WO2008075772A1 - 調光フィルム及び調光ガラス - Google Patents

調光フィルム及び調光ガラス Download PDF

Info

Publication number
WO2008075772A1
WO2008075772A1 PCT/JP2007/074747 JP2007074747W WO2008075772A1 WO 2008075772 A1 WO2008075772 A1 WO 2008075772A1 JP 2007074747 W JP2007074747 W JP 2007074747W WO 2008075772 A1 WO2008075772 A1 WO 2008075772A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
film
transparent conductive
light
glass
Prior art date
Application number
PCT/JP2007/074747
Other languages
English (en)
French (fr)
Inventor
Osamu Higashida
Hitoshi Yamazaki
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to EP07851099A priority Critical patent/EP2124097A4/en
Priority to US12/520,259 priority patent/US8098419B2/en
Priority to JP2008550200A priority patent/JP5359276B2/ja
Publication of WO2008075772A1 publication Critical patent/WO2008075772A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays

Definitions

  • the present invention relates to a light control film and a light control glass.
  • window glass for buildings, automobiles, etc. various flat display elements, substitutes for various liquid crystal display elements, optical shutters, light control films suitable for use in advertising and information display boards, glasses, sunglasses, etc. It relates to light control glass.
  • a light control film is a material whose light transmittance changes depending on whether an electric field is applied or not, and the amount of incident light can be adjusted.
  • a light control film in which a light control layer in which a light control suspension in which a light control particle responsive to an electric field is dispersed is dispersed in a resin matrix is sandwiched between transparent conductive substrates.
  • This light control film is a film in which fine droplets of a light control suspension in which light control particles are dispersed are dispersed in a resin matrix cured by ultraviolet irradiation.
  • the light adjusting particles absorb, scatter, or reflect light by the Brownian motion when no electric field is applied, so that incident light on the film cannot pass through the film.
  • the light adjusting particles When an electric field is applied, the light adjusting particles are arranged in a direction parallel to the electric field due to the polarization of the light adjusting particles, so that the light incident on the film is transmitted through the film. As described above, in the light control film, the light transmission amount is adjusted by the response of the light adjusting particles to the electric field (refer to JP-A-8-503314).
  • a film in which a light control layer is directly formed between two glass plates is known as follows.
  • a light control layer of about 100 ⁇ m is formed on a 127 m polyester sheet, the light control layer is cured, and then coated with ITO.
  • a light control film obtained by transferring onto a 3 mm glass plate, peeling off the polyester sheet, and sandwiching a light control layer with another similar glass plate.
  • a dimming layer having a thickness of about 50 m is formed on two glass substrates each coated with ITO, and these are combined together under a vacuum. A film is disclosed.
  • JP 2005-300962 A, JP 2006-64832 A, etc. as a transparent substrate sandwiching a light control layer, in the case of glass;! ⁇ 15 mm, in the case of a high molecular film, 10 ⁇ 1000 ⁇ m is preferred! /, And there is an extensive description to the effect! /.
  • a method of forming a light control layer directly between glass plates as described in JP-A-9-113939 is shown, and a polymer film is used as a substrate. The actual situation is that there has been enough consideration of specific descriptions!
  • the method using a polymer film described in JP-A-2002-189123 as a transparent base material uses a flexible polymer film as a mouthpiece. Since the light control film can be formed continuously and formed continuously, the workability is excellent, and the light control film having a uniform light control layer can be provided in a long length. In addition, since the obtained light control film can be directly bonded to other substrates such as general glass, it is excellent in versatility.
  • the light control film described in Japanese Patent Application Laid-Open No. 2005-300962 particularly the film described in the examples, when the film is bonded to a substrate such as glass, the film is easily corrugated. Even if they are carefully bonded to eliminate this problem, especially for large area flat glass substrates, etc., as a result, it is possible to obtain a light control glass having a uniform appearance and a uniform and stable light control performance as a whole. Is difficult.
  • the present invention solves such problems and can be applied to various glass substrates and the like, and even when applied to a large-area glass substrate or the like, it has a uniform appearance throughout.
  • a light control film capable of obtaining a light control glass having uniform and stable light control performance, and a light control glass using the same.
  • the present inventors have found that the above-mentioned problems can be solved mainly by using a transparent base material as a polymer film having a constant film thickness.
  • the present invention is a light control film comprising two transparent conductive resin base materials and a light control layer sandwiched between the two transparent conductive resin base materials, wherein the light control layer includes a resin matrix and a light control layer. And a light control suspension dispersed in the resin matrix, wherein the transparent conductive resin substrate has a thickness of 130 to 500 111.
  • the present invention also provides a light control film comprising two transparent conductive resin base materials and a light control layer sandwiched between the two transparent conductive resin base materials, wherein the light control layer is a resin matrix. And a light control suspension dispersed in the resin matrix, wherein the transparent conductive resin substrate has a thickness of 150 to 500 111.
  • the thicknesses of the two transparent conductive resin substrates used for the light control film of the present invention are preferably equal to each other.
  • the thickness of the light control layer is preferably 10 to 200111. In one embodiment of the present invention, it is preferable that the light control layer does not have an interface inside.
  • the present invention also relates to a light control glass comprising two glass plates and the light control film sandwiched between the two glass plates.
  • the glass plate is a flat plate.
  • FIG. 1 is a schematic cross-sectional structural view of one embodiment of the light control film of the present invention.
  • FIG. 2 is a schematic diagram for explaining the operation when the electric field of the light control film of FIG. 1 is not applied.
  • FIG. 3 is a schematic diagram for explaining the operation when the electric field of the light control film of FIG. 1 is applied.
  • the light control layer in the present invention is a light control layer formed from a light control suspension in a resin matrix.
  • the droplets having performance are dispersed.
  • the light control suspension includes a dispersion medium and light control particles dispersed in the dispersion medium.
  • the light control particles suspended and dispersed in a fluid state in the droplet absorb, scatter or reflect light by Brownian motion.
  • the light incident on the can hardly pass through the film.
  • the light adjusting particles have an electric dipole moment, so the light adjusting particles are arranged in a direction parallel to the electric field, so that light incident on the film passes through the film. It becomes like this. In this way, the amount of light transmitted can be adjusted by responding to the electric field to which the light adjusting particles are applied.
  • Examples of the light control particles in the present invention include inorganic fibers such as polyiodide, carbon fiber, and carbon nanofiber, carbon nanotube, metal-free phthalocyanine, copper, nickel, iron, cobalt, chromium, titanium, beryllium, Examples thereof include metal phthalocyanine having molybdenum, tungsten, aluminum, chromium and the like as a central metal. Of these, polyiodide is preferably used.
  • the polyiodide is selected from the group consisting of pyrazine 2,3 dicarboxylic acid dihydrate, pyrazine 2,5-dicarboxylic acid dihydrate, and pyridine 2,5-dicarboxylic acid monohydrate.
  • Polyiodides prepared by reacting one substance selected from these with iodine and iodide are listed. Examples of the polyiodide thus obtained include the following general formula:
  • These polyiodides are preferably needle-like crystals
  • the light adjusting particles for example, U.S. Pat. No. 2,041,138 (EH Land), U.S. Pat. No. 2,306,108 (Land et al.), U.S. Pat. 375, 963 (Thomas), U.S. Pat. No. 4,270,841 (RL Saxe), British Patent 433,455, and the like can also be used.
  • the compounds disclosed therein are selected from polyazine such as polyiodide, polychloride or polybromide by selecting one of pyrazinecarboxylic acid and pyridinecarboxylic acid and reacting with iodine, chlorine or bromine. It is made by making a halide.
  • These polyhalogens The compound is a complex compound in which a halogen atom reacts with an inorganic substance or an organic substance, and a detailed production method thereof is disclosed in, for example, US Pat. No. 4,422,963 to Sachs.
  • a polymer such as nitrocellulose is used in order to form particles of uniform size and to improve the dispersibility of the particles in the light control suspension. It is preferred to use a substance.
  • a high-molecular substance such as nitrocellulose, when the light control suspension is dispersed in the form of fine droplets in the solid resin matrix, the light control particles can be easily put into the fine droplets. It tends to disperse and float to improve the response to the electric field.
  • the dispersion medium in the light adjusting suspension serves to disperse the light adjusting particles in a flowable state.
  • a dispersion medium it selectively adheres to the light control particles, covers the light control particles, and acts to move the light control particles to the phase-separated droplet phase during phase separation from the polymer medium.
  • a material that does not have an affinity for a polymer medium with low electrical conductivity is preferred.
  • a (meth) acrylic acid ester oligomer having a fluoro group and a hydroxyl group is preferred, and a (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group is more preferred.
  • a copolymer the force of either a fluoro group or a hydroxyl group, one monomer unit is directed to the light-adjusting particle, and the remaining monomer unit is stabilized as a droplet in the polymer medium. Work to maintain. For this reason, the light adjusting particles are easily dispersed in the light adjusting suspension and are easily guided into the droplets in which the phase is separated during phase separation.
  • Examples of such (meth) acrylic acid ester oligomers having a fluoro group and / or a hydroxyl group include methacrylate 2, 2, 2-trifluoroethyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer.
  • These (meth) acrylate oligomers preferably have a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography of 1,000 to 20,000, preferably 2,000 to 2,000 More preferably, it is 10,000.
  • the amount of the (meth) Furuoro group-containing monomer as a raw material for acrylic acid ester oligomer is from 6 to total monomer as a raw material; in 12 mol 0/0 preferably tool 7 8 mole 0/0 it is It is more preferable that there is.
  • the amount of the fluoro group-containing monomer exceeds 12 mol%, the refractive index increases and the light transmittance tends to decrease.
  • the these (meth) acrylic acid ester oligomer one raw material, the amount of the hydroxyl group-containing monomer, preferably to be 0.5 22 mole 0/0 of the total monomer which is a raw material member;! ⁇ 8 more preferably mole 0/0.
  • the amount of the hydroxyl group-containing monomer exceeds 22 mol%, the refractive index increases and the light transmittance tends to decrease.
  • the light control suspension of the present invention preferably contains light control particles;! To 70% by weight based on the weight of the light control suspension. . Further, the dispersion medium is preferably contained in an amount of 30 99% by weight, more preferably 50 96% by weight, based on the weight of the light control suspension.
  • the light control suspension is preferably contained in the polymer medium in an amount of from 100 to 100 parts by weight; preferably from 70 to 100 parts by weight. More preferably, it is contained in an amount of 850 parts by weight.
  • the light control layer in the present invention includes a resin matrix and light adjustment dispersed in the resin matrix. Contains a suspension.
  • the light control layer can be formed, for example, using a light control material including a polymer medium for forming a resin matrix and a light control suspension.
  • the polymer medium forming the resin matrix in the light control layer is preferably one that is cured by irradiation with energy rays.
  • examples of the polymer medium that is cured by irradiation with energy rays include a polymer composition containing a photopolymerization initiator and a polymer compound that is cured by energy rays such as ultraviolet rays, visible light rays, and electron beams. Things.
  • Examples of the polymer composition include a polymer composition containing a polymer compound having a substituent having an ethylenically unsaturated bond and a photopolymerization initiator.
  • the polymer compound having a substituent having an ethylenically unsaturated bond is preferably a silicone resin, an acrylic resin, a polyester resin, or the like from the viewpoints of ease of synthesis, light control performance, durability, and the like.
  • These resins are substituted with alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, amyl, isoamyl, hexyl, and cyclohexyl groups. It is preferable to have aryl groups such as phenyl group and naphthyl group from the viewpoint of light control performance and durability.
  • silicone resin examples are described in, for example, Japanese Patent Publication No. 53-36515, Japanese Patent Publication No. 57-52371, Japanese Patent Publication No. 58-53656, Japanese Patent Publication No. 61-17863, and the like. Can be mentioned.
  • silanol groups at both ends such as silanol polydimethylsiloxane at both ends, silanol polydiphenylsiloxane-dimethylsiloxane copolymer at both ends, silanol polydimethyldiphenylsiloxane at both ends, etc.
  • 2-ethyl hexane which is an organotin catalyst, contains siloxane polymers, trialkylalkoxysilanes such as trimethylethoxysilane, and ethylenically unsaturated bond-containing silane compounds such as (3-ataryloxypropyl) methyldimethoxysilane.
  • the resin form is preferably a solventless type. That is, when a solvent is used for resin synthesis, it is preferable to remove the solvent after the synthesis reaction.
  • the use amount of the ethylenically unsaturated bond-containing silane compound such as (3-ataryloxypropyl) methoxysilane is preferably 2 to 30% by weight of the total amount of raw siloxane and silane compound 5 to 18% by weight More preferably.
  • the acrylic resin can be obtained with, for example, 7 fires.
  • main chain forming monomers such as (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid benzyl, styrene, (meth) acrylic acid, (meth) acrylic acid hydroxyethyl
  • Prepolymers are synthesized once by copolymerizing a functional group-containing monomer for introducing an ethylenically unsaturated bond such as isocyanatoethyl (meth) acrylate and glycidyl (meth) acrylate.
  • the polyester resin can be easily produced by a known method.
  • the weight average molecular weight in terms of polystyrene obtained by gel permeation chromatography of the polymer compound having a substituent having an ethylenically unsaturated bond is preferably 20,000-100,000, and 30,000- More than 80,000 is preferred.
  • a photopolymerization initiator that activates radical polymerization when exposed to an energy line can be used.
  • the amount of the photopolymerization initiator used is preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the polymer compound having a substituent having an ethylenically unsaturated bond. More preferably, it is 1 to 5 parts by weight.
  • an organic solvent-soluble resin or a thermoplastic resin for example, polystyrene measured by gel permeation chromatography.
  • polystyrene measured by gel permeation chromatography.
  • additives such as a coloring inhibitor such as diptiltin dilaurate may be added as necessary.
  • the polymer medium may contain a solvent as necessary.
  • the light control layer in the present invention can be formed using the light control material including the polymer medium forming the resin matrix and the light control suspension as described above.
  • the transparent conductive resin substrate used has a thickness of 130 to 500111. If the thickness is less than 130 m, it will be corrugated when bonded to a substrate such as glass, and as a result, it will be possible to obtain a light control glass having a uniform appearance and a uniform and stable light control performance as a whole. Can not. On the other hand, if it exceeds 500 m, there are disadvantages that the permeability is lowered or that the film is peeled off when it is unwound into a sheet after being wound on a roll. From the above viewpoints, the preferred range is 150 to 500 ⁇ 111, and the more preferred range is 150 to 400. Further, the two transparent conductive resin base materials sandwiching the light control layer are preferably equal in film thickness because the film is less likely to warp or peel off due to temperature change or the like.
  • the transparent conductive resin substrate in the present invention usually comprises a transparent resin substrate and a transparent conductive film formed on the surface of the transparent resin substrate for applying an electric field for dimming. ing. Therefore, the film thickness includes the transparent conductive film and the transparent conductive film.
  • the transparent conductive film include indium tin oxide (ITO), SnO, and In O.
  • the surface resistance value is preferably about 3 to 600 Q / sq.
  • the type of resin of the transparent resin base body is not limited as long as it has sufficient transparency and can sufficiently adhere to the conductive film and the light control layer, and is a polyester film such as polyethylene terephthalate.
  • Polyolefin film such as polypropylene, polychlorinated butyl, acrylic resin film, polyethersulfone film, polyarylate film, polycarbonate film, etc.
  • Examples of the transparent conductive resin substrate of the present invention include transparent conductive films (manufactured by Toyobo Co., Ltd.), Sheldal ITO / PET films (manufactured by Nippon Petro Co., Ltd.), and the like. Therefore, it can be obtained by appropriately selecting one having a thickness suitable for the present invention.
  • the thickness of the transparent conductive film is not particularly limited, but is preferably 10-5, OOOnm. In addition, it prevents short-circuit phenomenon that occurs due to the mixing of foreign substances with a narrow space between substrates.
  • a base material on which a transparent insulating layer having a thickness of about 200 to 1,000 ⁇ (A) is formed on the transparent conductive film may be used.
  • the film thickness of the transparent insulating layer is not included in the film thickness of the transparent conductive resin substrate.
  • the film thickness of the transparent conductive resin base material is the total film thickness of the transparent resin base material and the transparent conductive film.
  • the transparent resin base material itself is provided with conductivity to form a transparent conductive resin base material (when a transparent conductive film is not formed on the surface of the transparent resin base material)
  • the conductive transparent resin base material is used. The thickness of the material itself.
  • the light transmittance of the transparent conductive resin substrate is preferably 80% or more from the viewpoint of light control.
  • the light transmittance of the transparent conductive resin base material can be measured according to the total light transmittance measuring method of JIS K7105.
  • Examples of the method for producing the light control film of the present invention include the following methods.
  • the mixed solution is prepared, applied on the transparent conductive resin substrate at a certain thickness, and if necessary, the solvent is dried and removed under reduced pressure.
  • One transparent conductive resin base material is bonded together. Thereafter, the polymer medium is appropriately cured by irradiating with ultraviolet rays using a high pressure mercury lamp or the like.
  • the transparent conductive resin substrate can be provided by a roll of film.
  • the transparent conductive resin base material is unwound from the roll, and the light control finish obtained by performing the above operation is wound up on another roll, so that a light control layer having a uniform and uniform light control layer is obtained.
  • the optical film can be produced continuously.
  • the thickness of the light control layer is not particularly limited, but is generally 5 to 1; OOO ⁇ m, and preferably 10 to 200 m in view of sufficient light control performance.
  • the light of the light control film can be changed by variously changing the mixing ratio of the polymer medium serving as the resin matrix and the liquid light control suspension. The transmittance can be adjusted.
  • the light control layer preferably has no interface inside from the viewpoints of light control properties, film durability, and the like.
  • a product having no interface inside can be produced, for example, by the method (II).
  • the interface inside the light control layer means the boundary surface between the resin matrix and the resin matrix.
  • the boundary between the resin matrix and the light control suspension may be present inside the light control layer.
  • the size (average droplet size) of the liquid droplets of the light control suspension dispersed in the resin matrix is set to prevent aggregation and deposition of the light control particles.
  • 0.5-5 O ⁇ m is preferred;! -10 m is more preferred.
  • the average droplet diameter is taken as an average value by taking an image such as a photograph from one surface direction of the light control film and measuring a plurality of arbitrarily selected droplet diameters. can do. It is also possible to capture the visual field image of the light control film with an optical microscope into a computer as digital data and calculate it using image processing integration software.
  • the light control film of the present invention includes, for example, indoor and outdoor partitions, window glass / skylights for buildings, various flat display elements used in the electronics industry and video equipment, various instrument panels, and the like. Replacement of existing liquid crystal display elements, optical shutters, various indoor / outdoor advertisements and information signs, window glass for aircraft / railcar vehicles / ships, window glass / back mirror for automobiles / sunroof, glasses, sunglasses, sun visor, etc. It can be suitably used for the following applications. It is particularly useful for a substrate having a large area plane such as a building window.
  • Examples of application methods include a method of sandwiching between two substrates, a method of attaching to one side of a substrate, and the like.
  • a glass plate can be used as the substrate.
  • the glass plate referred to in the present invention means a substrate transparent to visible light or the like.
  • transparent In addition to a general glass plate mainly composed of silicon dioxide, glass plates made of inorganic materials of various compositions, transparent also includes resin glass plates using organic materials such as acrylic resin and polycarbonate resin.
  • the light control film of the present invention is used, even when applied to a flat glass, particularly a large flat glass, etc., a uniform appearance and a uniform and stable control can be obtained because of non-uniformity of the film such as undulations. A light control glass having optical performance can be obtained.
  • FIG. 1 is a structural schematic diagram of a light control film of one embodiment of the present invention.
  • the light control layer 1 is sandwiched between two transparent conductive resin substrates 4 made of a transparent resin substrate 6 coated with a transparent conductive film 5. By switching switch 8, power supply 7 and two transparent conductive films 5 are connected or disconnected.
  • the light control layer 1 has a resin matrix 2 and a liquid light-adjusting suspension force dispersed in the form of droplets 3 in the resin matrix 2.
  • FIG. 2 is a view for explaining the operation of the light control film shown in FIG. 1, and shows a case where the switch 8 is turned off and no electric field is applied.
  • the incident light 11 is absorbed by the light control particles 10 due to the Brownian motion of the light control particles 10 dispersed in the dispersion medium 9 constituting the droplet 3 of the liquid light control suspension 3. It is scattered or reflected and cannot be transmitted.
  • the light adjusting particles 10 are arranged in parallel with the electric field formed by the applied electric field, so that the incident light 11 is aligned with the arranged light adjustment. Passes between 10 particles. In this way, the light control film is imparted with a light transmission function without scattering or a decrease in transparency.
  • the light control film of the present invention can be applied to various glass substrates and the like, and has a large area.
  • the light control glass using the light control film of the present invention is of high quality having a uniform appearance and a uniform and stable light control performance as a whole.
  • nitrocellulose 1 / 4LIG (trade name, manufactured by Bergerac NC) 15% by weight isoamyl acetate (special grade reagent) (Wako Pure Chemical Industries, Ltd.) Diluted solution 87. 54 g, Isoamyl acetate 44. 96 g, Dehydrated Cal (water content 0.3%) (Chemical, Wako Pure Chemical Industries, Ltd.) 4.5 g, None
  • the particles were separated using a centrifuge.
  • the reaction solution was centrifuged at a speed of 750 G for 10 minutes to remove the precipitate, and further centrifuged at 7390 G for 2 hours to remove the suspended matter, and 9 g of the precipitate particles were recovered.
  • the precipitate particles were dispersed in 88 g of isoamyl acetate.
  • the precipitate particles were needle-like crystals having an average particle diameter of 0.36 mm measured with a submicron particle analyzer (N4MD, manufactured by Beckman Coulter, Inc.). The precipitate particles were used as light control particles.
  • a four-necked flask equipped with a Dean-Stark trap, a condenser, a stirrer, and a heating device is attached to both ends silanol polydimethylsiloxane (Shin-Etsu Chemical Co., Ltd.) 11 ⁇ 75 g, both ends silanol polydimethyldiphenylsiloxane (Shin-Etsu Chemical Industry Co., Ltd.) 31 g, (3-acryloxypropyl) methyldimethoxysilane (Shin-Etsu Chemical Co., Ltd.) 4 g, 2-ethyl hexan tin (Wako Pure Chemical Industries, Ltd.) 0 . 6g was charged and reacted in heptane for 3 hours at 100 ° C for 3 hours.
  • UV curable silicone resin obtained in (Example of manufacturing UV curable silicone resin) was added to bis (2, 4, 6-trimethylbenzoyl) phenyl phosphine oxide (Ciba) as a photopolymerization initiator. 'Specialty' Chemikanoles Co., Ltd.) 0 ⁇ 2g was dissolved at 50 ° C, and 37.5g of the light adjustment suspension obtained in the above (Example of preparation of light adjustment suspension) was added and mechanically added for 1 minute. The light control material was manufactured.
  • This light control material is coated with a transparent conductive film (thickness 300 A) of ITO (indium tin oxide), and has a surface electrical resistance value of 200 to 300 ⁇ / Sq.
  • ITO / PET film 155954 (Nippon Petro Co., Ltd., thickness 150 ⁇ m)) pulls out the roll force. It was used and applied with a Bachelor applicator (Scale 14). Thereafter, the same polyester film as described above was laminated on the coating layer.
  • the coating layer was irradiated with UV light of 4,000 mj / cm 2 using UV-A using a metal halide lamp with an illuminance of 160 W / cm 2 , and the light control suspension liquid was UV-cured as a spherical droplet.
  • a light control film having a light control layer dispersed in the resin was produced.
  • the droplet size (average droplet diameter) of the light control suspension in the light control film is an average of 2 m. I got it.
  • the size (average droplet diameter) of the light control suspension droplets in the light control film was obtained by taking a picture of a field image with a magnification of 200 times with an optical microscope from one surface direction of the light control film. Measure the diameter of 50 arbitrarily selected light control suspension droplets and calculate the average value /
  • Example 1 the same procedure was performed as in Example 1 except that the amount of the light-modulating material was reduced so that the dry film thickness of the light-modulating material was 45 m.
  • Example 1 the transparent conductive resin substrate is coated with a transparent conductive film (thickness 300 A) made of ITO (indium tin oxide), and has a surface electrical resistance value of 200 300 ⁇ polyester.
  • a light control film was produced in the same manner except that the film (thickness 250 ⁇ m) was changed.
  • Example 3 the same procedure as in Example 3 was performed, except that the amount of the light-modulating material was reduced so that the dry film thickness of the light-modulating material was 45 m.
  • Example 1 the transparent conductive resin substrate is coated with a transparent conductive film (thickness 300 A) made of ITO (indium tin oxide), and has a surface electrical resistance value of 200 300 ⁇ polyester.
  • a light control film was produced in the same manner except that the film (thickness 400 ⁇ m) was changed.
  • Example 5 the same procedure as in Example 5 was performed, except that the amount of the light-modulating material was reduced so that the dry film thickness of the light-modulating material was 45 m.
  • Example 1 the transparent conductive resin substrate is coated with a transparent conductive film (thickness 300 A) made of ITO (indium tin oxide), and has a surface electrical resistance value of 200 300 ⁇ polyester.
  • a light control film was produced in the same manner except that the film (Tetraite TCF, manufactured by Oike Kogyo Co., Ltd., thickness 125 111) was used. [0060] (Comparative Example 2)
  • Example 1 the type of transparent conductive resin substrate is coated with a transparent conductive film (thickness 300 A) of ITO (indium tin oxide), and the surface electrical resistance value is 200 to 300 ⁇ .
  • a light control film was produced in the same manner except that the polyester film (thickness 600 ⁇ m) was used.
  • Table 1 shows the light transmittance measured when each manufactured light control film was not applied and when 400 Hz AC voltage (effective value) 100 V was applied, and the light control film was bonded to a 0.25 m 2 glass plate.
  • the evaluation results of the leakage of the transparent conductive resin substrate and the peeling of the light control film when laminated and bonded through the agent layer are shown.
  • the light transmittance of the light control film is calculated using a spectroscopic color difference meter (SZ—S90, manufactured by Nippon Denshoku Industries Co., Ltd.) and measured with a light source A and a viewing angle of 2 degrees. The light transmittance was used.
  • Example 1 150 90 0. 7 43.5 Good
  • Example 2 150 45 4. 2 59.9 Good
  • Example 3 250 90 0. 8 45.6 Good
  • Example 4 250 45 4. 9 50. 4 Good
  • Example 5 400 90 0. 9 45.6 Good
  • Example 6 400 45 5. 7 52.2 Good Comparative Example 1 125 90 5. 0 20. 9 Edge Leak Comparative Example 2 600 90 0.5 0.53

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

 本発明は、2つの透明導電性樹脂基材(4)と、前記2つの透明導電性樹脂基材(4)に挟持された調光層(1)とを含む調光フィルムであって、調光層(1)が、樹脂マトリックス(2)と、前記樹脂マトリックス(2)中に分散した光調整懸濁液(3)とを含み、前記透明導電性樹脂基材(4)の厚さが130~500μmである調光フィルムに関する。

Description

明 細 書
調光フィルム及び調光ガラス
技術分野
[0001] 本発明は、調光フィルム及び調光ガラスに関する。詳しくは、建物、自動車等の窓 ガラス、各種平面表示素子、各種液晶表示素子の代替品、光シャッター、広告及び 案内表示板、眼鏡、サングラス等に好適に用いられる調光フィルム及びそれを用い た調光ガラスに関する。
背景技術
[0002] 調光フィルムは、電界の印加の有無により光透過率が変化し、入射光量の調整が 可能な材料である。例えば、電界に対して応答可能な光調整粒子を分散した光調整 懸濁液を樹脂マトリックス中に分散した調光層を透明導電性基材で挟持した調光フィ ルムが知られている。この調光フィルムは、光調整粒子を分散した光調整懸濁液の 微細な液滴が紫外線照射によって硬化した樹脂マトリックス中に分散したフィルムで ある。この調光フィルム中で光調整粒子は、電界を印加していない状態では、ブラウ ン運動により光を吸収、散乱又は反射するため、フィルムへの入射光はフィルムを透 過できない。電界を印加した場合、光調整粒子の分極により、電界に対して平行な 方向に配列するため、フィルムに入射した光は、フィルムを透過する。このように、調 光フィルムでは、光調整粒子の電界への応答により、光の透過量が調整されている( 特表平 8— 503314号公報参照)。
[0003] このような調光フィルムとしては、次のような、調光層が直接 2つのガラス板の間に形 成されたフィルムが知られている。例えば特表平 8— 503314号公報の実施例には、 127 mのポリエステルシート上に約 100 μ mの調光層を形成し、調光層を硬化させ た後、 ITOで被覆した厚さ約 3mmのガラス板上に転写し、前記ポリエステルシートを 剥がしてから、同様の別のガラス板で調光層を挟み込むことにより得られた調光フィ ルムが開示されている。また、特開平 9 113939号公報の実施例には、 ITOを塗布 した 2つのガラス基体にそれぞれ厚さ約 50 mの調光層を形成し、これらを真空下 で一緒に併せて形成した調光フィルムが開示されている。 [0004] しかしながら、このようなガラス板に直接調光層を形成する方法では、例えば、大面 積のガラス基板に形成するのは、作業性が悪ぐまた調光層の膜厚を均一にしにくい ため、全体に均一で優れた調光性能を有する調光フィルムを得ることが困難であった 。これを改善するものとして、 ITO透明電極膜が表面に形成された厚さ 125 mのポ リエステルフィルムの上に調光材料を塗布し、得られた調光材料付きのフィルムを 2 枚重ねあわせることにより得られる調光フィルムが知られている(特開 2002— 18912 3号公報の実施例参照)。また、特開 2005— 300962号公報、特開 2006— 64832 号公報等では、調光層を挟みこむ透明基材として、ガラスの場合には;!〜 15mm、高 分子フィルムの場合には 10〜 1000 μ mが好まし!/、旨の広範囲な記載がされて!/、る 。しかしながら、それらの実施例では、特開平 9— 113939号公報に記載されるような 調光層を直接ガラス板の間に形成する方法しか示されておらず、高分子フィルムを 基材として使用することにつ!/、て具体的な記載もなぐ検討が十分にされて!/、な!/、の が実情である。
発明の開示
[0005] ガラス基板に直接調光層を設ける方法と異なり、特開 2002— 189123号公報に記 載される高分子フィルムを透明基材とする方法は、可とう性のある高分子フィルムを口 ール状で提供し、連続的に調光フィルムを形成できるため、作業性に優れるとともに 、調光層の均一な調光フィルムを長尺で提供することができる。また、得られた調光フ イルムはそのまま一般的なガラスなどの他の基板への貼り合わせも可能であるので、 汎用性に優れる。し力、しながら、特開 2005— 300962号公報に記載される調光フィ ルム、特に実施例に記載されるフィルムでは、このフィルムをガラスなどの基板に貼り 合わせる際に、フィルムが波打ちやすい。それを解消するように慎重に貼り合わせて も、特に大面積の平面状のガラス基板などにおいては、結果として全体に均一な外 観と均一で安定な調光性能を有する調光ガラスを得ることが困難である。
[0006] 本発明は、このような課題を解決するものであり、種々のガラス基板等に適用が可 能であり、かつ、大面積のガラス基板などに適用しても全体に均一な外観と均一で安 定な調光性能を有する調光ガラスを得ることができる調光フィルム及びこれを用いた 調光ガラスを提供するものである。 [0007] 本発明者らは、鋭意検討した結果、主に、透明基材を一定の膜厚の高分子フィル ムとすることで、上記課題を解決できることを見レヽだした。
すなわち本発明は、 2つの透明導電性樹脂基材と、前記 2つの透明導電性樹脂基 材に挟持された調光層とを備えた調光フィルムであって、調光層が、樹脂マトリックス と、前記樹脂マトリックス中に分散した光調整懸濁液とを含み、前記透明導電性樹脂 基材の厚さが 130〜500 111である調光フィルムに関する。
また、本発明は、 2つの透明導電性樹脂基材と、前記 2つの透明導電性樹脂基材 に挟持された調光層とを備えた調光フィルムであって、調光層が、樹脂マトリックスと、 前記樹脂マトリックス中に分散した光調整懸濁液とを含み、前記透明導電性樹脂基 材の厚さが150〜500 111でぁる調光フィルムに関する。
本発明の調光フィルムに用いられる 2つの透明導電性樹脂基材の厚さは、互いに 等しいことが好ましい。
本発明の一実施態様において、前記調光層の厚さは、好ましくは 10〜200 111で ある。また、本発明の一実施態様において、前記調光層が内部に界面を有さないこ とが好ましい。
また、本発明は、 2枚のガラス板と、前記 2枚のガラス板の間に挟持された上記調光 フィルムとを備えた調光ガラスに関する。本発明の一実施態様において、ガラス板は 、平板である。
本願の開示 (ま、 2006年 12月 21曰 ίこ出願された特願 2006— 344176号 ίこ記載の 主題と関連しており、それらの開示内容は引用によりここに援用される。
図面の簡単な説明
[0008] [図 1]図 1は、本発明の調光フィルムの一態様の断面構造概略図である。
[図 2]図 2は、図 1の調光フィルムの電界が印加されていない場合の作動を説明する ための概略図である。
[図 3]図 3は、図 1の調光フィルムの電界が印加されている場合の作動を説明するた めの概略図である。
発明を実施するための最良の形態
[0009] 本発明における調光層は、樹脂マトリックス中に光調整懸濁液から形成される調光 性能を有する液滴が分散したものである。光調整懸濁液は、分散媒と、分散媒中に 分散した光調整粒子を含んで!/、る。調光フィルムに電界が印加されてレ、な!/、状態で は、前記液滴中に流動状態で浮遊分散されている光調整粒子がブラウン運動により 光を吸収、散乱又は反射するため、フィルムに入射した光はフィルムをほとんど透過 できない。しかし、調光フィルムに電界を印加すると、上記光調整粒子が電気的双極 子モーメント持つことから、光調整粒子が電界と平行な方向に配列するため、フィル ムに入射した光はフィルムを透過するようになる。このように、光調整粒子が印加され た電界に対して応答することにより、光の透過量を調整することが可能となる。
[0010] 本発明における光調整粒子としては、例えば、ポリヨウ化物、炭素繊維、カーボンナ ノファイバ一等の無機繊維、カーボンナノチューブ、無金属フタロシアニン、銅、ニッ ケル、鉄、コバルト、クロム、チタン、ベリリウム、モリブデン、タングステン、アルミニウム 、クロム等を中心金属とする金属フタロシアニン等が挙げられる。中でも、ポリヨウ化物 を用いることが好ましい。
[0011] ポリヨウ化物としては、ピラジン 2, 3 ジカルボン酸 · 2水和物、ピラジン 2, 5— ジカルボン酸 · 2水和物、ピリジン 2, 5—ジカルボン酸 · 1水和物からなる群の中か ら選ばれた 1つの物質とヨウ素及びヨウ化物を反応させて作製したポリヨウ化物が挙 げられる。このようにして得られるポリヨウ化物としては、例えば、下記一般式
Cal (C Η Ν Ο ) ·ΧΗ Ο (X :;!〜 2)
2 6 4 2 4 2
Cal (C Η Ν Ο ) -cH Ο (a : 3〜7、 b:;!〜 2、 c:;!〜 3)
a 6 4 2 4 b 2
で表されるものが挙げられる。これらのポリヨウ化物は針状結晶であることが好ましレ、
[0012] また、光調整粒子としては、例えば、米国特許第 2, 041 , 138号明細書(E. H. La nd)、米国特許第 2, 306, 108号明細書(Landら)、米国特許第 2, 375, 963号明 細書 (Thomas)、米国特許第 4, 270, 841号明細書 (R. L. Saxe)及び英国特許 第 433, 455号明細書等に開示されている化合物も用いることができる。これらに開 示されている化合物は、ピラジンカルボン酸、ピリジンカルボン酸の内の 1つを選択し て、ヨウ素、塩素又は臭素と反応させることにより、ポリヨウ化物、ポリ塩化物又はポリ 臭化物等のポリハロゲン化物とすることによって作製されている。これらのポリハロゲ ン化物は、ハロゲン原子が無機質又は有機質と反応した錯化合物で、これらの詳し い製法は、例えば、サックスの米国特許第 4, 422, 963号明細書に開示されている
[0013] ここで光調整粒子を合成する過程において、均一な大きさの粒子を形成させるため 、及び、光調整懸濁液内での粒子の分散性を向上させるため、ニトロセルロース等の 高分子物質を使用することが好ましい。ニトロセルロース等の高分子物質を用いるこ とにより、光調整懸濁液が固体状の樹脂マトリックス内に微細な液滴の形態で分散さ れる際に、光調整粒子が微細な液滴内へ容易に分散、浮遊し、電界に対する応答 性が向上する傾向にある。
[0014] 本発明において、光調整懸濁液中の分散媒は、光調整粒子を流動可能な状態で 分散させる役割を果たす。分散媒としては、光調整粒子に選択的に付着し、光調整 粒子を被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に 移動するように作用し、電気導電性がなぐ高分子媒体とは親和性がない材料が好 ましい。さらに、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスと の屈折率が近似した液状共重合体を使用することが好ましい。例えば、フルォロ基 及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましぐフルォロ 基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましレ、。このような 共重合体を使用すると、フルォロ基、水酸基のどちら力、 1つのモノマー単位は光調整 粒子に向き、残りのモノマー単位は高分子媒体中で光調整懸濁液が液滴として安定 に維持するために働く。そのため、光調整懸濁液内に光調整粒子が分散しやすぐ 相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。このようなフル ォロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーとしては、メタ クリル酸 2, 2, 2—トリフルォロェチル/アクリル酸ブチル /アクリル酸 2—ヒドロキシ ェチル共重合体、アクリル酸 3, 5, 5—トリメチルへキシル /アクリル酸 2—ヒドロキシ プロピル/フマール酸共重合体、アクリル酸ブチル /アクリル酸 2—ヒドロキシェチル 共重合体、アクリル酸 2, 2, 3, 3—テトラフルォロプロピル/アクリル酸ブチル /ァク リル酸 2—ヒドロキシェチル共重合体、アクリル酸 1H, 1H, 5H—ォクタフルォロペン チル/アクリル酸ブチル /アクリル酸 2—ヒドロキシェチル共重合体、アクリル酸 1H, 1H, 2H, 2H プタデカフルォロデシル/アクリル酸ブチル /アクリル酸 2—ヒドロ キシェチル共重合体、メタクリル酸 2, 2, 2—トリフルォロェチル/アクリル酸ブチル /アクリル酸 2—ヒドロキシェチル共重合体、メタクリル酸 2, 2, 3, 3—テトラフルォロ プロピル/アクリル酸ブチル /アクリル酸 2—ヒドロキシェチル共重合体、メタクリル酸 1H, 1H, 5H—ォクタフルォロペンチル/アクリル酸ブチル /アクリル酸 2—ヒドロキ シェチル共重合体、メタクリル酸 1H, 1H, 2H, 2H—へプタデカフルォロデシル/ アクリル酸ブチル /アクリル酸 2—ヒドロキシェチル共重合体等が挙げられる。また、 これらの(メタ)アクリル酸エステルオリゴマーはフルォロ基及び水酸基の両方を有す ることがより好ましい。
[0015] これらの(メタ)アクリル酸エステルオリゴマーは、ゲルパーミエーシヨンクロマトグラフ ィ一で測定した標準ポリスチレン換算の重量平均分子量が 1 , 000-20, 000である こと力好ましく、 2, 000-10, 000であることがより好ましい。これらの(メタ)アクリル 酸エステルオリゴマーの原料となるフルォロ基含有モノマーの使用量は、原料である モノマー総量の 6〜; 12モル0 /0であることが好ましぐ 7 8モル0 /0であることがより好ま しい。フルォロ基含有モノマーの使用量が 12モル%を超えると、屈折率が大きくなり 、光透過率が低下する傾向がある。また、これらの(メタ)アクリル酸エステルオリゴマ 一の原料となる、水酸基含有モノマーの使用量は、原料であるモノマー総量の 0. 5 22モル0 /0であることが好ましぐ;!〜 8モル0 /0であることがより好ましい。水酸基含有 モノマーの使用量が 22モル%を超えると、屈折率が大きくなり、光透過性が低下する 傾向がある。
[0016] 本発明における光調整懸濁液は、光調整粒子を光調整懸濁液の重量に対し、;!〜 70重量%含有することが好ましぐ 4 50重量%含有することがより好ましい。また、 分散媒を光調整懸濁液の重量に対し、 30 99重量%含有することが好ましぐ 50 96重量%含有することがより好ましい。また、光調整懸濁液は、高分子媒体に 100 重量部に対して、;!〜 100重量部含有されることが好ましぐ 4 70重量部含有され ること力 り好ましく、 6 60重量部含有されることがさらに好ましぐ 8 50重量部含 有されることが特に好ましい。
[0017] 本発明における調光層は、樹脂マトリックスと、樹脂マトリックス中に分散した光調整 懸濁液を含んでいる。調光層は、例えば、樹脂マトリックスを形成するための高分子 媒体と、光調整懸濁液とを含む調光材料を用いて形成することができる。
[0018] 調光層における樹脂マトリックスを形成する高分子媒体は、エネルギー線を照射す ることにより硬化するものが好ましい。本発明において、エネルギー線を照射すること により硬化する高分子媒体としては、例えば、光重合開始剤及び、紫外線、可視光 線、電子線等のエネルギー線により硬化する高分子化合物を含む高分子組成物が 挙げられる。上記高分子組成物としては、例えば、エチレン性不飽和結合を有する 置換基をもつ高分子化合物及び光重合開始剤を含む高分子組成物が挙げられる。
[0019] 上記エチレン性不飽和結合を有する置換基をもつ高分子化合物としては、シリコー ン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等 の点から好ましい。これらの樹脂は、置換基として、メチル基、ェチル基、プロピル基 、イソプロピル基、ブチル基、イソブチル基、 tert—ブチル基、アミル基、イソアミル基 、へキシル基、シクロへキシル基等のアルキル基、フエニル基、ナフチル基等のァリ 一ル基を有することが、調光性能、耐久性等の点から好ましい。
[0020] シリコーン系樹脂として、具体的には、例えば、特公昭 53— 36515号公報、特公 昭 57— 52371号公報、特公昭 58— 53656号公報、特公昭 61— 17863号公報等 に記載の高分子化合物を挙げることができる。
[0021] また、上記シリコーン系樹脂としては、例えば、両末端シラノールポリジメチルシロキ サン、両末端シラノールポリジフエニルシロキサンージメチルシロキサンコポリマー、 両末端シラノールポリジメチルジフエニルシロキサン等の両末端にシラノール基を有 するシロキサンポリマー、トリメチルエトキシシラン等のトリアルキルアルコキシシラン、 (3—アタリロキシプロピル)メチルジメトキシシラン等のエチレン性不飽和結合含有シ ラン化合物などを、有機錫系触媒である 2—ェチルへキサン錫の存在下で、脱水素 縮合反応及び脱アルコール反応させて合成される。樹脂の形態としては、無溶剤型 が好ましい。すなわち、樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を 除去することが好ましい。 (3—アタリロキシプロピル)メトキシシラン等のエチレン性不 飽和結合含有シラン化合物の使用量は、原料シロキサン及びシラン化合物総量の 2 〜30重量%とすることが好ましぐ 5〜; 18重量%とすることがより好ましい。 [0022] 前記アクリル系樹脂は、例えば、 7火のように得ること力 Sできる。まず、(メタ)アクリル酸 アルキルエステル、 (メタ)アクリル酸ァリールエステル、 (メタ)アクリル酸ベンジル、ス チレン等の主鎖形成モノマーと、 (メタ)アクリル酸、 (メタ)アクリル酸ヒドロキシェチル 、 (メタ)アクリル酸イソシアナトェチル、 (メタ)アクリル酸グリシジル等のエチレン性不 飽和結合導入用官能基含有モノマーなどを共重合して、プレボリマーを一旦合成す る。次いで、このプレボリマーの官能基と反応させるベく(メタ)アクリル酸グリシジル、 ( メタ)アクリル酸イソシアナトェチル、 (メタ)アクリル酸ヒドロキシェチル、 (メタ)アクリル 酸等のモノマーを前記プレボリマーに付加反応させる。
[0023] 前記ポリエステル樹脂は、公知の方法で容易に製造できる。
これらエチレン性不飽和結合を有する置換基をもつ高分子化合物のゲルパーミエ ーシヨンクロマトグラフィーによって得られるポリスチレン換算の重量平均分子量は、 2 0, 000—100, 000であることカ好ましく、 30, 000—80, 000であることカより好ま しい。
[0024] 上記エチレン性不飽和結合を有する置換基をもつ高分子化合物を用いる場合、ェ ネルギ一線に露光するとラジカル重合を活性化する光重合開始剤を用いることがで きる。具体的には 2, 2 ジメトキシ一 1 , 2 ジフエニルェタン一 1—オン、 1— (4— (2 ーヒドロキシエトキシ)フエ二ノレ)ー2—ヒドロキシー2—メチノレー 1 プロパン 1ーォ ン、ビス(2, 4, 6 トリメチルベンゾィル)フエニルフォスフィンオキサイド、 2 ヒドロキ シ一 2—メチルー 1—フエニルプロパン一 1—オン、 (1—ヒドロキシシクロへキシル)フ ェニルケトン等を用いることができる。
[0025] これらの光重合開始剤の使用量は、上記エチレン性不飽和結合を有する置換基を もつ高分子化合物 100重量部に対して 0. 05〜20重量部であることが好ましぐ 0. 1 〜5重量部であることがより好ましい。
[0026] また、上記エチレン性不飽和結合を有する置換基をもつ高分子化合物の他に、有 機溶剤可溶型樹脂又は熱可塑性樹脂、例えば、ゲルパーミエーシヨンクロマトグラフ ィ一により測定したポリスチレン換算の重量平均分子量が 1 , 000—100, 000のポリ アクリル酸、ポリメタクリル酸等も併用すること力 Sできる。また、高分子媒体中には、ジ プチル錫ジラウレート等の着色防止剤等の添加物を必要に応じて添加してもよい。さ らに、高分子媒体には、必要に応じ、溶媒が含まれていてもよい。本発明における調 光層は、以上のような、樹脂マトリックスを形成する高分子媒体と光調整懸濁液を含 む調光材料を用いて形成することができる。
[0027] 本発明の調光フィルムにおいて、使用される透明導電性樹脂基材は、厚さが 130 〜500 111である。この厚さが 130 m未満では、ガラス等の基板と貼り合わせた際 に波打ちが生じやすぐ結果として、全体に均一な外観と均一で安定な調光性能を 有する調光ガラス等を得ることができない。一方、 500 mを超えると透過性が低下 したり、ロールに巻かれてからシート状に巻き解すときに剥れるという欠点がある。以 上の観点、カ、ら好ましぃ範囲は150〜500〃111でぁり、より好ましい範囲は 150〜400 である。また、調光層を挟持する 2つの透明導電性樹脂基材は、その膜厚が等 しいものであること力 温度変化等によるフィルムの反りや剥がれなどが生じにくいの で好ましい。
[0028] 本発明における透明導電性樹脂基材は、通常、透明樹脂基材と、調光のための電 界印加のために、透明樹脂基材の表面に形成された透明導電膜とを備えている。従 つて、前記膜厚は、透明樹脂基材に加え、この透明導電膜も含んだ膜厚である。前 記透明導電膜としては、例えば、インジウム錫オキサイド(ITO)、 SnO、 In O等の
2 2 3 膜が使用される。表面抵抗値が 3〜600 Q /sq程度であることが好ましい。
[0029] 透明樹脂基材本体の樹脂の種類としては、充分な透明性があり、導電膜や調光層 との接着が充分できるものであれば制限されず、ポリエチレンテレフタレート等のポリ エステル系フィルム、ポリプロピレン等のポリオレフイン系フィルム、ポリ塩化ビュル、ァ クリル樹脂系のフィルム,ポリエーテルサルフォンフィルム,ポリアリレートフイルム,ポ リカーボネートフィルムなどの樹脂フィルムが挙げられる力 ポリエチレンテレフタレー トフイルム力 透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。
[0030] 本発明の透明導電性樹脂基材としては、透明導電性フィルム (東洋紡績 (株)製)、 シェルダール製 ITO/PETフィルム(日本ペトロ(株)製)等の市販されるものの中か ら、本発明に適した厚みのものを適宜選択することにより入手することが可能である。
[0031] 前記透明導電膜の厚みは特に制限はないが、 10-5, OOOnmであることが好まし い。また、基材の間隔が狭ぐ異物質の混入等により発生する短絡現象を防止するた めに、透明導電膜の上に 200〜; 1 , 000オングストローム(A)程度の厚さの透明絶縁 層が形成されている基材を使用してもよい。この透明絶縁層の膜厚は、透明導電性 樹脂基材の膜厚に含まれないものとする。
[0032] 本発明において、透明導電性樹脂基材の膜厚とは、上記透明樹脂基材の膜厚と 上記透明導電膜を合わせた膜厚とする。ただし、透明樹脂基材自体に導電性を付 与し透明導電性樹脂基材とした場合 (透明樹脂基材の表面に透明導電膜を形成し なレヽ場合)は、導電性を有する透明樹脂基材自体の厚さとする。
[0033] 本発明において、透明導電性樹脂基材の光透過率は 80%以上であることが調光 性の観点で好ましい。透明導電性樹脂基材の光透過率は JIS K7105の全光線透 過率の測定法に準拠して測定できる。
[0034] 本発明の調光フィルムの製造方法としては、例えば、次の方法が挙げられる。 (I)ま ず、液状の光調整懸濁液を、高分子媒体と均質に混合し、次いで、光調整懸濁液が 高分子媒体中に液滴の状態で分散した混合液 (調光材料)とする。さらに、この混合 液を透明導電性樹脂基材の上に一定の厚さで塗布し、必要に応じて減圧下で溶剤 を乾燥除去した後、高圧水銀灯等を用いて紫外線を照射して、高分子媒体を適度に 硬化させる。このようにして調光層を設けた 2枚の透明導電性樹脂基材を貼り合わせ 、さらに必要に応じて硬化を促進し一体化して製造する。
また、(II)前記混合液を調製して、透明導電性樹脂基材の上に一定の厚さで塗布 し、必要に応じて、減圧下で溶剤を乾燥除去した後、次いでその上にもう一方の透明 導電性樹脂基材を貼り合わせる。その後、高圧水銀灯等を用いて紫外線を照射して 、高分子媒体を適切に硬化させる。
いずれの方法も、透明導電性樹脂基材はフィルムのロールで提供することができる 。透明導電性樹脂基材をロールから巻き出し、以上の操作を施して得られる調光フィ ノレムを、別のロールに巻き取っていくことで、均質で均一な膜厚の調光層を有する調 光フィルムを連続的に製造することができる。
[0035] ここで、調光層の厚みは特に制限されないが、一般に 5〜; 1 , OOO ^ mであり、充分 な調光性能を示す点では 10〜200 mが好ましい。樹脂マトリックスとなる高分子媒 体と、液状の光調整懸濁液との混合比率を種々変えることにより、調光フィルムの光 透過率を調節することができる。
[0036] また、調光層は、その内部に界面のないものであることが、調光性やフィルムの耐 久性などの点で好ましい。内部に界面がないものは、例えば、前記(II)の方法によつ て製造すること力できる。前記 (I)の方法では 2つの調光層を貼り合わせることになる ため、その間に界面ができやすくなる。なお、調光層内部の界面とは、樹脂マトリック スと樹脂マトリックスの境の面を意味する。樹脂マトリックスと、光調整懸濁液との境の 面については、当然、調光層内部に存在していてもよい。
[0037] 得られる調光層において、樹脂マトリックス中に分散されている光調整懸濁液の液 滴の大きさ(平均液滴径)は、光調整粒子の凝集と沈積を防止する観点で、 0. 5〜5 O ^ mであることが好ましぐ;!〜 10 mであることがより好ましい。平均液滴径は、例 えば、光学顕微鏡を用いて、調光フィルムの一方の面方向から写真等の画像を撮影 し、任意に選択した複数の液滴直径を測定し、その平均値として算出することができ る。また、上記調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコン ピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも 可能である。
[0038] 調光性能を発揮させる条件は特に制限はないが、通常、使用電源は交流で、 10〜
220ボルト(実効値)、 30Hz〜500kHzの周波数の範囲で作動させることができる。
[0039] 本発明の調光フィルムは、例えば、室内外の仕切り(パーティッシヨン)、建築物用 の窓硝子/天窓、電子産業および映像機器に使用される各種平面表示素子、各種 計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告および案内 標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー /サンルーフ、眼鏡、サングラス、サンバイザー等の用途に好適に使用することがで きる。特に建物の窓など大面積の平面を有するような基板に有用である。
[0040] 適用法としては 2枚の基板に挟持させる方法、基板の片面に貼り付ける方法などが 挙げられる。前記基板としては、ガラス板を用いることができる。なお、本発明におい ていうガラス板とは、可視光線等に透明な基板を意味し、二酸化ケイ素を主成分とす る一般的なガラス板の他、種々の組成の無機材料のガラス板、透明なアクリル樹脂、 ポリカーボネート樹脂等の有機材料を用いた樹脂ガラス板も含む。 [0041] 本発明の調光フィルムを用いると、平板のガラス、特に大型の平板ガラスなどに適 用してもフィルムの波打ちなどの不均一さがなぐ全体に均一な外観と均一で安定な 調光性能を有する調光ガラスを得ることができる。
[0042] また、フィルム状態であるため、従来の調光硝子、液晶を利用した従来の調光窓の 各問題点、および紫外線露光による色調変化、可変能力の低下、大型製品特有の 透明導電性基材の周辺部と中央部間に生ずる電圧降下に伴う応答時間差、さらに 光学特性面の問題点は生じないものである。
[0043] 本発明による調光フィルムの構造及び動作を図面により更に詳しく説明する。
図 1は、本発明の一態様の調光フィルムの構造概略図である。調光層 1が、透明導 電膜 5がコーティングされている透明樹脂基材 6からなる 2枚の透明導電性樹脂基材 4の間に挟まれている。スィッチ 8の切り換えにより、電源 7と 2枚の透明導電膜 5の接 続、非接続を行う。調光層 1は、樹脂マトリックス 2と、樹脂マトリックス 2内に液滴 3の 形態で分散されている液状の光調整懸濁液力 なる。
[0044] 図 2は、図 1に示した調光フィルムの作動を説明するための図面であり、スィッチ 8が 切られ、電界が印加されていない場合を示す。この場合には、液状の光調整懸濁液 の液滴 3を構成している分散媒 9の中に分散している光調整粒子 10のブラウン運動 により、入射光 11は光調整粒子 10に吸収、散乱又は反射され、透過できない。しか し、図 3に示すように、スィッチ 8を接続して電界を印加すると、光調整粒子 10が印加 された電界によって形成される電場と平行に配列するため、入射光 11は配列した光 調整粒子 10間を通過するようになる。このようにして、調光フィルムに散乱及び透明 性の低下のな!/、光透過機能が付与される。
[0045] 本発明の調光フィルムは、種々のガラス基板等に適用が可能であり、かつ、大面積
(特に 0· lm2以上のような大きなガラスなど)のガラス基板などに適用しても全体に均 一な外観と均一で安定な調光性能を有する調光ガラスを得ることができるものである 。本発明の調光フィルムを用いた調光ガラスは、全体に均一な外観と均一で安定な 調光性能を有する高品質のものである。
実施例
[0046] 以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明する。 (光調整粒子の製造例)
光調整粒子を製造するために、攪拌機及び冷却管を装着した 500mlの四つロフラ スコ内で、ニトロセルロース 1/4LIG (商品名、ベルジュラック NC社製) 15重量%の 酢酸イソアミル (試薬特級、和光純薬工業 (株)製)希釈溶液 87. 54g、酢酸イソアミ ル 44. 96g、脱水 Cal (水分量 0. 3%) (化学用、和光純薬工業 (株)製) 4. 5g、無
2
水メタノール (有機合成用、和光純薬工業 (株)製) 2. 0g、精製水 (精製水、和光純 薬工業 (株)製) 0. 6gの溶液に、沃素 (JIS試薬特級、和光純薬工業 (株)製) 4. 5gを 溶解し、光調整粒子の基板形成物質であるピラジン 2, 5 ジカルボン酸 2水和物( 日化テクノサービス (株)製) 3gを添加した。 45°Cで 3時間撹拌して反応を終了させた 後、超音波分散機で 2時間分散させた。
[0047] 次に、反応溶液から一定な大きさの光調整粒子を取り出すために、遠心分離機を 用いて粒子を分離した。反応溶液を 750Gの速度で 10分間遠心分離して沈殿物を 取り除き、更に 7390Gで 2時間遠心分離して、浮遊物を取り除き、沈殿物粒子を 9g 回収した。
沈殿物粒子全部を酢酸イソアミル 88gに分散した。この沈殿物粒子は,サブミクロン 粒子アナライザ(N4MD、ベックマン'コールタ社製)で測定した平均粒径が 0. 36〃 mを有する針状結晶であった。この沈殿物粒子を光調整粒子とした。
[0048] (光調整懸濁液の製造例)
前記 (光調整粒子の製造例)で得た沈殿物粒子(光調整粒子)の酢酸イソアミル分 散液 97gを、光調整懸濁液の分散媒としてのアクリル酸ブチル (和光特級、和光純薬 工業 (株)製) /メタクリル酸 2, 2, 2—トリフルォロェチル (工業用、共栄社化学工業( 株)製) /アクリル酸 2—ヒドロキシェチル (和光 1級、和光純薬工業 (株)製)共重合体 (モノマーモル比: 18/1 · 5/0. 5、重量平均分子量: 2, 200、屈折率 1. 468) 59 gに加え、攪拌機により 30分間混合し、混合液を得た。次いで、混合液から、酢酸ィ ソァミルをロータリーエバポレーターを用いて 60Paの真空で 80°C、 3時間減圧除去 し、トリメリット酸デシル 29. 5g (花王(株)製),ジメチルドデカスべレート(Exfluor社 製)を添加し,粒子沈降及び凝集現象のな!/、安定な液状の光調整懸濁液を製造し た。 [0049] (紫外線硬化型シリコーン樹脂の製造例)
ディーンスタークトラップ、冷却管、攪拌機、加熱装置を備えた四つ口フラスコに、 両末端シラノールポリジメチルシロキサン (信越化学工業 (株)製) 11 · 75g、両末端 シラノールポリジメチルジフヱニルシロキサン (信越化学工業 (株)製) 31g、 (3—ァク リロキシプロピル)メチルジメトキシシラン (信越化学工業 (株)製) 4g、 2—ェチルへキ サン錫 (和光純薬工業 (株)製) 0. 6gを仕込み、ヘプタン中で 100°Cで 3時間リフラッ タスし、反応を行った。
[0050] 次いで、反応溶液に、トリメチルエトキシシラン (信越化学工業 (株)製) 10· 6gを添 加し、 2時間リフラックスし、脱アルコール反応させた。その後、ヘプタンをロータリー エバポレーターを用いて 60Paの真空で 80°C、 3時間減圧除去し、重量平均分子量 40, 000、屈折率 1. 468の紫外線硬化型シリコーン樹脂(エチレン性不飽和結合を 有する置換基をもつシリコーン樹脂)を得た。
[0051] (実施例 1)
(紫外線硬化型シリコーン樹脂の製造例)で得た紫外線硬化型シリコーン樹脂 62. 4gに、光重合開始剤としてのビス(2, 4, 6—トリメチルベンゾィル)フエニルフォスフィ ンオキサイド(チバ 'スペシャルティ'ケミカノレス(株)製) 0· 2gを 50°Cで溶解し、前記( 光調整懸濁液の製造例)で得た光調整懸濁液 37. 5gを添加し、 1分間機械的に混 合し、調光材料を製造した。
[0052] この調光材料を ITO (インジウム錫の酸化物)の透明導電膜 (厚み 300 A)がコーテ イングされてレ、る表面電気抵抗値が 200〜300 Ω /Sqのポリエステルフィルム (シェ ルダール製 ITO/PETフィルム 155954 (日本ペトロ(株)、厚み 150 μ m) )をロール 力も引き出し、その上に乾燥膜厚が 90 ΐηになるように自動塗工機 (テスタ工業 (株) 製)を用い,ベー力式アプリケータ(目盛 14)で塗布した。その後、塗布層上に前記と 同じポリエステルフィルムをラミネートした。ついで、塗布層に照度 160W/cm2のメタ ルハライドランプを用いて UV— Aで 4, 000mj/cm2の紫外線を照射し、光調整懸 濁液が球形の液滴として紫外泉硬化したシリコーン樹脂内に分散形成された調光層 を持つ調光フィルムを製造した。
[0053] 調光フィルム中の光調整懸濁液の液滴の大きさ(平均液滴径)は、平均 2 mであ つた。なお、調光フィルム中の光調整懸濁液の液滴の大きさ(平均液滴径)は、調光 フィルムの一方の面方向から光学顕微鏡で倍率 200倍の視野画像の写真を撮影し、 任意に選択した 50個の光調整懸濁液の液滴の直径を測定し、その平均値として算 し/
[0054] (実施例 2)
実施例 1において、調光材料の乾燥膜厚が 45 mになるように調光材料の量を減 らして塗布した以外は実施例 1と同様に行った。
[0055] (実施例 3)
実施例 1におレ、て、透明導電性樹脂基材の種類を ITO (インジウム錫の酸化物)の 透明導電膜 (厚み 300 A)がコーティングされている表面電気抵抗値が 200 300 Ωのポリエステルフィルム(厚み 250 μ m)に変えた以外は同様にして調光フィルムを 製造した。
[0056] (実施例 4)
実施例 3において、調光材料の乾燥膜厚が 45 mになるように調光材料の量を減 らして塗布した以外は実施例 3と同様に行った。
[0057] (実施例 5)
実施例 1におレ、て、透明導電性樹脂基材の種類を ITO (インジウム錫の酸化物)の 透明導電膜 (厚み 300 A)がコーティングされている表面電気抵抗値が 200 300 Ωのポリエステルフィルム(厚み 400 μ m)に変えた以外は同様にして調光フィルムを 製造した。
[0058] (実施例 6)
実施例 5において、調光材料の乾燥膜厚が 45 mになるように調光材料の量を減 らして塗布した以外は実施例 5と同様に行った。
[0059] (比較例 1)
実施例 1におレ、て、透明導電性樹脂基材の種類を ITO (インジウム錫の酸化物)の 透明導電膜 (厚み 300 A)がコーティングされている表面電気抵抗値が 200 300 Ωのポリエステルフィルム(テトライト TCF、尾池工業 (株)製、厚み 125 111)に変え た以外は同様にして調光フィルムを製造した。 [0060] (比較例 2)
実施例 1におレ、て、透明導電性樹脂基材の種類を ITO (インジウム錫の酸化物)の 透明導電膜 (厚み 300 A)がコーティングされている表面電気抵抗値が 200〜300 Ωのポリエステルフィルム(厚み 600 μ m)に変えた以外は同様にして調光フィルムを 製造した。
[0061] 表 1に,製造した各調光フィルムの未印加時と 400Hzの交流電圧(実効値) 100V の印加時に測定した光透過率と,調光フィルムを 0. 25m2のガラス板に接着剤層を 介し積層し、貼り合わせた場合の透明導電性樹脂基材のリークと調光フィルムの剥れ の評価結果を示した。なお、調光フィルムの光透過率は、分光式色差計(SZ—∑ 90 、 日本電色工業 (株)製)を使用し、 A光源、視野角 2度で測定した ¥値(%)を光透過 率とした。
なお、各調光フィルムの厚み方向の断面を光学顕微鏡で倍率 200倍の視野で確 認したところ、調光層内に界面は存在しな力、つた。
[0062] [表 1] 透明導電性 フィ /レムの フィ /レムの
項目 調光ガラス 樹脂基材 光透過率 光透過率
評価 l fe- ( μ. m ) Κ β m) (未印加時) (印加時)
実施例 1 150 90 0. 7 43. 5 良好 実施例 2 150 45 4. 2 59. 9 良好 実施例 3 250 90 0. 8 45. 6 良好 実施例 4 250 45 4. 9 50. 4 良好 実施例 5 400 90 0. 9 45. 6 良好 実施例 6 400 45 5. 7 52. 2 良好 比較例 1 125 90 5. 0 20. 9 端部リーク 比較例 2 600 90 0. 5 10. 3 剥れ

Claims

請求の範囲
[1] 2つの透明導電性樹脂基材と、前記 2つの透明導電性樹脂基材に挟持された調光 層とを備えた調光フィルムであって、調光層が、樹脂マトリックスと、前記樹脂マトリツ タス中に分散した光調整懸濁液とを含み、前記透明導電性樹脂基材の厚さが 130〜 500 μ mである調光フイノレム。
[2] 2つの透明導電性樹脂基材と、前記 2つの透明導電性樹脂基材に挟持された調光 層とを備えた調光フィルムであって、調光層が、樹脂マトリックスと、前記樹脂マトリツ タス中に分散した光調整懸濁液とを含み、前記透明導電性樹脂基材の厚さが 150〜 500 μ mである調光フイノレム。
[3] 2つの透明導電性樹脂基材の厚さが等しい請求項 1又は 2記載の調光フィルム。
[4] 調光層の厚さ力 10〜200 111である請求項 1〜3のいずれかに記載の調光フィル ム。
[5] 調光層の内部に界面がない請求項 1〜4のいずれかに記載の調光フィルム。
[6] 2枚のガラス板と、前記 2枚のガラス板の間に挟持された請求項 1〜5のいずれかに 記載の調光フィルムとを備えた調光ガラス。
[7] ガラス板が平板である請求項 6記載の調光ガラス。
PCT/JP2007/074747 2006-12-21 2007-12-21 調光フィルム及び調光ガラス WO2008075772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07851099A EP2124097A4 (en) 2006-12-21 2007-12-21 LIGHT CONTROL FILM AND LIGHT CONTROL GLASS
US12/520,259 US8098419B2 (en) 2006-12-21 2007-12-21 Light control film and light control glass
JP2008550200A JP5359276B2 (ja) 2006-12-21 2007-12-21 調光フィルム及び調光ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006344176 2006-12-21
JP2006-344176 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075772A1 true WO2008075772A1 (ja) 2008-06-26

Family

ID=39536392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074747 WO2008075772A1 (ja) 2006-12-21 2007-12-21 調光フィルム及び調光ガラス

Country Status (4)

Country Link
US (1) US8098419B2 (ja)
EP (1) EP2124097A4 (ja)
JP (2) JP5359276B2 (ja)
WO (1) WO2008075772A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322986A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
EP2322985A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
WO2011093332A1 (ja) * 2010-01-26 2011-08-04 日立化成工業株式会社 調光フィルム
WO2011093339A1 (ja) * 2010-01-26 2011-08-04 日立化成工業株式会社 調光フィルム
US20110310463A1 (en) * 2009-02-13 2011-12-22 Satoyuki Nomura Light control film
JP5704075B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 調光材料用(メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法
JP2016157021A (ja) * 2015-02-25 2016-09-01 日東電工株式会社 電界駆動型調光素子用透明導電性フィルム、調光フィルム、および電界駆動型調光素子
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film
JP2019512744A (ja) * 2016-03-22 2019-05-16 マーケティング ディスプレイズ インコーポレイテッドMarketing Displays,Inc. グラフィックミラー
JP2019194719A (ja) * 2019-06-25 2019-11-07 日東電工株式会社 電界駆動型調光素子用透明導電性フィルム、調光フィルム、および電界駆動型調光素子
DE112020000361T5 (de) 2019-02-20 2021-10-07 AGC Inc. Laminiertes glas
EP3994001A4 (en) * 2019-07-02 2022-08-17 Gauzy Ltd. SUSPENSION PARTICLE DEVICES WITH ENHANCED ADHESION BETWEEN ACTIVE AND CONDUCTIVE LAYERS

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423603B2 (ja) 2010-07-26 2014-02-19 日立化成株式会社 懸濁粒子装置及びその駆動方法
JP2012137575A (ja) 2010-12-27 2012-07-19 Hitachi Chem Co Ltd 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法
JP5556762B2 (ja) * 2011-08-01 2014-07-23 日立化成株式会社 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法
WO2013175025A1 (es) * 2012-05-21 2013-11-28 Spania Gta Tecnomotive, S.L Método para la obtención de elementos transparentes curvados con sistema de opacidad variable integrado y producto así obtenido.
JP6428983B2 (ja) * 2016-10-03 2018-11-28 凸版印刷株式会社 調光シート、および、画像撮影システム
JP6493598B1 (ja) * 2018-05-15 2019-04-03 凸版印刷株式会社 調光装置、調光装置の管理方法、および、調光装置の製造方法
US11237315B1 (en) 2019-03-04 2022-02-01 Apple Inc. Light-control panel with layered optical components
US11347096B1 (en) 2019-08-09 2022-05-31 Apple Inc. Light-control panel with layered optical components
CN112718028B (zh) * 2020-12-24 2022-11-01 深圳先进技术研究院 一种光操控液滴运动材料及其制备方法和应用

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB433455A (en) 1933-01-16 1935-08-15 Edwin Herbert Land Improvements in and relating to polarizing bodies
US2041138A (en) 1930-03-10 1936-05-19 Sheet Polarizer Company Inc Process of forming improved light polarizing bodies
US2306108A (en) 1939-05-04 1942-12-22 Polaroid Corp Method of manufacturing light polarizing material
US2375963A (en) 1943-05-07 1945-05-15 Polaroid Corp Process of manufacturing lightpolarizing material
JPS5336515B1 (ja) 1971-07-19 1978-10-03
US4270841A (en) 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
JPS5752371B2 (ja) 1979-11-22 1982-11-08
JPS58184129A (ja) * 1982-04-07 1983-10-27 Hikoyasu Sugimoto 遮光装置
JPS5853656B2 (ja) 1979-02-02 1983-11-30 テ−・ハ−・ゴルトシユミツト・アクチエンゲゼルシヤフト 平担な支持体用の不粘着性被覆材料用作用物質として好適なオルガノポリシロキサンの製法
US4422963A (en) 1977-05-11 1983-12-27 Research Frontiers Incorporated Light valve polarizing materials and suspensions thereof
JPS6117863B2 (ja) 1983-05-10 1986-05-09 Shinetsu Chem Ind Co
JPH09113939A (ja) 1995-09-27 1997-05-02 Res Frontiers Inc ライトバルブ用の改善された紫外線安定性光変調フィルム
JP2002189123A (ja) 2000-12-19 2002-07-05 Hitachi Chem Co Ltd 調光材料、調光フィルム及び調光フィルムの製造方法
JP2004361835A (ja) * 2003-06-06 2004-12-24 Three M Innovative Properties Co 光学フィルム及びその製造方法
JP2005300962A (ja) 2004-04-13 2005-10-27 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよび調光ガラスならびにその製造方法
JP2006064832A (ja) 2004-08-25 2006-03-09 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよびその製造方法
JP2006184820A (ja) * 2004-12-28 2006-07-13 Toyobo Co Ltd 近赤外線吸収フィルムおよび近赤外線吸収フィルター
JP2006344176A (ja) 2005-06-10 2006-12-21 Nec Electronics Corp 密度を考慮したマクロ配置設計装置、プログラム及び設計方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511489Y2 (ja) * 1989-12-29 1996-09-25 トヨタ自動車株式会社 粒子分散型表示素子
US5463492A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light modulating film of improved clarity for a light valve
US6219113B1 (en) * 1996-12-17 2001-04-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for driving an active matrix display panel
JPH1138455A (ja) * 1997-07-10 1999-02-12 Saint Gobain Vitrage 可変光学特性をもつ装置
US6987602B2 (en) * 1999-06-07 2006-01-17 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
JP4154175B2 (ja) * 2002-05-31 2008-09-24 キヤノン株式会社 電気泳動表示素子の製造方法
JP3949535B2 (ja) * 2002-08-06 2007-07-25 日本板硝子株式会社 調光体、合わせガラス、及び調光体の製造方法
JP2004109582A (ja) * 2002-09-19 2004-04-08 Dainippon Printing Co Ltd 調光ラミネート体
JP2004302192A (ja) * 2003-03-31 2004-10-28 Nippon Sheet Glass Co Ltd 調光体及び合わせガラス
US20060132945A1 (en) * 2003-06-06 2006-06-22 Koichi Sano Microstructured optical film and production process thereof
EP1735156B1 (en) * 2004-04-13 2016-07-20 Research Frontiers Incorporated Methods for laminating films for spd light valves and spd light valves incorporating such laminated films
JP4624708B2 (ja) 2004-04-13 2011-02-02 オリンパス株式会社 多方向観察装置
JP2005351933A (ja) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd 反射調光エレクトロクロミック素子、当該素子の製造方法、および当該素子を用いた反射調光ガラス
JP4840756B2 (ja) * 2005-01-14 2011-12-21 セイコーインスツル株式会社 電鋳型とその製造方法及び電鋳部品の製造方法
US20070058114A1 (en) * 2005-09-12 2007-03-15 Asahi Glass Company, Limited Light control device
JP4031506B2 (ja) * 2006-05-22 2008-01-09 株式会社ビジョンマルチメディアテクノロジ 電子ブラインド並びに電子ブラインドの製造方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041138A (en) 1930-03-10 1936-05-19 Sheet Polarizer Company Inc Process of forming improved light polarizing bodies
GB433455A (en) 1933-01-16 1935-08-15 Edwin Herbert Land Improvements in and relating to polarizing bodies
US2306108A (en) 1939-05-04 1942-12-22 Polaroid Corp Method of manufacturing light polarizing material
US2375963A (en) 1943-05-07 1945-05-15 Polaroid Corp Process of manufacturing lightpolarizing material
JPS5336515B1 (ja) 1971-07-19 1978-10-03
US4422963A (en) 1977-05-11 1983-12-27 Research Frontiers Incorporated Light valve polarizing materials and suspensions thereof
US4270841A (en) 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
JPS5853656B2 (ja) 1979-02-02 1983-11-30 テ−・ハ−・ゴルトシユミツト・アクチエンゲゼルシヤフト 平担な支持体用の不粘着性被覆材料用作用物質として好適なオルガノポリシロキサンの製法
JPS5752371B2 (ja) 1979-11-22 1982-11-08
JPS58184129A (ja) * 1982-04-07 1983-10-27 Hikoyasu Sugimoto 遮光装置
JPS6117863B2 (ja) 1983-05-10 1986-05-09 Shinetsu Chem Ind Co
JPH09113939A (ja) 1995-09-27 1997-05-02 Res Frontiers Inc ライトバルブ用の改善された紫外線安定性光変調フィルム
JP2002189123A (ja) 2000-12-19 2002-07-05 Hitachi Chem Co Ltd 調光材料、調光フィルム及び調光フィルムの製造方法
JP2004361835A (ja) * 2003-06-06 2004-12-24 Three M Innovative Properties Co 光学フィルム及びその製造方法
JP2005300962A (ja) 2004-04-13 2005-10-27 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよび調光ガラスならびにその製造方法
JP2006064832A (ja) 2004-08-25 2006-03-09 Dainippon Ink & Chem Inc 調光材料、調光フィルムおよびその製造方法
JP2006184820A (ja) * 2004-12-28 2006-07-13 Toyobo Co Ltd 近赤外線吸収フィルムおよび近赤外線吸収フィルター
JP2006344176A (ja) 2005-06-10 2006-12-21 Nec Electronics Corp 密度を考慮したマクロ配置設計装置、プログラム及び設計方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2124097A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322986A4 (en) * 2008-08-19 2012-01-25 Hitachi Chemical Co Ltd LIGHT MODULATING MOVIE
EP2322985A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
EP2322986A1 (en) * 2008-08-19 2011-05-18 Hitachi Chemical Company, Ltd. Light-modulating film
US10156767B2 (en) 2008-08-19 2018-12-18 Hitachi Chemical Company, Ltd. Light control film
US9983456B2 (en) 2008-08-19 2018-05-29 Hitachi Chemical Company, Ltd. Light control film
EP2322985A4 (en) * 2008-08-19 2012-01-25 Hitachi Chemical Co Ltd LIGHT MODULATING MOVIE
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film
US20110310463A1 (en) * 2009-02-13 2011-12-22 Satoyuki Nomura Light control film
US10175551B2 (en) 2009-02-13 2019-01-08 Hitachi Chemical Company, Ltd. Light control film
JP5621596B2 (ja) * 2009-02-13 2014-11-12 日立化成株式会社 調光フィルム
WO2011093339A1 (ja) * 2010-01-26 2011-08-04 日立化成工業株式会社 調光フィルム
WO2011093332A1 (ja) * 2010-01-26 2011-08-04 日立化成工業株式会社 調光フィルム
AU2011211121B2 (en) * 2010-01-26 2015-01-22 Resonac Corporation Light Control Film
JP5704075B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 調光材料用(メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法
US8681418B2 (en) 2010-01-26 2014-03-25 Hitachi Chemical Company, Ltd. Light control film
US8570642B2 (en) 2010-01-26 2013-10-29 Hitachi Chemical Company, Ltd. Light control film
JP5614416B2 (ja) * 2010-01-26 2014-10-29 日立化成株式会社 調光フィルム
JP5614415B2 (ja) * 2010-01-26 2014-10-29 日立化成株式会社 調光フィルム
JP2016157021A (ja) * 2015-02-25 2016-09-01 日東電工株式会社 電界駆動型調光素子用透明導電性フィルム、調光フィルム、および電界駆動型調光素子
JP2019512744A (ja) * 2016-03-22 2019-05-16 マーケティング ディスプレイズ インコーポレイテッドMarketing Displays,Inc. グラフィックミラー
DE112020000361T5 (de) 2019-02-20 2021-10-07 AGC Inc. Laminiertes glas
US11945190B2 (en) 2019-02-20 2024-04-02 AGC Inc. Laminated glass
JP2019194719A (ja) * 2019-06-25 2019-11-07 日東電工株式会社 電界駆動型調光素子用透明導電性フィルム、調光フィルム、および電界駆動型調光素子
EP3994001A4 (en) * 2019-07-02 2022-08-17 Gauzy Ltd. SUSPENSION PARTICLE DEVICES WITH ENHANCED ADHESION BETWEEN ACTIVE AND CONDUCTIVE LAYERS

Also Published As

Publication number Publication date
JP2013210670A (ja) 2013-10-10
JP5359276B2 (ja) 2013-12-04
US20090316254A1 (en) 2009-12-24
JPWO2008075772A1 (ja) 2010-04-15
EP2124097A1 (en) 2009-11-25
US8098419B2 (en) 2012-01-17
EP2124097A4 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5359276B2 (ja) 調光フィルム及び調光ガラス
JP5233676B2 (ja) 調光フィルム及び調光ガラス
JP5768843B2 (ja) 調光フィルム
JP5600874B2 (ja) 調光フィルム
JP5110157B2 (ja) 調光フィルムの製造方法及び調光フィルム
JP5104954B2 (ja) 調光フィルム
JP2008158043A (ja) 調光フィルム
JP5152334B2 (ja) 調光フィルム
JP2012037558A (ja) 調光性構造体
JP2008158040A (ja) 調光材料、それを用いた調光フィルム及びその製造方法
JP2008158042A (ja) 調光フィルム
JP2008158041A (ja) 調光材料、調光フィルム及び調光フィルムの製造方法
JP2013182112A (ja) 調光フィルム及びその製造方法
JP5477224B2 (ja) 調光フィルム
JP2012032715A (ja) 調光性構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07851099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550200

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12520259

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007851099

Country of ref document: EP