WO2012088788A1 - 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源 - Google Patents

一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源 Download PDF

Info

Publication number
WO2012088788A1
WO2012088788A1 PCT/CN2011/071210 CN2011071210W WO2012088788A1 WO 2012088788 A1 WO2012088788 A1 WO 2012088788A1 CN 2011071210 W CN2011071210 W CN 2011071210W WO 2012088788 A1 WO2012088788 A1 WO 2012088788A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
oxynitride
light
oxynitride luminescent
led
Prior art date
Application number
PCT/CN2011/071210
Other languages
English (en)
French (fr)
Inventor
贾晓卿
王海嵩
鲍鹏
Original Assignee
北京宇极科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京宇极科技发展有限公司 filed Critical 北京宇极科技发展有限公司
Priority to KR1020137002601A priority Critical patent/KR101507250B1/ko
Priority to DE112011102173T priority patent/DE112011102173T5/de
Priority to JP2013525117A priority patent/JP5752249B2/ja
Priority to US13/813,400 priority patent/US20130127333A1/en
Publication of WO2012088788A1 publication Critical patent/WO2012088788A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77218Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • This invention relates to the field of semiconductors, and more particularly to a nitrogen compound luminescent material, a process for its preparation, and an illumination source made therefrom.
  • GaN-based LED Light-Emitting Diode
  • Solid-state lighting in the 21st century. It has the advantages of small size, power saving, long life, mercury-free environment, high efficiency and low maintenance. It can be widely used in various lighting facilities, including indoor lighting, traffic signals/indicators, car taillights/headlights, outdoor large screens, displays and advertising screens, etc., which replace the various bulbs currently used and The trend of fluorescent lights.
  • This new type of green light source will surely become a new generation of lighting system, which has broad and far-reaching significance for energy saving, environmental protection and improving people's quality of life.
  • White LED manufacturing technology mainly includes: (1) a combination of three monochromatic LEDs (blue, green, red); (2) blue LED + yellow phosphor; (3) ultraviolet LED + red, green and blue phosphor.
  • blue LEDs blue LED + yellow phosphor
  • ultraviolet LED + red, green and blue phosphor there are few phosphors that can be effectively excited by blue LEDs.
  • white light is obtained by using the yttrium aluminum garnet YAG: Ce fluorescent material in combination with the blue LED through the complementary color principle.
  • YAG yttrium aluminum garnet YAG: Ce fluorescent material in combination with the blue LED through the complementary color principle.
  • the color of the light emitted by YAG is yellowish green, only a cool white color with a higher color temperature can be obtained, and the color rendering index needs to be further improved.
  • green, yellow or red phosphors need to be added.
  • green phosphors that can be excited by blue light are mainly dominated by sulfides doped with divalent europium.
  • sulfides doped with divalent europium.
  • divalent europium such as (Ca, Sr, Ba) GaS 4 : Eu 2+ .
  • the sulphide phosphor has poor chemical and thermal stability, easily reacts with moisture in the air, is easily decomposed by heat, and has exhaust gas in the production process, polluting the environment.
  • nitrides composed of basic units of SiN 4 have been attracting attention as substrates for phosphors. Due to the strong covalent bond and large crystal field splitting, such compounds can illuminate at longer wavelengths such as yellow, orange and red under the doping of rare earth elements such as divalent europium.
  • the purpose of adjusting the luminescent properties and developing a new phosphor is achieved by changing the surrounding environment of the luminescent center atoms by selecting the matrix material and designing the coordination field or the crystal field.
  • the present invention reports an oxynitride phosphor capable of emitting yellow light and red light under excitation of ultraviolet-blue light.
  • the present invention also reports a white light LED electric light source prepared by using a NOx phosphor in combination with a blue LED. Summary of the invention
  • the present invention is directed to the defects in the above-mentioned fields, and provides a yellow and red luminescent material which is chemically stable, has excellent luminescent properties, and can be excited by an ultraviolet LED or a blue LED, and has an excitation wavelength of between 200 and 500 nm. , the emission wavelength is between 500 - 750 nm.
  • Another object of the present invention is to provide a method of manufacturing the luminescent material which is simple, easy to handle, easy to mass produce, non-contaminating, and low in cost.
  • This manufacturing method can prepare a fine phosphor having high luminous intensity, uniform particles, and a particle diameter of less than ⁇ .
  • An oxynitride luminescent material having the chemical formula: Mi-AM) with R y , wherein M is one or more of an alkali metal, an alkaline earth metal, a rare earth metal, and a transition metal; A is S i, Ge , B, A1 or a plurality of and including S i ; Z is one or more of Al, Ga, In elements and contains Al; R is a luminescent center element Eu, Ce, Tb, Yb, Sm, One or several of Pr, Dy; 0 ⁇ x ⁇ 0. 5 ; 0
  • M is one or more of the following: Li, Mg, Ca, Sr, Ba, Bi, Mn, Zn, La, Gd, Lu, Y;
  • M is one or more of the following: Li, Mg, Ca, Zn, Sr, Ba, Bi, Y, and at least Sr,
  • the content of the Sr element is greater than 0.8, A is S i ; Z is A1 ; R is Eu, Ce or a combination thereof.
  • the preparation method of the above oxynitride luminescent material comprises the following steps:
  • step (2) The mixture obtained in the step (1) is subjected to high temperature calcination under a noble gas atmosphere by a gas pressure sintering method or a solid phase reaction method to obtain a calcined product;
  • the calcined product obtained in the step (2) is further subjected to pulverization, impurity removal, drying, and classification to obtain a oxynitride luminescent material.
  • the inert gas in the gas pressure sintering method is nitrogen gas, and the nitrogen pressure is 1-200 atmospheres.
  • the inert gas in the solid phase reaction method is a mixed gas of atmospheric nitrogen and hydrogen, nitrogen.
  • the volume ratio of the hydrogen to the gas is 95: 5 or 90: 10 or 85: 15 or 80: 20, the flow rate is 0. 1 -
  • the high temperature baking temperature is 1200 - 1800 ° C, and the baking time is 0.5 - 30 hours, and the baking can be performed multiple times.
  • the carbothermal reduction nitriding (a type of high temperature roasting) temperature of 1200 - 1600 ° C, the time is 0. 5 - 30 hours.
  • a reactive flux is added to the step (1), and the flux is one or more of an M-containing halide or boric acid.
  • reaction flux is added in an amount of from 0.01 to 10% by weight of the total weight of the raw materials.
  • the impurity removal comprises pickling or water washing.
  • a white LED illumination source characterized by: an ultraviolet or near ultraviolet LED and the above oxynitride luminescent material.
  • a white LED illumination or display source characterized by: a blue LED and a oxynitride luminescent material as described above.
  • the technical effects of the present invention are as follows:
  • the oxynitride luminescent material of the present invention can emit 500-750 nm under the excitation of 200-500 nm light, especially yellow light or red light of 560 nm or more.
  • the raw material is made of M metal nitride, and oxides, carbonates, nitrates and the like can also be used. These salts can be prepared as long as they can be decomposed into metal oxides under high temperature baking.
  • the raw materials of the above-mentioned luminescent materials enrich the selection range of the raw materials, and also reduce the synthesis cost, and the properties of the salts are more stable. In the synthesis process, no special treatment of the raw materials is required, and the reaction is easy to control, and the amount is easy to realize. Production.
  • M metal nitrides, oxides, carbonates, nitrates, and the like, and the oxides and nitrides of the A element and the Y element, and the nitride or oxide of the R element are synthesized at a high temperature to synthesize the luminescent material of the present invention, and are calcined at a high temperature.
  • the inert protective gas is introduced into the process, and the purpose of introducing the shielding gas is to (1) protect certain nitride raw materials and the decomposition of the reaction product at high temperatures and (2) act as a reducing atmosphere.
  • the inert gas is usually N 2 or a mixture of N 2 and a high pressure or a normal pressure.
  • the raw materials Before the high-temperature calcination, the raw materials may be mixed and mixed with solvent ethanol or n-hexane to make the raw materials more uniformly mixed, and the halide of the flux M or boric acid may be added before the calcination. Excessive reaction impurities are removed during the post-treatment of the reaction. After the high-temperature calcination of the above raw materials, the impurities are generally oxides of M or/and A or/and Y or/and R elements, which may be removed by pickling or water washing. The remaining impurities are turned into a gas volatilization.
  • the oxynitride luminescent material synthesized by the invention can emit 500-750 nm yellow light or red light under the excitation of 200-500 nm light, so that it can be coated with other luminescent materials such as red luminescent materials on the blue LED chip to prepare a novel type.
  • White LED can also be coated with other luminescent materials such as blue and green luminescent materials on UV or near-ultraviolet LED chips to prepare new white LEDs with high energy conversion; it can also be combined with blue LED, ultraviolet LED or near-ultraviolet LED. Match, or mix other luminescent materials to prepare colored LEDs.
  • the yellow phosphor used in white LED is mainly composed of Ce 3+ doped YAG system, which is characterized by wide emission peak and high brightness, and is mainly used for preparing white LED with high color temperature (> 5000 K);
  • the temperature characteristics of the phosphors of the system are slightly poor, and some of the constituents are severely degraded.
  • the oxynitride luminescent material synthesized by the invention has completely different chemical structural formula and crystal structure from the YAG system, and is a brand new luminescent material.
  • the compound doped with Ce 3+ can obtain a yellow luminescent material with an emission wavelength longer than YAG, which can be used to prepare a white LED with a low color temperature ( ⁇ 5000 K), or a yellow luminescent material with an emission wavelength close to YAG can be obtained by a change in composition. It is used to prepare a white LED with high color temperature; the emission wavelength of the compound doped with Eu 2+ is located in the red light region, which is a red luminescent material, and a high color rendering white LED is prepared by the composition with other green phosphors.
  • the compound synthesized by the present invention has a strong covalent chemical bond and a three-dimensional network structure composed of SiN4 tetrahedral units due to the nitrogen element, the temperature characteristics thereof are good.
  • the ratio of nitrogen/oxygen elements By changing the ratio of nitrogen/oxygen elements to form a certain range of solid solution, the purpose of regulating the emission wavelength can be achieved, and the application range is wider.
  • the preparation method of the invention has the advantages of simple process and easy mass production; and the wavelength is adjustable and the luminous intensity is improved by partially replacing the element.
  • the luminescent material synthesis method provided by the invention has the advantages of simple method, easy operation, easy mass production, no pollution, low cost and the like.
  • the luminescent material of the present invention is an oxynitride, which has very stable properties and good temperature characteristics.
  • the luminescent material of the present invention has a very wide excitation spectrum range (200-500 nm), and the excitation effect is particularly good.
  • the preparation method of the luminescent material provided by the invention is simple and practical, non-polluting, easy to mass-produce, and easy to operate.
  • the white light LED prepared by the invention has high color rendering index, high luminous efficiency and wide color temperature range.
  • Figure 1 is the emission spectrum and excitation spectrum of Example 1.
  • the ordinate indicates the luminous intensity
  • the abscissa table Indicates the wavelength of the light.
  • Fig. 2 is an emission spectrum and an excitation spectrum of Example 9; in the figure, the ordinate indicates the luminescence intensity, and the abscissa indicates the luminescence wavelength.
  • Fig. 3 is an emission spectrum of a white LED produced by the embodiment 9.
  • the ordinate indicates the luminous flux
  • the abscissa indicates the illuminating wavelength.
  • Figure 4 is an emission spectrum of a white LED produced by using Example 3; in the figure, the ordinate indicates luminous flux, and the horizontal coordinate indicates luminous wavelength.
  • Fig. 5 is an emission spectrum and an excitation spectrum of Example 24.
  • the ordinate indicates the luminescence intensity
  • the abscissa indicates the luminescence wavelength.
  • Fig. 6 is an emission spectrum of a white LED produced by using Example 24 and another green phosphor; in the figure, the ordinate indicates the luminous flux, and the abscissa indicates the illuminating wavelength.
  • the oxynitride luminescent material of the invention can emit 500-750 nm yellow light or red light under the excitation of 200-500 nm light, and the chemical formula is: R y , wherein M is one or more of an alkali metal, an alkaline earth metal, a rare earth metal, a transition metal; X is one or more of Si, Ge, B, A1 and contains Si; Z is Al, One or more of Ga, In elements and Al; R is one or more of the luminescent center elements Eu, Ce, Tb, Yb, Sm, Pr, Dy; 0 ⁇ x ⁇ 1.0; 0 ⁇ y ⁇ 1.0.
  • M is one or more of the following: Li, Mg, Ca, Sr, Ba, Bi, Mn, Zn, La, Gd, Lu, Y;
  • M is one or more of the following: Li, Mg, Ca, Zn, Sr, Ba, Bi, Y, and at least Sr,
  • the content of the Sr element is greater than 0.8, A is Si; Z is Al; R is Eu, Ce or a combination thereof.
  • the light material was pulverized, washed with hydrochloric acid, and dried to obtain 100 g of the yellow luminescent material of the present invention.
  • Its emission spectrum and excitation spectrum are shown in Figure 1. It can be seen from Fig. 1 that the luminescent material has a broad emission spectrum, the full width at half maximum of the spectrum is about 130 nm, and the main peak of the emission is located at a yellow light region of 573 nm.
  • the excitation spectrum of the luminescent material is wide, from the ultraviolet region. Extending into the visible light region, especially the luminescent material can be effectively excited by ultraviolet light (300 - 420nm) and blue light (420 - 490 nm).
  • the luminous intensity is shown in Table 1. The luminescence intensity was close to that of the comparative example YAG: Ce.
  • Example 9 Preparation Example of Sro.goLio.osSis.ssAl sOo.isNe.gsiCeo.os Luminescent Material
  • the obtained luminescent material was pulverized, washed with hydrochloric acid, and dried to obtain 100 g of the yellow luminescent material of the present invention. Its emission spectrum and excitation spectrum are shown in Figure 2. It can be seen from Fig. 2 that the emission spectrum of the luminescent material is wide, the full width at half maximum of the spectrum is about 132 nm, and the main peak of the emission is located in the yellow region of 562 nm, and it can be seen that the excitation spectrum of the luminescent material is wide, from the ultraviolet region.
  • the luminescent material can be effectively excited by ultraviolet light (300 - 420 nm) and blue light (420 - 490 nm) at the same time, and the luminous intensity thereof is shown in Table 1.
  • the emission wavelength of the luminescent material is significantly blue-shifted, mainly due to the introduction of oxygen in the crystal lattice, resulting in weakening of the covalent bond, and improving the minimum energy level of the 5d orbital of the Ce ion, so that the light is emitted.
  • the energy is increased and the emission wavelength is shortened.
  • the intensity of the luminescent material is slightly lower than that of the YAG: Ce of the comparative example, a high-brightness white LED having a relatively high color temperature can be prepared because of its short emission wavelength.
  • the preparation process of the above embodiment is the same as that of Example 1 or Example 9, wherein a halide of Ce such as CeCl 3 or a nitrate such as Ce(N0 3 ) 3 or the like may be used, and the reaction flux used is Sr, Ca,
  • the luminescent intensity of the obtained luminescent material is shown in Table 1.
  • the maximum emission wavelength of these luminescent materials is mostly in the yellow light region, and can be excited by blue light and ultraviolet light, and white LEDs can be prepared instead of YAG phosphor powder.
  • Table 1 The chemical formula of Example 1-18 and its luminescent properties (excitation wavelength is 450 nm) EXAMPLES Chemical Formulae Emission Main Peak nm Relative Intensity %
  • Example 17 Manufacture of a white LED electric light source
  • a certain amount of the phosphor of the embodiment 9 of the present invention is weighed and uniformly dispersed in an epoxy resin, and the mixture obtained by the mixed defoaming treatment is coated on a chip of a commercially available blue LED (light emission wavelength of 450 nm). After drying at 15 CTC and 0.5 hours, the package is completed.
  • Example 18 Manufacture of a white LED electric light source
  • a certain amount of the phosphor of the third embodiment of the present invention was weighed and uniformly dispersed in an epoxy resin, and the mixture obtained by the mixed defoaming treatment was coated on a chip of a commercially available blue LED (light emission wavelength of 450 nm). After drying at 15 CTC and 0.5 hours, the package is completed.
  • Table 3 The chemical formula of 19-31 and its luminescent properties (excitation wavelength is 450 nm)
  • Example 26 Preparation Example of SrQ.gQ uSi sAlLQsOQ.QsNM ⁇ EiiQ.Qs Luminescent Material
  • the obtained powder is ground and then calcined at a high temperature for the same conditions to promote the development of crystal grains.
  • the obtained luminescent material was pulverized, washed with hydrochloric acid, and dried to obtain 100 g of the red luminescent material of the present invention. Its emission spectrum and excitation spectrum are shown in Figure 2. It can be seen from Fig. 2 that the emission spectrum of the luminescent material is wide, the full width at half maximum of the spectrum is about 133 nm, and the main emission peak is at 630 nm.
  • the luminescent material has a broad excitation spectrum extending from the ultraviolet region to the visible region, in particular, the luminescent material can be simultaneously ultraviolet (300 - 420 nm) and blue light (420 - 490 nm). Effective excitation, the luminous intensity is shown in Table 3.
  • the luminescent material has a broad emission spectrum and is a luminescence of Eu 2+ ions rather than a line luminescence of Eu 3+ ions. This indicates that the Eu 3+ ions in the raw material are reduced to Eu 2+ ions by the atmosphere in the furnace in the high temperature reaction.
  • the emission wavelength of the luminescent material is significantly blue-shifted, mainly due to the introduction of oxygen in the crystal lattice, resulting in weakening of the covalent bond, and improving the minimum energy level of the 5d orbital of the Eu ion, so that the light is emitted.
  • the energy is increased and the emission wavelength is shortened.
  • the preparation process of the above embodiment is similar to that of Example 26, wherein a nitride EuN of Eu or a halide of Eu such as EuCl 2 or a nitrate of Eu such as Eu (N0 3 ) 3 or the like may be used, and the reaction flux used is
  • the luminescence intensity of the obtained luminescent material is shown in Table 3 for the chloride or fluoride of Sr, Ca, B a , Li or the like.
  • the maximum emission wavelength of these phosphors is mostly in the red light region, and can be excited by blue light and ultraviolet light, so it can be combined with blue or ultraviolet LED chips to prepare white LEDs with high color rendering index.
  • a certain amount of the red phosphor of Example 26 of the present invention and the silicate Sr 2 Si0 4 : Eu 2+ green phosphor were weighed (other green phosphors such as SrSi 2 0 2 N 2 : Eu 2+ or p may also be used.

Description

说明书 一种氮氧化合物发光材料、 其制备方法以及由其制成的照明光源 技术领域
本发明涉及半导体领域,特别是涉及一种氮化合物发光材料、其制备方法以 及由其制成的照明光源。
背景技术
GaN基发光二极管 LED (Light-Emitting Diode)是一种被誉为 21世纪固态 照明的新型发光器件, 具有体积小、省电、寿命长、不含污染环境的汞、高效率、 低维修等优点, 可广泛用于各种照明设施上, 包括室内照明、 交通信号 /指示灯、 汽车尾灯 /前照灯、 户外用超大型屏幕、 显示屏和广告屏等, 有取代目前使用的 各式灯泡和荧光灯的趋势。这种新型的绿色光源必将成为新一代照明系统, 对节 能、环保、提高人们的生活质量等方面具有广泛而深远的意义。 白光 LED的制造 技术主要包括: (1)三种单色 LED (蓝、绿、红)的组合; (2)蓝光 LED+黄色荧光粉; (3)紫外 LED+红绿蓝三色荧光粉。 但是, 可被蓝光 LED有效激发的无机发光材料 很少。 目前, 主要以钇铝石榴石 YAG: Ce荧光材料与蓝光 LED结合通过补色原理 得到白光。但是, 由于 YAG发出的光色偏黄绿,只能得到色温较高的冷色调白光, 而且其显色指数有待于进一步提高。 为了获得不同色温的白光 (从冷色调到暖色 调)以及更高的显色指数, 需要添加绿色、 黄色或红色荧光粉。
目前, 能被蓝光 (420_480nm)激发的绿色荧光粉主要以掺杂两价铕的硫化物 为主。 如 (Ca, Sr, Ba) GaS4: Eu2+。 但是, 硫化物荧光粉的化学性和热稳定性很 差, 易与空气中的水份发生反应, 受热易分解, 而且在生产过程中有废气排出, 污染环境。 最近, 由 SiN4基本单元构成的氮化物作为荧光粉的基材受到了广泛 的关注。 由于较强的共价键性和较大的晶体场分裂, 该类化合物在稀土元素如二 价铕的掺杂下能在较长的波长发光, 如黄色、橙色和红色。通过进行对基质材料 的选择和对配位场或晶体场的设计等改变发光中心原子的周围环境,进而达到调 整发光性能和开发新型荧光粉的目的。 本发明报道了一种能够在紫外-蓝光的激 发下发射黄色光、红色光的氮氧化物荧光粉。 同时本发明也报道了用氮氧化物荧 光粉配合蓝光 LED所制备的白光 LED电光源。 发明内容
本发明针对上述领域的缺陷, 提供一种化学性质稳定、 发光性能优异, 能被 紫外 LED或蓝光 LED激发的白光 LED用氮氧化物的黄色、 红色发光材料; 其激 发波长在 200 - 500nm之间, 发光波长在 500 - 750 nm之间。
本发明的另一目的是提供一种制造该发光材料的方法, 该制造方法简单、 易于操作、 易于量产、 无污染、 成本低。 该制造方法可以制备高发光强度、 颗粒 均匀、 粒径在 ΙΟμπι以下的微细荧光粉。 本发明的再一目的是提供一种由该发光材料所制成的白光 LED照明光源。 一种氮氧化合物发光材料, 其化学式为: Mi—AM)具— Ry, 其中, M为碱金 属、 碱土金属、 稀土金属、 过渡金属中的一种或几种; A为 S i, Ge, B, A1中的 一种或者几种且包含 S i ; Z为 Al , Ga, In元素中的一种或者几种且包含 Al ; R 为发光中心元素 Eu, Ce, Tb, Yb, Sm, Pr, Dy 中一种或几种; 0 ≤ x < 0. 5 ; 0
< y < 1. 0。
优选地, M为下列物质中的一种或几种: Li, Mg, Ca, Sr, Ba, Bi , Mn, Zn, La, Gd, Lu , Y;
更优选, M为下列物质中的一种或几种: Li, Mg, Ca, Zn, Sr , Ba, Bi , Y, 且至少含有 Sr,
Sr元素的含量大于 0. 8, A 为 S i ; Z为 A1 ; R为 Eu 、 Ce或其组合。
优选: 0 ≤ x ≤ 0. 15 , 0 < y ≤ 0· 1。
更优选: 0≤χ ≤ 0. 1, 0. 05≤ y ≤0. 1。
上述氮氧化合物发光材料的制备方法, 包括如下步骤:
( 1) 用含 M的氧化物、 氮化物、 硝酸盐或碳酸盐, 含 A的氮化物或氧化物, 含 Z的氮化物或氧化物, 以及含 R元素的氮化物、氧化物或硝酸盐为原料, 研磨 混合均匀, 得到混合物;
(2) 将步骤 (1) 得到的混合物在惰性气体保护下用气压烧结法或固相反应 法进行高温焙烧, 得到焙烧产物;
(3) 将步骤 (2) 得到的焙烧产物再经粉碎、 除杂、 烘干、 分级, 即制得氮 氧化合物发光材料。
可选地, 所述气压烧结法中惰性气体为氮气, 氮气压力为 1-200个大气压。 可选地, 所述固相反应法中的惰性气体为常压氮气和氢气的混合气体, 氮气 和氢气的体积比例为 95: 5或者 90: 10或者 85: 15或者 80: 20, 流量为 0. 1 -
3 升 /分钟。
可选地, 所述高温焙烧的温度为 1200 - 1800°C, 焙烧时间为 0. 5 - 30 小时, 焙烧可以多次进行。
所述碳热还原氮化(是高温焙烧的一种)温度为 1200 - 1600°C, 时间为 0. 5 - 30 小时。
可选地, 所述步骤 (1 ) 中还添加有反应助熔剂, 所述助熔剂为含 M 的卤化 物或硼酸中的一种或几种。
可选地, 所述反应助熔剂的添加量为原料总重量的 0. 01 - 10%。
可选地, 所述除杂包括酸洗或水洗。
一种白光 LED照明光源, 其特征在于: 含有紫外或近紫外 LED和上述的氮氧 化合物发光材料。
一种白光 LED照明或显示光源, 其特征在于: 含有蓝光 LED和上述的氮氧化 合物发光材料。 本发明的技术效果如下:
本发明的氮氧化合物发光材料,可在 200-500 nm光线激发下发出 500_750nm 特别是发出 560nm以上的黄色光或者红色光。
本发明所采用的合成方法, 其原料采用 M金属氮化物外, 还可采用氧化物、 碳酸盐、硝酸盐等, 这些盐类只要在高温焙烧下可以分解成金属氧化物则都可以 成为制备上述发光材料的原料, 丰富了其原料的选择范围, 同时也降低了合成成 本, 而且盐类的性质更稳定, 在合成过程中不需要对原料进行特别的处理, 使反 应易于控制, 容易实现量产化。 M金属氮化物、 氧化物、 碳酸盐、 硝酸盐等与 A 元素以及 Y元素的氧化物、氮化物以及 R元素的氮化物或氧化物在高温焙烧下合 成本发明发光材料,在高温焙烧的过程中通入惰性保护气体, 通入保护气的目的 是(1)保护某些氮化物原料以及反应产物在高温下发生分解和(2 ) 起到还原气氛 的作用。 惰性气体常采用 N2, 或是采用 N2与 的混合气体, 可采用高压, 也可 采用常压。在高温焙烧前, 原料研磨混合时可加入溶剂乙醇或正己烷使原料混合 更均匀,焙烧前可加入助熔剂 M的卤化物或是硼酸。反应的后处理过程中需将多 余的反应杂质除去, 上述原料经过高温焙烧后, 杂质一般为 M或 /和 A或 /和 Y 或 /和 R元素的氧化物, 可采用酸洗或水洗除去, 其余的杂质则化为气体挥发了。 本发明合成的氮氧化合物发光材料可在 200 - 500 nm 光线激发下发出 500-750nm的黄色光或者红色光, 因此可以和其它发光材料如红色发光材料涂敷 在蓝光 LED芯片上制备出新型的白光 LED; 也可以和其它发光材料如蓝色、 绿 色发光材料涂敷在紫外或近紫外 LED芯片上制备出新型的白光 LED,能量转换高; 还可以和蓝光 LED、 紫外 LED或近紫外 LED相匹配, 或混合其他发光材料, 制备 彩色 LED。
目前白光 LED中使用的黄色荧光粉以掺杂 Ce3+的 YAG体系为主, 其特点是发 射峰较宽, 亮度高, 主要用来制备高色温 (〉 5000 K) 的白光 LED; 另外, YAG 体系的荧光粉的温度特性稍差,有些组成光衰严重。本发明合成的氮氧化物发光 材料具有与 YAG体系完全不同的化学结构式和晶体结构, 是一类全新的发光材 料。 掺杂 Ce3+的该化合物可以获得发射波长长于 YAG的黄色发光材料, 可以用来 制备低色温 (〈5000 K) 的白光 LED, 也可以通过组成的改变获得发射波长接近 YAG的黄色发光材料, 用来制备高色温的白光 LED; 掺杂 Eu2+的该化合物的发射 波长位于红光区域, 是红色发光材料, 通过与其他绿色荧光粉的组成制备高显色 的白光 LED。 另外, 由于含有氮元素, 本发明合成的化合物具有较强的共价化学 键和由 SiN4四面体单元构成的三维网络结构, 因此其温度特性较好。 通过改变 氮 /氧元素的比例, 形成一定范围的固溶体, 可以达到调控发射波长的目的, 使 其应用范围更加广泛。
本发明制备方法工艺简单, 易于实现量产的目的; 通过部分置换元素的方法 实现波长可调和发光强度的改善。本发明所提供的发光材料合成方法具有方法简 单、 易于操作、 易实现量产、 无污染、 成本低等优点。
本发明的特点是:
(1) 本发明的发光材料是氮氧化物, 性能非常稳定, 温度特性好。
(2) 本发明的发光材料的激发光谱范围非常宽 (200-500nm), 激发效果都特 别好。
(3) 本发明所提供的发光材料的制备方法简单实用、 无污染、 易量产、 易操 作。
(4) 本发明所制备的白光 LED显色指数高, 发光效率高, 色温范围宽。 附图说明
图 1 为实施例 1 的发射光谱和激发光谱; 图中纵坐标表示发光强度, 横坐标表 示发光波长。
图 2为实施例 9的发射光谱和激发光谱; 图中纵坐标表示发光强度, 横坐标表示 发光波长。
图 3为利用实施例 9制作的白光 LED的发射光谱; 图中纵坐标表示光通量, 横坐 标表示发光波长。
图 4为利用实施例 3制作的白光 LED的发射光谱; 图中纵坐标表示光通量, 横坐 标表示发光波长
图 5为实施例 24的发射光谱和激发光谱; 图中纵坐标表示发光强度, 横坐标表 示发光波长。
图 6为利用实施例 24和另一绿色荧光粉制作的白光 LED的发射光谱; 图中纵坐 标表示光通量, 横坐标表示发光波长。
具体实施方式
本发明的氮氧化合物发光材料, 可在 200-500 nm光线激发下发出 500_750nm 的黄色光或者红色光, 其化学式为:
Figure imgf000007_0001
Ry, 其中, M为碱金属、 碱 土金属、 稀土金属、 过渡金属中的一种或几种; X为 Si, Ge, B, A1中的一种或 者几种且包含 Si; Z为 Al, Ga, In元素中的一种或者几种且包含 Al; R为发光 中心元素 Eu, Ce, Tb, Yb, Sm, Pr, Dy 中一种或几种; 0 ≤ x < 1.0; 0 < y < 1.0。
优选地, M为下列物质中的一种或几种: Li, Mg, Ca, Sr, Ba, Bi, Mn, Zn, La, Gd, Lu, Y;
更优选, M为下列物质中的一种或几种: Li, Mg, Ca, Zn, Sr, Ba, Bi, Y, 且至少含有 Sr,
Sr元素的含量大于 0.8, A 为 Si; Z为 Al; R为 Eu 、 Ce或其组合。
优选: 0 ≤ x ≤ 0. 15, 0 < y ≤ 0· 1。
更优选: 0≤χ ≤ 0. 1, 0.05≤ y ≤0. 1。
实施例 1: Sr。9。Li。.。5Si4AlN7:Ce。Q5发光材料的制备实例
按上述组成称取 Sr3N2 (27.0746 克), Li3N (0. 1803 克), Si3N4 (57.6933 克), CeN (2.3798克)和 A1N (12.6719克), 在充满氩气的手套箱中混磨均匀 后, 装入氮化硼坩锅在气压炉中焙烧, 通入 0.3 MPa N2, 在 1700°C保温 4小时, 所得粉体经研磨后再以同样的条件再高温焙烧一次, 促进晶粒的发育。 所得发 光材料经过粉碎、 盐酸洗涤除杂、 烘干, 即得到本发明的黄色发光材料 100g。 其发射光谱和激发光谱见图 1。 从图 1 中可以发现该发光材料的发射光谱较宽, 光谱的半高宽约为 130nm, 发射主峰位于 573 nm的黄光区域; 而且可以看到该 发光材料的激发谱很宽, 从紫外区一直延伸到可见光区, 特别是该发光材料能 同时被紫外光(300 - 420nm)和蓝光(420 - 490 nm)有效激发. 其发光强度见 表 1。 其发光强度均接近于比较例的 YAG : Ce。
实施例 9: Sro.goLio.osSis.ssAl sOo.isNe.gsiCeo.os发光材料的制备实例
按上述组成称取 Sr3N2 (27. 0204 克), Li3N (0. 1799 克), Si3N4 (55. 4185 克), Ce203 (2. 5293克), A1203 (1. 5731克)和 A1N (13. 2788克), 在充满氩气的 手套箱中混磨均匀后, 装入氮化硼坩锅在气压炉中焙烧, 通入 0. 3 MPa N2, 以 0. lgSrF2为助熔剂, 在 170CTC保温 4小时, 所得粉体经研磨后再以同样的条 件再高温焙烧一次, 促进晶粒的发育。 所得发光材料经过粉碎、 盐酸洗涤除杂、 烘干, 即得到本发明的黄色发光材料 100g。 其发射光谱和激发光谱见图 2。 从 图 2中可以发现该发光材料的发射光谱较宽, 光谱的半高宽约为 132nm, 发射主 峰位于 562 nm的黄光区域,而且可以看到该发光材料的激发谱很宽, 从紫外区一 直延伸到可见光区, 特别是该发光材料能同时被紫外光(300 - 420nm)和蓝光 (420 - 490 nm) 有效激发, 其发光强度见表 1。 与实施例 1相比, 该发光材料 的发射波长发生明显的蓝移, 主要是由于在晶格中引入氧, 导致共价键性弱化, 提高了 Ce离子 5d轨道最低能量水平,使发射光的能量随之提高,发射波长变短。 虽然该发光材料的强度稍低于比较例的 YAG : Ce,由于其发光波长较短, 可以制备 色温比较高的高亮度白光 LED。
实施例 2-8以及 10-16:
以上实施例的制备过程与实施例 1或者实施例 9相同, 其中也可以使用 Ce 的卤化物如 CeCl3或者硝酸盐如 Ce (N03) 3等,所使用的反应助熔剂是 Sr, Ca, Ba, Li 等的氯化物或氟化物, 得到的发光材料发光强度见表 1。 这些发光材料的最大发 射波长大都处于黄色光区域, 而且能够被蓝光和紫外光激发, 可以取代 YAG荧光 粉制备白光 LED。 表 1 实施例 1-18的化学式及其发光特性 (激发波长为 450 nm) 实施例 化学式 发射主峰 nm 相对强度 %
1 Sr0.9oLio.o5Si4AlN7:Ceo.o5 573 100
2 Sro.8oLio.10S14AIN7 :Ceo. io 576 94
3 Sro.85Cao.05 Li0.o5Si4 AIN?: Ce0.o5 580 85
4 Sro.85Bao.05 Li0.05Si4AlN7:Ce0.05 568 93
5 Sro.80Bao.10 Li0.05Si4AlN7:Ce0.05 565 90
6 Sro.80 Cao.05Bao.05 Li0.05Si4AlN7:Ce0.05 574 95
7 Sro.85Zno.05 Li0.05Si4AlN7:Ce0.05 573 97
8 Sro.90Lio.05Si3.90Al 1.10O0.10N6.90: Ceo.o5 567 101
9 Sro.9oLi0.o5Si3.85 li.i50o.l5N6.85:Ce0.o5 562 84
10 Sro.9oLio.o5Si3.95Geo.05 AIN7: Ceo.os 568 90
11 Sro.9oLio.o5Si3.95Bo.o5AlN7:Ceo.o5 568 103
12 Sro.85Bao.o5Lio.o5Si3.95Bo.o5AlN7:Ceo.o5 566 100
13 Sro.90Lio.05Si4Alo.95Gao.05N7: Ceo.os 569 83
14 Sro.85Mgo.05 Lio.o5Si4AlN7:Ce0.o5 574 90
15 Sro.80Bio.05 Li0.1 oSi4 AIN7 :Ce0.o5 576 98
16 Sro.80Yo.05 Li0.10Si4AlN7:Ce0.05 565 91 比较例 Y2.95AI5O12: Ceo.os 557 110 表 2 白光 LED实施例的光学参数
Figure imgf000009_0001
实施例 17 白光 LED电光源的制造
称取一定量的本发明实施例 9的荧光粉, 均匀分散在环氧树脂中, 经混合脱 泡处理后得到的混合物涂敷在市售的蓝光 LED (发光波长为 450 nm)的芯片上, 在 经 15CTC和 0. 5小时的烘干后, 即完成封装. 蓝光 LED发射的蓝光和荧光粉发射 的黄光和红光混合后, 产生色坐标为 X = 0. 3172, y = 0. 3173,显色指数为 Ra = 75 , 对应于色温 T = 6340K的冷白光. 实施例 18 白光 LED电光源的制造
称取一定量的本发明实施例 3的荧光粉, 均匀分散在环氧树脂中, 经混合脱 泡处理后得到的混合物涂敷在市售的蓝光 LED (发光波长为 450 nm)的芯片上, 在 经 15CTC和 0. 5小时的烘干后, 即完成封装. 蓝光 LED发射的蓝光和荧光粉发射 的黄光和红光混合后, 产生色坐标为 X = 0. 4332, y = 0. 3912,显色指数为 Ra = 64, 对应于色温 T = 2950K的暖白光. 表 3 实施 19-31 的化学式及其发光特性 (激发波长为 450 nm)
Figure imgf000010_0001
实施例 26: SrQ.gQ uSi sAlLQsOQ.QsNM^EiiQ.Qs发光材料的制备实例
按上述组成称取 Sr3N2 (26. 9283克), Li3N (0. 3586克), Si (56. 6642克), Eu203 (2. 7128克), A1203 (0. 5226克)和 A1N (12. 8135克), 在充满氩气的手套箱 中混磨均匀后, 装入氮化硼坩锅在气压炉中焙烧, 通入 0. 5 MPa N2, 以 0. lgSrF2 为助熔剂, 在 170CTC保温 4小时, 所得粉体经研磨后再以同样的条件再高温焙 烧一次, 促进晶粒的发育。 所得发光材料经过粉碎、 盐酸洗涤除杂、 烘干, 即得 到本发明的红色发光材料 100g。 其发射光谱和激发光谱见图 2。 从图 2中可以发 现该发光材料的发射光谱较宽, 光谱的半高宽约为 133 nm, 发射主峰位于 630 nm 的红光区域,而且可以看到该发光材料的激发谱很宽, 从紫外区一直延伸到可见 光区, 特别是该发光材料能同时被紫外光(300 - 420nm)和蓝光(420 - 490 nm) 有效激发, 其发光强度见表 3。 该发光材料的发射光谱较宽, 是 Eu2+离子的发光而 非 Eu3+离子的线谱发光。这说明原料中的 Eu3+离子在高温反应中被炉内的气氛还原 为 Eu2+离子。 与实施例 19相比, 该发光材料的发射波长发生明显的蓝移, 主要是 由于在晶格中引入氧, 导致共价键性弱化, 提高了 Eu离子 5d轨道最低能量水平, 使发射光的能量随之提高, 发射波长变短。
实施例 19-25, 27-31:
上述实施例的制备过程与实施例 26相似, 其中也可以使用 Eu的氮化物 EuN 或者 Eu的卤化物如 EuCl2或者 Eu的硝酸盐如 Eu (N03) 3等, 所使用的反应助熔剂 是 Sr,Ca,Ba,Li等的氯化物或氟化物, 得到的发光材料发光强度见表 3。 这些荧 光粉的最大发射波长大都处于红色光区域, 而且能够被蓝光和紫外光激发, 因此 可以和蓝色或者紫外 LED芯片组合用来制备高显色指数的白光 LED。
表 4 白光 LED实施例的光学参数
Figure imgf000011_0001
实施例 32 高显色白光 LED电光源的制造
称取一定量的本发明实施例 26的红色荧光粉以及硅酸盐 Sr2Si04 : Eu2+绿色 荧光粉 (也可以使用其他绿色荧光粉如 SrSi202N2 : Eu2+或者 p-sial0n : EU 2+), 均匀 分散在环氧树脂中, 经混合脱泡处理后得到的混合物涂敷在市售的蓝光 LED (发 光波长为 450 nm)的芯片上, 在经 15CTC和 0. 5小时的烘干后, 即完成封装. 蓝 光 LED发射的蓝光和荧光粉发射的红光和绿光混合后, 产生色坐标为 X = 0. 4632, y = 0. 4184,显色指数为 Ra = 86, 对应于色温 T = 2800K的暖白光. 上述实施例在于使本领域技术人员更好地理解本发明。应当指出, 除本发明 所附权利要求做出的限定之外, 本发明并不局限于说明书中所叙述的具体实施 例。

Claims

权利要求书
1、 一种氮氧化合物发光材料, 其化学式为: Μ^Α^Ζ^ΟΛ-: Ry, 其中, M为碱 金属、 碱土金属、 稀土金属、 过渡金属中的一种或几种; A为 Si, Ge, B, A1中 的一种或者几种且包含 Si ; Z为 Al, Ga, In元素中的一种或者几种且包含 Al ; R为发光中心元素 Eu, Ce, Tb, Yb, Sm, Pr, Dy 中一种或几种; 0≤ x < 0. 5; 0 < y < 1· 0。
2、 权利要求 1所述的氮氧化合物发光材料, 其中 Μ为下列物质中的一种或 几种: Li , Mg, Ca, Sr, Ba, Bi, Mn, Zn, La, Gd, Lu, Y。
3、 权利要求 2所述的氮氧化合物发光材料, 其中 M为下列物质中的一种或 几种: Li, Mg, Ca, Sr, Ba, Bi, Zn, Y, 且至少含有 Sr。
4、权利要求 3所述的氮氧化合物发光材料, 其中 Sr元素的含量大于 0. 8, A 为 Si, Z为 Al, R为 Eu 、 Ce或其组合。
5、 权利要求 1-4任一所述的氮氧化合物发光材料, 其中 0≤ X≤ 0. 15, 0 < y≤ 0· 1。
6、权利要求 5所述的氮氧化合物发光材料,其中: 0≤x≤ 0. 1, 0. 05≤ y≤0. 1。
7、 权利要求 1-6任一所述的氮氧化合物发光材料的制备方法, 包括如下步 骤:
(1) 用含 M的氧化物、 氮化物、 硝酸盐或碳酸盐, 含 X的氮化物或氧化物, 含 Z的氮化物或氧化物, 以及含 R元素的氮化物、氧化物或硝酸盐为原料, 研磨 混合均匀, 得到混合物;
(2) 将步骤 (1) 得到的混合物在惰性气体保护下用气压烧结法或固相反应 法进行高温焙烧, 得到焙烧产物;
(3) 将步骤 (2) 得到的焙烧产物再经粉碎、 除杂、 烘干、 分级, 即制得氮 氧化合物发光材料。
8、 权利要求 7所述的制备方法, 所述气压烧结法中惰性气体为氮气, 氮气 压力为 1-200个大气压,所述固相反应法中的惰性气体为常压氮气和氢气的混合 气体,氮气和氢气的体积比例为 95: 5或者 90: 10或者 85: 15或者 80: 20, 流 量为 0. 1 - 3 升 /分钟。
9、权利要求 7所述的制备方法,所述高温焙烧的温度为 1200 - 1800°C, 焙 烧时间为 0. 5 - 30 小时, 焙烧可以多次进行。
10、 权利要求 9所述的制备方法, 所述高温焙烧采用碳热还原氮化, 温度为 1200 - 1600°C。
11、 权利要求 7所述的制备方法, 所述步骤 (1 ) 中还添加有反应助熔剂, 所述助熔剂为含 M的卤化物或硼酸中的一种或几种。
12, 权利要求 11 所述的制备方法, 所述反应助熔剂的添加量为原料总重量 的 0. 01 - 10%。
13、 权利要求 7所述的制备方法, 所述除杂为酸洗或水洗。
14、 一种白光 LED照明光源, 其特征在于: 含有紫外或近紫外 LED和权利要 求 1-6所述的氮氧化合物发光材料,或者含有蓝光 LED和上权利要求 1-6所述的 氮氧化合物发光材料。
PCT/CN2011/071210 2010-12-28 2011-02-23 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源 WO2012088788A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137002601A KR101507250B1 (ko) 2010-12-28 2011-02-23 옥시나이트라이드 발광재료, 그 제조방법 및 이로부터 제조된 조명광원
DE112011102173T DE112011102173T5 (de) 2010-12-28 2011-02-23 Oxynitrid-Leuchtstoff, dessen Herstellungsverfahren und die mit derartigem Leuchtstoff hergestellte Lichtquelle zur Beleuchtung
JP2013525117A JP5752249B2 (ja) 2010-12-28 2011-02-23 酸窒化物発光材料及びそれによって製造された白色led照明光源
US13/813,400 US20130127333A1 (en) 2010-12-28 2011-02-23 Oxynitride luminescent material, preparation method thereof and illumination light source made from such material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010611621.5A CN102559177B (zh) 2010-12-28 2010-12-28 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源
CN201010611621.5 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012088788A1 true WO2012088788A1 (zh) 2012-07-05

Family

ID=46382257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071210 WO2012088788A1 (zh) 2010-12-28 2011-02-23 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源

Country Status (5)

Country Link
JP (1) JP5752249B2 (zh)
KR (1) KR101507250B1 (zh)
CN (1) CN102559177B (zh)
DE (1) DE112011102173T5 (zh)
WO (1) WO2012088788A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175385A1 (ja) * 2013-04-25 2014-10-30 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
JP2016511731A (ja) * 2012-12-21 2016-04-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 発光体
CN113651531A (zh) * 2021-09-22 2021-11-16 烟台希尔德材料科技有限公司 一种第二相玻璃增强的荧光体化合物及其制备方法和组合物
CN116694322A (zh) * 2023-04-25 2023-09-05 英特美光电(苏州)有限公司 一种红色荧光粉及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567234B (zh) * 2013-04-19 2017-12-22 四川新力光源股份有限公司 氮氧化物发光材料及其制备方法和应用、包含该氮氧化物的荧光粉以及由其制成的led光源
KR102075989B1 (ko) * 2013-06-20 2020-02-11 삼성전자주식회사 적색 형광체, 백색 발광장치, 디스플레이 장치 및 조명장치
CN103333684A (zh) * 2013-06-27 2013-10-02 彩虹集团公司 一种氮化物红色荧光粉及其制备方法
CN103421507B (zh) * 2013-09-05 2014-11-26 中国地质大学(北京) 一种氮化镁基六铝酸镧荧光材料及其制备方法
CN103881705B (zh) * 2014-03-26 2016-01-20 吉林大学 铈、铽或铕共掺激活的硅铝酸盐蓝绿色荧光粉及其制备方法
CN104194783A (zh) * 2014-09-16 2014-12-10 中国科学院上海硅酸盐研究所 铋离子掺杂的7Al2O3·12CaO发光材料及其制备方法
KR102458539B1 (ko) * 2014-11-14 2022-10-25 루미리즈 홀딩 비.브이. 나비넥타이 형상의 a2n6 구성 요소를 포함하는 led 인광체
WO2016177890A1 (de) 2015-05-07 2016-11-10 Osram Opto Semiconductors Gmbh Leuchtstoff
CN105400513A (zh) * 2015-07-21 2016-03-16 杭州萤鹤光电材料有限公司 一种红色荧光粉及其制备方法
CN105018080B (zh) * 2015-07-23 2017-04-05 北京宇极科技发展有限公司 一种高光效荧光粉的制备方法
US11851596B2 (en) 2016-08-12 2023-12-26 Osram Oled Gmbh Lighting device
JP6944516B2 (ja) 2016-08-12 2021-10-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 照明装置
US10711192B2 (en) 2016-08-12 2020-07-14 Osram Oled Gmbh Lighting device
US10644206B2 (en) 2016-08-12 2020-05-05 Osram Oled Gmbh Lighting device
DE102016121692A1 (de) 2016-08-12 2018-02-15 Osram Gmbh Leuchtstoff und Verfahren zur Herstellung eines Leuchtstoffs
JP7050774B2 (ja) 2016-11-11 2022-04-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 蛍光体、照明装置および照明装置の使用
US10519371B2 (en) 2016-11-11 2019-12-31 Osram Opto Semiconductors Gmbh Phosphor, illumination device and use of an illumination device
KR102365962B1 (ko) * 2017-03-20 2022-02-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 형광체, 이를 포함하는 발광 소자 패키지 및 조명 장치
DE112018004067A5 (de) * 2017-08-10 2020-04-23 Osram Oled Gmbh Dimmbare Lichtquelle
DE102018205464A1 (de) * 2017-11-10 2019-05-16 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung und verwendung einer beleuchtungsvorrichtung
JP7430182B2 (ja) * 2019-06-26 2024-02-09 デンカ株式会社 蛍光体、蛍光体の製造方法、発光素子、発光装置および画像表示装置
CN111218280A (zh) * 2020-01-15 2020-06-02 厦门科煜光电有限公司 一种新型硅氮化合物发光材料及其制备方法
CN114163999B (zh) * 2021-12-10 2023-07-21 中国科学院江西稀土研究院 一种氮化物荧光粉及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168643A1 (en) * 2001-06-07 2003-09-11 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
CN101117576A (zh) * 2006-07-31 2008-02-06 北京中村宇极科技有限公司 一种氮氧化合物发光材料及其所制成的照明或显示光源
CN101671562A (zh) * 2007-07-02 2010-03-17 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用
US20100079058A1 (en) * 2005-06-30 2010-04-01 Koninklijke Philips Electronics, N.V. Illumination system comprising a yellow green-emitting luminescent material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930393A4 (en) * 2005-09-27 2010-11-03 Dowa Electronics Materials Co FLUORESCENT, MANUFACTURING METHOD AND LIGHTING DEVICE THEREOF
JP4932248B2 (ja) * 2005-12-21 2012-05-16 Necライティング株式会社 黄色発光蛍光体、それを用いた白色発光素子、およびそれを用いた照明装置
JP4228012B2 (ja) * 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
RU2459855C2 (ru) * 2007-02-06 2012-08-27 Конинклейке Филипс Электроникс Н.В. Люминесцентные материалы красного свечения
EP2163595B1 (en) 2007-05-22 2018-07-11 National Institute for Materials Science Fluorescent substance, method for producing the same and light/emitting device using the same
CN101157854B (zh) * 2007-07-02 2010-10-13 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用
EP2163593A1 (en) * 2008-09-15 2010-03-17 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Production of nitride-based phosphors
KR101565988B1 (ko) * 2009-10-23 2015-11-05 삼성전자주식회사 적색형광체, 그 제조방법, 이를 이용한 발광소자 패키지, 조명장치
JP2012046625A (ja) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp 蛍光体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168643A1 (en) * 2001-06-07 2003-09-11 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
US20100079058A1 (en) * 2005-06-30 2010-04-01 Koninklijke Philips Electronics, N.V. Illumination system comprising a yellow green-emitting luminescent material
CN101117576A (zh) * 2006-07-31 2008-02-06 北京中村宇极科技有限公司 一种氮氧化合物发光材料及其所制成的照明或显示光源
CN101671562A (zh) * 2007-07-02 2010-03-17 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511731A (ja) * 2012-12-21 2016-04-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 発光体
WO2014175385A1 (ja) * 2013-04-25 2014-10-30 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
JP6040500B2 (ja) * 2013-04-25 2016-12-07 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
JPWO2014175385A1 (ja) * 2013-04-25 2017-02-23 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
CN113651531A (zh) * 2021-09-22 2021-11-16 烟台希尔德材料科技有限公司 一种第二相玻璃增强的荧光体化合物及其制备方法和组合物
CN113651531B (zh) * 2021-09-22 2022-11-22 烟台希尔德材料科技有限公司 一种第二相玻璃增强的荧光体化合物及其制备方法和组合物
CN116694322A (zh) * 2023-04-25 2023-09-05 英特美光电(苏州)有限公司 一种红色荧光粉及其制备方法
CN116694322B (zh) * 2023-04-25 2024-03-12 英特美光电(苏州)有限公司 一种红色荧光粉及其制备方法

Also Published As

Publication number Publication date
CN102559177A (zh) 2012-07-11
CN102559177B (zh) 2014-09-03
KR20130048237A (ko) 2013-05-09
JP5752249B2 (ja) 2015-07-22
JP2013539490A (ja) 2013-10-24
KR101507250B1 (ko) 2015-03-30
DE112011102173T5 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
WO2012088788A1 (zh) 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源
CN101157854B (zh) 一种氮氧化合物发光材料、其制备方法及其应用
JP4617323B2 (ja) 新しい組成の黄色発光Ce3+賦活シリケート系黄色蛍光体、その製造方法及び前記蛍光体を包含する白色発光ダイオード
CN100572498C (zh) 一种氮氧化合物发光材料及其制法以及由其制成的照明或显示光源
CN101671562B (zh) 一种氮氧化合物发光材料、其制备方法及其应用
TW200307033A (en) A phosphor for white LED and a white LED
US20130127333A1 (en) Oxynitride luminescent material, preparation method thereof and illumination light source made from such material
CN113185977B (zh) 一种铕掺杂的超宽带红色荧光材料及其制备方法和应用
CN112457848B (zh) 一种窄带蓝光荧光粉及其制备方法与应用
CN102391861B (zh) 一种氮化合物发光材料及其制法以及由其制成的照明光源
KR100891020B1 (ko) 새로운 조성의 황색 발광 Ce3+부활 칼슘 실리케이트 황색형광체 및 그 제조방법
JP5752257B2 (ja) 窒素化合物発光材料及びそれによって製造された白色led照明光源
CN112480924B (zh) 镓酸盐红光荧光材料及制备方法和白光led发光装置
CN101899304B (zh) 一种掺铕的锶铝硅系氮氧化物复合荧光粉及其制备方法
WO2016127843A1 (zh) 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN101760191B (zh) Led用高亮度硅酸钡基蓝绿色荧光粉及其高温还原制备方法
CN111607397A (zh) 一种Eu2+-Eu3+共掺杂硅酸盐荧光粉及其制备方法和应用
CN115340869B (zh) 橙色发光材料及其制备方法、白光led
CN105778904A (zh) 一种铝镓酸盐基荧光材料及其制备方法
CN106635015B (zh) 一种具有石榴石结构的氮氧化物荧光粉及其制备方法和应用
CN108841383B (zh) 具有高发光效率的蓝色钠铷镁磷酸盐荧光材料及其制备方法和应用
CN110746968A (zh) 一种在紫外光激发下发暖白光的荧光粉及其制备方法
CN115261017B (zh) 一种能够被紫光激发的蓝光发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137002601

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13813400

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011102173

Country of ref document: DE

Ref document number: 1120111021739

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013525117

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11853957

Country of ref document: EP

Kind code of ref document: A1