WO2014134854A1 - 一种稀土掺杂硅酸盐发光玻璃及其制备方法 - Google Patents

一种稀土掺杂硅酸盐发光玻璃及其制备方法 Download PDF

Info

Publication number
WO2014134854A1
WO2014134854A1 PCT/CN2013/073989 CN2013073989W WO2014134854A1 WO 2014134854 A1 WO2014134854 A1 WO 2014134854A1 CN 2013073989 W CN2013073989 W CN 2013073989W WO 2014134854 A1 WO2014134854 A1 WO 2014134854A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent glass
glass according
glass
rare earth
hours
Prior art date
Application number
PCT/CN2013/073989
Other languages
English (en)
French (fr)
Inventor
王静
张学杰
黄霖
苏锵
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to US14/397,929 priority Critical patent/US9416312B2/en
Publication of WO2014134854A1 publication Critical patent/WO2014134854A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to the field of white light LED illuminating glass, and more particularly to a rare earth doped silicate luminescent glass for white LED and a preparation method thereof.
  • white LED As a new type of solid light source, white LED is expected to become the fourth generation of illumination source and achieve the goal of green lighting in the future due to its high efficiency, energy saving and environmental protection.
  • the current commercial white LED device achieves white light: 'Blue LED + Yellow Phosphor' or 'Blue LED + Yellow + Red Phosphor' or 'Blue LED + Green + Red Phosphor'.
  • These phosphors generally have high luminous efficiency, but they also have the following disadvantages: (a) poor thermal stability, resulting in white color drift; (b) fluorescent paste formed by mixing with epoxy resin is susceptible to aging Wait.
  • Rare earth ion doped luminescent glass has many advantages over phosphor powder preparation of white LED: (a) easy to process into various shapes, strong plasticity; (b) good thermal conductivity and chemical stability; (c) combined with LED The production process is simple, the raw materials are easy to obtain, and the cost is low; (d) replacing the epoxy resin. Therefore, rare earth ion doped luminescent glass has high application value.
  • Patent CN 101830638 A reports a single-doped Eu 2+ luminescent glass with an optimum excitation wavelength of 349 nm.
  • Patent CN 102701590 A reports a high siloxane glass with an optimum excitation wavelength extending from 350 to 390 nm.
  • Patent CN 101749642 A reports a luminescent glass excited by blue light whose optimum excitation wavelength extends to the blue region (about 440 nm) as the amount of B 2 O 3 changes.
  • Recently, LHC Andrade reported 41.5Al 2 O 3 -47.4CaO-7SiO 2 -2.1MgO-
  • the invention is directed to the development of a novel high-efficiency luminescent glass system excited by a blue LED chip.
  • the invention provides a luminescent glass, and the chemical composition formula is as follows:
  • a is a molar coefficient of Li 2 O
  • b is a molar coefficient of MO
  • the MO is one or more of alkaline earth metal oxides.
  • the molar coefficient a is 25 to 35.
  • the alkaline earth metal oxide is one or more of calcium oxide, cerium oxide or cerium oxide.
  • Another object of the present invention is to provide a method for preparing a luminescent glass, comprising the steps of:
  • the oxide of each element or the salt corresponding thereto is weighed, and the raw material is sufficiently ground and mixed;
  • the salt described in the step S1 is a carbonate or a phosphate.
  • the reducing atmosphere described in the step S2 is carbon, pure hydrogen or a mixed gas, and the mixed gas is a mixed gas of nitrogen and hydrogen.
  • the high temperature melting temperature in the step S2 is 1450 to 1700 ° C and the duration is 0.5 to 3 hours.
  • the annealing temperature described in the step S3 is 450 to 650 ° C and the duration is 2 to 5 hours.
  • the rare earth doped silicate luminescent glass for white LEDs disclosed in the present invention has the following advantages:
  • the luminescent glass can be combined with the UV LED chip to obtain bright green emission, and at the same time, can be combined with the blue LED chip to get bright white light emission.
  • the excitation spectrum has continuous adjustability, and the optimal excitation wavelength can be adjusted in the range of 410-470 nm, which is suitable for UV and blue LED applications in different wavelength bands.
  • the emission spectrum has continuous tunability, and the peak emission wavelength can be adjusted within the range of 500-555 nm to obtain green. Light to yellow-green light emission.
  • the doping concentration of the fixed Eu 2 O 3 is unchanged, the excitation wavelength is changed, the emission wavelength is adjustable, and the peak emission wavelength can be adjusted within the range of 505 to 545 nm to obtain green to yellow-green light emission.
  • Example 1 is an excitation spectrum of a glass sample having different concentrations of Eu 2 O 3 (Example 1: 45 SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.025Eu 2 O 3
  • Example 2 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.05Eu 2 O 3
  • Example 3 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.50Eu 2 O 3 ).
  • Example 2 is an emission spectrum of a glass sample having different concentrations of Eu 2 O 3 (Example 1: 45 SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.025Eu 2 O 3
  • Example 2 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.05Eu 2 O 3
  • Example 3 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.50Eu 2 O 3 ).
  • Figure 3 is a graph showing the emission spectra of glass samples 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.05Eu 2 O 3 (Example 2) at different excitation wavelengths.
  • MO MoO
  • Example 2 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.05Eu 2 O 3
  • Example 6 45SiO 2 -25Li 2 O-20CaO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.05Eu 2 O 3
  • Example 7 45SiO 2 -25Li 2 O- 20BaO-5Al 2 O 3 -3K 2 O-2P 2 O 5 : 0.05Eu 2 O 3 ).
  • Example 1 Synthesis of 45SiO 2 -25Li 2 O-20SrO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.025Eu 2 O 3 luminescent glass
  • the above raw material mixture is placed in a crucible, and kept at 1450 ° C for 3 hours in a hot carbon reducing atmosphere, and then the glass liquid is poured into a preheated mold to form Then, it is annealed at 450 ° C for 5 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • the optimum excitation wavelength of this luminescent glass is at 410 nm (as shown in Figure 1). Under 410 nm excitation, the emission peak is at 500 nm (as shown in Figure 2).
  • silica SiO 2
  • lithium carbonate Li 2 CO 3
  • strontium carbonate SrCO 3
  • alumina Al 2 O 3
  • potassium carbonate K 2 CO 3
  • phosphoric acid were accurately weighed according to Table 2.
  • Ammonium hydroxide NH 4 H 2 PO 4
  • Eu 2 O 3 alumina
  • the weighed raw materials are thoroughly ground and mixed in a ball mill for 8 hours, and then the raw material mixture is placed in a crucible, and heated at 1500 ° C for 2 hours in a nitrogen (N 2 ) to hydrogen (H 2 ) mixed gas reducing atmosphere, and then The glass liquid was poured into a preheated mold to form, and then annealed at 500 ° C for 4 hours, and naturally cooled to room temperature for removal. After cutting and polishing, the obtained luminescent glass sample was obtained.
  • the optimum excitation wavelength of this luminescent glass is at 430 nm (as shown in Figure 1). Under 430 nm excitation, the emission peak is at 520 nm (as shown in Figure 2). At the same time, as shown in Figure 3, the sample was excited by different wavelengths of light, and the peak emission wavelength was red shifted from 505 nm to 545 nm.
  • the obtained luminescent glass sample was obtained.
  • the optimum excitation wavelength of this luminescent glass is in the range of 440-490 nm (as shown in Figure 1), and the emission peak is at 550 nm under 455 nm excitation (as shown in Figure 2).
  • This luminescent glass combines with a blue LED chip (450 nm) to give a bright white light emission.
  • the emission spectrum has continuous tunability (as shown in Figure 2), and the peak emission wavelength can be adjusted in the range of 500 to 555 nm to obtain green to yellow-green light emission.
  • the above raw material mixture was placed in a crucible, and kept at 1600 ° C for 1 hour in a hot carbon reducing atmosphere, and then the glass liquid was poured into a preheated mold to form Then, it was annealed at 500 ° C for 2 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • This luminescent glass combines with a blue LED chip (450 nm) to give a bright white light emission.
  • the above raw material mixture was placed in a crucible, and kept at 1600 ° C for 1 hour in a hot carbon reducing atmosphere, and then the glass liquid was poured into a preheated mold to form Then, it is annealed at 600 ° C for 2 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • This luminescent glass combines with a blue LED chip (450 nm) to give a bright white light emission.
  • the weighed raw materials are thoroughly ground and mixed in a ball mill for 8 hours, and then the raw material mixture is placed in a crucible, and maintained at 1,700 ° C for 0.5 hour in a nitrogen (N 2 ) to hydrogen (H 2 ) mixed gas reducing atmosphere, and then The glass liquid was poured into a preheated mold to form, and then annealed at 650 ° C for 2 hours, and naturally cooled to room temperature for removal. After cutting and polishing, the obtained luminescent glass sample was obtained.
  • the excitation wavelength of the luminescent glass is in the range of 250 to 475 nm, and the emission main peak is at 530 nm under the excitation of 450 nm light (as shown in FIG. 4).
  • Example 7 Synthesis of 45SiO 2 -25Li 2 O-20BaO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.05Eu 2 O 3 luminescent glass
  • the above raw material mixture was placed in a crucible, and kept at 1550 ° C for 2 hours in a hot carbon reducing atmosphere, and then the glass liquid was poured into a preheated mold to form Then, it is annealed at 550 ° C for 4 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • the excitation wavelength of the luminescent glass is in the range of 250-500 nm, and the emission main peak is at 550 nm under the excitation of 450 nm light (as shown in FIG. 4).
  • the emission wavelength is red-shifted as a function of Ca ⁇ Sr ⁇ Ba (as shown in FIG. 4).
  • Example 8 Synthesis of 45SiO 2 -25Li 2 O-10SrO-10CaO-5Al 2 O 3 -3K 2 O-2P 2 O 5 :0.10Eu 2 O 3 luminescent glass
  • the above raw material mixture was placed in a crucible, and kept at 1700 ° C for 0.5 hour in a hot carbon reduction atmosphere, and then the glass liquid was poured into a preheated mold to form Then, it was annealed at 500 ° C for 2 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • This luminescent glass combines with a blue LED chip (450 nm) to give a bright white light emission.
  • silica SiO 2
  • lithium carbonate Li 2 CO 3
  • strontium carbonate SrCO 3
  • calcium carbonate CaCO 3
  • barium carbonate BaCO 3
  • alumina Al 2 O according to Table 9
  • potassium carbonate K 2 CO 3
  • ammonium dihydrogen phosphate NH 4 H 2 PO 4
  • Eu 2 O 3 alumina
  • the weighed raw materials are thoroughly ground and mixed in a ball mill for 10 hours, and then the raw material mixture is placed in a crucible, and maintained at 1600 ° C for 1 hour in a nitrogen (N 2 ) to hydrogen (H 2 ) mixed gas reducing atmosphere, and then The glass liquid was poured into a preheated mold to form, and then annealed at 550 ° C for 2 hours, naturally cooled to room temperature, and cut, polished, and then the obtained luminescent glass sample.
  • This luminescent glass combines with a blue LED chip (450 nm) to give a bright white light emission.

Abstract

一种稀土掺杂硅酸盐发光玻璃,化学组成通式如下:45SiO2-aLi2O-bMO-5Al2O3-3K2O-2P2O5:cEu2O3。所述的a为Li2O的摩尔系数,b为MO的摩尔系数,c为Eu2O3的摩尔系数,其中a+b=45,且25≤a≤35,0.025≤c≤0.50,所述的MO为碱土金属氧化物中的一种或几种。该发光玻璃在紫外LED芯片激发下可产生明亮绿光发射,在蓝光LED芯片激发下可产生明亮白光发射。该发光玻璃可与发光二极管配合制成LED器件,在半导体照明领域有潜在应用。

Description

一种稀土掺杂硅酸盐发光玻璃及其制备方法
技术领域
本发明涉及白光LED发光玻璃领域,更具体地,涉及一种白光LED用稀土掺杂硅酸盐发光玻璃及其制备方法。
背景技术
白光LED作为一种新型固体光源,因其具有高效、节能、环保的特点,有望在今后发展成为第四代照明光源,实现绿色照明的目标。
目前商业化的白光LED器件实现白光的方案是:'蓝光LED+黄色荧光粉'或者'蓝光LED+黄色+红色荧光粉'或者'蓝光LED+绿色+红色荧光粉'。这些荧光粉通常具有较高的发光效率,但是,也存在如下不足之处:(a)热稳定性不好,导致白光色漂移;(b)与环氧树脂混合所形成的荧光浆料易老化等。
稀土离子掺杂的发光玻璃相比于荧光粉制备白光LED拥有许多优势:(a)易加工成各种形状,可塑性强;(b)良好的热传导性能和化学稳定性;(c)与LED结合制作工艺简单,原料易得,成本低廉;(d)替代环氧树脂等。因此稀土离子掺杂的发光玻璃具有很高的应用价值。
虽然有关发光玻璃的研究很多,但是真正能被蓝光LED芯片(440~480 nm)激发的发光玻璃并不多。专利CN 101830638 A 报道了一种单掺杂Eu2+的发光玻璃,其最佳激发波长在349 nm。专利CN 102701590 A 报道了一种高硅氧发光玻璃,其最佳激发波长拓展到了350~390 nm范围。专利CN 101749642 A报道了一种被蓝光激发的发光玻璃,其最佳激发波长随B2O3量的改变拓展到了蓝光区(440 nm左右)。最近,L.H.C. Andrade报道了 41.5Al2O3-47.4CaO-7SiO2-2.1MgO-
2.0CeO2 (wt. %) 的激发与发射光谱(Journal of Alloys and Compounds 510 (2012) 54-59),其最佳激发波长位于405 nm;Zijun Liu报道了27Al2O3-58CaO-8SiO2-
7MgO-xEu2O3 (mol %) 的激发与发射光谱(Appl Phys A (2012) 108:777-781),其最佳激发波长扩展到了蓝光区(440 nm左右)。上述发光玻璃中,一部分玻璃的激发波长不能与蓝光LED芯片的发射波段进行很好的匹配;另一部分玻璃的发光效率仍然很低;总之,截至目前,还未见到与本发明所公开的发光玻璃体系相关的专利和文献报道。
发明内容
本发明致力于一种蓝光LED芯片激发的新型高效发光玻璃体系的研制。
本发明提供一种发光玻璃,化学组成通式如下:
45SiO2-aLi2O-bMO-5Al2O 3-3K 2O-2P2O5: cEu2O3
所述的a为Li2O的摩尔系数,b为MO的摩尔系数,c为Eu2O3的摩尔系数,其中a+b=45,0.025≦c≦0.50,
所述的MO为碱土金属氧化物中的一种或几种。
所述的摩尔系数a为25~35。
所述的碱土金属氧化物为氧化钙、氧化锶或氧化钡中的一种或几种。
本发明另一个目的为提供一种发光玻璃的制备方法,包括以下步骤:
S1. 按照化学组成通式的摩尔比例,称取各元素的氧化物或与之对应的盐类,将原料充分研磨混合;
S2. 在还原性气氛下,高温熔融;
S3. 倒入预热的模具中,退火,冷却,切割抛光后,即得。
步骤S1中所述的盐类为碳酸盐或磷酸盐。
步骤S2中所述的还原性气氛为碳、纯氢气或混合气,所述的混合气为氮气与氢气的混合气。
步骤S2中所述的高温熔融的温度为1450~1700℃,持续时间为0.5~3小时。
步骤S3中所述的退火温度为450~650℃,持续时间为2~5小时。
与已有发明专利和文献资料所公开的发光玻璃相比,本发明所公开的白光LED用稀土掺杂硅酸盐发光玻璃具有如下优点:
1. 在紫外至蓝光区具有宽谱带吸收特点,适用于紫外LED和蓝光LED芯片激发;该发光玻璃能与紫外LED芯片结合获得明亮的绿光发射,同时,能与蓝光LED芯片结合得到明亮的白光发射。
2. 随着Eu2O3掺杂量的改变,激发光谱具有连续可调性,最佳激发波长可在410~470 nm范围内调节,适用于不同波段的紫外和蓝光LED应用。
3. 随着Eu2O3掺杂量的改变及MO(M=Ca, Sr, Ba)变化时,发射光谱具有连续可调性,峰值发射波长可在500~555 nm范围内调节,获得绿光至黄绿光发射。
4. 固定Eu2O3掺杂浓度不变,改变激发波长,实现了发射波长的可调,峰值发射波长可在505~545 nm范围内调节,获得绿光至黄绿光发射。
附图说明
附图1为不同Eu2O3浓度的玻璃样品的激发光谱图(实施例1:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.025Eu 2O 3;实施例2:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3;实施例3:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.50Eu 2O 3)。
附图2为不同Eu2O3浓度的玻璃样品的发射光谱图(实施例1:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.025Eu 2O 3;实施例2:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3;实施例3:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.50Eu 2O 3)。
附图3为玻璃样品45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3(实施例2)在不同激发波长下的发射光谱图。
附图4为不同MO(M=Ca, Sr, Ba)的玻璃样品的发射光谱图(实施例2:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3;实施例6:45SiO2-25Li2O-20CaO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3;实施例7:45SiO2-25Li2O-20BaO-5Al2O 3-3K2O-2P2O5:0.05Eu 2O 3)。
具体实施方式
以下结合具体实施例对本发明作进一步说明,但具体实施例并不对本发明作任何限定。
实施例1:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.025Eu2O3发光玻璃的合成
表1 实施例1的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2O SrO Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 1.4941 4.1448 1.0196 0.8292 0.9202 0.0176
按照表1精确称量二氧化硅(SiO2)、氧化锂(Li2O)、氧化锶(SrO)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合6小时,然后,将上述原料混合物放入坩埚中,在热碳还原气氛中,1450℃保温3小时,而后将玻璃液倒入预热的模具中成型,再在450℃下退火5小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃的最佳激发波长位于410 nm(如附图1所示),在410 nm光激发下,发射主峰值位于500 nm (如附图2所示)。
实施例2:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.05Eu2O3发光玻璃的合成
表2 实施例2的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2CO3 SrCO3 Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 3.6945 5.9052 1.0196 0.8292 0.9202 0.0352
按照表2精确称量二氧化硅(SiO2)、碳酸锂(Li2CO3)、碳酸锶(SrCO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合8小时,然后,将上述原料混合物放入坩埚中,在氮气(N2)~氢气(H2)混合气还原气氛中,1500℃保温2小时,而后将玻璃液倒入预热的模具中成型,再在500℃下退火4小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃的最佳激发波长位于430 nm(如附图1所示),在430 nm光激发下,发射主峰值位于520 nm (如附图2所示)。同时,如附图3所示,选取不同波长光激发此样品,峰值发射波长从505 nm红移至545 nm。
实施例3:45SiO2-25Li2O-20SrO-5Al2O 3-3K2O-2P2O5:0.50Eu2O3发光玻璃的合成
表3 实施例3的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2CO3 SrO Al2O3 K2CO3 (NH4)2HPO4 Eu2O3
质量(g) 5.4076 3.6945 4.1448 1.0196 0.8292 1.0565 0.3520
按照表3精确称量二氧化硅(SiO2)、碳酸锂(Li2CO3)、氧化锶(SrO)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸氢二铵((NH4)2HPO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合10小时,然后,将上述原料混合物放入坩埚中,在氢气(H2)还原气氛中,1550℃保温1小时,而后将玻璃液倒入预热的模具中成型,再在550℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃的最佳激发波长位于440~490 nm范围(如附图1所示),在455 nm光激发下,发射峰值位于550 nm(如附图2所示)。此发光玻璃与蓝光LED芯片(450 nm)结合可以得到明亮的白光发射。综合实施例1、实施例2及实施例3,在紫外至蓝光区具有宽谱带吸收特点(如附图1所示),适用于紫外LED和蓝光LED芯片激发;激发光谱具有连续可调性(如附图1所示),最佳激发波长可在410~470 nm范围内调节,适用于不同波段的紫外和蓝光LED应用。同时,发射光谱具有连续可调性(如附图2所示),峰值发射波长可在500~555 nm范围内调节,获得绿光至黄绿光发射。
实施例4:45SiO2-30Li2O-15SrO-5Al2O 3-3K2O-2P2O5:0.40Eu2O3发光玻璃的合成
表4 实施例4的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2O SrCO3 Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 1.7929 4.4289 1.0196 0.8292 0.9202 0.2815
按照表4精确称量二氧化硅(SiO2)、氧化锂(Li2O)、碳酸锶(SrCO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合8小时,然后,将上述原料混合物放入坩埚中,在热碳还原气氛中,1600℃保温1小时,而后将玻璃液倒入预热的模具中成型,再在500℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃与蓝光LED芯片(450 nm)结合可以得到明亮的白光发射。
实施例5:45SiO2-35Li2O-10SrO-5Al2O 3-3K2O-2P2O5:0.40Eu2O3发光玻璃的合成
表5 实施例5的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2O SrO Al2O3 K2CO3 (NH4)2HPO4 Eu2O3
质量(g) 5.4076 2.0917 2.0724 1.0196 0.8292 1.0565 0.2815
按照表5精确称量二氧化硅(SiO2)、氧化锂(Li2O)、氧化锶(SrO)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸氢二铵((NH4)2HPO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合6小时,然后,将上述原料混合物放入坩埚中,在热碳还原气氛中,1600℃保温1小时,而后将玻璃液倒入预热的模具中成型,再在600℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃与蓝光LED芯片(450 nm)结合可以得到明亮的白光发射。
实施例6:45SiO2-25Li2O-20CaO-5Al2O 3-3K2O-2P2O5:0.05Eu2O3发光玻璃的合成
表6 实施例6的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2CO3 CaCO3 Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 3.6945 4.003 1.0196 0.8292 0.9202 0.0352
按照表6精确称量二氧化硅(SiO2)、碳酸锂(Li2CO3)、碳酸钙(CaCO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合8小时,然后,将上述原料混合物放入坩埚中,在氮气(N2)~氢气(H2)混合气还原气氛中,1700℃保温0.5小时,而后将玻璃液倒入预热的模具中成型,再在650℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃的激发波长位于250~475 nm范围,在450 nm光激发下,发射主峰位于530 nm(如附图4所示)。
实施例7:45SiO2-25Li2O-20BaO-5Al2O 3-3K2O-2P2O5:0.05Eu2O3发光玻璃的合成
表7 实施例7的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2O BaCO3 Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 1.4941 7.8934 1.0196 0.8292 0.9202 0.0352
按照表7精确称量二氧化硅(SiO2)、氧化锂(Li2O)、碳酸钡(BaCO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合8小时,然后,将上述原料混合物放入坩埚中,在热碳还原气氛中,1550℃保温2小时,而后将玻璃液倒入预热的模具中成型,再在550℃下退火4小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃的激发波长位于250~500 nm范围,在450 nm光激发下,发射主峰位于550 nm(如附图4所示)。综合实施例2、实施例6及实施例7,发射波长随Ca→Sr→Ba变化发生红移(如附图4所示)。
实施例8:45SiO2-25Li2O-10SrO-10CaO-5Al 2O3-3K2O-2P2O5:0.10Eu2O3发光玻璃的合成
表8 实施例8的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2CO3 SrO CaO Al2O3 K2CO3 (NH4)2HPO4 Eu2O3
质量(g) 5.4076 3.6945 2.0724 1.1215 1.0196 0.8292 1.0565 0.0704
按照表8精确称量二氧化硅(SiO2)、碳酸锂(Li2CO3)、氧化锶(SrO)、氧化钙(CaO)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸氢二铵((NH4)2HPO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合10小时,然后,将上述原料混合物放入坩埚中,在热碳还原气氛中,1700℃保温0.5小时,而后将玻璃液倒入预热的模具中成型,再在500℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃与蓝光LED芯片(450 nm)结合可以得到明亮的白光发射。
实施例9:45SiO2-30Li2O-5SrO-5CaO-5BaO-5Al 2O3-3K2O-2P2O5:0.20Eu2O3发光玻璃的合成
表9 实施例9的稀土掺杂硅酸盐发光玻璃组成
原料 SiO2 Li2CO3 SrCO3 CaCO3 BaCO3 Al2O3 K2CO3 NH4H2PO4 Eu2O3
质量(g) 5.4076 4.4335 1.4763 1.0009 1.9734 1.0196 0.8292 0.9202 0.1408
按照表9精确称量二氧化硅(SiO2)、碳酸锂(Li2CO3)、碳酸锶(SrCO3)、碳酸钙(CaCO3)、碳酸钡(BaCO3)、氧化铝(Al2O3)、碳酸钾(K2CO3)、磷酸二氢铵(NH4H2PO4)和Eu2O3。将称量的原料在球磨机中充分研磨混合10小时,然后,将上述原料混合物放入坩埚中,在氮气(N2)~氢气(H2)混合气还原气氛中,1600℃保温1小时,而后将玻璃液倒入预热的模具中成型,再在550℃下退火2小时,自然冷却至室温取出,切割、抛光后即为制得的发光玻璃样品。此发光玻璃与蓝光LED芯片(450 nm)结合可以得到明亮的白光发射。

Claims (8)

  1. 一种白光LED用稀土掺杂硅酸盐发光玻璃,其特征在于,化学组成通式如下:
    45SiO2-aLi2O-bMO-5Al2O 3-3K 2O-2P2O5: cEu2O3
    所述的a为Li2O的摩尔系数,b为MO的摩尔系数,c为Eu2O3的摩尔系数,其中a+b=45,0.025≦c≦0.50,
    所述的MO为碱土金属氧化物中的一种或几种。
  2. 根据权利要求1所述的发光玻璃,其特征在于,所述的摩尔系数a为25~35。
  3. 根据权利要求1所述的发光玻璃,其特征在于,所述的碱土金属氧化物为氧化钙、氧化锶或氧化钡中的一种或几种。
  4. 一种根据权利要求1至3所述的发光玻璃的制备方法,其特征在于,包括以下步骤:
    S1. 按照化学组成通式的摩尔比例,称取各元素的氧化物或与之对应的盐类,将原料充分研磨混合;
    S2. 在还原性气氛下,高温熔融;
    S3. 倒入预热的模具中,退火,冷却,切割抛光后,即得。
  5. 根据权利要求4所述的发光玻璃的制备方法,其特征在于,步骤S1中所述的盐类为碳酸盐或磷酸盐。
  6. 根据权利要求4所述的发光玻璃的制备方法,其特征在于,步骤S2中所述的还原性气氛为碳、纯氢气或混合气,所述的混合气为氮气与氢气的混合气。
  7. 根据权利要求4所述的发光玻璃的制备方法,其特征在于,步骤S2中所述的高温熔融的温度为1450~1700℃,持续时间为0.5~3小时。
  8. 根据权利要求4所述的发光玻璃的制备方法,其特征在于,步骤S3中所述的退火温度为450~650℃,持续时间为2~5小时。
PCT/CN2013/073989 2013-03-05 2013-04-10 一种稀土掺杂硅酸盐发光玻璃及其制备方法 WO2014134854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,929 US9416312B2 (en) 2013-03-05 2013-04-10 Rare earth ions doped silicate luminescent glass and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310069174.9A CN103130414B (zh) 2013-03-05 2013-03-05 一种稀土掺杂硅酸盐发光玻璃及其制备方法
CN201310069174.9 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014134854A1 true WO2014134854A1 (zh) 2014-09-12

Family

ID=48490928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073989 WO2014134854A1 (zh) 2013-03-05 2013-04-10 一种稀土掺杂硅酸盐发光玻璃及其制备方法

Country Status (3)

Country Link
US (1) US9416312B2 (zh)
CN (1) CN103130414B (zh)
WO (1) WO2014134854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059338A (zh) * 2017-12-26 2018-05-22 陕西科技大学 一种发红光玻璃的制备方法
CN113176240A (zh) * 2021-05-11 2021-07-27 河南工业大学 一种磁光双控光纤spr传感器的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762216A (zh) * 2016-05-09 2016-07-13 苏州协鑫集成科技工业应用研究院有限公司 异质结光伏组件
CN110451798B (zh) * 2019-08-26 2022-05-17 井冈山大学 一种二价铕激活锂硼酸盐闪烁玻璃及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104547A (zh) * 2007-06-16 2008-01-16 河北理工大学 稀土离子铕激活的灯用发白光玻璃及其制备方法
CN101749642A (zh) * 2009-12-18 2010-06-23 天津工业大学 一种蓝光激发的白光led用荧光玻璃透镜及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122135A (ja) * 1984-11-19 1986-06-10 Toshiba Glass Co Ltd 螢光ガラス線量計用螢光標準ガラス
TW200800817A (en) * 2006-06-16 2008-01-01 Univ Nat United The method of promote the oxide glass fluorescence strength
CN101108769A (zh) * 2006-07-19 2008-01-23 联合大学 提升氧化物玻璃荧光强度的方法
JP2009013002A (ja) * 2007-07-03 2009-01-22 Agc Techno Glass Co Ltd 蛍光ランプ用紫外線吸収ガラスおよび蛍光ランプ用ガラス管
DE102008056323B8 (de) * 2007-11-21 2019-01-03 Schott Ag Verwendung von alkalifreien Aluminoborosilikatgläsern für Leuchtmittel mit außen- oder innenliegender Kontaktierung
CN101830638A (zh) * 2009-03-13 2010-09-15 中国科学院福建物质结构研究所 铕离子掺杂的新型高亮度青光硅酸盐发光玻璃
CN101935165A (zh) * 2009-06-30 2011-01-05 海洋王照明科技股份有限公司 无机硅酸盐发光玻璃及其制备方法
CN102381841B (zh) * 2010-08-31 2013-10-02 海洋王照明科技股份有限公司 一种黄绿色发光玻璃陶瓷材料及其制备方法
CN102701590B (zh) 2012-06-29 2015-07-29 中国科学院上海光学精密机械研究所 近紫外激发的高硅氧发兰光玻璃的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104547A (zh) * 2007-06-16 2008-01-16 河北理工大学 稀土离子铕激活的灯用发白光玻璃及其制备方法
CN101749642A (zh) * 2009-12-18 2010-06-23 天津工业大学 一种蓝光激发的白光led用荧光玻璃透镜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZIJUN ET AL.: "Super broadband reddish emitting glass with Eu2+ doped for warm-white light emitting diodes.", APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING., vol. 108, 2012, pages 777 - 781 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059338A (zh) * 2017-12-26 2018-05-22 陕西科技大学 一种发红光玻璃的制备方法
CN113176240A (zh) * 2021-05-11 2021-07-27 河南工业大学 一种磁光双控光纤spr传感器的制备方法

Also Published As

Publication number Publication date
US20150123035A1 (en) 2015-05-07
US9416312B2 (en) 2016-08-16
CN103130414B (zh) 2014-12-24
CN103130414A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2012088788A1 (zh) 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源
WO2012134043A2 (ko) 산질화물계 형광체
CN112457848B (zh) 一种窄带蓝光荧光粉及其制备方法与应用
KR101420337B1 (ko) 일종 백광 엘이디 적색 인광체 및 그 제조 방법
CN110467351B (zh) 一种硼硅酸盐稀土发光微晶玻璃及其制备方法和应用
WO2014134854A1 (zh) 一种稀土掺杂硅酸盐发光玻璃及其制备方法
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
WO2018170975A1 (zh) 一种高功率照明与显示用荧光玻璃陶瓷及其制备方法和应用
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN108822842B (zh) 一种红色锶镁磷酸盐荧光材料及其制备方法和应用
CN111099826A (zh) 一种蓝光激发的黄绿色全光谱荧光玻璃及其制备方法
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
Liu et al. Highly thermally stable single-component warm-white-emitting ZANP glass: Synthesis, luminescence, energy transfer, and color tunability
CN102381841B (zh) 一种黄绿色发光玻璃陶瓷材料及其制备方法
CN107541211B (zh) 适于近紫外光激发的蓝色发光荧光粉及其制备方法和应用
WO2020015422A1 (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
WO2012009845A1 (zh) 一种发光材料及其制备方法
WO2010099667A1 (zh) 氧化锌基绿色发光材料及其制备方法
CN111138191B (zh) 一种Eu3+离子激活的钽酸盐荧光陶瓷及其合成方法与应用
WO2011134148A1 (zh) 硅酸盐发光材料及其制备方法
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
WO2011153686A1 (zh) 发射白光的透明玻璃陶瓷及其制备方法
CN108558204B (zh) 一种可调控光谱的Eu,Dy掺杂的发光玻璃及其制备方法
CN112551892A (zh) 一种用于led显示的广色域玻璃及其制备方法
CN101857363A (zh) 一种白光玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397929

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877076

Country of ref document: EP

Kind code of ref document: A1