WO2008111688A1 - Mg基合金めっき鋼材 - Google Patents

Mg基合金めっき鋼材 Download PDF

Info

Publication number
WO2008111688A1
WO2008111688A1 PCT/JP2008/055189 JP2008055189W WO2008111688A1 WO 2008111688 A1 WO2008111688 A1 WO 2008111688A1 JP 2008055189 W JP2008055189 W JP 2008055189W WO 2008111688 A1 WO2008111688 A1 WO 2008111688A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
based alloy
atomic
plating
molten
Prior art date
Application number
PCT/JP2008/055189
Other languages
English (en)
French (fr)
Inventor
Kohei Tokuda
Koichi Nose
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1020097018957A priority Critical patent/KR101168730B1/ko
Priority to NZ579535A priority patent/NZ579535A/en
Priority to AU2008225398A priority patent/AU2008225398B2/en
Priority to EP08722555.3A priority patent/EP2135968B1/en
Priority to US12/450,195 priority patent/US8562757B2/en
Priority to CN2008800085110A priority patent/CN101636517B/zh
Priority to BRPI0809237A priority patent/BRPI0809237B8/pt
Priority to CA2681059A priority patent/CA2681059C/en
Priority to ES08722555T priority patent/ES2713075T3/es
Publication of WO2008111688A1 publication Critical patent/WO2008111688A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to an Mg-based gold-plated steel material having a high Mg composition alloy (Mg-based alloy) plating layer.
  • molten Zn-based steel As a molten metal-plated steel, molten Zn-based steel is used in a wide range of fields such as automobiles, building materials, and home appliances. In general, plating with a high adhesion amount is effective for the purpose of ensuring a long-term protection effect.
  • Zn-Ni alloy plating Zn-Fe alloy plating, etc. are widely used mainly for automotive steel sheets.
  • Zinc-A1 alloy plating is also widely used mainly in building materials.
  • the steel alloy plating layer with excellent corrosion resistance disclosed in Japanese Patent Application Laid-Open No. 2002-60978 contains 1 to 50% A1 and 0.1 to 20% Mg in mass%.
  • the alloy plating layer contains 0.05 to 3% Mg in mass%, so that corrosion resistance is obtained. It has been.
  • the Mg content of the plating layer is mass%, and at most about 20%.
  • the first reason is that when Mg is added at a high concentration, there is a high possibility that the melting point of the plating bath is increased, and it is easy to generate an intermetallic compound that deteriorates workability even after plating. It is.
  • MgZn 2 intermetallic compound
  • Mg when the amount of Mg added approaches 20%, the added Mg becomes insoluble and the amount of dross generated increases. Mg accumulates at a high concentration in the dross on the plating bath surface, and depending on the atmosphere, it may ignite on the bath surface, making plating difficult. In addition, when Mg is added at a high concentration of 10% or more, intermetallic compounds and alloy layers are formed in a large amount in the alloy plating layer after solidification.
  • Intermetallic compounds present in the alloy plating layer and alloy layers formed at the interface between the steel sheet and the plating layer are poor in plastic deformability, so if a plating bath composition containing a high concentration of Mg is used, workability A poor plating layer is formed, and the problem of cracking of the plating layer and peeling from the steel sheet becomes significant.
  • the amount of Mg added has been considered to be around 20% in mass% due to the above-mentioned conditions for forming the plating and the problem of workability of the plating layer.
  • Mg is poorly reactive with Fe. Mg does not form an intermetallic compound with Fe, and does not dissolve Fe at all (for example, Journal of the Japan Institute of Metals, Vol. 59, No. 3 (1995), p. 284-289).
  • the Mg oxide film deteriorates the wettability with Fe and deteriorates the adhesion.
  • the third reason why the Mg content is kept low is that it was thought that the corrosion resistance deteriorated in the tsunami composition containing Mg at a high concentration.
  • Mg is the most easily oxidized among practical metals, the Mg concentration is Even if 50% or more of the alloy could be attached, it was thought that it was oxidized and poor in corrosion resistance and lacked practicality.
  • Nisshin Steel Technical Report No. 78 (1998), 18-27 is a method for producing Zn-Mg-plated steel sheets by vapor deposition plating using the low melting point and high vapor pressure of Mg. Is disclosed.
  • the Mg concentration of the plating layer of the Zn-Mg steel plate manufactured by the manufacturing method disclosed in “Nisshin Steel Technical Report No. 78 (1998), 18-27” is 11-13 mass%.
  • the Mg-Zn alloy plating layer containing Mg at a high concentration has not been studied, and no performance has been disclosed.
  • the Mg content of the adhesive layer of the molten steel material disclosed so far is at most 20% by mass, and most of the research in this field is limited to the range of 20% or less of Mg. It was.
  • the present invention provides a galvanized steel material having a molten Mg-Zn alloy galvanized layer that contains Mg in a high concentration and has both adhesion and corrosion resistance in a molten metal-based alloy galvanized steel material. Let it be an issue.
  • the inventors of the present invention have studied adding high concentration of Mg as a means for obtaining high corrosion resistance in hot dip Zn plating.
  • Mg-Zn may be referred to as “Mg-Zn”.
  • the adhesion of the Mg-base-Zn alloy plating layer to the steel sheet can be further improved by pre-plating the steel sheet with a metal coating such as Ni, Cu, or Sn. I found it.
  • an amorphous phase can be formed under a practical cooling rate. It has also been found that when the volume fraction is 5% or more, the plating layer can be peeled off, the defects that cause cracks, and the adverse effects of intermetallic compounds can be suppressed.
  • the corrosion resistance of the Mg-based alloy plating layer of the present invention is superior to that of the conventional molten Zn plating layer.
  • the corrosion resistance was further improved depending on the conditions of use, compared to the coated layer.
  • a high-temperature stable phase that does not exist in the equilibrium state at room temperature is used as it is at room temperature. Can be frozen.
  • the plating layer containing the high-temperature stable phase has extremely excellent corrosion resistance and sacrificial anticorrosion ability, and can be used as a high corrosion resistance and high sacrificial anticorrosion ability adhesion layer that does not exist conventionally. It was.
  • the difficulty in forming a plating layer containing a non-equilibrium phase such as an amorphous phase and a high-temperature stable phase on the surface of the steel sheet is that the plated layer must be cooled at a high cooling rate after melting.
  • the present inventors separated the fusion process and the cooling process with the aim of easily forming a molten Mg-Zn alloy adhesion layer containing this nonequilibrium phase on the surface of the steel sheet. It was investigated.
  • a non-equilibrium molten Mg-Zn alloy adhesive layer containing an amorphous phase and a high-temperature stable phase can be formed. It can be easily formed on steel.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • An Mg-based alloy-plated steel material comprising a molten Mg-based alloy plating layer.
  • An Mg-based alloy-plated steel material comprising a molten Mg-based alloy plating layer containing 15 to 45 atomic percent of Zn.
  • a Mg-based alloy-plated steel material comprising a molten Mg-based alloy-plated layer containing a total of 0.03 to 5 atomic% of one or more selected elements.
  • (4) Contains 15 atomic% or more of Zn and more than 35 atomic% of Mg, and further includes one or more elements selected from the element group B: A 1, Ca, Y, and La A Mg-based alloy-plated steel material comprising a molten Mg-based alloy-plated layer containing 0.03 to 15 atomic% of elements in total.
  • element group B one or more elements selected from A1, Ca, Y and La,
  • element group B one or more elements selected from A1, Ca, Y and La
  • Mg is over 55 atomic%, it contains 0.03 to 15 atomic% in total.
  • B2 When Mg is 55 atoms or less, molten Mg group containing 2 to 15% in total.
  • An Mg-based alloy-plated steel characterized by comprising an alloy-plated layer.
  • the molten Mg-based alloy plating layer further comprises element group A: Si, Ti
  • the molten Mg-based alloy plating layer contains 15 atomic% or more and less than 45 atomic% of Zn, and contains an amorphous phase in a volume fraction of 5% or more.
  • element group A Si, Ti, Cr, Cu, Fe, Ni, Zr, Nb, Mo, and Ag
  • element group B ′ One or more elements selected from the group element group of Ca, Y, and La, the total of the elements of element group A, 0.03 to 5 atoms, and the elements of element group B ′ In total, 0.03-15 atom% (however, the total is 0. In the case of less than 03 to 5 atomic%, Mg is over 55 atomic%, and in the case of 5 to 15 atomic%, Zn is less than 40 atomic%) and the amorphous phase is expressed in volume fraction.
  • a Mg-based alloy-plated steel material comprising a molten Mg-based alloy plating layer containing 5% or more.
  • the molten Mg-based alloy plating layer converts the intermetallic compound Zn 3 Mg 7 into the X-ray intensity ratio (all diffraction peak intensities appearing at 0.1089 to 1.766 nm in terms of diffraction plane spacing (however, The ratio of the diffraction peak intensity of Zn 3 Mg 7 (excluding the diffraction peak at 0.233 nm at the diffractive surface interval) in the total of The Mg-based alloy plated steel material according to any one of (1) to (8), characterized in that:
  • Zn is contained at 20 atom% or more
  • Mg is contained at 50 atom% or more and 75 atom% or less
  • element group B one or more selected from A1, Ca, Y, and La Contains a total of 0.03 to 12 atomic percent of elements (however, if the total is 1 to 12 atomic percent, it contains 1 atomic percent or more of A1), and the intermetallic compound Zn 3 Mg 7 is required
  • a Mg-based alloy-plated steel material comprising a molten Mg-based alloy-plated layer containing a large amount.
  • the molten Mg-based alloy plating layer holds the plating layer at a temperature of from the melting point of Mg-based alloy plating to (melting point of Mg-based alloy plating + 100 ° C) for 1 minute or less, and then rapidly cools.
  • the present invention (Mg-based alloy-plated steel) can be manufactured by a normal melt-bonding process, it is excellent in versatility and economy.
  • the molten Mg—Zn alloy plating layer of the present invention contributes to the saving of Zn resources because the corrosion resistance is superior to the conventional molten Zn-based plating layer while suppressing the Zn concentration.
  • the present invention since the molten Mg-based alloy plating layer of the present invention has not only corrosion resistance but also good heat resistance, the present invention is widely used as a structural member or a device member in the fields of automobiles, building materials, and home appliances. To get. Brief Description of Drawings
  • FIG. 1 is a diagram showing a composition region where the melting point becomes 580 ° C. or less by the addition of Al, Ca, Y, and / or La.
  • FIG. 2 is a diagram showing a composition region in which the melting point is 520 and becomes the following by the addition of Al, Ca, Y, and / or La.
  • FIG. 3 is a diagram showing a composition region in which an amorphous phase is obtained.
  • FIG. 4 is a diagram showing a binary Mg—Zn phase diagram.
  • FIG. 5 is a diagram showing a composition region where Zn 3 Mg 7 is obtained.
  • FIG. 6 is a diagram showing the cross-sectional structure of the Mg-25 atomic% Zn-5 atomic% Ca plating layer (crystalline phase).
  • Figure 7 shows the Mg-25 atom% Zn-5 atom% Ca plating layer (amorphous phase) It is a figure which shows a cross-sectional structure
  • FIG. 8 is a view showing an X-ray diffraction image of the Mg-25 atomic% Zn-5 atomic% Ca plating layer (amorphous phase).
  • Fig. 9 is a diagram showing a FE-TEM image (bright field image) near the interface of the Mg-25 atom% Zn-5 atom% Ca plating layer (amorphous phase).
  • FIG. 10 is a diagram showing the results of elemental analysis by E D X at the cross points in the FE—TEM image shown in FIG.
  • FIG. 11 is a diagram showing an electron beam diffraction image at a cross point in the F E-TEM image shown in FIG.
  • Figure 12 shows the X-ray diffraction image of the Mg-25 atom 3 ⁇ 4Zn-5 atom% Ca_4 atom% A1 layer (amorphous phase, Zn 3 Mg 7 ) No. 16 in Table 9.
  • Fig. 13 shows the X-ray diffraction pattern of the No. 3 Mg_27 atom% Zn_l atom% Ca_6 atom% A1 plating layer (Zn 3 Mg 7 ) in Table 9.
  • Figure 14 shows the X-ray diffraction pattern (10 in the figure) of the Mg_27 atomic% Zn-1 atomic% Ca-6 atomic% A1 plating layer No. 3 in Table 9; X-ray diffraction pattern of atomic% Zn_l atomic% Ca-8 atomic% A1 plating layer (1 1 in the figure), No.7 Mg-27 atomic% Zn-1 atomic% Ca_10 atomic% A1 plating layer X X-ray diffraction image (1 3 in the figure) and X-ray diffraction image (1 3 in the figure) of the No. 8 Mg-27 atomic% Zn_l atomic% Ca-13 atomic% A1 plating layer It is.
  • Fig. 15 is a diagram showing an embodiment of the combined cycle corrosion test.
  • FIG. 16 is a diagram showing the corrosion appearance as a result of the combined cycle corrosion test on the test material of the present invention and the comparative test material.
  • FIG. 17 is a diagram showing the progress of corrosion in the cross section of the steel sheet of Comparative Test Material 1.
  • FIG. 18 is a diagram showing the progress of the corrosion in the cross section of the comparative test material 2.
  • Figure 19 shows the progress of corrosion in the cross section of the test material 1 of the present invention ( 2 is a diagram showing (up to 1 cycle).
  • FIG. 20 is a diagram showing the progress of corrosion in the cross section of the steel sheet of the test material 1 of the present invention (from 21 cycles to 56 cycles).
  • FIG. 21 is a diagram showing the progress of corrosion (up to 21 cycles) in the steel sheet cross section of the test material 2 of the present invention.
  • FIG. 22 is a diagram showing the progress of corrosion in the steel sheet cross section of the test material 2 of the present invention (from 21 cycles to 56 cycles).
  • FIG. 23 is a diagram showing a result of observing a cross section of a corrosion product generated in 42 cycles of the test material 1 according to the present invention, by means of EPMA.
  • FIG. 24 is a view showing a result of observing a cross section of a corrosion product generated in 42 cycles of the test material 2 of the present invention by EPMA.
  • FIG. 25 is a diagram showing a phase diagram of the A—Mg alloy.
  • Fig. 26 is a diagram showing a phase diagram of the Cu-Mg alloy.
  • FIG. 27 is a diagram showing a phase diagram of the Ni—Mg alloy. BEST MODE FOR CARRYING OUT THE INVENTION
  • Mg is a metal that is very difficult to adhere to steel by the fusion-bonding method. This is because (i) Mg hardly reacts with Fe, and (ii) Mg hardly dissolves in Fe (even if it dissolves, it is about 1 Oppm). This is due to poor compatibility.
  • the steel material can be used as it is as a “crucible” material for dissolving Mg. That is, if a steel “crucible” is used for melting Mg, the “crucible” is not damaged and can retain molten Mg.
  • Mg-based alloy containing a high-concentration layer of Mg and a high-concentration Mg in steel.
  • adhesion layer of Mg-based _Zn-based alloy it was not possible to form an adhesion layer of Mg-based _Zn-based alloy) by the melt adhesion method.
  • Mg is a metal with a low corrosion potential and a very good sacrificial corrosion protection effect on steel.
  • the present inventors pay attention to this excellent point, and form an adhesion layer of an Mg-based alloy (for example, Mg-based Zn alloy) containing Mg at a high concentration on the surface of the steel material by a melting adhesion method.
  • Mg-based alloy for example, Mg-based Zn alloy
  • alloyed layer and plated layer mean “alloyed layer composed of crystal phase” and “plated layer composed of crystal phase”, respectively, unless otherwise specified.
  • a method of adding Zn to Mg is adopted based on the above knowledge (X). That is, in the present invention, the addition method of “adding Zn to Mg” forms the basis of the present invention.
  • the amount of MgZ n 2 produced increases as described above as the amount of Mg added increases.
  • the melting point of the plating bath rises and the viscosity of the plating rises. Mg cannot dissolve in Zn at a certain concentration, and undissolved Mg will ignite in the atmosphere.
  • Mg alloys that show a phase diagram similar to the Zn-Mg phase diagram, there are A-Mg alloy, Cu-Mg alloy, and Ni-Mg alloy.
  • Fig. 25 shows the phase diagram of the A-Mg alloy
  • Fig. 26 shows the phase diagram of the Cu-Mg alloy
  • Fig. 27 shows the phase diagram of the Ni-Mg alloy. .
  • a eutectic is formed with Mg.
  • the eutectic composition is different in atomic ratio from the eutectic composition of Mg-Zn alloy, but Al, Cu, and Ni are elements having the same function as Zn. thinking.
  • MgZn 2 intermetallic compound
  • Mg-Zn ingot a small amount of high Mg-Zn ingot is produced in an argon atmosphere. This ingot is melted in the atmosphere, and Mg and Zn are added alternately to increase the amount of dissolution so as not to deviate significantly from the eutectic composition (Mg: 70 atoms, Zn: 30 atomic%). Go.
  • the eutectic Mg- ⁇ alloy dissolves in the vicinity at 350, thus avoiding Mg ignition (at ignition point 560). Since dissolution of Mg in the atmosphere involves the risk of ignition and explosion, it is desirable to dissolve it in an inert atmosphere such as an argon atmosphere as much as possible. However, if the target Mg-Zn alloy cannot be prepared in an argon atmosphere due to the large amount of the target Mg-Zn alloy, only the seed alloy is used as described above. It is preferable to employ a method in which Mg and Zn are added alternately in the air after manufacturing in a Lugon atmosphere.
  • the present inventors formed an Mg-based alloy plating layer on a steel sheet using the Mg-based alloy plating bath prepared by the addition method of the present invention, and investigated the progress of corrosion in the plated steel sheet. . Furthermore, the results of the survey were compared with the state of progress of corrosion in conventional molten Zn-based alloy steel sheets.
  • the investigation was conducted by subjecting the present invention and a conventional plated steel sheet to a combined cycle corrosion test.
  • the combined cycle corrosion test is an accelerated corrosion test method that has been established as a corrosion test method that is well suited to the actual corrosion of steel sheets for automobiles, and reduces the salt concentration in the salt spray process to reduce corrosion in general exposure tests. This corrosion test has been developed to match the actual situation relatively well.
  • the progress of corrosion in the Mg-based alloy-plated steel material of the present invention is actually different from the progress of corrosion in the conventional hot-dip zinc alloy alloy steel. found. Specifically, the following was found.
  • the main product of the corrosion product is “corrosion product mainly composed of Mg” such as Mg (0H) 2 or basic magnesium carbonate.
  • test materials were subjected to a combined cycle corrosion test.
  • Fig. 16 shows the corrosion appearance as a result of the combined cycle corrosion test for the test materials 1 and 2 of the present invention and the comparative test materials 1 and 2.
  • the molten Mg-based alloy plating layer of the present invention is remarkably superior in corrosion resistance and sacrificial anticorrosion ability as compared with the conventional Zn plating layer and Zn-based alloy plating layer.
  • Fig. 17 shows the progress of corrosion in the steel sheet cross section of comparative test material 1 with a hot-dip Zn plating layer (layer thickness: 14 ⁇ m). 1 Red ⁇ has occurred in 4 cycles. Also, from the cross section of 2 1 cycle, It can be seen that the corrosion of the railway is progressing rapidly.
  • Fig. 18 shows the progress of corrosion in the cross section of the steel sheet of comparative test material 2 with a molten Zn-A-Mg alloy alloy plating layer (layer thickness: 12; m). 5 6 cycles of red light. Although the corrosion of the plating layer is slow, the corrosion protection effect of the corrosion products is small, and even if the corrosion products are generated, the corrosion of the iron is progressing.
  • Fig. 19 shows 2 1 cycle in the steel sheet cross section of Test Material 1 of the present invention with a 68 atomic% Mg- 27 atomic% Zn-5 atomic% Ca alloy plating layer (amorphous, layer thickness: 10 m).
  • Fig. 20 shows the progress of corrosion up to 5 6 cycles after 21 cycles.
  • corrosion product A As shown in Fig. 19, a small amount of corrosion product A is generated in 14 cycles. After that, in the cross section of 21 cycle, corrosion product B is formed from corrosion product A little by little.
  • the corrosion of amorphous is fast, and as shown in Fig. 20, the plating layer becomes almost a corrosion layer by 28 cycles when the corrosion product B reaches 20 m.
  • the plating layer is an amorphous layer, it takes a long time to produce corrosion product B with a high protection capability, but eventually the corrosion product becomes a two-layer structure of corrosion product A and corrosion product B. Inhibits corrosion.
  • Fig. 2 3 shows the corrosion generated in 4 2 cycles of the test material 1 of the present invention. The result of observing the cross section of the product with EPMA is shown. 4 At the time of 2 cycles, the plating layer of test material 1 of the present invention is in a two-layer state of corrosion product A and corrosion product B.
  • the C 1 concentration and O concentration are high, while the Zn concentration, Mg concentration, and Ca concentration are average concentrations, whereas in the upper corrosion product B, C concentration, O concentration, and Mg concentration are extremely high.
  • the corrosion product A is composed of oxides or chlorides of Zn, Mg, and Ca, while the corrosion product B is composed of Mg-based carbonate compounds. Can do.
  • the anti-corrosion effect of the Mg-based alloy plating is likely due to the Mg-based carbonate compound.
  • Fig. 21 shows the corrosion of up to 21 cycles in the steel sheet cross section of the test material 2 according to the present invention, which is equipped with a 68 atomic% Mg-27 atomic% Zn_5 atomic ⁇ a alloy plating layer (crystalline, layer thickness: 10 m).
  • Fig. 2 2 shows the progress of corrosion from 2 1 cycles to 5 6 cycles.
  • corrosion product A immediately forms corrosion product B (see 14 cycles), and suppresses corrosion of the plating layer and the steel.
  • the plating thickness reduction is the same as that of the amorphous plating layer that takes time until the formation of corrosion product B.
  • the corrosion reduction of the crystalline plating layer may be smaller (see 28 cycles in Figure 22).
  • the plating layer is almost changed to corrosion product A, but, like the amorphous plating layer, the progress of corrosion has stopped. There is no corrosion of the base iron.
  • Fig. 24 shows the result of observing the cross section of the corrosion product generated in 42 cycles of the test material 2 of the present invention by EPMA. Similar to the plating layer of the test material 1 of the present invention, the plating layer of the test material 2 of the present invention has a two-layer state of the corrosion product A and the corrosion product B.
  • the generated corrosion product is considered to be the same as the corrosion product generated in the test material 1 of the present invention.
  • the corrosion product becomes a two-layer structure of corrosion product A and corrosion product B, which suppresses the corrosion of the steel.
  • the progress of corrosion in the Mg-based alloy-plated steel material of the present invention is actually different from the progress of corrosion in the conventional molten Zn-based alloy-plated steel material.
  • % indicating the composition means an atom.
  • the diffusion density of Fe increases at the interface between the plating layer and the steel sheet. Even when the plating layer is thin, the diffusion density of Fe is high.
  • 3% as the case where the Fe concentration increases is the concentration when the thickness of the plating layer is about lO m.
  • the amount is at most 0.1% for the entire plating layer with a thickness of about lO ⁇ m.
  • Mg contains 15% or more and less than 45% Zn, the melting point of Mg is remarkably lowered to 520 ° C or less. This is because (Mg: 70% -Zn: 30%) has a binary (Mg-MgZn 2 ) eutectic composition.
  • the melting point of the eutectic composition is lower than the ignition point of Mg, which is about 520 ° C, it does not ignite even when Mg-based alloy plating is performed in the atmosphere. Therefore, binary (M g - MgZn 2) eutectic composition as the plating condition, the optimal composition.
  • the composition will be far from the binary eutectic composition, and the amount of Mg Zn 2 produced will increase, so that the melting point of the plating bath will rise and the viscosity will rise. If Zn is 45% or more, the melting point of the plating bath may exceed the ignition point, so Zn must be less than 45%.
  • the corrosion resistance of the molten Mg-based alloy plating layer of the present invention is superior to the corrosion resistance of the molten Zn plating layer of the molten Zn-plated steel sheet.
  • the corrosion potential of the molten Mg-based alloy plating layer of the present invention is -1.0 to -1.5 V (in 0.5% NaCl aqueous solution, vs. kg / AgC l) and has a significantly superior sacrificial anti-corrosion ability for steel.
  • the molten Mg-based alloy plating layer of the present invention is far superior in terms of corrosion resistance and sacrificial anticorrosive ability as compared with the conventional molten Zn plating layer.
  • the total addition amount of the above elements exceeds 5%, the melting point of the plating bath becomes high and it becomes difficult to perform the plating. Therefore, the total amount of the elements of the element group A added to the plating bath should be 5% or less. preferable.
  • One or more elements selected from AK Ca, Y, and / or La (element group ⁇ ) are also added to the plating bath as appropriate to improve corrosion resistance. Addition of up to 10% in total decreases the melting point and viscosity of the plating bath.
  • the total amount of elements of element group B added to the plating bath is preferably 15% or less.
  • the addition of Al, Ca, Y, and soot or La decreases the melting point and viscosity of the Mg-Zn alloy, so the melting point of the bath is low even if Zn is 45% or more.
  • the Mg ignition point is 520, and there is a composition range that allows Mg alloy plating in the atmosphere.
  • Figure 1 shows the melting point below 580t with the addition of Al, Ca, Y, and / or La.
  • the composition region is as follows.
  • 1 is a binary (Mg_MgZn 2 ) eutectic line
  • 2 is a ternary eutectic line.
  • the melting point can be reduced to 520 ° C or lower.
  • FIG. 2 shows a composition region in which the melting point is 520 and becomes the following by the addition of Al, Ca Y, and / or La.
  • the viscosity of the plating bath is The melting point is below 520 ° C.
  • the total addition amount of elements in element group B is 0.03 to 15% because the ternary element formed by elements of element group B, Mg, and MgZn 2 is in the vicinity of an element concentration of 7.5%. It is presumed that there is a crystal line (see “2” in Fig. 2) and the liquid state of the Mg-Zn alloy stabilizes in the vicinity of this ternary eutectic composition.
  • the upper limit of the total amount of elements of element group B is preferably 15%.
  • Mg is 35% or less, there is no longer any eutectic line, and even if the amount of element group B is adjusted, the amount of MgZn 2 , CaZn 5, etc. increases, The melting point of the bath is over 520 ° C, making it difficult to perform Mg-based alloy plating. Therefore, the lower limit of Mg is over 35%.
  • an amorphous phase can be obtained by increasing the cooling rate in the composition range where Zn is 15% or more and less than 45%.
  • the corrosion resistance of the plating layer is superior to the corrosion resistance of the adhesion layer of only the crystalline phase of the same composition.
  • the corrosion potential becomes noble compared to the corrosion potential of the staking layer with only the crystalline phase of the same composition.
  • the corrosion potential rises by more than 0.0 IV compared to the corrosion potential of the adhesion layer with only the crystalline phase of the same composition. Also, the corrosion current density at the corrosion potential is reduced. Corrosion resistance in the actual environment can be evaluated by a combined cycle corrosion test. As a result of the evaluation, a plated layer containing 5% by volume or more of the amorphous phase has less corrosion weight loss at the beginning of the combined cycle corrosion test than a plated layer having only the crystalline phase of the same composition.
  • the plating layer contains an amorphous phase with a volume fraction of less than 5%, the plating layer exhibits the same corrosion resistance as the crystal phase plating layer with the same composition (plating layer cooled with nitrogen gas after plating).
  • the corrosion resistance is improved when an amorphous phase is mixed in the plating layer is not clear, but (a) the amorphous phase is a homogeneous structure in which there are no crystal grain boundaries where elements are prayed or intermetallic compounds exist, (B) The corrosion resistance improving element can be dissolved in the matrix to the solid solubility limit, and (c) Since the amorphous is a non-equilibrium phase, the surface is activated and dense. It is conceivable that the oxide film is rapidly formed.
  • element group B ' is that it is a giant atom compared to Zn and Mg.
  • the alloy contains atoms that inhibit the movement of atoms during solidification so that the liquid state is as stable as possible.
  • Such atoms include lanthanide elements having a relatively large atomic size, such as Ca, Y, and La, as well as Ce and Yb. These elements are considered to have the same effects as the element group B ′.
  • Addition of A1 is effective in improving corrosion resistance, but does not increase the ability to form amorphous.
  • A1 has a positive liquid formation enthalpy with Zn
  • A1 is an element with different properties from Ca, Y, and / or La, which has a negative liquid formation enthalpy with Zn. It is done.
  • the composition from which the amorphous phase is obtained is limited.
  • Figure 3 shows the composition region where an amorphous phase is obtained.
  • the fact that the composition in which the amorphous phase is obtained is limited to a specific composition is related to the difference between the melting point of the Mg-based alloy and the glass transition temperature.
  • the amorphous phase is usually easier to form as the melting point is lower. Therefore, the amorphous forming ability is closely related to the eutectic composition. Involved.
  • the eutectic Mg-based alloy Since the eutectic Mg-based alloy has a low melting point, it is the composition that most easily maintains the liquid state up to the glass transition temperature.
  • the eutectic line intersection point 3 (Fig. 3) is an intersection of the binary (Mg-MgZn 2 ) eutectic line and the ternary eutectic line. “3” in 3) has the lowest melting point, and the amorphous forming ability is very high in the composition region near this intersection.
  • Mg should be over 55%.
  • Zn should be less than 40%.
  • the composition range is less than 40% Zn and more than 55% Mg, and the melting point power is 50 ° C or less, so this composition range is convenient for obtaining an amorphous phase.
  • the corrosion resistance can be further improved by adding an amorphous phase to the molten Mg-based alloy plating layer containing an element of element group A.
  • the molten Mg-based alloy plating layer and the molten Mg-based alloy plating layer containing an amorphous phase of the present invention are plating layers having excellent workability and adhesion.
  • Mg-Zn alloys are very slow crystallization and grain growths.
  • the crystal grains can be easily refined, thereby reducing the adverse effects on workability and adhesion due to the intermetallic compound having poor plastic deformability. Is possible. If an amorphous phase having an atomic structure in a liquid state can be obtained, the intermetallic compound disappears, so that workability and adhesion can be further enhanced.
  • Zn 3 Mg 7 (Zn 3 Mg 7 , depending on the paper, Mg 5! Zn 2 Q denoted by the force s, herein treats both of the intermetallic compound as a homogeneous material, all, Zn 3 Mg 7 ) Is a high-temperature stable phase, as shown in Fig. 4.
  • Mg and Zn in the molten state are separated into Mg phase and MgZn or Mg 4 Zn 7 and at room temperature, Zn 3 Mg 7 cannot remain.
  • Zn 3 Mg 7 can remain by rapid cooling (eg, water cooling or mist cooling) immediately after melting.
  • Zn 3 Mg 7 can be formed even in a composition having a small amorphous forming ability, that is, Mg-Zn alloy plating or Mg-Zn-A1 alloy plating.
  • the amorphous phase and Zn 3 Mg 7 may be mixed in the plating layer.
  • Figure 5 shows the composition range in which Zn 3 Mg 7 can be obtained by water cooling after melting.
  • the composition range shown in FIG. 5 is a composition range in which Zn 3 Mg 7 is easily detected as an XRD peak from X-ray diffraction on the surface of the plated steel sheet.
  • This composition range is the X-ray intensity ratio (difference between the diffraction planes of 0.1089 to 1.766 nm, that is, when using the Cu tube as the X-ray source and performing diffraction measurement using the Cu! Occupies the sum of all diffraction peak intensities appearing at 5 to 90 ° (except for the diffraction peak at 0.233 nm in the diffractive surface spacing, and excluding the 38.61 ° diffraction peak under the above conditions).
  • This is a composition range that means that the ratio of the diffraction peak intensity of Zn 3 Mg 7 (excluding the diffraction peak at 0.233 nm in the diffraction plane spacing) is 10% or more.
  • the diffraction peak with a diffraction plane spacing of 0.233 nm is preferably excluded because the strongest line of Mg and the diffraction peak are close to each other.
  • the diffraction peak of Zn 3 Mg 7 was referred to the diffraction data chart (JCPDS card number: 08-0269).
  • Zn 3 Mg 7 In order to form Zn 3 Mg 7 , Zn is 20% or more, Mg is 50% or more and 75% or less, and element group B: one or two selected from A1, Ca, Y, and La The total amount of these elements is 0.03-12%. However, in the composition range where the Ca concentration or Y and La concentration is high and the amorphous forming ability is high, an amorphous phase may be formed, and Zn 3 Mg 7 may not be obtained. ), It is difficult to obtain a Zn 3 Mg 7 phase because only a constant cooling rate can be obtained.
  • the rapid cooling method is changed from water cooling (for example, to mis-cooling) and the cooling rate applied to the plating layer It is possible to partially obtain the Zn 3 Mg 7 phase by reducing the. Unless otherwise specified, water cooling is used as the rapid cooling method.
  • A1 is an element that promotes the formation of Zn 3 Mg 7 as compared to the amorphous phase. Therefore, if the A1 concentration is higher than the Ca concentration, Zn 3 Mg 7 is more easily formed than the amorphous phase.
  • the corrosion potential of the plating layer is about ⁇ 1.2 V (vs. Ag / AgCl) in a 0.5% NaCl aqueous solution.
  • This value is higher than the corrosion potential of a plating layer having the same composition that does not contain Zn 3 Mg 7 (after plating, an air-cooled padding layer), -1.5 to -1.4V.
  • the corrosion potential approaches -1.2V, and the corrosion current density near the corrosion potential in the polarization curve begins to decrease.
  • the corrosion current density decreases if A1 or Ca is added to the plating layer.
  • A1 is about 0 to, the corrosion current density decreases as the concentration increases.
  • Ca is added, the corrosion current density decreases.
  • A1 is added more than Ca.
  • Zn 3 Mg 7 significantly increases the corrosion resistance of the plating layer. However, if present in a large amount in the plating layer, the workability of the plating layer deteriorates and cracking tends to occur. On the other hand, the amorphous phase is not as effective in improving corrosion resistance as Zn 3 Mg 7 but has many advantages such as excellent workability and surface smoothness because it is homogeneous. When it is desired to provide corrosion resistance to the amorphous phase plating layer, Zn 3 Mg 7 may be mixed in the plating layer.
  • the plating layer containing Zn 3 Mg 7 has superior sacrificial anticorrosive ability to steel sheets than 55% A ⁇ Zn plating, A1-10% Si plating, and the like.
  • red cocoon is immediately generated in the processed part immediately after the start of the test.
  • the exposed part of the steel plate is immediately covered with Mg-based oxide, and the occurrence of red coral is greatly delayed.
  • Mg-Zn morphas-plated steel, Mg-Zn-morphus-containing galvanized steel, and Zn 3 Mg 7- containing galvanized steel are all made of molten Mg-based alloy galvanized steel with a non-equilibrium phase.
  • it is indispensable to perform at least cooling with a relatively large cooling effect such as water cooling or high-pressure mis-cooling.
  • Mg, Zn, and Ca are in a specific composition range, and when the plating layer is reheated and cooled under specific conditions, Zn in the plating layer and F supplied from the steel material It has been found that alloying of e is suppressed. Normally, when the plating layer containing Zn is maintained at 400 ° C or higher, Zn in the plating layer and Fe supplied from the steel react to form an intermetallic compound phase such as a ⁇ phase or a ⁇ phase. (Ie alloying takes place).
  • Alloyed hot dip galvanized steel sheet (GA) widely used in the automotive field is a Zn-Fe galvanized steel sheet that uses this metallurgical phenomenon to improve weldability and corrosion resistance after painting. .
  • Mg and Ca are poor in reactivity with Fe and are elements that reduce the activity of Fe and Zn. Therefore, Mg and no or Ca are present in the plating alloy in a certain concentration or more. In this case, it is difficult to produce an intermetallic compound of Zn and Fe during the fusion welding, and it is difficult to produce an intermetallic compound of Zn and Fe even after re-melting after plating.
  • composition range in which this alloying can be suppressed only needs to be within the composition range shown in FIG. That is, alloying can be suppressed if it is an Mg-Zn melt-adhering layer containing Zn l 5% or more, Mg 35% or more, and C a 5 5 or less.
  • the composition of the plating layer is within the composition range shown in Fig. 1. Even with this composition, alloying of Zn and Fe can occur.
  • Fe-Zn intermetallic compound may be formed near the interface between the plating layer and the steel plate. This Fe-Zn intermetallic compound may heat the alloyed steel plate. It is unlikely that alloying progresses during growth.
  • Fe required to ensure the adhesion of the plating layer is a minute amount of about 0.1%, and Fe that can be contained in the entire plating layer is about 3%. Fe rarely leads to alloying with Zn.
  • the alloying of Fe and Zn significantly progresses when about 10% Fe is contained in the plating layer. Under an appropriate heat treatment that is heated to a temperature within the melting point of the plating bath (melting point + 10 0 ⁇ ) and held for a short time (about 1 minute), the activity of Fe in Mg is reduced. No alloying of Fe and Zn occurs.
  • the presence of the Zn—Fe alloy layer can be easily confirmed by observing the adhesive layer-steel plate interface with an optical microscope.
  • it is also effective to examine the components in the plating layer before and after reheating.
  • Fe contained in the plating layer is less than 0.5%, Zn-Fe intermetallic compounds are rarely observed.
  • Fe-Zn intermetallic compounds When Fe is 0.5% or more, some Fe-Zn intermetallic compounds may be formed near the interface between the plating layer and the steel sheet. If reheating is performed at an appropriate temperature, this intermetallic compound It is unlikely that the alloy grows during heating and alloying progresses.
  • the component in the plating layer is 10% hydrochloric acid to which inhibitor is added, and about 50 ml of the plating layer solution is prepared. With this plating layer solution, only the plating layer is pickled and pickled. The components in this solution may be analyzed with an ICP emission spectroscopic device.
  • the advantage of reheating and quenching is that, besides being independent of the quenching process, the amount of non-equilibrium phase is increased.
  • the plating layer will crystallize before rapid cooling, and after quenching, the formation of a non-equilibrium phase of the amorphous phase will not occur. It becomes the same adhesion layer as the produced plating layer.
  • the temperature of the plating bath is often set to a temperature 10-100 higher than the melting point of the plating alloy for the purpose of improving the adhesion between the plating layer and the steel material and maintaining the plating bath stably.
  • the temperature of the plating bath is further increased. Is not preferable in terms of cost, increases the amount of dross generated,
  • the steel material temperature rises and the cooling rate during cooling decreases.
  • the amount of water vapor generated increases due to the heat capacity of the steel material, the cooling rate further decreases, and the amount of non-equilibrium phase decreases.
  • the molten Mg-Zn plating layer of the present invention has a small amount of non-equilibrium phase, it is reheated and heated immediately above the melting point of the plating bath, and once the plating layer is remelted, The crystal phase and the equilibrium phase are extinguished, and the subsequent rapid cooling can generate an amorphous phase and other non-equilibrium phases, thereby increasing the amount of the non-equilibrium phase.
  • the molten Mg-based alloy plating layer having the composition range of the present invention can suppress the alloying of Zn and Fe, and can be reheated and rapidly cooled without alloying the plating layer. .
  • Reheating and rapid cooling is a cooling that rapidly cools from the temperature just above the melting point of the plating bath, so that it can be cooled to the glass transition temperature in a short time, and it is a suitable cooling method for obtaining an Amorphous fused steel material. It is a pattern.
  • the reheating conditions influence the progress of alloying of Zn and Fe. When the reheating temperature is too high, or even at a temperature just above the melting point of the plating bath, or when the holding time is long, alloying may occur even with plating within the composition range of the present invention.
  • a temperature 10 to 100 ° C higher than the melting point of the plating bath is suitable as the holding temperature, and the holding time is preferably within 1 minute.
  • the plating layer In order to suppress alloying of Fe and Zn, it is preferable to keep the plating layer below at 500. If this condition is not met, that is, if the temperature rises excessively, the diffusion of Fe becomes unnecessarily active and alloying is likely to occur.
  • the rate of temperature increase during reheating There is no particular limitation on the rate of temperature increase during reheating, but it is preferable that the rate of temperature increase is slow in order to keep the temperature of the entire plating layer constant and to prevent overheating due to rapid temperature increase.
  • the pre-plated layer must have “wetability” with the plating alloy.
  • the present inventors have investigated the “wetting property” with the Mg-based alloy for various alloy elements.
  • the pre-plated layer may be an alloy plated layer in which two or more of these metals are selected and combined.
  • These metal pre-plated layers are preferably formed by electroplating or electroless plating.
  • the thickness of the pre-plated layer may be 0.1 l to l ⁇ m (amount of deposit 1 to 10 g / m 2 or so).
  • the pre-plated layer may remain after plating under normal Mg-Zn melting conditions (bath temperature 350-600).
  • the thickness of the pre-plated layer is too thin, the effect of suppressing non-plating and the effect of ensuring adhesion cannot be expected.
  • the elements that make up the pre-plated layer expand into the plated layer. 'It is scattered and may be contained up to about 1% in the plating layer. The amount of elements diffusing from the pre-plating layer is very small and forms a substitutional solid solution in the plating layer.
  • Non-plating can be easily confirmed by visual inspection. Visually confirm the number of “non-plating” existing within a certain range from the center of the plated steel sheet, and judge the degree of “non-plating” from the number per unit area.
  • the number of "non-plating" on the surface of the steel sheet changes depending on the immersion speed of the steel sheet in the plating bath, so if you want to confirm the effect of pre-plating, make sure that the immersion speed of the steel sheet in the plating bath is constant. preferable.
  • steel material used as the base material of this invention steel material.
  • a 1 kill steel, ultra low carbon steel, high carbon steel, various high strength steels, Ni containing steel, Cr containing steel, Ni-Cr containing steel, etc. can be used.
  • steel making method steel strength, hot rolling method, pickling method, cold rolling method, and the like.
  • the Sendzimir method the pre-plating method, the second-stage plating method, the flux method, etc. can be applied.
  • Ni plating, Sn_Zn plating, or the like can be used as pre-plating before performing the Mg-Zn alloy plating of the present invention.
  • the steel material provided with the Mg—Zn-based alloy plating layer of the present invention is preferably produced in a vacuum or an inert gas atmosphere.
  • Ni plating, Zn plating, Sn-Zn plating, etc. can be used as pre-plating before the Mg-Zn alloy plating of the present invention or as the first plating in the two-step plating method. it can.
  • the alloy used in the plating bath is a “crucible” whose interior is previously replaced with an inert gas, etc. If Mg and Zn mixed in a predetermined ratio are dissolved, production without worrying about the ignition point of Mg is possible. can do.
  • flame retardant Mg may contain A1 or Ca. In this case, A1 and Ca are contained in the plating bath.
  • the plating bath contains Mg at a high concentration, formation of the Zn-Fe alloy layer can be suppressed. Therefore, it is not necessary to add A1 to the plating bath in order to suppress the formation of the Zn_Fe alloy layer.
  • Formation of a Zn-Fe alloy layer with poor plastic deformability also causes peeling of the plating layer due to processing after plating, such as powdering and flaking.
  • the Mg-based alloy plating layer of the present invention containing Mg in a high concentration is advantageous in that there is no cause for peeling of the plating layer.
  • metal powder should be added if it is added in small amounts up to about 0.1% in total. It can be contained in the plating bath by adding it to the plating bath and keeping it at around 600 ° C for a long time in an inert atmosphere.
  • an alloy of the additive metal and Zn or Mg is prepared in an atmosphere furnace or the like, and this alloy is added to the metal bath. Also in the production of this additive alloy, since Zn has a low boiling point, it is preferable that dissolution be performed at 900 or less.
  • AK Ca, Y, and / or La add up to 5% in total, add metal powder to the bath and keep it at around 600 for a long time in an inert atmosphere. By doing so, it can be contained in the plating bath.
  • Mg-Zn alloy alloy plating if Ca, Y, La, etc. are added to improve the amorphous formation ability, plating after melting For example, a single phase of amorphous is easily obtained by cooling the layer with, for example, a mist cooling from a close range, which can obtain a cooling rate of about 10 to 1000 ° C / second on the plating surface layer. be able to.
  • the volume fraction of the amorphous phase depends on the ability to form amorphous based on the plating composition.
  • a plating layer containing 5% by volume or more of an amorphous phase can be obtained by submerging in water at 0 ° C. with the temperature of the plating layer being substantially the same as the melting point of the plating bath. it can
  • the plating basis weight should be sufficiently small (for example, the plating thickness should be 6 111 or less). ) Make the temperature of the plating layer just before submerging almost the same as the melting point, submerge it in water at 0 ° C, and increase the cooling rate of the plating layer sufficiently. The plating layer containing the above can be obtained.
  • the component system to which Ca, Y, La, etc. are added has high amorphous formation ability, so even if the temperature just before submersion is slightly higher than the melting point of the plating bath, A plating layer consisting of an amorphous single phase can be obtained simply by submerging in water. If you intentionally want to reduce the volume fraction of the amorphous phase, use mist cooling or increase the temperature just before submersion.
  • Formation of the amorphous phase can be confirmed by obtaining a halo pattern in the X-ray diffraction image of the plating layer. If it is a single amorphous phase, only a halo pattern (if the thickness of the plating layer is thin, the Fe diffraction peak of the base steel may be detected) is obtained. Mixed amorphous phase and crystalline phase When the amorphous volume fraction is low, a differential thermal analyzer can be used to detect the exothermic peak when the amorphous phase crystallizes during temperature rise. It can be confirmed that it is present in the plating layer.
  • the cross section of the plated steel material is cut, polished and etched, and the surface plating layer is observed with an optical microscope.
  • amorphous phase part In the amorphous phase part, no structure is observed by etching, but in the crystalline phase part, the structure due to crystal grain boundaries, sub-grain boundaries, precipitates, etc. is observed.
  • the volume ratio can be calculated by line segmentation or image analysis.
  • an amorphous structure can be confirmed by a halo pattern of an electron diffraction image in a region where no tissue is observed.
  • the crystal grains are coarse and have no distortion. If there is a suspicion, the specimen is further collected and observed for an electron microscope, and it is confirmed that there is no diffraction spot in the electron diffraction pattern and a halo pattern is observed. It is desirable to confirm this.
  • the area ratio is obtained by image processing using a computer in 10 or more different fields of view, and the obtained area ratio is averaged to obtain the volume ratio.
  • a general X-ray diffraction method is effective for detecting Zn 3 Mg 7 in the plating layer. For example, a diffraction pattern is measured by an X-ray diffractometer using Cu Ko! Line, and the presence or absence of a Zn 3 Mg 7 diffraction peak is determined.
  • the conditions of the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Cold-rolled steel plate with a thickness of 0.8 mm, equilateral angle steel with a wall thickness of 1 Omm and a side length of 10 cm, and hot-rolled steel plate with a thickness of l Omm A surface-treated steel material was produced using as a base material. Mg, Zn, and other necessary component elements were adjusted to a predetermined composition and then melted in an Ar atmosphere using a high frequency induction furnace to obtain an Mg-Zn alloy.
  • Cold-rolled steel sheets (thickness 0.8mm) were cut into lOcmXlOcm and used as test pieces.
  • the test piece was subjected to a test with a batch-type melting squeeze tester manufactured by Lesiki.
  • the bath temperature of the plating bath was 500 ° C.
  • the basis weight was adjusted by air wiping, and then cooled to room temperature with nitrogen gas.
  • the plated steel sheet was immersed in water at 0 ° C after melting.
  • the plated steel sheet was cooled by spraying a high-pressure mist from a close range.
  • the equilateral angle steel was cut into a square of 10 cm in the longitudinal direction and the hot-rolled steel plate was cut into a square of lOcmX lOcm.
  • this cut piece was subjected to “dobuke soaking” in a Zn bath using the flux method using a crucible furnace so that the basis weight was about 100 g / m 2 , and then the composition of the present invention. It was immersed in a Zn-Mg alloy bath and submerged in 0 ° C water as needed to cool.
  • the plating adhesion for cold-rolled steel sheets, an 8 T bending test was performed by bending a plated test piece 180 ° with the adhesive layer facing outward. After that, the plating layer at the bent part is peeled off with adhesive tape, the cross section of the bent part is observed with an optical microscope, and the adhesion rate of the plating layer on the outer periphery of the cross section of the bent part Asked.
  • the case where the remaining ratio of the plating layer after the test was 50 to 100% was designated as “ ⁇ ”, the case where it was less than 50% as “X”, and the case where the plating layer did not adhere as “one”.
  • the bending section was observed with an optical microscope, and the adhesion rate of the plating layer on the outer periphery of the bending section was determined.
  • the case where the adhesion rate of the plating layer was 50 to 100% was designated as “ ⁇ ”, the case where it was less than 50% as “X”, and the case where the plating layer did not adhere as “one”.
  • Amorphous formation on the surface of the plating layer was determined by the presence or absence of a halo pattern by measuring the diffraction pattern with an X-ray diffractometer using Cu ⁇ -rays.
  • amorphous phase and the crystalline phase coexist and the volume fraction of the amorphous phase is low, use a differential thermal analyzer to detect the exothermic peak during crystallization from the amorphous phase during temperature rise. Thus, the presence or absence of the amorphous phase was confirmed.
  • the section of the plated steel sheet is cut, polished, and etched, and then the plated layer on the surface is examined with an optical microscope ( X 1000 times).
  • the area ratio of the amorphous phase was determined by computer image processing, and the calculated area ratio was averaged to obtain the volume ratio.
  • the corrosion resistance of the plated steel sheet was evaluated by carrying out 21 cycles for a method based on the automotive standard (JASO O 60 9-9 1, 8 hours / cycle, wet / dry time ratio 50%). However, 0.5% salt water was used as salt water. Corrosion resistance was evaluated by corrosion weight loss converted from corrosion weight loss and density after the test.
  • Corrosion thickness is less than 0 m, “ ⁇ ”, 0.5-1 m is “ ⁇ ”, l-2 i m is “ ⁇ ”, 2 ⁇ 3 ⁇ m is “ ⁇ ”, and more than 3 ⁇ is “X”.
  • Tables 1 to 6 those with a plating adhesion evaluation of “X” are indicated as “1” because the corrosion resistance evaluation was not performed.
  • C plating layer consisting only of crystalline phase
  • A plating layer containing 5% or more of amorphous phase.
  • C plating layer consisting only of crystalline phase
  • A plating layer containing 5% or more of amorphous phase.
  • C plating layer consisting only of crystalline phase
  • A plating layer containing 5% or more of amorphous phase.
  • C plating layer consisting only of crystalline phase
  • A plating layer containing 5% or more of amorphous phase.
  • A Plating layer containing 5% or more of amorphous phase.
  • the molten Mg-Zn based steel material of the present invention has sufficient performance in terms of adhesiveness.
  • the corrosion resistance of the steel of the present invention is superior to that of the hot-dip zinc-plated steel sheet (No. 6-1).
  • the plating layer has Si, Ti, Cr, Cu, Fe, Ni, Zr, Nb, Mo, Ag Further, the plated steel material containing Al, Ca, Y, and Z or La is further excellent in corrosion resistance.
  • a plated steel material containing a plating layer containing the above element and containing an amorphous phase is particularly excellent in corrosion resistance.
  • Tables 7 and 8 show the corrosion resistance evaluation results comparing the amorphous fusion-plated steel sheet and the plated steel sheet with only the crystalline phase. As is clear from Tables 7 and 8, in the case of the same component, the plated steel sheet having an amorphous phase is superior in terms of corrosion resistance.
  • C a plating layer consisting only of a crystalline phase
  • A a plating layer containing 53 ⁇ 4 or more of an amorphous phase.
  • Figure 6 shows a cross-sectional image of No.2-7 steel plate with a Mg-25 atom% Zn-5 atom% Ca plating layer (crystalline phase) (weight per unit area 20 g / m 2 ).
  • Fig. 7 shows the cross section of plated steel plate No.4-5 (weight per unit area 20g / m 2 ) with submerged cooling and Mg-5at% Zn-5at% Ca plating layer (amorphous phase) 6 formed on steel plate 5. Show the image.
  • Fig. 8 shows an X-ray diffraction image of this lay layer. From the fact that the halo pattern is detected in the X-ray diffraction image, it can be seen that the Mg-25 atom ⁇ -5 atomic% Ca plating layer (amorphous phase) 6 shown in Fig. 7 is an amorphous phase.
  • Figure 9 shows a FE-TEM image (bright-field image) near the interface of the steel sheet 9 in which the Mg-25 atom% Zn-5 atom% Ca plating layer (amorphous phase) 8 is formed on the steel sheet 9.
  • Fig. 10 shows the results of elemental analysis by E D X at the cross point in the FE—TEM image in Fig. 9. It can be seen that Fe diffuses inside the plating layer.
  • Figure 11 shows an electron diffraction image at the cross point in the FE—TEM image in FIG. A halo pattern is detected, and the Mg-25 atomic% Zn-5 atomic% Ca plating layer (amorphous phase) 8 shown in Fig. 9 is an amorphous phase near the interface. I understand that there is.
  • Surface-treated steel was prepared using a cold-rolled steel plate with a thickness of 0.8 mm as the base material in the plating composition bath shown in Table 9. As a pre-treatment for substrate pre-plating Alkaline degreasing and pickling were performed.
  • Ni pre-plated layer was formed by mixing nickel sulfate 125 g / l, ammonium citrate 135 g / l, and sodium hypophosphite 110 g / l, adjusted to pHIO with sodium hydroxide, 30 ° C aqueous solution.
  • the test piece was immersed in
  • Co pre-plated layer was formed by mixing cobalt sulfate 15g / l, sodium hypophosphite 21g / l, sodium quenate 60g / l, and ammonium sulfate 65g / l. The test piece was immersed in this aqueous solution.
  • the preparation of the Cu pre-plated layer was performed by immersing the test piece in a 25 ° C aqueous solution mixed with 2 g / l copper sulfate and 30 g / l sulfuric acid.
  • the Cu-Sn pre-plated layer was prepared by immersing the test piece in a 25 ° C aqueous solution containing 3.2 g / l copper chloride, 5. Og / l tin chloride, and 8 g / l hydrochloric acid. T.
  • the Cr pre-plated layer was prepared by electroplating at a current density of 20 A / dm 2 in a solution at a temperature of 50 ° C. mixed with 250 g / l of chromic anhydride and 2.5 g / 1 of sulfuric acid.
  • the immersion time was adjusted, and the adhesion amount was set to 1 to 5 g / m 2 .
  • the amount of pre-plating deposited was quantitatively analyzed by ICP (inductively coupled plasma emission) spectroscopic analysis of the solution dissolved with nitric acid, and the amount of dissolved elements was converted to the amount deposited.
  • Mg, Zn, and other necessary component elements were adjusted to a predetermined composition and then melted in an Ar atmosphere using a high-frequency induction furnace to obtain an Mg- ⁇ system alloy. From the produced alloy, chips are collected and the acid-dissolved solution is It was quantified by CP (inductively coupled plasma emission) spectroscopic analysis, and it was confirmed that the produced alloy matched the composition shown in Table 9. This alloy was used as a bath.
  • a cold-rolled steel sheet (thickness 0.8 mm) was cut into 10 cm x 20 cm and used as a test piece.
  • This test piece was plated with a batch-type melting squeeze tester manufactured by Lesiki. 'Cold-rolled steel sheets were pre-plated and used as-is, and both were melted.
  • the bath temperature of the plating bath was 400 to 600 ° C.
  • the basis weight was adjusted by air wiping.
  • the steel plate was immersed in the plating bath at a speed of 500 mm / second, immersed for 3 seconds, and the basis weight was adjusted by air wiping. Immediately thereafter, water cooling, air cooling, or reheating water cooling was performed by the method described later.
  • n 10.
  • the number of “unsuccessful” was 1 or less as “ ⁇ ”, 1 to 3 as “ ⁇ ”, 5 to 10 or more as “ ⁇ ”, and 10 or more as “X”.
  • the diffraction pattern of the surface-forming phase at the center (20mm X 20min) of the prepared plated steel sheet was measured with an X-ray diffractometer using Cu ⁇ ⁇ rays.
  • the formation phase of the surface was identified by X-ray diffraction, and “ ⁇ ” indicates that the halo pattern was detected, and “ ⁇ ” indicates that it was not obtained or difficult to distinguish due to the mixed crystal phase.
  • was the one where the diffraction peak of the high temperature stable phase Zn 3 Mg 7 was detected.
  • the detection of the peak means that the X-ray intensity ratio (difference between the diffraction planes is between 0.1089 and 1.766 nm, that is, the Cu tube is used as the X-ray source, and the diffraction measurement by Cu ⁇ ⁇ -ray is performed.
  • Figure 12 shows the X-ray diffraction image of No. 16 in Table 9. This is an example in which both a halo pattern and Zn 3 Mg 7 were observed.
  • Reheated water cooling was performed after plating, adjusting the basis weight with air wiping and then allowing to cool to room temperature. After standing at room temperature, the temperature was raised by reheating to the melting bath temperature, and kept at this temperature for 10 seconds, followed by water cooling.
  • the corrosion resistance of the plated steel sheet was evaluated by carrying out 21 cycles of a method based on the automotive standard (JASO M 6 09-91, 8 hours / cycle, 50% wet / dry time ratio). However, 0.5% salt water was used as salt water. Corrosion resistance was evaluated by corrosion weight loss converted from corrosion weight loss and density after the test.
  • Corrosion thickness is less than 0.5 ⁇ m as ⁇ ⁇ '', 0.5 ⁇ l tm as ⁇ ⁇ '', 1-2m as ⁇ ⁇ '', 2-3 as Ct m as ⁇ ⁇ '', 3 or more as ⁇ X '' did.
  • Figure 13 shows the X-ray diffraction pattern of No. 3 Mg-27 atom ⁇ -1 atom 3 ⁇ 4Ca-6 atom% ⁇ 1 in Table 9. From the X-ray diffraction image, only the diffraction line of Zn 3 Mg 7 was obtained. Ca and A1 are presumed to exist by forming a substitutional solid solution.
  • Figure 14 shows the X-ray diffraction images of the surface forming phases of No. 3, No. 6 to No. 8 steel plates in Table 9.
  • the present invention (molten Mg—Zn alloy-plated steel) can be manufactured by a normal melt-plating process, and therefore has excellent versatility and economy.
  • the molten Mg-Zn alloy plating layer of the present invention is superior in corrosion resistance to the conventional molten Zn-based plating layer while suppressing the Zn concentration. To contribute.
  • the present invention can be widely used as a structural member and a device member in the fields of automobiles, building materials, and home appliances. Is.
  • the present invention contributes to the development of the manufacturing industry by extending the life of structural members used in the fields of automobiles, building materials, and home appliances, and reducing maintenance labor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Coating With Molten Metal (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

溶融Mg基合金めっき層(好ましくは、Znを15原子%以上45原子%未満含有する)を備えることを特徴とする密着性及び耐食性に優れたMg基合金めっき鋼材。

Description

Mg基合金めつき鋼材
技術分野
本発明は、 高 Mg組成の合金 (Mg基合金) めっき層を備える Mg基合 金めつき鋼材に関するものである。
明 背景技術
溶融金属めつき鋼材として溶融 Z n系書めつき鋼材は、 自動車、 建材 、 家電等の幅広い分野で使用されている。 長期間の防鲭効果を確保 する目的から、 一般に、 高付着量のめっきが有効である。
それは、 Z nめっきが、 めっき層自体の腐食速度が、 地鉄鋼材に対 して遅いことに加えて、 地鉄が露出した場所でも、 腐食電位の低い Z nが、 鋼材に対して犠牲防食能を発揮するからである。
これらの耐食 · 防食効果は、 Z nの消費によって得られるので、 単 位面積当たりの Z n量が多い程、 長い間、 耐食 · 防食効果を保持する ことができる。
一方、 Z n付着量が多くなると、 加工性、 溶接性等の、 本来、 鋼材 に必要な特性が劣化する傾向にある。 それ故、 Z nめっきにおいては 、 可能であれば、 より少ない付着量で、 高耐食性を発揮することが 求められる。
また、 近年、 Z nの資源枯渴が問題とされており、 Z nの使用量を減 らすためにも、 低付着量で高耐食性を有する Znめつきが求められて いる。
低付着量の Z nめっきで、 十分な耐食性を得るために、 Znめっきに 合金元素を添加して耐食性を高めることが、 これまで、 数多く試み られている。 実際に、 Zn- Ni系合金めつき、 Zn- Fe系合金めつき等が 、 自動車用鋼板を中心に広く使用されている。 Zn- A1系合金めつき も、 建材を中心に広く使われている。
特に、 Ζη_Α1系合金めつきにおいては、 耐食性をさらに高めるた めに、 Mgや Siを添加する方法が開発されている。 例えば、 特開 200 2 - 60978号公報に開示の耐食性に優れた鋼の合金めつき層は、 質量% で、 A1を 1〜50%、 Mgを 0. 1〜20%含有している。
また、 特開 2005-82834号公報に開示の Zn-Mg系合金めつきにおい ては、 合金めつき層が、 質量%で、 0. 05〜3%の Mgを含有することで 、 耐食性が得られている。 これらの従来技術において、 めっき層の Mg含有量は、 質量%で、 多くても 20%程度である。
このように、 従来技術においては、 Mgの含有量が低く抑えられて いる力 その理由は、 主に、 三つある。
第一の理由は、 Mgを高濃度で添加すると、 めっき浴の融点を上昇 させる可能性が高くなること、 及び、 めっき後も、 加工性を劣化さ せる金属間化合物が生成し易くなるということである。
Zn浴に Mgを添加する時、 質量%で、 3%程度までは、 比較的容易に 溶解することが可能である。 これは、 添加した Mgが MgZn2 (金属間 化合物) を形成し、 この MgZn2が、 Znと共晶をなし、 融点を下降さ せるからである。
しかし、 Mgを、 3%を超えて添加すると、 MgZn2の生成量が多くな り、 共晶組成から離れるので、 めっき浴の融点が急激に上昇し、 め つき浴の粘性が高くなる。
さらに、 Mgの添加量が 20%に近くなると、 添加した Mgが不溶解物 となって、 ドロスの発生量が増大する。 Mgが、 めっき浴表面のドロ ス中に、 高濃度で集積し、 雰囲気によっては、 浴表面で発火して、 めっきを行う ことが困難となる。 また、 Mgを、 10%以上の高濃度で添加すると、 金属間化合物や合 金層が、 凝固後の合金めつき層中に多量に生成する。
合金めつき層中に存在する金属間化合物や、 鋼板とめっき層の界 面に形成される合金層は、 塑性変形能に乏しいので、 Mgを高濃度に 含有するめつき浴組成にすると、 加工性に乏しいめっき層が形成さ れ、 めっき層の割れや、 鋼板との剥離の問題が顕著になる。
上記のような、 めっきの形成可能条件や、 めっき層の加工性の問 題から、 これまで、 Mgの添加量は、 質量%で、 20%前後が限度と考え られていた。
Mgの含有量が低く抑えられている第二の理由は、 Mgが、 Feとの反 応性に乏しいということである。 Mgは、 Feと金属間化合物を形成せ ず、 Feを全く固溶しない (例えば、 日本金属学会誌、 第 59巻第 3号 ( 1995) 、 p. 284- 289) 。
また、 Mgは酸化し易いため、 Mgの酸化被膜が、 Feとの濡れ性を悪 化させ、 密着性が劣化する。
Zn - Mg系合金めつき、 又は、 Zn-Mg_Al系合金めつきであっても、 添加された Mgにより、 Znや A1の活量が小さくなり、 めっき層と Feの 密着性に寄与する Zn- Fe合金層や、 A卜 Fe合金層の形成が抑制される この結果、 Zn- Mg系合金めつきにおいては、 Mgの濃度が高いほど 、 密着性の確保が難しくなり、 加工時に、 めっき層が容易に剥離す る等して、 材料特性の劣化した合金めつき鋼材しか作製することが できなかった。
Mgの含有量が低く抑えられている第三の理由は、 Mgを高濃度に含 むめつき組成では、 耐食性が悪くなると考えられていたということ である。
Mgは、 実用金属の中で最も酸化し易いので、 Mg濃度が、 質量%で 、 50%以上の合金めつきができたとしても、 酸化して、 耐食性は悪 く、 実用性に欠けると考えられていた。
これらの理由により、 Mgを高濃度に含有する溶融 Znめつき層を備 える鋼材は、 製造、 性能の点において不安があり、 今までに存在し なかった。
もっとも、 35質量%以上の Mgを含有する Zn- Mg合金めつき層を備え るめつき鋼板を、 電気めつきで製造する方法が、 特開平 8— 13186号 公報に開示されている。
これまで、 Mgを高濃度に含有する Zn-Mgめつき層を備えるめっき 鋼材を製造する方法は、 いずれも、 溶融塩や非水溶媒を用いる電気 めっき法のような、 非効率的な方法であり、 効率性に優れた溶融め つき法による製造方法は、 未だ提案されていない。
また、 Mgの低融点と高蒸気圧を利用して、 蒸着めつき法を用いて Zn-Mgめっき鋼板を製造する方法が、 「日新製鋼技報 No. 78 ( 1998 ) , 18-27」 に開示されている。
この製造方法によれば、 Mgを高濃度に含有するめつき層を備える めっき鋼板を製造することも可能であると考えられるが、 Zn→Mg→ Znの順に蒸着を行う必要があり、 溶融めつき法と比較すると、 非効 率的な製造方法である。
また、 「日新製鋼技報 No. 78 ( 1998) , 18-27」 に開示の製造方 法で製造された Zn- Mgめつき鋼板のめつき層の Mg濃度は、 11〜 13質 量%であり、 Mgを高濃度に含有する Mg-Zn合金めつき層については検 討されていないし、 その性能については、 何ら開示されていない。
これまでに開示された、 溶融めつき鋼材のめつき層の Mgの含有量 は、 せいぜい、 質量%で、 20%止まりであり、 この分野の研究の殆ど は、 Mg20%以下の範囲に限られていた。
これまで、 Mgを高濃度に含有する溶融めつきは、 研究の対象にさ え、 されなかったのが実情であり、 そのため、 Mgを高濃度に含有す る溶融めつき層の特性も、 これまで明らかにされていなかつたので ある。 発明の開示
本発明は、 溶融金属系合金めつき鋼材において、 Mgを高濃度に含 有し、 密着性と耐食性が両立する溶融 Mg-Z n系合金めつき層を備え るめつき鋼材を提供することを課題とする。
本発明者らは、 溶融 Znめっきにおいて、 高耐食性を得る手段とし て、 Mgを高濃度に添加することを検討した。
その結果、 Mgを高濃度に含む Mg基- Zn系めつき浴において、 浴組 成を特定の組成範囲に設定すれば、 溶融めつき浴の融点を Mgの発火 点以下にし、 かつ、 めっき浴の粘性、 及び、 ドロスの発生量を共に 低減することができ、 溶融 Mg基合金めつき層を備えるめっき鋼材を 製造することができることを見出した。 なお、 「Mg基- Z n」 は、 以 下、 「Mg-Z n」 と記載することがある。
そして、 この Mg-Zn系合金めつき層の物性及び断面構造を調査し た結果、 低 Mg合金めつきにおいては、 めっき密着性に寄与する Z n - F e合金層等の生成は抑制されていたが、 Mgを高濃度に含有する場合 、 Z nが、 ある程度、 めっき層中に存在していれば、 F eが、 母材から めっき層中に拡散して、 密着性を確保することができることを見出 した。
さらに、 Mg基- Z n系合金めつき層の鋼板との密着性は、 予め、 N i 、 C u、 Sn等の金属被膜を鋼板にプレめっきをしておけば、 さらに向 上することを見出した。
また、 本発明の組成範囲の一部においては、 実用的な冷却速度の 下で、 アモルファス相を形成させるととができ、 アモルファス相が 体積分率で 5 %以上になると、 めっき層の剥がれ、 割れの起点となる 欠陥、 金属間化合物の悪影響を抑制することができることも見出し た。
また、 本発明の Mg基合金めつき層の耐食性は、 従来の溶融 Znめつ き層と比較して、 優れたものであるが、 アモルファス化することに より、 同じ組成の結晶相のみのめつき層よりも、 使用条件によって は、 さらに、 耐食性が向上することを見出した。
めっき層が、 アモルファスではない結晶相の場合であっても、 本 発明の組成範囲の一部においては、 実用的な冷却速度で、 室温の平 衡状態では存在しない高温安定相を、 そのまま、 室温まで凍結する ことができる。
そして、 この高温安定相を含有するめつき層は、 極めて優れた耐 食性、 及び、 犠牲防食能を有するので、 従来には存在しない、 高耐 食及び高犠牲防食能めつき層として利用できることを見出した。
アモルファス相、 高温安定相等の非平衡相を含有するめつき層を 、 鋼板表面に形成することの難しさは、 溶融めつき後、 めっき層を 、 大きな冷却速度で冷却しなければならないところにある。
本発明者らは、 この非平衡相を含有する溶融 Mg- Z n系合金めつき 層を、 鋼板表面に、 容易に形成することを目指し、 溶融めつきプロ セスと、 冷却プロセスを分離することを検討した。
その結果、 めっきを施した後、 自然放冷した溶融 Mg- Z n系合金め つき鋼板を再加熱し、 急冷却する (以下、 この再加熱-急冷却を 「 再加熱急冷」 ということがある) 一連の熱プロセスに至った。
通常、 A 1や、 Z nを含有する溶融めつき層を備えるめっき鋼材を、 めっき後、 再加熱すると、 めっき鋼材から供給される F eと、 めっき 層中の A 1及び 又は Z nが、 金属間化合物(合金)層を形成する (以下 、 この形成を 「合金化」 ということがある。 ) 。 しかし、 本発明者らは、 本発明の溶融 Mg-Zn系合金めつき層にお いては、 特定の組成範囲において、 特定の温度制御による再加熱急 冷を行うことにより、 F eと A 1の合金化や、 Feと Znの合金化を抑制す ることができることを見出した。
即ち、 特定の組成範囲においては、 合金化を抑制しつつ、 めっき 層を再溶融させることが可能であり、 これを利用すれば、 通常の超 急冷設備を備えない、 通常のめっきラインでも、 まず、 緩冷却で、 平衡相の溶融 Mg-Zn系合金めつきを備えるめつき鋼材を作製し、 そ の後、 オフライン、 又は、 オンラインで、 この鋼材を再加熱急冷し て、 非平衡相の溶融めつき層を備えるめっき鋼板を製造することが 可能となる。
つまり、 非平衡相を得るのに必要な急冷プロセスを、 溶融めつき 部分から分離することにより、 アモルファス相や、 高温安定相を含 有する、 非平衡相の溶融 Mg-Zn系合金めつき層を、 鋼材に、 容易に 形成することが可能となる。
本発明は、 以上の知見に基づいてなされたもので、 その要旨は、 以下のとおりである。
( 1 ) 溶融 Mg基合金めつき層を備えることを特徴とする Mg基合金 めっき鋼材。
( 2 ) Znを 1 5原子%以上 45原子%未満含有する溶融 Mg基合金めつき 層を備えることを特徴とする Mg基合金めつき鋼材。
( 3 ) Znを 1 5原子%以上 45原子%未満含有し、 さらに、 元素群 A: S i、 T i、 C r、 Cu、 Fe、 N i、 Z r、 Nb、 Mo、 及び、 Agから選択される 1 種又は 2種以上の元素を、 合計で、 0. 03〜5原子%含有する溶融 Mg基 合金めつき層を備えることを特徴とする Mg基合金めつき鋼材。
( 4 ) Znを 1 5原子%以上、 及び、 Mgを 35原子%超含有し、 さらに、 元素群 B : A 1、 C a、 Y、 及び、 Laから選択される 1種又は 2種以上の 元素を、 合計で、 0.03〜15原子%含有する溶融 Mg基合金めつき層を 備えることを特徴とする Mg基合金めつき鋼材。
( 5 ) Znを 15原子%以上、 及び、 Mgを 35原子%超含有し、 さらに、 元素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2種以上の 元素を、 (Bl) Mgが 55原子%超の場合は、 合計で、 0.03〜15原子% 含有し、 (B2) Mgが 55原子 ¾以下の場合は、 合計で、 2〜15%原子含 有する溶融 Mg基合金めつき層を備えることを特徴とする Mg基合金め つき鋼材。
( 6 ) 前記溶融 Mg基合金めつき層が、 Mgを 85原子%以下含有する ことを特徴とする前記 ( 4 ) 又は ( 5 ) に記載の Mg基合金めつき鋼 材。
( 7 ) 前記溶融 Mg基合金めつき層が、 Mgを 55〜85原子%以下含有 することを特徴とする前記 ( 4 ) 又は ( 5 ) に記載の Mg基合金めつ き鋼材。
( 8 ) 前記溶融 Mg基合金めつき層が、 さらに、 元素群 A : Si、 Ti
、 Cr、 Cu、 Fe、 Ni、 Zr、 Nb、 Mo、 及び、 Agから選択される 1種又は 2種以上の元素を、 合計で、 0.03〜5原子%含有することを特徴とす る前記 ( 4 ) 〜 ( 7 ) のいずれかに記載の Mg基合金めつき鋼材。
( 9 ) 前記溶融 Mg基合金めつき層が、 Znを 15原子%以上 45原子%未 満含有し、 かつ、 アモルファス相を、 体積分率で、 5%以上含有する ことを特徴とする前記 ( 1 ) 〜 ( 8 ) のいずれかに記載の Mg基合金 めつさ鋼材。
( 1 0 ) Znを 15原子%以上 44.97原子%未満含有し、 さらに、 元素 群 A : Si、 Ti、 Cr、 Cu、 Fe、 Ni、 Zr、 Nb、 Mo、 及び、 Ag、 及び、 元 素群 B' : Ca、 Y、 及び、 Laの集合元素群から選択される 1種又は 2 種以上の元素を、 元素群 Aの元素の合計で、 0.03〜5原子 また、 元素群 B' の元素の合計で、 0.03〜15原子% (ただし、 該合計が、 0. 03〜5原子%未満の場合は、 Mgを 55原子%超とし、 5〜15原子%の場合 は、 Znを 40原子%未満とする) 含有し、 かつ、 アモルファス相を、 体積分率で、 5%以上含有する溶融 Mg基合金めつき層を備えることを 特徴とする Mg基合金めつき鋼材。
( 1 1 ) 前記溶融 Mg基合金めつき層が、 金属間化合物 Zn3Mg7を、 X線強度比 (回折面間隔で 0. 1089〜1.766nmに現れる全ての回折ピ ーク強度 (ただし、 回折面間隔で 0.233nmの回折ピークは除く) の 総和中に占める、 Zn3Mg7の回折ピーク強度 (ただし、 回折面間隔で 0.233nmの回折ピークは除く) の割合) で、 10%以上含有すること を特徴とする前記 ( 1 ) 〜 ( 8 ) のいずれかに記載の Mg基合金めつ き鋼材。
( 1 2 ) Znを 20原子%以上、 Mgを 50原子%以上 75原子%以下含有し 、 さらに、 元素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2種以上の元素を、 合計で、 0.03〜12原子%含有し (ただし、 該合 計が 1〜12原子%の場合は、 A1を 1原子%以上含有する) 、 かつ、 金属 間化合物 Zn3Mg7を所要量含有する溶融 Mg基合金めつき層を備えるこ とを特徴とする Mg基合金めつき鋼材。
( 1 3 ) 前記溶融 Mg基合金めつき層が、 該めっき層を、 Mg基合金 めっきの融点〜 (Mg基合金めつきの融点 + 100°C) の温度に 1分以 下保持した後、 急冷して得られる非平衡相を含有することを特徴と する前記 ( 1 ) 〜 ( 8 ) のいずれかに記載の Mg基合金めつき鋼材。
( 1 4 ) 前記非平衡相が、 アモルファス相及び金属間化合物 Zn3M g7のいずれか又は両方であることを特徴とする前記 ( 1 3 ) に記載 の Mg基合金めつき鋼材。
( 1 5 ) 前記急冷が、 水冷又はミス ト水冷であることを特徴とす る前記 ( 1 3 ) 又は ( 1 4 ) に記載の Mg基合金めつき鋼材。
( 1 6 ) 前記溶融 Mg基合金めつき層と鋼材との界面に、 Ni、 Cu、 Sn、 Cr、 Co、 及び、 Agから選ばれる 1種又は 2種以上の元素からな るプレめっき層を備えることを特徴とする前記 ( 1 ) 〜 ( 1 5 ) の いずれかに記載の Mg基合金めつき鋼材。
( 1 7 ) 前記溶融 Mg基合金めつき層が、 残部として、 Mgの他、 不 可避的不純物を含有することを特徴とする前記 ( 1 ) 〜 ( 1 6 ) の いずれかに記載の Mg基合金めつき鋼材。
本発明 (Mg基合金めつき鋼材) は、 通常の溶融めつきプロセスで 製造することが可能であるので、 汎用性及び経済性に優れるもので ある。
そして、 本発明の溶融 Mg- Zn合金めつき層は、 Znの濃度を抑えな がらも、 耐食性は、 従来の溶融 Zn系めつき層よりも優れているので 、 Zn資源の節約に貢献する。
また、 本発明の溶融 Mg基合金めつき層は、 耐食性だけでなく、 加 ェ性も良好であるので、 本発明は、 自動車、 建材、 家電分野におい て、 構造部材又は機器部材として広く利用され得るものである。 図面の簡単な説明
図 1は、 Al、 Ca、 Y、 及び/又は、 Laの添加により、 融点が 580°C 以下となる組成領域を示す図である。
図 2は、 Al、 Ca、 Y、 及び 又は、 Laの添加により、 融点が 520で 以下となる組成領域を示す図である。
図 3は、 アモルファス相が得られる組成領域を示す図である。 図 4は、 2元系 Mg- Zn状態図を示す図である。
図 5は、 Zn3Mg7が得られる組成領域を示す図である。
図 6は、 Mg- 25原子%Zn- 5原子%Caめっき層 (結晶相) の断面組織 を示す図である。
図 7は、 Mg- 25原子%Zn- 5原子%Caめっき層 (アモルファス相) の 断面組織を示す図である。
図 8は、 Mg- 25原子%Zn- 5原子%Caめっき層 (アモルファス相) の X線回折像を示す図である。
図 9は、 Mg- 25原子%Zn- 5原子%Caめっき層 (アモルファス相) の 界面付近の F E— T E M像 (明視野像) を示す図である。
図 1 0は、 図 9で示す F E— T E M像中の十字点における E D X による元素分析結果を示す図である。
図 1 1は、 図 9で示す F E— T E M像中の十字点における電子線 回折像を示す図である。
図 1 2は、 表 9中 No. 16の Mg- 25原子 ¾Zn- 5原子%Ca_4原子%A1めつ き層 (アモルファス相、 Zn3Mg7) の X線回折像を示す図である。 図 1 3は、 表 9中 No.3の Mg_27原子%Zn_l原子%Ca_6原子%A1めっき 層 (Zn3Mg7) の X線回折像を示す図である。
図 1 4は、 表 9中 No.3の Mg_27原子%Zn- 1原子%Ca- 6原子%A1めつき 層の X線回折像 (図中、 1 0 ) 、 同 No.6の Mg- 27原子%Zn_l原子%Ca- 8原子%A1めっき層の X線回折像 (図中、 1 1 ) 、 同 No.7の Mg- 27原 子%Zn- 1原子%Ca_10原子%A1めっき層の X線回折像 (図中、 1 2 ) 、 及び、 同 No.8の Mg- 27原子%Zn_l原子%Ca- 13原子%A1めつき層の X線 回折像 (図中、 1 3 ) を示す図である。
図 1 5は、 複合サイクル腐食試験の態様を示す図である。
図 1 6は、 本発明試験材及び比較試験材に係る複合サイクル腐食 試験の結果の腐食外観を示す図である。
図 1 7は、 比較試験材 1の鋼板断面における腐食の進行態様を示 す図である。
図 1 8は、 比較試験材 2の鋼板断面における腐食の進行態様を示 す図である。
図 1 9は、 本発明試験材 1の鋼板断面における腐食の進行態様 ( 2 1サイクルまで) を示す図である。
図 2 0は、 本発明試験材 1の鋼板断面における腐食の進行態様 ( 2 1サイクル以降、 5 6サイクルまで) を示す図である。
図 2 1は、 本発明試験材 2の鋼板断面における腐食の進行態様 ( 2 1サイクルまで) を示す図である。
図 2 2は、 本発明試験材 2の鋼板断面における腐食の進行態様 ( 2 1サイクル以降、 5 6サイクルまで) を示す図である。
図 2 3は、 本発明試験材 1の 4 2サイクルにおいて生成した腐食 生成物の断面を、 E P M Aで観察した結果を示す図である。
図 2 4は、 本発明試験材 2の 4 2サイクルにおいて生成した腐食 生成物の断面を、 E P M Aで観察した結果を示す図である。
図 2 5は、 A卜 Mg合金の状態図を示す図である。
図 2 6は、 Cu- Mg合金の状態図を示す図である。
図 2 7は、 N i - Mg合金の状態図を示す図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本来、 Mgは、 溶融めつき法で、 鋼材に付着させることが非常に困 難な金属である。 これは、 ( i ) Mgは、 Feと殆んど反応しない、 ま た、 (i i ) Mgは、 Feに殆んど固溶しない (固溶しても、 l Oppm程度 ) という、 元素間の相性の悪さが原因である。
それ故、 逆に、 相性の悪さを利用して、 鋼材を、 Mgを溶解する " るつぼ" の材料として、 そのまま使用することができる。 即ち、 Mg の溶解に、 鋼製の "るつぼ" を用いると、 "るつぼ" は損傷を受け ず、 溶融 Mgを保持することができる。
以上の理由と、 融点で発火し易いという Mgの活性な性質とが相俟 つて、 鋼材に、 Mgのめつき層、 及び、 Mgを高濃度で含む Mg基合金 ( 例えば、 Mg基 _Z n系合金) のめつき層を、 溶融めつき法で形成する ことはでさなかった。
しかし、 Mgは、 腐食電位が低く、 鋼材に対する犠牲防食効果が非 常に優れている金属である。 本発明者らは、 この優れた点に着目し 、 Mgを高濃度で含む Mg基合金 (例えば、 Mg基 _Zn系合金) のめつき 層を、 溶融めつき法で、 鋼材の表面に形成する手法について、 鋭意 研究した。 その結果、
( ) Mgに、 所要量の Z nを添加した Mg基 _Zn系合金のめっき浴を 用いて、 鋼板にめっきを施すと、 鋼板表面に、 鋼板との密着性に優 れた Mg基- Z n系合金めつき層を形成することができる、
ことを見出した。
なお、 以下、 「合金めつき層」 及び 「めっき層」 は、 特に、 説明 がない場合、 それぞれ、 「結晶相からなる合金めつき層」 及び 「結 晶相からなるめっき層」 を意味する。
本発明の Mg基合金めつき層の形成方法においては、 上記知見 ( X ) に基づいて、 Mgに Z nを添加する手法を採用する。 即ち、 本発明に おいては、 「Mgに Z nを添加する」 という添加手法が、 本発明の基礎 をなすものである。
Znに高濃度の Mgを添加する従来手法で、 本発明の Mg基合金めつき 層を形成しょうとすると、 Mg添加量の増加に伴い、 前述したように 、 MgZ n2の生成量が増加し、 めっき浴の融点が上昇して、 めっきの 粘性が上昇する。 Mgの Znへの溶解が、 ある濃度でできなくなり、 溶 け残った Mgは、 大気中では、 発火してしまう。
一方、 本発明の添加手法のように、 Mgに Z nを添加する場合は、 前 述のような現象は起こらない。 Mgに Z nを添加することは、 これまで 、 検討されたことはなかったが、 本発明者らは、 鋭意研究の結果、 Mgに Z nを添加するという添加手法を見出した。 Mgに Znを添加する場合は、 (Mg: 70原子%_Zn: 30原子%) が共晶 組成であるので、 Znの添加量が増えると、 めっき浴の粘性は低下す る。
Zn - Mg系状態図と類似の状態図を示す Mg合金として、 A卜 Mg合金、 Cu - Mg合金、 及び、 N i - Mg合金がある。 参考のため、 図 2 5に、 A卜 M g合金の状態図を示し、 図 2 6に、 Cu- Mg合金の状態図を示し、 図 2 7に、 N i - Mg合金の状態図を示す。
これらの図から解るように、 A l、 Cu , 又は、 N iを 10〜30原子 ¾添 加すると、 Mgと共晶を形成する。 共晶組成は、 Mg- Zn合金の共晶組 成と、 原子比が異なるが、 A l、 Cu、 及び、 N iは、 Znと同様の機能を 備える元素であると、 本発明者らは考えている。
これまで、 Znに、 高濃度の Mgを添加することができなかった理由 は、 Mgの添加時に、 金属間化合物 : MgZn2が生成することが問題で あつたからであるが、 本発明においては、 MgZn2の生成を避けるた め、 Mgに Znを添加する手法を採用して、 Mgを高濃度で含む Mg基 - Zn 系合金めつき層を、 鋼材表面に形成することを可能とした。
Mgに、 Znを、 より簡単に添加するには、 最初に、 アルゴン雰囲気 中で、 少量の高 Mg- Znインゴッ トを作製する。 このインゴッ トを、 大気中で溶解して、 Mgと Znを、 共晶組成 (Mg : 70原子 、 Zn: 30原 子%) から大きく離れないように、 交互に添加して溶解量を増やし ていく。
共晶組成の Mg-Ζη合金は、 350で近傍で溶解するので、 Mgの発火 ( 発火点 560で) を避けることができる。 大気中での Mgの溶解は、 発 火 · 爆発の危険を伴うので、 できるだけ、 アルゴン雰囲気中などの 不活性な雰囲気下で溶解することが望ましい。 しかし、 目的とする Mg - Zn合金の量が多いために、 アルゴン雰囲気中で全目的量の Mg-Zn 合金の作製ができない場合は、 上記のように、 種となる合金のみァ ルゴン雰囲気中で作製し、 その後は、 大気中で Mgと Znを交互に添加 する手法を採用することが好ましい。
なお、 Mgの発火や、 黒色の酸化物の生成を抑制するため、 Mgに、 Znの添加と同時に、 C aを添加するとよい。 C aの添加で、 Mgが安定化 する理由は明確でないが、 C aが、 Mgより酸化し易いことが、 理由の 一つと考えられる。
本発明者らは、 本発明の添加手法で用意した Mg基合金めつき浴を 用いて、 鋼板に、 Mg基合金めつき層を形成し、 該めっき鋼板におけ る腐食の進行態様について調査した。 さらに、 調査結果と、 従来の 溶融 Z n系合金めつき鋼板における腐食の進行態様とを対比した。
調査は、 本発明及び従来のめっき鋼板を、 複合サイクル腐食試験 に供して行った。
' 図 1 5に、 複合サイクル腐食試験の態様を示す。
複合サイクル腐食試験は、 自動車用鋼板の腐食実態とよく適合す る腐食試験方法として確立している促進腐食試験方法において、 塩 水噴霧工程での塩分濃度を低く して、 一般の曝露試験における腐食 実態と比較的良く適合するように開発した腐食試験である。
本発明者らが行った複合サイクル試験の結果、 本発明の Mg基合金 めっき鋼材における腐食の進行態様は、 従来の溶融 Zn系合金めつき 鋼材における腐食の進行態様と、 実態的に異なることが判明した。 具体的には、 以下のことが判明した。
( y ) Mg濃度が充分に高いめっき層においては、 腐食生成物の主 体が、 Mg (0H) 2や、 塩基性炭酸マグネシウムなどの " Mgを主成分と する腐食生成物" となる。
( z ) " Mgを主成分とする腐食生成物" は、 めっき金属が全て腐 食生成物に変化した後も、 Z nを主成分とする腐食生成物に比べ、 遥 かに強い地鉄保護効果を発揮し、 赤鲭の発生を顕著に抑制する。 ここで、 知見 (y ) 及び知見 ( z ) を得るに至った複合サイクル 腐食試験の結果の一部について説明する。
次の 4種の試験材を、 複合サイクル腐食試験に供した。
(1) 68原子%Mg- 27原子%Zn- 5原子%Ca合金めつき層 (アモルファス 、 層厚 : 10 A m) を備える鋼板 (本発明試験材 1 )
(2) 68原子%Mg-27原子 ¾Zn- 5原子%Ca合金めつき層 (結晶質、 層厚 : lO^ rn) を備える鋼板 (本発明試験材 2 )
(3)溶融 Ζηめっき層 (層厚 : 14 xm) を備える鋼板 (比較試験材 1ぐ巿販材 >)
(4)溶融 Zn- A卜 Mg系合金めつき層 (層厚 : 12 m) を備える鋼板 (比較試験材 2 <巿販材 >)
図 1 6に、 本発明試験材 1及び 2、 及び、 比較試験材 1及び 2に 係る複合サイクル腐食試験の結果の一つの腐食外観を示す。
比較試験材 1 においては、 2 8サイクルで、 鋼板表面に赤鲭が発 生し、 地鉄の腐食も起きている。 他の試験材においては、 腐食生成 物に覆われ、 地鉄の腐食は起きていない。
5 6サイクルでは、 比較試験材 2において、 鋼板表面に赤鲭が発 生し、 地鉄の腐食も起きている。 一方、 本発明試験材 1及び 2にお いては、 鋼板表面に赤鯖が発生せず、 地鉄が守られている。
これらのことから、 本発明の溶融 Mg基合金めつき層は、 従来の Zn めっき層及び Zn系合金めつき層に比べ、 耐食性及び犠牲防食能が、 著しく優れていることが解る。
次に、 めっき鋼板の断面を光学顕微鏡で観察して、 腐食の進行態 様を調査した。 図 1 7〜図 2 0に、 その結果を示す。
図 1 7に、 溶融 Znめっき層 (層厚 : 14 ^ m) を備える比較試験材 1の鋼板断面における腐食の進行態様を示す。 1 4サイクルで、 赤 鲭が発生している。 また、 2 1サイクルの断面から、 赤鲭発生後、 急速に地鉄の腐食が進行していることが解る。
図 1 8に、 溶融 Zn- A卜 Mg系合金めつき層 (層厚 : 12 ; m ) を備え る比較試験材 2の鋼板断面における腐食の進行態様を示す。 5 6サ ィクルで、 赤鯖が発生している。 めっき層の腐食の進行は遅いが、 腐食生成物の地鉄保護作用が小さく、 腐食生成物が生成しても、 地 鉄の腐食が進行している。
図 1 9に、 68原子%Mg- 27原子%Zn- 5原子%Ca合金めつき層 (ァモル ファス、 層厚 : 10 m ) を備える本発明試験材 1の鋼板断面におけ る、 2 1サイクルまでの腐食の進行態様を示し、 図 2 0に、 2 1サ ィクル以降 5 6サイクルまでの腐食の進行態様を示す。
図 1 9に示すように、 1 4サイクルにおいて、 腐食生成物 Aが少 量生成している。 その後、 2 1サイクルの断面には、 腐食生成物 A から、 少しずつ、 腐食生成物 Bが生成して存在している。
この間、 アモルファスは、 腐食の進行が早く、 図 2 0に示すよう に、 腐食生成物 Bが 2 0 mに達する 2 8サイクルまでに、 めっき 層は、 ほとんど、 腐食層となってしまう。
これは、 アモルファスめっき層の耐食性が、 急に変化した訳では なく、 めっき層の腐食の一部が鋼板に達することで、 犠牲防食機能 が強く働き、 めっき層の腐食進行が速められただけである。 めっき 層厚みを厚くすることで、 複合サイクル腐食試験の初期の耐食性を 良好にすることも可能である。
しかし、 その後、 腐食の進行は止まり、 4 2サイクル、 次の、 5 6サイクルでも、 地鉄の腐食は進行していない。
めっき層がアモルファス層の場合、 保護能力の高い腐食生成物 B の生成に時間がかかるが、 最終的に、 腐食生成物が、 腐食生成物 A と腐食生成物 Bの二層構造となり、 地鉄の腐食を抑制する。
図 2 3に、 本発明試験材 1の 4 2サイクルにおいて生成した腐食 生成物の断面を、 E P M Aで観察した結果を示す。 4 2サイクルの 時点で、 本発明試験材 1 のめつき層は、 腐食生成物 Aと腐食生成物 Bの 2層状態となつている。
下層の腐食生成物 Aでは、 C 1濃度、 O濃度が高く、 一方、 Zn濃度 、 Mg濃度、 及び、 C a濃度が、 平均的な濃度であるのに対して、 上層 の腐食生成 Bでは、 C濃度、 O濃度、 及び、 Mg濃度が、 極めて高く なっている。
これらの結果から、 腐食生成物 Aは、 Zn、 Mg、 及び、 C aの酸化物 、 又は、 塩化物からなり、 一方、 腐食生成物 Bは、 Mg系炭酸化合物 からなつていると推定することができる。
したがって、 Mg基合金めつきの防食効果は、 Mg系炭酸化合物が担 つている可能性が高いと推測することができる。
なお、 4 2サイクルの時点で、 めっき層においては、 腐食が、 め つき層と地鉄との界面に達するまで進行しているが、 Feの溶出は、 全く生じていないことが判明した。
図 2 1 に、 68原子%Mg- 27原子%Zn_5原子^ a合金めつき層 (結晶質 、 層厚 : 10 m ) を備える本発明試験材 2の鋼板断面における、 2 1サイクルまでの腐食の進行態様を示し、 図 2 2に、 2 1サイクル 以降 5 6サイクルまでの腐食の進行態様を示す。
めっき層が結晶質の場合、 初期に、 腐食生成物 Aが生成し、 めつ き層表面の全体を覆う ことになる ( 7サイクル、 参照) 。 この時点 で、 約 5 の腐食が進行している。 この腐食進行速度は、 溶融 Zn めっき層 (比較試験材 1 ) の場合と同じである。
しかし、 腐食生成物 Aから、 直ちに、 腐食生成物 Bが生成し ( 1 4サイクル、 参照) 、 めっき層及び地鉄の腐食を抑制する。
めっき層の腐食は、 少しずつ進行するが、 途中で、 腐食生成物 B の生成まで時間のかかるアモルファスめっき層と、 めっき減厚が同 等となり、 場合によっては、 結晶質のめっき層の腐食減厚の方が小 さくなることも起り得る (図 2 2の 2 8サイクル、 参照) 。
図 2 2に示すように、 4 2サイクル及び 5 6サイクルでは、 めつ き層は、 ほとんど、 腐食生成物 Aに変化しているが、 アモルファス めっき層と同様に、 腐食の進行は止まっており、 地鉄の腐食は起こ らない。
図 2 4に、 本発明試験材 2の 4 2サイクルにおいて生成した腐食 生成物の断面を、 E P M Aで観察した結果を示す。 本発明試験材 2 のめつき層は、 本発明試験材 1のめつき層と同様に、 腐食生成物 A と腐食生成物 Bの 2層状態となつている。
図から、 腐食生成物 Aからは、 C l、 0、 Zn、 Mg、 及び、 Caが強く 検出され、 腐食生成物 Bからは、 C、 〇、 及び、 Mgが検出されてい ることが解る。
このことから、 生成している腐食生成物は、 本発明試験材 1 にお いて生成した腐食生成物と同様のものと考えられる。
結局、 めっき層が結晶質の場合、 比較的早い段階で、 保護性の高 い腐食生成物 Bが、 直ちに生成するので、 初期の腐食は速く進行す るが、 腐食の中期で、 進行が遅くなる。
最終的に、 腐食生成物が、 腐食生成物 Aと腐食生成物 Bの二層構 造となり、 地鉄の腐食を抑制する。
以上のとおり、 前述したように、 本発明の Mg基合金めつき鋼材に おける腐食の進行態様は、 従来の溶融 Zn系合金めつき鋼材における 腐食の進行態様と、 実態的に相違する。
次に、 本発明の溶融 Mg基合金めつき層の成分組成を限定する理由 について、 説明する。
溶融 Mg- Zn系合金めつき層において、 めっき層と鋼材との密着性 を確保するためには、 Feをめつき層中に拡散させる必要がある。 こ のために、 Znを、 溶融めつき浴中に含有させる必要がある。 Znは、 15原子%以上、 必要である。
なお、 以下、 %について、 特に説明がない場合、 組成を表示する %は、 原子 を意味する。
Znが 15%未満では、 めっき浴中での Znの活量が不十分となり、 十 分な Feの拡散が起こらず、 めっき層と鋼材の間で、 十分な密着性が 得られない。 拡散によって、 Feが、 めっき層全体で、 3%程度まで含 有されることがある。
ただし、 めっき層と鋼板の界面では、 Feの拡散濃度が高くなる。 めっき層の厚みが薄い場合も、 Feの拡散濃度は高くなる。
ここで、 Fe濃度の多くなる場合としての 3%は、 めっき層の厚みが lO m程度のときの濃度である。 めっき層の密着性向上には、 僅か でも Feの拡散が必要であるが、 その量は、 せいぜい、 厚みが lO^ m 程度のめっき層全体で、 0. 1%もあれば十分である。
Mgに、 Znが 15%以上 45%未満含有されていることで、 Mgの融点が著 しく低下し、 520°C以下となる。 これは、 (Mg: 70%- Zn: 30%) が、 2元(Mg-MgZn2)共晶組成であることに起因する。
共晶組成の融点は、 Mgの発火点である約 520°Cより低いので、 大 気中で、 Mg基合金めつきを行っても、 発火しない。 それ故、 2元(M g - MgZn2)共晶組成は、 めっき条件として、 最適な組成である。
Znが 45%以上であると、 2元共晶組成から大きく離れてしまい、 Mg Zn2の生成量が多くなつて、 めっき浴の融点が上昇し、 粘性も上昇 する。 また、 Znが 45%以上であると、 めっき浴の融点が発火点を超 える恐れがあるので、 Znは、 45%未満でなければならない。
本発明の溶融 Mg基合金めつき層の耐食性は、 溶融 Znめつき鋼板の 溶融 Znめっき層の耐食性よりも優れている。 本発明の溶融 Mg基合金 めっき層の腐食電位は、 - 1.0〜- 1. 5V (0. 5%NaCl水溶液中、 vs. kg/ AgC l ) であり、 鋼材に対する犠牲防食能も顕著に優れている。
即ち、 本発明の溶融 Mg基合金めつき層は、 従来の溶融 Znめっき層 に比べ、 耐食性及び犠牲防食能の点で、 遥かに優れている。
溶融 Mg基合金めつきの耐食性をより高める目的で、 めっき浴に、 Fe、 Cr、 Cu、 Ag、 N i、 T i、 Z r、 Mo、 S i、 及び Z又は、 Nb (元素群 A ) から選ばれる 1種又は 2種以上の元素を添加する。
これらの元素を、 合計で、 0. 03%以上添加すると、 電気化学的測 定で得られる分極曲線の腐食電位付近における腐食電流密度が、 小 さくなり始める。
上記元素の合計添加量が 5%を超えると、 めっき浴の融点が高くな り、 めっきを行うことが難しくなるので、 めっき浴に添加する元素 群 Aの元素の合計量は、 5%以下が好ましい。
AK Ca、 Y、 及び/又は、 La (元素群 Β) から選ばれる 1種又は 2 種以上の元素も、 耐食性向上のため、 適宜、 めっき浴に添加する。 合計 10%までの添加で、 めっき浴の融点と粘性は低下する。
合計 0. 03%以上の添加で、 電気化学的測定で得られる分極曲線の 腐食電位付近における腐食電流密度が、 小さくなり始め、 めっき層 の耐食性は向上するが、 合計添加量が 15%を超えると、 めっき浴の 融点が高くなるので、 めっき浴に添加する元素群 Bの元素の合計添 加量は、 15%以下が好ましい。
また、 Al、 Ca、 Y、 及び Ζ又は、 Laの添加により、 Mg- Zn系合金の 融点、 及び、 粘性が低下するので、 Znが 45%以上であっても、 めつ き浴の融点が、 Mgの発火点の 520で以下となり、 大気中で、 Mg基合 金めつきが可能となる組成範囲が存在する。
なお、 Al、 Ca、 Y、 及び Ζ又は、 Laの添加により、 Mg- Zn系合金の 発火点は、 約 580°Cまで上昇する。
図 1 に、 Al、 Ca、 Y、 及び 又は、 Laの添加で、 融点が 580t 以下 となる組成領域を示す。 図中、 1は、 2元(Mg_MgZn2 )共晶線であり 、 2は、 3元共晶線である。
Znが 15%以上で、 Mgが 35%超で、 Al、 Ca、 Y、 及び Ζ又は、 Laの合 計添加量が 0. 03〜 15 %であれば、 めっき浴の粘性は低く、 融点は 58 0°C以下となる。
図 1 に示す組成領域をさらに制限することで、 融点を 520°C以下 にすることができる。 図 2に、 A l、 Ca Y、 及び/又は、 Laの添加 により、 融点が 520で以下となる組成領域を示す。
Znが 15%以上 45%未満で、 Mgが 35%超で、 A l、 C a、 Y、 及び Ζ又は、 Laの合計添加量が 0. 03〜 15 %であれば、 めっき浴の粘性は低く、 融 点は 520°C以下となる。
Znが 45%以上であっても、 Mgが 35%超で、 A l、 Ca、 Y、 及び/又は 、 Laの合計添加量が 2〜 15 %であれば、 めっき浴の粘性は低く、 融 点は 520°C以下となる。
元素群 Bの元素の合計添加量が 0. 03〜 15%であるのは、 元素濃度 7. 5%の近傍に、 元素群 Bの元素、 Mg、 及び、 MgZn2で形成される 3元共 晶線 (図 2中 「 2」 参照) が存在し、 この 3元共晶組成の近傍にお いて、 Mg-Zn合金の液体状態が安定するためであると推定される。
このため、 Znが 45%以上で、 2元共晶組成から大きく離れていても 、 元素群 Bの元素の添加により、 3元共晶線に近づく ことができ、 M g - Zn合金の液体状態が安定する。
しかし、 元素群 Bの元素を、 合計で、 15%を超えて添加すると、 3 元共晶線から大きく離れてしまい、 Mg- Zn合金の融点が上昇し、 Mg 基合金めつきを行うことが難しくなるので、 元素群 Bの元素の合計 添加量の上限は、 15%が好ましい。
また、 Mgが 35%以下になると、 もはや共晶線は存在せず、 元素群 B の添加量を調整しても、 MgZn2、 CaZn5等の生成量が増えて、 めっき 浴の融点が 520°C以上となり、 Mg基合金めつきを行うことが難しく なる。 それ故、 Mgの下限は 35%超とする。
Mg - Zn合金めつきの場合、 Znが 15%以上 45%未満の組成範囲におい て、 冷却速度を上げると、 アモルファス相を得ることができる。
めっき層が、 アモルファス相を、 めっき層の体積分率で、 5%以上 含有すると、 めっき層の耐食性は、 同じ組成の結晶相のみのめつき 層の耐食性より優れたものとなる。
アモルファス相が、 めっき層中に存在すると、 腐食電位が、 同じ 組成の結晶相のみのめつき層の腐食電位に比べ、 貴となる。
めっき層が、 アモルファス相を 5体積%以上含むと、 腐食電位が、 同じ組成の結晶相のみのめつき層の腐食電位に比べ、 0. 0 IV以上、 上昇する。 また、 腐食電位における腐食電流密度も小さくなる。 実際の環境における耐食性は、 複合サイクル腐食試験によって評 価することができる。 評価の結果、 アモルファス相を 5体積%以上含 むめつき層は、 同じ組成の結晶相のみのめつき層よりも、 複合サイ クル腐食試験初期の腐食減量が少ない。
めっき層が、 アモルファス相を、 体積分率で、 5%未満含む場合、 めっき層は、 同じ組成の結晶相のめっき層 (めっき後、 窒素ガスで 冷却しためっき層) と同等の耐食性を示す。
腐食電位の上昇値は 0. 0 IV未満であり、 腐食電流密度もほぼ同等 であり、 明確な特性変化は見られない。 複合サイクル腐食試験によ る耐食性の評価も同等であつた。
めっき層中にアモルファス相が混在すると耐食性が向上する理由 は、 明確ではないが、 (a)アモルファス相は、 元素が偏祈した結晶 粒界や、 金属間化合物が存在しない均質構造であること、 (b)母相 に、 耐食性向上元素を固溶限まで溶かすことができること、 及び、 (c)アモルファスが非平衡相であるため、 表面が活性化し、 緻密な 酸化被膜が急速に形成されること等、 が考えられる。
さらに、 アモルファス相を含むめっき層を形成する際、 Ca、 Y、 及び 又は、 La (元素群 B ' ) を添加すると、 めっき層の組成に由 来するアモルファス形成能が向上する。
アモルファス形成能を高める元素群 B ' の元素を、 めっき浴に添 加すると、 鋼板に、 アモルファス相を含む溶融 Mg基合金めつき層を 、 容易に形成することが可能となる。
元素群 B ' の特徴は、 Znや、 Mgと比較して、 巨大原子であること である。 アモルファス形成能を上げるためには、 液体状態が、 でき るだけ安定するように、 凝固時の原子の動きを阻害するような原子 が、 合金に含まれているとよい。
このような原子として、 Ca、 Y、 Laの他、 Ce、 Yb等の、 比較的原 子サイズの大きいランタノィ ド元素も挙げることができる。 これら の元素は、 元素群 B ' と同様の作用効果を奏すると考えられる。
A1の添加は、 耐食性向上に効果があるが、 アモルファス形成能を 高める作用はない。
これは、 A1の Znとの液体生成ェンタルピーが正であり、 A1は、 Zn との液体生成ェンタルピーが負である Ca、 Y、 及び 又は、 Laとは 異なる性質の元素であることに起因すると考えられる。
溶融 Mg基合金めつき層において、 ァモルファス相が得られる組成 は限定されている。
図 3に、 アモルファス相が得られる組成領域を示す。 ァモルファ ス相が得られる組成が、 特定の組成に限定されることは、 Mg基合金 の融点とガラス遷移温度の差に関係がある。
成分組成が変化しても、 ガラス遷移温度は、 それほど変化しない ので、 アモルファス相は、 通常、 融点が低いほど、 形成するのが容 易である。 したがって、 アモルファス形成能は、 共晶組成と密接に 関係する。
共晶組成の Mg基合金は、 融点が低いので、 ガラス遷移温度まで、 液体状態を、 最も保持し易い組成である。
Mg、 Zn、 及び、 元素群 B' から選ばれる元素からなる組成系にお いては、 2元(Mg- MgZn2)共晶線と 3元共晶線が交差する共晶線交差点 3 (図 3中 「 3」 参照) が最も融点が低く、 この交差点近傍の組成 領域で、 アモルファス形成能が非常に高くなる。
元素群 B' の元素を、 合計で、 5%未満含有する溶融 Mg基合金めつ き層において、 Mgが 55%以下になると、 共晶組成から離れて、 融点 が高くなり、 アモルファス形成能が小さくなる。
その結果、 水冷を用いるめっきプロセスで、 めっき層中にァモル ファス相を形成することは難しくなるので、 アモルファスを形成さ せる場合、 Mgは 55%超とする。
同様に、 元素群 B' の元素を、 合計で、 5%以上含有する合金めつ き層において、 Znが 40%以上になると、 共晶組成から離れて、 融点 が高くなり、 アモルファス形成能が小さくなる。
その結果、 水冷を用いるめっきプロセスで、 めっき層中にァモル ファス相を形成することは難しくなるので、 アモルファスを形成さ せる場合、 Znは 40%未満とする。
Zn40%未満、 Mg55%超の組成範囲で、 融点力 50°C以下と、 著しく 低くなるので、 この組成範囲は、 アモルファス相を得るのに都合が よい組成範囲である。
また、 元素群 Aの元素を含む溶融 Mg基合金めつき層に、 ァモルフ ァス相を含有させることにより、 耐食性を、 さらに高めることがで きる。
耐食性向上元素の添加と、 アモルファス相の形成による耐食性向 上効果を利用して、 著しく耐食性に優れる溶融 Mg基合金めつき層を 備える鋼板を製造することが可能である。
本発明の溶融 Mg基合金めつき層、 及び、 アモルファス相を含む溶 融 Mg基合金めつき層は、 加工性と密着性がともに優れるめっき層で ある。 Mg-Zn系合金は、 結晶化と粒成長が非常に遅い合金である。
このため、 めっき層では、 僅かに冷却速度を上げることで、 結晶 粒が、 容易に微細化するので、 塑性変形能の乏しい金属間化合物に よる加工性及び密着性への悪影響を低減することが可能である。 液体状態の原子構造を有するァモルファス相を得ることができれ ば、 金属間化合物は消滅するので、 加工性及び密着性を、 さらに高 めることができる。
溶融 Mg- Zn系合金めつきにおいて、 めっき層中に、 アモルファス 相を形成する手法以外にも、 Zn3Mg7という金属間化合物相を存在さ せることにより、 耐食性を、 飛躍的に向上させることが可能である
Zn3Mg7 (Zn3Mg7は、 論文によっては、 Mg5! Zn2 Qと表記される力 s、 本明細書では、 両方の金属間化合物を同質物質として扱い、 全て、 Zn3Mg7と表記する。 ) は、 図 4に示すように、 高温安定相である。
このため、 通常の溶融めつきプロセスのように、 緩冷却を施すと 、 溶融状態にある Mgと Znは、 Mg相と MgZn、 又は、 Mg4Zn7に分離して 、 常温において、 Zn3Mg7を残存させることができない。
しかし、 アモルファス相を形成するのと同様に、 溶融めつき直後 に急冷 (例えば、 水冷やミス ト冷却) することで、 Zn3Mg7を残存さ せることができる。
Zn3Mg7は、 アモルファス形成能が小さい組成、 即ち、 Mg- Zn合金 めっきや、 Mg- Zn- A1系合金めつきにおいても、 形成させることが可 能である。
Mg - Zn- A卜 Ca系合金めつきにおいて、 Ca濃度が高い組成において は、 溶融めつきの後、 水冷すると、 めっき層中に、 アモルファス相 と Zn3Mg7が混在することがある。
図 5に、 溶融めつきの後、 水冷することにより、 Zn3Mg7が得られ る組成範囲を示す。 図 5に示す組成範囲は、 めっき鋼板表面の X線 回折より、 X R Dピークとして、 Zn3Mg7が容易に検出される組成範 囲である。
この組成範囲は、 X線強度比 (回折面間隔で 0. 1089〜 1. 766nmに 、 つまり、 Cu管球を X線源に用いて、 Cuの Ko!線による回折測定を 行う場合、 回折角 で 5〜90° に現れる全ての回折ピーク強度 (た だし、 回折面間隔で 0. 233nmの回折ピーク、 前述の条件では、 で 、 38. 61° の回折ピークは除く) の総和中に占める、 Zn3Mg7の回折 ピーク強度 (ただし、 回折面間隔で 0. 233nmの回折ピークは除く) の割合) が、 10%以上であることを意味する組成範囲である。
回折面間隔 0. 233nmの回折ピークは、 Mgの最強線と回折ピークが 近接するので、 除外するのが好ましい。 なお、 Zn3Mg7の回折ピーク は、 回折データチャート ( J C P D Sカード番号 : 08- 0269) を参 照した。
Zn3Mg7を形成するためには、 Znが 20%以上、 Mgが 50%以上 75%以下 、 及び、 元素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2 種以上の元素が、 合計で、 0. 03〜 12%が必要である。 ただし、 Ca濃 度、 又は、 Y及び La濃度が高く、 アモルファス形成能が高い組成範 囲では、 アモルファス相が生成し、 Zn3Mg7が得られない場合がある 特に、 急冷法として水冷 (水没) を用いた場合は、 一定の冷却速 度しか得られないので、 Zn3Mg7相を得るのが難かしい。 ァモルファ ス相が、 一般的に得られる組成であっても、 急冷法を、 水冷から変 更 (例えば、 ミス 卜冷却などへ) して、 めっき層に与える冷却速度 を小さくすることで、 Zn3Mg7相を、 部分的に得ることは可能である 。 以下、 特に記述がない場合は、 急冷法として、 水冷を用いた場合 とする。
それ故、 Ca、 Y、 及び Ζ又は、 Laが、 合計で、 1%を超えるときは 、 A1を 1%以上添加し、 アモルファス形成能を上げすぎないことが必 要である。
A1は、 アモルファス相よりも、 Zn3Mg7の形成を促進する元素であ るので、 A1濃度が、 Ca濃度よりも高いと、 アモルファス相よりも、 Zn3Mg7が形成され易い。
Ca、 Y、 及び/又は、 Laが、 合計で、 1%以下の場合、 少量のァモ ルファス相の形成と Zn3Mg7の形成が同時に起こる。
Zn3Mg7がめっき層中に含まれていると、 めっき層の腐食電位が、 0.5%NaCl水溶液中で、 - 1.2V (vs. Ag/AgCl) 程度となる。
この値は、 Zn3Mg7を含まない同組成のめっき層 (めっき後、 空冷 しためつき層) の腐食電位、 -1.5〜- 1.4Vと比較すると、 高い値で ある。 めっき層中の Zn3Mg7の量が多いほど、 腐食電位は、 - 1.2Vに 近づき、 分極曲線の腐食電位付近における腐食電流密度は、 小さく なり始める。
X線回折で、 Zn3Mg7が検出されるめつき層でも、 めっき層中に、 A1や、 Caが添加されていると、 腐食電流密度が小さくなる。 A1が 0 〜 程度では、 濃度が増すと、 腐食電流密度が小さくなる。 Caを 0. 3〜5%添加すると、 腐食電流密度が小さくなる。
アモルファス相よりも、 優先的に、 Zn3Mg7を析出させたい場合は 、 A1を、 Caよりも多く添加する。
Zn3Mg7は、 めっき層の耐食性を著しく高めるが、 めっき層中に多 量に存在すると、 めっき層の加工性が劣化し、 割れが発生し易くな る。 一方、 アモルファス相は、 Zn3Mg7ほどの耐食性向上効果を有しな いが、 均質であるため、 加工性に優れ、 また、 表面平滑性に優れる などの長所が多い。 アモルファス相のめっき層に、 耐食性を、 特に 付与したい場合は、 めっき層中に、 Zn3Mg7を混在させればよい。
Zn3Mg7を含むめっき層は、 55%A卜 Znめっき、 A1- 10%S iめっき等よ りも、 鋼板に対して、 優れた犠牲防食能を有している。
犠牲防食能を測定するには、 溶融めつき鋼板を曲げ、 加工部の耐 食性を塩水噴霧試験や複合サイクル腐食試験に供すればよい。 合金 めっき鋼板であれば、 加工部のめっき層が割れるので、 鋼板の一部 が剥き出し状態となる。
犠牲防食能が低い 55%A卜 Znめつき鋼板や、 A1- 10%Siめっき鋼板な どは、 試験開始直後、 加工部に、 直ぐに赤鲭が発生するが、 溶融 M g - Znめっき鋼板においては、 加工部の鋼板剥き出し部が、 直ぐに、 Mg系酸化物で覆われ、 赤鲭発生は大きく遅れる。
Mg- Znァモルファスめっき鋼材、 Mg- Znァモルファス含有めつき鋼 材、 及び、 Zn3Mg7含有めつき鋼材は、 いずれも、 非平衡相を持つ溶 融 Mg基合金めつき鋼材であるので、 製造過程で、 少なく とも、 水冷 、 又は、 高圧ミス卜冷却等の冷却効果の比較的大きい冷却を行う こ とが不可欠である。
とりわけ、 耐食性に優れる非平衡相の相量を大きくするためには 、 大きな冷却速度が必要である。
ここで、 実際に、 非平衡相 Mg-Zn系溶融めつき鋼材を製造するた めには、 少なく とも、 二つの課題がある。
一つは、 冷却効果の大きい冷却設備を、 めっきプロセスに導入す る場合、 高温溶融めつき金属を扱う溶融めつきの直後に、 冷却能の 高い冷却設備を設置することは、 コス 卜の上昇に繋がるということ である。 本発明者らは、 平衡相の溶融 Mg-Zn合金めつきを出発点として、 めっき層中に含まれる非平衡相の相量の向上を目的として、 めっき 層を、 再加熱し、 急冷却する (以下、 「再加熱急冷」 ということが ある。 ) 一連の熱プロセスを検討した。
その結果、 Mg、 Zn、 及び、 C aが、 特定の組成範囲にあり、 かつ、 めっき層に、 特定条件の再加熱冷却を施したとき、 めっき層中の Zn と、 鋼材から供給される F eの合金化が抑制されることを見出した。 通常、 Znを含むめっき層を、 400°C以上に保持すると、 めっき層 中の Znと、 鋼材から供給される Feが反応して、 Γ相や、 δ相などの 金属間化合物相を形成する (即ち、 合金化が起きる) 。
自動車分野で広く使用される合金化溶融亜鉛めつき鋼板 (GA) は 、 この冶金現象を積極的に利用して、 溶接性と、 塗装後の耐食性を 向上させた Zn- Feめつき鋼板である。
しかしながら、 Mg及び C aは、 F eとの反応性に乏しく、 F eと Znの活 性を低下させる元素であるので、 Mg及びノ又は C aが、 めっき合金中 に、 一定の濃度以上存在していると、 溶融めつき中、 Znと F eの金属 間化合物は生成し難いし、 また、 めっき後、 再溶融しても、 Znと F e の金属間化合物は生成し難い。
この合金化を抑制することができる組成範囲は、 図 1 に示す組成 範囲の内にあればよい。 即ち、 Zn l 5 %以上、 Mg35 %以上、 及び、 C a l 5 以下を含有する Mg-Zn系溶融めつき層であれば、 合金化を抑制する ことができる。
もっとも、 図 1 に示す組成範囲内ではあるが、 図 3、 又は、 図 5 に示す組成範囲外で、 非平衡相が殆んど得られない組成領域であつ ても、 D S Cにより、 非平衡相起因の発熱ピーク量が上昇している ことを確認することで、 非平衡相量が、 僅かながら上昇しているこ とを確認することができる。 合金化を抑制することができるのは、 合金めつき鋼材を、 めっき 浴の融点付近の温度 (図 1 に示す組成範囲中の融点は、 580°C以下 ) 、 即ち、 融点から、 (融点 + 100で) 以内の温度に加熱して、 短 時間 ( 1分程度) 保持した場合のことである。
合金めつき鋼材を、 長時間、 めっき浴の融点付近の温度に保持し た場合、 又は、 融点よりも著しく高温に加熱した場合には、 めっき 層の組成が、 図 1 に示す組成範囲の中の組成であっても、 Znと Feの 合金化は起こり得る。
めっき層を厚く した場合にも、 めっき層と鋼板の界面付近に、 若 干の Fe- Zn金属間化合物が生成することがあるが、 この Fe- Zn金属間 化合物が、 合金めつき鋼板の加熱、 昇温中に成長し、 合金化が進展 することはまずない。
めっき層の密着性を確保するために必要な Feは、 0. 1%程度の微量 であり、 また、 めっき層全体で含有され得る Feは、 おおよそ 3%程度 であるが、 この程度の量の Feが、 Znとの合金化につながることは、 殆んどない。
Feと Znの合金化が著しく進展するのは、 めっき層中に、 10%程度 の Feが含有されている場合である。 めっき浴の融点から (融点 + 10 0^) 以内の温度に加熱して、 短時間 ( 1分程度) 保持する適切な 熱処理の下では、 Mg中での Feの活量は低下していて、 Feと Znの合金 化は起きない。
Feと Znの合金化の確認は、 X線回折、 走査型電子顕微鏡、 及び Z 又は、 エネルギー分散型 X線分析装置 ( S E M— E D X) 等を使用 して、 めっき層断面の金属間化合物を検出して行う。
通常、 Zn- Fe合金層は界面から成長するので、 光学顕微鏡で、 め つき層-鋼板界面を観察することにより、 Zn- Fe合金層の存在を、 容 易に確認することができる。 Znと F eの合金化の抑制を確認するために、 再加熱前後で、 めっき 層中の成分を調べることも有効である。 通常、 めっき層に含まれる F eが 0. 5 %未満であれば、 Zn- Fe金属間化合物が観察されることは殆 んどない。
Feが 0. 5%以上となると、 めっき層と鋼板の界面付近に、 若干の F e- Zn金属間化合物が生成することがあるが、 適切な温度で再加熱を 行えば、 この金属間化合物が昇温中に成長し、 合金化が進展するこ とは、 まずない。
めっき層中の成分は、 インヒビ夕一を添加した 10%塩酸等で、 め つき層溶解液を 50m l程度作製し、 このめつき層溶解液で、 めっき層 のみを酸洗し、 酸洗後の溶解液中の成分を、 I C P発光分光分析装 置で分析すればよい。
再加熱急冷の利点は、 急冷プロセスの独立の他に、 非平衡相の相 量を大きくすることにある。 非平衡相を含有する Mg-Zn系溶融めつ き層を備える鋼材を製造する場合、 めっき後、 ガスワイビングをし 、 目的とするめつき層厚に調整した後、 急冷する必要がある。
めっき後に行うガスワイビングの時、 めっき層の温度低下幅が大 きいと、 急冷却前に、 めっき層が結晶化して、 急冷後に、 ァモルフ ァス相の非平衡相の生成が起こらず、 平衡条件で作製しためっき層 と、 同じめつき層になってしまう。
アモルファス相や、 その他の非平衡相を得るためには、 めっき浴 の融点直上の温度から、 十分に大きい冷却速度で、 めっき層を冷却 することが重要である。
めっき浴の温度は、 めっき層と鋼材との密着性の向上や、 めっき 浴を安定的に保持するなどの目的で、 めっき合金の融点よりも 10〜 100で高い温度に設定する場合が多い。
しかし、 上記目的で、 めっき浴の温度を、 さらに高温にすること は、 コス ト面で好ましくないし、 また、 ドロスの発生量の増大や、
Mg基合金めつき特有の Mgの発火という問題を引き起こすことにもな る。
めっき浴の温度が、 さらに高くなると、 鋼材温度が上昇し、 冷却 の際の冷却速度が低下する。 特に、 冷却に水冷を用いる場合、 鋼材 の熱容量によって、 水蒸気の発生量が多くなり、 冷却速度がさらに 低下して、 非平衡相の相量が少なくなる。
しかし、 本発明の溶融 Mg-Z nめっき層は、 非平衡相の相量が少な くても、 再加熱で、 めっき浴の融点直上に加熱して、 一度、 めっき 層を再溶融して、 結晶相や、 平衡相を消滅させ、 その後の急冷によ り、 アモルファス相や、 その他の非平衡相を生成させ、 非平衡相の 相量を増やすことができる。
つまり、 本発明の組成範囲の溶融 Mg基合金めつき層であれば、 Zn と F eの合金化を抑制できるので、 めっき層を合金化せずに、 再加熱 急冷をすることが可能である。
再加熱急冷は、 めつき浴の融点直上の温度から急冷する冷却であ るので、 ガラス遷移温度まで、 短時間で冷却することができ、 ァモ ルファス溶融めつき鋼材を得るのに好適な冷却パターンである。 なお、 再加熱時の条件は、 Znと F eの合金化の進展を左右する。 再 加熱温度が高すぎる場合、 又は、 めっき浴の融点直上の温度でも、 保持時間が長い場合は、 本発明の組成範囲のめっきでも、 合金化す ることがある。
本発明者らが再加熱条件を検討した結果、 めっき浴の融点より 1 0 〜100 °C高い温度が、 保持温度として適しており、 保持時間は、 1 分以内が好ましいことが判明した。
また、 F eと Z nの合金化を抑制するためには、 めっき層を、 500で 以下に保持することが好ましい。 この条件に該当しない場合、 即ち、 過昇温となる場合は、 Feの拡 散を不必要に活発にし、 合金化を起こし易くすることになる。 再加 熱時の昇温速度に、 特に制限はないが、 めっき層全体の温度を一定 にするため、 また、 急速昇温によるオーバーヒートを防止するため 、 昇温速度は遅いほうが好ましい。
溶融 Mg- Zn系合金めつき層においては、 Mgと Feの反応性の乏しさ から、 めっき層と鋼板との密着性を確保することが難しい。
特に、 Mg濃度が高い場合には、 "不めっき" が発生し易くなり、 鋼板との密着性の確保も、 より難しくなるが、 プレめっき法を使用 することで、 "不めっき" を抑制し、 鋼板との密着性も容易に確保 することができる。
プレめっき層は、 めっき合金との "濡れ性" を有していることが 必要である。 本発明者らは、 めっき層と鋼板との密着性を確保する ため、 種々の合金元素につき、 Mg基めつき合金との "濡れ性" を調 查した。
その結果、 C r、 Co、 N i、 Cu、 Ag、 及び/又は、 Snが、 プレめっき 金属として適切であることが判明した。 プレめっき層は、 これらの 金属の中から 2種以上を選択して組み合わせた合金のめっき層でも よい。
これら金属のプレめっき層は、 電気めつき、 又は、 無電解めつき で形成するのが好ましい。 プレめっき層の厚みは、 0. l〜 l ^ m (付 着量 l〜 10g/m2程度) であればよい。
通常の Mg- Zn系溶融めつき条件 (浴温 350〜600 ) でめつきした 後、 プレめっき層が残存することもある。
プレめっき層の厚みが薄すぎると、 不めっき抑制の効果や、 密着 性確保の効果を期待することができない。
めっき後、 プレめっき層を構成する元素が、 めっき層の内部に拡 '散し、 めっき層で、 1 %程度まで含有されることがある。 プレめつ き層から拡散する元素は微量で、 めっき層中で、 置換型固溶体を形 成する。
"不めっき" の確認は、 目視によって容易に行うことができる。 めっき鋼板の中心から一定の範囲に存在する "不めっき" の数を目 視で確認して、 単位面積当りの個数で、 "不めっき" の程度を判断 する。
なお、 鋼板表面の "不めっき" の数は、 めっき浴への鋼板の浸漬 速度によって変化するので、 プレめっきの効果を確かめる場合には 、 めっき浴への鋼板の浸漬速度を一定にすることが好ましい。
本発明鋼材の基材とする鋼材の材質には、 特に限定はない。 A 1キ ルド鋼、 極低炭素鋼、 高炭素鋼、 各種高張力鋼、 N i含有鋼、 C r含有 鋼、 N i -C r含有鋼等を使用することが可能である。
製鋼方法や、 鋼の強度、 熱間圧延方法、 酸洗方法、 冷間圧延方法 等についても、 特に制限はない。
めっき方法については、 ゼンジミア法, プレめっき法、 2段めつ き法、 フラックス法等を適用することができる。 本発明の Mg- Zn系 合金めつきを行う前のプレめっきとして、 N iめっき、 Sn_Znめっき 等を使用することができる。
本発明の Mg-Zn系合金めつき層を備える鋼材は、 真空又は不活性 ガス雰囲気で製造するのが好ましい。 本発明の Mg- Zn系合金めつき をする前のプレめっきや、 2段めつき法における 1段目のめっきと して、 N iめっき、 Znめっき、 Sn- Znめっき等を使用することができ る。
めっき浴に使用する合金は、 予め、 内部を不活性ガス等で置換し た "るつぼ" で、 所定比に混合した Mgと Znを溶解すれば、 Mgの発火 点を気にすることなく、 製造することができる。 市販の難燃性 Mgを利用する方法もある。 この場合は、 所定量の難 燃性 Mgと Znを混合して、 600 近傍で溶融すればよい。 ただし、 難 燃性 Mgは、 A1や Caを含有している場合がある。 この場合は、 めっき 浴中に、 A1や Caが含まれることになる。
めっき浴が Mgを高濃度で含有することで、 Zn- Fe合金層の形成を 抑制することができる。 それ故、 Zn_Fe合金層の形成を抑制する目 的で、 めっき浴に A1を添加する必要はない。
塑性変形能の乏しい Zn-Fe合金層の形成は、 パウダリング、 フレ 一キング等、 めっき後の加工によるめつき層の剥離の原因ともなる 。 Mgを高濃度に含有する本発明の Mg基合金めつき層は、 めっき層の 剥離の原因がない点で有利である。
Fe、 Cr、 Cu、 Ag、 N i、 T i、 Z r、 Mo、 S i、 及び Z又は、 Nbの添加に ついては、 合計で 0. 1%前後までの少量添加であれば、 金属粉末をめ つき浴に添加し、 不活性雰囲気中で、 600°C前後で長時間保持する ことで、 めっき浴中に含有させることができる。
上記金属を高濃度で添加するときは、 雰囲気炉等で、 添加金属と 、 Zn又は Mgの合金を作製しておき、 この合金をめつき浴に添加する 。 この添加合金の作製においても、 Znは、 沸点が低いので、 溶解は 、 900で以下で行うのが好ましい。
AK Ca、 Y、 及び/又は、 Laの添加については、 合計で、 5%前後 までの添加であれば、 金属粉末をめつき浴に添加し、 不活性雰囲気 中で、 600 前後に長時間保持することで、 めっき浴中に含有させ ることができる。
上記金属を、 5%を超えて添加する場合は、 雰囲気炉等で、 添加金 属と、 Zn又は Mgの合金を作製し、 この合金をめつき浴に添加する。
Mg - Zn系合金めつきにおいて、 Ca、 Y、 及び、 La等を添加して、 ァ モルファス形成能を高めた成分系であれば、 溶融めつき後、 めっき 層を、 例えば、 めっき表層で約 10〜 1000°C /秒程度の冷却速度が得 られる、 至近距離からのミス ト冷却等で冷却することにより、 ァモ ルファスの単一相を、 容易に得ることができる。
Ca、 Y、 及び、 La等が添加されていないその他の Mg-Zn系で、 ァモ ルファス形成能が小さい成分系においては、 溶融めつき後、 めっき 鋼板を水冷するか、 又は、 溶融めつき直後、 めっき鋼板を水没させ ることにより、 めっき表層で、 約 1000〜5000 /秒の冷却速度が得 られ、 微細結晶とアモルファス相との混合相からなるアモルファス 溶融めつき鋼板を製造することができる。
さらに冷却速度を高めるためには、 基材を薄くする、 めっき層を 薄くする、 及び、 氷点下のアルコール系の冷媒を使用する等の方法 がある。
アモルファス相の体積分率は、 めっき組成に基づくアモルファス 形成能に依存する。 本発明のめっき組成であれば、 めっき層の温度 を、 めっき浴の融点とほぼ同一にして、 0°Cの水に水没させること で、 ァモルファス相を 5体積%以上含むめっき層を得ることができる
Ca、 Y、 及び、 La等が添加されておらず、 アモルファス形成能が 小さい成分系において、 アモルファス相を得るには、 めっき目付量 を十分に小さく し (例えば、 めっき厚みで 6 111以下とする) 、 水 没直前のめっき層の温度を、 融点とほぼ同一にして、 0°Cの水に水 没させて、 めっき層の冷却速度を十分に大きくすることで、 ァモル ファス相を 5体積%以上含むめっき層を得ることができる。
逆に、 Ca、 Y、 及び、 La等が添加されている成分系は、 ァモルフ ァス形成能が高いので、 水没直前の温度が、 めっき浴の融点より若 干高くても、 常温の水に水没させるだけで、 アモルファスの単一相 からなるめっき層を得ることができる。 意図的に、 アモルファス相の体積分率を小さく したい場合は、 ミ ス ト冷却を使用したり、 水没直前の温度を高めたりする。
アモルファス相の形成は、 めっき層の X線回折像で、 ハローパタ —ンが得られることで確認することができる。 単一のァモルファス 相であれば、 ハローパターンのみ (めっき層の厚みが薄い場合には 、 基材の鋼材の F e回折ピークが検出される場合もある) が得られる アモルファス相と結晶相が混在する場合で、 アモルファス体積分 率が低い場合は、 示差熱分析装置を使用して、 昇温中に、 ァモルフ ァス相が結晶化する際の発熱ピークを検出することによって、 ァモ ルファス相がめっき層中に存在することを確認することができる。
アモルファス相の体積分率を求めるためには、 めっき鋼材の断面 を切断し、 研磨、 エッチングして、 表面のめっき層を光学顕微鏡で 観察する。
アモルファス相の部分では、 エッチングによっても何の組織も観 察されないが、 結晶相の部分では、 結晶粒界や、 亜粒界、 析出物等 に起因する組織が観察される。
これにより、 アモルファス相部分の領域と結晶相部分の領域を、 明確に区別することができるので、 線分法や画像解析により、 体積 率を算出することが可能である。
組織が微細過ぎて、 光学顕微鏡での測定が困難な場合は、 めっき 層の断面より薄片を採取し、 透過電子顕微鏡で観察する。
透過電子顕微鏡の場合は、 組織が観察されない領域において、 電 子線回折像のハローパターンにより、 アモルファス構造を確認する ことが可能である。
光学顕微鏡観察において、 全面に組織が観察されない場合や、 一 部に組織が観察されない部分があっても、 粗大で歪みの無い結晶粒 である疑いのある場合は、 さらに、 電子顕微鏡用の薄片を採取して 観察し、 電子線回折像に回折スポッ トが無く、 ハローパターンが観 察されることを確認して、 アモルファス相であることを確認するこ とが望ましい。
光学顕微鏡も電子顕微鏡も、 10か所以上の異なる視野において、 コンピュータ一による画像処理で、 面積率を求め、 求めた面積率を 平均して、 体積率とするのが望ましい。
めっき層中の Zn3 Mg7の検出には、 一般的な X線回折法が有効であ る。 例えば、 Cuの K o!線を使用した X線回折装置により、 回折図形 を測定し、 Zn3 Mg7回折ピークの有無により判定する。
この場合、 X線回折像による Zn3 Mg7の同定は、 2 0 = 10〜30 ° の回 折ピークを用いるのが好ましい。 30 ° 以上では、 Mg回折ピークの最 強線と重なるためである。
また、 Zn3 Mg7の相量が少ない場合には、 T E M— E D Xによる判 別も有効である。 特定の結晶相から得られた特性 X線スペク トルよ り、 Zn3 Mg7を同定すればよい。 実施例
次に、 本発明の実施例について説明するが、 実施例の条件は、 本 発明の実施可能性及び効果を確認するために採用した一条件例であ り、 本発明は、 この一条件例に限定されるものではない。 本発明は 、 本発明の要旨を逸脱せず、 本発明の目的を達成する限りにおいて 、 種々の条件を採用し得るものである。
(実施例 1 )
表 1〜 6に示すめっき組成の浴に、 板厚 0. 8mmの冷延鋼板、 肉厚 1 Ommで辺の長さが 10 cmの等辺山形鋼、 及ぴ、 板厚 l Ommの熱延鋼板を 基材として、 表面処理鋼材を作製した。 Mg、 Zn、 及び、 その他必要な成分元素を所定の組成に調整した後 、 高周波誘導炉を使用して、 Ar雰囲気で溶解し、 Mg-Zn系合金を得 た。
作製した合金より、 切粉を採取して酸溶解した溶液を I C P (誘 導結合プラズマ発光) 分光分析により定量し、 作製した合金が、 表 1〜 6に示す組成に一致することを確認した。 この合金をめつき浴 として使用した。
冷延鋼板(板厚 0.8mm)は、 lOcmXlOcmに切断し、 試験片とした。 この試験片に、 レス力社のバッチ式の溶融めつき試験装置で、 めつ きを施した。 めっき浴の浴温は、 500°Cとした。 エアワイビングで 目付量を調節し、 その後、 窒素ガスで、 常温まで冷却した。
アモルファス相を、 体積分率で、 5%以上含有するアモルファス溶 融めっき鋼板の作製に関しては、 溶融めつき後、 めっき鋼板を、 0 °Cの水に水没させた。
アモルファス相を、 体積分率で、 5%未満含有するアモルファス溶 融めっき鋼板の作製に関しては、 めっき鋼板に、 至近距離から、 高 圧ミス トを吹きかけて冷却した。
等辺山形鋼は、 長手方向に 10cm、 熱延鋼板は lOcmX lOcmの正方形 に切断し、 試験片とした。
まず、 この切断片に、 るつぼ炉を用いて、 フラックス法を使用し た Zn浴で、 目付量が約 100g/m2になるように、 "どぶ漬けめつき" を施し、 その後、 本発明組成の Zn- Mg合金浴に浸漬して、 必要に応 じて、 0°Cの水に水没させて冷却した。
めっき密着性は、 冷延鋼板に関しては、 めっきした試験片を、 め つき層を外側にして 180° 曲げて、 8 T折曲げ試験を実施した。 そ の後、 曲げ部のめっき層を粘着テープで剥離し、 曲げ部断面を、 光 学顕微鏡で観察し、 曲げ部断面の外周部におけるめっき層の付着率 を求めた。
試験後のめっき層の残存率が 50〜100%のものを 「〇」 、 50%未満 のものを 「X」 、 めっき層が付着しなかったものを 「一」 とした。 熱延鋼板、 等辺山形鋼については、 曲げ部断面を光学顕微鏡で観 察し、 曲げ部断面の外周部におけるめっき層の付着率を求めた。 め つき層の付着率が 50〜100%のものを 「〇」 、 50%未満のものを 「X 」 、 めっき層が付着しなかったものを 「一」 とした。
めっき層表層のアモルファス形成は、 Cuの Κ α線を使用した X線 回折装置により、 回折図形を測定し、 ハローパターンの有無により 判定した。
アモルファス相と結晶相が混在する場合で、 アモルファス相の体 積分率が低い場合は、 示差熱分析装置を使用して、 昇温中、 ァモル ファス相から結晶化する際の発熱ピークを検出することにより、 ァ モルファス相の有無を確認した。
アモルファス相を有すると判定しためっき鋼板に関しては、 ァモ ルファス相の体積分率を定量的に求めるために、 めっき鋼板の断面 を切断し、 研磨、 エッチングした後、 表面のめっき層を光学顕微鏡 ( X 1000倍) で観察した。
10か所以上の異なる視野について、 コンピューターによる画像処 理で、 アモルファス相の面積率を求め、 求めた面積率を平均して、 体積率とした。
めっき鋼板の耐食性は、 自動車規格 ( J A S O Μ 6 0 9 - 9 1 、 8時間/サイクル、 濡れ/乾燥時間比 50%)に準拠した方法を、 2 1サイクル実施して評価した。 ただし、 塩水には 0. 5 %塩水を使用し た。 試験後の腐食減量と密度から換算した腐食減厚で、 耐食性を評 価した。
腐食減厚が 0. m未満を 「◎」 、 0. 5〜1 mを 「〇」 、 l〜2 i mを 「◊」 、 2〜3^ mを 「△」 、 3 ΠΙ以上を 「X」 とした。 表 1 〜 6中で、 めっき密着性評価が 「X」 のものについては、 耐食性評 価を行わなかったので、 「一」 で示した。
表 1
Figure imgf000045_0001
「相」 欄における表記は、
C:結晶相のみからなるめっき層、 A :アモルファス相を 5%以上含むめっき層、 を意味する。
表 2
Figure imgf000046_0001
「相」 欄における表記は、
C:結晶相のみからなるめっき層、 A :アモルファス相を 5%以上含むめっき層、 を意味する。
表 3
Figure imgf000047_0001
C:結晶相のみからなるめっき層、 A:アモルファス相を 5%以上含むめっき層、 を意味する。
表 4
Figure imgf000048_0001
「相」 欄における表記は、
C:結晶相のみからなるめっき層、 A :アモルファス相を 5%以上含むめっき層、 を意味する。
表 5
Figure imgf000049_0001
「相」 欄における表記は、
c : 結晶相のみからなるめっき層 A : アモルファス相を含むめっき層、 を意味する
表 6
Figure imgf000050_0001
C :結晶相のみからなるめっき層、 又は、 アモルファス相を 5%未満含むめっき層 A:アモルファス相を 5%以上含むめっき層、 を意味する。
表 1〜 6に示すように、 本発明の溶融 Mg- Zn系めつき鋼材は、 め つき密着性においては、 十分な性能を保持している。 本発明鋼の耐 食性は、 いずれも、 溶融 Znめっき鋼板 (No.6-1) よりも優れている めっき層に、 Si、 Ti、 Cr、 Cu、 Fe、 Ni、 Zr、 Nb、 Mo、 Ag、 Al、 Ca 、 Y、 及び Z又は、 Laを含有しためっき鋼材は、 さらに、 耐食性に 優れている。 中でも、 上記元素を含有し、 かつ、 アモルファス相を 含むめっき層を備えるめっき鋼材は、 特に、 耐食性に優れている。
表 7及び表 8に、 アモルファス溶融めつき鋼板と、 結晶相のみの めっき鋼板とを比較した、 耐食性評価結果を示す。 表 7及び表 8か ら明らかなように、 同成分の場合、 アモルファス相を有するめっき 鋼板の方が、 耐食性の点で優れている。
表 7
Figure imgf000052_0001
C:結晶相のみからなるめっき層、
A:アモルファス相を 5%以上含むめっき層、 を意味する。 表 8
Figure imgf000053_0001
C:結晶相のみからなるめっき層、 A:アモルファス相を 5¾以上含むめっき層、 を意味する。
図 6に、 Mg- 25原子%Zn- 5原子%Caめっき層(結晶相)を備えるめつ き鋼板 No.2- 7 (目付量 20g/m2) の断面像を示す。
図 6から判別できるように、 鋼板 5 と Mg- 25原子%Zn- 5原子%Caめ つき層(結晶相) 4の界面に、 亀裂や、 剥離は存在しない。 鋼板 5 と Mg- 25原子%Zn-5原子%Caめっき層(結晶相) 4においては、 良好な密 着性が得られており、 Mgを高濃度に含む Mg- Zn系合金を、 鋼板に、 溶融めつきすることが可能であることが解る。
図 7に、 水没冷却し、 鋼板 5に、 Mg- 25原子%Zn- 5原子%Caめっき 層(アモルファス相) 6 を形成しためっき鋼板 No.4-5 (目付量 20g/m2 ) の断面像を示す。
図 8に、 このめつき層の X線回折像を示す。 X線回折像にハロー パターンが検出されていることより、 図 7 に示す Mg-25原子 η- 5原 子%Caめつき層(アモルファス相) 6は、 アモルファス相であること が解る。
図 9に、 鋼板 9に、 Mg- 25原子%Zn- 5原子%Caめっき層(ァモルファ ス相) 8を形成しためっき鋼板の界面付近における F E— T E M像( 明視野像)を示す。
図 1 0に、 図 9の F E— T E M像中の十字点における E D Xによ る元素分析結果を示す。 Feがめつき層内部に拡散していることが解 る。
図 1 1 に、 図 9の F E— T E M像中の十字点における電子線回折 像を示す。 ハローパターンが検出されており、 図 9で示す Mg- 25原 子%Zn- 5原子%Caめつき層(アモルファス相) 8が、 界面近傍でもァモ ルファス相であり、 単一のアモルファス相であることが解る。
(実施例 2 )
表 9に示す、 めっき組成の浴に、 板厚 0.8mmの冷延鋼板を基材と して、 表面処理鋼材を作製した。 基材のプレめっきの前処理として 、 アルカリ脱脂と酸洗を行った。
Niプレめっき層の形成は、 硫酸ニッケル 125g/l、 クェン酸アンモ ニゥム 135g/l、 及び、 次亜リン酸ナトリウム 110g/lを混合し、 水酸 化ナトリウムで pHIOとした、 30°Cの水溶液に、 試験片を浸漬して行 つた
Coプレめっき層の形成は、 硫酸コバルト 15g/l、 次亜リン酸ナト リウム 21g/l、 クェン酸ナトリウム 60g/l、 及び、 硫酸アンモニゥム 65g/lを混合し、 アンモニゥム水で pHIOとした 90での水溶液に、 試 験片を浸漬して行った。
Cuプレめっき層の作製は、 硫酸銅 2g/l、 及び、 硫酸 30g/lを混合 した、 25°Cの水溶液に、 試験片を浸漬して行った。
Cu- Snプレめっき層の作製は、 塩化銅 3.2g/l、 塩化すず 5. Og/l、 及び、 塩酸 8g/lを混合した、 25°Cの水溶液に、 試験片を浸漬して行 つ T 。
Agプレめっき層の作製は、 シアン化銀 2g/l、 及び、 シアン化カリ ゥム 80g/lを混合した、 温度 30°Cの溶液中で、 電流密度 2A/dm2の電 気めつきで行った。
Crプレめっき層の作製は、 無水クロム酸 250g/l、 及び、 硫酸 2.5g /1を混合した、 温度 50°Cの溶液中で、 電流密度 20A/dm2の電気めつ きで行つた。
これらのめっき浴を用い、 浸漬時間を調整し、 付着量を l〜5g/m2 とした。 プレめっきの付着量は、 硝酸等で溶解した液を、 I C P ( 誘導結合プラズマ発光) 分光分析により定量分析し、 溶解元素量を 付着量に換算した。
Mg、 Zn、 及び、 その他必要な成分元素を所定の組成に調整した後 、 高周波誘導炉を使用して、 Ar雰囲気中で溶解し、 Mg- Ζιι系合金を 得た。 作製した合金より、 切粉を採取して、 酸溶解した溶液を、 I C P (誘導結合プラズマ発光) 分光分析により定量し、 作製した合 金が、 表 9に示す組成に一致することを確認した。 この合金をめつ き浴として使用した。
冷延鋼板 (板厚 0. 8mm) は、 10cm X 20cmに切断して、 試験片とし た。 この試験片に、 レス力社のバッチ式の溶融めつき試験装置で、 めっきを施した。 ' 冷延鋼板は、 プレめっき法を行ったものと、 原板ままのものを使 用し、 いずれも、 溶融めつきを行った。 めっき浴の浴温は 400〜600 °Cとした。 エアワイビングで目付量を調節した。
めっき浴への鋼板浸漬速度を 500mm/秒とし、 3秒間浸漬して、 ェ ァワイビングで目付量を調整し、 その直後、 水冷、 空冷、 又は、 後 述する手法で、 再加熱水冷を行った。
浸漬後、 めっき鋼板の中心部 (5cm X l 0cm) の "不めっき" (目視 で確認できる lmm以上の "不めっき" )の数を数え、 50cm2当りの " 不めっき" の数に換算した。
各サンプルにっき、 n数を 10として、 平均値を求めた。 "不めつ き" の数が、 1個以下を 「◎」 、 1〜3個を 「〇」 、 5〜10個以上を 「 △」 、 10個以上を 「X」 とした。
作製しためっき鋼板の中心部 (20mm X 20min) の表面形成相の回折 図形を、 Cuの Κ α線を使用した X線回折装置で測定した。
X線回折により表面の形成相を同定し、 ハローパターンが検出さ れたものを 「〇」 、 得られなかったもの、 又は、 結晶相混在で判別 が難しいものを 「△」 とした。
また、 高温安定相 Zn3 Mg7の回折ピークが検出されたものを 「譬」 とした。 ピークが検出されたとは、 X線強度比 (回折面間隔で 0. 10 89〜 1. 766nmに、 つまり、 Cu管球を X線源に用いて、 Cuの Κ α線によ る回折測定を行う場合、 回折角 で、 5〜90 ° に現れる全ての回折 ピーク強度 (ただし、 面間隔で 0.233nmの回折ピークは除く) の総 和中、 Zn3Mg7の回折ピーク強度 (ただし、 面間隔で 0.233nmの回折 ピークは除く) が占める割合が 10%以上である。
また、 ハロ一パターンを 「〇」 、 Zn3Mg7の回折ピークの両方が観 察されたものを 「〇·」 とした。 図 1 2に、 表 9中、 No. 16の X線 回折像を示す。 ハローパターンと、 Zn3Mg7の両方が観察された例で ある。
再加熱水冷は、 めっき後、 エアワイビングで目付量を調整した後 、 常温まで放冷した。 常温放置後、 溶融めつき浴温度まで再加熱し て昇温し、 この温度で 10秒間保持し、 その後、 水冷を行った。
めっき鋼板の耐食性は、 自動車規格 ( J A S O M 6 0 9 - 9 1 、 8時間/サイクル、 濡れ/乾燥時間比 50%)に準拠した方法を 2 1 サイクル実施して、 評価した。 ただし、 塩水には 0.5%塩水を使用し た。 試験後の腐食減量と密度から換算した腐食減厚で耐食性を評価 した。
腐食減厚が 0.5^ m未満を 「◎」 、 0.5〜l tmを 「〇」 、 1〜2 mを 「◊」 、 2〜3;Ct mを 「△」 、 3 ΠΙ以上を 「X」 とした。
図 1 3に、 表 9中、 No.3の Mg- 27原子 Πη- 1原子 ¾Ca- 6原子%Α1の X 線回折像を示す。 X線回折像からは、 Zn3Mg7の回折線のみ得られて いた。 Caや、 A1は置換型固溶体を形成して、 存在していると推定し ている。
図 1 4に、 表 9中、 No.3、 No.6〜No.8のめつき鋼板表面形成相の X線回折像を示す。
1 0は、 Mg- 27原子%Zn- 1原子%Ca- 6原子%A1めっき層 (No.3) の X 線回折像を示し、 1 1は、 Mg- 27原子%Zn-l原子%Ca-8原子 1めっき 層 (No.6) の X線回折像を示し、 1 2は、 Mg- 27原子 Πη- 1原子%Ca- 10原子%A1めっき層 (No.7) の X線回折像を示す、 1 3は、 Mg- 27原 子%Zn- 1原子%Ca- 13原子%A 1めっき層 (No. 8) の X線回折像を示す。 図から、 No. 3では、 めっき層が Zn3 Mg7単相であるが、 A 1濃度が高 くなるに伴い、 Zn3 Mg7の相量が少なくなり、 No. 8では、 Zn3 Mg7が殆 んどなくなつたことが解る。
Figure imgf000059_0001
産業上の利用可能性
前述したように、 本発明 (溶融 Mg- Zn合金めつき鋼材) は、 通常 の溶融めつきプロセスで製造することが可能であるので、 汎用性及 び経済性に優れるものである。
そして、 本発明の溶融 Mg- Z n合金めつき層は、 Z nの濃度を抑えな がらも、 耐食性は、 従来の溶融 Zn系めつき層よりも優れているので 、 Z n資源の節約に貢献する。
また、 本発明の溶融 Mg_Zn合金めつき層は、 耐食性だけでなく、 加工性も良好であるので、 本発明は、 自動車、 建材、 家電分野にお いて、 構造部材及び機器部材として広く利用され得るものである。
よって、 本発明は、 自動車、 建材、 家電分野で使用する構造部材 の高寿命化、 メンテナンス労力の低減等をもって、 製造産業の発達 に寄与するものである。

Claims

請 求 の 範 囲
1. 溶融 Mg基合金めつき層を備えることを特徴とする Mg基合金め つき鋼材。
2. Znを 15原子%以上 45原子%未満含有する溶融 Mg基合金めつき層 を備えることを特徴とする Mg基合金めつき鋼材。
3. Znを 15原子%以上 45原子%未満含有し、 さらに、 元素群 A : Si
、 Ti、 Cr、 Cu、 Fe、 Ni、 Zr、 Nb Mo、 及び、 Agから選択される 1種 又は 2種以上の元素を、 合計で、 0.03〜5原子%含有する溶融 Mg基合 金めつき層を備えることを特徴とする Mg基合金めつき鋼材。
4. Znを 15原子%以上、 及び、 Mgを 35原子%超含有し、 さらに、 元 素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2種以上の元 素を、 合計で、 0.03〜15原子%含有する溶融 Mg基合金めつき層を備 えることを特徴とする Mg基合金めつき鋼材。
5. Znを 15原子%以上、 及び、 Mgを 35原子%超含有し、 さらに、 元 素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2種以上の元 素を、 (Bl) Mgが 55原子%超の場合は、 合計で、 0.03〜 15原子%含 有し、 (B2) Mgが 55原子 以下の場合は、 合計で、 2〜15%原子含有 する溶融 Mg基合金めつき層を備えることを特徴とする Mg基合金めつ き鋼材。
6. 前記溶融 Mg基合金めつき層が、 Mgを 85原子%以下含有するこ とを特徴とする請求の範囲 4又は 5に記載の Mg基合金めつき鋼材。
7. 前記溶融 Mg基合金めつき層が、 Mgを 55〜85原子%以下含有す ることを特徴とする請求の範囲 4又は 5に記載の Mg基合金めつき鋼 材。
8. 前記溶融 Mg基合金めつき層が、 さらに、 元素群 A : Si、 Ti、 C r、 Cu、 Fe、 Ni Zr、 Nb、 Mo、 及び、 Agから選択される 1種又は 2 種以上の元素を、 合計で、 0.03〜5原子%含有することを特徴とする 請求の範囲 4〜 7のいずれかに記載の Mg基合金めつき鋼材。
9 . 前記溶融 Mg基合金めつき層が、 Znを 15原子 ¾以上 45原子%未満 含有し、 かつ、 アモルファス相を、 体積分率で、 5%以上含有するこ とを特徴とする請求の範囲 1〜 8のいずれかに記載の Mg基合金めつ き鋼材。
1 0 . Znを 15原子%以上 44. 97原子%未満含有し、 さらに、 元素群 A : Si、 Ti、 Cr、 Cu、 Fe、 Ni、 Zr、 Nb、 Mo、 及び、 Ag、 及び、 元素群
B' : Ca、 Y、 及び、 Laの集合元素群から選択される 1種又は 2種以 上の元素を、 元素群 Aの元素の合計で、 0. 03〜5原子%、 また、 元素 群 B' の元素の合計で、 0.03〜15原子% (ただし、 該合計が、 0.03〜 5原子%未満の場合は、 Mgを 55原子%超とし、 5〜15原子%の場合は、 Z nを 40原子%未満とする) 含有し、 かつ、 アモルファス相を、 体積分 率で、 5%以上含有する溶融 Mg基合金めつき層を備えることを特徴と する Mg基合金めつき鋼材。
1 1 . 前記溶融 Mg基合金めつき層が、 金属間化合物 Zn3Mg7を、 X 線強度比 (回折面間隔で 0. 1089〜1. 766nmに現れる全ての回折ピー ク強度 (ただし、 回折面間隔で 0. 233nmの回折ピークは除く) の総 和中に占める、 Zn3Mg7の回折ピーク強度 (ただし、 回折面間隔で 0. 233nmの回折ピークは除く) の割合) で、 10%以上含有することを 特徴とする請求の範囲 1〜 8のいずれかに記載の Mg基合金めつき鋼 材。
1 2 . Znを 20原子%以上、 Mgを 50原子%以上 75原子%以下含有し、 さらに、 元素群 B : A1、 Ca、 Y、 及び、 Laから選択される 1種又は 2 種以上の元素を、 合計で、 0.03〜12原子 含有し (ただし、 該合計 が 1〜12原子%の場合は、 A1を 1原子%以上含有する) 、 かつ、 金厲間 化合物 Zn3Mg7を所要量含有する溶融 Mg基合金めつき層を備えること を特徴とする Mg基合金めつき鋼材。
1 3. 前記溶融 Mg基合金めつき層が、 該めっき層を、 Mg基合金め つきの融点〜 (Mg基合金めつきの融点 + 100°C) の温度に 1分以下 保持した後、 急冷して得られる非平衡相を含有することを特徴とす る請求の範囲 1〜 8のいずれかに記載の Mg基合金めつき鋼材。
1 4. 前記非平衡相が、 アモルファス相及び金属間化合物 Zn3Mg7 のいずれか又は両方であることを特徴とする請求の範囲 1 3に記載 の Mg基合金めつき鋼材。
1 5. 前記急冷が、 水冷又はミス 卜水冷であることを特徴とする 請求の範囲 1 3又は 1 4に記載の Mg基合金めつき鋼材。
1 6. 前記溶融 Mg基合金めつき層と鋼材との界面に、 Ni、 Cu、 Sn 、 Cr、 Co、 及び、 Agから選ばれる 1種又は 2種以上の元素からなる プレめっき層を備えることを特徴とする請求の範囲 1〜 1 5のいず れかに記載の Mg基合金めつき鋼材。
1 7. 前記溶融 Mg基合金めつき層が、 残部として、 Mgの他、 不可 避的不純物を含有することを特徴とする請求の範囲 1〜 1 6のいず れかに記載の Mg基合金めつき鋼材。
PCT/JP2008/055189 2007-03-15 2008-03-14 Mg基合金めっき鋼材 WO2008111688A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020097018957A KR101168730B1 (ko) 2007-03-15 2008-03-14 Mg기 합금 도금 강재
NZ579535A NZ579535A (en) 2007-03-15 2008-03-14 Mg-BASED ALLOY PLATED STEEL MATERIAL
AU2008225398A AU2008225398B2 (en) 2007-03-15 2008-03-14 Mg-based alloy plated steel material
EP08722555.3A EP2135968B1 (en) 2007-03-15 2008-03-14 Mg-BASED ALLOY PLATED STEEL MATERIAL
US12/450,195 US8562757B2 (en) 2007-03-15 2008-03-14 Mg-based alloy plated steel material
CN2008800085110A CN101636517B (zh) 2007-03-15 2008-03-14 镀Mg基合金的钢材
BRPI0809237A BRPI0809237B8 (pt) 2007-03-15 2008-03-14 material de aço com liga eletrodepositada à base de mg
CA2681059A CA2681059C (en) 2007-03-15 2008-03-14 Mg-based alloy plated steel material
ES08722555T ES2713075T3 (es) 2007-03-15 2008-03-14 Material de acero chapado con una aleación basada en Mg

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-066740 2007-03-15
JP2007066740 2007-03-15
JP2007242561A JP6031219B2 (ja) 2007-03-15 2007-09-19 溶融Mg−Zn系合金めっき鋼材及びその製造方法
JP2007-242561 2007-09-19

Publications (1)

Publication Number Publication Date
WO2008111688A1 true WO2008111688A1 (ja) 2008-09-18

Family

ID=39759616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055189 WO2008111688A1 (ja) 2007-03-15 2008-03-14 Mg基合金めっき鋼材

Country Status (13)

Country Link
US (1) US8562757B2 (ja)
EP (1) EP2135968B1 (ja)
JP (1) JP6031219B2 (ja)
CN (1) CN101636517B (ja)
AU (1) AU2008225398B2 (ja)
BR (1) BRPI0809237B8 (ja)
CA (1) CA2681059C (ja)
ES (1) ES2713075T3 (ja)
MY (1) MY147024A (ja)
NZ (1) NZ579535A (ja)
RU (1) RU2445401C2 (ja)
TW (1) TWI431156B (ja)
WO (1) WO2008111688A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145721A1 (ja) * 2014-03-28 2015-10-01 新日鐵住金株式会社 準結晶含有めっき鋼板
WO2015145722A1 (ja) * 2014-03-28 2015-10-01 新日鐵住金株式会社 準結晶含有めっき鋼板
WO2016035200A1 (ja) * 2014-09-05 2016-03-10 新日鐵住金株式会社 準結晶含有めっき鋼板及び準結晶含有めっき鋼板の製造方法
US10392686B2 (en) 2015-09-29 2019-08-27 Nippon Steel Corporation Mg-containing Zn alloy coated steel
WO2022153694A1 (ja) * 2021-01-18 2022-07-21 日本製鉄株式会社 めっき鋼材

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293075A (ja) * 2008-06-04 2009-12-17 Mitsui Mining & Smelting Co Ltd マグネシウム−亜鉛合金及びマグネシウム−亜鉛合金部材
JP5343701B2 (ja) * 2009-05-19 2013-11-13 新日鐵住金株式会社 耐食性に優れたMg合金めっき鋼材およびその製造方法
JP5651971B2 (ja) * 2010-03-15 2015-01-14 新日鐵住金株式会社 加工部耐食性に優れたMg系合金めっき鋼材
JP5505053B2 (ja) * 2010-04-09 2014-05-28 新日鐵住金株式会社 有機複合Mg系めっき鋼板
EP2463399B1 (de) * 2010-12-08 2014-10-22 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesiumbauteile mit verbessertem Korrosionsschutz
JP5454706B2 (ja) * 2011-07-20 2014-03-26 新日鐵住金株式会社 パネル
TWI504754B (zh) * 2014-03-28 2015-10-21 Nippon Steel & Sumitomo Metal Corp 含準晶體之鍍敷鋼板
TWI512140B (zh) * 2014-03-28 2015-12-11 Nippon Steel & Sumitomo Metal Corp 含準晶體之鍍敷鋼板
CN104152747B (zh) * 2014-08-26 2016-04-27 济南大学 一种Mg-Zn-Y镁合金及其制备方法
KR101823194B1 (ko) 2014-10-16 2018-01-29 삼성전기주식회사 칩 전자부품 및 그 제조방법
CN104745966B (zh) * 2015-04-08 2017-01-04 苏州福特美福电梯有限公司 电梯用仿不锈钢面板
CN108138308B (zh) * 2015-09-29 2020-01-17 日本制铁株式会社 镀覆钢材
KR101867732B1 (ko) * 2016-12-22 2018-06-14 주식회사 포스코 다층구조의 도금강판 및 그 제조방법
CN110268087B (zh) * 2017-01-27 2021-09-03 日本制铁株式会社 镀覆钢材
CN108188408B (zh) * 2018-01-04 2021-04-02 北京理工大学 一种球形雾化镁锌非晶合金粉体及其制备方法
WO2020261723A1 (ja) * 2019-06-27 2020-12-30 日本製鉄株式会社 めっき鋼材
CN110846687A (zh) * 2019-11-22 2020-02-28 龙南龙钇重稀土科技股份有限公司 一种Mg-Zn-Zr中间合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110517A (ja) * 1982-12-16 1984-06-26 Sumitomo Electric Ind Ltd ワイヤカツト放電加工用電極線及びその製造法
JPH0452284A (ja) * 1990-06-21 1992-02-20 Sumitomo Metal Ind Ltd 高耐食性2層めっき鋼板とその製造方法
JPH0813186A (ja) 1994-06-29 1996-01-16 Kawasaki Steel Corp Zn−Mg合金めっき鋼板の製造方法
JP2002060978A (ja) 2000-08-17 2002-02-28 Nippon Steel Corp 金属被覆を有する耐食性に優れる鋼
JP2005082834A (ja) 2003-09-05 2005-03-31 Nippon Steel Corp 高耐食性溶融めっき鋼板及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135817A (en) * 1988-07-06 1992-08-04 Kabushiki Kaisha Kobe Seiko Sho Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
JPH07116546B2 (ja) * 1988-09-05 1995-12-13 健 増本 高力マグネシウム基合金
JP2713470B2 (ja) * 1989-08-31 1998-02-16 健 増本 マグネシウム基合金箔又はマグネシウム基合金細線及びその製造方法
JPH03138389A (ja) 1989-10-23 1991-06-12 Kawasaki Steel Corp めっき密着性および耐食性に優れたZn―Mg合金めっき鋼板およびその製造方法
JPH0841564A (ja) 1994-08-01 1996-02-13 Suzuki Motor Corp Mg基複合材と、その製造方法
JPH10158801A (ja) * 1996-12-03 1998-06-16 Nippon Steel Corp 金属めっき鋼板の製造方法及び金属めっき鋼板ならびにその用途
JPH11193452A (ja) * 1998-01-05 1999-07-21 Nippon Steel Corp 溶融Zn−Mg−Alめっき鋼板の製造方法、溶融めっき浴、および溶融Zn−Mg−Alめっき鋼板
JP2003268516A (ja) * 2002-03-12 2003-09-25 Nippon Steel Corp 溶融めっき鉄鋼製品およびその製造方法
JP4137095B2 (ja) * 2004-06-14 2008-08-20 インダストリー−アカデミック・コウアパレイション・ファウンデイション、ヨンセイ・ユニバーシティ 非晶質形成能と延性の優れたマグネシウム系非晶質合金
AU2007228054B2 (en) * 2006-03-20 2011-03-10 Nippon Steel Corporation Highly corrosion-resistant hot dip galvanized steel stock
JP5119465B2 (ja) 2006-07-19 2013-01-16 新日鐵住金株式会社 アモルファス形成能が高い合金及びこれを用いた合金めっき金属材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110517A (ja) * 1982-12-16 1984-06-26 Sumitomo Electric Ind Ltd ワイヤカツト放電加工用電極線及びその製造法
JPH0452284A (ja) * 1990-06-21 1992-02-20 Sumitomo Metal Ind Ltd 高耐食性2層めっき鋼板とその製造方法
JPH0813186A (ja) 1994-06-29 1996-01-16 Kawasaki Steel Corp Zn−Mg合金めっき鋼板の製造方法
JP2002060978A (ja) 2000-08-17 2002-02-28 Nippon Steel Corp 金属被覆を有する耐食性に優れる鋼
JP2005082834A (ja) 2003-09-05 2005-03-31 Nippon Steel Corp 高耐食性溶融めっき鋼板及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 59, no. 3, 1995, pages 284 - 289
NISSHIN STEEL TECHNICAL REPORTS, NO.78, 1998, pages 18 - 27

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232590B2 (en) 2014-03-28 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet with quasicrystal
WO2015145722A1 (ja) * 2014-03-28 2015-10-01 新日鐵住金株式会社 準結晶含有めっき鋼板
US10232589B2 (en) 2014-03-28 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet with quasicrystal
WO2015145721A1 (ja) * 2014-03-28 2015-10-01 新日鐵住金株式会社 準結晶含有めっき鋼板
AU2014388691B2 (en) * 2014-03-28 2017-08-03 Nippon Steel Corporation Plated steel sheet containing quasicrystal
JPWO2016035200A1 (ja) * 2014-09-05 2017-06-01 新日鐵住金株式会社 準結晶含有めっき鋼板及び準結晶含有めっき鋼板の製造方法
EP3190203A4 (en) * 2014-09-05 2018-04-18 Nippon Steel & Sumitomo Metal Corporation Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
WO2016035200A1 (ja) * 2014-09-05 2016-03-10 新日鐵住金株式会社 準結晶含有めっき鋼板及び準結晶含有めっき鋼板の製造方法
US10508330B2 (en) 2014-09-05 2019-12-17 Nippon Steel Corporation Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
US10392686B2 (en) 2015-09-29 2019-08-27 Nippon Steel Corporation Mg-containing Zn alloy coated steel
WO2022153694A1 (ja) * 2021-01-18 2022-07-21 日本製鉄株式会社 めっき鋼材
JP7156573B1 (ja) * 2021-01-18 2022-10-19 日本製鉄株式会社 めっき鋼材
TWI807512B (zh) * 2021-01-18 2023-07-01 日商日本製鐵股份有限公司 鍍敷鋼材
KR20230116070A (ko) * 2021-01-18 2023-08-03 닛폰세이테츠 가부시키가이샤 도금 강재
KR102639488B1 (ko) 2021-01-18 2024-02-23 닛폰세이테츠 가부시키가이샤 도금 강재

Also Published As

Publication number Publication date
JP2008255464A (ja) 2008-10-23
AU2008225398B2 (en) 2010-12-02
BRPI0809237A2 (pt) 2014-09-23
EP2135968A4 (en) 2011-01-12
US20100018612A1 (en) 2010-01-28
CA2681059A1 (en) 2008-09-18
MY147024A (en) 2012-10-15
US8562757B2 (en) 2013-10-22
CN101636517B (zh) 2012-07-11
BRPI0809237B8 (pt) 2020-01-07
JP6031219B2 (ja) 2016-11-24
TW200907105A (en) 2009-02-16
RU2445401C2 (ru) 2012-03-20
AU2008225398A1 (en) 2008-09-18
CN101636517A (zh) 2010-01-27
TWI431156B (zh) 2014-03-21
RU2009138051A (ru) 2011-04-20
ES2713075T3 (es) 2019-05-17
NZ579535A (en) 2012-03-30
EP2135968A1 (en) 2009-12-23
EP2135968B1 (en) 2018-12-26
BRPI0809237B1 (pt) 2018-07-31
CA2681059C (en) 2012-08-14

Similar Documents

Publication Publication Date Title
WO2008111688A1 (ja) Mg基合金めっき鋼材
JP4874328B2 (ja) 高耐食性溶融Zn系めっき鋼材
KR101504863B1 (ko) 외관 균일성이 우수한 고내식성 용융 아연 도금 강판 및 그 제조 방법
EP2537954B1 (en) Hot-dipped steel material and method for producing same
CA2611439C (en) Hot-dip sn-zn system coated steel sheet having excellent corrosion resistance
JP5785336B1 (ja) 準結晶含有めっき鋼板
JP5556186B2 (ja) 高耐食性溶融亜鉛めっき鋼板
WO2015145722A1 (ja) 準結晶含有めっき鋼板
JP2017066459A (ja) めっき鋼材
JP5655263B2 (ja) 溶融Mg−Al系合金めっき鋼材
JP6075513B1 (ja) 準結晶含有めっき鋼板及び準結晶含有めっき鋼板の製造方法
WO2020213680A1 (ja) めっき鋼材
KR101168730B1 (ko) Mg기 합금 도금 강재
JP6128158B2 (ja) 溶融Mg−Zn系合金めっき鋼材
JP6569437B2 (ja) 加工性と耐食性に優れるMg含有合金めっき鋼材
Pistofidis et al. A combined characterization of zinc hot-dip galvanized wireswith DSC, XRD and SEM
TWI504754B (zh) 含準晶體之鍍敷鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880008511.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12009501618

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 5633/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 579535

Country of ref document: NZ

Ref document number: PI20093721

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 1020097018957

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2681059

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12450195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008722555

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008225398

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008225398

Country of ref document: AU

Date of ref document: 20080314

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009138051

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0809237

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090915