KR20100063043A - 대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제 - Google Patents

대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제 Download PDF

Info

Publication number
KR20100063043A
KR20100063043A KR1020107004202A KR20107004202A KR20100063043A KR 20100063043 A KR20100063043 A KR 20100063043A KR 1020107004202 A KR1020107004202 A KR 1020107004202A KR 20107004202 A KR20107004202 A KR 20107004202A KR 20100063043 A KR20100063043 A KR 20100063043A
Authority
KR
South Korea
Prior art keywords
azabicyclo
pyridinyl
methyl
oct
compound
Prior art date
Application number
KR1020107004202A
Other languages
English (en)
Inventor
머로언 벤셰리프
마리오 비. 마레로
Original Assignee
타가셉트 인코포레이티드
메디컬 칼리지 오브 조지아 리서치 인스티튜트, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39945177&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20100063043(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 타가셉트 인코포레이티드, 메디컬 칼리지 오브 조지아 리서치 인스티튜트, 아이엔씨. filed Critical 타가셉트 인코포레이티드
Publication of KR20100063043A publication Critical patent/KR20100063043A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/26Psychostimulants, e.g. nicotine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Psychology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 대사 질환을 치료 또는 예방하기 위한 방법, 용도, 및 선택적 α7 nAChR 효능제(agonist) 화합물을 포함한다.

Description

대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제{Alpha7 nAChR agonists for treating or preventing metabolic disorders}
관련 출원에 대한 교차-인용
본 출원은 2007년 9월 12일에 제출된 미국 임시출원 제60/971,654호, 2007년 8월 2일에 제출된 미국 임시출원 제60/953,610호, 2007년 8월 2일에 제출된 미국 임시출원 제60/953,613호 및 2007년 8월 2일에 제출된 미국 임시출원 제60/953,614호에 기초하여 우선권을 주장하며, 상기 각 출원은 그 전체가 참조에 의해 본 명세서에 포함된다.
본 발명은 대사 질환의 치료 또는 예방을 위한 방법, 용도, 및 선택적 α7 nAChR 효능제(agonist)를 포함한다.
인슐린 저항성 또는 타입 2 당뇨병(Type 2 diabetes mellitus, T2DM)을 갖는 다수의 환자들은 종종 증후군 X, 또는 대사 증후군으로 통칭되는 여러 증상들을 갖는다. 대사 증후군(metabolic syndrome)은 심혈관 질환 및 당뇨병에 대한 위험도를 증가시키는 의학적 질환의 조합이다. 대사 증후군은 미국 인구의 25%에 영향을 미치며 (대사) 증후군 X, 인슐린 저항성 증후군, 또는 Reaven 증후군과 같은 다양한 다른 명칭으로 알려져 있다. 대사 증후군으로 진단된 환자는 일반적으로 하기의 5개의 증상으로 구성된 군으로부터 선택된 3개 또는 그 이상의 증상을 보인다: (1) 복부 비만; (2) 고중성지방혈증; (3) 낮은 HDL(high-density lipoprotein) 콜레스테롤; (4) 고혈압; 및 (5) 타입 2 당뇨병의 특징적인 범위 내일 수 있는, 상승된 공복 혈당(elevated fasting glucose). 이 증상들 각각은 대사 증후군 및 그의 증상의 정의에 관해 참조에 의해 본 명세서에 포함된, 최근에 발표된 Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III, or ATP III), National Institutes of Health, 2001, NIH Publication No. 01-3670에 정의된다. 증상 및 특징은 타입 2 당뇨병, 인슐린 저항성, 고혈압, 허리 주위를 중심으로 한 지방 축적, 저하된 HDL, 상승된 중성지방, 및 상승된 요산 수준을 포함한다. 일차적인 임상적 문제는 비만, 및 과다한 지방증(adiposity)에 의해 유발된 인슐린 저항성 상태에 수반된 상태인 당뇨병의 높은 발생률이다. 골격근, 간 및 지방 조직에서 인슐린 저항성은 포도당 이용(glucose disposal)을 지연시키고 유리 지방산의 방출 및 대사 증후군과 연관된 특징적인 중성지방 이상지질혈증(triglyceride dyslipidemia)을 초래한다. 식후 혈당 및 궁극적으로 공복 혈당 수준의 증가는 β-세포 비대 및 궁극적으로 랑게르한스섬의 부전(eventual failure of the Islets) 및 프랭크 타입 2 당뇨병(frank type 2 diabetes)을 유발하는 상태인, 대상성 고인슐린혈증(compensatory hyperinsulinemia)을 초래한다. 대사 증후군에 대한 상이한 정량적 포함 기준은 the National Diabetes Federation, the World Health Organization, the European Group for the Study of Insulin Resistance (1999) 및 the National Cholesterol Education Program Adult Treatment Panel III (2001)에 의해 제안되었다. 현성 당뇨병(overt diabetes mellitus)을 갖거나 또는 발병하는지 여부에 관계 없이, 대사 증후군 환자들은 타입 2 당뇨병과 함께 일어나는, 죽상경화증 및 관상동맥 심장질환과 같은 대혈관(macrovascular) 및 미세혈관 합병증을 발병할 증가된 위험도를 갖는다.
당뇨병 및 대사 증후군과 함께 경험되는 고혈당증 외에, 일부 약물 치료법이 유사한 증후성(symptomatic) 효과를 유발할 수 있다. 3-히드록시-3-메틸글루타릴-코엔자임 A (HMG-CoA) 리덕타아제 억제제로도 불리는 스타틴은 고콜레스테롤혈증의 치료에서 널리 이용되는 콜레스테롤 합성의 강력한 억제제이다. 여러 연구가 심혈관질환의 이환율 및 사망률을 감소시키는 스타틴의 유용한 효과를 입증했다. 그러나, 임상 및 전임상 연구로부터, 스타틴에 의한 치료가 증가된 당혈증을 포함한 원치않는 효과를 갖는다는 최근의 증거가 있다. 예를 들면, Ohmura et al., Acute Onset and Worsening of Diabetes Concurrent with Administration of Statins, Endocrine Journal, 52: 369-372, 2005; Sasaki et al., Statins: Beneficial or Adverse For Glucose metabolism (review), Journal of Atherosclerosis and Thrombosis 13: 123-129, 2006; Takano et al., Influence of Statins on Glucose tolerance in Patients with Type Il Diabetes mellitus, Journal of Atherosclerosis and Thrombosis 13: 95-100, 2006; and Nakata et al., Effects of Statins On the Adipocyte Maturation and Expression of Glucose Transporter 4; Implications in Glycemic Control, Diabetologia 49: 1881-1892, 2006을 참조한다.
고혈당증 외에, 스타틴에 의한 장기 치료는 알쯔하이머병에 대한 위험도를 증가시키는 것과 같은 원치않는 효과를 갖는다는 역학 연구로부터의 증거가 있다. 니코틴은 무혈청 배지에서 배양된 PC12 세포의 사멸을 억제하는 것으로 확인되었다. 또한, 선택적 α7 수용체 효능제, 3-(4)-디메틸아미노신나밀리딘 아나바세인 (DMAC), 및 nAChR (α7 서브타입 포함) 활성제, ABT-418도 세포보호 효과를 갖는 것으로 보고되었다. 또한, 니코틴은 PC12 세포에서 JAK2(growth promoting enzyme janus kinase 2)를 촉진하여 성장을 활성화시키고, JAK2 특이적 억제제 AG-490과 이 세포들의 전-인큐베이션(pre-incubation)은 신경보호성 신호전달 캐스캐이드(neuroprotective signaling cascade)의 니코틴-유도 활성화를 차단한다는 것이 보고되었다.
하기 참조문헌들이 관련 질환, 및 관리와 예방의 배경 이해를 위해 참조에 의해 본 명세서에 포함된다: Banes AK, Shaw S, Jenkins J, Redd H, Amiri F, Pollock DM and Marrero MB, Angiotensin Il blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomerul, Am J Physiol Renal Physiol 286: F653-F659, 2004; Bartholomeusz C, ltamochi H, Yuan LX, Esteva FJ, Wood CG, Terakawa N, Hung MC and Ueno NT, Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-expressing ovarian cancer xenograft model, Cancer Res 65: 8406-8413, 2005; Cho-Chung YS, Park YG and Lee YN, Oligonucleotides as transcription factor decoys, Curr Opin MoI Ther 1 : 386-392, 1999; Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Lin S, Sahai A and Kanwar YS. 3-Hydroxy-3-Methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation ofRho GTPase/p21 signaling pathway: Implications for diabetic nephropathy, Proc Natl Acad Sci U S A 99: 8301-8305, 2002; de Fiebre CM, Meyer EM, Henry JC, Muraskin Sl, Kem WR and Papke RL. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic α7/125l-α-bungarotoxin receptor subtypes, MoI. Pharmacol. 47: 164-171, 1995; Deigner HP, Haberkom U and Kinscherf R, Apoptosis modulators in the therapy of neurodegenerative diseases, Expert Opin. Investig. Drugs 9: 747-764, 2000; Donnelly-Roberts DL, Xue IC, Arneric SP and Sullivan JP, In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418, Brain Res 719: 36-44, 1996; Epstein M and Campese VM, Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function; Am J Kidney Dis 45: 2-14, 2005; Garcia-Roman N, Alvarez AM, Toro MJ, Montes A and Lorenzo MJ, Lovastatin Induces Apoptosis of Spontaneously Immortalized Rat Brain Neuroblasts: Involvement of Nonsterol lsoprenoid Biosynthesis Inhibition, Molecular and Cellular Neuroscience 17: 329-341, 2001; Kastelein JJ, The future oflipid- lowering therapy: the big picture, Neth J Med 61 : 35-39, 2003; Kirito K, Watanabe T, Sawada K, Endo H, Ozawa K and Komatsu N, Thrombopoietin regulates Bcl-xL gene expression through Statδ and phosphatidylinositol 3-kinase activation pathways, J Biol Chem 277: 8329-8337, 2002; Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell 91 : 479-489, 1997; Li Y, Higashi Y, ltabe H, Song YH, Du J and Delafontaine P, Insulin-Like Growth Factor-1 Receptor Activation Inhibits Oxidized LDL-lnduced Cytochrome C Release and Apoptosis via the Phosphatidylinositol 3 Kinase/Akt Signaling Pathway, Arterioscler Thromb Vase Biol 23: 2178-2184, 2003; Mata P, Alonso R and Badimon J, Benefits and risks of simvastatin in patients with familial hypercholesterolemia, Drug Saf 26: 769-786, 2003; McKay DM, Botelho F, Ceponis PJ and Richards CD, Superantigen immune stimulation activates epithelial STAT-1 and Pl 3-K: Pl 3-K regulation of permeability, Am J Physiol Gastrointest Liver Physiol 279: G1094-G1103, 2000; Meske V, Albert F, Richter D, Schwarze J and Ohm TG, Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer's disease, European Journal of Neuroscience 17: 93-102, 2003; Newman MB, Arendash GW, Shytle RD, Bickford PC, Tighe T and Sanberg PR, Nicotine's oxidative and antioxidant properties in CNS, Life Sciences 71 : 2807-2820, 2002; Marrero MB, Papke RL, Bhatti BS, Shaw S, Bencherif M. The neuroprotective effect of 2-(3-pyridyl)-1-azabicyclo[3.2.2]nonane(TC-1698), a novel alpha7 ligand, is prevented through angiotensin Il activation of a tyrosine phosphatase. J. Pharmacol Exp Ther. 2004 Apr;309(1): 16-27; Yamashita H, Nakamura S. Nicotine rescues PC12 cells from death induced by nerve growth factor deprivation. Neurosci. Lett. 1996 Aug 2;213(2): 145-7; Isomaa, B. A major health hazard: the metabolic syndrome. Life Sci. 73, 2395-2411 (2003); Sykiotis,G.P. & Papavassiliou, A.G. Serine phosphorylation of Insulin Receptor Substrate-1 : A novel target for the reversal of insulin resistance. MoI. Endocrinol. 15, 1864-1869 (2001); Dandona, P., Aljada, A. & Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol., 25, 4-7 (2004); Miao, F.J. P., Green, P., Benowitz, N. & Levine, J. D., Vagal modulation of spinal nicotine-induced inhibition of the inflammatory response mediated by descending antinociceptive controls, Neuropharmacology, 45, 605- 611 (2003); Borovikova, L.V. et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neurosci.: Basic and Clinical, 85, 141-147 (2000); Borovikova, L.V. et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, 405, 458-462 (2000); Wang, H. et al., Nicotinic 아세틸choline receptor α7 subunit is an essential regulator of inflammation, Nature, 421, 384- 387 (2003); de Jonge, W.J. & Ulloa, L., The alpha7 nicotinic 아세틸choline receptor as a pharmacological target for inflammation, British J. Pharmacol., 151, 915-929 (2007); Fornari, A. et al., Nicotine withdrawal increases body weight, neuropeptide Y and Agouti- related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice, Neurosci. Lett., 411, 72-76 (2007); Asante-Appiah, E. & Kennedy, B.P., Protein tyrosine phosphatases: the quest for negative regulators of insulin action, Am. J. Physiol. Endocrinol. Metabol. 284, E663-E670 (2003); Elchebly, M. et al., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1 B gene. Science, 283, 1544-1548 (1999); Dube, N. & Tremblay, M. L., Beyond the metabolic function ofPTPIB, Cell Cycle, 3, 550-553 (2004); Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S., Protection from obesity-induced insulin resistance in mice lacking TNF-α function, Nature, 389, 610-614 (1997); Gallowitsch-Puerta, M. & Tracey, K.J., Immunologic role of the cholinergic antiinflammatory pathway and the nicotinic 아세틸choline alpha 7 receptor, Ann. N. Y. Acad. Sci. 1062, 209-19 (2005); Shaw, S., Bencherif, M. & Marrero, M.B., Janus kinase 2, an early target of αl nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1-42) amyloid, J. Biol. Chem., 277, 44920-44924 (2002); de Jonge, W.J. et al., Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway, Nat. Immunol., 6, 844-51 (2005); Ahima, R.S., Qi, Y. & Singhal, N. S., Adipokines that link obesity and diabetes to the hypothalamus, Prog. Brain Res., 153, 155-174 (2006); Kenner, K.A., Ezenta, A., Olefsky, J. M. & Kusari, J., Protein-tyrosine phosphatase 1B is a negative regulator of Insulin- and Insulin-like Growth Factor-l-stimulated signaling, J. Biol. Chem. 271, 19810-19816 (1996); Klaman, LD. et al., Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in Protein-tyrosine Phosphatase IB-deficient mice, MoI. Cell. Biol., 20, 5479-5489 (2000); Dadke, S., Kusari, J. & and Chernoff, J., Down-regulation of insulin signaling by Protein-tyrosine Phosphatase 1B is mediated by an N-terminal binding region, J. Biol. Chem., 275, 23642-23647 (2000); Cheng, A. et al., Attenuation ofleptin action and regulation of obesity by Protein- tyrosine Phosphatase 1B, Dev.Cell, 2, 497-503 (2002); Myers, M.P. et al. TYK2 and JAK2 are substrates of Protein-tyrosine Phosphatase 1B, J. Biol. Chem., 276, 47771-47774 (2001); and Bence, K.K. et al., Neuronal PTP1 B regulates body weight, adiposity and leptin action, Nat. Med., 12, 917-24 (2006).
발명의 요약
본 발명의 일 양태는 선택적 α7 nAChR 효능제(agonist)를 투여하는 단계를 포함하는, 대사 질환을 치료 또는 예방하는 방법을 포함한다.
본 발명의 또 다른 양태는 선택적 α7 nAChR 효능제를 투여하는 단계를 포함하는, 약물-유도 중추신경계 질환(drug-induced central nervous system disorder)을 치료 또는 예방하는 방법을 포함한다.
일 구체예에서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염이다.
일 구체예에서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염이다.
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다. 또 다른 구체예에서, 상기 고혈당증은 스타틴 요법(statin therapy)의 결과이다.
일 구체예에서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과이다.
본 발명의 일 양태는 하기 식의 화합물 또는 그의 약제학적으로 허용가능한 염을 투여하는 단계를 포함하는, 대사 질환을 치료 또는 예방하는 방법이다:
Figure pct00001
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다. 일 구체예에서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg이다.
본 발명의 일 양태는 대사 질환의 치료 또는 예방을 위한 약제의 제조에서 선택적 α7 nAChR 효능제의 용도이다.
또 다른 양태는 약물-유도 중추신경계 질환의 치료 또는 예방을 위한 약제의 제조에서 선택적 α7 nAChR 효능제의 용도이다.
일 구체예에서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염이다. 일 구체예에서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염이다.
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다.
일 구체예에서, 상기 고혈당증은 스타틴 요법의 결과이다. 일 구체예에서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과이다.
또 다른 양태는 대사 질환을 치료 또는 예방하기 위한 약제의 제조에서, 하기 식의 화합물 C 또는 그의 약제학적으로 허용가능한 염의 용도이다:
Figure pct00002
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다. 일 구체예에서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg이다.
본 발명의 또 다른 양태는 대사 질환의 치료 또는 예방에서 사용하기 위한 선택적 α7 nAChR 효능제 화합물이다.
본 발명의 또 다른 양태는 약물-유도 중추신경계 질환의 치료 또는 예방에서 사용하기 위한 선택적 α7 nAChR 효능제 화합물이다.
일 구체예에서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염이다. 일 구체예에서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염이다.
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다.
일 구체예에서, 상기 고혈당증은 스타틴 요법의 결과이다. 일 구체예에서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과이다.
본 발명의 또 다른 양태는 대사 질환의 치료 또는 예방에서 사용하기 위한 하기 식의 선택적 α7 nAChR 효능제 화합물 또는 그의 약제학적으로 허용가능한 염이다:
Figure pct00003
일 구체예에서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상이다. 일 구체예에서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg이다.
본 발명의 범위는 본 명세서에 기재된 양태(aspect), 구체예, 및 바람직한 구체예(preference)의 조합을 포함한다.
본 발명의 일 양태는 대사 증후군에 관여하는 주요한 생물학적 경로의 조절에서 α7 nAChR의 역할 및 대사 증후군을 치료하기 위한 신규한 치료 접근방법으로서 선택적 α7 nAChR 효능제의 잠재력을 포함한다. α7이 콜린성 염증 경로에 관여된 것으로 시사되었으나, 증거는 추정적인 선택적 길항제의 존재 하에 일부는 다소 열등한 약동학 또는 뇌 침투(brain penetration) 특성을 갖는 것인 비-선택적 효능제의 이용에만 근거한다. 따라서, 본 발명의 또 다른 양태는 α7 nAChR에 대한 높은 선택성을 갖는 화합물(하기에서 정의되고 화합물 A, B, 또는 C로 지칭됨)을 포함한다.
화합물 A는 하기에 표시된 (5-메틸-N-[(2S,3R)-2-(피리딘-3-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]티오펜-2-카르복사미드):
Figure pct00004
화합물 A,
또는 그의 약제학적으로 허용가능한 염이다. 이해되는 바와 같이, 대안적인 명명 규칙(naming covention)은 대안적인 명칭을 제공한다. 따라서, 화합물 A는 또한 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-일)-5-메틸티오펜-2-카르복사미드로도 지칭된다. 그와 같은 명명 규칙은 본 발명의 명확성에 영향을 미치지 않는다.
화합물 B는 하기에 표시된 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-(2-피리디닐)티오펜-2-카르복사미드:
Figure pct00005
화합물 B,
또는 그의 약제학적으로 허용가능한 염이다.
화합물 C는 하기에 표시된 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드:
Figure pct00006
화합물 C,
또는 그의 약제학적으로 허용가능한 염이다.
본 출원의 연구에서, α7-선택적 리간드가 체중 증가를 감소시키고, 혈당 수준을 정상화시키고, 인슐린 분비를 증가시키며, 당화된 헤모글로빈(glycated hemoglobin)을 감소시키고, 염증촉진성(pro-inflammatory) 사이토카인을 감소시키고, 중성지방을 감소시키며, 인슐린 저항성 글루코오스 부하 테스트(insulin resistance glucose tolerance test)를 정상화시키는 것에 의해 db/db 마우스에서 관찰된 대사 증후군을 억제한다는 것을 보여주는 증거가 제시되었다. 이 데이터는 α7-선택적 리간드가 대사 증후군(당뇨병 I 및 II, 죽상경화증, 당뇨병)의 관리를 위해 유용하다는 것을 나타낸다.
본 발명의 또 다른 양태는 증가된 혈당증을 포함한, 스타틴의 원치않는 부작용을 감소시키기 위해, 스타틴과 α7 선택적 리간드의 병용 투여(co-administration)에 관한 방법 및 조성물을 제공한다. 적절한 스타틴은 아토르바스타틴, 세리바스타틴, 플루바스타틴, 로바스타틴, 메바스타틴, 피타바스타틴, 프라바스타틴, 로수바스타틴, 심바스타틴, 및 HMG CoA 리덕타아제의 억제에 기반하여 정의된 추가적인 스타틴을 포함한다. 본 명세서에서 상품명이나 일반 명칭이 이용될 수 있으나, 그와 같은 약물 제품 중의 기저(underlying) 활성 성분(들)이 지칭될 수 있다.
화합물
본 발명에 따라 유용한 화합물은 본 명세서에서 화합물 A, B, 및 C에 의해 예시된 α7 NNR 선택적 리간드이다.
화합물 A, B 및 C는 (참조에 의해 그 전체가 본 명세서에 포함된) 미국특허 제6,953,855호에 기재된 화합물의 속(genus)에 속하는 일원들이다. 미국특허 제6,953,855호는 하기 식 1에 의해 표시된 화합물을 포함한다:
Figure pct00007
식 1
식 1에서, m 및 n은 개별적으로 1 또는 2의 값을 가질 수 있고, p는 1, 2, 3 또는 4의 값을 가질 수 있다. 상기 식에서, X는 산소 또는 질소(즉, NR')이고, Y는 산소 또는 황이며, Z는 질소(즉, NR'), 공유 결합 또는 연결기 종(linker species), A이다. A는 -CR'R"-, -CR'R"- CR'R"-, -CR'=CR'-, 및 -C2-로부터 선택되고, R' 및 R"은 하기에 정의된 바와 같다. Z가 공유 결합 또는 A인 경우, X는 질소이어야 한다. Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리(carbocyclic) 또는 헤테로고리 아릴기이고; Cy는 미치환 또는 치환 5-원 또는 6-원 헤테로방향족 고리이다. 따라서, 본 발명은 Ar이 카르보닐기-함유 관능기, 예를 들면, 아미드, 카르바메이트, 우레아, 티오아미드, 티오카르바메이트 또는 티오우레아 관능기에 의해 아자비시클에 연결된 것인 화합물을 포함한다. 또한, 아미드 및 티오아미드 관능기의 경우, Ar은 직접 카르보닐(또는 티오카르보닐)기에 결합될 수 있거나, 또는 연결기 A를 통해 카르보닐(또는 티오카르보닐)기에 연결될 수 있다. 또한, 본 발명은 5-원, 6-원, 또는 7-원 고리를 포함하고, 총 7개, 8개, 또는 9개의 고리 원자를 갖는 1-아자비시클(예를 들면, 1-아자비시클로[2.2.1]헵탄, 1-아자비시클로[3.2.1]옥탄, 1-아자비시클로[2.2.2]옥탄, 및 1-아자비시클로[3.2.2]노난)을 포함하는 화합물을 포함한다.
일 구체예에서, p의 값은 1이고, Cy는 3-피리디닐 또는 5-피리미디닐이고, X 및 Y는 산소이고, Z는 질소이다. 또 다른 구체예에서, p의 값은 1이고, Cy는 3-피리디닐 또는 5-피리미디닐이며, X 및 Z는 질소이고, Y는 산소이다. 제3 구체예에서, p의 값은 1이고, Cy는 3-피리디닐 또는 5-피리미디닐이며, X는 질소이고, Y는 산소이며, Z는 (카르보닐과 Ar 간의) 공유 결합이다. 제4 구체예에서, p의 값은 1이고, Cy는 3-피리디닐 또는 5-피리미디닐이며, X는 질소이고, Y는 산소이며, Z는 A(카르보닐과 Ar 간의 연결기 종)이다.
식 1의 화합물은 하나 이상의 비대칭 탄소를 가지며, 따라서, 라세미 혼합물, 거울상이성질체 및 부분입체이성질체(diastereomer)의 형태로 존재한다. 비대칭 탄소에서 상대적 입체화학 및 절대적 입체화합은 가변적이다(예를 들면, 시스 또는 트랜스, R 또는 S). 또한, 상기 화합물의 일부는 탄소-탄소 이중 결합에 대해 E 이성질체 및 Z 이성질체로 존재한다. 모든 이와 같은 개별적인 이성질체 화합물 및 그들의 혼합물도 식 1의 범위 내에 속하도록 의도된다.
식 1에서 사용된, Ar ("아릴(aryl)")은 방향족 고리가 5-원 고리 또는 6-원 고리일 수 있는 것인, 단일고리형 및 융합된 다중고리형, 탄소고리 및 헤테로고리 방향족 고리를 포함한다. 대표적인 단일고리 아릴기는 페닐, 푸라닐, 피롤릴, 티에닐, 피리디닐, 피리미디닐, 옥사졸릴, 이속사졸릴, 피라졸릴, 이미다졸릴, 티아조lyl, 이소티아졸릴 등을 포함하나, 이에 한정되지 않는다. 융합된 다중고리 아릴기는 융합된 고리계 내의 하나 이상의 고리인 5-원 또는 6-원 방향족 또는 헤테로방향족 고리를 포함하는 방향족기이다. 대표적인 융합된 다중고리 아릴기는 나프탈렌, 안트라센, 인돌리진, 인돌, 이소인돌, 벤조푸란, 벤조티오펜, 인다졸, 벤즈이미다졸, 벤즈티아졸, 푸린, 퀴놀린, 이소퀴놀린, 신놀린(cinnoline), 프탈라진(phthalazine), 퀴나졸린(quinazoline), 퀴녹살린(quinoxaline), 1,8-나프티리딘, 프테리딘, 카르바졸, 아크리딘, 페나진, 페노티아진, 페녹사진, 및 아줄렌을 포함한다.
식 1에서 사용된, "Cy"기는 5-원 및 6-원 고리 헤테로방향족이다. 대표적인 Cy기는 피리디닐, 피리미디닐, 푸라닐, 피롤릴, 티에닐, 옥사졸릴, 이속사졸릴, 피라졸릴, 이미다졸릴, 티아졸릴, 이소티아졸릴 등을 포함하고, 상기에서 피리디닐 이 바람직하다.
개별적으로, Ar 및 Cy는 미치환일 수 있거나 또는 알킬, 알케닐, 헤테로시클릴, 시클로알킬, 아릴, 치환된 아릴, 아릴알킬, 치환된 아릴알킬, 할로(예를 들면, F, Cl, Br, 또는 I), -OR', -NR'R", -CF3, -CN, -NO2, -C2R', -SR', -N3, -C(=O)NR'R", -NR'C(=O)R", -C(=O)R', -C(=O)OR', -OC(=O)R', -O(CR'R")rC(=O)R', -O(CR'R")rNR"C(=O)R', -0(CR'R")rNR"SO2R', -OC(=O)NR'R", -NR'C(=O)OR", -SO2R', -SO2NR'R", 및 -NR'SO2R"과 같은 1개, 2개 또는 3개의 치환기에 의해 치환될 수 있고, 상기에서 R' 및 R"은 개별적으로 수소, C1-C8 알킬(예를 들면, 메틸, 에틸, 또는 이소프로필과 같은 직쇄형 또는 분지형 알킬, 바람직하게는 C1-C5), 시클로 알킬(예를 들면, C3 -8 고리형 알킬), 헤테로시클릴, 아릴 또는 아릴알킬(예를 들면, 벤질)이고, r은 1 내지 6의 정수이다. R' 및 R"은 또한 결합되어 고리형 관능기를 형성할 수 있다.
식 1의 화합물은 본 발명에 따라 유용한 산 부가염(acid addition salt)을 형성한다. 적합한 약제학적으로 허용가능한 염의 예는 클로라이드, 브로미드, 술페이트, 포스페이트 및 니트레이트와 같은 무기산 부가염; 아세테이트, 갈락타레이트, 프로피오네이트, 숙시네이트, 락테이트, 글리콜레이트, 말레이트, 타르트레이트, 시트레이트, 말리에이트, 푸마레이트, 메탄술포네이트, p-톨루엔술포네이트, 및 아스코르베이트와 같은 유기산 부가염; 아스파르테이트 및 글루타메이트와 같은 산성 아미노산에 의한 염을 포함한다. 상기 염은 일부 경우에 수화물 또는 에탄올 용매화물일 수 있다.
식 1의 대표적 화합물은 하기를 포함한다:
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-페닐카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-플루오로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-클로로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-브로모페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-플루오로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-클로로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-브로모페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-플루오로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-클로로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-브로모페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3,4-디클로로페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-메틸페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-비페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-메틸페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-비페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-메틸페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-비페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-시아노페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-시아노페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-시아노페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-트리플루오로메틸페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-디메틸아미노페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-메톡시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-페녹시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-메틸티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-페닐티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-메톡시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-페녹시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-메틸티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-페닐티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-메톡시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-페녹시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-메틸티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(4-페닐티오페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2,4-디메톡시페닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-티에닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-티에닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(3-벤조티에닐)카르바메이트,
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(1-나프틸)카르바메이트, 및
2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일 N-(2-나프틸)카르바메이트.
식 1의 대표적인 다른 화합물은 하기를 포함한다:
N-페닐-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-플루오로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-클로로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-브로모페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-플루오로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-클로로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-브로모페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-플루오로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-클로로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-브로모페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3,4-디클로로페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-메틸페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-비페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-메틸페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-비페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-메틸페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-비페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-시아노페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-시아노페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-시아노페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-트리플루오로메틸페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-디메틸아미노페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-메톡시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-페녹시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-메틸티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-페닐티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-메톡시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-페녹시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-메틸티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-페닐티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-메톡시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-페녹시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-메틸티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(4-페닐티오페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2,4-디메톡시페닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(2-티에닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-티에닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(3-벤조티에닐)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아,
N-(1-나프틸)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아, 및
N-(2-나프틸)-N'-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)우레아.
식 1의 대표적인 다른 화합물은 하기를 포함한다:
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-플루오로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-플루오로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-플루오로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-클로로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-클로로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-클로로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-브로모벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-브로모벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-브로모벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3,4-디클로로벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-메틸벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-메틸벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-페닐벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-페닐벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-페닐벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-시아노벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-시아노벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-시아노벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-트리플루오로메틸벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-디메틸아미노벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-메톡시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메톡시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-메톡시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-페녹시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-페녹시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-페녹시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-메틸티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-메틸티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-페닐티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-페닐티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-페닐티오벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2,4-디메톡시벤즈아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-브로모니코틴아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-6-클로로니코틴아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-페닐니코틴아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)푸란-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-브로모티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-메틸티오티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-페닐티오티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-메틸티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-브로모티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-클로로티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-(2-피리디닐)티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-5-아세틸티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-에톡시티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메톡시티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-4-아세틸-3-메틸-5-메틸티오티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)티오펜-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1-메틸피롤-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)피롤-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)인돌-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)인돌-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1-메틸인돌-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1-벤질인돌-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1H-벤즈이미다졸-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1-이소프로필-2-트리플루오로메틸-1H-벤즈이미다졸-5-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-1-이소프로필-1H-벤조트리아졸-5-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조[b]티오펜-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조[b]티오펜-3-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-3-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-5-니트로벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-5-메톡시벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-7-메톡시벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-7-에톡시벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸-5-클로로벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-6-브로모벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-4-아세틸-7-메톡시벤조푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-2-메틸벤조푸란-4-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)나프토[2,1-b]푸란-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)나프탈렌-1-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-6-아미노나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-3-메톡시나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-6-메톡시나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-1-히드록시나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-6-히드록시나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)-6-아세톡시나프탈렌-2-카르복사미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)3-페닐프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-플루오로페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-메톡시페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-메틸-3-페닐프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-플루오로페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-메틸페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-플루오로페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-메틸페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-푸릴)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-메톡시페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-브로모페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-메톡시페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-히드록시페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-브로모페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-클로로페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-히드록시페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-히드록시-3-메톡시페닐)프로프-2- 엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-티에닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-피리디닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-비페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(1-나프틸)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-티에닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-이소프로필페닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-메틸-3-페닐프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-푸릴)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-2-에틸-3-페닐프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-피리디닐)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3,4-디메틸티에노[2,3-b]티오펜-2-일)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(3-메틸티엔-2-일)프로프-2-엔아미드,
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(2-나프틸)프로프-2-엔아미드, 및
N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)-3-(4-메틸티오페닐)프로프-2-엔아미드.
본 발명에 따라 유용한, 제2 속(genus)의 α7 NNR 선택적 리간드(미국출원 제11/465,914호, 미국출원공개 제2007 00197579 A1호 참조; 또한, 국제특허출원공개 WO 2007/024814 A1 참조; 상기 각각은 그 전체가 참조에 의해 본 명세서에 포함됨)가 하기 식 2에 의해 표현된다:
Figure pct00008
식 2
식 2에서, Y는 산소 또는 황이고, Z는 질소(즉, NR') 또는 공유 결합이다. A는 결여되거나 또는 R' 및 R"은 하기에서 정의된 바와 같은 것인 -CR'R"-, -CR' R"-CR'R"-, -CR'=CR'-, 및 -C2-의 군으로부터 선택된 연결기(linker) 종이다. Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이고; Cy는 미치환 또는 치환 5-원 또는 6-원 헤테로방향족 고리이다. 따라서, 본 발명은 Ar이 피롤리딘 고리의 질소에서 카르보닐기-함유 관능기에 의해 디아자트리시클에 연결되어, 아미드 또는 우레아 관능기를 형성하는 것인 화합물을 포함한다. Ar은 직접 카르보닐기-함유 관능기에 결합될 수 있거나, 또는 연결기 A를 통해 카르보닐기-함유 관능기에 연결될 수 있다. 또한, 본 발명은 1-아자비시클로[2.2.2]옥탄을 포함한, 디아자트리시클을 포함하는 화합물을 포함한다. 식 2에 대한 지칭에서 사용된, "카르보닐기-함유 관능기(carbonyl group-containing functionality)"는 Y 및 Z는 본 명세서에서 정의된 바와 같은 것인 식 -C(=Y)-Z-의 모이어티이다.
일 구체예에서, Cy는 3-피리디닐 또는 5-피리미디닐이고, Y는 산소이며, Z는 공유 결합이고, A는 결실되어 존재하지 않는다. 또 다른 구체예에서, Cy는 3-피리디닐 또는 5-피리미디닐이고, Y는 산소이며, Z는 질소이고 A는 결실되어 존재하지 않는다. 제3 구체에에서, Cy는 3-피리디닐 또는 5-피리미디닐이고, Y는 산소이며, Z는 공유 결합이고, A는 연결기 종이다. 제4 구체예에서, Cy는 3-피리디닐 또는 5-피리미디닐이고, Y는 산소이며, Z는 질소이고, A는 연결기 종이다.
아자시클과 아자비시클 간의 결합(junciton)은 결합 부위에서 다양한 상대적 및 절대적 입체화학적 배열(예를 들면, 시스 또는 트랜스, R 또는 S)을 특징으로 할 수 있다. 상기 화합물은 하나 이상의 비대칭 탄소를 가지며 따라서, 라세미 혼합물, 거울상이성질체 및 부분입체이성질체의 형태로 존재할 수 있다. 또한, 상기 화합물의 일부는 탄소-탄소 이중 결합에 대해 E 이성질체 및 Z 이성질체로 존재한다. 모든 이와 같은 개별적인 이성질체 화합물 및 그들의 혼합물도 본 발명의 범위 내에 속하도록 의도된다.
식 2에서 사용된, Ar ("아릴(aryl)")은 방향족 고리가 5-원 고리 또는 6-원 고리일 수 있는 것인, 단일고리형 및 융합된 다중고리형, 탄소고리 및 헤테로고리 방향족 고리를 포함한다. 대표적인 단일고리 아릴기는 페닐, 푸라닐, 피롤릴, 티에닐, 피리디닐, 피리미디닐, 옥사졸릴, 이속사졸릴, 피라졸릴, 이미다졸릴, 티아졸릴, 이소티아졸릴 등을 포함하나, 이에 한정되지 않는다. 융합된 다중고리 아릴기는 융합된 고리계 내의 하나 이상의 고리인 5-원 또는 6-원 방향족 또는 헤테로방향족 고리를 포함하는 방향족기이다. 대표적인 융합된 다중고리 아릴기는 나프탈렌, 안트라센, 인돌리진, 인돌, 이소인돌, 벤조푸란, 벤조티오펜, 인다졸, 벤즈이미다졸, 벤즈티아졸, 푸린, 퀴놀린, 이소퀴놀린, 신놀린(cinnoline), 프탈라진(phthalazine), 퀴나졸린(quinazoline), 퀴녹살린(quinoxaline), 1,8-나프티리딘, 프테리딘, 카르바졸, 아크리딘, 페나진, 페노티아진, 페녹사진, 및 아줄렌을 포함한다.
식 2에서 사용된, "Cy"기는 5-원 및 6-원 고리 헤테로방향족이다. 대표적인 Cy기는 피리디닐, 피리미디닐, 푸라닐, 피롤릴, 티에닐, 옥사졸릴, 이속사졸릴, 피라졸릴, 이미다졸릴, 티아졸릴, 이소티아졸릴 등을 포함하고, 상기에서 피리디닐 이 바람직하다.
개별적으로, Ar 및 Cy는 미치환일 수 있거나 또는 알킬, 알케닐, 헤테로시클릴, 시클로알킬, 아릴, 치환된 아릴, 아릴알킬, 치환된 아릴알킬, 할로(예를 들면, F, Cl, Br, 또는 I), -OR', -NR'R", -CF3, -CN, -NO2, -C2R', -SR', -N3, -C(=O)NR'R", -NR'C(=O) R", -C(=O)R", -C(=O)OR", -OC(=O)R', -O(CR'R")rC(=O)R', -O(CR'R")rNR"C(=O)R', -0(CR'R")rNR"SO2R', -OC(=O)NR'R", -NR'C(=O)OR", -SO2R', -SO2NR'R", 및 -NR'SO2R"과 같은 1개, 2개 또는 3개의 치환기에 의해 치환될 수 있고, 상기에서 R' 및 R"은 개별적으로 수소, C1-C8 알킬(예를 들면, 메틸, 에틸, 또는 이소프로필과 같은 직쇄형 또는 분지형 알킬, 바람직하게는 C1-C5), 시클로 알킬(예를 들면, C3-8 고리형 알킬), 헤테로시클릴, 아릴 또는 아릴알킬(예를 들면, 벤질)이고, r은 1 내지 6의 정수이다. R' 및 R"은 또한 결합되어 고리형 관능기를 형성할 수 있다.
식 2의 화합물은 본 발명에 따라 유용한 산 부가염을 형성한다. 적합한 약제학적으로 허용가능한 염의 예는 클로라이드, 브로미드, 술페이트, 포스페이트 및 니트레이트와 같은 무기산 부가염; 아세테이트, 갈락타레이트, 프로피오네이트, 숙시네이트, 락테이트, 글리콜레이트, 말레이트, 타르트레이트, 시트레이트, 말리에이트, 푸마레이트, 메탄술포네이트, p-톨루엔술포네이트, 및 아스코르베이트와 같은 유기산 부가염; 아스파르테이트 및 글루타메이트와 같은 산성 아미노산에 의한 염을 포함한다. 상기 염은 일부 경우에 수화물 또는 에탄올 용매화물일 수 있다.
식 2의 대표적인 화합물은 하기를 포함한다:
5-벤조일-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-플루오로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-플루오로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-플루오로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-클로로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-클로로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-클로로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-브로모벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-브로모벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-브로모벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-요오도벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-요오도벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-요오도벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-메톡시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-메톡시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-메톡시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-메틸티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-메틸티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-메틸티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-페닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-페닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-페닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-페녹시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-페녹시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-페녹시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-페닐티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-페닐티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-페닐티오벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-시아노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-시아노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-시아노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-트리플루오로메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-트리플루오로메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-트리플루오로메틸벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-디메틸아미노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-디메틸아미노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-디메틸아미노벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-에티닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3-에티닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(4-에티닐벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3,4-디클로로벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2,4-디메톡시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(3,4,5-트리메톡시벤조일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(나프트-1-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(나프트-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(티엔-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(티엔-3-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(푸란-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(벤조티엔-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(벤조푸란-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(7-메톡시벤조푸란-2-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸, 및
5-(1H-인돌-3-일카르보닐)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸.
식 2의 대표적인 다른 화합물은 하기를 포함한다:
5-(페닐아세틸)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(디페닐아세틸)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(2-페닐프로파노일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸, 및
5-(3-페닐프로프-2-에노일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸.
식 2의 대표적인 다른 화합물은 하기를 포함한다:
5-N-페닐카르바모일-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-플루오로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-플루오로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-플루오로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-클로로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-클로로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-클로로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-브로모페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-브로모페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-브로모페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-요오도페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-요오도페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-요오도페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-메톡시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-메톡시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-메톡시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-메틸티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-메틸티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-메틸티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-페닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-페닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-페닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-페녹시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-페녹시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-페녹시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-페닐티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-페닐티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-페닐티오페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-시아노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-시아노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-시아노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-트리플루오로메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-트리플루오로메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-트리플루오로메틸페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-디메틸아미노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-디메틸아미노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-디메틸아미노페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2-에티닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3-에티닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-에티닐페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3,4-디클로로페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(2,4-디메톡시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(3,4,5-트리메톡시페닐)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(1-나프틸)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸, 및
5-(N-(2-나프틸)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸.
식 2의 대표적인 다른 화합물은 하기를 포함한다:
5-(N-벤질카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-브로모벤질)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(4-메톡시벤질)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸,
5-(N-(1-페닐에틸)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸, 및
5-(N-(디페닐메틸)카르바모일)-3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸.
이 화합물들 각각에서, 3-피리딘-3-일-1,5-디아자트리시클로[5.2.2.0<2,6>]운데칸 모이어티는 하기에 표시된, 부분적인 번호매김과 함께 제공된 구조를 갖는다:
Figure pct00009
상기에서 5번 위치로 표시된 위치에 있는 질소가 본 명세서에서 기재된 아미드, 티오아미드, 우레아 및 티오우레아의 형성에 관여된 질소이다.
본 발명에 따라 유용한 화합물은 또한 하기 식 3의 화합물을 포함한다:
Figure pct00010
식 3
식 3에서, X는 산소 또는 질소(즉, NR')이고, Z는 질소(즉, NR'), -CR'=CR'- 또는 공유 결합이며, Z가 -CR'=CR- 또는 공유 결합인 경우, X는 질소이어야 하고, X와 Z는 동시에 질소가 아니라는 조건을 만족시킨다. Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이고; R'은 수소, C1-C8 알킬(예를 들면, 메틸, 에틸, 또는 이소프로필과 같은 직쇄형 또는 분지형 알킬, 바람직하게는 C1-C5), 아릴, 또는 아릴알킬(예를 들면, 벤질)이다.
X가 산소이고, Z는 질소인 화합물이 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 97/30998 및 US특허 제6,054,464호에서 α7 선택적 리간드로 개시된다.
X가 질소이고 Z가 공유 결합인 화합물이 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 02/16355, WO 02/16356, WO 02/16358, WO 04/029050, WO 04/039366, WO 04/052461, WO 07/038367, 및 미국특허 제6,486,172호, 미국특허 제6,500,840호, 미국특허 제6,599,916호, 미국특허 제7,001,914호, 미국특허 제7,067,515호, 및 미국특허 제7,176,198호에서 α7 선택적 리간드로 개시된다.
X가 질소이고 Z는 -CR'=CR'-인 화합물이 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 01/036417 및 미국특허 제6,683,090에서 α7 선택적 리간드로 개시된다.
일반식 3에 따른 특정한 구체예는 하기를 포함한다:
N-((3R)-1-아자비시클로[2.2.2]옥트-3-일)-5-페닐티오펜-2-카르복사미드;
N-((3R)-1-아자비시클로[2.2.2]옥트-3-일)-2-페닐-1,3-티아졸-5-카르복사미드;
N-((3R)-1-아자비시클로[2.2.2]옥트-3-일)-5-페닐-1,3-옥사졸-2-카르복사미드;
N-((3R)-1-아자비시클로[2.2.2]옥트-3-일)-5-페닐-1,3,4-옥사디아졸-2-카르복사미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-히드록시페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(-4-아세트아미도페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-페녹시벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-벤질벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(페닐술파닐)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-3-페녹시벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-벤조일벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-플루오로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(2-플루오로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-플루오로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(2-클로로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-클로로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-클로로페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(2-메톡시페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-메톡시페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-메톡시페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-클로로페닐술파닐)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-메톡시페녹시)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-클로로페닐술파닐)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(4-클로로페닐술파닐)벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4-(3-메톡시페닐술파닐)-벤즈아미드;
N-[(3R)-1-아자비시클로[2.2.2]옥트-3-일]-4(2-메톡시페닐술파닐)-벤즈아미드;
N-(2-메틸-1-아자비시클로[2.2.2]옥트-3-일)4-페녹시벤즈아미드;
N-((3R)-1-아자비시클로[2.2.2]옥트-3-일)-4-(피리딘-3-일옥시)벤즈아미드;
N-페닐카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(4-브로모페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(4-메틸페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(4-메톡시페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(3,4-디클로로페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(4-시아노페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-페닐카르밤산 1-아자비시클로[2.2.1]헵탄-3-일 에스테르;
N-(3-메톡시페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-페닐티오카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(2-피리딜)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(1-나프틸)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-페닐카르밤산 (3R)-1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-페닐카르밤산 (3S)-1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(4-피리딜)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(m-비페닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(3-퀴놀리닐)카르밤산 1-아자비시클로[2.2.2]옥탄-3-일 에스테르;
N-(l-아자비시클로[2.2.2]옥트-3-일)(E-3-페닐프로펜아미드);
N-(l-아자비시클로[2.2.2]옥트-3-일)(3-페닐프로펜아미드); 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 4의 화합물을 포함한다:
Figure pct00011
식 4
식 4에서, Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이고; R은 수소, C1-C8 알킬(예를 들면, 메틸, 에틸, 또는 이소프로필과 같은 직쇄형 또는 분지형 알킬, 바람직하게는 C1-C5), 아릴, 또는 아릴알킬(예를 들면, 벤질)이다.
그와 같은 화합물은, 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 03/018585, WO 03/018586, WO 03/022856, WO 03/070732, WO 03/072578, WO 04/039815 및 WO 04/052348, 및 미국특허 제6,562,816호에서 α7 선택적 리간드로 개시된다.
일반식 4에 따른 특정한 구체예는 하기를 포함한다:
N-(7-아자비시클로[2.2.1]헵트-2-일)-5-페닐티오펜-2-카르보자미드;
N-(7-아자비시클로[2.2.1]헵트-2-일)-5-(2-피리디닐)티오펜-2-카르보자미드;
N-(7-아자비시클로[2.2.1]헵트-2-일)-5-페닐푸란-2-카르보자미드; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 5의 화합물을 포함한다:
Figure pct00012
식 5
식 5에서, n은 1 또는 2이고; Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이며; Z는 산소, -CC-, -CH=CH- 또는 공유 결합이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 00/058311, WO 04/016616, WO 04/016617, 04/061510, WO 04/061511 및 WO 04/ 076453에서 α7 선택적 리간드로 개시된다.
일반식 5에 따른 특정한 구체예는 하기를 포함한다:
(1,4-디아자비시클로[3.2.2]논-4-일)(4-메톡시페닐)메타논;
(1,4-디아자비시클로[3.2.2]논-4-일)(5-클로로푸란-2-일)메타논;
(1,4-디아자비시클로[3.2.2]논-4-일)(5-브로모티오펜-2-일)메타논;
(1,4-디아자비시클로[3.2.2]논-4-일)(4-페녹시페닐)메타논;
(1,4-디아자비시클로[3.2.2]논-4-일)(5-페닐푸란-2-일)메타논;
(1,4-디아자비시클로[3.2.2]논-4-일)(5-(3-피리디닐)티오펜-2-일)메타논;
1-(1,4-디아자비시클로[3.2.2]논-4-일)-3-페닐프로페논; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 하기 식 6의 화합물을 포함한다:
Figure pct00013
식 6
식 6에서, Ar은 미치환 또는 치환, 융합된 다중고리, 헤테로고리 아릴기이고; Z는 -CH2- 또는 공유 결합이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 03/119837 및 WO 05/111038 및 미국특허 제6,881,734호에서 α7 선택적 리간드로 개시된다.
일반식 6에 따른 특정한 구체예는 하기를 포함한다:
4-벤족사졸-2-일-1,4-디아자비시클로[3.2.2.]노난;
4-벤조티아졸-2-일-1,4-디아자비시클로[3.2.2.]노난;
4-벤족사졸-2-일-1,4-디아자비시클로[3.2.2.]노난;
4-옥사졸로[5,4-b]피리딘-2-일-1,4-디아자비시클로[3.2.2.]노난;
4-(1H-벤즈이미다졸-2-일-1,4-디아자비시클로[3.2.2.]노난; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 하기 식 7의 화합물을 포함한다:
Figure pct00014
식 7
식 7에서, Ar은 미치환 또는 치환, 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이고; X는 CH 또는 N이며; Z는 산소, 질소(NR) 또는 공유 결합이고; R은 H 또는 알킬이다. 선택적으로, "Z-Ar"는 식 7에서 결실된다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 00/042044, WO 02/096912, WO 03/087102, WO 03/087103, WO 03/087104, WO 05/030778, WO 05/042538 및 WO 05/066168, 및 미국특허 제6,110,914호, 미국특허 제6,369,224호, 미국특허 제6,569,865호, 미국특허 제6,703,502호, 미국특허 제6,706,878호, 미국특허 제6,995,167호, 미국특허 제7,186,836호 및 미국특허 제7,196,096호에서 α7 선택적 리간드로 개시된다.
일반식 7에 따른 특정한 구체예는 하기를 포함한다:
스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-페닐스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-(3-푸라닐)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-(2-티에닐)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-(N-페닐-N-메틸아미노)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-(N-3-피리디닐-N-메틸아미노)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
5'-(2-벤조푸라닐)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3- b]피리딘];
5'-(2-벤조티아졸릴)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3- b]피리딘];
5'-(3-피리디닐)스피로[1-아자비시클로[2.2.2]옥탄-3,2'-(3'H)-푸로[2,3-b]피리딘];
및 이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 8의 화합물을 포함한다:
Figure pct00015
식 8
식 8에서, Ar은 미치환 또는 치환, 탄소고리 또는 헤테로고리 아릴기이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 05/005435 및 WO 06/065209에서 α7 선택적 리간드로 개시된다.
일반식 8에 따른 특정한 구체예는 하기를 포함한다:
3'-(5-페닐티오펜-2-일)스피로[1-아자비시클로[2.2.2]옥탄-3,5'-옥사졸리딘]-2'-온;
3'-(5-(3-피리디닐)티오펜-2-일)스피로[1-아자비시클로[2.2.2]옥탄-3,5'-옥사졸리딘]-2'-온; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 9의 화합물을 포함한다:
Figure pct00016
식 9
식 9에서, Ar은 미치환 또는 치환(바람직하게는 아릴 또는 아릴옥시 치환기에 의해 치환된), 단일고리 또는 융합된 다중고리, 탄소고리 또는 헤테로고리 아릴기이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 04/016608, WO 05/066166, WO 05/066167, WO 07/018738, 및 미국특허 제7,160,876호에서 α7 선택적 리간드로 개시된다.
일반식 9에 따른 특정한 구체예는 하기를 포함한다:
2-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1H-인돌;
3-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1H-인돌;
4-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1H-인돌;
5-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1H-인돌;
6-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1H-인돌;
5-[6-(1-아자비시클로[2.2.2]옥트-3-일옥시)피리다진-3-일]-1H-인돌;
4-[6-(1-아자비시클로[2.2.2]옥트-3-일옥시)피리다진-3-일]-1H-인돌;
5-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-3-메틸-1H-인다졸;
5-[2-(1-아자비시클로[2.2.2]옥트-3-일옥시)피리미딘-5-일]-1H-인돌;
6-[4-(1-아자비시클로[2.2.2]옥트-3-일옥시)페닐]-1,3-벤조티아조-3-아민; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 10의 화합물을 포함한다:
Figure pct00017
식 10
식 10에서, Ar는 미치환 또는 치환 페닐기이고, Z는 -CH=CH- 또는 공유 결합이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 92/15306, WO 94/05288, WO 99/10338, WO04/019943, WO 04/052365 및 WO 06/133303, 및 미국특허 제5,741,802호 및 미국특허 제5,977,144호에서 α7 선택적 리간드로 개시된다.
일반식 10에 따른 특정한 구체예는 하기를 포함한다:
3-(2,4-디메톡시벤질리덴)아나바세인;
3-(4-히드록시벤질리덴)아나바세인;
3-(4-메톡시벤질리덴)아나바세인;
3-(4-아미노벤질리덴)아나바세인;
3-(4-히드록시-2-메톡시벤질리덴)아나바세인;
3-(2-히드록시-4-메톡시벤질리덴)아나바세인;
3-(4-이소프로폭시벤질리덴)아나바세인;
3-(4-아세틸아미노신나밀리덴)아나바세인;
3-(4-히드록시신나밀리덴)아나바세인;
3-(4-메톡시신나밀리덴)아나바세인;
3-(4-히드록시-2-메톡시신나밀리덴)아나바세인;
3-(2,4-디메톡시신나밀리덴)아나바세인;
3-(4-아세톡시신나밀리덴)아나바세인; 및
이들의 약제학적으로 허용가능한 염.
본 발명에 따라 유용한 화합물은 또한 하기 식 11의 화합물을 포함한다:
Figure pct00018
식 11
식 11에서, n는 1 또는 2이고; R은 H 또는 알킬이나, 가장 바람직하게는 메틸이고; X는 질소 또는 CH이고; Z는 NH 또는 공유결합이며, X가 질소인 경우, Z는 공유 결합이어야 하고; Ar은 각 경우에, 상기 카르보닐기에 3번 위치를 통해 결합된 인돌릴, 인다졸릴, 1,2-벤즈이속사졸릴 또는 1,2-벤즈이소티아졸릴 모이어티이다.
그와 같은 화합물은 예를 들면, 각각 그 전체가 본 명세서에 포함된 PCT WO 06/001894에서 α7 선택적 리간드로 개시된다.
일반식 11에 따른 특정한 구체예는 하기를 포함한다:
(8-메틸-8-아자비시클로[3.2.1]옥트-3-일)-6-(2-티에닐)-7H-인다졸-3-카르복사미드;
3-((3-메틸-3,8-디아자비시클로[3.2.1]옥트-8-일)카르보닐l)-7H-인다졸;
3-((8-메틸-3,8-디아자비시클로[3.2.1]옥트-3-일)카르보닐l)-7H-인다졸;
5-메톡시-N-(9-메틸-9-아자비시클로[3.2.1]논-3-일)-7H-인다졸-3-카르복사미드;
6-메톡시-N-(9-메틸-9-아자비시클로[3.2.1]논-3-일)-1,2-벤즈이소티아졸-3-카르복사미드; 및
이들의 약제학적으로 허용가능한 염.
도면은 본 발명의 특정한 구체예에 따라 수득된 결과를 보여주며 본 발명의 양태를 예시하나, 한정적인 것으로 해석되어서는 안 된다.
도 1은 비만 db/db 마우스에서 체중에 대한 화합물 A의 효과를 보여주는 그래프 표현이다.
도 2는 비만 db/db 마우스에서 혈장 글루코오스에 대한 화합물 A의 효과를 보여주는 그래프 표현이다.
도 3은 비만 db/db 마우스에서 먹이 섭취(food consumption)에 대한 화합물 A의 효과를 보여주는 그래프 표현이다.
도 4는 비만 db/db 마우스에서 체중에 대한 화합물 A의 효과를 보여주는 그래프 표현이다.
도 5는 비만 db/db 마우스에서 글루코오스 수준에 대한 화합물 A의 효과를 보여주는 그래프 표현이다.
도 6은 JAK2 티로신 인산화 억제제 AG490에 의한, 비만 db/db 마우스에서 먹이 섭취에 대한 화합물 A의 효과의 부분적 억제를 보여주는 그래프 표현이다. JAK2 티로신 인산화의 공지된 억제제인 AG-490은 화합물 A의 효과를 부분적으로 억제한다.
도 7A 및 7B는 화합물 A의 존재 또는 부재 하에 마우스에서 복수 저투여량(multiple low dose, MLDS) STZ-유도 당뇨병(공복 혈당량)에 대한 JAK2 기능상실(loss-of-function)의 효과를 보여주는 그래프 표현이다.
도 8A 및 8B는 화합물 A의 존재 또는 부재 하에 마우스에서 HbA1c의 복수 저투여량(MLDS) STZ-유도 증가에 대한 JAK2 기능상실의 효과를 보여주는 그래프 표현이다.
도 9A 및 9B는 화합물 A의 존재 또는 부재 하에 마우스에서 혈장 인슐린의 복수 저투여량(MLDS) STZ-유도 감소에 대한 JAK2 기능상실의 효과를 보여주는 그래프 표현이다.
도 10A 및 10B는 화합물 A의 존재 또는 부재 하에 마우스에서 혈장 TNFα의 복수 저투여량(MLDS) STZ-유도 증가에 대한 JAK2 기능상실의 효과를 보여주는 그래프 표현이다.
도 11은 db/db 마우스에서 먹이 섭취에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, 섭취된 먹이의 그램/일로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) 먹이 섭취의 유의성 있는 증가(*P < 0.01)를 보였다.
도 12는 db/db 마우스에서 신체 질량(body mass)에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, 신체 질량 그램으로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) 신체 질량의 유의성 있는 증가(*P < 0.01)를 보였다.
도 13은 db/db 마우스에서 혈장 혈당(blood glucose, BG)에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL으로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) BG의 유의성 있는 증가(*P < 0.01)를 보였다.
도 14는 db/db 마우스에서 혈장 중성지방(triglyceride, TG)에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL으로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) 혈장 TG의 유의성 있는 증가(*P < 0.01)를 보였다.
도 15는 db/db 마우스에서 혈장 당화 헤모글로빈(glycosylated hemoglobin)(HbA1c)에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 5 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, %로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) 혈장 HbA1c의 유의성 있는 증가(*P < 0.01)를 보였다.
도 16은 db/db 마우스에서 혈장 TNFα에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 5 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, pg/ml로 표현된다. 비만 마우스는 화합물 B 처리에 의해 유의성있게 억제된(+P < 0.01) TNFα의 유의성 있는 증가(*P < 0.01)를 보였다.
도 17은 db/db 마우스 PTP-1B WT 마우스에서 글루코오스 부하 검사(Glucose Tolerance Test, GTT)에 대한 화합물 B의 효과를 보여주는 그래프 표현이다. 결과는 4 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL로 표현된다. 비만 마우스는 화합물 B 처리에 의해 글루코오스의 유의성 있는 증가(*P < 0.01) 및 유의성 있는 효과를 보였다(+P < 0.01).
도 18은 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 신체 질량에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, 신체 질량 그램으로 표현된다. 비만 마우스는 화합물 A 처리에 의해 유의성있게 억제된(+P < 0.01) 신체 질량의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴은 단독으로 신체 질량의 증가를 유의성있게 억제하지 않았다(#P > 0.05), 그러나, 심바스타틴와 화합물 A의 조합은 심바스타틴 단독에 비해 신체 질량의 저하에 대해 유의성 있는 효과를 가졌다(**P < 0.01).
도 19는 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 먹이 섭취에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, 섭취된 먹이 그램/일로 표현된다. 비만 마우스는 화합물 A에 의해 유의성있게 억제된(+P < 0.01) 먹이 섭취의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴은 단독으로 먹이 섭취의 증가를 유의성있게 억제하지 않았다(#P > 0.05). 그러나, 심바스타틴과 화합물 A의 조합은 유의성 있는 효과를 가졌다(**P < 0.01).
도 20은 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 Hb1ac에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, % 당화 헤모글로빈(%Hb1ac)으로 표현된다. 비만 마우스는 화합물 A 처리에 의해 유의성있게 억제된(+P < 0.01) %Hb1ac의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴은 단독으로 %Hb1ac 수준을 저하시키지 않았다. 반면에, 심바스타틴은 비히클로만 처리된 비만 마우스보다 %Hb1ac의 수준을 유의성있게 증가시켰다(++P < 0.01). 심바스타틴과 화합물 A의 조합은 비만 마우스(**P < 0.01) 및 심바스타틴으로 처리된 비만 마우스(fat plus simavastatin)에 비해 %Hb1ac의 수준을 유의성 있게 저하시켰다(#P < 0.01).
도 21은 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 혈장 혈당(BG)에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL로 표현된다. 비만 마우스는 화합물 A에 의해 유의성있게 억제된(+P < 0.01) BG의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴 단독은 비히클로만 처리된 비만 마우스보다 BG의 수준을 유의성있게 증가시켰다(++P < 0.01). 그러나, 심바스타틴과 화합물 A의 조합은 비만 마우스(**P < 0.01) 및 심바스타틴으로 처리된 비만 마우스(#P < 0.01)에 비해 BG의 수준을 유의성 있게 저하시켰다.
도 22A 및 22B는 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 인슐린 저항성 글루코오스 부하 검사에 대한 효과의 그래프 표현이다.
도 23은 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 혈장 중성지방(TG)에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL로 표현된다. 비만 마우스는 화합물 A 처리에 의해 유의성있게 억제된(+P < 0.01) TG의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴 단독은 비히클로만 처리된 비만 마우스보다 TG의 수준을 유의성있게 감소시키지 않았다(++P > 0.01). 그러나, 심바스타틴과 화합물 A의 조합은 비만 마우스(**P < 0.01) 및 심바스타틴으로 처리된 비만 마우스에 비해 TG의 수준을 유의성 있게 저하시켰다(#P < 0.01).
도 24는 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 혈장 콜레스테롤(Chol)에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, mg/dL로 표현된다. 비만 마우스는 화합물 A에 의해 유의성있게 억제된(+P < 0.01) Chol의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴 단독은 또한 비히클로만 처리된 비만 마우스보다 Chol의 수준을 유의성있게 감소시켰다(++P > 0.01). 심바스타틴과 화합물 A의 조합도 비만 마우스에 비해 Chol의 수준을 유의성 있게 저하시켰다(**P < 0.01). 그러나, 화합물 A + 심바스타틴과 심바스타틴 단독 간의 유의성 있는 차이는 없었다(#P > 0.05).
도 25는 db/db 마우스에서 일반적으로 "스타틴"이라 불리는 심바스타틴과 화합물 A의 혈장 TNFα에 대한 효과를 보여주는 그래프 표현이다. 결과는 8 마리의 처리된 마우스의 평균 +/- SEM을 나타내고, pg/ml로 표현된다. 비만 마우스는 화합물 A에 의해 유의성있게 억제된(+P < 0.01) TNFα의 유의성 있는 증가(*P < 0.01)를 보였다. 심바스타틴 단독은 TNFα의 증가를 유의성 있게 억제하지 않았다(#P > 0.05). 그러나, 심바스타틴과 화합물 A의 조합은 TNFα의 수준 저하에 대해 유의성 있는 효과를 가졌다(**P < 0.01).
도 26A는 유동 세포측정기(flow cytometry)를 이용한 해마 전구 세포(hippocampal progenitor cell)의 확인을 보여준다.
도 26B는 마우스에서 해마 전구세포 증식에 대한 항우울제의 효과의 그래프 표현이다.
도 27은 해마 전구세포 증식에 대한 화합물 A의 효과의 그래프 표현이다.
도 28은 미세아교세포 증식 분석법을 예시하는 그래프 표현이다.
도 29는 신경염증의 LPS-유도 모델에서 미세아교세포 증식에 대한 니코틴, 화합물 D, 화합물 E, 및 화합물 A의 효과의 그래프 표현이다.
도 30은 PC12 세포에서 니코틴-유도 JAK2 활성화에 대한 심바스타틴의 효과를 보여주는 웨스턴 블롯이다. 세포를 24시간 동안 심바스타틴(5 uM)으로 전처리하고 표시된 시점에 니코틴으로 전처리하였다. 블롯팅 방법은 개시된 바와 같았다(참조에 의해 본 명세서에 포함된, Shaw S. et al, J. Biol. Chem., 2002 참조). 심바스타틴에 의한 세포의 전처리는 표시된 시간 동안 니코틴에 의해 유도된 JAK2 활성화를 유의성 있게 억제하였다.
도 31은 PC12 세포에서 Aβ-유도 아폽토시스에 대한 니코틴-유도 신경보호에 대한 심바스타틴의 효과를 보여주는 웨스턴 블롯이다. 방법은 개시된 바와 같았다. 폴리-(ADP-라이보오스) 중합효소(PARP)는 아폽토시스를 수행하는 세포들의 마커이다. PARP 발현은 PC12 세포 핵 추출액의 웨스턴 블롯에 의해 결정하였다.
도 32는 PC12 세포에서 심바스타틴-유도 아폽토시스에 대한 10μM 파르네실 포스페이트(FPP) 및 게라닐게라닐 피로포스페이트(GGPP)의 효과를 보여주는 웨스턴 블롯이다. 방법은 개시된 바와 같았다.
도 33은 PC12 세포에서 니코틴-유도 ROS 생성의 심바스타틴 차단(blockade)에 대한 10 μM 파르네실 피로포스페이트(farnesyl pyrophosphate, FPP) 및 게라닐게라닐 피로포스페이트(geranylgeranyl pyrophosphate, GGPP)의 효과를 보여주는 그래프 표현이다.
도 34는 db/db 마우스에서 먹이 섭취에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 섭취된 먹이 그램/일로 표현된다. 비만 마우스는 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) 건강한(lean) 마우스 대비 먹이 섭취의 유의성 있는 증가(*P < 0.01)를 보였다. 비만 야생형 마우스와 PTP-1B KO 마우스 간에 화합물 C 처리에 따른 감소된 먹이 섭취의 유의성 있는 차이는 없었다(#P > 0.05).
도 35는 db/db 마우스에서 신체 질량에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 신체 질량 그램으로 표현된다. 비만 마우스는 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) 신체 질량의 유의성 있는 증가(*P < 0.01)를 보였다. 비만 야생형 마우스와 PTP-1B KO 마우스 간에 화합물 C 처리에 따른 유의성 있는 차이는 없었다(#P > 0.05).
도 36은 db/db 마우스에서 혈장 혈당(BG)에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 BG의 mg/dL로 표현된다. 비만 마우스는 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) BG의 유의성 있는 증가(*P < 0.01)를 보였다. 비만 야생형 마우스와 PTP-1B KO 마우스 간에 화합물 C 처리에 따른 유의성 있는 차이는 없었다(#P > 0.05).
도 37은 db/db 마우스에서 혈장 중성지방에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 mg/dL로 표현된다. 비만 마우스는 비만 PTP-1B 야생형에서 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) 혈장 TG의 유의성 있는 증가(*P < 0.01)를 보였으나, 비만 PTP-1B KO에서는 그렇지 않았다. 또한, 처리된 비만 야생형 마우스와 처리된 비만 PTP-1B KO 마우스 간에 혈장 TG 수준의 유의성 있는 차이가 있었다(#P < 0.01).
도 38은 db/db 마우스에서 혈장 당화 헤모글로빈(Hb1ac)에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 %로 표현된다. 비만 마우스는 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) 혈장 Hb1ac의 유의성 있는 증가(*P < 0.01)를 보였다. 비만 야생형 마우스와 PTP-1B KO 마우스 간에 혈장 Hb1ac의 유의성 있는 차이는 없었다(#P > 0.05).
도 39는 db/db 마우스에서 TNFα에 대한 화합물 C의 효과를 보여주는 그래프 표현이다. 예시된 결과는 5마리의 처리된 마우스/군의 평균±SEM을 나타내며 pg/mL로 표현된다. 비만 마우스는 화합물 C 처리에 의해 유의성있게 억제된(+P < 0.01) 혈장 TNFα의 유의성 있는 증가(*P < 0.01)를 보였다. 비만 야생형 마우스와 비만 PTP-1B KO 마우스 간에 TNFα 혈장 수준의 유의성 있는 차이가 있었다(#P < 0.01).
도 40은 db/db 마우스 PTP-1B 야생형 마우스에서 글루코오스 부하 검사(GTT)에 대한 화합물 C의 효과의 그래프 표현이다. 예시된 결과는 4마리의 처리된 마우스/군의 평균±SEM을 나타내며 mg/dL로 표현된다. 비만 마우스는 화합물 C 처리에 의해 글루코오스 침착(glucose deposition)의 유의성 있는 감소를 보였다(*P < 0.01). 비만 마우스는 침착의 유의성 있는 증가를 보였다(+P < 0.01).
합성예
(2S,3R)-3-아미노-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 디- p - 루오일-D- 타르트레이트
하기의 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염의 대규모 합성(large scale synthesis)은 대표적인 것이다.
2-((3- 피리디닐 )메틸렌)-1- 아자비시클로[2.2.2]옥탄 -3-온
3-퀴누클리디논 하이드로클로라이드(8.25 kg, 51.0 mol) 및 메탄올(49.5 L)을 질소 대기 하에, 기계적 교반기, 온도 프로브, 및 컨덴서(condenser)가 장착된 100 L 유리 반응 플라스크에 첨가하였다. 약 30분 동안 분말 깔때기(powder funnel)를 통해 수산화칼륨(5.55 kg, 99.0 mol)을 첨가하여, 반응 온도를 5O℃에서 56℃로 상승시켰다. 약 2시간의 기간 동안, 3-피리딘카르복스알데히드(4.80 kg, 44.9 mol)를 반응 혼합물에 첨가하였다. 결과적으로 수득된 반응 혼합물을 12시간 이상 동안 2O℃ ± 5℃에서 교반하고, 반응을 TLC(thin layer chromatography)에 의해 모니터링하였다. 반응의 완료 후에, 반응 혼합물을 소결 유리(sintered glass) 깔때기를 통해 여과시키고, 필터 케이크(filter cake)를 메탄올(74.2 L)로 세척하였다. 여과액을 농축하고 반응 플라스크로 옮기고, 물(66.0 L)을 첨가하였다. 현탁액을 30분 이상 동안 교반하고, 여과시키고, 세정액(rinse)의 pH가 7 내지 9가 될 때까지 필터 케이크를 물(90.0 L)로 세척하였다. 고체를 진공 하에 5O℃ ± 5℃에서 12시간 이상 동안 건조시켜 8.58 kg (89.3%)의 2-((3-피리디닐)메틸렌)-1-아자비시클로[2.2.2]옥탄-3-온을 수득하였다.
(2S)-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-온 디- p - 톨루오일 -D-타 르트레이 트 염
2-((3-피리디닐)메틸렌)-1-아자비시클로[2.2.2]옥탄-3-온 (5.40 kg, 25.2 mol) 및 메탄올(40.5 L)을 비활성(inert) 대기 하에, 기계적 교반기, 온도 프로브, 저압 기체 조절기 시스템(low pressure gas regulator system), 및 압력 게이지(pressure gauge)가 장착된 72 L 반응 용기에 첨가하였다. 헤드스페이스(headspace)에 질소를 충진하고, 혼합물을 교반하여 투명한 황색 용액을 수득하였다. 상기 플라스크에 10% 탄소상 팔라듐(10% palladium on carbon)(50% 습부(wet))(270 g)을 첨가하였다. 상기 반응기의 대기를 진공 펌프를 이용하여 비우고, 헤드스페이스를 10 내지 20 인치 수압까지 수소로 대체시켰다. 진공에 의한 대기 제거(evacuation) 및 수소에 의한 가압(pressurization)을 2회 더 반복하여, 세번째 가압 후에 반응기가 수소 기체의 20인치 수압 하에 놓이게 하였다. 반응 혼합물을 12시간 이상 동안 2O℃ ± 5℃에서 교반시키고 TLC를 통해 반응을 모니터링하였다. 반응의 완료 후에, 현탁액을 소결 유리 깔때기 상에서 Celite®545 (1.9 kg)의 베드를 통해 여과시키고, 필터 케이크를 메탄올(10.1 L)로 세척하였다. 여과액을 농축하여 반고체 물질을 수득하고 질소 대기 하에, 기계적 교반기, 컨덴서, 및 온도 프로브가 장착된 200 L 반응 플라스크로 옮겼다. 상기 반고체 물질을 에탄올(57.2 L)에 용해시키고, 디-p-톨루오일-D-타르타르산(DTTA) (9.74 kg, 25.2 mol)을 첨가하였다. 교반되는 반응 혼합물을 1시간 이상 동안 환류(reflux)로 가열하고, 추가적인 12시간 이상 동안 반응액을 15℃ 내지 3O℃로 냉각시켰다. 현탁액을 테이블탑 필터(tabletop filter)를 이용하여 여과시키고, 필터 케이크를 에탄올(11.4 L)로 세척하였다. 생성물을 진공 하에 주변(ambient) 온도에서 건조시켜 11.6 kg (76.2% 수율, 59.5% 순도)의 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 디-p-톨루오일-D-타르트레이트 염을 수득하였다.
(2S,3R)-3-아미노-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 디- p - 톨루오일 -D- 타르트레이트
물(46.25 L)과 중탄산나트륨(4.35 kg, 51.8 mol)을 200 L 플라스크에 첨가했다. 완전한 용해 후에, 디클로로메탄(69.4 L)을 첨가했다. (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 디-p-톨루오일-D-타르트레이트 염(11.56 kg, 19.19 mol)을 첨가하고, 반응 혼합물을 2분 내지 10분 동안 교반하였다. 2분 이상 동안 층들이 분리되게 하였다(층의 분리를 위해 필요한 경우 추가적인 물(20 L)을 첨가했다). 유기상을 제거하고 무수 황산나트륨 상에서 건조시켰다. 나머지 수성상에 디클로로메탄(34.7 L)을 첨가하고, 현탁액을 2분 내지 10분 동안 교반하였다. 2분 내지 10분 동안 층들이 분리되게 하였다 다시, 유기상을 제거하고 무수 황산나트륨 상에서 건조시켰다. 디클로로메탄(34.7 L)에 의한 수성상의 추출을 전술된 바와 같이, 1회 더 반복하였다. 각 추출의 시료를 대상으로 키랄 HPLC 분석을 수행하였다. 황산 나트륨을 여과에 의해 제거하고, 여과액을 농축하여 고체인 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 (4.0 kg)을 수득하였다.
(2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 (3.8 kg)을 질소 대기 하에, 기계적 교반기 및 온도 프로브가 장착된 깨끗한 100 L 반응 플라스크로 옮겼다. 무수 테트라히드로푸란 (7.24 L) 및 (+)-(R)-α-메틸벤질아민 (2.55 L, 20.1 mol)을 첨가하였다. 티타늄(IV) 이소프로폭시드(6.47 L, 21.8 mol)를 교반된 반응 혼합물에 1시간에 걸쳐 첨가하였다. 반응액을 12시간 이상 동안 질소 대기 하에 교반하였다. 에탄올(36.17 L)을 반응 혼합물에 첨가하였다. 상기 반응 혼합물을 -5℃ 미만까지 냉각시키고 소디움 보로히드리드(sodium borohydride)(1.53 kg, 40.5 mol)를 소량씩 첨가하여, 반응 온도를 15℃ 미만으로 유지시켰다(이 첨가는 수시간이 소요되었다). 그 후, 반응 혼합물을 1시간 이상 동안 15℃ ± 10℃에서 교반하였다. 반응을 HPLC에 의해 모니터링하고, 반응의 완료(0.5% 미만의 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 잔류량에 의해 표시됨) 후에, 2 M 수산화나트륨(15.99 L)을 첨가하고 혼합물을 10분 이상 동안 교반하였다. 반응 혼합물을 테이블탑 깔때기 내의 Celite®545의 베드를 통해 여과시켰다. 필터 케이크를 에탄올(15.23 L)로 세척하고, 여과액을 농축하여 오일을 수득하였다.
상기 농축물을 비활성 대기 하에 기계적 교반기 및 온도 프로브가 장착된 깨끗한 100 L 유리 반응 플라스크로 옮겼다. 물(1 L)을 첨가하고, 혼합물을 O℃ ± 5℃까지 냉각시켰다. 2 M 염산(24 L)을 상기 혼합물에 첨가하여 상기 혼합물의 pH를 pH 1로 조정하였다. 그 후, 상기 혼합물을 10분 이상 동안 교반하고, 2M 수산화나트륨 (24 L)을 서서히 첨가하여 상기 혼합물의 pH를 pH 14까지 조정하였다. 상기 혼합물을 10분 이상 동안 교반하고, 수성상을 디클로로메탄으로 추출하였다(3 x 15.23 L). 유기상을 무수 황산나트륨(2.0 kg) 상에서 건조시키고, 여과시키고, 농축시켜 (2S,3R)-N-((1R)-페닐에틸)-3-아미노-2-((3-피리디닐)메틸))-1-아자비시클로[2.2.2]옥탄 (4.80 kg, 84.7% 수율)을 수득하였다.
(2S,3R)-N-((1R)-페닐에틸)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 기계적 교반기 및 온도 프로브가 장착된 22 L 유리 플라스크로 옮겼다. 물(4.8 L)을 첨가하고, 교반 혼합물을 5℃ ± 5℃까지 냉각시켰다. 농축 염산(2.97 L)을 상기 반응 플라스크에 서서히 첨가하여, 혼합물의 온도를 25℃ 미만으로 유지시켰다. 결과물인 용액을 비활성 대기 하에 기계적 교반기, 온도 프로브, 및 컨덴서가 장착된, 에탄올(18 L)을 담은 72 L 반응 플라스크로 옮겼다. 상기 플라스크에 10% 탄소상 팔라듐 (50% wet)(311.1 g) 및 시클로헥센(14.36 L)을 첨가하였다. 반응 혼합물을 12시간 이상 동안 환류-부근(near-reflux)에서 가열하고, 반응을 TLC에 의해 모니터링하였다. 반응의 완료 후에, 반응 혼합물을 45℃ 미만까지 냉각시키고, 소결 유리 깔때기 상에서 Celite®545 (1.2 kg)의 베드를 통해 여과시켰다. 필터 케이크를 에탄올(3 L)로 세정하고 여과액을 농축하여 수성상을 수득하였다. 물(500 mL)을 상기 농축된 여과액에 첨가하고, 이 통합된 수성층을 메틸 터트-부틸 에테르(MTBE)로 세척하였다(2 x 4.79 L). 2 M 수산화나트륨(19.5 L)을 상기 수성상에 첨가하여 혼합물의 pH를 pH 14로 조정하였다. 그 후, 상기 혼합물을 10분 이상 동안 교반하였다. 수성상을 클로로포름으로 추출하고(4 x 11.96 L), 통합된 유기상을 무수 황산나트륨(2.34 kg) 상에서 건조시켰다. 여과액을 여과시키고 농축하여 오일인 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (3.49 kg, > 정량적 수율(quantitative yield))을 수득하였다.
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 기계적 교반기, 컨덴서, 및 온도 프로브가 장착된 깨끗한 100 L 반응 플라스크로 옮겼다. 에탄올(38.4 L) 및 디-p-톨루오일-D-타르타르산(3.58 kg, 9.27 mol)을 첨가했다. 반응 혼합물을 1시간 이상 동안 완만한 환류(mild reflux)로 가열하였다. 그 후, 반응 혼합물을 12시간 이상 동안 교반하면서, 15℃ 내지 3O℃로 냉각시켰다. 결과적으로 수득된 현탁액을 여과시키고, 필터 케이크를 에탄올(5.76 L)로 세척하였다. 상기 필터 케이크를 비활성 대기 하에 기계적 교반기, 온도 프로브 및 컨덴서가 장착된 깨끗한 100 L 유리 반응 플라스크로 옮겼다. 9:1 에탄올/물 용액(30.7 L)을 첨가하고, 결과적으로 수득된 슬러리(slurry)를 1시간 이상 동안 완만한 환류로 가열하였다. 그 후, 반응 혼합물을 12시간 이상 동안 교반하여, 15℃ 내지 3O℃까지 냉각시켰다. 상기 혼합물을 여과시키고, 필터 케이크를 에탄올(5.76 L)로 세척하였다. 생성물을 수집하고 진공 하에 5O℃ ± 5℃에서 12시간 이상 동안 건조시켜 5.63 kg (58.1% 수율)의 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염을 수득하였다.
화합물 A: (2S,3R)-N-(2-((3- 피리디닐 ) 메틸 )- 아자비시클로[2.2.2]옥탄 -3-일)-5- 메틸티오펜 -2- 카르복사미드
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염(51.0 g, 84.5 mmol), 물(125 mL), 2 M 수산화나트륨(150 mL) 및 클로로포름(400 mL)을 분액 깔때기(separatory funnel)에서 함께 진탕시키고, 클로로포름 층을 제거하였다. 수성상을 클로로포름으로 3회 더 추출하였다(2 x 200 mL, 그 후, 100 ml). 통합된 클로로포름층을 염화나트륨 포화 수용액으로 세척하고, 무수 황산나트륨 상에서 건조시키고 회전 증발(rotary evaporation)에 의해 농축시켰다. 고 진공 처리(high vacuum treatment) 후에 오일인 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (18.O g)을 수득하였다.
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 1 L 유리 반응 플라스크로 옮겼다. 디클로로메탄(500 mL), 트리에틸아민 (40 mL, 0.30 mol), 5-메틸티오펜-2-카르복시산(13.5 g, 94.9 mmol) 및 O-(벤조트리아졸-1-일)-N,N,N,1-테트라메틸우로늄 헥사플루오로포스페이트(HBTU) (36.0 g, 94.9 mmol)를 반응 혼합물에 첨가하였다. 상기 혼합물을 주변 온도에서 밤새 교반하고 반응 완료 시에 HPLC에 의해 분석하였다. 물 (200 mL), 2 M 수산화나트륨(200 mL)을 반응에 첨가하고, 결과적으로 수득된 혼합물을 진탕시켰다. 디클로로메탄층과 수성상의 200 mL 디클로로메탄 추출물을 통합하고 수산화나트륨 포화 수용액(200 mL)으로 세척하고, 무수 황산나트륨 상에서 건조시키고 회전 증발에 의해 농축하여, 오일(정량적 수율)을 수득하였다. 실리카 겔 상에서의 컬럼 크로마토그래피 정제, 에틸아세테이트 중 메탄올 구배에 의한 용리에 의해 분말인 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-일)-5-메틸티오펜-2-카르복사미드 (22.6 g, 78.5% 수율)를 수득하였다.
화합물 B: (2S,3R)-N-(2-((3-피리미딘) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-일-5-(2- 피리디닐 )티오펜-2- 카르복사미드
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염으로부터 전술된 바와 같이 생성된 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (5.5 g, 25 mmol)의 시료를 비활성 대기 하에 500 mL 유리 반응 플라스크로 옮겼다. 디클로로메탄 (200 mL), 트리에틸아민 (10 mL, 72 mmol), 5-(2-피리디닐)티오펜-2-카르복시산 (6.0 g, 29 mmol) 및 O-(벤조트리아졸-1-일)-N,N,N,1-테트라메틸우로늄 헥사플루오로포스페이트(HBTU) (11.1 g, 29.2 mmol)를 반응 혼합물에 첨가하였다. 상기 혼합물을 밤새 주변 온도에서 교반하고 반응의 완료 시에 HPLC에 의해 분석하였다. 물(100 mL), 2 M 수산화나트륨(100 mL)을 반응에 첨가하고, 결과적으로 수득된 혼합물을 진탕시켰다. 디클로로메탄층과, 수성층의 250 mL 디클로로메탄 추출물 2개를 통합하고 염화나트륨 포화 수용액(200 mL)으로 세척하고, 무수 황산나트륨 상에서 건조시키고 회전 증발에 의해 농축하여, 오일(정량적 수율)을 수득하였다. 실리카 겔 상에서의 컬럼 크로마토그래피 정제, 에틸아세테이트 중 메탄올 구배에 의한 용리에 의해 분말인 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-일)-5-(2-피리디닐)티오펜-2-카르복사미드 (8.0 g, 80% 수율)를 수득하였다.
화합물 C
(2S,3R)-N-(2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-일) 벤조푸란 -2-카 르복사미
라세미 N-(2-((3-피리디닐)메틸-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드, 합성, 및 의학적 치료에서의 유용성이 참조에 의해 본 명세서에 포함된 Mazurov 등에 의한 미국특허 제6,953,855호에 기재된다.
특정한 합성 단계들은 규모 확대(scale-up)에 대한 적응성(amenability)이 다양하다. 반응들은 안전성 우려, 시약 비용, 워크-업(work-up) 또는 정제의 어려움, 반응 역학(열역학 또는 반응속도), 및 반응 수율을 포함한 다양한 이유 때문에 규모-확장 능력이 결여된 것으로 확인된다. 소규모 합성 방법 및 대규모 합성 방법이 본 명세서에 기재된다. 확장가능한 합성은 라세미화 가능한(racemizable) 케톤 (2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온)의 역학적 분리(dynamic resolution) 및 분리된 케톤의 (R)-α-메틸벤질아민 이민 유도체의 입체선택적 환원(환원적 아민화)을 이용한다.
소규모(Small scale)
2-((3- 피리디닐 )메틸렌)-1- 아자비시클로[2.2.2]옥탄 -3-온
수산화칼륨(56 g, 0.54 mole)을 메탄올(420 mL)에 용해시켰다. 3-퀴누클리디논 하이드로클로라이드(75 g, 0.49 mole)를 첨가하고 혼합물을 주변 온도에서 30분 동안 교반하였다. 3-피리딘카르복스알데히드(58 g, 0.54 mole)를 첨가하고 주변 온도에서 16시간 동안 상기 혼합물을 교반하였다. 이 기간 동안 반응 혼합물이 황색이 되었고, 고형물이 플라스크의 벽에 붙어서 굳었다(cake). 상기 고형물을 벽으로부터 긁어내고 덩어리들을 부쉈다. 빠른 교반과 함께, 물(390 mL)을 첨가하였다. 상기 고형물이 용해되었을 때, 혼합물을 밤새 4℃에서 냉각시켰다. 여과에 의해 결정들을 수집하고, 물로 세척하고, 자연건조시켜서 80 g의 황색 고체를 수득하였다. 여과액을 이전 부피의 ~10%까지 농축시켜서 제2의 산물(crop)을 수득하고 4℃에서 밤새 냉각시켰다. 두 개의 산물은 후속 전환을 위해 충분히 순수했다(88 g, 82% 수율).
2-((3- 피리디닐 ) 메틸 )-1-아자비시클로[2.2.2]옥탄-3-온
2-((3-피리디닐)메틸렌)-1-아자비시클로[2.2.2]옥탄-3-온 (20 g, 93 mmol)을 메탄올(200 mL)에 현탁시키고 46 mL의 6 M 염산으로 처리하였다. 10% 산소상 팔라듐(1.6 g)을 첨가하고, 혼합물을 25 psi 수소 하에 16시간 동안 진탕시켰다. 혼합물을 규조토를 통해 여과시키고, 회전 증발에 의해 여과액으로부터 용매를 제거하였다. 이는 백색 검(20 g)인 조(crude) 2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 하이드로클로라이드를 제공했고, 상기 물질을 뒤이어 2 M 수산화나트륨(50 mL) 및 클로로포름 (50 mL)으로 처리하고 1시간 동안 교반하였다. 클로로포름층을 분리하고, 수성상을 2 M 수산화나트륨(~ 5 mL, pH를 10까지 높이기에 충분한 양) 및 염화나트륨 포화 수용액(25 mL)으로 처리하였다. 이 수성 혼합물을 클로로포름으로 추출하고(3 x 10 mL), 통합된 클로로포름 추출물을 건조시키고(무수 황산 마그네슘), 회전 증발에 의해 농축시켰다. 잔류물(18 g)을 가온된(warm) 에테르(320 mL)에 용해시키고 4℃까지 냉각시켰다. 백색 고체를 여과에 의해 분리하고, 소량의 차가운 에테르로 세척하고, 자연건조시켰다. 여과액을 이전 부피의 ~10%까지 농축하고, 4℃에서 냉각시켜서 제2 산물을 수득하였다. 통합 수율 16g(79%)을 수득하였다.
3-아미노-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄
질소 하에서, 무수 메탄올(dry methanol) 중 2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 (3.00 g, 13.9 mmol)의 교반된 용액에, 에테르 중의 염화아연 1 M 용액(2.78 mL, 2.78 mmol)을 첨가하였다. 주변 온도에서 30분 동안 교반한 후, 혼합물을 고체 암모늄 포르메이트(10.4 g, 167 mmol)로 처리하였다. 주변 온도에서 1시간 더 교반한 후, 고체 소디움 시아노보로히드리드(1.75 g, 27.8 mmol)를 소량씩 첨가하였다. 그 후, 반응액을 주변 온도에서 밤새 교반하고, 물(~ 5 mL)의 첨가에 의해 반응을 종료시켰다. 퀀칭(quench)된 반응을 5 M 수산화나트륨(10 mL)과 클로로포름(20 mL) 간에 분배시켰다. 수성층을 클로로포름(20 mL)으로 추출하고 통합된 유기층을 (황산 나트륨 상에서) 건조시키고, 여과시키고 농축시켰다. 이에 의해 2.97 g의 황색 검을 수득하였다. GCMS 분석은 산물이 미량의 상응하는 알코올과 함께, 시스 아민과 트랜스 아민의 1:9 혼합물이라는 것을 나타냈다(총 질량의 98% 회수).
(2R,3S) 및 (2S,3R)-3-아미노-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄
디-p-톨루오일-D-타르타르산(5.33 g, 13.8 mmol)을 메탄올(20 mL) 중 조 3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (6.00 g, 27.6 mmol의 1:9 시스/트랜스)의 교반된 용액에 첨가하였다. 완전한 용해 후에, 투명한 용액을 회전 증발에 의해 고체 매스(solid mass)로 농축시켰다. 상기 고체를 소량의 끓는 메탄올(boiling methanol)(~ 5 mL)에 용해시켰다. 용액을 서서히 냉각시켜 먼저 주변 온도까지 냉각시키고(1시간), 그 후, ~ 4 시간 동안 5℃에서, 및 최종적으로 -5℃에서 밤새 냉각시켰다. 침전된 염을 흡입 여과(suction filtration)에 의해 수집하고 5 mL의 메탄올로부터 재결정화시켰다. 자연 건조에 의해 1.4 g의 백색 고체를 수득하고, 이 고체를 클로로포름(5 mL)과 2 M 수산화나트륨(5 mL) 간에 분배(partition)시켰다. 클로로포름층과 수성상의 5 mL 클로로포름 추출물을 통합하고, (무수 황산나트륨 상에서) 건조시키고 농축시켜 무색의 오일(0.434 g)을 수득하였다. 이 유리 염기의 거울상이성질체 순도(enantiomeric purity)를 일부를 그의 N-(터트-부톡시카르보닐)-L-프롤린아미드로 전환시키는 것에 의해 결정하고, LCMS를 이용하여 입체이성질체 순도(diastereomeric purity)를 분석하였다(98%).
최초 결정화로부터의 모액(mother liquor)을 2 M 수산화나트륨에 의해 염기성(~ pH 11)으로 만들고 클로로포름(10 mL)으로 2회 추출하였다. 클로로포름 추출물을 (무수 황산나트륨 상에서) 건조시키고 농축하여 오일을 수득하였다. 이 아민(3.00 g, 13.8 mmol)을 메탄올(10 mL)에 용해시키고 디-p-톨루오일-L-타르타르산(2.76 g, 6.90 mmol)으로 처리하였다. 용해를 촉진하기 위해 혼합물을 가온시키고 서서히 -5℃까지 냉각시키고, 이 온도에서 밤새 유지시켰다. 흡입 여과에 의해 침전물을 회수하고 메탄올로부터 재결정화시키고 건조시켰다. 이에 의해 1.05 g의 백색 고체를 수득하였다. 염을 유리 염기로 전환시키고(수율 = 0.364 g), 다른 거울상 이성질체에 대해 전술된 바와 같이, 프롤린아미드 방법을 이용하여 거울상이성질체 순도(97%)를 평가하였다.
N-(2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-일) 벤조푸란 -2- 카르 복사미드의 트랜스 이성질체 1
디페닐클로로포스페이트(0.35 mL, 0.46 g, 1.7 mmol)를 무수 디클로로메탄 (5 mL) 중의 벤조푸란-2-카르복시산(0.28 g, 1.7 mmol) 및 트리에틸아민 (0.24 mL, 0.17 g, 1.7 mmol) 용액에 점적하였다(drop-wise). 주변 온도에서 30분 동안 교반한 후, 무수 디클로로메탄(5 mL) 중의 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (0.337 g, 1.55 mmol) (디-p-톨루오일-D-타르타르산 염으로부터 유래됨) 및 트리에틸아민 (0.24 mL, 0.17 g, 1.7 mmol) 용액을 첨가하였다. 반응 혼합물을 주변 온도에서 밤새 교반하고, 10% 수산화나트륨(1 mL)으로 처리하였다. 이상 혼합물(biphasic mixture)을 분리하고, 유기층을 Genevac 원심분리 증발기에서 농축시켰다. 잔류물을 메탄올(6 mL)에 용해시키고, C18 실리카 겔 컬럼 상에서, 0.05% 트리플루오로아세트산을 포함하는 아세토니트릴/물 구배를 용리액으로 이용한 HPLC에 의해 정제하였다. 선별된 분획의 농축, 결과적으로 수득된 잔류물의 클로로포름과 중탄산나트륨 포화 수용액 간의 분배, 및 클로로포름의 증발에 의해 0.310 g (42% 수율)의 백색 분말을 수득하였다(GCMS에 의한 순도 95%). 1H NMR (300 MHz, CDCl3) δ 8.51 (d, 1H), 8.34 (dd, 1H), 7.66 (d, 1H), 7.58 (dt, 1H), 7.49 (d, 1H), 7.44 (s, 1H), 7.40 (dd, 1H), 7.29 (t, 1H), 7.13 (dd, 1H), 6.63 (d, 1H), 3.95 (t, 1H), 3.08 (m, 1H), 2.95 (m, 4H), 2.78 (m, 2H), 2.03 (m, 1H), 1.72 (m, 3H), 1.52 (m, 1H). 이 물질(트랜스 거울상이성질체 1)은 키랄 크로마토그래피 분석에 의해 이후에 절대 배열(absolute configuration)이 2S,3R (x-선 결정화 분석에 의해 결정됨)인 물질과 동일한 것으로 확인되었다.
N-(2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-일) 벤조푸란 -2- 카르 복사미드의 트랜스 이성질체 2
디페닐클로로포스페이트(96 ㎕, 124 mg, 0.46 mmol)를 무수 디클로로메탄(1 mL) 중의 벤조푸란-2-카르복시산 (75 mg, 0.46 mmol) (디-p-톨루오일-L-타르타르산 염으로부터 유래됨) 및 트리에틸아민 (64 ㎕, 46 mg, 0.46 mmol) 용액에 점적하였다. 주변 온도에서 45분 동안 교반한 후, 무수 디클로로메탄 (1 mL) 중의 (2R,3S)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (0.10 g, 0.46 mmol) 및 트리에틸아민 (64 ㎕, 46 mg, 0.46 mmol) 용액을 첨가하였다. 반응 혼합물을 주변 온도에서 밤새 교반하고, 10% 수산화나트륨 (1 mL)으로 처리하였다. 이상 혼합물을 분리하고, 유기층, 및 수성층의 클로로포름 추출물(2 mL)을 회전 증발에 의해 농축시켰다. 잔류물을 메탄올에 용해시키고, C18 실리카 겔 컬럼 상에서, 0.05% 트리플루오로아세트산을 포함하는 아세토니트릴/물 구배를 용리액으로 이용한 HPLC에 의해 정제하였다. 선별된 분획의 농축, 결과적으로 수득된 잔류물의 클로로포름과 중탄산나트륨 포화 수용액 간의 분배, 및 클로로포름의 증발에 의해 82.5 mg (50% 수율)의 백색 분말을 수득하였다. NMR 스펙트럼은 (2S,3R) 이성질체에 대해 수득된 것과 동일했다. 이 물질(트랜스 거울상이성질체 2)의 직전 전구체(immediate precursor)는 2S,3R 화합물(트랜스 이성질체 1)의 직전 전구체와 거울상이성질체 관계이기 때문에, 트랜스 이성질체 2의 절대 배열은 2R,3S로 추정되었다.
대규모
2-((3- 피리디닐 )메틸렌)-1- 아자비시클로[2.2.2]옥탄 -3-온
3-퀴누클리디논 하이드로클로라이드(8.25 kg, 51.0 mol) 및 메탄올(49.5 L)을 질소 대기 하에, 기계적 교반기, 온도 프로브, 및 컨덴서가 장착된 100 L 유리 반응 플라스크에 첨가하였다. 약 30분 동안 분말 깔때기를 통해 수산화칼륨(5.55 kg, 99.0 mol)을 첨가하여, 반응 온도를 5O℃에서 56℃로 상승시켰다. 약 2시간의 기간 동안, 3-피리딘카르복스알데히드(4.80 kg, 44.9 mol)를 반응 혼합물에 첨가하였다. 결과적으로 수득된 반응 혼합물을 12시간 이상 동안 2O℃ ± 5℃에서 교반하고, 반응을 TLC에 의해 모니터링하였다. 반응의 완료 후에, 반응 혼합물을 소결 유리 깔때기를 통해 여과시키고, 필터 케이크를 메탄올(74.2 L)로 세척하였다. 여과액을 농축하고 반응 플라스크로 옮기고, 물(66.0 L)을 첨가하였다. 현탁액을 30분 이상 동안 교반하고, 여과시키고, 세정액(rinse)의 pH가 7 내지 9가 될 때까지 필터 케이크를 물(90.0 L)로 세척하였다. 고체를 진공 하에 5O℃ ± 5℃에서 12시간 이상 동안 건조시켜 8.58 kg (89.3%)의 2-((3-피리디닐)메틸렌)-1-아자비시클로[2.2.2]옥탄-3-온을 수득하였다.
(2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 디- p -톨루오일-D-타 르트레이 트 염
2-((3-피리디닐)메틸렌)-1-아자비시클로[2.2.2]옥탄-3-온 (5.40 kg, 25.2 mol) 및 메탄올(40.5 L)을 비활성 대기 하에, 기계적 교반기, 온도 프로브, 저압 기체 조절기 시스템, 및 압력 게이지가 장착된 72 L 반응 용기에 첨가하였다. 헤드스페이스에 질소를 충진하고, 혼합물을 교반하여 투명한 황색 용액을 수득하였다. 상기 플라스크에 10% 탄소상 팔라듐(50% wet)(270 g)을 첨가하였다. 상기 반응기의 대기를 진공 펌프를 이용하여 비우고, 헤드스페이스를 10 내지 20 인치 수압까지 수소로 대체시켰다. 진공에 의한 대기 제거 및 수소에 의한 가압을 2회 더 반복하여, 세번째 가압 후에 반응기가 수소 기체의 20인치 수압 하에 놓이게 하였다. 반응 혼합물을 12시간 이상 동안 2O℃ ± 5℃에서 교반시키고 TLC를 통해 반응을 모니터링하였다. 반응의 완료 후에, 현탁액을 소결 유리 깔때기 상에서 Celite®545 (1.9 kg)의 베드를 통해 여과시키고, 필터 케이크를 메탄올(10.1 L)로 세척하였다. 여과액을 농축하여 반고체 물질을 수득하고 질소 대기 하에, 기계적 교반기, 컨덴서, 및 온도 프로브가 장착된 200 L 반응 플라스크로 옮겼다. 상기 반고체 물질을 에탄올(57.2 L)에 용해시키고, 디-p-톨루오일-D-타르타르산(DTTA) (9.74 kg, 25.2 mol)을 첨가하였다. 교반되는 반응 혼합물을 1시간 이상 동안 환류로 가열하고, 추가적인 12시간 이상 동안 반응액을 15℃ 내지 3O℃로 냉각시켰다. 현탁액을 테이블탑 필터를 이용하여 여과시키고, 필터 케이크를 에탄올(11.4 L)로 세척하였다. 생성물을 진공 하에 주변 온도에서 건조시켜 11.6 kg (76.2% 수율, 59.5% 순도)의 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 디-p-톨루오일-D-타르트레이트 염을 수득하였다.
(2S,3R)-3-아미노-2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 디- p - 톨루오일 -D- 타르트레이트
물(46.25 L)과 중탄산나트륨(4.35 kg, 51.8 mol)을 200 L 플라스크에 첨가했다. 완전한 용해 후에, 디클로로메탄(69.4 L)을 첨가했다. (2S)-2-((3- 피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 디-p-톨루오일-D-타르트레이트 염(11.56 kg, 19.19 mol)을 첨가하고, 반응 혼합물을 2분 내지 10분 동안 교반하였다. 2분 이상 동안 층들이 분리되게 하였다(층의 분리를 위해 필요한 경우 추가적인 물(20 L)을 첨가했다). 유기상을 제거하고 무수 황산나트륨 상에서 건조시켰다. 나머지 수성상에 디클로로메탄(34.7 L)을 첨가하고, 현탁액을 2분 내지 10분 동안 교반하였다. 2분 내지 10분 동안 층들이 분리되게 하였다. 다시, 유기상을 제거하고 무수 황산나트륨 상에서 건조시켰다. 디클로로메탄(34.7 L)에 의한 수성상의 추출을 전술된 바와 같이, 1회 더 반복하였다. 각 추출의 시료를 대상으로 키랄 HPLC 분석을 수행하였다. 황산 나트륨을 여과에 의해 제거하고, 여과액을 농축하여 고체인 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 (4.0 kg)을 수득하였다.
(2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 (3.8 kg)을 질소 대기 하에, 기계적 교반기 및 온도 프로브가 장착된 깨끗한 100 L 반응 플라스크로 옮겼다. 무수 테트라히드로푸란 (7.24 L) 및 (+)-(R)-α-메틸벤질아민 (2.55 L, 20.1 mol)을 첨가하였다. 티타늄(IV) 이소프로폭시드(6.47 L, 21.8 mol)를 교반된 반응 혼합물에 1시간에 걸쳐 첨가하였다. 반응액을 12시간 이상 동안 질소 대기 하에 교반하였다. 에탄올(36.17 L)을 반응 혼합물에 첨가하였다. 상기 반응 혼합물을 -5℃ 미만까지 냉각시키고 소디움 보로히드리드(1.53 kg, 40.5 mol)를 소량씩 첨가하여, 반응 온도를 15℃ 미만으로 유지시켰다(이 첨가는 수시간이 소요되었다). 그 후, 반응 혼합물을 1시간 이상 동안 15℃ ± 10℃에서 교반하였다. 반응을 HPLC에 의해 모니터링하고, 반응의 완료(0.5% 미만의 (2S)-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-온 잔류량에 의해 표시됨) 후에, 2 M 수산화나트륨(15.99 L)을 첨가하고 혼합물을 10분 이상 동안 교반하였다. 반응 혼합물을 테이블탑 깔때기 내의 Celite®545의 베드를 통해 여과시켰다. 필터 케이크를 에탄올(15.23 L)로 세척하고, 여과액을 농축하여 오일을 수득하였다.
상기 농축물을 비활성 대기 하에 기계적 교반기 및 온도 프로브가 장착된 깨끗한 100 L 유리 반응 플라스크로 옮겼다. 물(1 L)을 첨가하고, 혼합물을 O℃ ± 5℃까지 냉각시켰다. 2 M 염산(24 L)을 상기 혼합물에 첨가하여 상기 혼합물의 pH를 pH 1로 조정하였다. 그 후, 상기 혼합물을 10분 이상 동안 교반하고, 2M 수산화나트륨 (24 L)을 서서히 첨가하여 상기 혼합물의 pH를 pH 14까지 조정하였다. 상기 혼합물을 10분 이상 동안 교반하고, 수성상을 디클로로메탄으로 추출하였다(3 x 15.23 L). 유기상을 무수 황산나트륨(2.0 kg) 상에서 건조시키고, 여과시키고, 농축시켜 (2S,3R)-N-((1R)-페닐에틸)-3-아미노-2-((3-피리디닐)메틸))-1-아자비시클로[2.2.2]옥탄 (4.80 kg, 84.7% 수율)을 수득하였다.
(2S,3R)-N-((1R)-페닐에틸)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 기계적 교반기 및 온도 프로브가 장착된 22 L 유리 플라스크로 옮겼다. 물(4.8 L)을 첨가하고, 교반 혼합물을 5℃ ± 5℃까지 냉각시켰다. 농축 염산(2.97 L)을 상기 반응 플라스크에 서서히 첨가하여, 혼합물의 온도를 25℃ 미만으로 유지시켰다. 결과물인 용액을 비활성 대기 하에 기계적 교반기, 온도 프로브, 및 컨덴서가 장착된, 에탄올(18 L)을 담은 72 L 반응 플라스크로 옮겼다. 상기 플라스크에 10% 탄소상 팔라듐 (50% wet)(311.1 g) 및 시클로헥센(14.36 L)을 첨가하였다. 반응 혼합물을 12시간 이상 동안 환류-부근에서 가열하고, 반응을 TLC에 의해 모니터링하였다. 반응의 완료 후에, 반응 혼합물을 45℃ 미만까지 냉각시키고, 소결 유리 깔때기 상에서 Celite®545 (1.2 kg)의 베드를 통해 여과시켰다. 필터 케이크를 에탄올(3 L)로 세정하고 여과액을 농축하여 수성상을 수득하였다. 물(500 mL)을 상기 농축된 여과액에 첨가하고, 이 통합된 수성층을 메틸 터트-부틸 에테르(MTBE)로 세척하였다(2 x 4.79 L). 2 M 수산화나트륨(19.5 L)을 상기 수성상에 첨가하여 혼합물의 pH를 pH 14로 조정하였다. 그 후, 상기 혼합물을 10분 이상 동안 교반하였다. 수성상을 클로로포름으로 추출하고(4 x 11.96 L), 통합된 유기상을 무수 황산나트륨(2.34 kg) 상에서 건조시켰다. 여과액을 여과시키고 농축하여 오일인 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (3.49 kg, > 정량적 수율(quantitative yield))을 수득하였다.
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 기계적 교반기, 컨덴서, 및 온도 프로브가 장착된 깨끗한 100 L 반응 플라스크로 옮겼다. 에탄올(38.4 L) 및 디-p-톨루오일-D-타르타르산(3.58 kg, 9.27 mol)을 첨가했다. 반응 혼합물을 1시간 이상 동안 완만한 환류로 가열하였다. 그 후, 상기 반응 혼합물을 12시간 이상 동안 교반하면서, 15℃ 내지 3O℃로 냉각시켰다. 결과적으로 수득된 현탁액을 여과시키고, 필터 케이크를 에탄올(5.76 L)로 세척하였다. 상기 필터 케이크를 비활성 대기 하에 기계적 교반기, 온도 프로브 및 컨덴서가 장착된 깨끗한 100 L 유리 반응 플라스크로 옮겼다. 9:1 에탄올/물 용액(30.7 L)을 첨가하고, 결과적으로 수득된 슬러리(slurry)를 1시간 이상 동안 완만한 환류로 가열하였다. 그 후, 반응 혼합물을 12시간 이상 동안 교반하여, 15℃ 내지 3O℃까지 냉각시켰다. 상기 혼합물을 여과시키고, 필터 케이크를 에탄올(5.76 L)로 세척하였다. 생성물을 수집하고 진공 하에 5O℃ ± 5℃에서 12시간 이상 동안 건조시켜 5.63 kg (58.1% 수율)의 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염을 수득하였다.
(2S,3R)-N-(2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥탄 -3-일) 벤조푸란 -2-카 르복사미
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 디-p-톨루오일-D-타르트레이트 염(3.64 kg, 5.96 mol) 및 10% 염화나트륨 수용액(14.4 L, 46.4 mol)을 비활성 대기 하에 기계적 교반기가 장착된 72 L 유리 반응 플라스크에 첨가하였다. 5 M 수산화나트륨(5.09 L)을 교반 혼합물에 첨가하여 상기 혼합물의 pH를 pH 14로 조정하였다. 그 후, 상기 혼합물을 10분 이상 동안 교반하였다. 수용액을 클로로포름으로 추출하고(4 x 12.0 L), 통합된 유기층을 무수 황산나트륨(1.72 kg) 상에서 건조시켰다. 통합된 유기층을 여과시키고, 여과액을 농축하여 오일인 (2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄 (1.27 kg)을 수득하였다.
(2S,3R)-3-아미노-2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄을 비활성 대기 하에 기계적 교반기가 장착된 50 L 유리 반응 플라스크로 옮겼다. 디클로로메탄(16.5 L), 트리에틸아민 (847 mL, 6.08 mol), 벤조푸란-2-카르복시산 (948 g, 5.85 mol) 및 O-(벤조트리아졸-1-일)-N,N,N,1-테트라메틸우로늄 헥사플루오로포스페이트(HBTU) (2.17 kg, 5.85 mol)를 반응 혼합물에 첨가하였다. 상기 혼합물을 주변 온도에서 4시간 동안 교반하고 반응을 HPLC에 의해 모니터링하였다. 반응의 종료 후에, 10% 탄산칼륨 수용액(12.7 L, 17.1 mol)을 반응 혼합물에 첨가하고, 상기 혼합물을 5분 이상 교반하였다. 층을 분리하고, 유기상을 10% 염수 (12.7 L)로 세척하였다. 층을 분리하고, 유기상을 15℃ ± 10℃까지 냉각시켰다. 3M 염산(8.0 L)을 반응 혼합물에 서서히 첨가하여 상기 혼합물의 pH를 pH 1로 조정하였다. 그 후, 상기 혼합물을 5분 이상 동안 교반하고, 5분 이상 동안 층들이 분리되도록 방치하였다. 테이블탑 필터를 이용하여 고형물을 여과시켰다. 여과액의 층들을 분리하고, 수성상과 깔때기로부터의 고체를 반응 플라스크로 옮겼다. 3M 수산화나트륨(9.0 L)을 상기 플라스크에 소량씩 서서히 첨가하여 혼합물의 pH를 pH 14로 조정하였다. 수성상을 디클로로메탄으로 추출하였다(2 x 16.5 L). 통합된 유기상을 무수 황산나트륨(1.71 kg) 상에서 건조시켰다. 혼합물을 여과시키고, 여과액을 농축하여 황색 고체인 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-일)벤조푸란-2-카르복사미드 (1.63 kg, 77.0% 수율)를 수득하였다.
(2S,3R)-N-(2-((3- 피리디닐 ) 메틸 )-1- 아자비시클로[2.2.2]옥트 -3-일] 벤조푸란 -2-카 르복사미 드 p- 톨루엔술포네이트
(2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥탄-3-일)벤조푸란-2-카르복사미드 (1.62 kg, 4.48 mol) 및 디클로로메탄 (8.60 kg)을 카보이(carboy)에 첨가하였다. 용액 중 물질의 중량/중량 퍼센트를 HPLC 분석을 통해 결정하였다. 용액을 오일로 농축시키고, 아세톤(4 L)을 첨가하고, 혼합물을 유성 고체(oily solid)로 농축시켰다. 추가적인 아세톤 (12 L)을 회전 증발기 구근(bulb) 중의 유성 고체에 첨가하고, 결과물인 슬러리를 비활성 대기 하에 기계적 교반기, 컨덴서, 온도 프로브가 장착된 50 L 유리 반응 플라스크로 옮겼다. 반응 혼합물을 5O℃ ± 5℃까지 가열하였다. 물(80.7 g)을 용액에 첨가하고, 10분 이상 동안 교반하였다. p-톨루엔술폰산 (853 g, 4.44 mol)을 약 15분에 걸쳐 반응 혼합물에 소량씩 첨가하였다. 상기 반응 혼합물을 환류까지 가열하고 30분 이상 동안 그 온도에서 유지하여 용액을 수득하였다. 반응을 약 2시간에 걸쳐 4O℃ ± 5℃까지 냉각시켰다. 이소프로필 아세테이트(14.1 L)를 약 1.5시간에 걸쳐 첨가하였다. 반응 혼합물을 10시간 이상에 걸쳐 주변 온도까지 서서히 냉각시켰다. 혼합물을 여과시키고 필터 케이크를 이소프로필 아세테이트(3.5 L)로 세척하였다. 분리된 생성물을 진공 하에 105℃ ± 5℃에서 2시간 내지 9시간 동안 건조시켜 2.19 kg (88.5% 수율)의 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드 p-톨루엔술포네이트, mp 226-228℃를 수득하였다. 1H NMR (500 MHz, D2O) δ 8.29 (s, 1H), 7.78 (m, J = 5.1, 1H), 7.63 (d, J = 7.9, 1H), 7.54 (d, J = 7.8, 1H), 7.49 (d, J = 8.1, 2H), 7.37 (m, J = 8.3, 1H), 7.33 (m, J = 8.3, 6.9, 1.0, 1H), 7.18 (m, J = 7.8, 6.9, 1.0, 1H), 7.14 (d, J = 8.1, 2H), 7.09 (s, 1H), 6.99 (dd, J = 7.9, 5.1, 1H), 4.05 (m, J = 7.7, 1H), 3.74 (m, 1H), 3.47 (m, 2H), 3.28 (m, 1H), 3.22 (m, 1H), 3.15 (dd, J = 13.2, 4.7, 1H), 3.02 (dd, J = 13.2, 11.5, 1H), 2.19 (s, 3H), 2.02 (m, 2H), 1.93 (m, 2H), 1.79 (m, 1H). 13C NMR (126 MHz, D2O) δ 157.2, 154.1, 150.1, 148.2, 146.4, 145.2, 138.0, 137.0, 130.9, 128.2 (2), 126.9, 126.8, 125.5 (2), 123.7, 123.3, 122.7, 111.7, 100.7, 61.3, 50.2, 48.0, 40.9, 33.1, 26.9, 21.5, 20.8, 17.0.
이 물질의 시료를 수산화나트륨 수용액에 의한 처리 및 클로로포름에 의한 추출에 의해 (염 선택 연구에서의 이용을 위해) 화합물 C 유리 염기로 전환시켰다. 크로로포름을 완전히 증발시켜, 하기의 스펙트럼 특성을 갖는 황백색(off-white) 분말, mp 167-17O℃을 수득하였다: 양성 이온 전자분무(Positive ion electrospray) MS [M+H]+ ion m/z = 362. 1H NMR (500 MHz, DMSO-d6) δ 8.53 (d, J = 7.6 Hz, 1H), 8.43 (d, J = 1.7 Hz, 1H), 8.28 (dd, J = 1.6, 4.7 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.63 (dt, J = 1.7, 7.7 Hz, 1H), 7.52 (s, 1H), 7.46 (m, J = 8.5, 7.5 Hz, 1H), 7.33 (m, J = 7.7, 7.5 Hz, 1H), 7.21 (dd, J = 4.7, 7.7 Hz, 1H), 3.71 (m, J = 7.6 Hz, 1H), 3.11 (m, 1H), 3.02 (m, 1H), 2.80 (m, 2H), 2.69 (m, 2H), 2.55 (m, 1H), 1.80 (m, 1H), 1.77 (m, 1H), 1.62 (m, 1H), 1.56 (m, 1H), 1.26 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ 158.1, 154.1, 150.1, 149.1, 146.8, 136.4, 135.4, 127.1, 126.7, 123.6, 122.9, 122.6, 111.8, 109.3, 61.9, 53.4, 49.9, 40.3, 35.0, 28.1, 26.1, 19.6.
화합물 C의 모노하이드로클로라이드 염(실시예 5 참조)을 대상으로 X-선 결정화 분석을 수행하였다. 결과물인 결정 구조는 화합물 C의 2S,3R 절대 배열로 확인되었다.
실시예 5: (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드 하이드로클로라이드 염의 합성
농축 염산(12M 1.93 mL, 23.2 mmol)을 8.5 mL의 냉각된(chilled) THF에 점적하여 염산/THF 용액을 제조하였다. 상기 용액을 주변 온도까지 가온시켰다. 둥근 바닥 플라스크에 (2S,3R)-N-(2-((3-피리디닐)메틸)-1-아자비시클로[2.2.2]옥트-3-일)벤조푸란-2-카르복사미드 (8.49 g, 23.5 mmol) 및 아세톤(85 mL)을 첨가하였다. 완전한 용액을 수득할 때까지 혼합물을 교반하고, 45-5O℃에서 가열하였다. 앞서 준비된 염산/THF 용액을 5분에 걸쳐 점적하고, 전달(transfer)을 위해 추가적인 THF (1.5 mL)를 이용하였다. 상기 산 용액의 첨가 동안 입자상의 백색 고체가 형성되기 시작했다. 혼합물을 주변 온도까지 냉각시키고, 밤새 교반하였다(16 시간). 고체를 흡입 여과에 의해 수집하고, 필터 케이크를 아세톤(10 mL)으로 세척하고, 고체를 30분 동안 흡입과 함께 자연건조시켰다. 고체를 진공 하에 75℃에서 2시간 동안 더 건조시켜서 8.79 g의 미세한 백색 결정(fine white crystal)(94% 수율), mp 255-262℃을 수득하였다. 키랄 LC 분석은 98.8% (270 nm)의 순도를 보여주었다. 1H-NMR (DMSO-d6)은 잔류 용매의 부재를 보여주었고 모노 화학양론(mono stoichiometry)을 확인했다. 1H NMR (300 MHz, DMSO-d6) δ 10.7 (broad s, 1H - quaternary ammonium), 8.80 (broad s, 1H - amide H), 8.54 (s, 1H), 8.23 (d, 1H), 7.78 (d, 1H), 7.74 (d, 1H), 7.60 (d, 1H), 7.47 (m, 2H), 7.33 (m, 1H), 7.19 (m, 1H), 4.19 (m, 1H), 4.08 (m, 1H), 3.05- 3.55 (m, 6H), 2.00-2.10 (m, 3H), 1.90 (m, 1H), 1.70 (m, 1H). 이 염의 X-선 결정화 분석은 입체화학적 배치(stereochemical assignment) 및 화학양론을 확립했다.
생물학적 실시예
화합물 A, B, 및 C는 α7-선택적 리간드이다. 예를 들면, 화합물 A, B 및 C는 랫트 해마 조직에서 3H-MLA를 이용한 치환(displacement) 연구에서 Ki 값 = 1-2 nM을 갖는 α7 효능제이다. 이 화합물들은 α4β2를 포함한 다른 니코틴 수용체에 대해, 매우 열등한 친화도, 즉, 1000 nM보다 높은 친화도 값을 보인다. 기능 연구에서, 화합물 A, B 및 C는 인간 α7 니코틴 수용체를 일시적으로 발현하는 제노푸스 라에비스(Xenopus laevis) 난모세포의 전기생리학적 기능 분석법에서 50% 보다 높은 Emax 값을 보였다. 수용체 프로파일 스크리닝에서 60개 이상의 표적에 대해 화합물 A의 IC50은 10 마이크로몰(micromolar)보다 높았다.
선택적 알파7 nAChR 효능제의 생리적 효과
체중 증가 및 먹이 섭취. PTP1B, LAR, SHP-2 및 PTEN과 같은 여러 PTPase(protein tyrosine phosphatase)가 인슐린 저항성의 발병에 관여하는 것으로 시사되었다. 본 연구에서, 본 발명자들은 α7 nAChR 효능제인 화합물 A, B, 또는 C에 의한 처리 후에, PTP1B 유전자에 대한 야생형(PTP1B+) 또는 넉아웃((PTP1B-)인 건강한(lean)(db+) 마우스 및 비만(db-) 마우스에서 신체 질량(body mass) 및 체중 증가를 측정하였다.
7주의 치료 종료 시에, 본 발명자들은 alpha7 효능제-처리된 10주령의 db- 마우스에서 체중증가가 감소되었다는 것을 발견했다. db+ 건강한 마우스는 처리에 의해 영향받지 않았고, 이는 상기 화합물이 먹이 섭취를 제한하는 유해한 효과를 생성하지 않는다는 것을 확인했다. 대조군 비만 그룹(db-)에서 체중 증가는 PTP1B 야생형 및 PTP1B 넉아웃 마우스 모두에서 대조군의 체중 증가보다 유의성있게 더 낮았다(p< 0.01). 또한, 일일 먹이 섭취는 PTP1B 야생형 및 넉아웃 마우스 모두에서 대조군에서보다 처리된 마우스에서 유의성있게 더 낮았다(p< 0.01).
alpha7 길항제인 MLA가 동시에 주어진 경우, 비만 마우스는 체중 증가 또는 먹이 섭취에서 유의성 있는 차이를 보이지 않았다. 따라서, 처리 화합물(treatment compound)에 의한 식이 보충(dietary supplementation)은 비만 마우스에서 먹이 섭취 및 체중 증가를 효과적으로 저하시켰다. α7 nAChR은 PTP1B에 의존적이지 않은 메카니즘을 통해 먹이 섭취를 조절하는데 중요한 역할을 수행한다. 또한, AG-490은 α7 효능제에 의해 유도된 체중 감소 및 감소된 먹이 섭취를 모두 유의성있게 억제했다(p< 0.01).
글루코오스 대사. 먹이 섭취 및 체중 증가에 대해 수득된 결과와 유사하게, 7주의 처리 완료 후에, α7 효능제로 처리된 비만(db-) 마우스에서 혈장 글루코오스 수준은 미처리 PTP1B+ 및 PTP1B- 마우스에서의 혈장 글루코오스 수준보다 유의성있게 더 낮았다(p< 0.01). α7 nAChR 길항제 MLA를 처리 화합물과 동시에 투여하였고 마우스는 혈장 글루코오스의 유의성 있는 감소를 보이지 않았다. 따라서, α7 효능제에 의한 식이 보충은 비만 마우스에서 체중 증가 및 먹이 섭취를 효과적으로 저하시키고 비만에 따른 글루코오스의 증가된 수준을 저하시킨다. 이 메카니즘은 PTP1B에 의존적이지 않으나, JAK2 활성화에 의존적이다. JAK2 억제제는 혈장 글루코오스에서 처리-유도 감소를 유의성있게 방해했다(p< 0.01).
건강한 마우스는 빠른 글루코오스 처리(glucose disposal)를 보였고, 주사된 볼루스(bolus)는 30분 내에 제거되었다. 처리된 건강한 마우스에서 글루코오스의 제거(clearance)는 샴(sham)-처리 마우스의 경우와 유사했다. 비만-유도 인슐린 저항성과 일치되게, 비만 마우스는 크게 둔화된 글루코오스 제거를 보여서, 주사된 볼루스의 50%만이 30분 이내에 제거되었다. 대조적으로, 처리된 마우스는 비만에도 불구하고 글루코오스 제거의 정상화를 보였다(주사된 볼루스의 90%가 30분 이내에 제거됨). 따라서, α7 길항제 MLA의 존재 하에 증가된 인슐린 감수성이 무력화되기 때문에 인슐린 저항성이 alpha7 효능제에 의해 개선된다.
헤모글로빈의 당화 ( glycosylation ). 총 혈당 부하(total glycemic load)는 공복 및 식후 혈중 글루코오스 수준을 반영한다. 혈당 부하의 시간 평균 지표(time avergaed index)는 AGE(advanced glycation end product)의 축적이고, 이는 헤모글로빈의 당화, HbA1c로부터 추정될 수 있다. 건강한 처리 및 미처리 PTP1B+ 및 PTP1B- 마우스는 모두 정상 혈당 조절과 일치되게, 5% 미만의 HbA1c 수준을 보였다. 대조적으로, 비만 마우스는 관찰된 글루코오스 불내성 공복 고혈당증(glucose intolerance fasting hyperglycemia)과 일치되게, 현저하게 상승된 HbA1c 수준을 보였고, 이는 α7 효능제에 의해 유의성있게 저하되었다(p< 0.01). PTP1B 넉아웃 마우스에서, HbA1c 수준은 현저하게 저하되고, 처리에 의해 더 저하되었다. α7 nAChR은 공복 및 식후 혈당 수준 모두의 조절에서 중요한 역할을 수행하고 이 효과는 PTP1B에 의존적이지 않다. α7 길항제, MLA의 존재 하에, α7 효능제에 의해 유도된 증가된 인슐린 감수성이 억제된다.
지질 대사. 처리 및 미처리 건강한 마우스는 중성지방의 정상 수준을 보였다. 그러나, 비만 마우스는 지방 세포에서 인슐린 민감성의 상실과 일치하여, 상승된 공복 중성지방 수준을 보였다. 그럼에도 불구하고, 비만 마우스가 처리된 경우, 그들은 전반적으로 중성지방의 정상 수준을 보였고, 이는 α7 길항제 MLA에 의해 차단된 효과이며, α7 nAChR-매개 경로를 통한 지방세포 인슐린 저항성의 정상화를 시사한다.
혈장 TNF -α 수준. TNF-α와 같은 염증 매개체의 혈장 농도는 비만 및 타입 2 당뇨병의 인슐린 저항성 상태에서 증가된다. 당뇨병 마우스에서 TNFα 수준의 저하는 증가된 인슐린 민감도 및 감소된 혈장 인슐린 및 혈당 수준과 상관관계를 갖는다. 처리 및 미처리 건강한 마우스는 TNF-α의 혈장 수준의 변화를 보이지 않았으나, 비만 마우스는 상승된 공복 혈장 TNF-α 수준을 가졌다. 그러나, 비만 마우스가 처리된 경우, 그들은 유의성있게 감소된 혈장 TNF-α 수준을 보였고, 이는 α7 길항제 MLA에 의해 차단되어, α7 nAChR이 TNF-α의 비만-유도 증가 및 따라서 감소된 인슐린 저항성을 차단하는데 직접적으로 관여한다는 것을 확인했다.
비만에 대한 α7 효능제 . 동물 모델: 본 연구에서 이용된 마우스의 부모 스트레인은 Jackson Laboratories로부터 수득된 C57BL6 유래(background)의 렙틴(leptin) 수용체 결핍 db/db 마우스 및 캐나다, 몬트리올의 맥길(McGill) 대학 암 연구소의 Dr. Michel Tremblay로부터의 혼합 C57BL6/Balb C 유래의 PTP1B-널(null) 마우스였다. 비만 db/db 마우스는 불임이므로, 마우스는 돌연변이 렙틴 수용체 및 결실된 PTP1B 모두에 대해 이형접합형인 이중 이형접합체(dual heterozygote)로 생성되었다. 이중 이형접합체를 상호교배하여 1:4 비만 마우스 및 1:4 PTP1B 널 마우스를 생성했다. 이 교배 배열에서, 1:16은 이중 KO 마우스였다. 제4 세대에서, 두 유전자 모두에 대해 이형접합인 마우스가 돌연변이 db 대립형질에 대해 이형접합인 PTP-1B 널 마우스에서 태어났다. 이 교배 배열에서, 1:4 마우스는 비만이고, 1:8 마우스는 이중 KO 마우스였다. 간소화(parsimony)의 이유 때문에, 이형접합형이 대조군에 대해 야생형보다 선호되었다. 한 배에서 나온(littermate) 이중 이형접합형 새끼들을 건강한 대조군으로 이용하고 한 배에서 나온 db에 대해 이형접합인 새끼들을 건강한 PTP1B KO 대조군으로 이용하였다.
마우스 유전형분석( genotyping ): 3주령에, 꼬리 클립(tail clip)에 의해 DNA를 수득하였다. 꼬리 클립으로부터의 게놈 DNA를 이용하여 중합요소 연쇄 반응(PCR)을 통해 돌연변이 렙틴 수용체 및 PTP-1B의 결실 카세트의 존재를 스크리닝하였다. 아가로오스 겔 전기영동에 의해 PCR 생성물을 분리하는 것에 의해 특정한 유전형을 결정하였다. Upstate Biotechnology로부터의 항-PTP-1B 항체를 이용한 웨스턴 분석에 의해 PTP-1B의 결실을 확인하였다.
대사 표현형분석( Metabolic Phenotyping ): 마우스의 성장 속도 및 먹이 섭취에 대한 테스트된 화합물(예를 들면, 경구 섭식을 통한 1 mg/kg/일 화합물 A)의 효과를 3주령부터 10주령까지 주당 2회 체중 및 먹이 섭취량을 측정하는 것에 의해 조사하였다. 선택된 코호트에서, α7 길항제 MLA도 3mg/kg로 매일 동시에 섭식을 통해 투여하였다. JAK2 키나아제 억제제(AG-490)도 매일 1mg/kg으로 복막내로(IP) 투여하였다. 먹이 제거 후에 1주에 1회씩 Precision XL 글루코오스 측정기(glucometer)로 미정맥 출혈(tail vein bleeding)을 이용하여 공복 혈당량을 측정하였다. Metrika, Inc로부터의 A1C 키트로 이 시료들로부터 HbA1c 수준도 측정하였다. 글루코오스 부하(glucose tolerance)를 평가하기 위해, 야간 절식(overnight fast) 후에 마우스를 2% 이소플루란으로 마취시키고 좌측 경동맥과 경정맥에 캐눌라를 삽입하였다. 10 mg 볼루스의 글루코오스를 경정맥을 통해 정맥 내로(iv) 주사하고 40분 동안 5분 간격으로 목 라인(carotid line)으로부터의 혈액 방울에서 혈당량을 측정하였다. 혈장 분석물(plasma analyte)의 측정을 위해, 신속 유도 챔버(rapid induction chamber)에서 별개의 군의 절식 마우스를 이소플루란에 의해 마취시키고 빠르게 참수시켰다. 헤파린 중에 혈액을 수집하고 4℃에서 빠르게 원심분리하여 세포를 제거하고 혈장을 수득하고, 이후 분석을 위해 시료를 동결시켰다. eBioscience로부터의 ELISA 분석법 키트를 이용하여 혈장 TNF-α 농도를 결정하고 혈청 또는 혈장 중 중성지방의 정량적 측정을 위한 인 비트로 분석법인 L-Type TG H 테스트(Wako Diagnostics)를 이용하여 혈장 중성지방 수준을 결정하였다. 모든 데이터는 평균 및 SEM으로 표현하였다. 모든 그룹들 간의 차이는 일원 ANOVA에 의해 비교하였다.
통계: 모든 데이터는 평균 및 SEM으로 표현된다. 모든 4개의 유전형 간의 차이는 일원 ANOVA(One Way ANOVA)에 의해 비교하였다.
STZ -유도 당뇨병에 대한 α7 선택적 리간드의 효과.
STZ -유도 당뇨병에 대한 α7 선택적 리간드의 효과 및 JAK2 의 영향: 마우스에서 당뇨병을 유도하기 위해, 그와 같은 연구를 위해 제안된 바와 같이 10일 동안 매일 5개의 복수 투여량의 STZ (50 mg/kg ip) 또는 비히클(시트레이트 완충액)을 투여하였다. 기준시점(baseline) 및 그 후 4일 간격으로 마우스의 체중을 측정하고 혈당 수준을 측정하였다. 마우스들은 2주 내에 안정적인 고혈당증에 도달했다. 그 후, JAK2의 영향을 결정하기 위해, Dr. Wagner에 의해 제공된 조건적인 floxed JAK2 KO 마우스를 이용하였다. 이 마우스들을 Jackson Labs로부터의 유도성 비-조직 특이적 mER-Cre 마우스와 교배시켰다. 이 mER-Cre 돌연변이 마우스는 에스트로겐에 반응하지 않으나 타목시펜에 민감한, 돌연변이된 마우스 에스트로겐 수용체 리간드-결합 도메인(아미노산 281 내지 599, G525R)을 코딩하는 mERT2-Cre 융합 cDNA인 유도성 요소(inducible element)를 갖는다. 이 유도성 형질전환 마우스 계통은 유전자 표적화(gene targeting)를 촉진하고 성체 마우스에서 JAK2의 역할을 조사하는데 유용할 것이다. Cre 활성의 시점은 타목시펜의 주사에 의해 조절될 수 있고, 이 유도성 Cre 형질전환 마우스를 이용하여, 본 발명자들은 조건적 및 유도적 방식으로 JAK2 KO 돌연변이체를 생성할 수 있었다. JAK2flox 및 Cre/mERT를 포함하는 이중 이형접합 마우스를 교배하는 것에 의해 mCre/mERT (즉, mER-Cre/JAK2flox)를 갖는 동형접합 JAK2flox 마우스를 생성하고, 타목시펜의 복막내 주사 전 및 후에 서던 분석법을 통해 loxP에 의해 플랭킹된 JAK2 유전자 세그먼트의 유도된 Cre-매개 결실의 효율성을 평가하였다. 웨스턴 블롯 분석은 20 mg/kg의 농도로 타목시펜의 7일의 복막내 주사 후에, 췌장에서 JAK2 발현의 완전한 제거가 있었으나, 액틴(Actin)의 발현에는 효과가 없었다. 또한, 타목시펜 투여 전 또는 후에 체중에 의한 마우스 성장의 분석(1주령 내지 16주령)은 유전형 간에 차이를 보이지 않았다. 또한, mER-Cre/JAK2flox 마우스는 전반적으로 정상 외형, 활성 및 거동을 가졌다. 타목시펜 처리 후, mER-Cre/JAK2+/+ 및 mER-Cre-JAK2flox 성체 마우스(7주령)의 두 개의 별개의 그룹에 전술된 바와 같이 화합물, 예를 들면, 화합물 A(경구 섭식을 통한 1 mg/kg/일)의 존재 또는 부재 하에 격일로 5개의 저 투여량의 STZ에 의해 당뇨병을 유발시켰다. 마우스의 모든 그룹(즉, mER-Cre/JAK2+/+ 및 mER-Cre-JAK2flox)은 2주 내에 안정적인 고혈당증에 도달했다.
STZ-유도 당뇨병 및 사이토카인 수준에 대한 테스트 화합물의 효과를 하기 방법으로 측정하였다. 예를 들면, Precision XL 글루코오스 측정기로 미정맥 출혈을 통해 주당 2회 이상 공복 글루코오스 수준을 측정하고 Metrika Inc로부터의 A1C 키트를 이용하여 HbA1c 수준을 측정하였다. 마우스의 제2 그룹에서, 절식한 마우스를 신속 유도 챔버에서 이소플루란에 의해 마취시키고 빠르게 참수시켰다. 헤파린 중에 동맥 혈액(trunk blood)을 수집하고 4℃에서 신속하게 원심분리하여 세포를 제거하고 혈장을 수득하였다. 추후 분석을 위해 시료를 동결시켰다. ELISA 분석법 키트를 이용하여 혈장 인슐린, TNFα 및 IL-6 농도를 결정하였다.
통계: 모든 데이터는 평균 및 SEM으로 표현된다. 모든 4개의 유전형 간의 차이는 일원 ANOVA(One Way ANOVA)에 의해 비교하였다.
동물 모델 및 대사 표현형 분석: 이 연구에서 이용된 마우스의 부모 스트레인은 Jackson Laboratories로부터 수득된 C57BL6 유래의 렙틴 수용체 결함(deficient) db/db 비만 마우스 또는 렙틴 수용체 야생형 DB/DB 건강한 마우스였다. 동물들을 심바스타틴 및 화합물, 예를 들면, 섭식을 통한 1 mg/kg/일의 화합물 A로 테스트하였다. 10주 동안 주당 2회 체중을 측정하는 것에 의해 마우스의 성장 속도를 결정하였다. 일별 먹이 섭취량은 Fisher로부터 수득된 마우스 대사 케이지(metabolic cage)에서 측정하였다. 글루코오스 부하를 평가하기 위해, 야간 절식 후에 마우스를 2% 이소플루란으로 마취시키고 좌측 경동맥과 경정맥에 캐눌라를 삽입하였다. 마취된 마우스에서 최초 2회의 측정으로 공복 혈당량을 평가하였다. Metrika Inc.로부터의 A1CNow 키트를 이용하여 HbA1c 수준을 결정하기 위해 제2 측정을 이용하였다. 글루코오스의 10 mg 볼루스를 각 마우스에 주사하고 40분 동안 5분 간격으로 목 라인으로부터의 혈액 방울에 의해 혈당량을 측정하였다. 글루코오스를 Precision XL 글루코오스 측정기로 측정하였다. 실험의 종료시에 마우스를 과량의 이소플루란에 의해 안락사시켰다. 마우스의 제2 그룹에서, 절식한 마우스를 신속 유도 챔버에서 이소플루란에 의해 마취시키고 빠르게 참수시켰다. 헤파린 중에 동맥 혈액을 수집하고 신속하게 원심분리하여 혈액 세포를 제거하고 혈장을 수득하였다. 그 후, 분석을 위해 시료를 수집하였다. Wako Chemical로부터의 비색 분석법을 이용하여 혈장 콜레스테롤, 유리 지방산 및 중성지방을 측정하고 eBioscience로부터의 ELISA 분석법 키트를 이용하여 혈장 TNFα를 측정하였다.
이 데이터는 화합물 A, B, 및 C가 타입 II 당뇨병에서 당뇨병 상태(glycemic state)를 개선시킨다는 것을 나타낸다.
화합물 A, B, 및 C는 체중 증가를 감소시키고, 글루코오스 수준을 정상화시키고, 당화 헤모글로빈을 감소시키고, 염증촉진성 사이토카인을 감소시키고, 중성지방을 감소시키고, 인슐린 저항성 글루코오스 부하 테스트를 정상화시키는 것으로 입증되었다. 이 데이터는 화합물 A, B, 및 C를 포함한 α7 리간드가 타입 II 당뇨병과 같은 대사 질환에서 당뇨병 상태 및 대사 증후군과 연관된 생물학적 파라미터를 개선시킨다는 것을 나타낸다.
선택적 α7 nAChR 아고니스트는 체중 증가를 감소시키고, 글루코오스 수준을 정상화시키고, 당화 헤모글로빈을 감소시키고, 염증촉진성 사이토카인 TNF-α를 감소시키고, 중성지방을 감소시키고, 타입 2 당뇨병의 형질전환 모델에서 인슐린 민감성을 정상화시킬 수 있다. 이 효과들은 포스포티로시나아제 포스파타아제 PTP1B가 결핍된 비만 마우스에서 방해되지 않으나, α7 길항제 MLA에 의해 완전히 역전된다. 또한, JAK2 키나아제 특이적 억제제 AG-490도 α7 효능제-유도 체중 감소, 감소된 먹이 섭취 및 글루코오스 수준의 정상화를 억제했다. α7 nAChR은 타입 2 당뇨병 및 대사 증후군과 연관된 생물학적 파라미터의 조절에서 중요한 역할을 수행한다.
인슐린 저항성, 당뇨병, 비만 및 이상지질혈증이 대사 증후군의 요소이고, 염증촉진성 사이코카인이 이와 같은 질환들의 발병에 기여하는 것으로 시사되었으나, 이 증후군의 발병 메카니즘은 충분하게 규명되지 않았다. CNS는 세망내피계(reticuloendothelial system)를 통해 면역계를 조절한다. 이 CNS 조절은 대식세포 상의 α7 nAChR에 작용하는 주요한 미주신경 전달물질(vagal neurotransmitter) 아세틸콜린을 이용하여, 미주신경을 통해 매개된다. α7-선택적 리간드에 의해 유발된 신경보호 효과는 α7 nAChR 활성화 및 단백질 티로신 키타아제 JAK2(Janus kinase 2)를 통한 PI-3-K (phosphatidylinositol 3-kinase) 및 AKT (protein kinase B)로의 신호 전달로 추적될 수 있고, 이들은 주요한 세포 생존 경로를 구성한다. 공-면역침전(co-immunoprecipitation) 실험의 결과는 alpha7 니코틴 수용체와 JAK2 간의 직접적인 상호작용이 있다는 것을 나타낸다. LPS-처리 대식세포 및 대조군 복막 대식세포에 대한 니코틴의 효과를 보여준 다른 연구는 니코틴 처리가 단백질의 STAT(Signal transducers and activators of transcription)의 일원인 STAT3 및 세포 항-아폽토시스 캐스캐이트의 성분의 인산화를 가져온다는 것을 보여주었다. 이 니코틴-매개 인산화는 α7-선택적 길항제인 α-분가로톡신(bungarotoxin)과 MLA, 및 JAK2 인산화의 선택적 억제제인 AG-490에 의해 억제된다. 이 데이터는 JAK2와 α7 nAChR 간의 상호작용을 뒷받침하고 콜린성 항-염증 경로에서 STAT3에 의해 수행되는 중요한 역할을 밝힌다. 본 연구의 결과는 이 발견을 확대하고 체중 증가 및 먹이 섭취와 연관된 생물학적 파라미터의 조절에서 JAK2와 α7 nAChR 상호작용의 중요성을 강조한다. 흥미롭게도, 시상하부에서 렙틴 수용체에 의해 매개된, 지방증의 조절성 피드백도 수용체-JAK2 상호작용을 수반한다. 활성 렙틴 수용체가 결실된 비만 마우스(즉, db/db 마우스)에서, α7 nAChR은 JAK2의 활성화에서 렙틴 수용체를 대신할 수 있고, 이는 뒤이어 감소된 먹이 섭취 및 체중 증가를 가져온다.
콜린성 항-염증 경로와 상호작용하는 것으로 보이는 또 다른 경로, 및 대사 증후군의 주요한 성분과 직접적으로 관련된 경로는 단백질 티로신 포스파타아제(PTP) PTP1B를 포함한다. 구체적으로, PTP1B는 인슐린 신호전달의 음성 조절자(negative regulator)로 작용하는 것으로 입증되었다. PTP1B의 과발현은 인슐린 신호를 손상시키고, PTP1B의 소실은 인슐린에 대한 증가된 민감성과 연관된다. PTP 1B는 인슐린 수용체에 결합하고 인슐린 수용체의 탈인산화를 촉매하고, 인슐린 신호전달에 대한 PTP1B의 다수의 효과는 이 상호작용에 근거하여 설명될 수 있다. 연구는 포스포티로신 포스파타아제 PTP1B의 결실이 비만의 마우스 모델에서 인슐린 신호전달을 개선한다는 것을 보여주었고 PTP1B 길항제가 약리학적으로 글루코오스 부하를 개선하기 위해 이용되었다. 보다 중요하게, PTP1B도 JAK2를 탈인산화시키는 것으로 보고되었고, α7 nAChR-연관 항-염증 경로와 인슐린 조절 간에 교차(cross-talk)가 있다는 것을 시사한다. PTP1B가 체중, 지방증 및 렙틴 작용을 조절하기 때문에, α7 nAChR은 대사 증후군의 다양한 측면을 조절하는데 중요한 역할을 수행할 수 있다.
관찰된 특정한 약리학적 반응은 선택된 특정한 활성 화합물 또는 현재 약제학적 담체가 있는지 여부, 및 이용된 제제의 종류 및 투여 방식에 따라 및 그에 의존하여 변할 수 있고, 및 결과에서 예상되는 변화 또는 차이가 본 발명의 실시에 따라 고려된다.
본 발명의 특정한 구체예가 본 명세서에서 예시되고 상세하게 설명되나, 본 발명은 그에 한정되지 않는다. 전술된 상세한 설명은 본 발명의 대표적인 것으로 제공되고 본 발명의 한정으로 이해되거나 또는 본 발명의 한정을 구성하는 것으로 해석되어서는 안 된다. 변형은 본 발명이 속하는 기술 분야의 당업자에게 자명할 것이고, 본 발명의 원칙을 벗어나지 않는 모든 변형은 첨부된 청구항의 범위에 포함되는 것으로 의도된다.

Claims (30)

  1. 선택적 α7 nAChR 효능제(agonist)를 투여하는 단계를 포함하는, 대사 질환을 치료 또는 예방하는 방법.
  2. 선택적 α7 nAChR 효능제를 투여하는 단계를 포함하는, 약물-유도 중추신경계 질환을 치료 또는 예방하는 방법.
  3. 제1항 또는 제2항에 있어서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염인 것인 방법.
  4. 제1항 내지 제3항에 있어서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염인 것인 방법.
  5. 제1항, 제3항 또는 제4항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 방법.
  6. 제5항에 있어서, 상기 고혈당증은 스타틴 요법(statin therapy)의 결과인 것인 방법.
  7. 제2항에 있어서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과인 것인 방법.
  8. 하기 식의 화합물 또는 그의 약제학적으로 허용가능한 염을 투여하는 단계를 포함하는, 대사 질환을 치료 또는 예방하는 방법:
    Figure pct00019
  9. 제8항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 방법.
  10. 제8항 또는 제9항에 있어서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg인 것인 방법.
  11. 대사 질환의 치료 또는 예방을 위한 약제의 제조에서 선택적 α7 nAChR 효능제의 용도.
  12. 약물-유도 중추신경계 질환의 치료 또는 예방을 위한 약제의 제조에서 선택적 α7 nAChR 효능제의 용도.
  13. 제11항 또는 제12항에 있어서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염인 것인 용도.
  14. 제11항 내지 제13항에 있어서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염인 것인 용도.
  15. 제11항, 제13항 또는 제14항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 용도.
  16. 제15항에 있어서, 상기 고혈당증은 스타틴 요법의 결과인 것인 용도.
  17. 제12항에 있어서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과인 것인 용도.
  18. 대사 질환을 치료 또는 예방하기 위한 약제의 제조에서, 하기 식의 화합물 C 또는 그의 약제학적으로 허용가능한 염의 용도:
    Figure pct00020
  19. 제18항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 용도.
  20. 제18항 또는 제19항에 있어서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg인 것인 용도.
  21. 대사 질환의 치료 또는 예방에서 사용하기 위한 선택적 α7 nAChR 효능제 화합물.
  22. 약물-유도 중추신경계 질환의 치료 또는 예방에서 사용하기 위한 α7 nAChR 효능제 화합물.
  23. 제21항 또는 제22항에 있어서, 상기 α7 nAChR 효능제는 화합물 A, 화합물 B, 화합물 C, 또는 이들의 약제학적으로 허용가능한 염인 것인 화합물.
  24. 제21항 내지 제23항에 있어서, 상기 α7 nAChR 효능제는 화합물 C 또는 그의 약제학적으로 허용가능한 염인 것인 화합물.
  25. 제21항, 제23항 또는 제24항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 화합물.
  26. 제25항에 있어서, 상기 고혈당증은 스타틴 요법의 결과인 것인 용도.
  27. 제22항에 있어서, 상기 약물-유도 중추신경계 질환은 스타틴 요법의 결과인 것인 화합물.
  28. 대사 질환의 치료 또는 예방에서 사용하기 위한 하기 식의 선택적 α7 nAChR 효능제 화합물 또는 그의 약제학적으로 허용가능한 염:
    Figure pct00021
  29. 제28항에 있어서, 상기 대사 질환은 타입 I 당뇨병, 타입 II 당뇨병, 대사 증후군, 죽상경화증, 비만, 및 고혈당증 중 하나 이상인 것인 화합물.
  30. 제28항 또는 제29항에 있어서, 1일 투여량은 약 0.001 mg/kg 내지 약 3.0 mg/kg인 것인 화합물.
KR1020107004202A 2007-08-02 2008-08-01 대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제 KR20100063043A (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US95361007P 2007-08-02 2007-08-02
US95361407P 2007-08-02 2007-08-02
US95361307P 2007-08-02 2007-08-02
US60/953,614 2007-08-02
US60/953,613 2007-08-02
US60/953,610 2007-08-02
US97165407P 2007-09-12 2007-09-12
US60/971,654 2007-09-12

Publications (1)

Publication Number Publication Date
KR20100063043A true KR20100063043A (ko) 2010-06-10

Family

ID=39945177

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020107004202A KR20100063043A (ko) 2007-08-02 2008-08-01 대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제
KR1020107004216A KR20100051684A (ko) 2007-08-02 2008-08-01 (2s,3r)―n―(2―((3―피리디닐)메틸)―1―아자비시클로[2.2.2]옥트―3―일)벤조푸란―2―카르복사미드,신규한 염 형태,및 그의 사용 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020107004216A KR20100051684A (ko) 2007-08-02 2008-08-01 (2s,3r)―n―(2―((3―피리디닐)메틸)―1―아자비시클로[2.2.2]옥트―3―일)벤조푸란―2―카르복사미드,신규한 염 형태,및 그의 사용 방법

Country Status (35)

Country Link
US (6) US7981906B2 (ko)
EP (6) EP2409703A1 (ko)
JP (4) JP5358573B2 (ko)
KR (2) KR20100063043A (ko)
CN (4) CN103172628A (ko)
AR (1) AR067775A1 (ko)
AU (3) AU2008283813A1 (ko)
BR (2) BRPI0814889A2 (ko)
CA (2) CA2694510A1 (ko)
CL (3) CL2008002271A1 (ko)
CO (2) CO6260080A2 (ko)
CY (1) CY1113561T1 (ko)
DK (2) DK2431037T3 (ko)
EC (2) ECSP10010008A (ko)
ES (3) ES2415107T3 (ko)
HK (1) HK1140968A1 (ko)
HR (1) HRP20130286T1 (ko)
HU (1) HUE030387T2 (ko)
IL (1) IL218976A0 (ko)
ME (1) ME01508B (ko)
MX (3) MX346748B (ko)
MY (1) MY148002A (ko)
NO (2) NO20100077L (ko)
NZ (2) NZ582828A (ko)
PE (3) PE20090566A1 (ko)
PL (1) PL2182949T3 (ko)
PT (1) PT2182949E (ko)
RS (1) RS52743B (ko)
RU (2) RU2012140182A (ko)
SA (2) SA08290475B1 (ko)
SI (1) SI2182949T1 (ko)
TW (3) TWI429435B (ko)
UY (1) UY31265A (ko)
WO (2) WO2009018505A1 (ko)
ZA (1) ZA201000719B (ko)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953855B2 (en) * 1998-12-11 2005-10-11 Targacept, Inc. 3-substituted-2(arylalkyl)-1-azabicycloalkanes and methods of use thereof
DE10164139A1 (de) 2001-12-27 2003-07-10 Bayer Ag 2-Heteroarylcarbonsäureamide
US8314119B2 (en) 2006-11-06 2012-11-20 Abbvie Inc. Azaadamantane derivatives and methods of use
SA08290475B1 (ar) * 2007-08-02 2013-06-22 Targacept Inc (2s، 3r)-n-(2-((3-بيردينيل)ميثيل)-1-آزا بيسيكلو[2، 2، 2]أوكت-3-يل)بنزو فيوران-2-كربوكساميد، وصور أملاحه الجديدة وطرق استخدامه
EP2296640A1 (en) * 2008-05-12 2011-03-23 Targacept Inc. Methods for preventing the development of retinopathy by the oral administration of nnr ligands
TW201031664A (en) 2009-01-26 2010-09-01 Targacept Inc Preparation and therapeutic applications of (2S,3R)-N-2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-3,5-difluorobenzamide
JO3250B1 (ar) 2009-09-22 2018-09-16 Novartis Ag إستعمال منشطات مستقبل نيكوتينيك أسيتيل كولين ألفا 7
UY33389A (es) 2010-05-17 2011-12-30 Mitsubishi Tanabe Pharma Corp Una forma cristalina de clorhidrato de (r)-7-cloro-n-(quinuclidin-3-il)benzo[b]tiofeno-2-carboxamida monohidrato
RU2013108223A (ru) * 2010-07-26 2014-09-10 Энвиво Фармасьютикалз, Инк. Лечение когнитивных нарушений определенными агонистами рецептора никотиновой кислоты альфа-7 в сочетании с ингибиторами ацетилхолинэстеразы
UA110802C2 (uk) 2010-09-23 2016-02-25 Еббві Бахамаз Лтд. Моногідрат похідного азаадамантану
SG191986A1 (en) * 2011-01-18 2013-08-30 Targacept Inc Treatment of cognitive dysfunction in schizophrenia
MX2013008704A (es) 2011-01-27 2013-08-21 Novartis Ag Uso de activadores del receptor de acetil-colina nicotinico alfa-7.
CN107252414B (zh) 2011-03-18 2020-11-24 奥克梅斯制药爱尔兰有限公司 包含脱水山梨糖醇酯的药物组合物
EP2685977A1 (en) 2011-03-18 2014-01-22 Novartis AG COMBINATIONS OF ALPHA 7 NICOTINIC ACETYLCHOLINE RECEPTOR ACTIVATORS AND mGluR5 ANTAGONISTS FOR USE IN DOPAMINE INDUCED DYSKINESIA IN PARKINSON'S DISEASE
WO2012129262A1 (en) 2011-03-23 2012-09-27 Targacept, Inc. Treatment of attention deficit/hyperactivity disease
US20140128606A1 (en) 2011-06-30 2014-05-08 Toray Industries, Inc. Antipruritic agent
TW201311698A (zh) * 2011-08-22 2013-03-16 Targacept Inc 作為神經元菸鹼乙醯膽鹼受體配位體之1,4-二氮雜雙環[3.2.2]壬烷
AU2012324458B2 (en) 2011-10-20 2016-05-19 Novartis Ag Biomarkers predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment
CA2867123C (en) * 2012-03-19 2021-02-16 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising water-insoluble antipsychotic agents and glycerol esters
US9999670B2 (en) 2012-03-19 2018-06-19 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising benzyl alcohol
NZ630643A (en) 2012-03-19 2017-08-25 Alkermes Pharma Ireland Ltd Pharmaceutical compositions comprising fatty acid esters
RU2017136693A (ru) 2012-05-08 2019-02-08 Форум Фармасьютикалз, Инк. Способы поддержания, лечения или улучшения когнитивной функции
CA2885196C (en) 2012-09-19 2021-06-22 Alkermes Pharma Ireland Limited Pharmaceutical compositions having improved storage stability
AU2013356914B2 (en) 2012-12-11 2017-01-05 Novartis Ag Biomarker predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment
BR112015016992A8 (pt) 2013-01-15 2018-01-23 Novartis Ag uso de agonistas do receptor alfa 7 nicotínico de acetilcolina
CA2898080C (en) 2013-01-15 2018-01-09 Novartis Ag Use of alpha 7 nicotinic acetylcholine receptor agonists
CA2898043C (en) * 2013-01-15 2019-08-06 Novartis Ag Use of alpha 7 nicotinic receptor agonists for the treatment of narcolepsy
US20150313884A1 (en) 2013-01-15 2015-11-05 Novartis Ag Use of alpha 7 nicotinic acetylcholine receptor agonists
WO2014153424A1 (en) * 2013-03-19 2014-09-25 La Jolla Institute For Allergy And Immunology Reducing diabetes in patients receiving hmg-coa reductase inhibitors (statins)
AU2015231278B2 (en) 2014-03-20 2020-01-23 Alkermes Pharma Ireland Limited Aripiprazole formulations having increased injection speeds
CN106659765B (zh) 2014-04-04 2021-08-13 德玛医药 二脱水半乳糖醇及其类似物或衍生物用于治疗非小细胞肺癌和卵巢癌的用途
CN104288771B (zh) * 2014-09-30 2017-03-15 郑州大学第五附属医院 α7nAChR激动剂的新用途
CA2983927A1 (en) 2015-05-06 2016-11-10 The Regents Of The University Of California K-ras modulators
US9724340B2 (en) * 2015-07-31 2017-08-08 Attenua, Inc. Antitussive compositions and methods
US10282666B1 (en) 2015-11-10 2019-05-07 Google Llc Coherency detection and information management system
RU2675111C2 (ru) * 2017-03-31 2018-12-17 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт фундаментальной и клинической иммунологии" Способ стимуляции нейрогенеза в гиппокампе
CN110785414A (zh) 2017-04-20 2020-02-11 加利福尼亚大学董事会 K-Ras调节剂
US11273158B2 (en) 2018-03-05 2022-03-15 Alkermes Pharma Ireland Limited Aripiprazole dosing strategy

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203990A (en) 1979-04-30 1980-05-20 G. D. Searle & Co. Anti-diarrheal 2-substituted quinuclidines
DE58906678D1 (de) 1988-07-28 1994-02-24 Ciba Geigy Kupfer- und Nickeldihalogenidkomplexe, Verfahren zu deren Herstellung und deren Verwendung.
US4922901A (en) 1988-09-08 1990-05-08 R. J. Reynolds Tobacco Company Drug delivery articles utilizing electrical energy
EP0402056A3 (en) 1989-06-06 1991-09-04 Beecham Group p.l.c. Azabicyclic compounds, process for their preparation and pharmaceutical compositions containing them
EP0412798A3 (en) 1989-08-08 1992-07-01 Merck Sharp & Dohme Ltd. Substituted pyridines, their preparation, formulations and use in dementia
IN173570B (ko) 1989-11-23 1994-06-04 Pfizer
DK40890D0 (da) 1990-02-16 1990-02-16 Ferrosan As Substituerede urinstofforbindelser, deres fremstilling og anvendelse
EP0492903A1 (en) 1990-12-21 1992-07-01 MERCK SHARP &amp; DOHME LTD. Substituted pyrazines, pyrimidines and pyridazines for use in the treatment of glaucoma
KR0137003B1 (ko) 1991-03-01 1998-04-25 카렌 에이. 홀브루크 신경계 퇴행성 질환치료용 니코틴 아날로그의 용도
US5212188A (en) 1992-03-02 1993-05-18 R. J. Reynolds Tabacco Company Method for treatment of neurodegenerative diseases
US5276043A (en) 1992-04-10 1994-01-04 R. J. Reynolds Tobacco Company Method for treatment of neurodegenerative diseases
US5977144A (en) 1992-08-31 1999-11-02 University Of Florida Methods of use and compositions for benzylidene- and cinnamylidene-anabaseines
JP3034953B2 (ja) 1992-08-31 2000-04-17 ユニバーシティー オブ フロリダ リサーチ ファンデーション,インコーポレーテッド 神経系の変性疾患の治療に有用なアナバセイン誘導体
IL107184A (en) 1992-10-09 1997-08-14 Abbott Lab Heterocyclic ether compounds that enhance cognitive function
US5852041A (en) 1993-04-07 1998-12-22 Sibia Neurosciences, Inc. Substituted pyridines useful as modulators of acethylcholine receptors
IL109451A0 (en) * 1993-04-29 1994-07-31 Zeneca Ltd Heterocyclic derivatives
AU7474794A (en) 1993-07-22 1995-02-20 E.I. Du Pont De Nemours And Company Arthropodicidal azacyclic heterocycles
US5493026A (en) 1993-10-25 1996-02-20 Organix, Inc. Substituted 2-carboxyalkyl-3-(fluorophenyl)-8-(3-halopropen-2-yl) nortropanes and their use as imaging for agents for neurodegenerative disorders
US5510355A (en) 1994-09-06 1996-04-23 Bencherif; Merouane Depolarizing skeletal muscle relaxants
US5998404A (en) 1994-10-24 1999-12-07 Eli Lilly And Company Heterocyclic compounds and their use
US5616707A (en) 1995-01-06 1997-04-01 Crooks; Peter A. Compounds which are useful for prevention and treatment of central nervous system disorders
US5597919A (en) 1995-01-06 1997-01-28 Dull; Gary M. Pyrimidinyl or Pyridinyl alkenyl amine compounds
US5604231A (en) 1995-01-06 1997-02-18 Smith; Carr J. Pharmaceutical compositions for prevention and treatment of ulcerative colitis
US5824692A (en) 1995-01-06 1998-10-20 Lippiello; Patrick Michael Pharmaceutical compositions for prevention and treatment of central nervous system disorders
EP0809494A1 (en) 1995-02-17 1997-12-03 Novo Nordisk A/S The use of heterocyclic compounds
US5585388A (en) 1995-04-07 1996-12-17 Sibia Neurosciences, Inc. Substituted pyridines useful as modulators of acetylcholine receptors
US5583140A (en) 1995-05-17 1996-12-10 Bencherif; Merouane Pharmaceutical compositions for the treatment of central nervous system disorders
IL118279A (en) 1995-06-07 2006-10-05 Abbott Lab Compounds 3 - Pyridyloxy (or Thio) Alkyl Heterocyclic Pharmaceutical Compositions Containing Them and Their Uses for Preparing Drugs to Control Synaptic Chemical Transmission
EP0842172A1 (en) 1995-06-29 1998-05-20 Novo Nordisk A/S Novel substituted azacyclic or azabicyclic compounds
EP0853621A1 (en) 1995-09-22 1998-07-22 Novo Nordisk A/S Novel substituted azacyclic or azabicyclic compounds
US5712270A (en) 1995-11-06 1998-01-27 American Home Products Corporation 2-arylamidothiazole derivatives with CNS activity
US5616716A (en) 1996-01-06 1997-04-01 Dull; Gary M. (3-(5-ethoxypyridin)yl)-alkenyl 1 amine compounds
SE9600683D0 (sv) * 1996-02-23 1996-02-23 Astra Ab Azabicyclic esters of carbamic acids useful in therapy
US5663356A (en) 1996-04-23 1997-09-02 Ruecroft; Graham Method for preparation of aryl substituted alefinic secondary amino compounds
US5726189A (en) 1996-05-03 1998-03-10 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Method for imaging nicotinic acetylcholinergic receptors in the brain using radiolabeled pyridyl-7-azabicyclo 2.2.1!heptanes
ZA9711092B (en) 1996-12-11 1999-07-22 Smithkline Beecham Corp Novel compounds.
US5811442A (en) 1997-02-21 1998-09-22 Bencherif; Merouane Pharmaceutical compositions for the treatment of conditions associated with decreased blood flow
US5861423A (en) 1997-02-21 1999-01-19 Caldwell; William Scott Pharmaceutical compositions incorporating aryl substituted olefinic amine compounds
SK284994B6 (sk) 1997-05-30 2006-04-06 Neurosearch A/S Deriváty 8-azabicyklo[3.2.1]okt-2-énu, spôsob ich prípravy a ich použitie
AR013184A1 (es) 1997-07-18 2000-12-13 Astrazeneca Ab Aminas heterociclicas espiroazobiciclicas, composicion farmaceutica, uso de dichas aminas para preparar medicamentos y metodo de tratamiento o profilaxis
US5952339A (en) 1998-04-02 1999-09-14 Bencherif; Merouane Pharmaceutical compositions and methods of using nicotinic antagonists for treating a condition or disorder characterized by alteration in normal neurotransmitter release
BR9907172A (pt) 1998-04-02 2000-10-10 Reynolds Tobacco Co R Derivados de azatriciclo[3.3.1.1] decano e composições farmacêuticas contendo-os
ATE255888T1 (de) 1998-06-01 2003-12-15 Ortho Mcneil Pharm Inc Tetrahydronaphtalene verbindungen und deren verwendung zur behandlung von neurodegenerativen krankheiten
US6310043B1 (en) 1998-08-07 2001-10-30 Governors Of The University Of Alberta Treatment of bacterial infections
GB9821503D0 (en) 1998-10-02 1998-11-25 Novartis Ag Organic compounds
US6953855B2 (en) 1998-12-11 2005-10-11 Targacept, Inc. 3-substituted-2(arylalkyl)-1-azabicycloalkanes and methods of use thereof
US6432975B1 (en) 1998-12-11 2002-08-13 Targacept, Inc. Pharmaceutical compositions and methods for use
US6734215B2 (en) 1998-12-16 2004-05-11 University Of South Florida Exo-S-mecamylamine formulation and use in treatment
SE9900100D0 (sv) 1999-01-15 1999-01-15 Astra Ab New compounds
FR2791678B1 (fr) 1999-03-30 2001-05-04 Synthelabo Derives de 1,4-diazabicyclo [3.2.2] nonane-4-carboxylates et -carboxamides, leur preparation et leur application en therapeutique
SE9904176D0 (sv) 1999-11-18 1999-11-18 Astra Ab New use
SE0000540D0 (sv) * 2000-02-18 2000-02-18 Astrazeneca Ab New compounds
GB0010955D0 (en) 2000-05-05 2000-06-28 Novartis Ag Organic compounds
SI1300407T2 (sl) 2000-06-27 2011-09-30 S A L V A T Lab Sa Karbamati, izvedeni iz arilalkilaminov
AU2001282874A1 (en) 2000-08-18 2002-03-04 Pharmacia And Upjohn Company Quinuclidine-substituted aryl moieties for treatment of disease (nicotinic acetylcholine receptor ligands)
US6492386B2 (en) 2000-08-18 2002-12-10 Pharmacia & Upjohn Company Quinuclidine-substituted aryl compounds for treatment of disease
WO2002016357A2 (en) 2000-08-18 2002-02-28 Pharmacia & Upjohn Company Quinuclidine-substituted aryl moieties for treatment of disease (nicotinic acetylcholine receptor ligands)
JP2004506734A (ja) 2000-08-21 2004-03-04 ファルマシア・アンド・アップジョン・カンパニー 疾患治療用のキヌクリド置換ヘテロアリール部分
US6500840B2 (en) 2000-08-21 2002-12-31 Pharmacia & Upjohn Company Quinuclidine-substituted heteroaryl moieties for treatment of disease
AU2001284646A1 (en) 2000-08-21 2002-03-04 Pharmacia And Upjohn Company Quinuclidine-substituted heteroaryl moieties for treatment of disease
RU2296762C2 (ru) 2000-12-22 2007-04-10 Альмиралль Продесфарма Аг Карбаматы хинуклидина, способы их получения и фармацевтическая композиция на их основе
US20020086871A1 (en) 2000-12-29 2002-07-04 O'neill Brian Thomas Pharmaceutical composition for the treatment of CNS and other disorders
CN1294136C (zh) 2001-06-01 2007-01-10 阿斯特拉曾尼卡有限公司 用于治疗的烟碱乙酰胆碱受体新型配体
US6569865B2 (en) * 2001-06-01 2003-05-27 Astrazeneca Ab Spiro 1-azabicyclo[2.2.2]octane-3,2′(3′h)-furo[2,3-b]pyridine
AR036040A1 (es) * 2001-06-12 2004-08-04 Upjohn Co Compuestos de heteroarilo multiciclicos sustituidos con quinuclidinas y composiciones farmaceuticas que los contienen
US7109204B2 (en) 2001-08-01 2006-09-19 Merck & Co., Inc. Tyrosine kinase inhibitors
US20030069296A1 (en) 2001-08-24 2003-04-10 Wishka Donn G. Substituted-aryl 7-aza[2.2.1]bicycloheptanes for the treatment of disease
CA2458375A1 (en) 2001-08-24 2003-03-06 Pharmacia & Upjohn Company Substituted-heteroaryl-7-aza¬2.2.1|bicycloheptanes for the treatment of disease
WO2003022856A1 (en) 2001-09-12 2003-03-20 Pharmacia & Upjohn Company Substituted 7-aza[2.2.1] bicycloheptanes for the treatment of diseases
AU2003219690A1 (en) 2002-02-19 2003-09-09 Pharmacia And Upjohn Company Fused bicyclic-n-bridged-heteroaromatic carboxamides for the treatment of disease
AU2003214936A1 (en) 2002-02-20 2003-09-09 Pharmacia And Upjohn Company Azabicyclic compounds with alfa7 nicotinic acetylcholine receptor activity
DE60333746D1 (de) 2002-04-18 2010-09-23 Astrazeneca Ab Thienylverbindungen
BR0309343A (pt) 2002-04-18 2005-02-15 Astrazeneca Ab Composto, composição farmacêutica, uso de um composto, e, método de tratamento ou profilaxia de doenças ou condições humanas
ATE433981T1 (de) 2002-04-18 2009-07-15 Astrazeneca Ab Heterocyclische verbindungen
EP1542999A1 (en) 2002-08-01 2005-06-22 Pharmacia & Upjohn Company LLC 1h-pyrazole and 1h-pyrrole-azabicyclic compounds with alfa-7 nachr activity
SE0202465D0 (sv) 2002-08-14 2002-08-14 Astrazeneca Ab New compounds
NZ538058A (en) 2002-08-14 2006-11-30 Neurosearch As Quinuclidine derivatives and their use for treating disorders related to CNS and PNS
SE0202430D0 (sv) 2002-08-14 2002-08-14 Astrazeneca Ab New Compounds
EP2298758A1 (en) 2002-08-30 2011-03-23 Memory Pharmaceuticals Corporation Anabaseine derivatives useful in the treatment of neurodegenerative diseases
US7429664B2 (en) 2002-09-25 2008-09-30 Memory Pharmaceuticals Corporation Indazoles, benzothiazoles, and benzoisothiazoles, and preparation and uses thereof
WO2004039366A1 (en) 2002-11-01 2004-05-13 Pharmacia & Upjohn Company Llc Nicotinic acetylcholine agonists in the treatment of glaucoma and retinal neuropathy
JP2006506395A (ja) 2002-11-01 2006-02-23 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー CNS疾患の治療のための、α7ニコチンアゴニスト活性及び5HT3アンタゴニスト活性を有する化合物
EP2062595A1 (en) 2002-12-06 2009-05-27 The Feinstein Institute for Medical Research Inhibition of inflammation using alpha 7 receptor-binding cholinergic agonists
EA200500783A1 (ru) 2002-12-11 2005-12-29 ФАРМАЦИЯ ЭНД АПДЖОН КОМПАНИ ЭлЭлСи Комбинация для лечения синдрома дефицита внимания с гиперактивностью
CN1726033A (zh) 2002-12-11 2006-01-25 法马西亚和厄普乔恩公司 用α7烟碱乙酰胆碱受体激动剂和其它化合物的联合治疗疾病
US6917746B2 (en) 2002-12-17 2005-07-12 3M Innovative Properties Company Apparatus and method for creating a fiber optic circuit
US6777617B2 (en) 2002-12-30 2004-08-17 3M Innovative Properties Company Telecommunications terminal
CA2518675A1 (en) 2003-02-27 2004-09-10 Neurosearch A/S Novel diazabicyclic aryl derivatives
JP2007516200A (ja) 2003-07-08 2007-06-21 アストラゼネカ・アクチエボラーグ α7ニコチン性アセチルコリン受容体に親和性を有するスピロ[1−アザビシクロ[2,2,2]オクタン−3,5’−オキサゾリジン]−2’−オン誘導体
BRPI0414633A (pt) 2003-09-25 2006-11-07 Astrazeneca Ab composto, composição de diagnóstico, método para a doagnose de doenças ou condições, e, kit
JP4855264B2 (ja) 2003-10-21 2012-01-18 アストラゼネカ・アクチエボラーグ スピロフロピリジンアリール誘導体
US20050137398A1 (en) 2003-12-22 2005-06-23 Jianguo Ji 3-Quinuclidinyl heteroatom bridged biaryl derivatives
US7160876B2 (en) * 2003-12-22 2007-01-09 Abbott Laboratories Fused bicycloheterocycle substituted quinuclidine derivatives
US20050137203A1 (en) 2003-12-22 2005-06-23 Jianguo Ji 3-quinuclidinyl amino-substituted biaryl derivatives
US20050245531A1 (en) 2003-12-22 2005-11-03 Abbott Laboratories Fused bicycloheterocycle substituted quinuclidine derivatives
US20050137217A1 (en) 2003-12-22 2005-06-23 Jianguo Ji Spirocyclic quinuclidinic ether derivatives
WO2005075482A1 (en) * 2004-02-04 2005-08-18 Neurosearch A/S Diazabicyclic aryl derivatives as nicotinic acetylcholine receptor ligands
ATE487716T1 (de) 2004-04-22 2010-11-15 Memory Pharm Corp Indole, 1h-indazole, 1,2-benzisoxazole, 1,2- benzoisothiazole, deren herstellung und verwendungen
US7632831B2 (en) 2004-05-07 2009-12-15 Memory Pharmaceuticals Corporation 1H-indazoles, benzothiazoles, 1,2-benzoisoxazoles, 1,2-benzoisothiazoles, and chromones and preparation and uses thereof
NZ553622A (en) * 2004-10-20 2010-08-27 Neurosearch As Novel diazabicyclic aryl derivatives and their medical use
WO2006065209A1 (en) 2004-12-15 2006-06-22 Astrazeneca Ab Nicotinic acetylcholine receptor ligands
KR20070087674A (ko) * 2004-12-22 2007-08-28 메모리 파마슈티칼스 코포레이션 니코틴 α-7 수용체 리간드 및 이의 제조 및 용도
CA2610795C (en) 2005-06-07 2015-01-06 University Of Florida Research Foundation, Inc. 3-arylidene-anabaseine compounds as alpha 7 nicotitnic receptor selective ligands
NZ565628A (en) 2005-08-22 2011-03-31 Targacept Inc Heteroaryl-substituted diazatricycloalkanes, methods for its preparation and use thereof
SG165417A1 (en) 2005-09-23 2010-10-28 Memory Pharm Corp Indazoles, benzothiazoles, and benzoisothiazoles, and preparation and uses thereof
US8316104B2 (en) * 2005-11-15 2012-11-20 California Institute Of Technology Method and apparatus for collaborative system
SA08290475B1 (ar) * 2007-08-02 2013-06-22 Targacept Inc (2s، 3r)-n-(2-((3-بيردينيل)ميثيل)-1-آزا بيسيكلو[2، 2، 2]أوكت-3-يل)بنزو فيوران-2-كربوكساميد، وصور أملاحه الجديدة وطرق استخدامه
WO2009102962A2 (en) * 2008-02-13 2009-08-20 Targacept, Inc. Combination of alpha 7 nicotinic agonists and antipsychotics

Also Published As

Publication number Publication date
JP2013231071A (ja) 2013-11-14
PE20121821A1 (es) 2013-01-23
EP2182949A1 (en) 2010-05-12
SI2182949T1 (sl) 2013-10-30
CN101784273A (zh) 2010-07-21
BRPI0814889A2 (pt) 2017-05-23
HUE030387T2 (en) 2017-05-29
SA08290475B1 (ar) 2013-06-22
JP6106549B2 (ja) 2017-04-05
NZ582986A (en) 2012-01-12
ECSP10010007A (es) 2010-07-30
US8119659B2 (en) 2012-02-21
ECSP10010008A (es) 2010-04-30
CN101784273B (zh) 2017-01-18
WO2009018505A1 (en) 2009-02-05
AU2012203288A1 (en) 2012-06-21
DK2182949T3 (da) 2013-04-02
JP5358573B2 (ja) 2013-12-04
ES2415107T3 (es) 2013-07-24
CO6260080A2 (es) 2011-03-22
MX2010001293A (es) 2011-02-25
JP2013231070A (ja) 2013-11-14
MY148002A (en) 2013-02-28
JP2010535252A (ja) 2010-11-18
CN103172628A (zh) 2013-06-26
ZA201000719B (en) 2010-11-24
ES2606752T3 (es) 2017-03-27
MX346748B (es) 2017-03-29
CA2694504C (en) 2014-01-07
TWI429435B (zh) 2014-03-11
RS52743B (en) 2013-08-30
US8846715B2 (en) 2014-09-30
UY31265A (es) 2009-12-14
SA112330303B1 (ar) 2014-11-10
EP2185152A2 (en) 2010-05-19
PL2182949T3 (pl) 2013-06-28
AU2008283807A1 (en) 2009-02-05
EP2431037B1 (en) 2016-11-30
JP2010535251A (ja) 2010-11-18
US8541446B2 (en) 2013-09-24
NO20100077L (no) 2010-02-26
PE20090566A1 (es) 2009-05-13
IL218976A0 (en) 2012-05-31
US20110124678A1 (en) 2011-05-26
HK1140968A1 (ko) 2010-10-29
CL2013002226A1 (es) 2013-11-15
WO2009018511A2 (en) 2009-02-05
US20090048290A1 (en) 2009-02-19
BRPI0815009A2 (pt) 2015-03-03
AU2012203288B2 (en) 2013-08-29
US7981906B2 (en) 2011-07-19
PT2182949E (pt) 2013-02-14
KR20100051684A (ko) 2010-05-17
AU2008283807B2 (en) 2012-03-29
TW200914004A (en) 2009-04-01
EP2465501B1 (en) 2016-10-05
DK2431037T3 (en) 2017-02-13
CN101868237A (zh) 2010-10-20
CY1113561T1 (el) 2016-06-22
US20140024673A1 (en) 2014-01-23
JP5852611B2 (ja) 2016-02-03
CA2694504A1 (en) 2009-02-05
CL2008002271A1 (es) 2008-12-19
EP2465501A1 (en) 2012-06-20
AU2008283813A1 (en) 2009-02-05
EP2431037A1 (en) 2012-03-21
AR067775A1 (es) 2009-10-21
TW201402116A (zh) 2014-01-16
US20120129885A1 (en) 2012-05-24
PE20121820A1 (es) 2013-01-23
EP2182949B1 (en) 2013-01-02
CA2694510A1 (en) 2009-02-05
ES2611139T3 (es) 2017-05-05
CO6260081A2 (es) 2011-03-22
CL2013002227A1 (es) 2013-11-08
ME01508B (me) 2014-04-20
TW201402117A (zh) 2014-01-16
US20150045386A1 (en) 2015-02-12
NZ582828A (en) 2011-09-30
HRP20130286T1 (en) 2013-06-30
RU2012140148A (ru) 2014-03-27
CN106831755A (zh) 2017-06-13
MX346451B (es) 2017-03-17
NO20100078L (no) 2010-02-26
EP2409703A1 (en) 2012-01-25
EP2484363A1 (en) 2012-08-08
US20110263859A1 (en) 2011-10-27
RU2012140182A (ru) 2014-03-27
WO2009018511A3 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
KR20100063043A (ko) 대사 질환의 치료 또는 예방을 위한 알파7 nAChR 효능제
JP6420860B2 (ja) グルコシルセラミド合成酵素阻害剤
JP5657556B2 (ja) α7選択的リガンドを用いる治療
AU2017376398B2 (en) Aminopyrazoles as selective janus kinase inhibitors
US10676438B2 (en) KCNQ2-5 channel activator
US20110059947A1 (en) Alpha 7 nicotinic agonists and antipsychotics
JP2010534206A (ja) ピラゾロ[1,5−a]ピリミジン誘導体
EP2976338B1 (en) N-(2-cyano heterocyclyl)pyrazolo pyridones as janus kinase inhibitors
TW201609743A (zh) 咪唑并嗒化合物
TWI433838B (zh) 作為趨化因子受體活性調節劑之六氫吡啶衍生物
JPWO2006129679A1 (ja) スピロピペリジン化合物およびその医薬用途
CN109790170B (zh) Gaba(a)受体调节剂和控制哮喘中气道高反应性和炎症的方法
CN109666013A (zh) 双哌啶取代的异黄酮化合物及其用途

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid