WO2009018511A2 - Alpha7 nachr agonists for treating or preventing metabolic disorders - Google Patents

Alpha7 nachr agonists for treating or preventing metabolic disorders Download PDF

Info

Publication number
WO2009018511A2
WO2009018511A2 PCT/US2008/071893 US2008071893W WO2009018511A2 WO 2009018511 A2 WO2009018511 A2 WO 2009018511A2 US 2008071893 W US2008071893 W US 2008071893W WO 2009018511 A2 WO2009018511 A2 WO 2009018511A2
Authority
WO
WIPO (PCT)
Prior art keywords
azabicyclo
pyridinyl
methyl
oct
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2008/071893
Other languages
English (en)
French (fr)
Other versions
WO2009018511A3 (en
Inventor
Merouane Bencherif
Mario B. Marrero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georgia Health Sciences University
Gyre Therapeutics Inc
Original Assignee
Targacept Inc
Georgia Health Sciences University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39945177&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009018511(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP08782589A priority Critical patent/EP2185152A2/en
Priority to NZ582828A priority patent/NZ582828A/en
Priority to US12/674,327 priority patent/US20110124678A1/en
Priority to MX2010001293A priority patent/MX2010001293A/es
Priority to BRPI0814889A priority patent/BRPI0814889A2/pt
Priority to JP2010520219A priority patent/JP2010535252A/ja
Priority to CA2694510A priority patent/CA2694510A1/en
Priority to CN200880101593A priority patent/CN101868237A/zh
Application filed by Targacept Inc, Georgia Health Sciences University filed Critical Targacept Inc
Priority to AU2008283813A priority patent/AU2008283813A1/en
Publication of WO2009018511A2 publication Critical patent/WO2009018511A2/en
Publication of WO2009018511A3 publication Critical patent/WO2009018511A3/en
Priority to NO20100077A priority patent/NO20100077L/no
Priority to ZA2010/00719A priority patent/ZA201000719B/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/26Psychostimulants, e.g. nicotine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention includes methods, uses, and selective ⁇ 7 nAChR agonist compounds for treating or preventing metabolic disorders.
  • Metabolic syndrome is a combination of medical disorders that increase the risk for cardiovascular disease and diabetes. Metabolic syndrome affects as much as 25% of the US population and is known by various other names such as (metabolic) syndrome X, insulin resistance syndrome, or Reaven's syndrome.
  • a patient diagnosed with metabolic syndrome typical exhibits three or more symptoms selected from the following group of five symptoms: (1 ) abdominal obesity; (2) hypertriglyceridemia; (3) low high-density lipoprotein cholesterol (low HDL); (4) high blood pressure; and (5) elevated fasting glucose, which may be in the range characteristic of Type 2 diabetes.
  • Symptoms and features include diabetes mellitus type 2, insulin resistance, high blood pressure, fat deposits mainly around the waist, decreased HDL, elevated triglycerides, and elevated uric acid levels.
  • Primary clinical problems are obesity and the high incidence of diabetes, a condition secondary to the insulin resistant state caused by excess adiposity.
  • Insulin resistance in skeletal muscle, liver and adipose tissue impedes glucose disposal and results in the release of free fatty acids and the characteristic triglyceride dyslipidemia associated with the metabolic syndrome. Elevations in post-prandial and ultimately fasting glucose levels result in compensatory hyperinsulinemia, a condition which causes ⁇ -cell hypertrophy and eventual failure of the Islets and frank type 2 diabetes.
  • Different quantitative inclusion criteria for metabolic syndrome have been proposed by the National Diabetes Federation, the World Health Organization, the European Group for the Study of Insulin Resistance (1999) and the National Cholesterol Education Program Adult Treatment Panel III (2001 ).
  • Patients with metabolic syndrome, whether or not they have or develop overt diabetes mellitus have an increased risk of developing the macrovascular and microvascular complications that occur with type 2 diabetics, such as atherosclerosis and coronary heart disease.
  • statins otherwise referred to as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are potent inhibitors of cholesterol synthesis that are extensively used in the treatment of hypercholesterolemia.
  • HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A
  • 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation ofRho GTPase/ p21 signaling pathway: Implications for diabetic nephropathy, Proc Natl Acad Sci U S A 99: 8301-8305, 2002; de Fiebre CM, Meyer EM, Henry JC, Muraskin Sl, Kem WR and Papke RL. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)- dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic ⁇ 7/125l- ⁇ - bungarotoxin receptor subtypes, MoI. Pharmacol.
  • Nicotinic acetylcholine receptor ⁇ 7 subunit is an essential regulator of inflammation, Nature, 421 , 384- 387 (2003); de Jonge, W.J. & Ulloa, L., The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation, British J. Pharmacol., 151 , 915-929 (2007);
  • Nicotine withdrawal increases body weight, neuropeptide Y and Agouti- related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice, Neurosci. Lett., 411 , 72-76 (2007); Asante-Appiah, E. & Kennedy, B.P., Protein tyrosine phosphatases: the quest for negative regulators of insulin action, Am. J. Physiol. Endocrinol. Metabol. 284, E663-E670 (2003); Elchebly, M.
  • One aspect of the present invention includes a method for treating or preventing metabolic disorders comprising the administration of a selective ⁇ 7 nAChR agonist.
  • Another aspect of the present invention includes a method for treating or preventing drug-induced central nervous system disorders comprising the administration of a selective ⁇ 7 nAChR agonist.
  • the ⁇ 7 nAChR agonist is Compound A, Compound B, or Compound C, or a pharmaceutically acceptable salt thereof. In one embodiment, the ⁇ 7 nAChR agonist is Compound C or a pharmaceutically acceptable salt thereof.
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • the hyperglycemia is a result of statin therapy.
  • the drug-induced central nervous system disorder is a result of statin therapy.
  • One aspect of the present invention is a method for treating or preventing a metabolic disorder comprising the administration of
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • a daily dose is from about 0.001 mg/kg to about 3.0 mg/kg.
  • One aspect of the present invention is use of a selective ⁇ 7 nAChR agonist in the manufacture of a medicament for treating or preventing metabolic disorders.
  • Another aspect is use of a selective ⁇ 7 nAChR agonist in the manufacture of a medicament for treating or preventing drug-induced central nervous system disorders.
  • the ⁇ 7 nAChR agonist is Compound A, Compound B, or Compound C, or a pharmaceutically acceptable salt thereof. In one embodiment, the ⁇ 7 nAChR agonist is Compound C or a pharmaceutically acceptable salt thereof.
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • the hyperglycemia is a result of statin therapy.
  • the drug-induced central nervous system disorder is a result of statin therapy.
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • a daily dose is from about 0.001 mg/kg to about 3.0 mg/kg.
  • Another aspect of the present invention is a selective ⁇ 7 nAChR agonist compound for use in treating or preventing metabolic disorders.
  • Another aspect of the present invention is a selective ⁇ 7 nAChR agonist compound for use in treating or preventing drug-induced central nervous system disorders.
  • the ⁇ 7 nAChR agonist is Compound A, Compound B, or
  • the ⁇ 7 nAChR agonist is Compound C or a pharmaceutically acceptable salt thereof.
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • the hyperglycemia is a result of statin therapy.
  • the drug-induced central nervous system disorder is a result of statin therapy.
  • Another aspect of the present invention is a selective ⁇ 7 nAChR agonist compound
  • the metabolic disorder is one or more of type I diabetes mellitus, type Il diabetes mellitus, metabolic syndrome, atherosclerosis, obesity, and hyperglycemia.
  • a daily dose is from about 0.001 mg/kg to about 3.0 mg/kg.
  • Figure 1 is a graphic representation showing the effects of Compound A on body weight in obese db/db mice.
  • Figure 2 is a graphic representation showing the effects of Compound A on plasma glucose in obese db/db mice.
  • Figure 3 is a graphic representation showing the effects of Compound A on food consumption in obese db/db mice.
  • Figure 4 is a graphic representation showing the effects of Compound A on body weight in obese db/db mice.
  • Figure 5 is a graphic representation showing the effects of Compound A on glucose levels in obese db/db mice.
  • Figure 6 is a graphic representation showing the partial inhibition of the effects of Compound A on food consumption in obese db/db mice of the JAK2 tyrosine phosphorylation inhibitor AG-490.
  • AG-490 a known inhibitor of JAK2 tyrosine phosphorylation, partially inhibits effects of Compound A.
  • Figures 7A and 7B are graphic representations showing the effects of JAK2 loss-of- function on multiple low dose (MLDS) STZ-induced diabetes (Fasting Blood Glucose) in mice in the presence or absence of Compound A.
  • Figures 8A and 8B are graphic representations showing the effects of JAK2 loss-of- function on multiple low dose (MLDS) STZ-induced increase in HbAIc in mice in the presence or absence of Compound A.
  • Figures 9A and 9B are graphic representations showing the effects of JAK2 loss-of- function on multiple low dose (MLDS) STZ-induced decrease in plasma insulin in mice in the presence or absence of Compound A.
  • MLDS multiple low dose
  • FIGS 10A and 10B are graphic representations showing the effects of JAK2 loss- of-function on multiple low dose (MLDS) STZ-induced increase in plasma TNF ⁇ in mice in the presence or absence of Compound A.
  • MLDS multiple low dose
  • Figure 11 is a graphic representation showing the effects of Compound B on food consumption in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as food consumed in grams/day. Fat mice show a significant increase in food consumption (*P ⁇ 0.01) which was significantly inhibited by Compound B treatment (+P ⁇ 0.01).
  • Figure 12 is a graphic representation showing the effects of Compound B on body mass in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as their body mass in grams. Fat mice show a significant increase in body mass ( * P ⁇ 0.01) which was significantly inhibited by Compound B (+P ⁇ 0.01).
  • Figure 13 is a graphic representation showing the effects of Compound B on plasma blood glucose (BG) in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as mg/dL. Fat mice show a significant increase in BG (*P ⁇ 0.01) which was significantly inhibited by Compound B treatment (+P ⁇ 0.01).
  • Figure 14 is a graphic representation showing the effects of Compound B on plasma triglycerides (TG) in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as mg/dL. Fat mice show a significant increase in plasma TG (*P ⁇ 0.01) which was significantly inhibited by Compound B treatment (+P ⁇ 0.01 ).
  • Figure 15 is a graphic representation showing the effects of Compound B on plasma glycosylated hemoglobin (Hbiac) in db/db mice. Results represent the mean +/- SEM of five treated mice and are expressed as %. Fat mice show a significant increase in plasma HbAIc ( * P ⁇ 0.01) which was significantly inhibited by Compound B treatment (+P ⁇ 0.01).
  • Figure 16 is a graphic representation showing the effects of Compound B on plasma
  • TNF ⁇ in db/db mice results represent the mean +/- SEM of five treated mice and are expressed as pg/ml. Fat mice show a significant increase in TNF ⁇ (*P ⁇ 0.01) which was significantly inhibited by Compound B treatment (+P ⁇ 0.01).
  • Figure 17 is a graphic representation showing the effects of Compound B on the Glucose Tolerance Test (GTT) in db/db mice PTP- 1 B WT mice. Results represent the mean +/- SEM of four treated mice and are expressed as mg/dL. Fat mice show a significant increase in glucose levels(*P ⁇ 0.01) and a significant effect with Compound B treatment (+P ⁇ 0.01 ).
  • Figure 18 is a graphic representation of the effects of simvastatin, referred generally as "statin," and Compound A on body mass in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as their body mass in grams. Fat mice show a significant increase in body mass (*P ⁇ 0.01 ) which was significantly inhibited by Compound A (+P ⁇ 0.01). Simvastatin alone did not significantly inhibit the increase in body mass (#P > 0.05). However, the combination of simvastatin and Compound A had a significant effect in lowering the body mass compared to simvastatin alone (**P ⁇ 0.01).
  • Figure 19 is a graphic representation of the effects of simvastatin, referred generally as "statin,” and Compound A on food consumption in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as food consumed in grams/day. Fat mice show a significant increase in food consumption (*P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01). Simvastatin alone did not significantly inhibited the increased in food consumption (#P > 0.05). However, the combination of simvastatin and Compound A had a significant effect (* * P ⁇ 0.01).
  • Figure 20 is a graphic representation of the effects of simvastatin, referred generally as "statin," and Compound A on Hbiac in db/db mice.
  • Results represent the mean +/- SEM of eight treated mice and are expressed as % glycated hemoglobin (%Hb1ac).
  • Fat mice show a significant increase in %Hb1ac (*P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01).
  • Simvastatin alone did not lower the levels %Hb1ac.
  • the combination of simvastatin and Compound A significantly decreased the levels of %Hb1 ac when compared to both the fat (**P ⁇ 0.01 ) and the fat plus simvastatin (#P ⁇ 0.01) .
  • FIG 21 is a graphic representation of the effects of simvastatin, referred generally as "statin,” and Compound A on plasma blood glucose (BG) in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as mg/dL. Fat mice show a significant increase in BG (*P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01). Simvastatin alone significantly increased the levels of BG (++P ⁇ 0.01) above the fat mice treated with vehicle alone. However, the combination of simvastatin and Compound A significantly decreased the levels of BG when compared to both the fat ( ** P ⁇ 0.01) and the fat plus simvastatin (#P ⁇ 0.01) .
  • Figures 22A and 22B are graphic representations of the effects of simvastatin, referred generally as "statin,” and Compound A on insulin resistance glucose tolerance test in db/db mice.
  • Figure 23 is a graphic representation of the effects of simvastatin, referred generally as "statin,” and Compound A on plasma triglycerides (TG) in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as mg/dL. Fat mice show a significant increase in TG (*P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01). Simvastatin alone did not significantly decreased the levels of TG (++P > 0.01) above the fat mice treated with vehicle alone. However, the combination of simvastatin and Compound A significantly decreased the levels of TG when compared to both the fat and the fat (**P ⁇ 0.01) and the fat plus simvastatin (#P ⁇ 0.01) .
  • Figure 24 is a graphic representation of the effects of simvastatin, referred generally as "statin,” and Compound A on plasma cholesterol (Choi) in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as mg/dL. Fat mice show a significant increase in Choi ( * P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01 ). Simvastatin alone also significantly decreased the levels of Choi (++P > 0.01) above the fat mice treated with vehicle alone. The combination of simvastatin and Compound A also significantly decreased the levels of Choi when compared to the fat (**P ⁇ 0.01).
  • FIG. 25 is a graphic representation of the effects of simvastatin, referred generally as "statin," and Compound A on plasma TNF ⁇ in db/db mice. Results represent the mean +/- SEM of eight treated mice and are expressed as pg/ml. Fat mice show a significant increase in TNF ⁇ ( * P ⁇ 0.01) which was significantly inhibited by Compound A (+P ⁇ 0.01). Simvastatin alone did not significantly inhibit the increased in TNF ⁇ (#P > 0.05). However, the combination of simvastatin and Compound A had a significant effect in lowering the levels of TNFa (**P ⁇ 0.01 ).
  • Figure 26A is an illustration of the identification of hippocampal progenitor cells using flow cytometry.
  • Figure 26B is a graphic representation of the effect of anti-depressants on hippocampal progenitor proliferation in mice.
  • Figure 27 is a graphic representation of the effect of Compound A on hippocampal progenitor cell proliferation.
  • Figure 28 is a graphic representation illustrating a microglial cell proliferation assay.
  • Figure 29 is a graphic representation of the effects of nicotine, Compound D, Compound E, and Compound A on microglial cell proliferation in an LPS-induced model of neuroinflammation.
  • Figure 30 is a is a Western blot showing the effects of simvastatin on the nicotine- induced JAK2 activation in PC12 cells.
  • Cells were pretreated with simvastatin (5 uM) for 24 hours and with nicotine at the time indicated.
  • the methods for blotting are as described (see, Shaw S. et al, J. Biol. Chem., 2002, herein incorporated by reference). Pretreatment of cells with simvastatin significantly inhibited JAK2 activation induced by nicotine for the times indicated.
  • Figure 31 is a Western blot showing the effects of simvastatin on the nicotine- induced neuroprotection against A ⁇ -induced apoptosis in PC12 cells. The methods are as described.
  • Poly-(ADP-ribose) polymerase (PARP) is marker of cells undergoing apoptosis. PARP expression was determined by Western analysis of PC12 cells nuclear extract.
  • Figure 32 is a Western blot showing the effects of 10 ⁇ M famesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) on the simvastatin-induced apoptosis in PC12 cells. The methods are as described.
  • Figure 33 is graphic representation showing the effects of 10 ⁇ M farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) on the simvastatin blockade of nicotine-induced ROS production in PC12 cells.
  • Figure 34 is a graphic representation of the effects of Compound C on food consumption in db/db mice.
  • the illustrated results represent the mean + SEM of five treated mice/group and are expressed as food consumed in grams/day.
  • Fat mice show a significant increase in food consumption above lean mice (*P ⁇ 0.01) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01 ).
  • Figure 35 is a graphic representation of the effects of Compound C on body mass in db/db mice. The illustrated results represent the mean + SEM of five treated mice/group and are expressed as body mass in grams. Fat mice show a significant increase in body mass (*P ⁇ 0.01 ) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01). There is no significant difference between fat wild type and fat PTP- 1 B KO mice due to Compound C treatment (#P > 0.05).
  • Figure 36 is a graphic representation of the effects of Compound C on plasma blood glucose (BG) in db/db mice.
  • the illustrated results represent the mean + SEM of five treated mice/group and are expressed as mg/dL of BG.
  • Fat mice show a significant increase in BG ( * P ⁇ 0.01 ) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01).
  • Figure 37 is a graphic representation of the effects of Compound C on plasma triglycerides in db/db mice. The illustrated results represent the mean + SEM of five treated mice/group and are expressed as mg/dL. Fat mice show a significant increase in plasma TG (*P ⁇ 0.01 ) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01) in the fat PTP-1B wild type but not in the fat PTP-1B KO. There is also a significant difference in plasma TG levels between the treated fat wild type and treated fat PTP-1B KO (#P ⁇ 0.01).
  • Figure 38 is a graphic representation of the effects of Compound C on plasma glycosylated hemoglobin (Hbiac) in db/db mice.
  • the illustrated results represent the mean + SEM of five treated mice/group and are expressed as %.
  • Fat mice show a significant increase in plasma Hbiac (*P ⁇ 0.01) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01).
  • Figure 39 is a graphic representation of the effects of Compound C on TNF ⁇ in db/db mice.
  • the illustrated results represent the mean + SEM of five treated mice/group and are expressed as pg/mL Fat mice show a significant increase in TNF ⁇ (*P ⁇ 0.01) which was significantly inhibited by Compound C treatment (+P ⁇ 0.01). There is a significant difference between TNF ⁇ plasma levels between the fat wild type and fat PTP- 1 B KO (#P ⁇ 0.01).
  • Figure 40 is a graphic representation of the effects of Compound C in the glucose tolerance test (GTT) in db/db mice PTP-1 B wild type mice. The illustrated results represent the mean + SEM of four treated mice/group and are expressed as mg/dL. Fat mice show a significant decrease in glucose deposition (*P ⁇ 0.01) with Compound C treatment. Fat mice show a significant increase in deposition (+P ⁇ 0.01).
  • One aspect of the present invention includes the role of ⁇ 7 nAChRs in regulating key biological pathways involved in the metabolic syndrome and the potential of selective ⁇ 7 nAChR agonists as a novel therapeutic approach to treat this condition.
  • ⁇ 7 has been implicated in the cholinergic inflammatory pathway, the evidence is based exclusively on the use of non-selective agonists in the presence of putative selective antagonists, some with rather poor pharmacokinetics or brain penetration properties.
  • another aspect of the present invention includes compounds (hereinafter defined and referred to as Compounds A, B, or C) with high selectivity for the ⁇ 7 nAChR.
  • Compound A is (5-methyl-N-[(2S,3R)-2-(pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3- yl]thiophene-2-carboxamide), illustrated below.
  • Compound A or a pharmaceutically acceptable salt thereof.
  • alternate naming conventions provide alternative names.
  • Compound A may also be referred to as (2S,3R)-N-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]octan-3-yl)-5-methylthiophene-2- carboxamide.
  • Such naming conventions should not impact the clarity of the present invention.
  • Compound B is (2S,3R)-N-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-5-(2- pyridinyl)thiophene-2-carboxamide, illustrated below:
  • Compound C is (2S,3R)-N-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3- yl)benzofuran-2-carboxamide, illustrated below:
  • ⁇ 7-selective ligands inhibit the metabolic syndrome observed in db/db mice by reducing weight gain, normalizing glucose levels, increasing insulin secretion, decreasing glycated hemoglobin, reducing pro-inflammatory cytokines, reducing triglycerides, and normalizing insulin resistance glucose tolerance test. These data indicate that a7-selective ligands are useful for the management of the metabolic syndrome (diabetes I and II, atherosclerosis, obesity).
  • statins include atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pravastatin, pravastatin, rosuvastatin, simvastatin, and additional statins, defined based on their inhibition of HMG CoA reductase.
  • statins include atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pravastatin, pravastatin, rosuvastatin, simvastatin, and additional statins, defined based on their inhibition of HMG CoA reductase.
  • trade names or generic names may be used herein, reference is had to the underlying active ingredient(s) in such drug products.
  • Compounds useful according to the present invention are ⁇ 7 NNR selective ligands, as exemplified by Compounds A, B, and C, herein.
  • m and n individually can have a value of 1 or 2, and p can have a value of 1 , 2, 3 or 4.
  • X is either oxygen or nitrogen (i.e., NR 1 )
  • Y is either oxygen or sulfur
  • Z is either nitrogen (i.e., NR 1 ), a covalent bond or a linker species, A.
  • Z is a covalent bond or A
  • X must be nitrogen.
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted; and Cy is a 5- or 6-membered heteroaromatic ring, unsubstituted or substituted.
  • the invention includes compounds in which Ar is linked to the azabicycle by a carbonyl group-containing functionality, such as an amide, carbamate, urea, thioamide, thiocarbamate or thiourea functionality.
  • Ar may be bonded directly to the carbonyl (or thiocarbonyl) group or may be linked to the carbonyl (or thiocarbonyl) group through linker A.
  • the invention includes compounds that contain a 1 -azabicycle, containing either a 5-, 6-, or 7-membered ring and having a total of 7, 8 or 9 ring atoms (e.g., 1- azabicyclo[2.2.1]heptane, 1-azabicyclo[3.2.1]octane, 1-azabicyclo[2.2.2]octane, and 1- azabicyclo[3.2.2]nonane).
  • a 1 -azabicycle containing either a 5-, 6-, or 7-membered ring and having a total of 7, 8 or 9 ring atoms
  • the value of p is 1 , Cy is 3-pyridinyl or 5-pyrimidinyl, X and Y are oxygen, and Z is nitrogen. In another embodiment, the value of p is 1 , Cy is 3-pyridinyl or 5- pyrimidinyl, X and Z are nitrogen, and Y is oxygen. In a third embodiment, the value of p is 1 , Cy is 3-pyridinyl or 5-pyrimidinyl, X is nitrogen, Y is oxygen, and Z is a covalent bond (between the carbonyl and Ar). In a fourth embodiment, the value of p is 1 , Cy is 3-pyridinyl or 5-pyrimidinyl, X is nitrogen, Y is oxygen, Z is A (a linker species between the carbonyl and Ar).
  • the compounds of Formula 1 have one or more asymmetric carbons and can therefore exist in the form of racemic mixtures, enantiomers and diastereomers. Both relative and absolute stereochemistry at asymmetric carbons are variable (e.g., cis or trans, R or S). In addition, some of the compounds exist as E and Z isomers about a carbon-carbon double bond. All these individual isomeric compounds and their mixtures are also intended to be within the scope of Formula 1.
  • Ar includes both carbocyclic and heterocyclic aromatic rings, both monocyclic and fused polycyclic, where the aromatic rings can be 5- or 6- membered rings.
  • Representative monocyclic aryl groups include, but are not limited to, phenyl, furanyl, pyrrolyl, thienyl, pyridinyl, pyrimidinyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl and the like.
  • Fused polycyclic aryl groups are those aromatic groups that include a 5- or 6-membered aromatic or heteroaromatic ring as one or more rings in a fused ring system.
  • fused polycyclic aryl groups include naphthalene, anthracene, indolizine, indole, isoindole, benzofuran, benzothiophene, indazole, benzimidazole, benzthiazole, purine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1 ,8-naphthyridine, pteridine, carbazole, acridine, phenazine, phenothiazine, phenoxazine, and azulene.
  • Cy are 5- and 6-membered ring heteroaromatic groups.
  • Representative Cy groups include pyridinyl, pyrimidinyl, furanyl, pyrrolyl, thienyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl and the like, where pyridinyl is preferred.
  • R' and R" can also combine to form a cyclic functionality.
  • Compounds of Formula 1 form acid addition salts which are useful according to the present invention.
  • Suitable pharmaceutically acceptable salts include inorganic acid addition salts such as chloride, bromide, sulfate, phosphate, and nitrate; organic acid addition salts such as acetate, galactarate, propionate, succinate, lactate, glycolate, malate, tartrate, citrate, maleate, fumarate, methanesulfonate, p-toluenesulfonate, and ascorbate; salts with acidic amino acid such as aspartate and glutamate.
  • the salts may be in some cases hydrates or ethanol solvates.
  • Representative compounds of Formula 1 include: 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl N-phenylcarbamate, 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl N-(4-fluorophenyl)carbamate, 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl N-(4-chlorophenyl)carbamate, 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl N-(4-bromophenyl)carbamate, 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl N-(3-fluorophenyl)carbamate, 2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]o
  • a second genus of ⁇ 7 NNR selective ligands (see US Appln. No. 11/465,914, Pub. No. 2007 00197579 A1 ; also see published international application WO 2007/024814 A1 ; each of which is incorporated herein by reference in its entirety), useful according to the present invention, is represented by Formula 2.
  • Y is either oxygen or sulfur, and Z is either nitrogen (i.e., NR 1 ) or a covalent bond.
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted; and Cy is a 5- or 6-membered heteroaromatic ring, unsubstituted or substituted.
  • the invention includes compounds in which Ar is linked to the diazatricycle, at the nitrogen of the pyrrolidine ring, by a carbonyl group-containing functionality, forming an amide or a urea functionality.
  • Ar may be bonded directly to the carbonyl group-containing functionality or may be linked to the carbonyl group-containing functionality through linker A.
  • the invention includes compounds that contain a diazatricycle, containing a 1-azabicyclo[2.2.2]octane.
  • Cy is 3-pyridinyl or 5-pyrimidinyl, Y is oxygen, Z is a covalent bond and A is absent.
  • Cy is 3-pyridinyl or 5-pyrimidinyl, Y is oxygen, Z is nitrogen and A is absent.
  • Cy is 3-pyridinyl or 5- pyrimidinyl, Y is oxygen, Z is a covalent bond, and A is a linker species.
  • Cy is 3-pyridinyl or 5-pyr ⁇ midinyl, Y is oxygen, Z is nitrogen and A is a linker species.
  • the junction between the azacycle and the azabicycle can be characterized by any of the various relative and absolute stereochemical configurations at the junction sites (e.g., cis or trans, R or S).
  • the compounds have one or more asymmetric carbons and can therefore exist in the form of racemic mixtures, enantiomers and diastereomers.
  • some of the compounds exist as E and Z isomers about a carbon-carbon double bond. All these individual isomeric compounds and their mixtures are also intended to be within the scope of the present invention.
  • Ar includes both carbocyclic and heterocyclic aromatic rings, both monocyclic and fused polycyclic, where the aromatic rings can be 5- or 6- membered rings.
  • monocyclic aryl groups include, but are not limited to, phenyl, furanyl, pyrrolyl, thienyl, pyridinyl, pyrimidinyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl and the like.
  • Fused polycyclic aryl groups are those aromatic groups that include a 5- or 6-membered aromatic or heteroaromatic ring as one or more rings in a fused ring system.
  • fused polycyclic aryl groups include naphthalene, anthracene, indolizine, indole, isoindole, benzofuran, benzothiophene, indazole, benzimidazole, benzthiazole, purine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1 ,8-naphthyridine, pteridine, carbazole, acridine, phenazine, phenothiazine, phenoxazine, and azulene.
  • Cy groups are 5- and 6-membered ring heteroaromatic groups.
  • Representative Cy groups include pyridinyl, pyrimidinyl, furanyl, pyrrolyl, thienyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl and the like, where pyridinyl is preferred.
  • Compounds of Formula 2 form acid addition salts which are useful according to the present invention.
  • suitable pharmaceutically acceptable salts include inorganic acid addition salts such as chloride, bromide, sulfate, phosphate, and nitrate; organic acid addition salts such as acetate, galactarate, propionate, succinate, lactate, glycolate, malate, tartrate, citrate, maleate, fumarate, methanesulfonate, p-toluenesulfonate, and ascorbate; salts with acidic amino acid such as aspartate and glutamate.
  • the salts may be in some cases hydrates or ethanol solvates.
  • Representative compounds of Formula 2 include: 5-benzoyl-3-pyridin-3-yl-1 ,5-diazatricyclo[5.2.2.0 ⁇ 2,6>]undecane, 5-(2-fluorobenzoyl)-3-pyridin-3-yl-1 ,5-diazatricyclo[5.2.2.0 ⁇ 2,6>]undecane, 5-(3-fluorobenzoyl)-3-pyridin-3-yl-1 ,5-diazatricyclo[5.2.2.0 ⁇ 2,6>]undecane, 5-(4-fluorobenzoyl)-3-pyridin-3-yl-1 ,5-diazatricyclo[5.2.2.0 ⁇ 2,6>]undecane, 5-(2-chlorobenzoyl)-3-pyridin-3-yl-1 ,5-diazatricyclo[5.2.2.0 ⁇ 2,6>]undecane, 5-(3-chlorobenzoyl)-3-pyridin-3-yl-1 ,5-diaza
  • the nitrogen at the position indicated above as the 5-position is the nitrogen involved in the formation of the amides, thioamides, ureas and thioureas described herein.
  • Compounds useful according to the present invention also include compounds of Formula 3:
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted;
  • R 1 is hydrogen, C 1 -C 8 alkyl (e.g., straight chain or branched alkyl, preferably CrC 5 , such as methyl, ethyl, or isopropyl), aryl, or arylalkyl (such as benzyl).
  • N-(3,4-dichlorophenyl)carbamic acid 1-azabicyclo[2.2.2]octan-3-yl ester; N-(4-cyanophenyl)carbamic acid 1-azabicyclo[2.2.2]octan-3-yl ester; N-phenylcarbamic acid 1-azabicyclo[2.2.1]heptan-3-yl ester;
  • N-(2-pyridyl)carbamic acid 1-azabicyclo[2.2.2]octan-3-yl ester
  • N-(1-naphthyl)carbamic acid 1-azabicyclo[2.2.2]octan-3-yl ester
  • Compounds useful according to the present invention also include compounds of Formula 4:
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted;
  • R is hydrogen, C 1 -C 8 alkyl (e.g., straight chain or branched alkyl, preferably C 1 -C 5 , such as methyl, ethyl, or isopropyl), aryl, or arylalkyl (such as benzyl).
  • Such compounds are disclosed as ⁇ 7 selective ligands in, for instance, PCTs WO
  • n 1 or 2;
  • Such compounds are disclosed as ⁇ 7 selective ligands in, for instance, PCTs WO
  • Particular embodiments according to the general Formula 5 include the following: (1 ,4-diazabicyclo[3.2.2]non-4-yl)(4-methoxyphenyl)methanone; (1 ,4-diazabicyclo[3.2.2]non-4-yl)(5-chlorofuran-2-yl)methanone; (1 ,4-diazabicyclo[3.2.2]non-4-yl)(5-bromothiophen-2-yl)methanone; (1 ,4-diazabicyclo[3.2.2]non-4-yl)(4-phenoxyphenyl)methanone; (1 ,4-diazabicyclo[3.2.2]non-4-yl)(5-phenylfuran-2-yl)methanone; (1 ,4-diazabicyclo[3.2.2]non-4-yl)(5-(3-pyridinyl)thiophen-2-yl)methanone; 1 -(1
  • Compounds useful according to the present invention also include compounds of Formula 6:
  • Ar is a fused polycyclic, heterocyclic aryl group, unsubstituted or substituted; and Z is -CH 2 - or a covalent bond.
  • Such compounds are disclosed as ⁇ 7 selective ligands in, for instance, PCTs WO
  • Compounds useful according to the present invention also include compounds of Formula 7:
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted;
  • X is either CH or N;
  • Z is either oxygen, nitrogen (NR) or a covalent bond; and
  • R is H or alkyl.
  • Z-Ar is absent from
  • Particular embodiments according to the general Formula 7 include the following: spiro[1-azabicyclo[2.2.2]octane-3,2'-(3'H)-furo[2,3-b]pyridine]; ⁇ '-phenylspiroCI-azabicyclo ⁇ loctane-S ⁇ '-CS ⁇ J-furo ⁇ .S-blpyridine];
  • Compounds useful according to the present invention also include compounds of
  • Ar is an aryl group, either carbocyclic or heterocyclic, either unsubstituted or substituted.
  • Compounds useful according to the present invention also include compounds of Formula 9:
  • Ar is an aryl group, either carbocyclic or heterocyclic, either monocyclic or fused polycyclic, unsubstituted or substituted (preferably by aryl or aryloxy substituents).
  • Such compounds are disclosed as ⁇ 7 selective ligands in, for instance, PCTs WO 04/016608, WO 05/066166, WO 05/066167, WO 07/018738, and US Patent 7,160,876, each of which is herein incorporated by reference in its entirety.
  • Particular embodiments according to the general Formula 9 include the following: 2-[4-(1 -azabicyclo[2.2.2]oct-3-yloxy)phenyl]-1 H-indole; 3-[4-(1 -azabicyclo[2.2.2]oct-3-yloxy)phenyl]-1 H-indole; 4-[4-(1 -azabicyclo[2.2.2]oct-3-yloxy)phenyl]-1 H-indole; 5-[4-(1 -azabicyclo[2.2.2]oct-3-yloxy)phenyl]-1 H-indole; 6-[4-(1 -azabicyclo[2.2.2]oct-3-yloxy)phenyl]-1 H-indole; 5-[6-(1 -azabicyclo ⁇ oct-S-yloxyt ⁇ yridazin-S-ylH H-indole; 4-[6-(1-azabicyclo[2.2.2]
  • Compounds useful according to the present invention also include compounds of Formula 10:
  • Ar is an phenyl group, unsubstituted or substituted, and Z is either -
  • Such compounds are disclosed as ⁇ 7 ligands in, for instance, PCTs WO 92/15306, WO 94/05288,WO 99/10338, WO04/019943, WO 04/052365 and WO 06/133303, and US Patent 5,741 ,802 and US Patent 5,977,144, each of which is herein incorporated by reference in its entirety.
  • Particular embodiments according to the general Formula 10 include the following: 3-(2,4-dimethoxybenzylidene)anabaseine; 3-(4-hydroxybenzylidene)anabaseine; 3-(4-methoxybenzylidene)anabaseine; 3-(4-aminobenzylidene)anabaseine;
  • Z is NH or a covalent bond, and when X is nitrogen, Z must be a covalent bond; and Ar is an indolyl, indazolyl, 1 ,2-benzisoxazolyl or 1 ,2-benzisothiazolyl moiety, attached in each case via the 3 position to the carbonyl.
  • Such compounds are disclosed as ⁇ 7 ligands in, for instance, PCT WO 06/001894, herein incorporated by reference in its entirety.
  • reaction mixture was filtered through a sintered glass funnel and the filter cake was washed with methanol (74.2 L).
  • the filtrate was concentrated, transferred to a reaction flask, and water (66.0 L) was added.
  • the suspension was stirred for a minimum of 30 min, filtered, and the filter cake was washed with water (90.0 L) until the pH of the rinse was 7-9.
  • the solid was dried under vacuum at 5O 0 C ⁇ 5 0 C for a minimum of 12 h to give 8.58 kg (89.3%) of 2-((3-pyridinyl)methylene)-1 -azabicyclo[2.2.2]octan-3-one.
  • the atmosphere of the reactor was evacuated using a vacuum pump, and the headspace was replaced with hydrogen to 10 to 20 inches water pressure.
  • the evacuation and pressurization with hydrogen were repeated 2 more times, leaving the reactor under 20 inches water pressure of hydrogen gas after the third pressurization.
  • the reaction mixture was stirred at 2O 0 C ⁇ 5 0 C for a minimum of 12 h, and the reaction was monitored via TLC.
  • the suspension was filtered through a bed of Celite ® 545 (1.9 kg) on a sintered glass funnel, and the filter cake was washed with methanol (10.1 L).
  • the filtrate was concentrated to obtain a semi-solid which was transferred, under an nitrogen atmosphere, to a 200 L reaction flask fitted with a mechanical stirrer, condenser, and temperature probe.
  • the semi-solid was dissolved in ethanol (57.2 L), and di-p-toluoyl-D- tartaric acid (DTTA) (9.74 kg, 25.2 mol) was added.
  • DTTA di-p-toluoyl-D- tartaric acid
  • the stirring reaction mixture was heated at reflux for a minimum of 1 h, and for an additional minimum of 12 h while the reaction was cooled to between 15 0 C and 3O 0 C.
  • the suspension was filtered using a tabletop filter, and the filter cake was washed with ethanol (11.4 L).
  • reaction mixture was cooled to below -5 0 C 1 and sodium borohydride (1.53 kg, 40.5 mol) was added in portions, keeping the reaction temperature below 15 0 C (this addition took several hours). The reaction mixture was then stirred at 15 0 C ⁇ 10 0 C for a minimum of 1 h.
  • the reaction was monitored by HPLC, and upon completion of the reaction (as indicated by less than 0.5% of (2S)-2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]octan-3- one remaining), 2 M sodium hydroxide (15.99 L) was added and the mixture was stirred for a minimum of 10 min.
  • the reaction mixture was filtered through a bed of Celite ® 545 in a tabletop funnel. The filter cake was washed with ethanol (15.23 L), and the filtrate was concentrated to obtain an oil.
  • the concentrate was transferred to a clean 100 L glass reaction flask equipped with a mechanical stirrer and temperature probe under an inert atmosphere. Water (1 L) was added, and the mixture was cooled to O 0 C ⁇ 5 0 C. 2 M Hydrochloric acid (24 L) was added to the mixture to adjust the pH of the mixture to pH 1. The mixture was then stirred for a minimum of 10 min, and 2 M sodium hydroxide (24 L) was slowly added to adjust the pH of the mixture to pH 14. The mixture was stirred for a minimum of 10 min, and the aqueous phase was extracted with dichloromethane (3 x 15.23 L).
  • the resulting solution was transferred to a 72 L reaction flask containing ethanol (18 L), equipped with a mechanical stirrer, temperature probe, and condenser under an inert atmosphere.
  • 10% palladium on carbon (50% wet) (311.1 g) and cyclohexene (14.36 L).
  • the reaction mixture was heated at near-reflux for a minimum of 12 h, and the reaction was monitored by TLC.
  • the reaction mixture was cooled to below 45 0 C, and it was filtered through a bed of Celite ® 545 (1.2 kg) on a sintered glass funnel.
  • the filter cake was rinsed with ethanol (3 L) and the filtrate was concentrated to obtain an aqueous phase.
  • the filter cake was transferred to a clean 100 L glass reaction flask equipped with a mechanical stirrer, temperature probe, and condenser under an inert atmosphere.
  • a 9:1 ethanol/water solution (30.7 L) was added, and the resulting slurry was heated at gentle reflux for a minimum of 1 h.
  • the reaction mixture was then stirred for a minimum of 12 h while cooling to between 15 0 C and 3O 0 C.
  • the mixture was filtered and the filter cake was washed with ethanol (5.76 L).
  • the scalable synthesis utilizes both the dynamic resolution of a racemizable ketone (2-((3- pyridinyl)methyl)-1-azabicyclo[2.2.2]octan-3-one) and the stereoselective reduction of the (R)- ⁇ -methylbenzylamine imine derivative (reductive amination) of the resolved ketone.
  • the mother liquor from the initial crystallization was made basic ( ⁇ pH 11) with 2 M sodium hydroxide and extracted twice with chloroform (10 mL). The chloroform extracts were dried (anhydrous sodium sulfate) and concentrated to give an oil.
  • This amine (3.00 g, 13.8 mmol) was dissolved in methanol (10 mL) and treated with di-p-toluoyl-L-tartaric acid (2.76 g, 6.90 mmol). The mixture was warmed to aid dissolution and then cooled slowly to -5°C, where it remained overnight. The precipitate was collected by suction filtration, recrystallized from methanol and dried. This left 1.05 g of white solid.
  • Diphenylchlorophosphate (96 ⁇ l_, 124 mg, 0.46 mmol) was added drop-wise to a solution of the benzofuran-2-carboxylic acid (75 mg, 0.46 mmol) (that derived from the di-p-toluoyl-L- tartaric acid salt) and triethylamine (64 ⁇ l_, 46 mg, 0.46 mmol) in dry dichloromethane (1 mL).
  • 3-Quinuclidinone hydrochloride (8.25 kg, 51.0 mol) and methanol (49.5 L) were added to a 100 L glass reaction flask, under an nitrogen atmosphere, equipped with a mechanical stirrer, temperature probe, and condenser.
  • Potassium hydroxide (5.55 kg, 99.0 mol) was added via a powder funnel over an approximately 30 min period, resulting in a rise in reaction temperature from 5O 0 C to 56 0 C.
  • 3- pyridinecarboxaldehyde (4.80 kg, 44.9 mol) was added to the reaction mixture.
  • the resulting mixture was stirred at 2O 0 C ⁇ 5 0 C for a minimum of 12 h, as the reaction was monitored by thin layer chromatography (TLC).
  • TLC thin layer chromatography
  • the reaction mixture was filtered through a sintered glass funnel and the filter cake was washed with methanol (74.2 L).
  • the filtrate was concentrated, transferred to a reaction flask, and water (66.0 L) was added.
  • the suspension was stirred for a minimum of 30 min, filtered, and the filter cake was washed with water (90.0 L) until the pH of the rinse was 7-9.
  • the atmosphere of the reactor was evacuated using a vacuum pump, and the headspace was replaced with hydrogen to 10 to 20 inches water pressure.
  • the evacuation and pressurization with hydrogen were repeated 2 more times, leaving the reactor under 20 inches water pressure of hydrogen gas after the third pressurization.
  • the reaction mixture was stirred at 2O 0 C ⁇ 5 0 C for a minimum of 12 h, and the reaction was monitored via TLC.
  • the suspension was filtered through a bed of Celite ® 545 (1.9 kg) on a sintered glass funnel, and the filter cake was washed with methanol (10.1 L).
  • the filtrate was concentrated to obtain a semi-solid which was transferred, under an nitrogen atmosphere, to a 200 L reaction flask fitted with a mechanical stirrer, condenser, and temperature probe.
  • the semi-solid was dissolved in ethanol (57.2 L), and di-p-toluoyl-D- tartaric acid (DTTA) (9.74 kg, 25.2 mol) was added.
  • DTTA di-p-toluoyl-D- tartaric acid
  • the stirring reaction mixture was heated at reflux for a minimum of 1 h, and for an additional minimum of 12 h while the reaction was cooled to between 15 0 C and 3O 0 C.
  • the suspension was filtered using a tabletop filter, and the filter cake was washed with ethanol (11.4 L).
  • reaction mixture was then stirred at 15 0 C ⁇ 1O 0 C for a minimum of 1 h.
  • the reaction was monitored by HPLC, and upon completion of the reaction (as indicated by less than 0.5% of (2S)-2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]octan-3- one remaining), 2 M sodium hydroxide (15.99 L) was added and the mixture was stirred for a minimum of 10 min.
  • the reaction mixture was filtered through a bed of Celite ® 545 in a tabletop funnel. The filter cake was washed with ethanol (15.23 L), and the filtrate was concentrated to obtain an oil.
  • the concentrate was transferred to a clean 100 L glass reaction flask equipped with a mechanical stirrer and temperature probe under an inert atmosphere. Water (1 L) was added, and the mixture was cooled to O 0 C ⁇ 5 0 C. 2 M Hydrochloric acid (24 L) was added to the mixture to adjust the pH of the mixture to pH 1. The mixture was then stirred for a minimum of 10 min, and 2 M sodium hydroxide (24 L) was slowly added to adjust the pH of the mixture to pH 14. The mixture was stirred for a minimum of 10 min, and the aqueous phase was extracted with dichloromethane (3 x 15.23 L).
  • the resulting solution was transferred to a 72 L reaction flask containing ethanol (18 L), equipped with a mechanical stirrer, temperature probe, and condenser under an inert atmosphere.
  • 10% palladium on carbon (50% wet) (311.1 g) and cyclohexene (14.36 L).
  • the reaction mixture was heated at near-reflux for a minimum of 12 h, and the reaction was monitored by TLC.
  • the reaction mixture was cooled to below 45 0 C, and it was filtered through a bed of Celite ® 545 (1.2 kg) on a sintered glass funnel.
  • the filter cake was rinsed with ethanol (3 L) and the filtrate was concentrated to obtain an aqueous phase.
  • the filter cake was transferred to a clean 100 L glass reaction flask equipped with a mechanical stirrer, temperature probe, and condenser under an inert atmosphere.
  • a 9:1 ethanol/water solution (30.7 L) was added, and the resulting slurry was heated at gentle reflux for a minimum of 1 h.
  • the reaction mixture was then stirred for a minimum of 12 h while cooling to between 15 0 C and 3O 0 C.
  • the mixture was filtered and the filter cake was washed with ethanol (5.76 L).
  • reaction was cooled to 4O 0 C ⁇ 5 0 C over approximately 2 h.
  • lsopropyl acetate (14.1 L) was added over approximately 1.5 h.
  • the reaction mixture was slowly cooled to ambient temperature over a minimum of 10 h.
  • the mixture was filtered and the filter cake was washed with isopropyl acetate (3.5 L).
  • a hydrochloric acid/THF solution was prepared by adding of concentrated hydrochloric acid (1.93 mL of 12M, 23.2 mmol) drop-wise to 8.5 mL of chilled THF. The solution was warmed to ambient temperature. To a round bottom flask was added (2S,3R)- N-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)benzofuran-2-carboxamide (8.49 g, 23.5 mmol) and acetone (85 ml_). The mixture was stirred and heated at 45-5O 0 C until a complete solution was obtained.
  • Compounds A, B, and C are ⁇ 7-selective ligands.
  • Compounds A, B and C exhibited E max values > 50% in an electrophysiology functional assay in Xenopus laevis oocytes transiently expressing human ⁇ 7 nicotinic receptor.
  • the IC50s for Compound A are >10 micromolar at more than 60 targets in a receptor profile screen.
  • PTPases protein tyrosine phosphatases
  • LAR LAR
  • SHP-2 protein tyrosine phosphatases
  • dietary supplementation with treatment compound effectively lowered food intake and weight gain in obese mice.
  • ⁇ 7 nAChRs play a central role in regulating food intake through a mechanism that is not dependent on PTP1 B.
  • AG-490 significantly inhibited (p ⁇ 0.01) both the weight loss and decreased food intake induced by the ⁇ 7 agonist.
  • Glucose Metabolism Similar to the results obtained for food intake and body weight gain, at the end of seven weeks of treatment, plasma glucose levels in the obese (db-) mice treated with the ⁇ 7 agonist were significantly lower (p ⁇ 0.01) than those in the untreated PTP1B+ and PTP1 B- mice.
  • the ⁇ 7 nAChR antagonist MLA was given concurrently with treatment compound and the mice showed no significant decrease in plasma glucose. Dietary supplementation with the ⁇ 7 agonist, therefore, effectively lowers weight gain and food intake in obese mice and lowers the increased levels of glucose due to obesity. This mechanism is not dependent on PTP1 B, but rather on JAK2 activation.
  • the JAK2 inhibitor significantly prevented (p ⁇ 0.01 ) the treatment-induced decrease in plasma glucose. Lean mice displayed rapid glucose disposal and the injected bolus was cleared within
  • Glycosylation of Hemoglobin reflects both fasting and postprandial glucose levels in the blood.
  • a time averaged index of glycemic load is accumulation of advanced glycation end products (AGEs), which can be estimated from the glycosylation of hemoglobin, HbAIc.
  • AGEs advanced glycation end products
  • Lean treated and non-treated PTP1 B+ and PTP1B- mice all showed HbAIC levels lower than 5%, consistent with normal glycemic control.
  • obese mice showed markedly elevated HbAIc levels, consistent with the observed glucose intolerance fasting hyperglycemia, which were significantly lowered (p ⁇ 0.01) by the ⁇ 7 agonist.
  • ⁇ 7 nAChR plays a central role in regulating both the fasting and postprandial glucose levels in the blood and that this effect is not dependent on PTP1 B.
  • MLA the ⁇ 7 antagonist
  • Lipid Metabolism Treated and non-treated lean mice show normal levels of triglycerides. However, obese mice display elevated fasting triglyceride levels, consistent with the loss of insulin sensitivity in fat cells. Nevertheless, when the obese mice were treated they displayed largely normal levels of triglycerides, an effect which was blocked by the ⁇ 7 antagonist MLA, suggesting a normalization of adipocyte insulin resistance via an ⁇ 7 nAChR-mediated pathway.
  • Plasma TNF- ⁇ Levels Plasma concentration of inflammatory mediators such as TNF- ⁇ is increased in the insulin resistant states of obesity and type 2 diabetes. Reduction of the levels of TNF ⁇ in diabetic mice correlates with increased insulin sensitivity and decreased plasma insulin and blood glucose levels. Treated and non-treated lean mice showed no change in the plasma levels of TNF- ⁇ , but obese mice had elevated fasting plasma TNF- ⁇ levels. However, when the obese mice were treated, they displayed significantly decreased plasma TNF- ⁇ levels and this was blocked by the ⁇ 7 antagonist MLA, confirming that ⁇ 7 nAChRs are directly involved in blocking the obesity-induced increase of TNF- ⁇ and hence the decreased insulin resistance. ⁇ 7 agonist on Obesity.
  • mice used in these studies were the leptin receptor deficient db/db mice on a C57BL6 background obtained from Jackson Laboratories and PTP1 B-null mice on a mixed C57BL6/Balb C background from Dr. Michel Tremblay at the Cancer Institute at McGiII University in Montreal, Canada. Because obese db/db mice are infertile, mice were generated as dual heterozygotes, heterozygous for both the mutant leptin receptor and the deleted PTP1 B. Dual heterozygotes were interbred, producing 1:4 obese mice and 1:4 PTP-1B null mice. In this breeding configuration 1 :16 were dual KO mice.
  • mice heterozygous for both genes were bred to PTP-1B null mice heterozygous for the mutant db allele.
  • 1 :4 mice were obese and 1 :8 were dual KO mice.
  • heterozygotes were preferred to wild-types over controls.
  • Dual heterozygous littermates were used as lean controls and littermates heterozygous for db were used as lean PTP1 B KO controls.
  • Mouse genotyping At 3 weeks of age, DNA was obtained by tail clip. The genomic DNA from tail clip was used to screen for the presence of the mutant leptin receptor and deletion cassette of PTP- 1 B using the Polymerase Chain Reaction. Specific genotypes were determining by resolving PCR products with agarose gel electrophoresis. Deletion of PTP-1 B was verified by Western analysis using an anti-PTP-1 B antibody from Upstate Biotechnology.
  • Metabolic Phenotyping The effects of the tested compound (for example, Compound A at 1 mg/kg/day via oral gavage) on growth rates and food intake of mice were generated by measuring body weight and food intake bi-weekly for from ages 3 to 10 weeks. In selected cohorts, the ⁇ 7 antagonist MLA was also given via gavage, concurrently, at 3mg/kg daily.
  • the JAK2 kinase inhibitor (AG-490) was administered intraperitoneal ⁇ (IP) at 1 mg/kg daily. Fasting glucose was measured once a week after food withdrawal, with a Precision XL glucometer using tail vein bleeding. HbAIc levels were also measured from these samples with the A1C kit from Metrika, Inc.
  • mice were anesthetized with 2% isoflurane and the left carotid artery and jugular vein cannulated after an overnight fast.
  • a 10 mg bolus of glucose was injected intravenously (iv) via the jugular vein and blood glucose measured every 5 minutes for 40 minutes in a drop of blood from the carotid line.
  • a separate group of fasted mice were anesthetized by isoflurane in a rapid induction chamber and swiftly decapitated. Blood was collected in heparin and rapidly centrifuged at 4 0 C to remove cells and to obtain plasma, and the samples were frozen for later analyses.
  • Plasma TNF- ⁇ concentrations were determined using ELISA assay kits from eBioscience and plasma triglyceride levels were determined using the L-Type TG H test (Wako Diagnostics), an in vitro assay for the quantitative determination of triglycerides in serum or plasma. All data are expressed as mean and SEM. Differences among all groups were compared by One Way ANOVA.
  • mice have an inducible element which is a mERT2-Cre fusion cDNA, which encodes the mutated murine estrogen receptor ligand-binding domain (amino acids 281 to 599, G525R) and which is insensitive to estrogen but sensitive to tamoxifen.
  • This inducible transgenic mouse line facilitates gene targeting and would be beneficial in investigating the role of JAK2 in the adult mouse.
  • the time point of Cre activity can be regulated by injections with tamoxifen and using these inducible Cre transgenic mice, we will be able to generate JAK2 KO mutants in a conditional and inducible manner.
  • Homozygous JAK2flox mice carrying the mCre/mERT were generated by breeding double heterozygous mice containing JAK2flox and Cre/mERT, and have assess the efficiency of induced Cre-mediated deletion of the loxP flanked JAK2 gene segment via Southern assay before and after intraperitoneal injections of tamoxifen.
  • Western blot analysis demonstrates that after 7 days of intraperitoneal injections of tamoxifen at a concentration of 20mg/kg there was a total ablation of JAK2 expression in the pancreas while there is no effect on the expression of Actin.
  • mice had grossly normal appearance, activity and behavior.
  • the effects of tested compound on STZ-induced diabetes and cytokines levels were measured via the following ways. For example, fasting glucose levels were measured at least twice a week via tail vein bleeding with a Precision XL glucometer while HbAIc levels were measured using the A1C kit from Metrika Inc. In a second group of mice, fasted mice were anesthetized by isoflurance in a rapid induction chamber and swiftly decapitated.
  • Trunk blood was collected in heparin and rapidly centrifuged at 4C to remove blood cells and obtain plasma. Samples were frozen for later analyses. Plasma insulin, TNF ⁇ and IL-6 concentration were determined using ELISA assay kits.
  • mice Animal Models and Metabolic Phenotyping: Parental strains of mice used in these studies were the leptin receptor deficient db/db fat mice or leptin receptor wild type DB/DB lean mice on a C57BL6 background obtained from Jackson Laboratories. Animal were treated with simvastatin and tested compound, such as Compound A at 1 mg/kg/day via gavage. Growth rates of mice were generated by measuring body weight twice weekly for 10 weeks. Daily food intake was measured in mice metabolic cages obtained from Fisher. To assess glucose tolerance, mice were anesthetized with 2% isoflurane and the left carotid artery and jugular vein cannulated after an overnite fast.
  • Plasma cholesterol, free fatty acids and triglycerides were determined using colorimetric assays from Wako Chemical while plasma TN Fa concentration was determined using ELISA assay kits from eBioscience. These data indicate that Compounds A, B, and C ameliorate glycemic state in type Il diabetes.
  • the compounds, Compounds A, B, and C are demonstrated to reduce weight gain, normalize glucose levels, decrease glycated hemoglobin, reduce pro-inflammatory cytokines, reduce triglycerides, and normalize insulin resistance glucose tolerance test. These data indicate that ⁇ 7 ligands, including Compounds A, B, and C, ameliorate the glycemic state in metabolic disorders such as diabetes type Il and biological parameters associated with the metabolic syndrome.
  • Selective ⁇ 7 nAChR agonists can reduce weight gain, normalize glucose levels, decrease glycated hemoglobin, reduce the pro-inflammatory cytokine TNF- ⁇ , reduce triglycerides, and normalize insulin sensitivity in transgenic models of type 2 diabetes.
  • ⁇ 7 antagonist MLA phosphotyrosine phosphatase PTP1 B
  • JAK2 kinase specific inhibitor AG-490 also inhibited the ⁇ 7 agonist-induced weight loss, decreased food intake and normalization of glucose levels.
  • ⁇ 7 nAChRs play a central role in regulating the biological parameters associated with type 2 diabetes and the metabolic syndrome. Insulin resistance, diabetes, obesity and dyslipidemia are components of the metabolic syndrome, and although pro-inflammatory cytokines have been suggested to contribute to the development of these disorders, the molecular mechanism of the development of this syndrome is poorly understood.
  • the CNS modulates the immune system through the reticuloendothelial system.
  • This CNS modulation is mediated through the vagus nerve, utilizing the major vagal neurotransmitter acetylcholine which acts upon ⁇ 7 nAChRs on macrophages.
  • Neuroprotective effects elicited by ⁇ 7-selective ligands can be traced to ⁇ 7 nAChR activation and transduction of signals to PI-3-K (phosphatidylinositol 3- kinase) and AKT (protein kinase B) through the protein tyrosine kinase Janus kinase 2 (JAK2), all of which compose a key cell survival pathway.
  • PI-3-K phosphatidylinositol 3- kinase
  • AKT protein kinase B
  • PTP1 B protein tyrosine phosphatase (PTP) PTP1 B.
  • PTP1 B has been shown to act as a negative regulator of insulin signaling. Overexpression of PTP1B impairs insulin signals, whereas loss of PTP1 B is associated with increased sensitivity to insulin.
  • PTP 1 B binds to and catalyzes the dephosphorylation of the insulin receptor and many of the effects of PTP1 B on insulin signaling can be explained on the basis of this interaction.
  • PTP1 B improves insulin signaling in mouse models of obesity and PTP1 B antagonists have been used pharmacologically to improve glucose tolerance. More importantly, PTP1 B has also been reported to dephosphorylate JAK2, suggesting that there is cross-talk between the ⁇ 7 nAChR-linked anti-inflammatory pathway and insulin regulation. Since PTP1 B regulates body weight, adiposity and leptin action, ⁇ 7 nAChRs may play a critical role in regulating numerous aspects of the metabolic syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Psychology (AREA)
  • Vascular Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
PCT/US2008/071893 2007-08-02 2008-08-01 Alpha7 nachr agonists for treating or preventing metabolic disorders Ceased WO2009018511A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2008283813A AU2008283813A1 (en) 2007-08-02 2008-08-01 Alpha7 nAChR agonists for treating or preventing metabolic disorders
JP2010520219A JP2010535252A (ja) 2007-08-02 2008-08-01 代謝障害を治療または予防するためのα7nAChRアゴニスト
NZ582828A NZ582828A (en) 2007-08-02 2008-08-01 Alpha7 nachr agonists for treating or preventing metabolic disorders
US12/674,327 US20110124678A1 (en) 2007-08-02 2008-08-01 Treatment with alpha 7-selective ligands
MX2010001293A MX2010001293A (es) 2007-08-02 2008-08-01 Tratamiento con ligandos alfa 7-selectivos.
BRPI0814889A BRPI0814889A2 (pt) 2007-08-02 2008-08-01 tratamento com ligantes alfa7-seletivos.
CA2694510A CA2694510A1 (en) 2007-08-02 2008-08-01 Treatment with .alpha.7-selective ligands
EP08782589A EP2185152A2 (en) 2007-08-02 2008-08-01 Alpha7 nachr agonists for treating or preventing metabolic disorders
CN200880101593A CN101868237A (zh) 2007-08-02 2008-08-01 用于治疗或预防代谢紊乱的α7nAChR激动剂
NO20100077A NO20100077L (no) 2007-08-02 2010-01-18 Behandling med alfa7-selektive ligander
ZA2010/00719A ZA201000719B (en) 2007-08-02 2010-01-29 Alpha7 nachr agonists for treating or preventing metabolic disorders

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US95361407P 2007-08-02 2007-08-02
US95361007P 2007-08-02 2007-08-02
US95361307P 2007-08-02 2007-08-02
US60/953,613 2007-08-02
US60/953,614 2007-08-02
US60/953,610 2007-08-02
US97165407P 2007-09-12 2007-09-12
US60/971,654 2007-09-12

Publications (2)

Publication Number Publication Date
WO2009018511A2 true WO2009018511A2 (en) 2009-02-05
WO2009018511A3 WO2009018511A3 (en) 2009-04-23

Family

ID=39945177

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/071893 Ceased WO2009018511A2 (en) 2007-08-02 2008-08-01 Alpha7 nachr agonists for treating or preventing metabolic disorders
PCT/US2008/071872 Ceased WO2009018505A1 (en) 2007-08-02 2008-08-01 (2s,3r)-n-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)benzofuran-2-carboxamide, novel salt forms, and methods of use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2008/071872 Ceased WO2009018505A1 (en) 2007-08-02 2008-08-01 (2s,3r)-n-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)benzofuran-2-carboxamide, novel salt forms, and methods of use thereof

Country Status (35)

Country Link
US (6) US7981906B2 (OSRAM)
EP (6) EP2431037B1 (OSRAM)
JP (4) JP2010535252A (OSRAM)
KR (2) KR20100051684A (OSRAM)
CN (4) CN103172628A (OSRAM)
AR (1) AR067775A1 (OSRAM)
AU (3) AU2008283813A1 (OSRAM)
BR (2) BRPI0815009A2 (OSRAM)
CA (2) CA2694510A1 (OSRAM)
CL (3) CL2008002271A1 (OSRAM)
CO (2) CO6260080A2 (OSRAM)
CY (1) CY1113561T1 (OSRAM)
DK (2) DK2431037T3 (OSRAM)
EC (2) ECSP10010007A (OSRAM)
ES (3) ES2415107T3 (OSRAM)
HR (1) HRP20130286T1 (OSRAM)
HU (1) HUE030387T2 (OSRAM)
IL (1) IL218976A0 (OSRAM)
ME (1) ME01508B (OSRAM)
MX (3) MX2010001293A (OSRAM)
MY (1) MY148002A (OSRAM)
NO (2) NO20100077L (OSRAM)
NZ (2) NZ582986A (OSRAM)
PE (3) PE20121820A1 (OSRAM)
PH (2) PH12012501513A1 (OSRAM)
PL (1) PL2182949T3 (OSRAM)
PT (1) PT2182949E (OSRAM)
RS (1) RS52743B (OSRAM)
RU (2) RU2012140148A (OSRAM)
SA (2) SA08290475B1 (OSRAM)
SI (1) SI2182949T1 (OSRAM)
TW (3) TW201402116A (OSRAM)
UY (1) UY31265A (OSRAM)
WO (2) WO2009018511A2 (OSRAM)
ZA (1) ZA201000719B (OSRAM)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296640A1 (en) * 2008-05-12 2011-03-23 Targacept Inc. Methods for preventing the development of retinopathy by the oral administration of nnr ligands
US8987453B2 (en) 2006-11-06 2015-03-24 Abbvie Inc. Azaadamantane derivatives and methods of use

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953855B2 (en) * 1998-12-11 2005-10-11 Targacept, Inc. 3-substituted-2(arylalkyl)-1-azabicycloalkanes and methods of use thereof
DE10164139A1 (de) 2001-12-27 2003-07-10 Bayer Ag 2-Heteroarylcarbonsäureamide
SA08290475B1 (ar) * 2007-08-02 2013-06-22 Targacept Inc (2s، 3r)-n-(2-((3-بيردينيل)ميثيل)-1-آزا بيسيكلو[2، 2، 2]أوكت-3-يل)بنزو فيوران-2-كربوكساميد، وصور أملاحه الجديدة وطرق استخدامه
TW201031664A (en) 2009-01-26 2010-09-01 Targacept Inc Preparation and therapeutic applications of (2S,3R)-N-2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-3,5-difluorobenzamide
JO3250B1 (ar) 2009-09-22 2018-09-16 Novartis Ag إستعمال منشطات مستقبل نيكوتينيك أسيتيل كولين ألفا 7
PT3029039T (pt) 2010-05-17 2017-11-28 Forum Pharmaceuticals Inc Formulações farmacêuticas que compreendem formas cristalinas de cloridrato de (r)-7-cloro-n-(quinuclidin-3-il)benzo(b)tiofeno-2-carboxamida mono-hidratado
US20130225560A1 (en) * 2010-07-26 2013-08-29 Envivo Pharmaceuticals, Inc. Treatment of Cognitive Disorders with Certain Alpha-7 Nicotinic Acid Receptor Agonists in Combination with Acetylcholinesterase Inhibitors
PE20131394A1 (es) 2010-09-23 2014-01-11 Abbvie Inc Monohidrato de derivados de aza-adamantano
AU2012207499A1 (en) * 2011-01-18 2013-08-15 Targacept, Inc. Treatment of cognitive dysfunction in schizophrenia
US20140171448A1 (en) 2011-01-27 2014-06-19 Novartis Ag Use of nicotinic acetylcholine receptor alpha 7 activators
FI3156056T3 (fi) 2011-03-18 2024-03-01 Alkermes Pharma Ireland Ltd Sorbitaaniestereitä käsittäviä farmaseuttisia koostumuksia
CA2830458A1 (en) 2011-03-18 2012-09-27 Novartis Ag Combinations of alpha 7 nicotinic acetylcholine receptor activators and mglur5 antagonists for use in dopamine induced dyskinesia in parkinson's disease
WO2012129262A1 (en) * 2011-03-23 2012-09-27 Targacept, Inc. Treatment of attention deficit/hyperactivity disease
KR20140027939A (ko) 2011-06-30 2014-03-07 도레이 카부시키가이샤 지양제
TW201311698A (zh) * 2011-08-22 2013-03-16 Targacept Inc 作為神經元菸鹼乙醯膽鹼受體配位體之1,4-二氮雜雙環[3.2.2]壬烷
CA3083244C (en) 2011-10-20 2023-01-03 Novartis Ag Biomarkers predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment
ES2950418T3 (es) 2012-03-19 2023-10-09 Alkermes Pharma Ireland Ltd Composiciones farmacéuticas que comprenden alcohol bencílico
US10004807B2 (en) 2012-03-19 2018-06-26 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising fatty acid esters
WO2013142202A1 (en) * 2012-03-19 2013-09-26 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising glycerol esters
EP2846796A4 (en) 2012-05-08 2015-10-21 Forum Pharmaceuticals Inc METHODS OF MAINTAINING, PROCESSING OR ENHANCING COGNITIVE FUNCTION
CA2885196C (en) 2012-09-19 2021-06-22 Alkermes Pharma Ireland Limited Pharmaceutical compositions having improved storage stability
ES2661050T3 (es) 2012-12-11 2018-03-27 Novartis Ag Biomarcador predictivo de la capacidad de respuesta a tratamiento con activador del receptor nicotínico de acetilcolina alfa-7
ES2883232T3 (es) 2013-01-15 2021-12-07 Novartis Ag Uso de agonistas del receptor nicotínico de acetilcolina alfa 7
WO2014111837A1 (en) 2013-01-15 2014-07-24 Novartis Ag Use of alpha 7 nicotinic acetylcholine receptor agonists
US20150313884A1 (en) 2013-01-15 2015-11-05 Novartis Ag Use of alpha 7 nicotinic acetylcholine receptor agonists
BR112015016994A8 (pt) 2013-01-15 2018-01-23 Novartis Ag uso de agonistas do receptor alfa 7 nicotínico de acetilcolina
WO2014153424A1 (en) * 2013-03-19 2014-09-25 La Jolla Institute For Allergy And Immunology Reducing diabetes in patients receiving hmg-coa reductase inhibitors (statins)
CN106132415A (zh) 2014-03-20 2016-11-16 奥克梅斯制药爱尔兰有限公司 具有增加的注射速度的阿立哌唑制剂
CA2946538A1 (en) 2014-04-04 2015-10-08 Del Mar Pharmaceuticals Use of dianhydrogalactitol and analogs or derivatives thereof to treat non-small-cell carcinoma of the lung and ovarian cancer
CN104288771B (zh) * 2014-09-30 2017-03-15 郑州大学第五附属医院 α7nAChR激动剂的新用途
EP3291813A4 (en) 2015-05-06 2019-01-02 The Regents of The University of California K-ras modulators
US9724340B2 (en) * 2015-07-31 2017-08-08 Attenua, Inc. Antitussive compositions and methods
US10282666B1 (en) 2015-11-10 2019-05-07 Google Llc Coherency detection and information management system
RU2675111C2 (ru) * 2017-03-31 2018-12-17 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт фундаментальной и клинической иммунологии" Способ стимуляции нейрогенеза в гиппокампе
TW201900638A (zh) 2017-04-20 2019-01-01 加州大學董事會 K-ras調節劑
US11273158B2 (en) 2018-03-05 2022-03-15 Alkermes Pharma Ireland Limited Aripiprazole dosing strategy

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203990A (en) 1979-04-30 1980-05-20 G. D. Searle & Co. Anti-diarrheal 2-substituted quinuclidines
DE58906678D1 (de) 1988-07-28 1994-02-24 Ciba Geigy Kupfer- und Nickeldihalogenidkomplexe, Verfahren zu deren Herstellung und deren Verwendung.
US4922901A (en) 1988-09-08 1990-05-08 R. J. Reynolds Tobacco Company Drug delivery articles utilizing electrical energy
EP0402056A3 (en) 1989-06-06 1991-09-04 Beecham Group p.l.c. Azabicyclic compounds, process for their preparation and pharmaceutical compositions containing them
JPH03135978A (ja) 1989-08-08 1991-06-10 Merck Sharp & Dohme Ltd 置換ピリジン、その製法、処方並びに痴呆症における使用法
IN173570B (OSRAM) 1989-11-23 1994-06-04 Pfizer
DK40890D0 (da) 1990-02-16 1990-02-16 Ferrosan As Substituerede urinstofforbindelser, deres fremstilling og anvendelse
EP0492903A1 (en) 1990-12-21 1992-07-01 MERCK SHARP & DOHME LTD. Substituted pyrazines, pyrimidines and pyridazines for use in the treatment of glaucoma
EP0573568B1 (en) 1991-03-01 2001-01-24 University Of Florida Research Foundation, Inc. Use of nicotinic analogs for treatment of degenerative diseases of the nervous system
US5212188A (en) 1992-03-02 1993-05-18 R. J. Reynolds Tabacco Company Method for treatment of neurodegenerative diseases
US5276043A (en) 1992-04-10 1994-01-04 R. J. Reynolds Tobacco Company Method for treatment of neurodegenerative diseases
JP3034953B2 (ja) 1992-08-31 2000-04-17 ユニバーシティー オブ フロリダ リサーチ ファンデーション,インコーポレーテッド 神経系の変性疾患の治療に有用なアナバセイン誘導体
US5977144A (en) 1992-08-31 1999-11-02 University Of Florida Methods of use and compositions for benzylidene- and cinnamylidene-anabaseines
IL107184A (en) 1992-10-09 1997-08-14 Abbott Lab Heterocyclic ether compounds that enhance cognitive function
US5852041A (en) 1993-04-07 1998-12-22 Sibia Neurosciences, Inc. Substituted pyridines useful as modulators of acethylcholine receptors
IL109451A0 (en) * 1993-04-29 1994-07-31 Zeneca Ltd Heterocyclic derivatives
AU7474794A (en) 1993-07-22 1995-02-20 E.I. Du Pont De Nemours And Company Arthropodicidal azacyclic heterocycles
US5493026A (en) 1993-10-25 1996-02-20 Organix, Inc. Substituted 2-carboxyalkyl-3-(fluorophenyl)-8-(3-halopropen-2-yl) nortropanes and their use as imaging for agents for neurodegenerative disorders
US5510355A (en) 1994-09-06 1996-04-23 Bencherif; Merouane Depolarizing skeletal muscle relaxants
US5998404A (en) 1994-10-24 1999-12-07 Eli Lilly And Company Heterocyclic compounds and their use
US5616707A (en) 1995-01-06 1997-04-01 Crooks; Peter A. Compounds which are useful for prevention and treatment of central nervous system disorders
US5824692A (en) 1995-01-06 1998-10-20 Lippiello; Patrick Michael Pharmaceutical compositions for prevention and treatment of central nervous system disorders
US5597919A (en) 1995-01-06 1997-01-28 Dull; Gary M. Pyrimidinyl or Pyridinyl alkenyl amine compounds
US5604231A (en) 1995-01-06 1997-02-18 Smith; Carr J. Pharmaceutical compositions for prevention and treatment of ulcerative colitis
AU4712696A (en) 1995-02-17 1996-09-04 Novo Nordisk A/S The use of heterocyclic compounds
US5585388A (en) 1995-04-07 1996-12-17 Sibia Neurosciences, Inc. Substituted pyridines useful as modulators of acetylcholine receptors
US5583140A (en) 1995-05-17 1996-12-10 Bencherif; Merouane Pharmaceutical compositions for the treatment of central nervous system disorders
IL118279A (en) 1995-06-07 2006-10-05 Abbott Lab Compounds 3 - Pyridyloxy (or Thio) Alkyl Heterocyclic Pharmaceutical Compositions Containing Them and Their Uses for Preparing Drugs to Control Synaptic Chemical Transmission
EP0842172A1 (en) 1995-06-29 1998-05-20 Novo Nordisk A/S Novel substituted azacyclic or azabicyclic compounds
JPH11512443A (ja) 1995-09-22 1999-10-26 ノボ ノルディスク アクティーゼルスカブ 新規な置換アザ環式またはアザ二環式化合物
US5712270A (en) 1995-11-06 1998-01-27 American Home Products Corporation 2-arylamidothiazole derivatives with CNS activity
US5616716A (en) 1996-01-06 1997-04-01 Dull; Gary M. (3-(5-ethoxypyridin)yl)-alkenyl 1 amine compounds
SE9600683D0 (sv) 1996-02-23 1996-02-23 Astra Ab Azabicyclic esters of carbamic acids useful in therapy
US5663356A (en) 1996-04-23 1997-09-02 Ruecroft; Graham Method for preparation of aryl substituted alefinic secondary amino compounds
US5726189A (en) 1996-05-03 1998-03-10 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Method for imaging nicotinic acetylcholinergic receptors in the brain using radiolabeled pyridyl-7-azabicyclo 2.2.1!heptanes
ZA9711092B (en) 1996-12-11 1999-07-22 Smithkline Beecham Corp Novel compounds.
US5861423A (en) 1997-02-21 1999-01-19 Caldwell; William Scott Pharmaceutical compositions incorporating aryl substituted olefinic amine compounds
US5811442A (en) 1997-02-21 1998-09-22 Bencherif; Merouane Pharmaceutical compositions for the treatment of conditions associated with decreased blood flow
EE04057B1 (et) 1997-05-30 2003-06-16 Neurosearch A/S 8-asabitsüklo[3,2,1]okt-2-eeni ja -oktaani derivaadid, nende valmistamismeetod, kasutamine ja farmatseutiline kompositsioon
AR013184A1 (es) 1997-07-18 2000-12-13 Astrazeneca Ab Aminas heterociclicas espiroazobiciclicas, composicion farmaceutica, uso de dichas aminas para preparar medicamentos y metodo de tratamiento o profilaxis
WO1999051602A1 (en) 1998-04-02 1999-10-14 R.J. Reynolds Tobacco Company Azatricyclo[3.3.1.1] decane derivatives and pharmaceutical compositions containing them
US5952339A (en) 1998-04-02 1999-09-14 Bencherif; Merouane Pharmaceutical compositions and methods of using nicotinic antagonists for treating a condition or disorder characterized by alteration in normal neurotransmitter release
ATE255888T1 (de) 1998-06-01 2003-12-15 Ortho Mcneil Pharm Inc Tetrahydronaphtalene verbindungen und deren verwendung zur behandlung von neurodegenerativen krankheiten
US6310043B1 (en) 1998-08-07 2001-10-30 Governors Of The University Of Alberta Treatment of bacterial infections
GB9821503D0 (en) 1998-10-02 1998-11-25 Novartis Ag Organic compounds
US6432975B1 (en) 1998-12-11 2002-08-13 Targacept, Inc. Pharmaceutical compositions and methods for use
US6953855B2 (en) 1998-12-11 2005-10-11 Targacept, Inc. 3-substituted-2(arylalkyl)-1-azabicycloalkanes and methods of use thereof
US6734215B2 (en) 1998-12-16 2004-05-11 University Of South Florida Exo-S-mecamylamine formulation and use in treatment
SE9900100D0 (sv) 1999-01-15 1999-01-15 Astra Ab New compounds
FR2791678B1 (fr) 1999-03-30 2001-05-04 Synthelabo Derives de 1,4-diazabicyclo [3.2.2] nonane-4-carboxylates et -carboxamides, leur preparation et leur application en therapeutique
SE9904176D0 (sv) 1999-11-18 1999-11-18 Astra Ab New use
SE0000540D0 (sv) 2000-02-18 2000-02-18 Astrazeneca Ab New compounds
GB0010955D0 (en) 2000-05-05 2000-06-28 Novartis Ag Organic compounds
IL153707A0 (en) 2000-06-27 2003-07-06 S A L V A T Lab Sa Carbamates derived from arylalkylamines
AU2001282873A1 (en) 2000-08-18 2002-03-04 Pharmacia And Upjohn Company Quinuclidine-substituted aryl compounds for treatment of disease
US6492386B2 (en) 2000-08-18 2002-12-10 Pharmacia & Upjohn Company Quinuclidine-substituted aryl compounds for treatment of disease
JP2004506735A (ja) 2000-08-18 2004-03-04 ファルマシア・アンド・アップジョン・カンパニー 疾患治療用キヌクリジン置換アリール化合物
WO2002017358A2 (en) 2000-08-21 2002-02-28 Pharmacia & Upjohn Company Quinuclidine-substituted heteroaryl moieties for treatment of disease (nicotinic acetylcholine receptor antagonists)
EP1311505A2 (en) 2000-08-21 2003-05-21 PHARMACIA & UPJOHN COMPANY Quinuclidine-substituted heteroaryl moieties for treatment of disease ( nicotinic acetylcholine receptor ligands )
WO2002015662A2 (en) 2000-08-21 2002-02-28 Pharmacia & Upjohn Company Quinuclidine-substituted heteroaryl moieties for treatment of disease (nicotinic acetylcholine receptor antagonists
AU2002228015B2 (en) 2000-12-22 2007-08-23 Almirall, S.A. Quinuclidine carbamate derivatives and their use as M3 antagonists
US20020086871A1 (en) 2000-12-29 2002-07-04 O'neill Brian Thomas Pharmaceutical composition for the treatment of CNS and other disorders
US6569865B2 (en) 2001-06-01 2003-05-27 Astrazeneca Ab Spiro 1-azabicyclo[2.2.2]octane-3,2′(3′h)-furo[2,3-b]pyridine
CN1294136C (zh) 2001-06-01 2007-01-10 阿斯特拉曾尼卡有限公司 用于治疗的烟碱乙酰胆碱受体新型配体
AR036040A1 (es) 2001-06-12 2004-08-04 Upjohn Co Compuestos de heteroarilo multiciclicos sustituidos con quinuclidinas y composiciones farmaceuticas que los contienen
US7109204B2 (en) 2001-08-01 2006-09-19 Merck & Co., Inc. Tyrosine kinase inhibitors
WO2003018585A1 (en) 2001-08-24 2003-03-06 Pharmacia & Upjohn Company Substituted-heteroaryl-7-aza[2.2.1]bicycloheptanes for the treatment of disease
JP2005504059A (ja) 2001-08-24 2005-02-10 ファルマシア アンド アップジョン カンパニー リミティド ライアビリティー カンパニー 疾患を処置するための置換アリール7−アザ[2.2.1]ビシクロヘプタン
DE60218493D1 (de) 2001-09-12 2007-04-12 Pharmacia & Upjohn Co Llc Substituierte 7-aza-ä2.2.1übicycloheptane für die behandlung von krankheiten
CA2476681A1 (en) 2002-02-19 2003-08-28 Bruce N. Rogers Fused bicyclic-n-bridged-heteroaromatic carboxamides for the treatment of disease
BR0307874A (pt) 2002-02-20 2004-12-28 Upjohn Co Atividade de compostos azabicìclicos com receptor de acetilcolina nicotìnica alfa7
CN1325500C (zh) 2002-04-18 2007-07-11 阿斯特拉曾尼卡有限公司 呋喃基化合物
AU2003224545B2 (en) 2002-04-18 2009-08-13 Astrazeneca Ab Thienyl compounds
MXPA04010190A (es) 2002-04-18 2005-02-03 Astrazeneca Ab Compuestos heterociclicos.
AU2003253686A1 (en) 2002-08-01 2004-02-23 Pharmacia & Upjohn Company Llc 1h-pyrazole and 1h-pyrrole-azabicyclic compounds with alfa-7 nachr activity
SE0202430D0 (sv) 2002-08-14 2002-08-14 Astrazeneca Ab New Compounds
SE0202465D0 (sv) 2002-08-14 2002-08-14 Astrazeneca Ab New compounds
RU2323217C2 (ru) 2002-08-14 2008-04-27 Ньюросерч А/С Новые хинуклидиновые производные и их применение
EP1531820A1 (en) 2002-08-30 2005-05-25 Memory Pharmaceuticals Corporation Anabaseine derivatives useful in the treatment of neurodegenerative diseases
SK288115B6 (sk) 2002-09-25 2013-09-03 Memory Pharmaceuticals Corporation Indazoles, pharmaceutical compositions comprising them and their use
MXPA05004723A (es) 2002-11-01 2005-12-05 Pharmacia & Upjohn Co Llc Compuestos que tienen ambas actividades del agonista alfa 7 nachr y el antagonista 5ht para el tratamiento de las enfermedades del snc.
AU2003269413A1 (en) 2002-11-01 2004-05-25 Pharmacia & Upjohn Company Llc Nicotinic acetylcholine agonists in the treatment of glaucoma and retinal neuropathy
US7273872B2 (en) 2002-12-06 2007-09-25 The Feinstein Institute For Medical Research Inhibition of inflammation using α 7 receptor-binding cholinergic agonists
CN1735441A (zh) 2002-12-11 2006-02-15 法玛西亚普强责任有限公司 治疗注意缺陷多动症的组合
KR20050085535A (ko) 2002-12-11 2005-08-29 파마시아 앤드 업존 캄파니 엘엘씨 알파 7 니코틴성 아세틸콜린 수용체 아고니스트와 다른화합물의 조합물을 사용한 질환의 치료 방법
US6917746B2 (en) 2002-12-17 2005-07-12 3M Innovative Properties Company Apparatus and method for creating a fiber optic circuit
US6777617B2 (en) 2002-12-30 2004-08-17 3M Innovative Properties Company Telecommunications terminal
MXPA05006861A (es) 2003-02-27 2005-12-12 Neurosearch As Derivados arildiazabiciclicos novedosos.
BRPI0412382A (pt) 2003-07-08 2006-09-19 Astrazeneca Ab composto , método para a verificação de novos compostos medicinais que se ligam a e modulam a atividade, por agonismo , agonismo parcial, ou antagonismo, do receptor de acetilcolina nicotìnico alfa7, método de tratamento ou profilaxia de uma doença ou condição humana, método para tratamento de jetlag, induzindo interrupção de fumar, vìcio em nicotina, abstinência, dor, e para colite ulcerativa, composição farmacêutica, e, método de tratamento ou prevenção de uma condição ou distúrbio que surge da disfunção de neurotransmissão do receptor de acetilcolina nicotìnico em um mamìfero, e, uso de um composto
CN1856497A (zh) 2003-09-25 2006-11-01 阿斯利康(瑞典)有限公司 配体
KR20060094962A (ko) 2003-10-21 2006-08-30 아스트라제네카 아베 스피로푸로피리딘 아릴 유도체
US20050137398A1 (en) 2003-12-22 2005-06-23 Jianguo Ji 3-Quinuclidinyl heteroatom bridged biaryl derivatives
US20050245531A1 (en) 2003-12-22 2005-11-03 Abbott Laboratories Fused bicycloheterocycle substituted quinuclidine derivatives
US20050137203A1 (en) 2003-12-22 2005-06-23 Jianguo Ji 3-quinuclidinyl amino-substituted biaryl derivatives
US20050137217A1 (en) 2003-12-22 2005-06-23 Jianguo Ji Spirocyclic quinuclidinic ether derivatives
US7160876B2 (en) * 2003-12-22 2007-01-09 Abbott Laboratories Fused bicycloheterocycle substituted quinuclidine derivatives
US20080227772A1 (en) * 2004-02-04 2008-09-18 Neurosearch A/S Diazabicyclic Aryl Derivatives as Nicotinic Acetylcholine Receptor Ligands
WO2006001894A1 (en) 2004-04-22 2006-01-05 Memory Pharmaceutical Corporation Indoles, 1h-indazoles, 1,2-benzisoxazoles, 1,2-benzoisothiazoles, and preparation and uses thereof
KR20070015607A (ko) 2004-05-07 2007-02-05 메모리 파마슈티칼스 코포레이션 1h-인다졸, 벤조티아졸, 1,2-벤조이속사졸,1,2-벤조이소티아졸, 및 크로몬 및 그의 제조법 및 용도
CA2584838A1 (en) * 2004-10-20 2006-05-04 Neurosearch A/S Novel diazabicyclic aryl derivatives and their medical use
MX2007006743A (es) 2004-12-15 2007-07-09 Astrazeneca Ab Ligandos del receptor de acetilcolina nicotinica.
CA2591817A1 (en) * 2004-12-22 2006-06-29 Memory Pharmaceuticals Corporation Nicotinic alpha-7 receptor ligands and preparation and uses thereof
CA2610795C (en) 2005-06-07 2015-01-06 University Of Florida Research Foundation, Inc. 3-arylidene-anabaseine compounds as alpha 7 nicotitnic receptor selective ligands
ATE482959T1 (de) 2005-08-22 2010-10-15 Targacept Inc Heteroarylsubstituierte diazatricycloalkane, verfahren zu deren herstellung und deren anwendung
BRPI0617534A2 (pt) 2005-09-23 2011-07-26 Memory Pharm Corp Composto, composição farmacêutica, método para a ativação/estimulação seletiva de receptores nicotínicos de a-7 em um paciente, método para o tratamento de um paciente que sofre de uma doença psicótica, uma doença neurodegenerativa que envolve uma disfunção do sistema colinérgico, e/ou uma condição de degeneração da memória e/ou da cognição, método para o tratamento de um paciente que sofre de demência e/ou uma outra condição com perda da memória, método para o tratamento de um paciente que sofre de degeneração da memória devida à degeneração cognitiva suave devida ao envelhecimento, mal de alzheimer, esquizofrenia, mal de parkinson, mal de huntington, mal de pick, mal de creutzfeldt-jakob, depressão, envelhecimento, trauma na cabeça, acidente vascular cerebral, hipoxia do cns, senilidade cerebral, demência de multiinfarto, hiv e/ou doença cardiovascular, método para o tratamento e/ou a prevenção da demência em um paciente com mal de alzheimer, método para o tratamento de um paciente para a retirada do álcool ou para o tratamento de um paciente com terapia anti-intoxicação, método para o tratamento de um paciente para conferir neuroproteção contra os danos associados com acidentes vasculares cerebrais e isquemia e excitotoxicidade induzida por glutamato, método para o tratamento de um paciente que sofre de vício de nicotina, dor, tontura de fuso horário, obesidade e/ou diabetes, método de indução de um paciente a parar de fumar, método para o tratamento de um paciente que sofre de degeneração cognitiva suave (mci), demência vascular (vad), declínio cognitivo associado com a idade (aacd), amnésia associada com a cirurgia de coração aberto, apreensão cardíaca, anestesia geral, déficits da memória devido à exposição a agentes anestésicos(...)
US8316104B2 (en) * 2005-11-15 2012-11-20 California Institute Of Technology Method and apparatus for collaborative system
SA08290475B1 (ar) * 2007-08-02 2013-06-22 Targacept Inc (2s، 3r)-n-(2-((3-بيردينيل)ميثيل)-1-آزا بيسيكلو[2، 2، 2]أوكت-3-يل)بنزو فيوران-2-كربوكساميد، وصور أملاحه الجديدة وطرق استخدامه
EP2633868A1 (en) * 2008-02-13 2013-09-04 Targacept, Inc. Combination of alpha 7 nicotinic agonists and antipsychotics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987453B2 (en) 2006-11-06 2015-03-24 Abbvie Inc. Azaadamantane derivatives and methods of use
EP2296640A1 (en) * 2008-05-12 2011-03-23 Targacept Inc. Methods for preventing the development of retinopathy by the oral administration of nnr ligands

Also Published As

Publication number Publication date
CN103172628A (zh) 2013-06-26
EP2409703A1 (en) 2012-01-25
US20110124678A1 (en) 2011-05-26
AU2008283807A1 (en) 2009-02-05
BRPI0814889A2 (pt) 2017-05-23
PE20121820A1 (es) 2013-01-23
ME01508B (me) 2014-04-20
US20120129885A1 (en) 2012-05-24
NZ582986A (en) 2012-01-12
SI2182949T1 (sl) 2013-10-30
EP2431037B1 (en) 2016-11-30
NZ582828A (en) 2011-09-30
NO20100077L (no) 2010-02-26
PT2182949E (pt) 2013-02-14
EP2431037A1 (en) 2012-03-21
US20110263859A1 (en) 2011-10-27
DK2431037T3 (en) 2017-02-13
JP5358573B2 (ja) 2013-12-04
US8846715B2 (en) 2014-09-30
HUE030387T2 (en) 2017-05-29
ECSP10010007A (es) 2010-07-30
MX2010001293A (es) 2011-02-25
PH12012501513A1 (en) 2014-04-28
AR067775A1 (es) 2009-10-21
SA08290475B1 (ar) 2013-06-22
EP2182949B1 (en) 2013-01-02
CO6260080A2 (es) 2011-03-22
ZA201000719B (en) 2010-11-24
CA2694504C (en) 2014-01-07
RU2012140148A (ru) 2014-03-27
TWI429435B (zh) 2014-03-11
EP2465501A1 (en) 2012-06-20
KR20100051684A (ko) 2010-05-17
CL2008002271A1 (es) 2008-12-19
RS52743B (sr) 2013-08-30
BRPI0815009A2 (pt) 2015-03-03
NO20100078L (no) 2010-02-26
US8119659B2 (en) 2012-02-21
CL2013002227A1 (es) 2013-11-08
CN101784273B (zh) 2017-01-18
PL2182949T3 (pl) 2013-06-28
AU2008283813A1 (en) 2009-02-05
MY148002A (en) 2013-02-28
US20090048290A1 (en) 2009-02-19
EP2465501B1 (en) 2016-10-05
ECSP10010008A (es) 2010-04-30
HK1140968A1 (en) 2010-10-29
US7981906B2 (en) 2011-07-19
RU2012140182A (ru) 2014-03-27
WO2009018505A1 (en) 2009-02-05
ES2611139T3 (es) 2017-05-05
EP2182949A1 (en) 2010-05-12
CN101784273A (zh) 2010-07-21
SA112330303B1 (ar) 2014-11-10
AU2012203288B2 (en) 2013-08-29
CN106831755A (zh) 2017-06-13
UY31265A (es) 2009-12-14
EP2484363A1 (en) 2012-08-08
TW201402117A (zh) 2014-01-16
KR20100063043A (ko) 2010-06-10
CL2013002226A1 (es) 2013-11-15
JP2010535252A (ja) 2010-11-18
JP2013231070A (ja) 2013-11-14
US20140024673A1 (en) 2014-01-23
CA2694510A1 (en) 2009-02-05
JP5852611B2 (ja) 2016-02-03
CN101868237A (zh) 2010-10-20
HRP20130286T1 (en) 2013-06-30
AU2008283807B2 (en) 2012-03-29
JP2013231071A (ja) 2013-11-14
TW200914004A (en) 2009-04-01
TW201402116A (zh) 2014-01-16
EP2185152A2 (en) 2010-05-19
PE20090566A1 (es) 2009-05-13
JP6106549B2 (ja) 2017-04-05
PE20121821A1 (es) 2013-01-23
WO2009018511A3 (en) 2009-04-23
ES2606752T3 (es) 2017-03-27
DK2182949T3 (da) 2013-04-02
US8541446B2 (en) 2013-09-24
JP2010535251A (ja) 2010-11-18
US20150045386A1 (en) 2015-02-12
IL218976A0 (en) 2012-05-31
CO6260081A2 (es) 2011-03-22
MX346451B (es) 2017-03-17
ES2415107T3 (es) 2013-07-24
MX346748B (es) 2017-03-29
CY1113561T1 (el) 2016-06-22
PH12012501514A1 (en) 2014-04-28
CA2694504A1 (en) 2009-02-05
AU2012203288A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2484363A1 (en) (2S,3R)-N-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-5-methylthiophene-2-carboxamide
US20140234270A1 (en) Treatment wth alphat selective ligands
JP6420860B2 (ja) グルコシルセラミド合成酵素阻害剤
JP7116063B2 (ja) 選択的ヤヌスキナーゼ阻害剤としてのアミノピラゾール類
CA2677296A1 (en) Therapeutic agents
US20110059947A1 (en) Alpha 7 nicotinic agonists and antipsychotics
US10196358B2 (en) KCNQ2-5 channel activator
JP2010534206A (ja) ピラゾロ[1,5−a]ピリミジン誘導体
EP2976338B1 (en) N-(2-cyano heterocyclyl)pyrazolo pyridones as janus kinase inhibitors
CN101534833B (zh) 烟碱脱敏剂及选择、测试及使用它们的方法
CN109790170B (zh) Gaba(a)受体调节剂和控制哮喘中气道高反应性和炎症的方法
KR20150079951A (ko) 간 질환의 치료 방법
HK1169333A (en) (2s,3r)-n-(2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-5-methylthiophene-2-carboxamide
HK1167080A (en) Treatment with alpha7-selective ligands
CN102202665A (zh) 包含毒蕈碱性受体拮抗剂和另一种活性成分的药物产品
TW202543610A (zh) 具有s1p受體拮抗活性的雜環衍生物
HK1160802A (en) TREATMENT WITH ALPHA α7-SELECTIVE LIGANDS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101593.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2694510

Country of ref document: CA

Ref document number: 2008283813

Country of ref document: AU

Ref document number: 12010500192

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 582828

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/001293

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010520219

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008782589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008283813

Country of ref document: AU

Date of ref document: 20080801

Kind code of ref document: A

Ref document number: 20107004202

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010010148

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2010107462

Country of ref document: RU

Ref document number: A201002309

Country of ref document: UA

Ref document number: 10024587

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: PI 2010000502

Country of ref document: MY

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08782589

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12674327

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0814889

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100201