JP4154175B2 - 電気泳動表示素子の製造方法 - Google Patents

電気泳動表示素子の製造方法 Download PDF

Info

Publication number
JP4154175B2
JP4154175B2 JP2002159532A JP2002159532A JP4154175B2 JP 4154175 B2 JP4154175 B2 JP 4154175B2 JP 2002159532 A JP2002159532 A JP 2002159532A JP 2002159532 A JP2002159532 A JP 2002159532A JP 4154175 B2 JP4154175 B2 JP 4154175B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
display element
electrophoretic
electrophoretic display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002159532A
Other languages
English (en)
Other versions
JP2004004282A5 (ja
JP2004004282A (ja
Inventor
昌人 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002159532A priority Critical patent/JP4154175B2/ja
Priority to US10/448,399 priority patent/US20030224102A1/en
Publication of JP2004004282A publication Critical patent/JP2004004282A/ja
Priority to US11/782,280 priority patent/US7622148B2/en
Publication of JP2004004282A5 publication Critical patent/JP2004004282A5/ja
Application granted granted Critical
Publication of JP4154175B2 publication Critical patent/JP4154175B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Description

【0001】
【発明の属する技術分野】
本発明は高精細でかつカラー表示を可能とする電気泳動表示の製造方法とそれを用いた電気泳動表示素子に関する。
【0002】
【従来の技術】
近年、マイクロカプセルを用いた電気泳動表示素子として、電気泳動粒子及び電気泳動粒子の色調とは異なる分散液を内包したマイクロカプセルからなる電気泳動表示素子(特開昭64−86116号)、色調と極性の異なる2種類の電気泳動粒子及び無色透明の分散液を内包したマイクロカプセルからなる電気泳動表示素子(特開平11−119264号)等が数多く提案されている。従来、このような電気泳動表示用のマイクロカプセルは、主に、界面重合法、in situ重合法、相分離法(コアセルベーション法)のいずれかの方法によって製造され、そのマイクロカプセルをバインダー樹脂と混合し、得られた樹脂組成物をロールコーター法、ロールラミネーター法、スクリーン印刷法、スプレー法等を用い、電極基板上に塗布することによって電気泳動表示素子を得るのが、一般的な製造方法であった。
【0003】
【発明が解決しようとする課題】
しかしながら、高精細な表示を行おうとした場合、表示画素を構成する電極上にマイクロカプセルを正確に配置し、個々のマイクロカプセルを駆動制御しなければならないと言う課題があった。
【0004】
また、カラー表示を行おうとした場合、各画素に表示色の異なる均一なマイクロカプセルを、電極基板上の所定の位置に配置して、これらのマイクロカプセルを各々独立して駆動制御しなければならないという課題もあった。
【0005】
従来の電気泳動表示素子用のマイクロカプセルは、主に、界面重合法、in situ 重合法、相分離法(コアセルベーション法)等で製造されていた。このような方法で得られるマイクロカプセルは一般的に粒度分布が広く、所望の粒径を持つマイクロカプセルを得る為には、ふるい分けや比重分離法等の方法によって、分級作業を行わなければならず、従来の製造方法では均一なマイクロカプセルを製造することは困難であった。
【0006】
また、マイクロカプセルをバインダー樹脂と混合し、得られた樹脂組成物をロールコーター法、ロールラミネーター法、スクリーン印刷法、スプレー法等の方法を用いて電極基板上に塗布する方法では、マイクロカプセルを電極基板上の所望の位置に正確に配置することは不可能であった。
【0007】
【課題を解決するための手段】
発明に係る電気泳動表示装置の製造方法は、
電気泳動粒子と分散媒を含む分散液と、前記分散液の一部を被覆するための被膜物質とから形成された閉空間領域を、複数の画素電極を備えている基板上に配置した電気泳動表示素子の製造方法であって、
同心円上に配置された複数ノズルを有する吐出手段を用いて、前記複数ノズルの1つから前記分散液を吐出し、次いで他のノズルから前記被膜物質を吐出することによって、前記画素電極上に、前記電気泳動粒子と前記分散媒とを内包し、かつ前記画素電極上に形成された絶縁膜と前記被膜物質とから構成される前記閉空間領域を形成することを特徴とする。
本発明に係る電気泳動表示装置は、
少なくとも1枚の前記基板上に形成された第1の画素電極と第2の画素電極と前記第1及び第2の画素電極間に前記電気泳動粒子を泳動できる電圧を印加する駆動手段を有する電気泳動表示素子であって、上記の製造方法により作製されている閉空間領域を有することを特徴とする。
【0008】
即ち、本発明の1つは、複数ノズルを用いて3原色のいずれかに着色された分散媒、及び3原色とは異なる色を有する電気泳動粒子を内包し、3原色の色で区別される3種類の小区画を、電極基板上の所望の位置に形成することによって、高精細なカラー表示ができる電気泳動表示素子の製造方法を提供するものである。
【0009】
即ち、本発明の別の形態は、複数ノズルを用いて無色透明の分散媒、3原色のいずれかの色を有する電気泳動粒子、及びそれとは極性と色の異なる別種の電気泳動粒子を内包し、3原色の色で区別される3種類の小区画を、電極基板上の所望の位置に形成することによって、高精細なカラー表示ができる電気泳動表示素子の製造方法を提供するものである。
【0010】
本発明のさらに別の形態は、複数ノズルを有する吐出手段を用いて、無色透明の分散媒と電気泳動粒子からなる分散液を内包した小区画を、基板上の所定の位置に形成された3原色のいずれかの色とそれとは別の色を有する、一対の電極上に配置することによって、高精細なカラー表示ができる電気泳動表示素子の製造方法を提供するものである。
【0011】
また本発明は、前記小区画が均一な粒径を有するマイクロカプセルであることを特徴とする電気泳動表示素子の製造方法であって、少なくとも2つ以上のノズルから構成された複数ノズルの一方から電気泳動粒子と分散媒を含む分散液を吐出し、その他方から分散液を被覆する為の被膜物質を吐出することによって、分散液を被膜したマイクロカプセルを形成し、電極を備えた基板上の所望の位置に配置することを特徴とする電気泳動表示素子の製造方法である。
【0012】
即ち、本発明は、前記小区画が基板と被膜物質から構成された均一な閉空間であることを特徴とする電気泳動表示素子の製造方法であって、少なくとも2つ以上のノズルから構成された複数ノズルの一方から電気泳動粒子と分散媒を含む分散液を、電極を備えた基板上の所望の位置に吐出し、次いで、その他方から分散液を被覆する為の被膜物質を吐出することによって、電気泳動粒子と分散媒を内包した小区画を形成することを特徴とする電気泳動表示素子の製造方法である。
【0013】
【発明の実施の形態】
図1は本発明の電気泳動表示素子の一実施態様を示す構成図であり、小区画がマイクロカプセルの場合である。図1(A)は電気泳動表示素子の断面図であり、図1(B)はマイクロカプセルの配列を模式的に示した上図面である。図1(A)において、本発明の電気泳動表示素子は、基板1a、1b上に、それぞれ第1電極1c、第2電極1dが形成されており、第1電極1c上にマイクロカプセルが配置され、第1電極1cと第2電極1dで挟まれた構造を有する。マイクロカプセルは、3原色のいずれかに着色した分散媒、及び3原色とは異なる色を有する電気泳動粒子を内包し、ここでは、イエロー(Y)、マゼンタ(M)、シアン(C)にそれぞれ着色された分散媒で区別される3種類のマイクロカプセル1e、1f、1gが配置されている。以後、Y、M、Cと略記する。この電気泳動表示素子は、第2電極1dを有する基板1bが表示面である。また、図1(B)に示すように、この3種類のマイクロカプセル1e、1f、1gは均一な粒径を持ち、行方向と列方向に配置された2次元配列であり、同じ色が列方向に一列につながるようなストライプ配列で第1電極1c上に配置されている。図1(B)においては、基板1bと第2電極1dは省略されている。
【0014】
なお、基板上に配置されたマイクロカプセル1e、1f、1gの位置ずれを防止する目的で、マイクロカプセル1e、1f、1gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定しても良い。
【0015】
第1電極1cは、図1(B)に示すように配置されているマイクロカプセルに対して、各々独立して所望の電界を印加できる画素電極であり、この画素電極にはスイッチ素子が設けられており、不図示のマトリクス駆動回路から行ごとに選択信号が印加され、更に各列に制御信号と駆動トランジスタからの出力が印加されて、個々のマイクロカプセルに対して所望の電界を印加することができる。
【0016】
3種類の各マイクロカプセルの構成を図2に示す。図2(A)は、Yのマイクロカプセル1eを示す図であり、Yで着色された分散媒1h中に白色の電気泳動粒子1iが分散している状態を示す。図2(B)は、Mのマイクロカプセル1fを示す図であり、Mで着色された分散媒1j中に白色の電気泳動粒子1iが分散している状態を示す。また、図2(C)は、Cのマイクロカプセル1gを示す図であり、Cで着色された分散媒1k中に白色の電気泳動粒子1iが分散している状態を示している。ここでは、電気泳動粒子として白色の粒子を示したが、黒色の粒子であっても構わない。
【0017】
電極間に挟まれたマイクロカプセルの表示について、マイクロカプセル1eを一例にして図3で説明する。マイクロカプセル1eは、Yに着色された分散媒1hと白色の電気泳動粒子1iを内包し、白色の電気泳動粒子1iは正に帯電しているものとする。マイクロカプセル1eに対して図3(A)の矢印の方向に電界Eが印加された場合、正に帯電している白色の電気泳動粒子1iはカプセルの上側に移動し、上面に分布する。その結果、マイクロカプセル1eを上から観察すると、白色の電気泳動粒子1iの分布により白色に見える。一方、マイクロカプセル1eに対して図3(B)の矢印の方向に電界Eが印加された場合、白色の電気泳動粒子1iはカプセルの下側に移動し底面に分布するので、マイクロカプセル1eを上から観察すると、分散媒の色であるYに見える。
【0018】
図1において、第1電極1cと第2電極1dで挟まれた各マイクロカプセルは、第1電極1cにより印加される電界によって制御され、各マイクロカプセルは粒子の色と分散媒の色を表示する。第2電極1dは、図1に示すように2次元的に配置されたマイクロカプセルを全面同一電位で覆うように形成された透明電極である。分散媒がY、M、Cで区別される3種類のマイクロカプセルは、図1(B)に示すように行方向にYMCYMCと繰返し配置し、この様に連続した3種類のマイクロカプセ1e、1f、1gで、1画素の表示部が構成されるものとして制御を行う。各画素の制御によって、高精細なカラー表示ができる。
【0019】
尚、マイクロカプセルの2次元配列は、図1(B)の配列に限定されるものではなく、例えば、図4(A)のモザイク配列や図4(B)の三角形配列であっても良い。また、画素の構成に関しても、本実施態様のような一列に連続した3種類のマイクロカプセル3個から成る画素に限定されるものではない。
【0020】
本実施態様では、三原色としてY、M、Cの分散媒を用いてカラー表示を行ったが、他の三原色としてレッド(R)、グリーン(G)、ブルー(B)の分散媒を用いてカラー表示を行っても良い。また、電気泳動粒子は白色の粒子を用いたが、黒色の粒子であっても良い。
【0021】
次に、本実施態様の製造方法に関して、図5を用いて説明する。図5において、基板1a上に各マイクロカプセルを制御する為の第1電極1cをパターン形成する。(図5(A)参照)
基板1aは、電気泳動表示素子を支持する任意の絶縁部材であり、ガラスやプラスチックなどを用いる事ができる。第1電極1cの材料には特に制限はないが、AlやITO等を使用することができる。
【0022】
次に、少なくとも3種類の複数ノズル1lを用いて、それぞれY、M、Cに着色された分散媒1h、1j、1k、及び白色の電気泳動粒子1iを内包した、3種類のマイクロカプセル1e、1f、1gを、第1電極1c上の所望の位置に形成する。(図5(B)参照)
本実施態様の複数ノズル1lを図6に示す。図6(A)は複数ノズル1lの概略図であり、図6(B)はX−X‘断面図である。複数ノズル1lは第1ノズル1mと第2ノズル1nからなる2重同心円ノズルであり、第1ノズル1mは分散液を貯蔵するタンク1pに連結されており、第2ノズル1nは被膜物質を貯蔵するタンク1qに連結されている。また、各タンクには、分散液や被膜物質の吐出する為のポンプ(不図示)が設けられている。
【0023】
第1ノズル1mのサイズは10〜500μmであり、好ましくは40〜200μmである。一方、第2ノズル1nのサイズは0.1〜5μmであり、好ましくは0.1〜2μmである。形成されるマイクロカプセルの大きさは、第1ノズル1mと第2ノズル1nのサイズによって、所望の粒径に制御できる。本実施態様で製造されるマイクロカプセルの粒径は10〜500μmであり、好ましくは、40〜200μmである。
【0024】
図7の概略図に示すように、第1ノズル1mから電気泳動粒子と分散媒を含む分散液1rを吐出し、第2ノズル1nから分散液1rを被覆する為の被膜物質1sを吐出することによって、分散液1rを被膜したマイクロカプセルを形成し、電極を備えた基板上の所望の位置に配置する。
【0025】
また、マイクロカプセル1e、1f、1gを形成する場合、複数ノズル1lを上下に振動して、分散液1rと被膜物質1sの噴出量を制御しても良い。
【0026】
更に、分散液1rや被膜物質1sの吐出量を精度良く制御する為に、複数ノズル1lの先端に吐出制御手段1oが設けられている(図6)。吐出制御手段1oとして、例えば、圧電変換素子や加熱発泡素子を用いることができる。タンク1pとタンク1qに設けられた各ポンプ(不図示)、及び複数ノズル1lに備えた吐出制御手段1oによって、分散液1rと被膜物質1sの吐出量を制御し、均一な粒径を持つマイクロカプセルを形成することができる。
【0027】
また、マイクロカプセル1e、1f、1gを電極基板上の所望の位置に配置する場合、第1電極1cに電圧を印加しながら、マイクロカプセルの配置を行っても良い。
【0028】
また、マイクロカプセル1e、1f、1gを電極基板上の所望の位置に配置する場合、基板上に図8に示すような凹凸の形状を予めパタ−ン形成し、その中にマイクロカプセルを配置しても良い。図8は凹凸形状の一例であり、図8(a)は断面図、図8(b)は上図面を示す。但し、基板上に形成する凹凸形状は、図8に限定されるものではない。
【0029】
3種類のタンク1pには、それぞれ、Y、M、Cに着色された分散媒1h、1j、1k中に白色の電気泳動粒子1iが分散された状態にある。
【0030】
分散媒としては、高絶縁性でしかも無色透明な液体が挙げられるが、例えば、トルエン、キシレン、エチルベンゼン、ドデシルベンゼン等の芳香族炭化水素、ヘキサン、シクロヘキサン、ケロシン、ノルマルパラフィン、イソパラフィンなどの脂肪族炭化水素、クロロホルム、ジクロロメタン、ペンタクロロエタン、1、2−ジブロモエタン、1、1、2、2−テトラブロモエタン、トリクロロエチレン、テトラクロロエチレン、トリフルオロエチレン、テトラフルオロエチレン等のハロゲン化炭化水素、天然又は合成の各種の油等を使用できこれらを2種以上で混合して用いても良い。また、分散媒には、必要に応じて、電荷調整剤、分散剤、潤滑剤、安定化剤などを添加することができる。
【0031】
分散媒をY、M、Cに着色するには、Y、M、Cの油溶染料を用いることができる。また、他の3原色であるレッド(R)、グリーン(G)、ブルー(B)の分散媒を得るには、R、G、Bの油溶染料を用いることができる。これらの油溶染料として、アゾ染料、アントラキノン染料、キノリン染料、ニトロ染料、ニトロソ染料、ペノリン染料、フタロシアニン染料、金属錯塩染料、ナフール染料、ベンゾキノン染料、シアニン染料、インジゴ染料、キノイミン染料等の油溶染料が好ましく、これらを組み合せて使用しても良い。
【0032】
例えば、以下の油溶染料を挙げることができる。バリファーストイエロー(1101、1105、3108、4120)、オイルイエロー(105、107、129、3G、GGS)、バリファーストレッド(1306、1355、2303、3304、3306、3320)、オイルピンク312、オイルスカーレット308、オイルバイオレット730、バリファーストブルー(1501、1603、1605、1607、2606、2610、3405、)、オイルブルー(2N、BOS、613)、マクロレックスブルーRR、スミプラストグリーンG、オイルグリーン(502、BG)等であり、油溶染料の濃度は0.3〜3.5質量%が好ましい。
【0033】
白色粒子として、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉛、酸化スズ等を用いることができ、黒色粒子として、カーボンブラック、ダイアモンドブラック、アニリンブラック、マンガンフェライトブラック、コバルトフェライトブラック等を用いることができる。粒子の表面を公知の電荷制御樹脂(CCR)で被覆することによって、電気泳動粒子1iとして用いても良い。なお、電気泳動粒子1iの大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子1iの濃度は、3〜30質量%が好ましい。
【0034】
タンク1qには、被膜物質が貯蔵されており、必要に応じて界面活性剤を添加していても良い。界面活性剤としては、高分子系の界面活性剤が好ましく、例えば、スチレン−無水マレイン酸やエチレン−無水マレイン酸等を使用することができる。界面活性剤の濃度は、1〜10質量%が好ましい。
【0035】
マイクロカプセルを形成する被膜物質としては、分散液を被膜でき、光を十分に透過させるような無色透明な材料が挙げられ、例えば、熱硬化性ポリマーやUV硬化性ポリマー等を用いる事ができる。熱硬化性ポリマーは、硬化する前は水溶性のプレポリマーであり、赤外線照射等による加熱によって硬化すると、水に不溶のポリマーになる。熱硬化性プレポリマーとしては、尿素−ホルムアルデヒドのメチロール体やメラミン−ホルムアルデヒドのメチロール体等の水溶性プレポリマーを使用できる。また、UV硬化性ポリマーは、硬化する前は水溶性のプレポリマーであり、UV照射によって硬化すると、水に不溶のポリマーになる。UV硬化性プレポリマーとしては、ウレタンアクリレート、エステルアクリレート、メラミンアクリレート等の水溶性プレポリマーを使用することができる。UV硬化性プレポリマーには、必要に応じて光重合開始剤等を添加しても良い。被膜物質の濃度は、70〜90質量%が好ましい。但し、吐出制御手段1oとして加熱発泡素子を用いる場合、被膜物質はUV硬化性ポリマーであることが好ましい。
【0036】
マイクロカプセルの被膜物質の硬化に関しては、マイクロカプセルを基板上に全て形成した後、その被膜物質を一括して硬化させても良いし、また、マイクロカプセルを基板上に形成しながら、順次、その被膜物質を硬化させても良い。
【0037】
尚、本実施態様では、複数ノズル1lとして2重同心円ノズルの場合について記載したが、3重同心円ノズル等の多重同心円ノズルを使用しても良い。例えば、3重同心円ノズルを使用する場合、3重同心円ノズルの内管から電気泳動粒子と分散媒を含む分散液を、中管から界面活性剤を含む水溶液を、外管から分散液と界面活性剤を被覆する為の被膜物質を吐出することによって、電極基板上の所望の位置に、均一なマイクロカプセル1e、1f、1gを形成することができる。また、前記多重同心円ノズルを複数個備えたライン状ノズルであっても良い。
【0038】
なお、基板上に配置されたマイクロカプセル1e、1f、1gが位置ずれを防止する目的で、マイクロカプセル1e、1f、1gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定しても良い。光透過性の樹脂バインダーとして、水溶性のポリマーを挙げることができ、例えば、ポリビニルアルコール、ポリウレタン、ポリエステル、アクリル樹脂、シリコーン樹脂等を用いることができる。
【0039】
次に、第1電極1c上に配置されたマイクロカプセルの層を、第2電極1dを備えた基板1bで覆い、封止する。(図5(C)参照)
基板1aと1bを封止する場合、マイクロカプセル1e、1f、1g間の隙間が出来る限りなくなるように、押圧下で基板1aと1bを封止しても良い。
【0040】
第2電極1dは、2次元的に配置されたマイクロカプセルを全面同一電位で覆うように形成された透明電極であり、電極材料として、ITOや有機導電性膜等を使用することができる。
【0041】
基板1bは電気泳動表示素子の表示面であり、絶縁性の透明部材であれば特に制限されないが、例えば、光透過性のガラスや石英、あるいは、ポリエチレンテレフタレート(PET)やポリエーテルサルホン(PES)等のプラスチックフィルムを用いることができる。
【0042】
次に、本発明の表示素子の他の実施態様例を示す。図9は、本発明の電気泳動表示素子の他の実施態様例を示す構成図であり、小区画がマイクロカプセルの場合である。図9(A)は電気泳動表示素子の断面図であり、図9(B)はマイクロカプセルの配列を模式的に示した上図面である。図9(A)において、本発明の電気泳動表示素子は、前述の図1と同様に、基板2a、2b上に、それぞれ第1電極2c、第2電極2dが形成されており、第1電極2c上にマイクロカプセルが配置され、第1電極2cと第2電極2dで挟まれた構造を有する。マイクロカプセルは、無色透明の分散媒において、3原色のいずれかに着色した電気泳動粒子、及びそれとは極性と色の異なる別種の電気泳動粒子を内包し、ここではレッド(R)、グリーン(G)、ブルー(B)にそれぞれ着色された電気泳動粒子で区別される3種類のマイクロカプセル2e、2f、2gが配置されている。以後、R、G、Bと略記する。この電気泳動表示素子は、第2電極2dを有する基板2bが表示面である。また、図9(B)に示すように、この3種類のマイクロカプセル2e、2f、2gは均一な粒径を持ち、行方向と列方向に配置された2次元配列であり、同じ色が列方向に一列につながるようなストライプ配列で第1電極2c上に配置されている。図9(B)においては、基板2bと第2電極2dは省略されている。
【0043】
なお、基板上に配置されたマイクロカプセル2e、2f、2gが位置ずれを防止する目的で、マイクロカプセル2e、2f、2gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。
【0044】
第1電極2cは、図9(B)に示すように配置されているマイクロカプセルに対して、各々独立して所望の電界を印加できる画素電極であり、この画素電極にはスイッチ素子が設けられており、不図示のマトリクス駆動回路から行ごとに選択信号が印加され、更に各列に制御信号と駆動トランジスタからの出力が印加されて、個々のマイクロカプセルに対して所望の電界を印加することができる。
【0045】
3種類の各マイクロカプセルの構成を図10に示す。図10(A)は、Rのマイクロカプセル2eを示す図であり、無色透明の分散媒2h中にRの色と正帯電を有する電気泳動粒子2i、及び負帯電を有する白色の電気泳動粒子2jが分散している状態を示す。図10(B)は、Gのマイクロカプセル2fを示す図であり、無色透明の分散媒2h中にGの色と正帯電を有する電気泳動粒子2k、及び負帯電を有する白色の電気泳動粒子2jが分散している状態を示している。また、図10(C)は、Bのマイクロカプセル2gを示す図であり、無色透明の分散媒2h中にBの色と正帯電を有する電気泳動粒子2l、及び負帯電を有する白色の電気泳動粒子2jが分散している状態を示している。ここでは、白色の電気泳動粒子を示したが、黒色の電気泳動粒子であっても構わない。
【0046】
電極間に挟まれたマイクロカプセルの表示について、マイクロカプセル2eを一例にして図11で説明する。マイクロカプセル2eは、無色透明の分散媒2h中にRの色と正帯電を有する電気泳動粒子2i、及び負帯電を有する白色の電気泳動粒子2jを内包している。マイクロカプセル2eに対して図11(A)の矢印の方向に電界Eが印加された場合、正に帯電しているRの電気泳動粒子2iはカプセルの上側に移動し、上面に分布する。また、負に帯電している白色の電気泳動粒子2jはカプセルの下側に移動し、底面に分布する。その結果、マイクロカプセル2eを上から観察すると、Rの電気泳動粒子2iの分布によりRに見える。一方、マイクロカプセル2eに対して図11(B)の矢印の方向に電界Eが印加された場合、負に帯電している白色の電気泳動粒子2jはカプセルの上側に移動し、正に帯電しているRの電気泳動粒子2iはカプセルの下側に移動するので、マイクロカプセル2eを上から観察すると、白色に見える。
【0047】
図9において、第1電極2cと第2電極2dで挟まれた各マイクロカプセルは、第1電極2cにより印加される電界によって制御され、各マイクロカプセルは内包する2種類の粒子の色を表示する。第2電極2dは、図9(B)に示しように2次元的に配置されたマイクロカプセルを全面同一電位で覆うように形成された透明電極である。電気泳動粒子がR、G、Bで区別される3種類のマイクロカプセルは、図9(B)に示すように行方向にRGBRGBと繰返し配置し、この様に連続した3種類のマイクロカプセ2e、2f、2gで、1画素の表示部が構成されるものとして制御を行う。各画素の制御によって、高精細なカラー表示ができる。
【0048】
尚、マイクロカプセルの2次元配列は、図9(B)の配列に限定されるものではなく、例えば、図12(A)のモザイク配列や図12(B)の三角形配列であっても良い。また、画素の構成に関しても、本実施態様のような一列に連続した3種類のマイクロカプセル3個から成る画素に限定されるものではない。
【0049】
本実施態様では、3原色としてR、G、Bの色を有する電気泳動粒子を用いてカラー表示を行ったが、他の3原色としてY、M、Cの色を有する電気泳動粒子を用いてカラー表示を行っても良い。また、白色の電気泳動粒子を、黒色の電気泳動粒子に替えて使用しても良い。
【0050】
次に、本実施態様の製造方法に関して、図13を用いて説明する。図13において、基板2a上に各マイクロカプセルを制御する為の第1電極2cをパターン形成する。(図13(A)参照)
基板2aは、電気泳動表示素子を支持する任意の絶縁部材であり、ガラスやプラスチックなどを用いる事ができる。第1電極2cの材料には特に制限はないが、AlやITO等を使用することができる。
【0051】
次に、少なくとも3種類の複数ノズル1lを用いて、無色透明の分散媒、3原色に着色した電気泳動粒子2i、2k、2l、及びそれとは極性と色の異なる別種の電気泳動粒子2jを内包した、3種類のマイクロカプセル2e、2f、2gを、第1電極2c上の所望の位置に形成する。(図13(B)参照)
本実施態様の複数ノズル1lは前述したように、第1ノズル1mと第2ノズル1nからなる2重同心円ノズル(図6)を用いることができ、本実施態様で製造されるマイクロカプセルの粒径は10〜500μmであり、好ましくは、40〜200μmである。
【0052】
タンク1pとタンク1qから連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、マイクロカプセル2e、2f、2gを形成し、電極基板上の所望の位置に配置する。
【0053】
前述したように、マイクロカプセル2e、2f、2gを形成する場合、複数ノズル1lを上下に振動して分散液と被膜物質の吐出量を制御しても良い。更に、タンク1pとタンク1qに設けられた各ポンプ(不図示)、及び複数ノズル1lに備えた吐出制御手段1oによって、分散液と被膜物質の吐出量を制御し、均一な粒径を持つマイクロカプセルを形成することができる。
【0054】
前述したように、マイクロカプセル2e、2f、2gを電極基板上の所望の位置に配置する場合、第1電極2cに電圧を印加しながら、マイクロカプセルの配置を行っても良い。また、マイクロカプセル2e、2f、2gを電極基板上の所望の位置に配置する場合、基板上に図8に示すような凹凸の形状を予めパタ−ン形成し、その中にマイクロカプセルを配置しても良い。
【0055】
3種類のタンク1pには、それぞれ、無色透明の分散媒2h中に白色の電気泳動粒子2j、及びR、G、Bの色を有する電気泳動粒子2i、2k、2lがそれぞれペアーで分散された状態にある。
【0056】
分散媒2hとしては、前述したように、高絶縁性でしかも無色透明な液体を用いる事ができる。また、分散媒には、必要に応じて、電荷調整剤、分散剤、潤滑剤、安定化剤などを添加することができる。
【0057】
3原色であるR、G、Bの色を有する電気泳動粒子2i、2k、2lとしては、R、G、Bの色を有する有機顔料粒子や無機顔料粒子等を用いることができる。また、他の3原色であるY、M、Cの色を有する電気泳動粒子でカラー表示する場合、Y、M、Cの色を有する有機顔料粒子や無機顔料粒子等を用いることができる。具体的には、カドミウムレッド、キナクリドンレッド、レーキレッド、ブリリアントカーミン、マダーレーキ等の赤色顔料、ダイアモンドグリーンレーキ、フタロシアニングリーン、ピグメントグリーンB等の緑色顔料、コバルトブルー、ビクトリアブルーレーキ、フタロシアニンブルー、ファストスカイブルー等の青色顔料、ハンザイエロー、カドミウムイエロー、ファストイエロー、ジスアゾイエロー、チタンイエロー、黄色酸化鉄、黄鉛、ハンザイエロー、ジスアゾイエロー等の黄色顔料を用いることができる。
【0058】
粒子の表面を公知の電荷制御樹脂で被覆することによって、電気泳動粒子として用いても良い。なお、電気泳動粒子の大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子の濃度は、3〜30質量%が好ましい。
【0059】
白色粒子としては、前述したように、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉛、酸化スズなどを用いることができ、黒色粒子としては、カーボンブラック、ダイアモンドブラック、アニリンブラック、マンガンフェライトブラック、コバルトフェライトブラックを用いることができる。電気泳動粒子の大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子の濃度は、3〜30質量%が好ましい。
【0060】
タンク1qには、被膜物質が貯蔵されており、必要に応じて界面活性剤を添加していても良い。界面活性剤としては、前述したように、スチレン−無水マレイン酸やエチレン−無水マレイン酸等を使用することができ、界面活性剤の濃度は1〜10質量%が好ましい。
【0061】
マイクロカプセルを形成する被膜物質としては、前述したように、熱硬化性ポリマーやUV硬化性ポリマー等を用いる事ができ、被膜物質の濃度は70〜90質量%が好ましい。
【0062】
マイクロカプセルの被膜物質の硬化に関しては、前述したように、マイクロカプセルを基板上に全て形成した後、その被膜物質を一括して硬化させても良いし、また、マイクロカプセルを基板上に形成しながら、順次、その被膜物質を硬化させても良い。
【0063】
尚、本実施態様では複数ノズル1lとして2重同心円ノズルについて記載したが、前述したように、3重同心円ノズル等の多重同心円ノズルを使用しても良い。また、前記ノズルを複数個備えたライン状ノズルであっても良い。
【0064】
なお、基板上に配置されたマイクロカプセル2e、2f、2gが位置ずれを防止する目的で、マイクロカプセル2e、2f、2gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。光透過性樹脂バインダーとして、前述した水溶性のポリマーを用いることができる。
【0065】
次に、第1電極2c上に配置されたマイクロカプセルの層を、第2電極2dを備えた基板2bで覆い、封止する。(図13(C)参照)
基板2aと2bを封止する場合、マイクロカプセル2e、2f、2g間の隙間が出来る限りなくなるように、押圧下で基板2aと2bを封止しても良い。
【0066】
第2電極2dは、2次元的に配置されたマイクロカプセルを全面同一電位で覆うように形成された透明電極であり、電極材料として、ITOや有機導電性膜等を使用することができる。
【0067】
基板2bは電気泳動表示素子の表示面であり、絶縁性の透明部材であれば特に制限されないが、例えば、光透過性のガラスや石英、あるいは、ポリエチレンテレフタレート(PET)やポリエーテルサルホン(PES)等のプラスチックフィルムを用いることができる。
【0068】
次に、本発明の表示素子の他の実施態様例を示す。図14は、本発明の電気泳動表示素子の他の実施態様例を示す構成図であり、小区画がマイクロカプセルの場合である。図14(A)は電気泳動表示素子の断面図であり、図14(B)はマイクロカプセル内の電気泳動粒子を制御する電極基板を模式的に示した図である。図14(A)において、本発明の電気泳動表示素子は、基板3a上に、第1電極3b、3c、3d、第2電極3eが形成されており、第1電極3bはYに、第1電極3cはMに、第1電極3dはCに、第2電極3eは白色に着色されている。第1電極と第2電極上には、マイクロカプセル3gが配置され、保護層3fで覆われている。マイクロカプセル3gの形状は、基板3aに対して垂直方向の長さよりも水平方向の長さの方が長い構成をとる。マイクロカプセル3gは無色透明の分散媒3hと電気泳動粒子3iを内包し、第1電極3b、3c、3dと第2電極3e上に配置されている。この電気泳動表示素子は、保護層3fのある側が表示面である。また、第1電極3b、3c、3dと第2電極3eは、図14(B)に示すように、ペアーを組み、行方向と列方向に配置された2次元配列であり、同じ色が列方向に一列につながるようなストライプ配列で形成されている。
【0069】
なお、基板上に配置されたマイクロカプセル3gの位置ずれを防止する目的で、マイクロカプセル3gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。
【0070】
第1電極3b、3c、3dと第2電極3eは、図14(A)に示すように配置されているマイクロカプセル3gに対して、各々独立して所望の電界を印加できる画素電極であり、この画素電極にはスイッチ素子が設けられており、不図示のマトリクス駆動回路から行ごとに選択信号が印加され、更に各列に制御信号と駆動トランジスタからの出力が印加されて、個々のマイクロカプセルに対して所望の電界を印加することができる。
【0071】
各マイクロカプセルの表示について、図15を用いて説明する。マイクロカプセル3gは、無色透明の分散媒3h中に負帯電を有する白色の電気泳動粒子3iを内包している。マイクロカプセル3gに対して、第1電極3bを負帯電にし、且つ、第2電極3eを正帯電にすると、負帯電である白色の電気泳動粒子3iは第2電極3e上に移動し、マイクロカプセル3gの上側から観察すると、Yに見える。一方、第1電極3bを正帯電にし、且つ、第2電極3eを負帯電にすると、白色粒子3iは第1電極3b上に移動し、マイクロカプセル3gの上側から観察すると、白色に見える。ここでは、白色の電気泳動粒子を用いて示したが、黒色の電気泳動粒子であっても構わない。但し、この場合、第2電極3eは黒色であることが好ましい。
【0072】
図14において、マイクロカプセル3gは、第1電極3b、3c、3dと第2電極3eにより印加される電界によって制御され、各マイクロカプセルは内包する電気泳動粒子の移動によって第1電極3b、3c、3dと第2電極3eの各色を制御する。第1電極3b、3c、3dは、図14に示すように行方向にYMCYMCと繰返し配置し、この様に連続した第1電極3b、3c、3dと第2電極3eのペアーで、1画素の表示部が構成されるものとして制御を行う。各画素の制御によって、高精細なカラー表示ができる。
【0073】
尚、第1電極と第2電極の構成は、本実施態様に限定されるものではなく、図16に示すようなドット電極であっても良く、また、その2次元配列は図14や図16の配列に限定されるものではなく、例えば、図4(A)のモザイク配列や図4(B)の三角形配列であっても良い。
【0074】
表示コントラストは、第1電極と第2電極の面積比に大きく依存するので、コントラストを高める為には第2電極の面積を第1電極のそれに対して小さくする必要があり、第1電極と第2電極の面積比は、2:1から4:1程度が好ましい。
【0075】
また、画素の構成に関しても、本実施態様のような一列に連続したY、M、Cの電極上に形成した3個のマイクロカプセルから成る画素に限定されるものではない。
【0076】
本実施態様では、3原色としてY、M、Cで着色した電極を用いてカラー表示を行ったが、他の3原色としてR、G、Bで着色した電極を用いてカラー表示を行っても良い。また、第2電極3eは白色に着色した電極を用いたが、黒色であっても良く、その場合、黒色の電気泳動粒子であることが好ましい。
【0077】
次に、本実施態様の製造方法に関して、図17を用いて説明する。図17において、基板3a上に各マイクロカプセルを制御する為の第1電極3b、3c、3dと第2電極3eをパターン形成し、更に、第1電極3b、3c、3d上にY、M、Cのカラーフィルターを設け、第2電極3eには白色フィルターを設ける(図17(A)参照)。
【0078】
基板3aは、電気泳動表示素子を支持する任意の絶縁部材であり、ガラスやプラスチックなどを用いる事ができる。第1電極3b、3c、3dと第2電極3eの材料には特に制限はないが、ITOやAl等を使用することができる。
【0079】
Y、M、CのカラーフィルターにはY、M、Cのカラーレジストを用い、白色フィルターにはアルミナ微粒子又はチタニア微粒子を混合したアクリル樹脂を用いることができる。また、他の3原色であるR、G、Bを用いてカラー表示する場合、パターン形成したITO電極上に、R、G、Bのカラーフィルターを設けることによって第1電極3b、3c、3dとしても良い。
【0080】
次に、複数ノズル1lを用いて、無色透明の分散媒3hと電気泳動粒子3iを内包したマイクロカプセル3gを、第1電極3b、3c、3dと第2電極3e上の所望の位置に形成する(図17(B)参照)。
【0081】
本実施態様のノズル1lは前述したように、第1ノズル1mと第2ノズル1nからなる2重同心円ノズル(図6)を用いることができ、本実施態様で製造されるマイクロカプセルの粒径は10〜500μmであり、好ましくは、40〜200μmである。
【0082】
タンク1pとタンク1qから連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、マイクロカプセル3gを形成し、電極基板上の所望の位置に配置する。
【0083】
前述したように、マイクロカプセル3gを形成する場合、複数ノズル1lを上下に振動して分散液と被膜物質の吐出量を制御しても良い。更に、タンク1pとタンク1qに設けられた各ポンプ(不図示)、及び複数ノズル1lに備えた吐出制御手段1oによって、分散液と被膜物質の吐出量を制御し、均一な粒径を持つマイクロカプセルを形成することができる。
【0084】
前述したように、マイクロカプセル3gを電極基板上の所望の位置に配置する場合、第1電極と第2電極に電圧を印加しながら、マイクロカプセルの配置を行っても良い。また、マイクロカプセル3gを電極基板上の所望の位置に配置する場合、基板上に図18に示すような凹凸の形状を予めパタ−ン形成し、その中にマイクロカプセルを配置しても良い。図18は凹凸形状の一例であり、図18(a)は断面図、図18(b)は上図面を示す。但し、基板上に形成する凹凸形状は、図18に限定されるものではない。
【0085】
1pには、無色透明の分散媒3h中に白色の電気泳動粒子2iが分散された状態にある。分散媒3hとしては、前述したように、高絶縁性でしかも無色透明な液体を用いる事ができる。また、分散媒には、必要に応じて、電荷調整剤、分散剤、潤滑剤、安定化剤などを添加することができる。
【0086】
白色粒子としては、前述したように、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉛、酸化スズ等を用いることができ、黒色粒子として、カーボンブラック、ダイアモンドブラック、アニリンブラック、マンガンフェライトブラック、コバルトフェライトブラック等を用いることができる。電気泳動粒子の大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子の濃度は、1〜10質量%が好ましい。
【0087】
タンク1qには、被膜物質が貯蔵されており、必要に応じて界面活性剤を添加していても良い。界面活性剤としては、前述したように、スチレン−無水マレイン酸やエチレン−無水マレイン酸等を使用することができ、界面活性剤の濃度は、1〜10質量%が好ましい。
【0088】
マイクロカプセルを形成する被膜物質としては、前述したように、熱硬化性ポリマーやUV硬化性ポリマー等を用いる事ができ、被膜物質の濃度は、70〜90質量%が好ましい。
【0089】
マイクロカプセルの被膜物質の硬化に関しては、前述したように、マイクロカプセルを基板上に全て形成した後、その被膜物質を一括して硬化させても良いし、また、マイクロカプセルを基板上に形成しながら、順次、その被膜物質を硬化させても良い。
【0090】
尚、本実施態様では、複数ノズル1lとして2重同心円ノズルについて記載したが、前述したように、3重同心円ノズル等の多重同心円ノズルを使用しても良い。また、前記ノズルを複数個備えたライン状ノズルであっても良い。
【0091】
なお、基板上に配置されたマイクロカプセル3gの位置ずれを防止する目的で、マイクロカプセル3gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。光透過性の樹脂バインダーとして、前述した水溶性のポリマーを用いることができる。
【0092】
次に、第1電極3b、3c、3dと第2電極3e上に配置されたマイクロカプセル3gの層を保護層3fで覆い、マイクロカプセル3gの形状が、基板3aに対して垂直方向の長さよりも水平方向の長さの方が長い構成をとるように、押圧下で基板3aと保護層3fを封止する(図17(C)参照)。
【0093】
保護層3fは電気泳動表示素子の表示面であり、絶縁性の透明部材であれば特に制限されないが、ガラスやプラスチックなどを用いる事ができる。
【0094】
基板3aに一対の電極が形成された構成の表示素子では、電極間の漏れ電界を利用して電気泳動粒子を基板に対して水平方向に駆動させる為、球状のマイクロカプセルを使用した場合のコントラストはかなり低いものになるが、本発明のマイクロカプセルの形状をとることによって、高コントラストで高精細なカラー表示が可能となる。
【0095】
次に、本発明の表示素子の他の実施態様例を示す。図19は、本発明の電気動表示素子の他の実施態様例を示す構成図であり、小区画が基板と被膜物質から構成された閉空間の場合である。以後、この閉空間をマイクロドームと記載する。図19(A)は電気動表示素子の断面図であり、図19(B)はマイクロドームの配列を模式的に示した上図面である。図19(A)において、本発明の電気泳動表示素子は、基板4a、4b上に、それぞれ第1電極4c、第2電極4dが形成されており、第1電極4c上に絶縁層4mを介してマイクロドームが形成され、マイクロドームは第2電極4dを有する基板4bによって変形し、マイクロドーム間の隙間が減少した構造になっている。マイクロドームは、3原色のいずれかに着色した分散媒、及び3原色とは異なる色を有する電気泳動粒子を内包し、ここでは、Y、M、Cにそれぞれ着色された分散媒で区別される3種類のマイクロドーム4e、4f、4gが配置されている。
【0096】
この電気泳動表示素子は、第2電極4dを有する基板4bが表示面である。また、図19(B)に示すように、この3種類のマイクロドーム4e、4f、4gは均一な形状を持ち、行方向と列方向に配置された2次元配列であり、同じ色が列方向に一列につながるようなストライプ配列で第1電極4c上に配置されている。図19(B)においては、基板4bと第2電極4dは省略されている。
【0097】
なお、基板上に配置されたマイクロドーム4e、4f、4gの位置ずれを防止する目的で、マイクロドーム4e、4f、4gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。
【0098】
第1電極4cは、図19(B)に示すように配置されているマイクロドーム4e、4f、4gに対して、各々独立して所望の電界を印加できる画素電極であり、この画素電極にはスイッチ素子が設けられており、不図示のマトリクス駆動回路から行ごとに選択信号が印加され、更に各列に制御信号と駆動トランジスタからの出力が印加されて、個々のマイクロドーム4e、4f、4gに対して所望の電界を印加することができる。
【0099】
3種類の各マイクロドーム4e、4f、4gの構成を図20に示す。図20(A)は第1電極4c と絶縁層4mを有する基板4a、及び被膜物質4hで形成されたマイクロドーム4eを示す図であり、Yで着色された分散媒4i中に白色の電気泳動粒子4jが分散している状態を示す。図20(B)はMのマイクロドーム4fを示す図であり、Mで着色された分散媒4k中に白色の電気泳動粒子4jが分散している状態を示す。また、図20(C)はCのマイクロドーム4gを示す図であり、Cで着色された分散媒4l中に白色の電気泳動粒子4jが分散している状態を示している。ここでは、電気泳動粒子として白色の粒子を示したが、黒色の粒子であっても構わない。
【0100】
電極間に挟まれたマイクロドームの表示について、マイクロドーム4eを一例にして図21で説明する。マイクロドーム4eは、Yに着色された分散媒4iと白色の電気泳動粒子4jを内包し、白色の電気泳動粒子4jは負に帯電しているものとする。マイクロドーム4eに対して図21(A)の矢印の方向に電界Eが印加された場合、負に帯電している白色の電気泳動粒子4jはマイクロドームの下側に移動し底面に分布するので、マイクロドーム4eを上から観察すると、分散媒の色であるYに見える。一方、マイクロドーム4eに対して図21(B)の矢印の方向に電界Eが印加された場合、白色の電気泳動粒子4jはマイクロドームの上側に移動し、上面に分布する。その結果、マイクロドーム4eを上から観察すると白色に見える。
【0101】
図19において、第1電極4cと第2電極4dで挟まれた各マイクロドームは、第1電極4cにより印加される電界によって制御され、各マイクロドームは粒子の色と分散媒の色を表示する。第2電極4dは、図19に示すように2次元的に配置されたマイクロドームを全面同一電位で覆うように形成された透明電極である。分散媒がY、M、Cで区別される3種類のマイクロドームは、図19(B)に示すように行方向にYMCYMCと繰返し配置し、この様に連続した3種類のマイクロドーム4e、4f、4gで、1画素の表示部が構成されるものとして制御を行う。各画素の制御によって、高精細なカラー表示ができる。
【0102】
尚、マイクロドームの2次元配列は、図19(B)の配列に限定されるものではなく、例えば、図4(A)のモザイク配列や図4(B)の三角形配列であっても良い。また、画素の構成に関しても、本実施態様のような一列に連続した3種のマイクロドーム3個から成る画素に限定されるものではない。
【0103】
本実施態様では、3原色としてY、M、Cの分散媒を用いてカラー表示を行ったが、他の3原色としてR、G、Bの分散媒を用いてカラー表示を行っても良い。また、電気泳動粒子は白色の粒子を用いたが、黒色の粒子であっても良い。
【0104】
次に、本実施態様の製造方法に関して、図22を用いて説明する。図22において、基板4a上に各マイクロドームを制御する為の第1電極4cをパターン形成した後、絶縁層4mを形成する(図22(A)参照)。
【0105】
基板4aは、電気泳動表示素子を支持する任意の絶縁部材であり、ガラスやプラスチックなどを用いる事ができる。第1電極4cの材料には特に制限はないが、AlやITO等を使用することができる。絶縁層4mとして、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリアルケン樹脂等を使用することができる。
【0106】
次に、少なくとも3種類の複数ノズル1lを用いて、それぞれY、M、Cに着色された分散媒4i、4k、4l、及び白色の電気泳動粒子4jを内包した3種類のマイクロドーム4e、4f、4gを第1電極1c上の所望の位置に形成する(図22(B)参照)。
【0107】
本実施態様の複数ノズル1lは前述したように、第1ノズル1mと第2ノズル1nからなる2重同心円ノズル(図6)を用いることができ、本実施態様で製造されるマイクロドームの直径は10〜500μmであり、好ましくは、40〜200μmである。
【0108】
図23の概略図に示すように、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を電極基板上の所望の位置に吐出し、次いで、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、マイクロドーム4e、4f、4gを形成する。
【0109】
マイクロドーム4e、4f、4gを形成する場合、複数ノズル1lを上下に振動して分散液と被膜物質の吐出量を制御しても良い。更に、タンク1pとタンク1qに設けられた各ポンプ(不図示)、及び複数ノズル1lに備えた吐出制御手段1oによって、分散液と被膜物質の吐出量を制御し、均一な形状を持つマイクロドームを形成することができる。
【0110】
マイクロドーム4e、4f、4gを電極基板上の所望の位置に形成・配置する場合、第1電極4cに電圧を印加しながら、マイクロドームの形成・配置を行っても良い。
【0111】
また、マイクロドーム4e、4f、4gを電極基板上の所望の位置に形成・配置する場合、基板上に図24に示すような表面エネルギーの異なるパタ−ンを予め形成し、マイクロドームの形成・配置を行っても良い。即ち、基板上の絶縁層4mに分散液と親和性の高い領域(疎水部)と低い領域(親水部)4nをパターン形成し、親和性の高い領域に分散液の液滴を形成し、次いで親和性の低い領域に被膜物質を吐出してマイクロドームを形成・配置する。分散液と親和性の高い領域(疎水部)は疎水性ポリマーによって発現でき、ここでは、絶縁層4mがこれに相当し、前述したように、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリアルケン樹脂等を使用することができる。分散液と低い領域(親水部)4nは親水性ポリマーによって発現でき、絶縁層4m上に親水性ポリマーをパターン形成して得られる。親水性ポリマーとして、ポリビニルアルコール類、ポリアクリルアミド類、多糖類、ポリアクリル酸類、又はこれらの混合物等を使用することができる。
【0112】
また、マイクロドーム4e、4f、4gを電極基板上の所望の位置に形成・配置する場合、基板上に図8に示すような凹凸の形状を予めパタ−ン形成し、その中にマイクロドームの形成・配置を行っても良い。
【0113】
3種類のタンク1pには、それぞれ、Y、M、Cに着色された分散媒4i、4k、4l中に白色の電気泳動粒子4jが分散された状態にある。
【0114】
分散媒としては、前述したように、高絶縁性でしかも無色透明な液体を用いる事ができる。また、分散媒には、必要に応じて、電荷調整剤、分散剤、潤滑剤、安定化剤などを添加することができる。
【0115】
分散媒をY、M、Cに着色するには、前述したY、M、Cの油溶染料を用いることができる。また、他の3原色であるR、G、Bの分散媒を得るには、前述したR、G、Bの油溶染料を用いることができる。
【0116】
白色粒子としては、前述と同様に、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉛、酸化スズなどを用いることができ、黒色粒子としては、カーボンブラック、ダイアモンドブラック、アニリンブラック、マンガンフェライトブラック、コバルトフェライトブラックを用いることができる。電気泳動粒子の大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子の濃度は、3〜30質量%が好ましい。
【0117】
タンク1qには、被膜物質が貯蔵されており、必要に応じて界面活性剤を添加していても良い。界面活性剤としては、前述と同様に、スチレン−無水マレイン酸やエチレン−無水マレイン酸等を使用することができ、界面活性剤の濃度は1〜10質量%が好ましい。
【0118】
マイクロドームを形成する被膜物質としては、前述したように、熱硬化性ポリマーやUV硬化性ポリマー等を用いる事ができ、被膜物質の濃度は70〜90質量%が好ましい。
【0119】
マイクロドームの被膜物質の硬化に関しては、マイクロドームを基板上に全て形成した後、その被膜物質を一括して硬化させても良いし、また、マイクロドームを基板上に形成しながら、順次、その被膜物質を硬化させても良い。
【0120】
尚、本実施態様では、複数ノズル1lとして2重同心円ノズルについて記載したが、前述したように、3重同心円ノズル等の多重同心円ノズル、あるいは第1ノズルと第2ノズルが並列に配置されたマルチノズル等を使用しても良い。また、前記ノズルを複数個備えたライン状ノズルであっても良い。
【0121】
なお、基板上に形成されたマイクロドーム4e、4f、4gの位置ずれを防止する目的で、マイクロドーム4e、4f、4gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。光透過性の樹脂バインダーとして、前述したように、水溶性のポリマーを用いることができる。
【0122】
次に、第1電極4c上に配置されたマイクロドームの層を、第2電極4dを備えた基板4bで覆い、マイクロドーム4e、4f、4g間の隙間が出来る限りなくなるように、押圧下で基板4aと4bを封止する(図22(C)参照)。
【0123】
第2電極4dは、2次元的に配置されたマイクロドームを全面同一電位で覆うように形成された透明電極であり、電極材料として、ITOや有機導電性膜等を使用することができる。
【0124】
基板2bは電気泳動表示素子の表示面であり、絶縁性の透明部材であれば特に制限されないが、例えば、光透過性のガラスや石英、あるいは、ポリエチレンテレフタレート(PET)やポリエーテルサルホン(PES)等のプラスチックフィルムを用いることができる。
【0125】
本実施態様では、マイクロドーム内にY、M、Cで着色された分散媒と白色の電気泳動粒子を用いてカラー表示を行ったが、これに限定されるものではない。即ち、図9で記載したように、無色透明の分散媒中で3原色の色を有する電気泳動粒子、及びそれとは色と極性の異なる別種の電気泳動粒子を用いてカラー表示を行っても良い。
【0126】
次に、本発明の表示素子の他の実施態様例を示す。図25は、本発明の電気泳動表示素子の他の実施態様例を示す構成図であり、小区画が基板と被膜物質から構成されたマイクロドームの場合である。図25(A)は電気泳動表示素子の断面図であり、図25(B)はマイクロドーム内の電気泳動粒子を制御する電極基板を模式的に示した図である。図25(A)において、本発明の電気泳動表示素子は、基板5a上に、第1電極5b、5c、5d、第2電極5eが形成され、更に電極上に絶縁層5kが形成されている。第1電極3bはYに、第1電極3cはMに、第1電極3dはCに、第2電極3eは白色に着色されている。第1電極と第2電極上には絶縁層5kを介してマイクロドーム5gが形成され、保護層5fで覆われている。マイクロドーム5gは保護層5fによって変形し、マイクロドーム間の隙間が減少した構造になっている。マイクロドーム5gは無色透明の分散媒5iと電気泳動粒子5jを内包し、第1電極5b、5c、5dと第2電極5e上に配置されている。この電気泳動表示素子は、保護層5fのある側が表示面である。また、第1電極5b、5c、5dと第2電極5eは、図25(B)に示すように、ペアーを組み、行方向と列方向に配置された2次元配列であり、同じ色が列方向に一列につながるようなストライプ配列で形成されている。
【0127】
なお、基板上に形成されたマイクロドーム5gが位置ずれを防止する目的で、マイクロドーム5gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。
【0128】
第1電極5b、5c、5dと第2電極5eは、図25(A)に示すように形成されているマイクロドーム5gに対して、各々独立して所望の電界を印加できる画素電極であり、この画素電極にはスイッチ素子が設けられており、不図示のマトリクス駆動回路から行ごとに選択信号が印加され、更に各列に制御信号と駆動トランジスタからの出力が印加されて、個々のマイクロドーム5gに対して所望の電界を印加することができる。
【0129】
各マイクロドーム5gの表示について、図26を用いて説明する。マイクロドーム5gは、無色透明の分散媒5i中に負帯電を有する白色の電気泳動粒子5jを内包している。マイクロドーム5gに対して、第1電極5bを負帯電にし、且つ、第2電極5eを正帯電にすると、負帯電である白色の電気泳動粒子5jは第2電極5e上に移動し、マイクロドーム5gの上側から観察すると、Yに見える。一方、第1電極5bを正帯電にし、且つ、第2電極5eを負帯電にすると、白色粒子5jは第1電極5b上に移動し、マイクロドーム5gの上側から観察すると、白色に見える。ここでは、白色の電気泳動粒子を用いて示したが、黒色の電気泳動粒子であっても構わない。但し、この場合、第2電極5eは黒色であることが好ましい。
【0130】
図25において、マイクロドーム5gは、第1電極5b、5c、5dと第2電極5eにより印加される電界によって制御され、各マイクロドーム5gは内包する電気泳動粒子の移動によって第1電極5b、5c、5dと第2電極5eの各色を制御する。第1電極5b、5c、5dは、図25に示すように行方向にYMCYMCと繰返し配置し、この様に連続した第1電極5b、5c、5dと第2電極5eのペアーで、1画素の表示部が構成されるものとして制御を行う。各画素の制御によって、高精細なカラー表示ができる。
【0131】
尚、第1電極と第2電極の構成は、本実施態様に限定されるものではなく、図16に示すようなドット電極であっても良く、また、その2次元配列は図25や図16の配列に限定されるものではなく、例えば、図4(A)のモザイク配列や図4(B)の三角形配列であっても良い。
【0132】
表示コントラストは、第1電極と第2電極の面積比に大きく依存するので、コントラストを高める為には第2電極の面積を第1電極のそれに対して小さくする必要があり、第1電極と第2電極の面積比は、2:1から4:1程度が好ましい。
【0133】
また、画素の構成に関しても、本実施態様のような一列に連続したY、M、Cの電極上に形成した3個のマイクロドームから成る画素に限定されるものではない。
【0134】
本実施態様では、3原色としてY、M、Cで着色した電極を用いてカラー表示を行ったが、他の3原色としてR、G、Bで着色した電極を用いてカラー表示を行っても良い。また、第2電極5eは白色に着色した電極を用いたが、黒色であっても良く、その場合、黒色の電気泳動粒子であることが好ましい。
【0135】
次に、本実施態様の製造方法に関して、図27を用いて説明する。図27において、基板5a上に各マイクロドームを制御する為の第1電極5b、5c、5dと第2電極5eをパターン形成した後、第1電極5b、5c、5d上にY、M、Cのカラーフィルターを設け、第2電極5eには白色フィルターを設ける。その後、絶縁層5kを形成する(図27(A)参照)。
【0136】
基板5aは、電気泳動表示素子を支持する任意の絶縁部材であり、ガラスやプラスチックなどを用いる事ができる。第1電極5b、5c、5dと第2電極5eの材料には特に制限はないが、ITOやAl等を使用することができる。
【0137】
Y、M、CのカラーフィルターにはY、M、Cのカラーレジストを用い、白色フィルターにはアルミナ微粒子又はチタニア微粒子を混合したアクリル樹脂を用いることができる。また、他の3原色であるR、G、Bを用いてカラー表示する場合、パターン形成したITO電極上に、R、G、Bのカラーフィルターを設けることによって第1電極5b、5c、5dとしても良い。
【0138】
絶縁層5kとして、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリアルケン樹脂等を使用することができる。
【0139】
次に、複数ノズル1lを用いて、無色透明の分散媒5iと電気泳動粒子5jを内包したマイクロドーム5gを、第1電極5b、5c、5dと第2電極5e上の所望の位置に形成する(図27(B)参照)。
【0140】
本実施態様のノズル1lは、前記したように、第1ノズル1mと第2ノズル1nからなる2重同心円ノズル(図6)を用いることができ、本実施態様で製造されるマイクロドームの直径は10〜500μmであり、好ましくは、40〜200μmである。
【0141】
図23の概略図に示すように、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を電極基板上の所望の位置に吐出し、次いで、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、マイクロドーム5gを形成する。
【0142】
マイクロドーム5gを形成する場合、前述したように、複数ノズル1lを上下に振動して分散液と被膜物質の吐出量を制御しても良い。更に、タンク1pとタンク1qに設けられた各ポンプ(不図示)、及び複数ノズル1lに備えた吐出制御手段1oによって、分散液と被膜物質の吐出量を制御し、均一な形状を持つマイクロドームを形成することができる。
【0143】
マイクロドーム5gを電極基板上の所望の位置に形成・配置する場合、前述と同様に、第1電極4cに電圧を印加しながら、マイクロドームの形成・配置を行っても良い。
【0144】
また、マイクロドーム5gを電極基板上の所望の位置に形成・配置する場合、前述したように、基板上に図24に示すような表面エネルギーの異なるパタ−ンを予め形成し、マイクロドームの形成・配置を行っても良い。
【0145】
また、マイクロドーム5gを電極基板上の所望の位置に形成・配置する場合、前述と同様に、基板上に図8に示すような凹凸の形状を予めパタ−ン形成し、その中にマイクロドームの形成・配置を行っても良い。
【0146】
1pには、無色透明の分散媒5i中に白色の電気泳動粒子5jが分散された状態にある。分散媒5iとしては、前述したように、高絶縁性でしかも無色透明な液体を用いる事ができる。また、分散媒には、必要に応じて、電荷調整剤、分散剤、潤滑剤、安定化剤などを添加することができる。
【0147】
白色粒子としては、前述したように、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉛、酸化スズ等を用いることができ、黒色粒子として、カーボンブラック、ダイアモンドブラック、アニリンブラック、マンガンフェライトブラック、コバルトフェライトブラック等を用いることができる。電気泳動粒子の大きさとしては、粒径が0.1〜10μmのものが好ましく用いられ、更に好ましくは、0.2〜6μmである。また、電気泳動粒子の濃度は、1〜10質量%が好ましい。
【0148】
タンク1qには、被膜物質が貯蔵されており、必要に応じて界面活性剤を添加していても良い。界面活性剤としては、前述と同様に、スチレン−無水マレイン酸やエチレン−無水マレイン酸等を使用することができ、界面活性剤の濃度は1〜10質量%である。
【0149】
マイクロカプセルを形成する被膜物質としては、前述したように、熱硬化性ポリマーやUV硬化性ポリマー等を用いる事ができ、被膜物質の濃度は70〜90質量%である。
【0150】
マイクロドームの被膜物質の硬化に関しては、マイクロドームを基板上に全て形成した後、その被膜物質を一括して硬化させても良いし、また、マイクロドームを基板上に形成しながら、順次、その被膜物質を硬化させても良い。
【0151】
尚、本実施態様では、2重同心円ノズルについて記載したが、前述したように、3重同心円ノズル等の多重同心円ノズル、あるいは第1ノズルと第2ノズルが並列に配置されたマルチノズル等を使用しても良い。また、前記ノズルを複数個備えたライン状ノズルであっても良い。
【0152】
なお、基板上に配置されたマイクロドーム5gが位置ずれを防止する目的で、マイクロドーム5gの隙間に光透過性の樹脂バインダーを含浸させて基板に固定しても良い。光透過性の樹脂バインダーとして、前述したように、水溶性のポリマーを用いることができる。
【0153】
次に、第1電極5b、5c、5dと第2電極5e上に形成されたマイクロドーム5gの層を保護層5fで覆い、マイクロドーム間の隙間が出来る限りなくなるように、押圧下で基板5aと保護層5fを封止する(図27(C)参照)。
【0154】
保護層5fは電気泳動表示素子の表示面であり、絶縁性の透明部材であれば特に制限されないが、ガラスやプラスチックなどを用いる事ができる。
【0155】
【実施例】
以下に、本発明の実施例を説明する。
【0156】
参考例1)
図1に示す電気泳動表示素子を、図5の製造工程に従って作製した。
【0157】
まず、厚さ200μmのPETフィルムからなる基板1a上に、第1電極1cとして厚さ約0.2μmのAlをパターン形成した。
【0158】
次に、3種類の複数ノズル1lを用いて、基板1aに設けた第1電極1c上にマイクロカプセル1e、1f、1gを形成した。複数ノズル1lとして、図6に示した2重同心円ノズルを使用し、第1ノズル1mと第2ノズル1nのサイズはそれぞれ50μm、1μmであった。
【0159】
3種類の各タンク1pには、それぞれ、Y、M、Cに着色された分散媒1h、1j、1k中に白色の電気泳動粒子1iが分散された状態にある。白色の電気泳動粒子1iには酸化チタン(デュポンR−104)(粒径0.22μm、15質量%)を用い、電気泳動粒子1iの帯電剤及び分散剤として、オロア1200(Chevron)(0.5質量%)を用いた。分散媒にはアイソパーH(エクソン化学)(83.5質量%)を用い、Yの染料としてオイルイエロー129(オリエント化学)(1質量%)、Mの染料としてオイルピンク312(オリエント化学)(1質量%)、Cの染料としてオイルブルーBOS(オリエント化学)(1質量%)を用いた。
【0160】
3種類の各タンク1qには被覆物質として、界面活性剤(スチレン−無水マレイン酸交互共重合体、5質量%)を含む尿素−ホルムアルデヒド系メチロール体の熱硬化性プレポリマー(75質量%)水溶液が充填されている。
【0161】
タンク1pとタンク1qに連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、第1電極1c上の所望の位置にマイクロカプセル1e、1f、1gを形成した。タンク1pとタンク1qに設けられた各ポンプ、及び複数ノズル1lに備えた吐出制御手段1oによって分散液と被膜物質の吐出量を制御し、直径50μmの均一な粒径を持つマイクロカプセル1e、1f、1gを形成した。本実施例では、吐出制御手段1oとして圧電変換素子を用いた。電極上にマイクロカプセル1e、1f、1gを全て形成した後、赤外線照射によって被覆物質を一括して硬化させ、不融不溶の尿素樹脂に変化させた。
【0162】
基板上に形成・配置されたマイクロカプセル1e、1f、1gの位置ずれを防止する目的で、マイクロカプセル1e、1f、1gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定した。光透過性の樹脂バインダーとして、ポリビニルアルコールを用いた。
【0163】
マイクロカプセル1e、1f、1gを形成した基板1aと、第2電極として厚さ約0.1μmのITOを成膜したPETフィルム(厚さ200μm)からなる基板1bを密着させて封止した。更に電圧印加手段を設けて表示素子とし、表示を行った。各画素を形成するマイクロカプセル1e、1f、1g内の電気泳動粒子を上下電極間で駆動した結果、所望のカラー表示を行うことができ、しかも高コントラストで高精細なカラー表示が得られた。
【0164】
参考例2)
図9に示す電気泳動表示素子を、図13の製造工程に従って作製した。
【0165】
参考例1と同様に、厚さ200μmのPETフィルムからなる基板2a上に、第1電極2cとして厚さ約0.2μmのAlをパターン形成した。
【0166】
次に、3種類の複数ノズル1lを用いて、基板2aの第1電極2c上にマイクロカプセル2e、2f、2gを形成した。複数ノズル1lとして、図6に示した2重同心円ノズルを使用し、第1ノズル1mと第2ノズル1nのサイズはそれぞれ50μm、1μmであった。
【0167】
3種類の各タンク1pには、それぞれ、無色透明の分散媒2h中に白色の電気泳動粒子2j、及びR、G、Bの色を有する電気泳動粒子2i、2k、2lがそれぞれペアーで分散された状態にある。白色の電気泳動粒子2jには酸化チタン(デュポンR−104)(粒径0.2μm、15質量%)を、Rの電気泳動粒子2iにはキナクリドンレッド(粒径0.3μm、15質量%)を、Gの電気泳動粒子2kにはフタロシアニングリーン(粒径0.2μm、15質量%)を、Bの電気泳動粒子2lにはコバルトブルー(粒径0.3μm、15質量%)を用いた。
【0168】
電気泳動粒子の帯電剤及び分散剤として、オロア1200(Chevron)(1質量%)を用いた。分散媒2hにはアイソパーH(エクソン化学)(69質量%)を用いた。
【0169】
3種類の各タンク1qには被覆物質として、界面活性剤(エチレン−無水マレイン酸交互共重合体、3質量%)を含むメラミン−ホルムアルデヒド系メチロール体の熱硬化性プレポリマー(85質量%)水溶液が充填されている。
【0170】
タンク1pとタンク1qに連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、第1電極2c上の所望の位置にマイクロカプセル2e、2f、2gを形成した。タンク1pとタンク1qに設けられた各ポンプ、及び複数ノズル1lに備えた吐出制御手段1oによって分散液と被膜物質の吐出量を制御し、直径50μmの均一な粒径を持つマイクロカプセル2e、2f、2gを形成した。本実施例では、吐出制御手段1oとして圧電変換素子を用いた。電極上にマイクロカプセル2e、2f、2gを形成したながら、順次、赤外線照射によって被覆物質を硬化させ、不融不溶のメラミン樹脂に変化させた。
【0171】
基板上に形成・配置されたマイクロカプセル2e、2f、2gの位置ずれを防止する目的で、マイクロカプセル2e、2f、2gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定した。光透過性の樹脂バインダーとして、ポリウレタンを用いた。
【0172】
マイクロカプセル2e、2f、2gを形成した基板2aと、第2電極として厚さ約0.1μmのITOを成膜したPETフィルム(厚さ200μm)からなる基板2bを密着させて封止した。更に電圧印加手段を設けて表示素子とし、表示を行った。各画素を形成するマイクロカプセル2e、2f、2g内の電気泳動粒子を上下電極間で駆動した結果、所望のカラー表示を行うことができ、しかも高コントラストで高精細なカラー表示が得られた。
【0173】
参考例3)
図14に示す電気泳動表示素子を、図17の製造工程に従って作製した。
【0174】
まず、厚さ200μmのPETフィルムからなる基板3a上に、厚さ約0.15μmのITO電極をパターン形成した。各ITO電極上に、Y、M、Cのカラーレジストを用いて厚さ約1.5μmのカラーフィルター層を設けることによって第1電極3b、3c、3dを作製した。一方、第2電極3eは、同様にパターン形成したITO電極上に、チタニア微粒子を混合したアクリル樹脂を用いて厚さ約1.5μmの白色フィルター層を設けることによって作製した。この時、第1電極と第2電極の面積比は4:1であった。
【0175】
次に、複数ノズル1lを用いて、基板3aの第1電極と第2電極上の所望の位置にマイクロカプセル3gを形成した。複数ノズル1lとして、図6に示した2重同心円ノズルを使用し、第1ノズル1mと第2ノズル1nのサイズはそれぞれ65μm、1.3μmであった。
【0176】
タンク1pには、無色透明な分散媒3h中に白色の電気泳動粒子3iが分散された状態にある。白色の電気泳動粒子3iには酸化チタン(粒径0.2μm、デュポンR−104)(4質量%)を用い、電気泳動粒子3iの帯電剤及び分散剤として、オロア1200(Chevron)(0.1質量%)を用いた。分散媒3hにはアイソパーH(エクソン化学)(95.9質量%)を用いた。
【0177】
タンク1qには被覆物質として、界面活性剤(エチレン−無水マレイン酸交互共重合体、5質量%)を含むウレタンアクリレートのUV硬化性プレポリマー(80質量%)水溶液が充填されている。
【0178】
タンク1pとタンク1qに連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、基板3a上の所望の位置にマイクロカプセル3gを形成した。タンク1pとタンク1qに設けられた各ポンプ、及び複数ノズル1lに備えた吐出制御手段1oによって分散液と被膜物質の吐出量を制御し、直径65μmの均一な粒径を持つマイクロカプセル3gを形成した。本実施例では、吐出制御手段1oとして加熱発泡素子を用いた。電極上にマイクロカプセル3gを全て形成した後、UV照射によって被覆物質を一括して硬化させ、ポリウレタンに変化させた。
【0179】
基板上に形成・配置されたマイクロカプセル3gの位置ずれを防止する目的で、マイクロカプセル3gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定した。光透過性の樹脂バインダーとして、ポリウレタンを用いた。
【0180】
基板3aに形成されたマイクロカプセル3gの層を、厚さ200μmのPETフィルムからなる保護層3fで覆い、マイクロカプセル3gの形状が基板3aに対して垂直方向の長さよりも水平方向の長さの方が長い構成をとるように、押圧下で基板3aと保護層3fを封止した。更に電圧印加手段を設けて表示素子とし、表示を行った。各画素を形成するマイクロカプセル3g内の電気泳動粒子を電極間で水平に駆動した結果、所望のカラー表示を行うことができ、しかも高コントラストで高精細なカラー表示が得られた。
【0181】
(実施例
図19に示す電気泳動表示素子を、図22の製造工程に従って作製した。
【0182】
まず、厚さ200μmのPETフィルムからなる基板4a上に、第1電極4cとして厚さ約0.2μmのAlをパターン形成し、更にその上にアクリル樹脂を用いて厚さ約1μmの絶縁層4mを形成した。
【0183】
次に、3種類の複数ノズル1lを用いて、基板4aの第1電極4c上にマイクロドーム(小区画)4e、4f、4gを形成した。複数ノズル1lとして、図6に示した2重同心円ノズルを使用し、第1ノズル1mと第2ノズル1nのサイズはそれぞれ50μm、1μmであった。
【0184】
3種類の各タンク1pには、それぞれ、Y、M、Cに着色された分散媒4i、4k、4l中に白色の電気泳動粒子4jが分散された状態にある。白色の電気泳動粒子4jには酸化チタン(デュポンR−104)(粒径0.22μm、15質量%)を用い、電気泳動粒子4jの帯電剤及び分散剤として、オロア1200(Chevron)(0.5質量%)を用いた。分散媒にはアイソパーH(エクソン化学)(83.5質量%)を用い、Yの染料としてオイルイエロー129(オリエント化学)(1質量%)、Mの染料としてオイルピンク312(オリエント化学)(1質量%)、Cの染料としてオイルブルーBOS(オリエント化学)(1質量%)を用いた。
【0185】
3種類の各タンク1qには被覆物質として、界面活性剤(スチレン−無水マレイン酸交互共重合体、5質量%)を含むウレタンアクリレートのUV硬化性プレポリマー(80質量%)水溶液が充填されている。
タンク1pとタンク1qに連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、次いで、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、第1電極2c上の所望の位置にマイクロドーム4e、4f、4gを形成した。タンク1pとタンク1qに設けられた各ポンプ、及び複数ノズル1lに備えた吐出制御手段1oによって分散液と被膜物質の吐出量を制御し、直径50μmの均一な形状を有するマイクロドーム4e、4f、4gを形成した。本実施例では、吐出制御手段1oとして加熱発泡素子を用いた。電極上にマイクロドーム4e、4f、4gを全て形成した後、UV照射によって被覆物質を一括して硬化させ、ポリウレタンに変化させた。
【0186】
基板上に形成・配置されたマイクロドーム4e、4f、4gの位置ずれを防止する目的で、マイクロドーム4e、4f、4gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定した。光透過性の樹脂バインダーとして、ポリウレタンを用いた。
【0187】
マイクロドーム4e、4f、4gを形成した基板4aと、第2電極として厚さ0.1μmのITOを成膜したPETフィルム(厚さ200μm)からなる基板4bで覆い、マイクロドーム間の隙間が出来る限りなくなるように、押圧下で基板4aと4bを封止した。更に電圧印加手段を設けて表示素子とし、表示を行った。各画素を形成するマイクロドーム4e、4f、4g内の電気泳動粒子を上下電極間で駆動した結果、所望のカラー表示を行うことができ、しかも高コントラストで高精細なカラー表示が得られた。
【0188】
(実施例
図25に示す電気泳動表示素子を、図27の製造工程に従って作製した。
【0189】
まず、厚さ200μmのPETフィルムからなる基板5a上に、厚さ約0.15μmのITO電極をパターン形成した。各ITO電極上に、Y、M、Cのカラーレジストを用いて厚さ約1.5μmのカラーフィルター層を設けることによって第1電極5b、5c、5dを作製した。一方、第2電極5eは、同様にパターン形成したITO電極上に、チタニア微粒子を混合したアクリル樹脂を用いて厚さ約1.5μmの白色フィルター層を設けることによって作製した。この時、第1電極と第2電極の面積比は4:1であった。更に、電極上にアクリル樹脂を用いて厚さ約1μmの絶縁層5kを形成した。
【0190】
次に、複数ノズル1lを用いて、基板5aの第1電極と第2電極上の所望の位置にマイクロドーム5gを形成した。複数ノズル1lとして、図6に示した2重同心円ノズルを使用し、第1ノズル1mと第2ノズル1nのサイズはそれぞれ65μm、1.3μmであった。
【0191】
タンク1pには、無色透明な分散媒5i中に白色の電気泳動粒子5jが分散された状態にある。白色の電気泳動粒子5jには酸化チタン(粒径0.2μm、デュポンR−104)(4質量%)を用い、電気泳動粒子5jの帯電剤及び分散剤として、オロア1200(Chevron)(0.1質量%)を用いた。分散媒5iにはアイソパーH(エクソン化学)(95.9質量%)を用いた。
【0192】
タンク1qには被覆物質として、界面活性剤(エチレン−無水マレイン酸交互共重合体、4質量%)を含むメラミンアクリレートのUV硬化性プレポリマー(83質量%)水溶液が充填されている。
【0193】
タンク1pとタンク1qに連結された第1ノズル1mと第2ノズル1nを介して、第1ノズル1mから電気泳動粒子と分散媒を含む分散液を吐出し、次いで、第2ノズル1nから分散液を被膜する為の被膜物質を吐出することによって、第1電極2c上の所望の位置にマイクロドーム5gを形成した。タンク1pとタンク1qに設けられた各ポンプ、及び複数ノズル1lに備えた吐出制御手段1oによって分散液と被膜物質の吐出量を制御し、直径65μmの均一な形状を有するマイクロドーム5gを形成した。本実施例では、吐出制御手段1oとして加熱発泡素子を用いた。電極上にマイクロドーム5gを形成した後、UV照射によって被覆物質を一括して硬化させ、メラミン樹脂に変化させた。
【0194】
基板上に形成・配置されたマイクロドーム5gの位置ずれを防止する目的で、マイクロドーム5gの隙間に光透過性の樹脂バインダーを含浸させて基板上に固定した。光透過性の樹脂バインダーとして、ポリビニルアルコールを用いた。
【0195】
次に、基板5aの第1電極5b、5c、5dと第2電極5e上に形成されたマイクロドーム5gの層を、PETフィルム(厚さ200μm)からなる保護層5fで覆い、マイクロドーム間の隙間が出来る限りなくなるように、押圧下で基板5aと保護層5fを封止した。更に電圧印加手段を設けて表示素子とし、表示を行った。各画素を形成するマイクロドーム5g内の電気泳動粒子を電極間で水平に駆動した結果、所望のカラー表示を行うことができ、しかも高コントラストで高精細なカラー表示が得られた。
【0196】
【発明の効果】
以上説明したように、本発明は複数ノズルを用いることによって、電極基板上の所望の位置に、電気泳動粒子と分散媒からなる分散液を内包した小区画を形成することから、高コントラストで高精細なカラー表示ができる電気泳動表示素子を得ることができる。
【図面の簡単な説明】
【図1】図1(A)は本発明の電気泳動表示素子の一実施態様を示す断面図であり、図1(B)は上図面である。
【図2】本発明の電気泳動表示素子におけるマイクロカプセルの構成図である。
【図3】本発明の電気泳動表示素子におけるマイクロカプセルの表示方法を示す概略図である。
【図4】図4(A)はマイクロカプセルのモザイク配列を示す図であり、図4(B)は三角配列を示す図である。
【図5】本発明の電気泳動表示素子の一実施態様の製造方法の一例を示す工程図である。
【図6】図6(A)は本発明の電気泳動表示素子におけるマイクロカプセルを製造、配置する為の複数ノズルの概略図であり、図6(B)はX−X‘の断面図である。
【図7】図7は複数ノズルを用いたマイクロカプセルの形成過程を示す概略図である。
【図8】図8は基板上に形成された凹凸形状の一例である。
【図9】図9(A)は本発明の電気泳動表示素子の他の実施態様を示す断面図であり、図9(B)は上図面である。
【図10】本発明の電気泳動表示素子におけるマイクロカプセルの構成図である。
【図11】本発明の電気泳動表示素子におけるマイクロカプセルの表示方法を示す概略図である。
【図12】図12(A)はマイクロカプセルのモザイク配列を示す図であり、図12(B)は三角配列を示す図である。
【図13】本発明の電気泳動表示素子の他の実施態様の製造方法の一例を示す工程図である。
【図14】図14(A)は本発明の電気泳動表示素子の他の実施態様を示す断面図であり、図14(B)はマイクロカプセル内の電気泳動粒子を制御する電極基板を模式的に示した図である。
【図15】本発明の電気泳動表示素子におけるマイクロカプセルの表示方法を示す概略図である。
【図16】第1電極と第2電極の構成の一例として、ドット電極を示す図である。
【図17】本発明の電気泳動表示素子の他の実施態様の製造方法の一例を示す工程図である。
【図18】図18は基板上に形成された凹凸形状の一例である。
【図19】図19(A)は本発明の電気泳動表示素子の他の実施態様を示す断面図であり、図19(B)は上図面である。
【図20】本発明の電気泳動表示素子における小区画の構成図である。
【図21】本発明の電気泳動表示素子における小区画の表示方法を示す概略図である。
【図22】本発明の電気泳動表示素子の他の実施態様の製造方法の一例を示す工程図である。
【図23】図23は複数ノズルを用いたマイクロドームの形成過を示す概略図である。
【図24】図24は基板上に形成された表面エネルギーの異なるパターンの一例である。
【図25】図25(A)は本発明の電気泳動表示素子の他の実施態様を示す断面図であり、図25(B)は上図面である。
【図26】本発明の電気泳動表示素子における小区画の表示方法を示す概略図である。
【図27】本発明の電気泳動表示素子の他の実施態様の製造方法の一例を示す工程図である。
【符号の説明】
1a 基板
1b 基板
1c 第1電極
1d 第2電極
1e イエロー(Y)のマイクロカプセル
1f マゼンタ(M)のマイクロカプセル
1g シアン(C)のマイクロカプセル
1h イエロー(Y)の分散媒
1i 白色の電気泳動粒子
1j マゼンタ(M)の分散媒
1k シアン(C)の分散媒
1l 複数ノズル
1m 内管
1n 外管
1o 吐出制御手段
1p タンク
1q タンク
1r 分散液
1s 被膜物質
2a 基板
2b 基板
2c 第1電極
2d 第2電極
2e レッド(R)のマイクロカプセル
2f グリーン(G)のマイクロカプセル
2g ブルー(B)のマイクロカプセル
2h 分散媒
2i レッド(R)の電気泳動粒子
2j 白色の電気泳動粒子
2k グリーン(G)の電気泳動粒子
2l ブルー(B)の電気泳動粒子
3a 基板
3b イエロー(Y)に着色された第1電極
3c マゼンタ(M)に着色された第1電極
3d シアン(C)に着色された第1電極
3e 第2電極
3f 保護層
3g マイクロカプセル
3h 分散媒
3i 白色の電気泳動粒子
4a 基板
4b 基板
4c 第1電極
4d 第2電極
4e イエロー(Y)のマイクロドーム
4f マゼンタ(M)のマイクロドーム
4g シアン(C)のマイクロドーム
4h 被膜物質
4i イエロー(Y)の分散媒
4j 白色の電気泳動粒子
4k マゼンタ(M)の分散媒
4l シアン(C)の分散媒
4m 絶縁層
4n 親水部
5a 基板
5b イエロー(Y)に着色された第1電極
5c マゼンタ(M)に着色された第1電極
5d シアン(C)に着色された第1電極
5e 第2電極
5f 保護層
5g マイクロドーム
5h 被膜物質
5i 分散媒
5j 白色の電気泳動粒子
5k 絶縁層

Claims (13)

  1. 電気泳動粒子と分散媒を含む分散液と、前記分散液の一部を被覆するための被膜物質とから形成された閉空間領域を、複数の画素電極を備えている基板上に配置した電気泳動表示素子の製造方法であって、
    同心円上に配置された複数ノズルを有する吐出手段を用いて、前記複数ノズルの1つから前記分散液を吐出し、次いで他のノズルから前記被膜物質を吐出することによって、前記画素電極上に、前記電気泳動粒子と前記分散媒とを内包し、かつ前記画素電極上に形成された絶縁膜と前記被膜物質とから構成される前記閉空間領域を形成することを特徴とする電気泳動表示素子の製造方法。
  2. 前記閉空間領域を前記基板上の前記画素電極上に順次形成することを特徴とする請求項に記載の電気泳動表示素子の製造方法。
  3. 前記閉空間領域を前記基板上に形成した後、該閉空間領域を構成する前記被膜物質を一括で硬化させることを特徴とする前記請求項1または2に記載の電気泳動表示素子の製造方法。
  4. 前記閉空間領域を前記基板に形成しながら、順次、該領域を構成する前記被膜物質を硬化させることを特徴とする前記請求項1または2に記載の電気泳動表示素子の製造方法。
  5. 前記基板上の前記電極に電圧を印加しながら、前記閉空間領域を形成することを特徴とする前記請求項1または2に記載の電気泳動表示素子の製造方法。
  6. 凹凸形状のパターンを形成した前記基板上に、前記閉空間領域を形成することを特徴とする前記請求項1または2に記載の電気泳動表示素子の製造方法。
  7. 表面エネルギーの異なるパターンを形成した前記基板上に、前記閉空間領域を形成することを特徴とする前記請求項1ないし6のいずれか1項に記載の電気泳動表示素子の製造方法。
  8. 前記複数ノズルが同心円上に配置された2重ノズルであることを特徴とする前記請求項1ないし7のいずれか1項に記載の電気泳動表示素子の製造方法。
  9. 前記分散液と前記被膜物質の吐出量を、前記複数ノズルの上下振動により制御することを特徴とする前記請求項1ないし8のいずれか1項に記載の電気泳動表示素子の製造方法。
  10. 前記吐出手段に吐出制御手段を付与したことを特徴とする前記請求項1ないし9のいずれか1項に記載の電気泳動表示素子の製造方法。
  11. 前記被膜物質が熱硬化性ポリマーであることを特徴とする前記請求項1ないし10のいずれか1項に記載の電気泳動表示素子の製造方法。
  12. 前記被膜物質がUV硬化性ポリマーであることを特徴とする前記請求項1ないし10のいずれか1項に記載の電気泳動表示素子の製造方法。
  13. 少なくとも1枚の前記基板上に形成された第1の画素電極と第2の画電極と前記第1及び第2の画素電極間に前記電気泳動粒子を泳動できる電圧を印加する駆動手段を有する電気泳動表示素子であって、請求項に記載の製造方法により作製されている閉空間領域を有することを特徴とする電気泳動表示装置。
JP2002159532A 2002-05-31 2002-05-31 電気泳動表示素子の製造方法 Expired - Fee Related JP4154175B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002159532A JP4154175B2 (ja) 2002-05-31 2002-05-31 電気泳動表示素子の製造方法
US10/448,399 US20030224102A1 (en) 2002-05-31 2003-05-30 Method for manufacturing electrophoretic display element
US11/782,280 US7622148B2 (en) 2002-05-31 2007-07-24 Method for manufacturing electrophoretic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159532A JP4154175B2 (ja) 2002-05-31 2002-05-31 電気泳動表示素子の製造方法

Publications (3)

Publication Number Publication Date
JP2004004282A JP2004004282A (ja) 2004-01-08
JP2004004282A5 JP2004004282A5 (ja) 2007-08-16
JP4154175B2 true JP4154175B2 (ja) 2008-09-24

Family

ID=29561581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159532A Expired - Fee Related JP4154175B2 (ja) 2002-05-31 2002-05-31 電気泳動表示素子の製造方法

Country Status (2)

Country Link
US (2) US20030224102A1 (ja)
JP (1) JP4154175B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470950B2 (en) * 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
JP2004233630A (ja) * 2003-01-30 2004-08-19 Canon Inc 電気泳動粒子及びその製造方法、それを用いた電気泳動表示素子
JP2005049657A (ja) * 2003-07-29 2005-02-24 Tdk Corp 表示装置
JP4559745B2 (ja) * 2004-01-28 2010-10-13 大日本印刷株式会社 単粒子膜の形成方法およびこれを用いた電気泳動表示装置の製造方法
JP4559746B2 (ja) * 2004-01-28 2010-10-13 大日本印刷株式会社 単粒子膜形成用の原版とこの原版を用いた単粒子膜の形成方法およびこの単粒子膜の形成方法を用いた電気泳動表示装置の製造方法
US7597925B2 (en) * 2004-06-28 2009-10-06 Palo Alto Research Center Incorporated Method of confining droplets of display fluid
US7258428B2 (en) * 2004-09-30 2007-08-21 Kimberly-Clark Worldwide, Inc. Multiple head concentric encapsulation system
JP4379919B2 (ja) * 2005-03-14 2009-12-09 セイコーエプソン株式会社 表示装置の製造方法および電子機器
US7710389B2 (en) * 2005-11-04 2010-05-04 Xerox Corporation Multi-layer display device using dot field applicators
KR20070121403A (ko) 2006-06-22 2007-12-27 삼성전자주식회사 전기 영동 표시 장치 및 그 제조 방법
JP5359276B2 (ja) * 2006-12-21 2013-12-04 日立化成株式会社 調光フィルム及び調光ガラス
KR101311502B1 (ko) * 2007-01-16 2013-09-25 삼성디스플레이 주식회사 전기영동 표시장치 및 이의 제조방법
JP2008216779A (ja) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd マイクロカプセル型電気泳動式表示装置
KR20090061869A (ko) * 2007-12-12 2009-06-17 한국전자통신연구원 전기영동 디스플레이 및 그 형성 방법
KR101451795B1 (ko) * 2007-12-14 2014-10-24 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2010044385A (ja) * 2008-08-11 2010-02-25 Samsung Electro-Mechanics Co Ltd 電子ペーパー表示素子及びその製造方法
US8159741B2 (en) * 2008-08-22 2012-04-17 Samsung Electro-Mechanics Co., Ltd. Electronic paper display device and manufacturing method thereof
US20130146332A1 (en) * 2009-11-24 2013-06-13 Unipixel Displays ,Inc. Formation of electrically conductive pattern by surface energy modification
JP5540773B2 (ja) * 2010-03-03 2014-07-02 セイコーエプソン株式会社 表示シート、表示装置および電子機器
KR102251888B1 (ko) * 2014-12-08 2021-05-14 엘지이노텍 주식회사 투과율 제어기판
EP4129414A4 (en) * 2020-03-27 2024-04-03 Fuji Capsule Co Ltd DOUBLE-LAYER SEAMLESS CAPSULE WITH A WATER-SOLUBLE COMPOSITION

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551783B2 (ja) 1987-09-29 1996-11-06 エヌオーケー株式会社 電気泳動表示装置
DE69529966T2 (de) * 1994-12-27 2003-09-11 Seiko Epson Corp Tintenzusammensetzung und Verfahren zur Herstellung derselben
JP4085449B2 (ja) * 1997-10-09 2008-05-14 ブラザー工業株式会社 電気泳動表示装置、マイクロカプセル及び媒体
US5975680A (en) * 1998-02-05 1999-11-02 Eastman Kodak Company Producing a non-emissive display having a plurality of pixels
JP3690124B2 (ja) 1998-07-17 2005-08-31 セイコーエプソン株式会社 表示パネルの製造方法
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
EP1169121B1 (en) * 1999-04-06 2012-10-31 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
JP4865172B2 (ja) * 2000-10-11 2012-02-01 キヤノン株式会社 表示装置およびその製造方法
US6717716B2 (en) * 2001-02-15 2004-04-06 Seiko Epson Corporation Method of manufacturing electrophoretic device and method of manufacturing electronic apparatus
US6906851B2 (en) 2002-05-31 2005-06-14 Canon Kabushiki Kaisha Electrophoretic display device and method of producing the same

Also Published As

Publication number Publication date
US20030224102A1 (en) 2003-12-04
US7622148B2 (en) 2009-11-24
US20080020131A1 (en) 2008-01-24
JP2004004282A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4154175B2 (ja) 電気泳動表示素子の製造方法
US8129655B2 (en) Electrophoretic medium with gaseous suspending fluid
JP4865172B2 (ja) 表示装置およびその製造方法
JP4894285B2 (ja) 画像表示媒体、及びそれを備える画像表示装置
US10416523B2 (en) Electrophoretic display device and method of manufacturing the same
TWI459108B (zh) 用以形成複色電泳顯示之方法
CN101311809A (zh) 形成电子纸显示器的方法
CN101311807A (zh) 用于电泳显示器的包含荧光组分的核-壳颗粒
US7564615B2 (en) Color electrophoretic display
JP2009198725A (ja) 電気泳動表示装置の製造方法、電気泳動表示装置および電子機器
JP4508322B2 (ja) 表示装置
JP4048679B2 (ja) 電気泳動表示装置及びその製造方法
CN102804049A (zh) 反射式彩色显示设备
JP2004233838A (ja) 電気泳動表示素子及びその製造方法
KR20070024752A (ko) 칼라 전자종이 디스플레이
JP2005010781A (ja) 電気移動表示装置及びその製造方法
JP4125096B2 (ja) 電気泳動表示装置の製造方法
CN114265256B (zh) 一种电子纸显示设备的制造方法
KR100450777B1 (ko) 튜브형 캡슐을 이용한 전기영동 디스플레이 및 그 제조방법
JP2007240758A (ja) 画像表示媒体、画像表示装置、および画像表示方法
JP2004054248A (ja) 電気泳動表示装置、及び電気泳動表示装置の製造方法
JP4143289B2 (ja) 表示媒体及びそれを用いた表示装置並びに表示体
JP2004233631A (ja) 電気泳動表示用マイクロカプセルの製造方法
JP5496025B2 (ja) 電気泳動表示装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees