CN102906043B - 一种发射白光的玻璃陶瓷及其制备方法 - Google Patents

一种发射白光的玻璃陶瓷及其制备方法 Download PDF

Info

Publication number
CN102906043B
CN102906043B CN201080066840.8A CN201080066840A CN102906043B CN 102906043 B CN102906043 B CN 102906043B CN 201080066840 A CN201080066840 A CN 201080066840A CN 102906043 B CN102906043 B CN 102906043B
Authority
CN
China
Prior art keywords
glass
ceramic
transmitting white
preparation
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080066840.8A
Other languages
English (en)
Other versions
CN102906043A (zh
Inventor
周明杰
马文波
翁方轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Publication of CN102906043A publication Critical patent/CN102906043A/zh
Application granted granted Critical
Publication of CN102906043B publication Critical patent/CN102906043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77746Aluminium Nitrides or Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Glass Compositions (AREA)

Abstract

一种发射白光的玻璃陶瓷。该玻璃陶瓷的化学通式为aSiO2?bAl2O3?cNaF?dCeF3?nDyF3?mAg,其中a、b、c、d、n和m以摩尔份数表示分别为25-50,15-30,10-30,10-25,0.01-1,0.01-1,并且,a+b+c+d=100。还提供了一种上述玻璃陶瓷的制备方法。通过煅烧、还原退火处理,使银离子以银微粒的形态掺杂在玻璃陶瓷中,进而提高稀土离子的发光性能。

Description

一种发射白光的玻璃陶瓷及其制备方法
技术领域
本发明属于发光材料技术领域,具体涉及一种发射白光的玻璃陶瓷及其制备方法。
背景技术
随着半导体照明技术(LED)的发展,这种革命性的新光源逐渐走进了我们的日常生活。以第三代半导体材料氮化镓作为半导体照明光源,在同等亮度下耗电量仅为普通白炽灯的1/10,寿命可以达到10万小时以上。作为新型的照明技术,LED具有节能、绿色环保、应用灵活等诸多优点,可以广泛应用于各种指示、显示、装饰、背光源及普通照明等领域。目前商业化的大部分白光LED照明器件采用的是蓝光LED芯片配合受蓝光激发能够发出黄光或绿、橙光的荧光粉。这类荧光粉具有较高的发光效率,并且制备方法成熟。但是,这种方法制作的光源器件具有以下缺陷:(1)用于封装的环氧树脂在蓝光、紫光或者紫外线的照射下容易老化变黄,导致器件寿命降低;(2)工艺复杂,成本较高;(3)由于荧光粉与芯片的光衰减速率不同,导致色坐标不稳定,白光易漂移等。相比于粉体材料,在紫光或紫外线激发下能够实现发光的玻璃陶瓷则具有显著的优点:(1)具有良好的透光性;(2)良好的化学稳定性和热稳定性;(3)制备工艺简单,成本低廉;(4)容易制成大块及不同形状;(5)可以替代环氧树脂。由于这些特点,能够实现高性能发光的玻璃陶瓷非常适合作为LED照明领域的发光介质材料。因此,寻找合适的玻璃陶瓷基体和稀土离子使得适合在蓝光或者紫外线的激发下发射白光迫在眉睫。但是,由于玻璃的网络结构紧凑,稀土离子在玻璃网络中的固溶度较低;另外常用的硅酸盐玻璃的声子能量较高,导致掺杂的稀土离子的无辐射复合几率很大,极大的降低了稀土离子的辐射复合几率,从而导致了稀土离子在玻璃中发光强度很弱,甚至不发光。
对发明的公开
技术问题
有鉴于此,本发明提供一种发光效率高的发射白光的玻璃陶瓷。
以及,提供一种发射白光的玻璃陶瓷的制备方法。
技术解决方案
一种发射白光的玻璃陶瓷,其化学通式为:
aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg,式中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1,m为0.01~1,并且,a+b+c+d=100。
以及,一种发射白光的玻璃陶瓷的制备方法,其包括如下步骤:
按照化学计量比选取原料SiO2,Al2O3,NaF,CeF3,DyF3,AgNO3,所述化学计量比是按照化学通式aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg中的相应元素的摩尔比例,式中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1,m为0.01~1,并且,a+b+c+d=100。
将所述混合粉体进行煅烧处理,制得玻璃前躯体;
将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg的所述发射白光的玻璃陶瓷。
有益效果
上述发射白光的玻璃陶瓷及其制备方法,通过引入单质Ag微粒,其产生的表面等离子共振效应使掺杂于玻璃陶瓷基质中稀土离子的发光强度大幅增强,从而使得玻璃陶瓷的发光强度也得到提高。此发射白光的玻璃陶瓷适合作为紫外激发下的白光LED的发光介质材料,在照明和显示领域有着巨大的应用潜力。
附图说明
图1是本发明实施例的发射白光的玻璃陶瓷制备方法流程图;
图2是本发明实施例5和对比例1所制备的玻璃陶瓷在250nm激发下的发射光谱图;其中,A是对比例1原料中不含AgNO3,B是实施例5原料中含0.1mol%AgNO3的样品。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的发射白光的玻璃陶瓷,其化学通式为:
aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg,其中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1,m为0.01~1,并且,a+b+c+d=100。进一步,a优选为35~50,b优选为20~30,c优选为10~20,d优选为10~20,n优选为0.1~1,m优选为0.01~0.5。由上述化学通式可知,该发射白光的玻璃陶瓷是以Al2O3-SiO2-NaF-CeF3为基质,掺杂Dy3+。Dy3+属强荧光稀土离子,具有4f9电子组态,最强的两个荧光发射峰是位于470-500nm蓝色超灵敏跃迁(4F9/2-6H15/2)和位于570-600nm为黄色超灵敏跃迁(4F9/2-6H13/2)。黄色发射强烈的受晶体场的影响,通过改变Dy3+所处的晶体场环境可以调节黄蓝比,当黄蓝比适当时,Dy3+将发射白光。稀土发光离子在氟氧化物玻璃中的氟化物晶体析出时会充当晶核剂的角色,且可以通过取代阳离子的格位进入氟化物晶体中。此外,氟化物具有较低的声子能量,与硅酸盐玻璃相比,无辐射跃迁的几率减小,能量损耗低。另一方面,由于玻璃基质成分在一定范围存在可调性,通过调整玻璃基质成分,也可能实现对玻璃陶瓷发光强度的改进。
请参阅图1,说明本发明实施例的发射白光的玻璃陶瓷制备方法的流程,该制备方法包括如下步骤:
S01:按照化学计量比选取原料SiO2,Al2O3,NaF,CeF3,DyF3,AgNO3,所述化学计量比是按照化学通式aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg中的相应元素的摩尔比例,其中,a,b,c,d,n,m为摩尔数,它们的取值分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1,m为0.01~1,并且,a+b+c+d=100;
S02:将所述混合粉体进行煅烧处理,制得玻璃前躯体;
S03:将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg的所述发射白光的玻璃陶瓷。
按照步骤S01获得相应的原料后,将其在研钵中研磨混合均匀并置于刚玉坩埚或铂金坩埚中,优选地,a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1,m为0.01~0.5。
步骤S02具体为,将带盖的坩埚放入高温箱式炉中熔化,随后将玻璃熔体倒入铸铁模上,压制成透明玻璃。在本发明的一个优选实施例中,熔化温度为1200~1500℃,焙烧时间为0.5~3h。
步骤S03中,还原退火处理包括两个阶段:还原退火处理和纯退火处理,还原退火处理是将成型的玻璃放置在退火炉中,在N2和H2体积比为95∶5的氮氢混合还原气氛下升温300~550℃保温0.5~5
h,进行还原退火处理,使Ag离子还原为Ag单质,而且持续高温可以消除玻璃的内应力。然后关掉还原气体,进行退火处理,继续升温至550~800℃下保温1~5h。退火热处理使得Ag单质粒子的形貌和大小使之与稀土离子发生相互作用,掺杂于玻璃陶瓷基质中稀土离子的发光强度大幅增强,同时母体玻璃中的稀土氟化物可以充分成核,有利于玻璃陶瓷发光强度的提高。再将退火处理的玻璃陶瓷随退火炉一起冷却至室温,得预定摩尔数组成的发射白光的玻璃陶瓷。
以下通过多个实施例来举例说明发射白光的玻璃陶瓷的不同组成及其制备方法,以及其性能等方面。
实施例1
称取2.900g SiO2,5.920g Al2O3,1.620g NaF,9.540g CeF3,0.004g DyF3,0.329g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1300℃的高温箱式炉中熔融,保持此温度1h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到400℃,保温0.5h后,关掉氮氢还原气体,然后升温到600℃并保持此温度5h后,关闭退火炉,自然冷却至室温,制得化学通式为25SiO2·30Al2O3·20NaF·25CeF3·0.01DyF3·1Ag的发光玻璃陶瓷。
实施例2
称取4.760g SiO2,3.460g Al2O3,2.850g NaF,8.920g CeF3,0.497g DyF3,0.003g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1200℃的高温箱式炉中熔融,保持此温度0.5h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到300℃,保温1h后,关掉氮氢还原气体,然后升温到550℃并保持此温度4h后,关闭退火炉,自然冷却至室温,制得化学通式为35SiO2·15Al2O3·30NaF·20CeF3·1DyF3·0.01Ag的发光玻璃陶瓷。
实施例3
称取6.380g SiO2,4.330g Al2O3,0.890g NaF,8.380g CeF3,0.047g DyF3,0.181g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1400℃的高温箱式炉中熔融,保持此温度2h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到500℃,保温2h后,关掉氮氢还原气体,然后升温到700℃并保持此温度3h后,关闭退火炉,自然冷却至室温,制得化学通式为50SiO2·20Al2O3·10NaF·20CeF3·0.1DyF3·0.5Ag的发光玻璃陶瓷。
实施例4
称取7.100g SiO2,7.230g Al2O3,0.990g NaF,4.660g CeF3,0.260g DyF3,0.321g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1500℃的高温箱式炉中熔融,保持此温度3h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到500℃,保温2h后,关掉氮氢还原气体,然后升温到800℃并保持此温度1h后,关闭退火炉,自然冷却至室温,制得化学通式为50SiO2·30Al2O3·10NaF·10CeF3·0.5DyF3·0.8Ag的发光玻璃陶瓷。
实施例5
称取5.450g SiO2,5.780g Al2O3,1.900g NaF,6.710g CeF3,0.090g DyF3,0.030g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1450℃的高温箱式炉中熔融,保持此温度2h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到350℃,保温4h后,关掉氮氢还原气体,然后升温到750℃并保持此温度2h后,关闭退火炉,自然冷却至室温,制得化学通式为40SiO2·25Al2O3·20NaF·15CeF3·0.2DyF3·0.1Ag的发光玻璃陶瓷。
实施例6
称取3.730g SiO2,6.340g Al2O3,1.740g NaF,8.170g CeF3,0.364g DyF3,0.071g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1350℃的高温箱式炉中熔融,保持此温度1h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到450℃,保温5h后,关掉氮氢还原气体,然后升温到650℃并保持此温度3h后,关闭退火炉,自然冷却至室温,制得化学通式为30SiO2·30Al2O3·20NaF·20CeF3·0.8DyF3·0.2Ag的发光玻璃陶瓷。
实施例7
称取6.100g SiO2,5.750g Al2O3,1.420g NaF,6.670g CeF3,0.020g DyF3,0.010g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1480℃的高温箱式炉中熔融,保持此温度1h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到450℃,保温2.5h后,关掉氮氢还原气体,然后升温到500℃并保持此温度2.5h后,关闭退火炉,自然冷却至室温,制得化学通式为45SiO2·25Al2O3·15NaF·15CeF3·0.05DyF3·0.05Ag的发光玻璃陶瓷。
实施例8
称取5.080g SiO2,7.390g Al2O3,2.530g NaF,4.760g CeF3,0.040g DyF3,0.160g AgNO3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1250℃的高温箱式炉中熔融,保持此温度2h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到300℃,保温1.5h后,关掉氮氢还原气体,然后升温到700℃并保持此温度3.5h后,关闭退火炉,自然冷却至室温,制得化学通式为35SiO2·30Al2O3·25NaF·10CeF3·0.08DyF3·0.4Ag的发光玻璃陶瓷。
对比例1
称取5.450g SiO2,5.780g Al2O3,1.900g NaF,6.710g CeF3,0.090g DyF3。将称量好的原料置于研钵中研磨并混合均匀后,放入刚玉坩埚中,然后将装好原料的带盖的刚玉坩埚放入1450℃的高温箱式炉中熔融,保持此温度2h后,将玻璃熔体倒入铸铁模上,压制成透明玻璃,再将此透明玻璃置于退火炉中,在V(N2)∶V(H2)=95∶5的氮氢还原气氛下升温到350℃,保温4h后,关掉氮氢还原气体,然后升温到750℃并保持此温度2h后,关闭退火炉,自然冷却至室温,制得化学通式为40SiO2·25Al2O3·20NaF·15CeF3·0.2DyF3的发光玻璃陶瓷。
以实施例5为例,请参阅图2,显示上述实施例5和对比例1获得的具有白光发色的玻璃陶瓷的发光光谱图,其为在250nm激发下相应的发射谱图,如图所示,原料中含有0.1mol%AgNO3的实施例5和原料中不含有AgNO3的对比例1的样品的荧光主要发射峰均在480nm和572nm,但是掺杂Ag的样品的发射强度较之未掺杂Ag的样品的发射积分强度提高了约190%。前驱物玻璃的熔制过程中引入Ag离子,随后的还原热处理使得Ag离子还原为金属Ag单质微粒;再通过合适的热处理使得Ag单质粒子的形貌和大小使之于稀土离子发生相互作用,从而获得了具有高强度的白色发光的玻璃陶瓷。
由实施例及比较例结果可看出,在发射白光的玻璃陶瓷及其制备方法中,通过焙烧、还原热处理处理以及退火处理,在玻璃陶瓷中引入金属粒子,其等离子共振效应可以提高稀土离子的发光,此制备工艺简单、成本低,具有广阔的生产应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种发射白光的玻璃陶瓷的制备方法,其包括如下步骤:
按照化学通式aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg中的化学计量比,称取原料SiO2、Al2O3、NaF、CeF3、DyF3和AgNO3,研磨、混合成混合粉体;式中,a,b,c,d,n,m为摩尔数,取值范围分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1,m为0.01~1,并且,a+b+c+d=100;
将所述混合粉体进行煅烧处理,制得玻璃前躯体;
将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2·bAl2O3·cNaF·dCeF3·nDyF3·mAg的所述发射白光的玻璃陶瓷,其中所述还原退火处理还包括如下处理过程:
还原气氛下,于300~550℃中所述还原退火处理0.5~5h;然后关闭还原气氛,升温至550~800℃下,继续退火处理1~5h。
2.如权利要求1所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述a、b、c、d、n、m的取值分别如下:a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1。
3.如权利要求1所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述m为0.01~0.5。
4.如权利要求1所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述发射白光的玻璃陶瓷的化学式选自:25SiO2·30Al2O3·20NaF·25CeF3·0.01DyF3·1Ag,35SiO2·15Al2O3·30NaF·20CeF3·1DyF3·0.01Ag,50SiO2·20Al2O3·10NaF·20CeF3·0.1DyF3·0.5Ag,50SiO2·30Al2O3·10NaF·10CeF3·0.5DyF3·0.8Ag,40SiO2·25Al2O3·20NaF·15CeF3·0.2DyF3·0.1Ag,30SiO2·30Al2O3·20NaF·20CeF3·0.8DyF3·0.2Ag,45SiO2·25Al2O3·15NaF·15CeF3·0.05DyF3·0.05Ag或35SiO2·30Al2O3·25NaF·10CeF3·0.08DyF3·0.4Ag。
5.如权利要求1所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述煅烧处理温度为1200~1500℃,所述煅烧处理保温时间为0.5~3h。
6.如权利要求1所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述还原气氛为氮气和氢气组成的混合还原气氛。
CN201080066840.8A 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法 Active CN102906043B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075380 WO2012009853A1 (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN102906043A CN102906043A (zh) 2013-01-30
CN102906043B true CN102906043B (zh) 2015-07-15

Family

ID=45496445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080066840.8A Active CN102906043B (zh) 2010-07-22 2010-07-22 一种发射白光的玻璃陶瓷及其制备方法

Country Status (5)

Country Link
US (1) US8936732B2 (zh)
EP (1) EP2597071B1 (zh)
JP (1) JP5715252B2 (zh)
CN (1) CN102906043B (zh)
WO (1) WO2012009853A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913730B2 (ja) * 2012-03-29 2016-04-27 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法
CN103274598B (zh) * 2013-06-06 2015-11-11 昆明理工大学 一种高效白光发射含银纳米颗粒的玻璃及其制备方法
CN106277799B (zh) * 2016-07-27 2019-06-07 福建省德化县腾兴陶瓷有限公司 一种微晶玻璃及其制备工艺以及远程暖白光led器件
JP7250342B2 (ja) 2020-01-16 2023-04-03 株式会社弘樹 ソファーベッド
CN112456796A (zh) * 2020-12-21 2021-03-09 中国计量大学 一种金属粒子增强稀土掺杂宽色域荧光玻璃及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092282A (zh) * 2007-06-19 2007-12-26 浙江大学 应用于半导体照明的玻璃陶瓷及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132643A (en) * 1998-01-06 2000-10-17 Pavel; Eugen Fluorescent photosensitive vitroceramics and process for the production thereof
CN101456675B (zh) * 2007-12-11 2012-08-22 中国科学院福建物质结构研究所 通过上转换发射明亮白光的玻璃陶瓷
CN101723593A (zh) 2009-11-30 2010-06-09 浙江大学 一种用于led白光照明的发光玻璃陶瓷及其制备方法
JP5460923B2 (ja) * 2010-06-08 2014-04-02 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 白光を発射する透明ガラスセラミック及びその調製方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092282A (zh) * 2007-06-19 2007-12-26 浙江大学 应用于半导体照明的玻璃陶瓷及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass;Tomokatsu Hayakawa et.al.;《Journal of Non-Crystalline Solids》;19991130;第259卷(第1-3期);第16-22页 *
Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses;Maik Eichelbaum et.al.;《Nanotechnology》;20080226;第19卷(第13期);第1-9页 *
Plasmonic Enhancement or Energy Transfer? On the Luminescence of Gold-, Silver-, and Lanthanide-Doped Silicate Glasses and Its Potential for Light-Emitting Devices;Maik Eichelbaum et.al.;《Advanced Functional Materials》;20090710;第19卷(第13期);第2045-2052页 *
纳米银对表面吸附镝配合物的荧光增强效应研究;王悦辉等;《无机化学学报》;20080331;第24卷(第3期);第409-414页 *

Also Published As

Publication number Publication date
JP2013535533A (ja) 2013-09-12
WO2012009853A1 (zh) 2012-01-26
EP2597071A1 (en) 2013-05-29
EP2597071B1 (en) 2016-10-19
US8936732B2 (en) 2015-01-20
JP5715252B2 (ja) 2015-05-07
US20130112919A1 (en) 2013-05-09
EP2597071A4 (en) 2014-01-22
CN102906043A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
Zhong et al. Garnet-based Li 6 CaLa 2 Sb 2 O 12: Eu 3+ red phosphors: a potential color-converting material for warm white light-emitting diodes
CN103803797B (zh) 一种led用发光玻璃及其制备方法
CN107056070B (zh) 一种透明Ce:YAG玻璃陶瓷及其制备方法
CN102040337B (zh) 稀土掺杂钇铝石榴石微晶玻璃材料及其在白光led中的应用
CN103936281B (zh) 一种稀土掺杂发光玻璃及其制备方法
JP5696965B2 (ja) 希土類イオンドープしたケイ酸塩発光ガラスおよびその調製方法
CN103395997B (zh) 一种白光led用稀土掺杂透明玻璃陶瓷及其制备方法
CN102906043B (zh) 一种发射白光的玻璃陶瓷及其制备方法
CN102241480B (zh) 掺杂单质银的稀土离子发光玻璃及其制备方法
CN111574062A (zh) 一种氮化物红光玻璃及其应用
CN105236750A (zh) 一种稀土掺杂的白光荧光磷酸盐微晶玻璃材料及其制备方法
JP5616446B2 (ja) 緑色発光ガラス
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
CN102381841B (zh) 一种黄绿色发光玻璃陶瓷材料及其制备方法
EP2581349A1 (en) Transparent glass ceramic emitting white light and preparation method thereof
CN104212457A (zh) 一种氟硼硅酸盐基红色荧光粉、制备方法及其应用
CN114671608A (zh) CsPbBr3量子点镶嵌氟磷酸盐玻璃及制备方法和应用
CN108441218B (zh) 一种红色荧光粉及其制备方法
Luewarasirikul et al. Dy3+-doped Ba-Na-B white light-emitting glass for w-LED applications
CN110590158A (zh) 一种硼酸盐荧光玻璃及其制备方法和应用
CN101759361A (zh) 一种稀土掺杂发光玻璃及其制备方法
CN114276012B (zh) 一种稀土元素Dy掺杂的氟硼酸盐发光玻璃及其制备方法
CN112225450B (zh) 一种镧系掺杂宽色域荧光玻璃及其制备方法
CN103395980B (zh) 一种含铋发白光玻璃及其制备方法
CN115893858B (zh) 荧光玻璃陶瓷及其制备方法以及led灯

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant