlling the mixing of multiple LED lamp beads in the lamp current.
  • the above technologies mainly have the following problems: 1.
  • the color rendering index is low after mixing light, and the color temperature conversion color tolerance is not easy to control; 2.
  • Multiple colors or multiple color LEDs are used in lamps to achieve white light, light quality stability and It is difficult to control the uniformity and concentration of the light spot; 3, the current control of different lamp beads usually adopts multi-power control, and the cost is higher.
  • the purpose of the present invention is to provide a semiconductor light emitting diode device and a lamp, which are aimed at solving the technical problems of the light emitting performance of the existing white light LED device, which is difficult to regulate and costly.
  • a semiconductor light emitting diode device includes a substrate, a surface of the substrate is provided with a concave portion, and a bottom surface of the concave portion is provided with a first groove, a second groove, and a third groove;
  • a first light source is disposed in the first groove, and the first light source includes a violet LED chip fixed on a bottom surface of the first groove and a blue phosphor powder layer disposed on the violet LED chip;
  • a second light source is disposed in the second groove, and the second light source includes a first blue light LED chip fixed on a bottom surface of the second groove and a green phosphor powder layer provided on the first blue light LED chip.
  • a third light source is provided in the third groove, and the third light source includes a second blue light LED chip fixed on the bottom surface of the third groove and a red phosphor provided on the second blue light LED chip;
  • An adhesive layer the depth of the first groove is greater than the depth of the second groove and the third groove;
  • a thermally conductive layer and a diffusion layer are sequentially stacked in the concave portion along the light emitting direction, and the thermally conductive layer is laid on the blue phosphor powder layer, the green phosphor powder layer, and the red phosphor powder layer, and the The first light source, the second light source, and the third light source are covered.
  • the semiconductor light-emitting diode device provided by the present invention includes three light sources.
  • the first light source is excited by the blue LED compound chip with blue phosphor composite light
  • the second light source is excited by the first blue LED chip with green phosphor single-color light
  • the third The light source uses the second blue LED chip to excite the monochromatic light of the red phosphor
  • the heat-conducting layer and the diffusion layer are laid on the blue phosphor adhesive layer, the green phosphor adhesive layer, and the red phosphor adhesive layer to enhance light mixing.
  • the CRI is greater than 98 and the Ri are greater than 95.
  • the light quality is uniform and concentrated before and after dimming. , And can use a single power control, and low cost.
  • the lamp is a full-spectrum LED lamp, including a multi-channel power source, an LED light source, and a lampshade.
  • the LED light source includes the semiconductor light emitting diode device according to the present invention.
  • the luminaire provided by the present invention includes the unique semiconductor light emitting diode device of the present invention, so the luminaire can be used to improve the uniformity and softness of the mixed light, and finally, it can be achieved on a single lamp bead to achieve adjustable color temperature, spectrum and brightness.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting diode device according to an embodiment of the present invention
  • FIG. 2 is a light emission spectrum chart of a first light source, a second light source, and a third light source according to an embodiment of the present invention
  • FIG. 3 is a spectrum diagram of a semiconductor light emitting diode device in Embodiment 1 of the present invention.
  • FIG. 4 is a spectrum diagram of a semiconductor light emitting diode device in Embodiment 2 of the present invention.
  • 110-substrate 111-first groove; 112-second groove; 113-third groove; 201-violet LED chip; 202-first blue light LED chip; 203-second blue light LED chip; 301-blue Color phosphor adhesive layer; 302-green phosphor adhesive layer; 303-red phosphor adhesive layer; 401-thermal conductive layer; 501-diffusion layer.
  • first”, “second”, and “third” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • an embodiment of the present invention provides a semiconductor light emitting diode device including a substrate, a surface of the substrate is provided with a concave lower portion, and a bottom surface of the concave lower portion is provided with a first groove, a second groove, and a third groove. ;
  • a first light source is disposed in the first groove, and the first light source includes a violet LED chip fixed on a bottom surface of the first groove and a blue phosphor powder layer disposed on the violet LED chip;
  • a second light source is disposed in the second groove, and the second light source includes a first blue light LED chip fixed on a bottom surface of the second groove and a green phosphor powder layer provided on the first blue light LED chip.
  • a third light source is provided in the third groove, and the third light source includes a second blue light LED chip fixed on the bottom surface of the third groove and a red phosphor provided on the second blue light LED chip;
  • An adhesive layer the depth of the first groove is greater than the depth of the second groove and the third groove;
  • a thermally conductive layer and a diffusion layer are sequentially stacked in the concave portion along the light emitting direction, and the thermally conductive layer is laid on the blue phosphor powder layer, the green phosphor powder layer, and the red phosphor powder layer, and the The first light source, the second light source, and the third light source are covered.
  • the semiconductor light emitting diode device includes three light sources.
  • the first light source is excited by a blue LED chip to emit blue phosphor composite light
  • the second light source is excited by the first blue LED chip to emit green phosphor monochromatic light.
  • the three light sources use the second blue LED chip to excite the red phosphor monochromatic light, and then the color temperature, spectrum, and brightness can be adjusted by controlling the light intensity ratio of the blue light of the first light source, the green light of the second light source, and the red light of the third light source.
  • the heat conducting layer and the diffusion layer are laid on the blue phosphor powder layer, the green phosphor powder layer, and the red phosphor powder layer to improve the uniformity and softness of the mixed light.
  • CRI is greater than 98
  • Ri are greater than 95
  • light quality uniformity and concentration before and after dimming is good, and can be controlled by a single power supply, and low cost.
  • the substrate is provided with a concave lower surface and another opposite surface with three positive electrodes and one negative electrode, or three negative electrodes and one positive electrode, respectively.
  • three positive electrodes, one negative electrode, or three negative electrodes and one positive electrode are provided on the substrate.
  • the electrodes may be provided on the surface of the substrate, or three positive electrodes may be provided on the upper surface of the substrate.
  • One negative electrode is disposed on the back of the substrate, or three negative electrodes are disposed on the upper surface of the substrate, and one positive electrode is disposed on the back of the substrate.
  • the purple LED chip, the first blue LED chip, and the second blue LED chip are connected in parallel, and a single power supply is used to control the current between the three chips to control the change in the spectral intensity between the phosphor and the chip to achieve
  • the LED color temperature is controlled by 2700K-6500K, and the color rendering index CRI can achieve a variety of color temperatures greater than 98, and the Ri (R1-R15) values are greater than 95.
  • the relative proportions of violet and blue light in the spectrum of the first light source may be controlled by current; the relative proportions of blue and green light in the second light source may be controlled by current; The relative proportion can be controlled by current.
  • the emission spectrum diagrams of the first light source, the second light source, and the third light source are shown in FIG. 2. Further, the purple LED chip, the first blue LED chip, and the second blue LED chip are all vertical structures.
  • the wavelength of the violet LED chip is 400-430nm, and the peak wavelength of the blue phosphor in the blue phosphor powder layer is 450-470nm;
  • the wavelength of the first blue light LED chip is 440-460nm, and the peak wavelength of the green phosphor in the green phosphor powder layer is 515-535nm;
  • the wavelength of the second blue light LED chip is 440-450nm, and the red
  • the peak wavelength of the red phosphor in the phosphor glue layer is 650-660nm. Based on the luminescent characteristics of the phosphor itself and the characteristics similar to natural light in the spectral shape after matching with the chip, it is significantly higher in the phosphor wavelength range selected above.
  • the first light source includes a violet LED chip and a blue phosphor adhesive layer excited by the violet LED chip.
  • the wavelength range of the violet LED chip is 410-420 nm.
  • the blue phosphor adhesive layer contains a blue phosphor, such as a silicate.
  • the blue phosphor is a phosphor phosphor, and its chemical composition is Sr 5 ( PO 4 ) 3 Cl: Eu 2+ or (Sr, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ , so the quantum efficiency and stability of the system phosphor have certain advantages over other types of phosphor; and the first In the light source, the peak intensity ratio of blue light and purple light is (0.5-1.5): 1. Within this range, the light-emitting diode can easily achieve the full spectrum (Ra> 98, Ri> 95, Rf> 97, Rg> 99).
  • the second light source includes a first blue light LED chip and a green phosphor adhesive layer excited by the first blue light LED chip.
  • the first blue light LED chip has a band of 440-460 nm. Specifically, the first blue light LED chip in the embodiment of the present invention The wavelength band is 455-457.5nm; the green fluorescent glue layer contains green fluorescent powder, such as aluminate green powder, or silicate green powder, or a mixture of nitrogen oxide green powder and fluorescent glue, specifically, the green The phosphor is aluminate green powder, and its chemical composition is Lu 3 Al 5 O 12 : Ce 3+ or Y 3 (Al, Ga) 5 O 12 : Ce 3+ ; the second light source is a blue LED chip to excite green fluorescence.
  • the peak wavelength of monochromatic light realized by powder is 530-535nm. In the second light source, the peak intensity ratio of green light and blue light is greater than 20: 1 to ensure the color purity of green light.
  • the third light source includes a second blue LED chip and a red phosphor powder layer excited by the second blue LED chip.
  • the second blue LED chip has a band of 440-450nm. Specifically, the second blue LED chip has a band of 445-447.5nm;
  • the red fluorescent glue layer contains red fluorescent powder, such as nitride red powder, or fluoride red powder, or a mixture of fluoronitride red powder and fluorescent glue, specifically, the red fluorescent powder is nitride red powder, Its chemical composition is (Sr, Ca) AlSiN 3 : Eu 2+ ;
  • the third light source is a monochromatic light realized by the blue light chip exciting the red phosphor, and its peak wavelength is located at 652-655nm, and in the third light source, the red light and The peak intensity ratio of blue light is greater than 20: 1 to ensure the color purity of red light.
  • the depth of the first groove is greater than the depth of the second groove and the third groove; the depth of the first groove is greater than that of the second groove and the third groove, Mainly based on the large amount of blue fluorescent powder used, blue fluorescent glue is used more than green and red fluorescent glue.
  • the fluorescent light surfaces of the first light source, the second light source, and the third light source are flat.
  • a thermal conductive layer of organic glue is disposed above the fluorescent adhesive layer, and a diffusion layer is disposed above the thermal conductive layer, which is used to improve the uniformity and softness of light quality after light mixing. .
  • the distance from the bottom surface of the first groove to the surface of the substrate provided with the recessed lower portion is 0.6-0.8 mm, and the distance from the bottom surface of the second groove to the surface of the substrate provided with the recessed lower portion is 0.4-0.5mm, 0.4-0.5mm from the bottom surface of the third groove to the surface of the substrate provided with a concave lower portion.
  • a reflective layer is provided on a side wall of the concave lower portion of the substrate, which is mainly used to improve the light extraction efficiency of the light source, and is preferably an Ag reflective layer.
  • the material of the thermally conductive layer is selected from at least one of epoxy resin and silicon resin; further, the material of the thermally conductive layer is selected from graphite doped with graphite.
  • the above-mentioned graphene doping amount is ⁇ 2%, preferably 0.5% -1.5%.
  • the material of the thermally conductive layer may be a white glue containing the foregoing epoxy resin, silicone resin, or graphene-doped epoxy resin / silicone resin.
  • the material of the diffusion layer is selected from polymethyl methacrylate doped with graphene.
  • the doping amount of graphene is 0.05% -0.5%.
  • the material of the diffusion layer is preferably polymethyl methacrylate doped with a small amount of nano-level graphene (0.05% -0.5%).
  • the nano-level particles help to improve the uniformity of the light
  • the nano-level graphene is transparent. It has good performance and can improve thermal conductivity.
  • the diffusion layer helps to improve the uniformity and softness of the mixture of purple, blue, green and red light.
  • the diffusion layer is square or hemispherical and covers the heat conductive layer.
  • the thermally conductive layer and the diffusion layer are sequentially stacked in the concave portion of the semiconductor light emitting diode device along the light emitting direction, and the thermally conductive layer is doped with nano-level graphene (with a doping amount of 0.5% -1.5%) Epoxy resin or silicone resin, and the diffusion layer is polymethyl methacrylate doped with nano-level graphene (doping amount is 0.05% -0.5%).
  • the heat conduction layer and the diffusion layer can not only effectively improve the heat dissipation effect of the device, but also make the device
  • the light emitted by the first light source, the second light source, and the third light source is mixed more uniformly and softly.
  • the light emitted by the three parallel light sources in the semiconductor light emitting diode device is passed through the unique laminated thermally conductive layer and the diffusion layer to obtain a uniform light quality effect.
  • the unit of doping amount of the graphene is mass percentage, for example, the mass percentage of graphene in the diffusion layer is 0.05% -0.5%.
  • the top surfaces of the blue phosphor powder layer, the green phosphor powder layer, and the red phosphor powder layer are located on the same horizontal plane. More preferably, the gap between the blue phosphor powder layer, the green phosphor powder layer, and the red phosphor powder layer is filled with white glue, so that the gap between the three phosphor powder layers can be increased. Thermal conductivity effect, and the filled white glue is consistent with the material of the thermal conductive layer, which can improve the overall sealing and uniformity of the structure.
  • the substrate is a ceramic substrate, a metal substrate or a ceramic metal composite substrate, wherein the metal substrate includes a copper substrate, an aluminum substrate, a tungsten copper alloy substrate, a tungsten aluminum alloy substrate, a copper silver alloy substrate, a copper aluminum alloy substrate, etc.
  • the ceramic substrate is an alumina substrate, a beryllium oxide substrate, an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, an AlN / SiC composite substrate, an AlN / BeO composite substrate, an Al 2 O 3 / AlN composite substrate, and the like.
  • the light emitting diode device of the embodiment of the present invention can use a single multi-channel power supply to control the spectral ratio of the first light source, the second light source, and the third light source through current, and can achieve a spectrum in the color temperature range of 2700K to 6500K.
  • the embodiment of the present invention provides a method for preparing a dimmable light emitting diode device.
  • the preparation materials include a substrate, a purple LED chip and a blue LED chip (including a first blue LED chip and a second blue LED chip), a phosphor, White glue, polymethyl methacrylate, etc .;
  • a square or circular diffusion layer is provided above the white glue after curing, and the diffusion layer is polymethyl methacrylate doped with 0.05-0.5% nanometer graphene.
  • an embodiment of the present invention also provides a lamp.
  • the lamp is a full-spectrum LED lamp, including a multi-channel power source, an LED light source, and a lampshade.
  • the LED light source includes the semiconductor light emitting diode device according to the present invention.
  • the lamp provided by the embodiment of the present invention includes the semiconductor light emitting diode device unique to the embodiment of the present invention. Therefore, the lamp can be used to improve the uniformity and softness of the mixed light, and can finally achieve the color temperature, spectrum and Brightness-adjustable light-emitting diodes have CRI greater than 98 and Ri greater than 95.
  • the light quality is uniform and concentrated before and after dimming, and can be controlled by a single power source.
  • the lamp further includes a heat sink, which is used to improve the heat dissipation effect of the lamp.
  • the LED light source in the lamp and the dimming system of the semiconductor diode light-emitting device described above in the embodiment of the present invention are implemented in a single lamp bead. Therefore, the lamp bead performance in the dimmable lamp is consistent, and the dimming is more uniform. Consistency and softness; and the lamp uses a single power supply, which can save preparation costs.
  • a semiconductor light emitting diode device as shown in FIG. 1, includes a substrate 110.
  • a surface of the substrate 110 is provided with a concave portion, and a bottom surface of the concave portion is provided with a first groove 111, a second groove 112, and a third concave.
  • a first light source is disposed in the first groove 111, and the first light source includes a violet LED chip 201 fixed on a bottom surface of the first groove 111 and a blue phosphor powder disposed on the violet LED chip 201.
  • An adhesive layer 301; a second light source is disposed in the second groove 112, and the second light source includes a first blue light LED chip 202 fixed on a bottom surface of the second groove 112 and the first blue light LED
  • a third light source is disposed in the third groove 113, and the third light source includes a second blue light LED chip 203 fixed on the bottom surface of the third groove 113 and a set A red phosphor powder layer 303 on the second blue LED chip 203;
  • a thermally conductive layer 401 and a diffusion layer 501 are sequentially stacked in the recessed portion along the light emitting direction, and the thermally conductive layer 401 is laid on the blue phosphor powder layer 301, the green phosphor powder layer 302, and the red phosphor powder layer.
  • the first light source, the second light source, and the third light source are covered.
  • the semiconductor light-emitting diode device uses a single power source to control the current change, and then controls the spectral peak shape and spectral intensity of the first light source, the second light source, and the third light source.
  • the parameters of the adjusted spectrum are shown in Table 1 and Table 2.
  • the spectrum is shown in Figure 3.
  • a semiconductor light emitting diode device as shown in FIG. 1, includes a substrate 110.
  • a surface of the substrate 110 is provided with a concave portion, and a bottom surface of the concave portion is provided with a first groove 111, a second groove 112, and a third concave.
  • a first light source is disposed in the first groove 111, and the first light source includes a violet LED chip 201 fixed on a bottom surface of the first groove 111 and a blue phosphor powder disposed on the violet LED chip 201.
  • An adhesive layer 301; a second light source is disposed in the second groove 112, and the second light source includes a first blue light LED chip 202 fixed on a bottom surface of the second groove 112 and the first blue light LED
  • a third light source is disposed in the third groove 113, and the third light source includes a second blue light LED chip 203 fixed on the bottom surface of the third groove 113 and a set A red phosphor powder layer 303 on the second blue LED chip 203;
  • a thermally conductive layer 401 and a diffusion layer 501 are sequentially stacked in the recessed portion along the light emitting direction, and the thermally conductive layer 401 is laid on the blue phosphor powder layer 301, the green phosphor powder layer 302, and the red phosphor powder layer.
  • the first light source, the second light source, and the third light source are covered.
  • the semiconductor light emitting diode device uses a single power source to control the current change, and then controls the spectral peak shape and spectral intensity of the first light source, the second light source, and the third light source, and adjusts the light emission intensity ratios at 410nm, 450nm, 530nm, and 650nm to 1: 1.4: 1.2: 0.8 (5000K color temperature).
  • the adjusted spectrum parameters are shown in Table 1 and Table 2.
  • the spectrum is shown in Figure 4.
  • a semiconductor light emitting diode device includes a substrate, the substrate surface is provided with a concave lower portion, and the bottom surface of the concave lower portion is provided with a first groove, a second groove, and a third groove;
  • a purple LED chip is fixed on the bottom surface of the first groove; a first blue LED core is fixed on the bottom surface of the second groove; a second blue LED chip is fixed on the bottom surface of the third groove; the purple LED
  • the chip, the first blue LED core and the second blue LED core are evenly covered with a phosphor powder layer; the phosphor powder layer contains a mixed powder of blue phosphor, green phosphor and red phosphor; on the phosphor powder layer A heat-conducting layer and a diffusion layer are stacked in this order.
  • the semiconductor light emitting diode device uses a ratio change of phosphor powder, and adjusts the light emission intensity ratios at 410 nm, 450 nm, 530 nm, and 650 nm to 1: 1.4: 1.2: 0.8, and the parameters of the adjusted spectrum are shown in Tables 1 and 2.
  • a semiconductor light emitting diode device includes a substrate, the substrate surface is provided with a concave lower portion, and the bottom surface of the concave lower portion is provided with a first groove, a second groove, and a third groove;
  • a purple LED chip is fixed on the bottom surface of the first groove; a first blue LED core is fixed on the bottom surface of the second groove; a second blue LED chip is fixed on the bottom surface of the third groove; the purple LED
  • the chip, the first blue LED core and the second blue LED core are evenly covered with a phosphor powder layer; the phosphor powder layer contains a mixed powder of yellow phosphor, green phosphor and red phosphor; the phosphor powder layer is sequentially
  • a heat conductive layer and a diffusion layer are provided in a stack.
  • the semiconductor light emitting diode device uses a ratio change of phosphor powder, and adjusts the light emission intensity ratios at 410 nm, 450 nm, 530 nm, and 650 nm to 1: 1.4: 1.2: 0.8, and the parameters of the adjusted spectrum are shown in Tables 1 and 2.

Abstract

一种半导体发光二极管装置和灯具。该装置包括基板(110),基板(110)表面设置有凹下部,凹下部的底面设置有第一凹槽(111)、第二凹槽(112)和第三凹槽(113);第一凹槽(111)内设置有第一光源,包括紫光LED芯片(201)和蓝色荧光粉胶层(301);第二凹槽(112)内设置有第二光源,包括第一蓝光LED芯片(202)和绿色荧光粉胶层(302);第三凹槽(113)内设置有第三光源,包括第二蓝光LED芯片(203)和红色荧光粉胶层(303);第一凹槽(111)的深度大于第二凹槽(112)和第三凹槽(113)的深度;所述凹下部内沿发光方向依次层叠设置有导热层(401)和扩散层(501),且导热层(401)铺设在蓝色荧光粉胶层(301)、绿色荧光粉胶层(302)和红色荧光粉胶层(303)上。该装置实现单灯珠上提升实现色温、光谱和亮度可调的发光二极管装置。

Description

半导体发光二极管装置和灯具 技术领域
本发明属于半导体装置技术领域,具体涉及一种半导体发光二极管装置和灯具。
背景技术
半导体发光二极管(Light Emitting Diode,LED)具有高效、节能、环保、寿命长、体积小、易维护等优点,受到国内外研究者广泛关注;目前,LED正逐步替代传统光源成为照明光源的主流,且应用领域要求LED逐渐向客制化、智能化方向发展。基于上述应用,结合智能相关技术需求,可调光LED技术目前已成为业界研究的热点和主流方向。
技术问题
现有可调光白光LED的实现主要通过在灯具中电流控制多个LED灯珠混光实现各种色温、各种显指白光的实现。但以上技术主要存在以下问题:1、混光后显色指数较低、色温变换色容差不容易控制;2、灯具中采用多种颜色或多种颜色LED混和实现白光,光质稳定性和光斑均匀性、集中性很难控制;3、不同灯珠电流控制通常采用多电源控制,成本较高。
技术解决方案
本发明的目的在于提供一种半导体发光二极管装置和灯具,旨在解决现有白光LED装置发光性能不易调控,且成本高的技术问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种半导体发光二极管装置,包括基板,所述基板表面设置有凹下部,所述凹下部的底面设置有第一凹槽、第二凹槽和第三凹槽;
所述第一凹槽内设置有第一光源,所述第一光源包括固定在所述第一凹槽底面的紫光LED芯片和设置在所述紫光LED芯片上的蓝色荧光粉胶层;所述第二凹槽内设置有第二光源,所述第二光源包括固定在所述第二凹槽底面的第一蓝光LED芯片和设置在所述第一蓝光LED芯片上的绿色荧光粉胶层;所述第三凹槽内设置有第三光源,所述第三光源包括固定在所述第三凹槽底面的第二蓝光LED芯片和设置在所述第二蓝光LED芯片上的红色荧光粉胶层;所述第一凹槽的深度大于所述第二凹槽和第三凹槽的深度;
所述凹下部内沿发光方向依次层叠设置有导热层和扩散层,且所述导热层铺设在所述蓝色荧光粉胶层、绿色荧光粉胶层和红色荧光粉胶层上,将所述第一光源、第二光源和第三光源覆盖。
本发明提供的半导体发光二极管装置中,包括三个光源,第一光源由紫LED光芯片激发蓝色荧光粉复合光,第二光源由第一蓝光LED芯片激发绿色荧光粉单色光,第三光源由第二蓝光LED芯片激发红色荧光粉单色光,通过铺设在所述蓝色荧光粉胶层、绿色荧光粉胶层和红色荧光粉胶层上导热层以及扩散层,用于提升混光后的均匀性和柔和性,最终可以实现单灯珠上提升实现色温、光谱和亮度可调的发光二极管,CRI均大于98,Ri均大于95,调光前后光质均匀性和集中性较好、且能够采用单一电源控制,而且成本低。
本发明另一方面提供一种灯具,所述灯具为全光谱LED灯具,包括多孔道电源、LED光源和灯罩,所述LED光源包括本发明所述的半导体发光二极管装置。
有益效果
本发明的提供的灯具包括本发明特有的半导体发光二极管装置,因此该灯具可以用于提升混光后的均匀性和柔和性,最终可以实现单灯珠上提升实现色温、光谱和亮度可调的发光二极管,CRI均大于98,Ri均大于95,调光前后光质均匀性和集中性较好、且能够采用单一电源控制。
附图说明
图1为本发明实施例的半导体发光二极管装置的剖面示意图;
图2为本发明实施例的第一光源、第二光源和第三光源的发光光谱图;
图3为本发明实施例1中半导体发光二极管装置的光谱图;
图4为本发明实施例2中半导体发光二极管装置的光谱图;
其中,图中各附图标记:
110-基板;111-第一凹槽;112-第二凹槽;113-第三凹槽;201-紫光LED芯片;202-第一蓝光LED芯片;203-第二蓝光LED芯片;301-蓝色荧光粉胶层;302-绿色荧光粉胶层;303-红色荧光粉胶层;401-导热层;501-扩散层。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
一方面,本发明实施例提供了一种半导体发光二极管装置,包括基板,所述基板表面设置有凹下部,所述凹下部的底面设置有第一凹槽、第二凹槽和第三凹槽;
所述第一凹槽内设置有第一光源,所述第一光源包括固定在所述第一凹槽底面的紫光LED芯片和设置在所述紫光LED芯片上的蓝色荧光粉胶层;所述第二凹槽内设置有第二光源,所述第二光源包括固定在所述第二凹槽底面的第一蓝光LED芯片和设置在所述第一蓝光LED芯片上的绿色荧光粉胶层;所述第三凹槽内设置有第三光源,所述第三光源包括固定在所述第三凹槽底面的第二蓝光LED芯片和设置在所述第二蓝光LED芯片上的红色荧光粉胶层;所述第一凹槽的深度大于所述第二凹槽和第三凹槽的深度;
所述凹下部内沿发光方向依次层叠设置有导热层和扩散层,且所述导热层铺设在所述蓝色荧光粉胶层、绿色荧光粉胶层和红色荧光粉胶层上,将所述第一光源、第二光源和第三光源覆盖。
本发明实施例提供的半导体发光二极管装置中,包括三个光源,第一光源由紫光LED芯片激发蓝色荧光粉复合光,第二光源由第一蓝光LED芯片激发绿色荧光粉单色光,第三光源由第二蓝光LED芯片激发红色荧光粉单色光,然后通过控制第一光源的蓝光、第二光源的绿光和第三光源的红光的发光强度比例实现色温、光谱和亮度可调的发光二极管;同时,通过铺设在所述蓝色荧光粉胶层、绿色荧光粉胶层和红色荧光粉胶层上导热层以及扩散层,用于提升混光后的均匀性和柔和性,最终可以实现单灯珠上提升实现色温、光谱和亮度可调的发光二极管,CRI均大于98,Ri均大于95,调光前后光质均匀性和集中性较好、且能够采用单一电源控制,而且成本低。
本发明实施例中,所述基板设置有凹下部的表面和另一相对表面分别设置三个正极和一个负极,或三个负极和一个正极。本发明实施例提供的可调光全光谱半导体二极管发光装置,在所述基板上设置三个正极一个负极或三个负极一个正极,电极可以设置在基板表面,或三个正极设置在基板上表面,一个负极设置在基板背面,或三个负极设置在基板上表面,一个正极设置在基板背面。本发明实施例中,所述紫光LED芯片、第一蓝光LED芯片和第二蓝光LED芯片并联连接,采用单电源控制三个芯片之间的电流进而控制荧光粉及芯片之间光谱强度变化进而实现LED色温2700K-6500K调控,显色指数CRI能够实现各种色温均大于98以上,且Ri(R1-R15)值均大于95。作为优选,所述第一光源光谱中紫光和蓝光的光谱相对比例可以通过电流控制;所述第二光源中蓝光和绿光相对比例可以通过电流控制;所述第三光源中红光和蓝光的相对比例可以通过电流控制,第一光源、第二光源和第三光源的发光光谱图如图2所示。进一步地,紫光LED芯片、第一蓝光LED芯片和第二蓝光LED芯片均为垂直结构。
具体地,在本发明实施例提供的半导体发光二极管装置中,紫光LED芯片的波长为400-430nm,且所述蓝色荧光粉胶层中的蓝色荧光粉峰值波长为450-470nm;所述第一蓝光LED芯片的波长为440-460nm,且所述绿色荧光粉胶层中的绿色荧光粉峰值波长为515-535nm;所述第二蓝光LED芯片的波长为440-450nm,且所述红色荧光粉胶层中的红色荧光粉峰值波长为650-660nm。基于荧光粉本身的发光特性以及和芯片匹配后光谱形状类似自然光的特点,在上述选择的荧光粉波长的范围内其显指较高。
第一光源中,包括紫光LED芯片和被紫光LED芯片激发的蓝色荧光粉胶层,紫光LED芯片波段为410-420nm,所述蓝色荧光粉胶层含有蓝色荧光粉,如硅酸盐荧光粉,或铝酸盐荧光粉,或氮氧化物荧光粉,或磷酸盐荧光粉与荧光胶的混合;优选地,所述蓝色荧光粉为磷酸盐荧光粉,其化学组成为Sr 5(PO 4) 3Cl:Eu 2+或(Sr,Ba) 5(PO 4) 3Cl:Eu 2+,因此体系荧光粉的量子效率和稳定性能相对其它种类荧光粉具有一定的优势;且第一光源中,蓝光和紫光的峰值强度比为(0.5-1.5):1,在此范围内发光二极管能够容易实现全光谱(Ra>98,Ri>95,Rf>97,Rg>99)。
第二光源中,包括第一蓝光LED芯片和被第一蓝光LED芯片激发的绿色荧光粉胶层,第一蓝光LED芯片波段为440-460nm,具体地,本发明实施例第一蓝光LED芯片的波段为455-457.5nm;所述绿色荧光胶层含有绿色荧光粉,如铝酸盐绿粉,或硅酸盐绿粉,或氮氧化物绿粉和荧光胶的混合,具体地,所述绿色荧光粉为铝酸盐绿粉,其化学组成为Lu 3Al 5O 12:Ce 3+或Y 3(Al,Ga) 5O 12:Ce 3+;该第二光源为蓝光LED芯片激发绿色荧光粉实现的单色光,其峰值波长位于530-535nm,且第二光源中,绿光和蓝光峰值强度比大于20:1,以保证绿光的色纯度。
第三光源中,包括第二蓝光LED芯片和被第二蓝光LED芯片激发红色荧光粉胶层,第二蓝光LED芯片波段为440-450nm,具体地,本发明实施例第二蓝光LED芯片波段为445-447.5nm;所述红色荧光胶层含有红色荧光粉,如氮化物红粉,或氟化物红粉,或氟氮化物红粉和荧光胶的混合,具体地,所述红色荧光粉为氮化物红粉,其化学组成为(Sr,Ca)AlSiN 3:Eu 2+;该第三光源为蓝光芯片激发红色荧光粉实现的单色光,其峰值波长位于652-655nm,且第三光源中,红光和蓝光峰值强度比大于20:1,以保证红光的色纯度。
本发明实施例中,所述第一凹槽的深度大于所述第二凹槽和第三凹槽的深度;所述第一凹槽的深度相对第二凹槽和第三凹槽更大,主要是基于蓝色荧光粉使用量较大,蓝色荧光胶使用量相对绿色和红色荧光胶更多。且第一光源、第二光源和第三光源荧光胶面持平,荧光胶层上方设置有有机胶导热层,导热层上方设置有扩散层,用于提升混光之后的光质均匀性和柔和性。优选地,所述第一凹槽的底面到所述基板设有凹下部的表面的距离为0.6-0.8mm,所述第二凹槽的底面到所述基板设有凹下部的表面的距离为0.4-0.5mm,所述第三凹槽的底面到所述基板设有凹下部的表面的0.4-0.5mm。
进一步地,本发明实施例的半导体发光二极管装置中,基板的凹下部侧壁设置有反射层,主要用于提升光源的光提取效率,优选为Ag反射层。
进一步地,本发明实施例的半导体发光二极管装置中,所述导热层的材料选自环氧树脂和硅树脂中的至少一种;更进一步地,所述导热层的材料选自掺杂有石墨烯的环氧树脂和掺杂有石墨烯的硅树脂中的至少一种,上述石墨烯掺杂量<2%,优选0.5%-1.5%。具体地,本发明实施例中,导热层的材料可以是含有上述环氧树脂、硅树脂、或掺杂石墨烯的环氧树脂/硅树脂的白胶。进一步地,所述扩散层的材料选自掺杂有石墨烯的聚甲基丙烯酸甲酯。优选地,所述掺杂有石墨烯的聚甲基丙烯酸甲酯中,石墨烯的掺杂量为0.05%-0.5%。扩散层材料优选为掺杂少量纳米级石墨烯(0.05%-0.5%)的聚甲基丙烯酸甲酯,一方面纳米级颗粒有助于提升出光的均匀性,另一方面纳米级石墨烯透光性好,且能够提升导热性,扩散层有助于提升紫光、蓝光、绿光及红光混合的均匀性和柔和性。所述扩散层为方形或半球形覆盖于导热层上方。
在一优选实施例中,半导体发光二极管装置的凹下部内沿发光方向依次层叠设置的导热层和扩散层中,导热层为掺杂纳米级石墨烯(掺杂量为0.5%-1.5%)的环氧树脂或硅树脂,且扩散层为掺杂有纳米级石墨烯(掺杂量为0.05%-0.5%)的聚甲基丙烯酸甲酯。通过层叠的、不同掺杂量的纳米级石墨烯(即石墨烯梯度掺杂,且沿发光方向掺杂量减少)的导热层和扩散层,这样不仅能有效提高装置的散热效果,而且能使第一光源、第二光源和第三光源所发出的光混合地更加均匀、柔和。如此,使该半导体发光二极管装置中三个并联的光源所发出的光通过该特有的层叠的导热层和扩散层得到光质一致性的效果。在本发明实施例中,上述石墨烯的掺杂量单位为质量百分比,例如扩散层中石墨烯质量百分比为0.05%-0.5%。
更优选地,在所述基板的凹下部内,所述蓝色荧光粉胶层、所述绿色荧光粉胶层和所述红色荧光粉胶层的顶面位于同一水平面。更优选地,所述蓝色荧光粉胶层、所述绿色荧光粉胶层和所述红色荧光粉胶层之间的缝隙内填充有白胶,这样可以增加三个荧光粉胶层之间的导热效果,而且填充的白胶与导热层的材料一致,可以提高结构的整体密封性以及均一性。
进一步地,所述基板为陶瓷基板、金属基板或陶瓷金属复合基板,其中金属基板包括铜基板、铝基板、钨铜合金基板、钨铝合金基板、铜银合金基板、铜铝合金基板等,所述陶瓷基板为氧化铝基板、氧化铍基板、氮化铝基板、氮化硅基板、碳化硅基板、AlN/SiC复合基板,AlN/BeO复合基板、Al 2O 3/AlN复合基板等。
总之,本发明实施例的发光二极管装置可以采用单一多通道电源通过电流控制第一光源、第二光源和第三光源的光谱比例,能够实现光谱在2700K色温至6500K色温范围内,发光装置的Ra>98,Ri>95,Rf>97,Rg>99。
同时,本发明实施例提供了一种可调光发光二极管装置的制备方法,制备原料包括基板、紫光LED芯片和蓝光LED芯片(包括第一蓝光LED芯片和第二蓝光LED芯片)、荧光粉、白胶、聚甲基丙烯酸甲酯等;
(一)将相应的紫光LED芯片和蓝光LED芯片分别固定在基板第一凹槽、第二凹槽和第三凹槽的底面;
(二)分别在第一凹槽、第二凹槽和第三凹槽内的芯片上涂覆相应的蓝色、绿色和红色荧光粉涂层分别形成第一光源、第二光源和第三光源;
(三)在凹槽缝隙之间和上方填充白胶;
(四)固化后在所述白胶上方设置方形或圆形扩散层,所述扩散层为掺杂0.05-0.5%纳米级石墨烯的聚甲基丙烯酸甲酯。
另一方面,本发明实施例还提供了一种灯具,所述灯具为全光谱LED灯具,包括多孔道电源、LED光源和灯罩,所述LED光源包括本发明所述的半导体发光二极管装置。
本发明实施例的提供的灯具包括本发明实施例特有的半导体发光二极管装置,因此该灯具可以用于提升混光后的均匀性和柔和性,最终可以实现单灯珠上提升实现色温、光谱和亮度可调的发光二极管,CRI均大于98,Ri均大于95,调光前后光质均匀性和集中性较好、且能够采用单一电源控制。
进一步,所述灯具还包括散热器,用于提升灯具的散热效果。
该灯具中的LED光源以及本发明实施例以上所述的半导体二极管发光装置的可调光系统在单一灯珠内实现,因此该可调光灯具中灯珠性能一致,调光更具有均匀性、一致性和柔和性;且该灯具采用单一电源,能够节省制备成本。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
一种半导体发光二极管装置,如图1所示,包括基板110,所述基板110表面设置有凹下部,所述凹下部的底面设置有第一凹槽111、第二凹槽112和第三凹槽113;
所述第一凹槽111内设置有第一光源,所述第一光源包括固定在所述第一凹槽111底面的紫光LED芯片201和设置在所述紫光LED芯片201上的蓝色荧光粉胶层301;所述第二凹槽112内设置有第二光源,所述第二光源包括固定在所述第二凹槽112底面的第一蓝光LED芯片202和设置在所述第一蓝光LED芯片202上的绿色荧光粉胶层302;所述第三凹槽113内设置有第三光源,所述第三光源包括固定在所述第三凹槽113底面的第二蓝光LED芯片203和设置在所述第二蓝光LED芯片203上的红色荧光粉胶层303;
所述凹下部内沿发光方向依次层叠设置有导热层401和扩散层501,且所述导热层401铺设在所述蓝色荧光粉胶层301、绿色荧光粉胶层302和红色荧光粉胶层303上,将所述第一光源、第二光源和第三光源覆盖。
该半导体发光二极管装置采用单电源控制电流变化,进而控制第一光源、第二光源和第三光源的光谱峰形和光谱强度,调整位于410nm、450nm、530nm和650nm处的发光强度比例为1:1.8:1.85:1.83(4000K色温),调整后光谱的参数如表1和表2所示,光谱图如图3所示。
实施例2
一种半导体发光二极管装置,如图1所示,包括基板110,所述基板110表面设置有凹下部,所述凹下部的底面设置有第一凹槽111、第二凹槽112和第三凹槽113;
所述第一凹槽111内设置有第一光源,所述第一光源包括固定在所述第一凹槽111底面的紫光LED芯片201和设置在所述紫光LED芯片201上的蓝色荧光粉胶层301;所述第二凹槽112内设置有第二光源,所述第二光源包括固定在所述第二凹槽112底面的第一蓝光LED芯片202和设置在所述第一蓝光LED芯片202上的绿色荧光粉胶层302;所述第三凹槽113内设置有第三光源,所述第三光源包括固定在所述第三凹槽113底面的第二蓝光LED芯片203和设置在所述第二蓝光LED芯片203上的红色荧光粉胶层303;
所述凹下部内沿发光方向依次层叠设置有导热层401和扩散层501,且所述导热层401铺设在所述蓝色荧光粉胶层301、绿色荧光粉胶层302和红色荧光粉胶层303上,将所述第一光源、第二光源和第三光源覆盖。
该半导体发光二极管装置采用单电源控制电流变化,进而控制第一光源、第二光源和第三光源的光谱峰形和光谱强度,调整位于410nm、450nm、530nm和650nm处的发光强度比例为1:1.4:1.2:0.8(5000K色温),调整后光谱的参数如表1和表2所示,光谱图如图4所示。
对比例1
一种半导体发光二极管装置,包括基板,所述基板表面设置有凹下部,所述凹下部的底面设置有第一凹槽、第二凹槽和第三凹槽;
所述第一凹槽的底面固定有紫光LED芯片;所述第二凹槽的底面固定有第一蓝光LED芯;所述第三凹槽的底面固定有第二蓝光LED芯片;所述紫光LED芯片、第一蓝光LED芯和第二蓝光LED芯上均匀铺设有荧光粉胶层;所述荧光粉胶层含有蓝色荧光粉、绿色荧光粉和红色荧光粉的混合粉;荧光粉胶层上依次层叠设置有导热层和扩散层。
该半导体发光二极管装置采用荧光粉比例变化,调整光谱位于410nm、450nm、530nm和650nm处的发光强度比例为1:1.4:1.2:0.8,调整后光谱的参数如表1和表2所示。
对比例2
一种半导体发光二极管装置,包括基板,所述基板表面设置有凹下部,所述凹下部的底面设置有第一凹槽、第二凹槽和第三凹槽;
所述第一凹槽的底面固定有紫光LED芯片;所述第二凹槽的底面固定有第一蓝光LED芯;所述第三凹槽的底面固定有第二蓝光LED芯片;所述紫光LED芯片、第一蓝光LED芯和第二蓝光LED芯上均匀铺设有荧光粉胶层;所述荧光粉胶层含有黄色荧光粉、绿色荧光粉和红色荧光粉的混合粉;荧光粉胶层上依次层叠设置有导热层和扩散层。
该半导体发光二极管装置采用荧光粉比例变化,调整光谱位于410nm、450nm、530nm和650nm处的发光强度比例为1:1.4:1.2:0.8,调整后光谱的参数如表1和表2所示。
表1
参数 显色指数(CRI) 色彩逼真度(Rf) 色彩饱和度(Rg) 光效
实施例1 98.4 98 100 110 lm/W
实施例2 98.5 98 101 114 lm/W
对比例1 95.1 90 95    100 lm/W
对比例2 95.3 89.5 94    101 lm/W
表2
参数 R9 R10 R11 R12 R13 R14 R15
实施例1 98 99 98 98 99 99 99
实施例2 98 99 98 97 98 99 99
对比例1 90 95 95 93 95 95 96
对比例2 91 93 95 94 94 96 96
根据实施例和对比例数据可以看出,采用多色荧光粉混合均匀涂覆,在单一灯珠上调控色温难度系数较大,且显指和光效相对较低,主要是荧光粉之间会存在互吸收现象。本发明在单个灯珠通过控制电流变化进而调控光谱比例变化,荧光粉之间不会互吸收,发光效率明显提高;且光谱形状和光功率比例容易调至太阳光相近,因此显色指数CRI、Rg、Rf指数也相对对比例较高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种半导体发光二极管装置,包括基板,所述基板表面设置有凹下部,其特征在于,所述凹下部的底面设置有第一凹槽、第二凹槽和第三凹槽;
    所述第一凹槽内设置有第一光源,所述第一光源包括固定在所述第一凹槽底面的紫光LED芯片和设置在所述紫光LED芯片上的蓝色荧光粉胶层;所述第二凹槽内设置有第二光源,所述第二光源包括固定在所述第二凹槽底面的第一蓝光LED芯片和设置在所述第一蓝光LED芯片上的绿色荧光粉胶层;所述第三凹槽内设置有第三光源,所述第三光源包括固定在所述第三凹槽底面的第二蓝光LED芯片和设置在所述第二蓝光LED芯片上的红色荧光粉胶层;所述第一凹槽的深度大于所述第二凹槽和第三凹槽的深度;
    所述凹下部内沿发光方向依次层叠设置有导热层和扩散层,且所述导热层铺设在所述蓝色荧光粉胶层、绿色荧光粉胶层和红色荧光粉胶层上,将所述第一光源、第二光源和第三光源覆盖。
  2. 如权利要求1所述的半导体发光二极管装置,其特征在于,紫光LED芯片的波长为400-430nm,且所述蓝色荧光粉胶层中的蓝色荧光粉峰值波长为450-470nm;和/或,
    所述第一蓝光LED芯片的波长为440-460nm,且所述绿色荧光粉胶层中的绿色荧光粉峰值波长为515-535nm;和/或,
    所述第二蓝光LED芯片的波长为440-450nm,且所述红色荧光粉胶层中的红色荧光粉峰值波长为650-660nm。
  3. 如权利要求1所述的半导体发光二极管装置,其特征在于,所述基板设置有凹下部的表面和另一相对表面分别设置三个正极和一个负极,或三个负极和一个正极;且所述紫光LED芯片、第一蓝光LED芯片和第二蓝光LED芯片并联连接。
  4. 如权利要求1所述的半导体发光二极管装置,其特征在于,所述第一光源中,蓝光和紫光的峰值强度比为(0.5-1.5):1;和/或,
    所述第二光源中,绿光和蓝光峰值强度比大于20:1;和/或,
    所述第三光源中,红光和蓝光峰值强度比大于20:1。
  5. 如权利要求1所述的半导体发光二极管装置,其特征在于,在所述基板的凹下部内,所述蓝色荧光粉胶层、所述绿色荧光粉胶层和所述红色荧光粉胶层的顶面位于同一水平面;和/或,
    所述蓝色荧光粉胶层、所述绿色荧光粉胶层和所述红色荧光粉胶层之间的缝隙内填充有白胶。
  6. 如权利要求1所述的半导体发光二极管装置,其特征在于,所述第一凹槽的底面到所述基板设有凹下部的表面的距离为0.6-0.8mm,所述第二凹槽的底面到所述基板设有凹下部的表面的距离为0.4-0.5mm,所述第三凹槽的底面到所述基板设有凹下部的表面的0.4-0.5mm。
  7. 如权利要求1-6任一项所述的半导体发光二极管装置,其特征在于,所述导热层的材料选自环氧树脂和硅树脂中的至少一种。
  8. 如权利要求1-6任一项所述的半导体发光二极管装置,其特征在于,所述导热层的材料选自掺杂有石墨烯的环氧树脂和掺杂有石墨烯的硅树脂中的至少一种;和/或,
    所述扩散层的材料选自掺杂有石墨烯的聚甲基丙烯酸甲酯。
  9. 如权利要求8所述的半导体发光二极管装置,其特征在于,所述掺杂有石墨烯的环氧树脂或掺杂有石墨烯的硅树脂中,石墨烯的掺杂量为0.5%-1.5%;且所述掺杂有石墨烯的聚甲基丙烯酸甲酯中,石墨烯的掺杂量为0.05%-0.5%。
  10. 一种灯具,所述灯具为全光谱LED灯具,包括多孔道电源、LED光源和灯罩,其特征在于,所述LED光源包括权利要求1-9任一项所述的半导体发光二极管装置。
PCT/CN2019/084594 2019-02-15 2019-04-26 半导体发光二极管装置和灯具 WO2020015428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118304.0A CN109841719B (zh) 2019-02-15 2019-02-15 半导体发光二极管装置和灯具
CN201910118304.0 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020015428A1 true WO2020015428A1 (zh) 2020-01-23

Family

ID=66884650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084594 WO2020015428A1 (zh) 2019-02-15 2019-04-26 半导体发光二极管装置和灯具

Country Status (2)

Country Link
CN (1) CN109841719B (zh)
WO (1) WO2020015428A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277478B (zh) * 2019-06-28 2021-03-30 旭宇光电(深圳)股份有限公司 发光二极管器件以及发光装置
CN115763672B (zh) * 2023-01-09 2023-06-13 四川世纪和光科技发展有限公司 一种近自然光led封装构件、封装方法及照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141563A1 (en) * 2002-01-28 2003-07-31 Bily Wang Light emitting diode package with fluorescent cover
CN101937911A (zh) * 2010-07-14 2011-01-05 深圳市华星光电技术有限公司 发光二极管封装构造及背光模块
CN106784235A (zh) * 2016-11-05 2017-05-31 杨华琼 一种特种光谱的发光二极管及其应用
CN206907768U (zh) * 2017-07-06 2018-01-19 上海顿格电子贸易有限公司 一种led灯结构
CN108417695A (zh) * 2018-01-24 2018-08-17 厦门信达光电物联科技研究院有限公司 一种类太阳光谱的led光源及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427075B (zh) * 2010-10-12 2013-08-21 友达光电股份有限公司 发光二极管装置及场序显示器
CN102214651B (zh) * 2011-05-25 2013-03-13 映瑞光电科技(上海)有限公司 一种led像素单元器件结构及其制备方法
TWI610457B (zh) * 2016-10-19 2018-01-01 隆達電子股份有限公司 白光光源裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141563A1 (en) * 2002-01-28 2003-07-31 Bily Wang Light emitting diode package with fluorescent cover
CN101937911A (zh) * 2010-07-14 2011-01-05 深圳市华星光电技术有限公司 发光二极管封装构造及背光模块
CN106784235A (zh) * 2016-11-05 2017-05-31 杨华琼 一种特种光谱的发光二极管及其应用
CN206907768U (zh) * 2017-07-06 2018-01-19 上海顿格电子贸易有限公司 一种led灯结构
CN108417695A (zh) * 2018-01-24 2018-08-17 厦门信达光电物联科技研究院有限公司 一种类太阳光谱的led光源及其制备方法

Also Published As

Publication number Publication date
CN109841719B (zh) 2020-04-24
CN109841719A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN105814699B (zh) 具有高显色性的白光发光装置
US10568172B2 (en) Dimmable solid-state light emitting devices
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
CN106206904B (zh) 一种波长转换装置、荧光色轮及发光装置
TW201146075A (en) High CRI adjustable color temperature lighting devices
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
WO2012009918A1 (zh) Led白光光源模块
CN109411589B (zh) 一种led灯丝
TWI741532B (zh) Led燈絲及led燈絲之燈具
WO2020010899A1 (zh) 植物生长用发光二极管
JP2010050438A (ja) 白色発光ダイオード
TW201003974A (en) White light emitting diode and light conversion layer thereof
KR20130018529A (ko) 형광 조성물 및 이를 이용한 백색광 발광 장치
CN201549499U (zh) 陶瓷基大功率红绿蓝led的封装结构
CN106986626B (zh) 一种羟基磷灰石基荧光陶瓷材料及其制备方法
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
CN201628103U (zh) 混光led模块
TWI552392B (zh) 發光元件
CN103050615A (zh) 一种高显色性白光led器件
JP2014017459A (ja) 照明装置
CN111442198B (zh) 全光谱发光系统
CN102454945A (zh) 一种获得高显色性暖白光的方法及其封装结构
US10236425B2 (en) White light emitting device having high color rendering
CN210891110U (zh) 一种全光谱激光装置及led装置
CN203118943U (zh) 一种cob灯源板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838432

Country of ref document: EP

Kind code of ref document: A1