WO2012009853A1 - 一种发射白光的玻璃陶瓷及其制备方法 - Google Patents

一种发射白光的玻璃陶瓷及其制备方法 Download PDF

Info

Publication number
WO2012009853A1
WO2012009853A1 PCT/CN2010/075380 CN2010075380W WO2012009853A1 WO 2012009853 A1 WO2012009853 A1 WO 2012009853A1 CN 2010075380 W CN2010075380 W CN 2010075380W WO 2012009853 A1 WO2012009853 A1 WO 2012009853A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
white light
glass ceramic
emitting
white
Prior art date
Application number
PCT/CN2010/075380
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
翁方轶
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201080066840.8A priority Critical patent/CN102906043B/zh
Priority to EP10854883.5A priority patent/EP2597071B1/en
Priority to JP2013519932A priority patent/JP5715252B2/ja
Priority to US13/809,679 priority patent/US8936732B2/en
Priority to PCT/CN2010/075380 priority patent/WO2012009853A1/zh
Publication of WO2012009853A1 publication Critical patent/WO2012009853A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77746Aluminium Nitrides or Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a glass ceramic emitting white light and a preparation method thereof.
  • LED semiconductor lighting technology
  • gallium nitride gallium nitride
  • the power consumption is only 1/10 of that of ordinary incandescent lamps under the same brightness, and the lifetime can reach more than 100,000 hours.
  • LED has many advantages such as energy saving, environmental protection, and flexible application. It can be widely used in various fields such as indication, display, decoration, backlight and general illumination.
  • Most of the commercial white LED lighting devices use blue LED chips with phosphors that emit yellow or green and orange light when excited by blue light. Such phosphors have high luminous efficiency and the preparation method is mature.
  • the light source device fabricated by this method has the following defects: (1) The epoxy resin used for packaging is easily aged and yellowed under the illumination of blue light, violet light or ultraviolet light, resulting in a decrease in device life; (2) complicated process and cost High; (3) Due to the different light decay rates of the phosphor and the chip, the color coordinates are unstable, and the white light is easily drifted.
  • glass ceramics that can achieve luminescence under violet or ultraviolet excitation have significant advantages: (1) good light transmission; (2) good chemical stability and thermal stability; The preparation process is simple and the cost is low; (4) it is easy to make large pieces and different shapes; (5) can replace epoxy resin. Due to these characteristics, glass ceramics capable of achieving high-performance illumination are very suitable as a luminescent medium material in the field of LED illumination. Therefore, finding a suitable glass-ceramic substrate and rare earth ions makes it suitable for emitting white light under the excitation of blue light or ultraviolet light.
  • the solid solubility of rare earth ions in the glass network is low; in addition, the phonon energy of the commonly used silicate glass is higher, resulting in a large probability of non-radiative recombination of the doped rare earth ions.
  • the radiation recombination probability of the rare earth ions is greatly reduced, thereby causing the rare earth ions to have weak luminescence intensity in the glass, or even no luminescence.
  • the present invention provides a white ceramic that emits white light with high luminous efficiency.
  • a glass-ceramic emitting white light having a chemical formula of:
  • aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg, where a, b, c, d, n, m are the number of moles, and their values are: a 25 to 50, b It is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100.
  • the raw materials SiO 2 , Al 2 O 3 , NaF, CeF 3 , DyF 3 , AgNO 3 are selected according to stoichiometric ratio, and the stoichiometric ratio is according to the chemical formula aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •
  • the molar ratio of the corresponding elements in mAg, where a, b, c, d, n, m are the number of moles, and their values are: a is 25 ⁇ 50, b is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100.
  • the mixed powder is subjected to calcination treatment to obtain a glass precursor
  • the glass precursor is subjected to a reduction annealing treatment under a reducing atmosphere, and cooled to obtain the white-emitting glass ceramic having a chemical formula of aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg.
  • the white-emitting glass ceramic is suitable as a luminescent medium for white LEDs excited by ultraviolet light, and has great application potential in the field of illumination and display.
  • FIG. 1 is a flow chart of a method for preparing a white-light-emitting glass ceramic according to an embodiment of the present invention
  • Example 2 is an emission spectrum of the glass ceramics prepared in Example 5 and Comparative Example 1 at 250 nm excitation; wherein A is the raw material of Comparative Example 1 containing no AgNO 3 , and B is 0.1 in the raw material of Example 5. Sample of mol% AgNO 3 .
  • aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg, where a, b, c, d, n, m are the number of moles, and their values are: a is 25 to 50, b is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100. Further, a is preferably 35 to 50, b is preferably 20 to 30, c is preferably 10 to 20, d is preferably 10 to 20, n is preferably 0.1 to 1, and m is preferably 0.01 to 0.5.
  • the white-light-emitting glass ceramic is doped with Dy 3+ by using Al 2 O 3 -SiO 2 -NaF-CeF 3 as a matrix.
  • Dy 3+ is a strong fluorescent rare earth ion with a 4f 9 electronic configuration. The two strongest fluorescence emission peaks are located at 470 - 500 nm blue ultrasensitive transition ( 4 F 9/2- 6 H 15/2 ) and located 570 – 600 nm is a yellow ultrasensitive transition ( 4 F 9/2- 6 H 13/2 ).
  • the yellow emission is strongly affected by the crystal field.
  • the yellow-blue ratio can be adjusted by changing the crystal field environment where Dy 3+ is located. When the yellow-blue ratio is appropriate, Dy 3+ will emit white light.
  • the rare earth luminescent ions act as a nucleating agent when the fluoride crystals in the oxyfluoride glass are precipitated, and can enter the fluoride crystals by the substitution of the cations.
  • fluoride has a lower phonon energy, and the probability of no radiation transition is reduced compared to silicate glass, and energy loss is low.
  • the glass matrix component has adjustability in a certain range, it is also possible to achieve an improvement in the luminous intensity of the glass ceramic by adjusting the glass matrix component.
  • FIG. 1 illustrates a flow of a method for preparing a white-light-emitting glass ceramic according to an embodiment of the present invention.
  • the preparation method includes the following steps:
  • the glass precursor is subjected to a reduction annealing treatment under a reducing atmosphere, and cooled to obtain the white light-emitting glass having the chemical formula of aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg. ceramics.
  • a 35-50
  • b 20-30
  • c 10-20
  • d It is 10 ⁇ 20
  • n 0.1 ⁇ 1
  • m 0.01 ⁇ 0.5.
  • step S02 the lidded crucible is melted in a high temperature box furnace, and then the glass melt is poured onto a cast iron mold and pressed into a transparent glass.
  • a melting temperature of 1200 ⁇ 1500 o C the calcination time is 0.5 ⁇ 3 h.
  • the reduction annealing treatment comprises two stages: a reduction annealing treatment and a pure annealing treatment, wherein the reduction annealing treatment is to place the formed glass in an annealing furnace, and a nitrogen-hydrogen mixture having a N 2 and H 2 volume ratio of 95:5;
  • the temperature is raised in the reducing atmosphere at 300-550 o C for 0.5 to 5 h, and the reduction annealing treatment is performed to reduce the Ag ions to the Ag element, and the high temperature can eliminate the internal stress of the glass.
  • an annealing treatment warmed to incubation continued 1 ⁇ 5 h at 550 ⁇ 800 o C.
  • Annealing heat treatment makes the morphology and size of Ag single particles interact with rare earth ions.
  • the luminescence intensity of rare earth ions doped in the glass ceramic matrix is greatly enhanced, and the rare earth fluoride in the mother glass can be fully nucleated, which is beneficial to The improvement of the luminous intensity of glass ceramics.
  • the annealed glass ceramic is further cooled to room temperature with an annealing furnace to obtain a white-emitting glass ceramic having a predetermined number of moles.
  • compositions of the white-light-emitting glass ceramics and their preparation methods, as well as their properties and the like, are exemplified below by way of various embodiments.
  • the temperature is raised to 300 o C in the atmosphere, and after 1 h of incubation, the nitrogen-hydrogen reducing gas is turned off, and then the temperature is raised to 550 o C and maintained at this temperature for 4 h.
  • the annealing furnace is turned off and naturally cooled to room temperature to obtain a chemical formula of 35 SiO. 2 • 15Al 2 O 3 • 30NaF • 20CeF 3 • 1DyF 3 • 0.01Ag luminescent glass ceramic.
  • Example 5 the luminescence spectrum of the glass ceramic having white light color obtained by the above Example 5 and Comparative Example 1 is shown, which is the corresponding emission spectrum at 250 nm excitation, as shown in the figure.
  • the fluorescence emission peaks of Example 5 containing 0.1 mol% of AgNO 3 in the raw material and Comparative Example 1 containing no AgNO 3 in the raw materials were all at 480 nm and 572 nm, but the emission intensity of the sample doped with Ag was shown.
  • the integrated emission intensity of the sample compared to the undoped Ag was increased by about 190%.
  • Ag ions are introduced during the melting process of the precursor glass, and the subsequent reduction heat treatment reduces the Ag ions to the metal Ag elemental particles; and the morphology and size of the Ag single particles are allowed to interact with the rare earth ions by a suitable heat treatment, thereby A glass ceramic having a high intensity of white light is obtained.

Description

一种发射白光的玻璃陶瓷及其制备方法 技术领域
本发明属于发光材料技术领域,具体涉及一种发射白光的玻璃陶瓷及其制备方法。
背景技术
随着半导体照明技术(LED)的发展,这种革命性的新光源逐渐走进了我们的日常生活。以第三代半导体材料氮化镓作为半导体照明光源,在同等亮度下耗电量仅为普通白炽灯的1/10,寿命可以达到10万小时以上。作为新型的照明技术,LED具有节能、绿色环保、应用灵活等诸多优点,可以广泛应用于各种指示、显示、装饰、背光源及普通照明等领域。目前商业化的大部分白光LED照明器件采用的是蓝光LED芯片配合受蓝光激发能够发出黄光或绿、橙光的荧光粉。这类荧光粉具有较高的发光效率,并且制备方法成熟。但是,这种方法制作的光源器件具有以下缺陷:(1)用于封装的环氧树脂在蓝光、紫光或者紫外线的照射下容易老化变黄,导致器件寿命降低;(2)工艺复杂,成本较高;(3)由于荧光粉与芯片的光衰减速率不同,导致色坐标不稳定,白光易漂移等。
相比于粉体材料,在紫光或紫外线激发下能够实现发光的玻璃陶瓷则具有显著的优点:(1)具有良好的透光性;(2)良好的化学稳定性和热稳定性;(3)制备工艺简单,成本低廉;(4)容易制成大块及不同形状;(5)可以替代环氧树脂。由于这些特点,能够实现高性能发光的玻璃陶瓷非常适合作为LED照明领域的发光介质材料。因此,寻找合适的玻璃陶瓷基体和稀土离子使得适合在蓝光或者紫外线的激发下发射白光迫在眉睫。但是,由于玻璃的网络结构紧凑,稀土离子在玻璃网络中的固溶度较低;另外常用的硅酸盐玻璃的声子能量较高,导致掺杂的稀土离子的无辐射复合几率很大,极大的降低了稀土离子的辐射复合几率,从而导致了稀土离子在玻璃中发光强度很弱,甚至不发光。
技术问题
有鉴于此,本发明提供一种发光效率高的发射白光的玻璃陶瓷。
以及,提供一种发射白光的玻璃陶瓷的制备方法。
技术解决方案
一种发射白光的玻璃陶瓷,其化学通式为:
aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg,式中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25, n为0.01~1, m为0.01~1,并且,a + b + c + d = 100。
以及,一种发射白光的玻璃陶瓷的制备方法,其包括如下步骤:
按照化学计量比选取原料SiO2,Al2O3,NaF,CeF3,DyF3,AgNO3,所述化学计量比是按照化学通式aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg中的相应元素的摩尔比例,式中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1, m为0.01~1,并且,a + b + c + d = 100。
将所述混合粉体进行煅烧处理,制得玻璃前躯体;
将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg的所述发射白光的玻璃陶瓷。
有益效果
上述发射白光的玻璃陶瓷及其制备方法,通过引入单质Ag微粒,其产生的表面等离子共振效应使掺杂于玻璃陶瓷基质中稀土离子的发光强度大幅增强,从而使得玻璃陶瓷的发光强度也得到提高。此发射白光的玻璃陶瓷适合作为紫外激发下的白光LED的发光介质材料,在照明和显示领域有着巨大的应用潜力。
附图说明
图1是本发明实施例的发射白光的玻璃陶瓷制备方法流程图;
图2是本发明实施例5和对比例1所制备的玻璃陶瓷在250 nm激发下的发射光谱图;其中,A是对比例1原料中不含AgNO3,B是实施例5原料中含0.1mol%AgNO3的样品。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的发射白光的玻璃陶瓷,其化学通式为:
aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg,其中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25, n为0.01~1, m为0.01~1,并且,a + b + c + d = 100。进一步,a优选为35~50,b优选为20~30,c优选为10~20,d优选为10~20,n优选为0.1~1,m优选为0.01~0.5。
由上述化学通式可知,该发射白光的玻璃陶瓷是以Al2O3-SiO2-NaF-CeF3为基质,掺杂Dy3+。Dy3+属强荧光稀土离子,具有4f9电子组态,最强的两个荧光发射峰是位于470 - 500 nm蓝色超灵敏跃迁(4F9/2- 6H15/2)和位于570 – 600 nm为黄色超灵敏跃迁(4F9/2- 6H13/2)。黄色发射强烈的受晶体场的影响,通过改变Dy3+所处的晶体场环境可以调节黄蓝比,当黄蓝比适当时,Dy3+将发射白光。稀土发光离子在氟氧化物玻璃中的氟化物晶体析出时会充当晶核剂的角色,且可以通过取代阳离子的格位进入氟化物晶体中。此外,氟化物具有较低的声子能量,与硅酸盐玻璃相比,无辐射跃迁的几率减小,能量损耗低。另一方面,由于玻璃基质成分在一定范围存在可调性,通过调整玻璃基质成分,也可能实现对玻璃陶瓷发光强度的改进。
请参阅图1,说明本发明实施例的发射白光的玻璃陶瓷制备方法的流程,该制备方法包括如下步骤:
S01:按照化学计量比选取原料SiO2,Al2O3,NaF,CeF3,DyF3,AgNO3,所述化学计量比是按照化学通式aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg中的相应元素的摩尔比例,其中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1, m为0.01~1,并且,a + b + c + d = 100;
S02:将所述混合粉体进行煅烧处理,制得玻璃前躯体;
S03:将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg的所述发射白光的玻璃陶瓷。
按照步骤S01获得相应的原料后,将其在研钵中研磨混合均匀并置于刚玉坩埚或铂金坩埚中,优选地,a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1,m为0.01~0.5。
步骤S02具体为,将带盖的坩埚放入高温箱式炉中熔化,随后将玻璃熔体倒入铸铁模上,压制成透明玻璃。在本发明的一个优选实施例中,熔化温度为1200~1500oC,焙烧时间为0.5~3 h。
步骤S03中, 还原退火处理包括两个阶段:还原退火处理和纯退火处理,还原退火处理是将成型的玻璃放置在退火炉中,在N2和H2体积比为 95: 5的氮氢混合还原气氛下升温300~550oC保温0.5~5 h,进行还原退火处理,使Ag离子还原为Ag单质,而且持续高温可以消除玻璃的内应力。然后关掉还原气体,进行退火处理,继续升温至550~800oC下保温1~5 h。退火热处理使得Ag单质粒子的形貌和大小使之与稀土离子发生相互作用,掺杂于玻璃陶瓷基质中稀土离子的发光强度大幅增强,同时母体玻璃中的稀土氟化物可以充分成核,有利于玻璃陶瓷发光强度的提高。再将退火处理的玻璃陶瓷随退火炉一起冷却至室温,得预定摩尔数组成的发射白光的玻璃陶瓷。
以下通过多个实施例来举例说明发射白光的玻璃陶瓷的不同组成及其制备方法,以及其性能等方面。
实施例1
称取2.900 g SiO2, 5.920 g Al2O3,1.620 g NaF,9.540 g CeF3,0.004 g DyF3,0.329 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1300oC的高温箱式炉中熔融,保持此温度1 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到400oC,保温0.5 h后,关掉氮氢还原气体,然后升温到600oC并保持此温度5 h后,关闭退火炉,自然冷却至室温,制得化学通式为25SiO2•30Al2O3•20NaF•25CeF3•0.01DyF3•1Ag的发光玻璃陶瓷。
实施例2
称取4.760 g SiO2, 3.460 g Al2O3,2.850 g NaF,8.920 g CeF3,0.497 g DyF3,0.003 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1200oC的高温箱式炉中熔融,保持此温度0.5 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到300oC,保温1 h后,关掉氮氢还原气体,然后升温到550oC并保持此温度4 h后,关闭退火炉,自然冷却至室温,制得化学通式为35SiO2•15Al2O3•30NaF•20CeF3•1DyF3•0.01Ag的发光玻璃陶瓷。
实施例3
称取6.380 g SiO2, 4.330 g Al2O3,0.890 g NaF,8.380 g CeF3,0.047 g DyF3,0.181 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1400oC的高温箱式炉中熔融,保持此温度2 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到500oC,保温2 h后,关掉氮氢还原气体,然后升温到700oC并保持此温度3 h后,关闭退火炉,自然冷却至室温,制得化学通式为50SiO2•20Al2O3•10NaF•20CeF3•0.1DyF3•0.5Ag的发光玻璃陶瓷。
实施例4
称取7.100 g SiO2, 7.230 g Al2O3,0.990 g NaF,4.660 g CeF3,0.260 g DyF3,0.321 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1500oC的高温箱式炉中熔融,保持此温度3 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到500oC,保温2 h后,关掉氮氢还原气体,然后升温到800oC并保持此温度1 h后,关闭退火炉,自然冷却至室温,制得化学通式为50SiO2•30Al2O3•10NaF•10CeF3•0.5DyF3•0.8Ag的发光玻璃陶瓷。
实施例5
称取5.450 g SiO2, 5.780 g Al2O3,1.900 g NaF,6.710 g CeF3,0.090 g DyF3,0.030 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1450oC的高温箱式炉中熔融,保持此温度2 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到350oC,保温4 h后,关掉氮氢还原气体,然后升温到750oC并保持此温度2 h后,关闭退火炉,自然冷却至室温,制得化学通式为40SiO2•25Al2O3•20NaF•15CeF3•0.2DyF3•0.1Ag的发光玻璃陶瓷。
实施例6
称取3.730 g SiO2, 6.340 g Al2O3,1.740 g NaF,8.170 g CeF3,0.364 g DyF3,0.071 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1350oC的高温箱式炉中熔融,保持此温度1 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到450oC,保温5 h后,关掉氮氢还原气体,然后升温到650oC并保持此温度3 h后,关闭退火炉,自然冷却至室温,制得化学通式为30SiO2•30Al2O3•20NaF•20CeF3•0.8DyF3•0.2Ag的发光玻璃陶瓷。
实施例7
称取6.100 g SiO2, 5.750 g Al2O3,1.420 g NaF,6.670 g CeF3,0.020 g DyF3,0.010 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1480oC的高温箱式炉中熔融,保持此温度1 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到450oC,保温2.5 h后,关掉氮氢还原气体,然后升温到500oC并保持此温度2.5 h后,关闭退火炉,自然冷却至室温,制得化学通式为45SiO2•25Al2O3•15NaF•15CeF3•0.05DyF3•0.05Ag的发光玻璃陶瓷。
实施例8
称取5.080 g SiO2, 7.390 g Al2O3,2.530 g NaF,4.760 g CeF3,0.040 g DyF3,0.160 g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1250oC的高温箱式炉中熔融,保持此温度2 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到300oC,保温1.5 h后,关掉氮氢还原气体,然后升温到700oC并保持此温度3.5 h后,关闭退火炉,自然冷却至室温,制得化学通式为35SiO2•30Al2O3•25NaF•10CeF3•0.08DyF3•0.4Ag的发光玻璃陶瓷。
对比例1
称取5.450 g SiO2, 5.780 g Al2O3,1.900 g NaF,6.710 g CeF3,0.090 g DyF3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1450oC的高温箱式炉中熔融,保持此温度2 h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2): V(H2) = 95: 5的氮氢还原气氛下升温到350oC,保温4 h后,关掉氮氢还原气体,然后升温到750oC并保持此温度2 h后,关闭退火炉,自然冷却至室温,制得化学通式为40SiO2•25Al2O3•20NaF•15CeF3•0.2DyF3的发光玻璃陶瓷。
以实施例5为例,请参阅图2,显示上述实施例5和对比例1获得的具有白光发色的玻璃陶瓷的发光光谱图,其为在250 nm激发下相应的发射谱图,如图所示,原料中含有0.1 mol% AgNO3的实施例5和原料中不含有AgNO3的对比例1的样品的荧光主要发射峰均在480 nm和572 nm,但是掺杂Ag的样品的发射强度较之未掺杂Ag的样品的发射积分强度提高了约190%。前驱物玻璃的熔制过程中引入Ag离子,随后的还原热处理使得Ag离子还原为金属Ag单质微粒;再通过合适的热处理使得Ag单质粒子的形貌和大小使之于稀土离子发生相互作用,从而获得了具有高强度的白色发光的玻璃陶瓷。
由实施例及比较例结果可看出,在发射白光的玻璃陶瓷及其制备方法中,通过焙烧、还原热处理处理以及退火处理,在玻璃陶瓷中引入金属粒子,其等离子共振效应可以提高稀土离子的发光,此制备工艺简单、成本低,具有广阔的生产应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种发射白光的玻璃陶瓷,其化学通式为:
    aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg,
    式中,a,b,c,d,n,m为摩尔数,取值范围分别为:a为25~50,b为15~30,c为10~30,d为10~25, n为0.01~1, m为0.01~1,并且,a + b + c + d = 100。
  2. 如权利要求1所述的发射白光的玻璃陶瓷,其特征在于,所述a、b、c、d、n、m的取值分别为:a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1。
  3. 如权利要求1所述的发射白光的玻璃陶瓷,其特征在于,所述m为0.01~0.5。
  4. 一种发射白光的玻璃陶瓷的制备方法,其包括如下步骤:
    按照化学通式aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg中的化学计量比,称取原料SiO2、Al2O3、NaF、CeF3、DyF3和AgNO3,研磨、混合成混合粉体;式中,a,b,c,d,n,m为摩尔数,取值范围分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1, m为0.01~1,并且,a + b + c + d = 100;
    将所述混合粉体进行煅烧处理,制得玻璃前躯体;
    将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg的所述发射白光的玻璃陶瓷。
  5. 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述a、b、c、d、n、m的取值分别如下:a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1。
  6. 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述m为0.01~0.5。
  7. 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述煅烧处理温度为1200~1500oC,所述煅烧处理保温时间为0.5~3 h。
  8. 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述还原退火处理还包括如下处理过程:
    还原气氛下,于300~550oC中所述还原退火处理0.5~5 h;然后关闭还原气氛,升温至550~800oC下,继续退火处理1~5 h。
  9. 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述还原气氛为氮气和氢气组成的混合还原气氛。
PCT/CN2010/075380 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法 WO2012009853A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080066840.8A CN102906043B (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法
EP10854883.5A EP2597071B1 (en) 2010-07-22 2010-07-22 White light emitting glass-ceramic and production method thereof
JP2013519932A JP5715252B2 (ja) 2010-07-22 2010-07-22 白色発光ガラスセラミックス及びその製造方法、並びにledデバイス
US13/809,679 US8936732B2 (en) 2010-07-22 2010-07-22 White light emitting glass-ceramic and production method thereof
PCT/CN2010/075380 WO2012009853A1 (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075380 WO2012009853A1 (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2012009853A1 true WO2012009853A1 (zh) 2012-01-26

Family

ID=45496445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075380 WO2012009853A1 (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法

Country Status (5)

Country Link
US (1) US8936732B2 (zh)
EP (1) EP2597071B1 (zh)
JP (1) JP5715252B2 (zh)
CN (1) CN102906043B (zh)
WO (1) WO2012009853A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274598A (zh) * 2013-06-06 2013-09-04 昆明理工大学 一种高效白光发射含银纳米颗粒的玻璃及其制备方法
JP2015514829A (ja) * 2012-03-29 2015-05-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
CN106277799A (zh) * 2016-07-27 2017-01-04 福建省德化县腾兴陶瓷有限公司 一种微晶玻璃及其制备工艺以及远程暖白光led器件
CN112456796A (zh) * 2020-12-21 2021-03-09 中国计量大学 一种金属粒子增强稀土掺杂宽色域荧光玻璃及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250342B2 (ja) 2020-01-16 2023-04-03 株式会社弘樹 ソファーベッド

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092282A (zh) * 2007-06-19 2007-12-26 浙江大学 应用于半导体照明的玻璃陶瓷及其制备方法
CN101456675A (zh) * 2007-12-11 2009-06-17 中国科学院福建物质结构研究所 通过上转换发射明亮白光的玻璃陶瓷
CN101723593A (zh) * 2009-11-30 2010-06-09 浙江大学 一种用于led白光照明的发光玻璃陶瓷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132643A (en) * 1998-01-06 2000-10-17 Pavel; Eugen Fluorescent photosensitive vitroceramics and process for the production thereof
WO2011153686A1 (zh) * 2010-06-08 2011-12-15 海洋王照明科技股份有限公司 发射白光的透明玻璃陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092282A (zh) * 2007-06-19 2007-12-26 浙江大学 应用于半导体照明的玻璃陶瓷及其制备方法
CN101456675A (zh) * 2007-12-11 2009-06-17 中国科学院福建物质结构研究所 通过上转换发射明亮白光的玻璃陶瓷
CN101723593A (zh) * 2009-11-30 2010-06-09 浙江大学 一种用于led白光照明的发光玻璃陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAYAKAWA, TOMOKATSU ET AL.: "Enhanced Fluorescence from Eu3+ Owing to Surface Plasma Oscillation of Silver Particles in Glass.", JOURNAL OF NON-CRYSTALLINE SOLIDS., vol. 259, no. 1-3, November 1999 (1999-11-01), pages 16 - 22, XP004364362 *
See also references of EP2597071A4 *
WANG, YUEHUI ET AL.: "Fluorescence Enhancement of Dysprosium Complex by Binding to Silver Nanoparticles.", CHINESE JOURNAL OF INORGANIC CHEMISTRY., vol. 24, no. 3, March 2008 (2008-03-01), pages 409 - 414, XP008167268 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514829A (ja) * 2012-03-29 2015-05-21 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
CN103274598A (zh) * 2013-06-06 2013-09-04 昆明理工大学 一种高效白光发射含银纳米颗粒的玻璃及其制备方法
CN106277799A (zh) * 2016-07-27 2017-01-04 福建省德化县腾兴陶瓷有限公司 一种微晶玻璃及其制备工艺以及远程暖白光led器件
CN112456796A (zh) * 2020-12-21 2021-03-09 中国计量大学 一种金属粒子增强稀土掺杂宽色域荧光玻璃及其制备方法

Also Published As

Publication number Publication date
JP2013535533A (ja) 2013-09-12
CN102906043B (zh) 2015-07-15
EP2597071A4 (en) 2014-01-22
EP2597071A1 (en) 2013-05-29
US8936732B2 (en) 2015-01-20
US20130112919A1 (en) 2013-05-09
EP2597071B1 (en) 2016-10-19
JP5715252B2 (ja) 2015-05-07
CN102906043A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
CN107056070B (zh) 一种透明Ce:YAG玻璃陶瓷及其制备方法
JP5529296B2 (ja) 白光led光源に用いられる発光ナノ微結晶ガラス及びその製造方法
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
JP5616446B2 (ja) 緑色発光ガラス
WO2014134854A1 (zh) 一种稀土掺杂硅酸盐发光玻璃及其制备方法
CN106277799B (zh) 一种微晶玻璃及其制备工艺以及远程暖白光led器件
WO2011153686A1 (zh) 发射白光的透明玻璃陶瓷及其制备方法
CN111099826A (zh) 一种蓝光激发的黄绿色全光谱荧光玻璃及其制备方法
CN109370588B (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
CN102381841B (zh) 一种黄绿色发光玻璃陶瓷材料及其制备方法
WO2012019359A1 (zh) 硅酸盐发光材料及其制备方法
CN115124247A (zh) 一种全无机钙钛矿量子点微晶玻璃材料及制备方法
CN111057547B (zh) 一种碳化硅改性的YAG:Ce荧光粉及其制备方法
CN112225450B (zh) 一种镧系掺杂宽色域荧光玻璃及其制备方法
CN115893858B (zh) 荧光玻璃陶瓷及其制备方法以及led灯
JP5696966B2 (ja) 青色発光ガラスおよびその調製方法
CN112574740A (zh) 一种Sm3+掺杂的硅酸钙钠橙色荧光粉及其制备方法
CN104529170A (zh) 一种透明Ce:YAG微晶玻璃及其在白光LED中的应用
CN115716707A (zh) 一种用于led照明的紫光激发玻璃陶瓷及其制备方法
WO2020015424A1 (zh) 氮化物荧光粉及其制备方法、含氮化物荧光粉的发光装置
CN116693201A (zh) 一种Bi3+掺杂的蓝光微晶玻璃及其制备方法和应用
CN113265250A (zh) 一种铋激活的锗硅酸盐窄带蓝色荧光粉及其制备方法
CN115261017A (zh) 一种能够被紫光激发的蓝光发光材料及其制备方法
CN114671608A (zh) CsPbBr3量子点镶嵌氟磷酸盐玻璃及制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066840.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854883

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010854883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010854883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809679

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013519932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE