WO2008050599A1 - Solution électrolytique pour accumulateur à ion lithium - Google Patents

Solution électrolytique pour accumulateur à ion lithium Download PDF

Info

Publication number
WO2008050599A1
WO2008050599A1 PCT/JP2007/069602 JP2007069602W WO2008050599A1 WO 2008050599 A1 WO2008050599 A1 WO 2008050599A1 JP 2007069602 W JP2007069602 W JP 2007069602W WO 2008050599 A1 WO2008050599 A1 WO 2008050599A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
component
secondary battery
electrolyte solution
Prior art date
Application number
PCT/JP2007/069602
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Ishii
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2008540935A priority Critical patent/JPWO2008050599A1/ja
Priority to EP07829340A priority patent/EP2063483A4/en
Priority to US12/446,685 priority patent/US20100021814A1/en
Publication of WO2008050599A1 publication Critical patent/WO2008050599A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution for a lithium ion secondary battery and a background art relating to the lithium ion secondary battery.
  • lithium ion secondary battery which is a non-aqueous electrolyte secondary battery
  • a lithium ion secondary battery can be expected to have a high voltage, and thus can contribute to downsizing and weight reduction of equipment.
  • lithium-ion secondary batteries have attracted attention in recent years as a countermeasure for environmental problems and are promising as batteries for hybrid automobiles, and their development has been accelerated.
  • Lithium ion secondary batteries generally have a configuration in which a positive electrode and a negative electrode mainly composed of an active material capable of inserting and extracting lithium are arranged via a separator.
  • the positive electrode includes LiCoO, LiNiO, LiMn O, etc. as a positive electrode active material and carbon bras as a conductive agent.
  • a positive electrode mixture in which graphite is mixed with polyvinylidene fluoride latex or rubber as a binder is coated on a positive electrode current collector made of aluminum or the like.
  • the negative electrode is formed by coating a negative electrode mixture made of copper or the like with a negative electrode mixture in which coatas or graphite as a negative electrode active material and polyvinylidene fluoride latex or rubber as a binder are mixed. Is done.
  • the separator is made of porous polyethylene, porous polypropylene, or the like, and has a very thin thickness of several meters to several hundred meters. And the said positive electrode, a negative electrode, and a separator are impregnated with electrolyte solution. As electrolyte, like LiPF
  • the capacity of such a lithium ion secondary battery tends to decrease as charging and discharging are repeated.
  • Lithium ion secondary batteries used in mobile phones, personal computers, etc. are usually; How much capacity decreases as charging and discharging are repeated
  • the battery's cycle characteristics are considered to be the battery cycle characteristics! /, And a battery that shows little decrease in capacity even after repeated charge and discharge is called a battery with good cycle characteristics.
  • batteries for hybrid vehicles which have been attracting attention as a countermeasure for environmental issues, are expected to be used in midsummer in hot weather or in dry desert areas as the environment for the use of vehicles. Therefore, how to maintain the cycle characteristics in a high temperature environment, specifically at 60 ° C or higher, is a major issue.
  • Non-Patent Document 1 Summary of Lectures on Electrochemical Conference, 2005, P293, especially when vinylene power-bonate is added to the electrolyte, a film is formed on the negative electrode surface during the initial charging process, and this film deteriorates cycle characteristics. It is stated that it works to suppress.
  • Patent Document 1 Japanese Patent No. 3059832 describes a combination of vinylene carbonate and a solvent having a boiling point of 150 ° C. or lower.
  • Patent Document 2 Japanese Patent No. 3332834 describes a method of adding vinylene power carbonate in a battery using a carbon material having a specific crystal lattice as a negative electrode!
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-192757 discloses tris (2-hydroxylethyl) isocyanurate, triarylcyanurate, tritriol in an electrolytic solution as an attempt to improve storage characteristics at 60 ° C.
  • a non-aqueous electrolyte battery to which a tricarboimide selected from allyl isocyanurate is added is disclosed!
  • Non-Patent Document 1 Abstracts of the Electrochemical Conference, 2005, P293
  • Patent Document 1 Japanese Patent No. 3059832
  • Patent Document 2 Japanese Patent No. 3332834
  • Patent Document 3 Japanese Patent Laid-Open No. 7-192757
  • An object of the present invention is to provide a lithium ion secondary battery having good cycle characteristics, and an electrolyte for a lithium ion secondary battery capable of realizing the lithium ion secondary battery.
  • the present invention is as follows.
  • additive group includes the following components (A) and (B):
  • the blending ratio of the component (A) and the component (B) is (01) /99.99-99/1 as (A) component / (B) component (mass ratio),
  • the electrolyte solution for lithium ion secondary batteries wherein the additive group has a content of 0.0001% by mass to 10% by mass.
  • the component (A) is triallyl cyanurate and / or triallyl isocyanurate.
  • a lithium ion secondary battery having good cycle characteristics, and an electrolyte for a lithium ion secondary battery capable of realizing the lithium ion secondary battery.
  • FIG. 1 is a diagram showing the results of a cycle test of the batteries obtained in Example 1, Comparative Example 1, and Comparative Example 2.
  • the electrolyte for a lithium ion secondary battery of the present embodiment includes an additive group and a solvent, and the additive group includes the following components (A) and (B):
  • Examples of the polymerizable functional group contained in the component (A) or the component (B) include unsaturated double bond groups such as vinyl group, aryl group, acrylic group, and methacryl group; acetyl group And unsaturated triple bond groups such as propargyl group; monofunctional groups such as epoxy group, nitro group, nitroso group and silyl group; These are included in the same compound in multiple types! / In the case of using a monofunctional group, it is preferable to have two or more monofunctional groups in one molecule from the viewpoint of accelerating the crosslinking reaction with other molecules.
  • an unsaturated double bond group is contained in the molecule.
  • the component (A) it is more preferable from the above viewpoint that the molecule contains two or more unsaturated double bond groups.
  • the unsaturated bond group strength in the molecule is More preferably it is included.
  • the cycle characteristics of the obtained lithium ion secondary battery are further improved.
  • a compound having an atom having an unshared electron pair it is particularly preferable to use a compound having a nitrogen atom.
  • a compound having a triazine ring structure and / or an isomer structure thereof it is preferable to use a compound having a triazine ring structure and / or an isomer structure thereof.
  • component (A) for example, triallyl cyanurate, triallyl isocyanurate, dibutylbenzene, diallyl phthalate, phenol nopolac type epoxy resin having three epoxy groups in the molecule, Examples thereof include a cresol nopolac type epoxy resin having three epoxy groups in the molecule. These can be used alone or in combination of two or more.
  • triaryl cyanurate and / or triallyl isocyanurate are preferable from the viewpoint of further improving cycle characteristics.
  • component (B) examples include vinylene carbonate, butyl ethylene carbonate, methyl cyanate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and the like. These can be used alone or in combination of two or more.
  • a cyclic carbonate having a polymerizable functional group in the molecule particularly vinylene carbonate is preferable.
  • the blending ratio of the component (A) to the component (B) is (01) /99.99-99/1 as (A) component / (B) component (mass ratio).
  • high temperature cycle characteristics for example, capacity retention rate (%) after 20 cycles at 60 ° C) are preferable. This is particularly preferable because it tends to improve.
  • the additive group may contain additives other than the components (A) and (B) (for example, phosphorus compounds capable of imparting flame retardancy, halogen compounds, etc.).
  • the proportion of the total amount of the component (A) and the component (B) in the additive group is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably. Is less than 100% by mass.
  • the combined use of the component (A) and the component (B) described above leads to a mechanism that further improves high-temperature cycle characteristics! It is inferred that the copolymer film of component (A) and component (B) is appropriately coated on the electrode surface. That is, the capacity decreases while the lithium ion secondary battery is repeatedly charged and discharged.
  • the atom interacts with the surface of the carbon material (is easily coordinated), and the film can be efficiently formed on the surface of the carbon material.
  • Coordination to the positive electrode material usually metal oxide
  • cyclic carbonate (corresponding to the component (B) in the present embodiment) forms a film on the electrode.
  • the film achieves both reduced activity on the electrode surface and ion permeability. From the viewpoint, there was still room for improvement.
  • the components (A) and (B) Copolymerization reaction occurs efficiently on the electrode surface, and the film formed on the electrode (such as the copolymer of component (A) and component (B)) reduces the activity on the electrode surface and improves the ion permeability. It is considered that can be balanced at a higher level.
  • it is preferable to use a triazine ring structure and / or a heterostructure thereof as the component (A) because the high-temperature cycle characteristics are improved.
  • examples of the solvent include cyclic carbonates having no polymerizable functional group in the molecule, such as ethylene carbonate and propylene carbonate; methyl ethyl carbonate, dimethylolate carbonate, jetinorecarbonate, and the like. Chain carbonates; latatones such as gamma-butyllatatone; ethers such as dimethyl ether; cyclic ethers such as tetrahydrofuran and dioxane;
  • solvent from the viewpoint of further reducing the decomposition of the solvent in the battery, fluorine or It is preferable to use a compound modified with silicon or the like. These solvents can be used alone or in combination of two or more.
  • a mixture of a cyclic carbonate and a chain carbonate having no polymerizable functional group is preferably used from the viewpoint of ensuring high ion conductivity.
  • the blending ratio of both is (ethylene carbonate) / (methylethyl carbonate) (mass ratio), preferably 1/9 to 9/1, more preferably 3/7 to 7/3. is there.
  • the electrolyte for a lithium ion secondary battery of the present embodiment can further contain various lithium salts in addition to the additive group and the solvent described above.
  • lithium salts include inorganic lithium salts such as LiPF, LiBF, LiClO, and LiAsF; LiN (SO CF), Li
  • Lithium imide salts such as N (SO CF CF) and LiN (SO CF CHF);
  • the concentration of the lithium salt in the solvent is preferably 0.;! To 2 mol / s.
  • the proportion of the additive group in the electrolyte for a lithium ion secondary battery is 0.0001 mass% to 10 mass% or less, preferably 0.001 mass% to 10 mass% or less. More preferably, the content is 0.01% by mass to 5% by mass or less. Setting the ratio in such a range can contribute to improvement of cycle characteristics at high temperatures.
  • the lithium ion secondary battery of the present embodiment is formed using the above-described electrolytic solution for a lithium ion secondary battery.
  • Examples of other components constituting such a lithium ion secondary battery include a positive electrode, a negative electrode, a separator, and the like.
  • a metal oxide active material can be used as the positive electrode.
  • metal oxide active materials include LiCoO, LiMn O, LiNiO, LiNi Mn Co 02, LiNi
  • Examples include Co 2 O and LiFePO.
  • Metal oxide active material may be used alone
  • the average particle size of the metal oxide active material is preferably 0.111 m to 100 [I m, more preferably 1 111 to 10 111.
  • the “average particle diameter” in the present embodiment is a value measured according to the measurement method in Examples described later.
  • the positive electrode contains, for example, a conductive additive or a binder as necessary to mix with the above active material to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent to contain the positive electrode mixture. It is prepared by adjusting the paste, applying this positive electrode mixture paste to a positive electrode current collector made of aluminum foil, etc., drying to form a positive electrode mixture layer, and pressurizing as necessary to adjust the thickness .
  • the solid content concentration in the paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
  • a carbonaceous material is preferably used as the active material. More specifically, for example, graphite, pyrolytic carbons, coatas, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, graphite, carbon colloids, etc. Preferably used. Carbonaceous materials can be used alone or by mixing multiple carbonaceous materials.
  • the average particle diameter of such a carbonaceous material is preferably 0.1 l ⁇ m-lOO ⁇ m, more preferably 1 ⁇ m to lO ⁇ m.
  • the negative electrode is prepared by, for example, adding a conductive assistant or a binder as necessary to the negative electrode active material made of the carbonaceous material to prepare a negative electrode mixture, and using the negative electrode mixture as a solvent. Disperse to prepare a negative electrode mixture-containing paste, apply the negative electrode mixture-containing paste to the negative electrode current collector, dry it to form a negative electrode mixture layer, and pressurize as necessary to adjust the thickness. Created.
  • the solid content concentration in the paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
  • Examples of the conductive aid used as necessary in the production of the positive electrode and the negative electrode include graphite, acetylene black, carbon black, ketjen black, and carbon fiber.
  • Examples of the binder include PVDF, PTFE, polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
  • the average particle size of such a conductive aid is preferably 0.1 l ⁇ m-lOO ⁇ m, more preferably 1 ⁇ m to 0 ⁇ m.
  • the positive electrode and the negative electrode are wound with a separator interposed therebetween, and are laminated in a wound structure. It can be made into a battery or formed into a laminated body by bending or laminating multiple layers.
  • the lithium ion secondary battery of the present embodiment can be produced by injecting and sealing the electrolytic solution of the present embodiment inside.
  • the battery form of the lithium ion secondary battery of this embodiment is not limited to a specific one, and a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, a laminate shape, and the like are preferably used.
  • the average particle size was measured using a dry fluid dispersion unit RODOS (trademark) manufactured by SYMPATEC, and a laser diffraction particle size distribution measuring optical system HEROS-BASIS / KA (trademark).
  • the average particle size was 50% cumulative value.
  • the initial charge and charge / discharge cycle tests were performed using a charge / discharge device HJ-201B manufactured by Hokuto Denko Co., Ltd. and a thermostatic bath PU-2K manufactured by Tabaystec.
  • the battery was charged at a constant current of 0.667 mA.
  • the battery was charged at a constant voltage of 4.2 V for a total of 8 hours.
  • the battery was discharged at a constant current of 0.67 mA until the voltage reached 3.0V.
  • the initial charge efficiency was calculated by dividing the capacity at the first discharge by the capacity at the first charge.
  • the initial charge / discharge was performed at room temperature.
  • the charge / discharge cycle test conditions were: charging at a constant current of 2 mA.
  • the battery after the cycle test was disassembled in an argon box and the electrode was taken out.
  • the electrode was washed with ethanol (electrolyte solution was washed), then dried, and the elements present on the electrode surface were analyzed with a Thermo Fisher X-ray photoelectron spectrometer (ESCALAB 250). .
  • X-ray photoelectron spectroscopy can measure the relative element concentration of the surface of the extreme surface layer (several nm) excluding hydrogen.
  • Mesocarbon microbeads with an average particle size of 5 m as the negative electrode active material Gen-based binder as the binder (glass transition temperature: 5 ° C, particle size when dried: 120 nm, dispersion medium: water, solid content concentration 40%
  • a slurry solution was prepared so that the solid content concentration of the negative electrode active material was 60% by mass. This slurry was applied to one side of a copper plate having a thickness of 10 ⁇ , dried the solvent, and then rolled with a roll press. After that, it was punched into a disk shape with a diameter of 16mm.
  • An electrolyte solution was prepared according to the formulation shown in Table 1 below.
  • the lithium ion secondary battery of this embodiment has a high temperature (60 ° C), a capacity retention rate after 20 cycles! /, And a deviation of 85% or more. Good characteristics
  • the lithium ion secondary battery of this embodiment is

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
リチウムイオン二次電池用電解液
技術分野
[0001] 本発明は、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池に関す 背景技術
[0002] 近年の電子技術の発展に伴い、移動体通信機器やポータブルコンピュータが広く 普及してきている。そして、これら携帯機器の電源として、高エネルギー密度の二次 電池が有望視されている。特に、非水電解質二次電池であるリチウムイオン二次電 池は、高電圧が期待できることから、機器の小型化、軽量化に寄与し得る。また、リチ ゥムイオン二次電池は、近年環境問題対策で注目を集めて!/、るハイブリット自動車用 電池としても有望であり、開発が加速されている。
[0003] リチウムイオン二次電池は一般に、リチウムを吸蔵、放出可能な活物質を主体として 構成された正極と負極とがセパレータを介して配された構成を有する。前記正極は、 正極活物質としての LiCoO 、 LiNiO 、 LiMn O等と、導電剤としてのカーボンブラ
2 2 2 4
ックゃ黒鉛等と、バインダーとしてのポリフッ化ビニリデンゃラテックス、ゴム等とが混 合された正極合剤が、アルミニウム等からなる正極集電体上に被覆されて形成される
。前記負極は、負極活物質としてのコータスや黒鉛等と、バインダーとしてのポリフッ 化ビニリデンゃラテックス、ゴム等とが混合された負極合剤が、銅等からなる負極集電 体上に被覆されて形成される。前記セパレータは、多孔性ポリエチレンや多孔性ポリ プロピレン等にて形成され、その厚みは数 mから数百 mと非常に薄い。そして、 前記正極、負極、セパレータは電解液に含浸される。電解液としては、 LiPFのような
6 リチウム塩を、プロピレンカーボネート、エチレンカーボネートのような非プロトン性溶 媒ゃポリエチレンォキシドのようなポリマーに溶解させた電解液が挙げられる。
[0004] このようなリチウムイオン二次電池の容量は、充放電を繰り返すに従い低下する傾 向となる。携帯電話やパソコン等に使用されるリチウムイオン二次電池は、通常;!〜 2 年で電池を交換する必要がある。充放電を繰り返すに従ってどの程度容量低下が起 こるのかを示す特性を電池のサイクル特性と!/、い、充放電を繰り返しても容量低下が 少ない電池はサイクル特性の良い電池と呼ばれる。特に近年、環境問題対策で注目 を集めているハイブリッド自動車用電池においては、自動車の使用環境として真夏の 炎天下や、乾燥砂漠地帯での使用が想定される。従って、高温環境下、具体的には 60°C以上におけるサイクル特性をいかに維持するかが大きな課題となっている。
[0005] サイクル特性の向上を目的として、電解液中に添加剤を入れる検討がなされている 。非特許文献 1 :電気化学大会講演要旨集、 2005年、 P293には、特にビニレン力 ーボネートを電解液に添加すると、初充電工程で負極表面に被膜が形成され、この 被膜がサイクル特性の悪化を抑える働きをする旨記載されてレ、る。
また、特許文献 1 :特許 3059832号公報には、ビニレンカーボネートと沸点 150°C 以下の溶媒との組み合わせが記載されてレ、る。特許文献 2:特許 3332834号公報 には、特定の結晶格子を有する炭素材料を負極に用いた電池においてビニレン力 ーボネートを添加する方法が記載されて!/、る。
更に、特許文献 3 :特開平 7— 192757号公報には、 60°Cにおける保存特性を向 上させる試みとして、電解液中にトリス(2—ヒドロキシルェチル)イソシァヌレート、トリ ァリルシアヌレート、トリアリルイソシァヌレートから選択されたトリカルボイミドを添加し た非水電解液電池が開示されて!/、る。
[0006] 非特許文献 1:電気化学大会講演要旨集、 2005年、 P293
特許文献 1:特許 3059832号公報
特許文献 2:特許 3332834号公報
特許文献 3:特開平 7— 192757号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上記非特許文献 1、及び特許文献;!〜 3に記載された電池のいずれ においても、サイクル特性向上の観点からはなお改善の余地を有していた。
本発明は、サイクル特性が良好なリチウムイオン二次電池、及び当該リチウムイオン 二次電池を実現し得るリチウムイオン二次電池用電解液を提供することを目的とする 課題を解決するための手段
[0008] 本発明者は上記課題を解決すべく鋭意検討した結果、特定の添加剤群を溶媒に 添加することによりサイクル特性が良好なリチウムイオン二次電池を実現し得ることを 見出し、本発明をなすに至った。
[0009] 即ち、本発明は、以下の通りである。
[1]
添加剤群と溶媒とを含み、前記添加剤群が以下の (A)、(B)の各成分、
(A)重合性官能基を分子内に 2個以上有する添加剤、
(B)重合性官能基を分子内に 1個有する添加剤
を含み、
前記 (A)成分と前記 (B)成分との配合比が (A)成分/ (B)成分 (質量比)として、 0. 01/99. 99〜99/1であり、
前記添加剤群の含有率が 0. 0001質量%〜; 10質量%であることを特徴とするリチウ ムイオン二次電池用電解液。
[2]
前記 (A)成分が、非共有電子対を備える原子を有する [1]記載のリチウムイオン二 次電池用電解液。
[3]
前記 (A)成分が、トリアジン環構造及び/又はその異性体構造を有する [2]記載 のリチウムイオン二次電池用電解液。
[4]
前記 (A)成分が、トリァリルシアヌレート及び/又はトリアリルイソシァヌレートである
[3]記載のリチウムイオン二次電池用電解液。
[5]
前記(B)成分が、ビニレンカーボネートである [1]〜 [4]のいずれかに記載のリチウ ムイオン二次電池用電解液。
[6]
[1]〜 [5]のいずれかに記載のリチウムイオン二次電池用電解液と、正極と、負極と 、セパレータとを備えたリチウムイオン二次電池。
発明の効果
[0010] 本発明によれば、サイクル特性が良好なリチウムイオン二次電池、及び当該リチウ ムイオン二次電池を実現し得るリチウムイオン二次電池用電解液が提供される。 図面の簡単な説明
[0011] [図 1]実施例 1、比較例 1、比較例 2で得られた電池のサイクル試験の結果を示す図 である。
発明を実施するための最良の形態
[0012] 以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。 )に ついて詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではな ぐその要旨の範囲内で種々変形して実施することができる。
[0013] 本実施の形態のリチウムイオン二次電池用電解液は、添加剤群と溶媒とを含み、前 記添加剤群が以下の (A)、(B)の各成分、
(A)重合性官能基を分子内に 2個以上有する添加剤、
(B)重合性官能基を分子内に 1個有する添加剤
を含むことを特徴とする。
[0014] 前記 (A)成分、又は前記 (B)成分に含まれる重合性官能基としては、例えば、ビニ ル基、ァリル基、アクリル基、メタクリル基等の不飽和二重結合基;ァセチル基、プロ パギル基等の不飽和三重結合基;エポキシ基、ニトロ基、ニトロソ基、シリル基等の単 官能基;等が挙げられる。これらは複数種が同一の化合物中に含まれて!/、ても良レ、。 なお、単官能基を用いる場合、 1分子中に単官能基を 2個以上有することが、他の分 子との架橋反応を促進する観点から好適である。
また、常温のみならず、例えば 60°C条件下でのサイクル特性を向上させる観点から 、分子中に不飽和二重結合基が含まれることが好適である。前記 (A)成分としては 分子中に不飽和二重結合基が 2個以上含まれることが、上記観点からより好ましぐ 一方、前記 (B)成分としては、分子中に不飽和結合基力 個含まれることがより好まし い。
[0015] 前記 (A)成分としては、得られるリチウムイオン二次電池のサイクル特性をより向上 させる観点から、非共有電子対を備える原子を有する化合物を用いることが好ましく 、中でも、窒素原子を有する化合物を用いることが好ましい。特に、前記 (A)成分とし ては、トリアジン環構造及び/又はその異性体構造を有する化合物を用いることが好 適である。
[0016] 前記 (A)成分としてより具体的には、例えば、トリァリルシアヌレート、トリアリルイソシ ァヌレート、ジビュルベンゼン、ジァリルフタレート、分子内にエポキシ基を 3個有する フエノールノポラック型エポキシ樹脂、分子内にエポキシ基を 3個有するクレゾールノ ポラック型エポキシ樹脂、等が挙げられる。これらは 1種を単独で、又は 2種以上を併 用することあでさる。
中でも、サイクル特性をより向上させる観点から、トリァリルシアヌレート及び/又はト リアリルイソシァヌレートが好適である。
[0017] 一方、前記 (B)成分としてより具体的には、例えば、ビニレンカーボネート、ビュル エチレンカーボネート、メチルシアメート、ビスフエノール A型エポキシ樹脂、ビスフエ ノール F型エポキシ樹脂、等が挙げられる。これらは 1種を単独で、又は 2種以上を併 用することあでさる。
中でも、サイクル特性をより向上させる観点から、重合性官能基を分子内に有する 環状カーボネート、特にビニレンカーボネートが好適である。
[0018] 前記 (A)成分と前記 (B)成分との配合比としては、 (A)成分/ (B)成分 (質量比)と して、 0. 01/99. 99—99/1 ,好ましく (ま 0. 1/99. 9—90/10,より好ましく (ま 1 /99〜90/10、更に好ましくは 10/90〜50/50である。配合比を当該範囲とす ることは、サイクル特性を向上させる観点から好適である。特に、配合比が 10/90〜 50/50である場合、高温サイクル特性 (例えば、 60°C、 20サイクル後の容量維持率 (%) )が特に向上する傾向となり好ましい。
なお、前記添加剤群は前記 (A) , (B)成分以外の添加剤 (例えば、難燃性を付与 させることのできるリン系化合物や、ハロゲン系化合物、等)を含んでも良い。ここで、 前記 (A)成分と前記 (B)成分との総量が前記添加剤群中に占める割合としては、好 ましくは 50質量%以上、より好ましくは 70質量%以上であり、さらに好ましくは 100質 量%以下である。 [0019] 本実施の形態において、上述した (A)成分と(B)成分とを併用することにより、高温 サイクル特性がより向上する機構につ!/、ては詳らかではな!/、が、 (A)成分と(B)成分 との共重合膜が電極表面に適切に被覆されていることが関係しているものと推察され 即ち、リチウムイオン二次電池が充放電を繰り返す間に容量低下する現象には種 々の機構が考えられるが、電極表面で溶媒や電解質が分解する現象もその一因と 考えられる。これに対し、電極表面に皮膜を形成することによって電極表面活性を抑 制することは、サイクル特性の向上に寄与するものと考えられる。
ここで、リチウムイオン二次電池の負極には通常、炭素材が用いられる力 前記皮 膜を形成する成分が非共有電子対を備える原子 (例えば、窒素原子、酸素原子、等 )を有する場合、当該原子は炭素材表面と相互作用しゃすく(配位しやすく)、炭素 材表面に効率よく前記皮膜を形成することが可能となる。正極材料 (通常、金属酸化 物)への配位も同様に期待し得る。
また、環状カーボネート(本実施の形態における(B)成分に相当する)が電極上に 皮膜を形成することは知られていた力 当該皮膜は電極表面の活性低減とイオンの 透過性とを両立する観点からはなお改善の余地を有するものと考えられた。そして、 このような (B)成分に加え、非共有電子対を備える原子を有する化合物 (本実施の形 態における (A)成分に相当する)を併用すると、 (A)成分と (B)成分との共重合反応 が電極表面で効率よく生じると共に、電極上に形成される皮膜((A)成分と (B)成分 との共重合体など)が電極表面の活性低減とイオンの透過性とをより高度な次元で両 立し得るものと考えられる。特に、(A)成分としてトリアジン環構造及び/又はその異 性体構造を用いた場合、高温サイクル特性が良好となるため好ましい。
[0020] 一方、前記溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート 等の、重合性官能基を分子中に有しない環状カーボネート;メチルェチルカーボネ ート、ジメチノレカーボネート、ジェチノレカーボネート等の鎖状カーボネート;ガンマブ チルラタトン等のラタトン類;ジメチルエーテル等のエーテル類;テトラヒドロフラン、ジ ォキサン等の環状エーテル類;ァセトニトリル等が挙げられる。
また、前記溶媒としては、電池中での溶媒の分解をより低減する観点から、フッ素や 珪素等で変性された化合物を用いることが好ましい。なお、これら溶媒は 1種を単独 で、又は 2種以上を併用することも可能である。
[0021] 前記溶媒としては、高いイオン伝導性を確保するの観点から、特に、重合性官能基 を有さない環状カーボネートと鎖状カーボネートの混合物が好適に用いられる。中で も、エチレンカーボネートとメチルェチルカーボネートとの,袓み合わせが好適である。 ここで、両者の配合比としては、(エチレンカーボネート) / (メチルェチルカーボネー ト)(質量比)として、好ましくは 1/9〜9/1、より好ましくは 3/7〜7/3である。
[0022] 本実施の形態のリチウムイオン二次電池用電解液は、上述した添加剤群、及び溶 媒に加え、更に種々のリチウム塩を含むことができる。このようなリチウム塩としては、 例えば、 LiPF、 LiBF、 LiClO、 LiAsF等の無機リチウム塩; LiN (SO CF ) , Li
6 4 4 6 2 2 2
N (SO CF CF ) 、 LiN (SO CF CHF ) 等のリチウムイミド塩;等が好適に用いら
2 2 3 2 2 2 2 2
れる。
なお、上記リチウム塩の前記溶媒中の濃度としては、好ましくは 0. ;!〜 2モル/しで ある。
[0023] 前記添加剤群がリチウムイオン二次電池用電解液中に占める割合としては、 0. 00 01質量部%〜10質量%以下、好ましくは 0. 001質量%〜; 10質量%以下、より好ま しくは 0. 01質量%〜5質量%以下である。当該割合をこのような範囲に設定すること は、高温におけるサイクル特性の向上に寄与し得る。
[0024] 本実施の形態のリチウムイオン二次電池は、上述したリチウムイオン二次電池用電 解液を用いて形成されるものである。このようなリチウムイオン二次電池を構成する他 の構成部材としては、正極、負極、セパレータ、等が挙げられる。
前記正極としては金属酸化物系活物質を用いることができる。金属酸化物系活物 質としては、例えば LiCoO、 LiMn O、 LiNiO、 LiNi Mn Co 02、 LiNi
2 2 4 2 1/3 1/3 1/3 x
Co O、 LiFePO等が挙げられる。金属酸化物系活物質は、単独で用いてもよぐ
1 2 4
複数の金属酸化物系活物質を混合して用いてもょレ、。
また、前記金属酸化物系活物質の平均粒径としては、好ましくは 0. 1 11 m〜100 [I m、ょり好ましくは1 111〜10 111でぁる。なお、本実施の形態にいう「平均粒径」は、 後述する実施例における測定方法に準じて測定される値である。 [0025] 正極は、例えば、上記活物質に必要に応じて導電助剤やバインダー等を加えて混 合して正極合剤を調整し、その正極合剤を溶剤に分散させて正極合剤含有ペースト を調整し、この正極合剤ペーストをアルミニウム箔等からなる正極集電体に塗布し、 乾燥して正極合剤層を形成し、必要に応じて加圧して厚み調整をおこなって作成さ れる。
ここで、ペースト中の固形分濃度としては、好ましくは 30〜80質量%であり、より好 ましくは 40〜70質量%である。
[0026] 一方、前記負極としては、その活物質として、炭素質材料が好適に用いられる。より 具体的には、例えば、黒鉛、熱分解炭素類、コータス類、ガラス状炭素類、有機高分 子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラフアイト、炭 素コロイド等が好適に用いられる。炭素質材料は、単独で用いてもよぐ複数の炭素 質材料を混合して用レ、てもよレ、。
このような炭素質材料の平均粒径としては、好ましくは 0. l ^ m-lOO ^ m,より好 ましくは 1 μ m〜lO μ mである。
[0027] また、負極は、例えば、前記炭素質材料からなる負極活物質に必要に応じて導電 助剤やバインダーなどを加えて混合して負極合剤を調整し、その負極合剤を溶剤に 分散させて負極合剤含有ペーストを調整し、その負極合剤含有ペーストを負極集電 体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧して厚み調整をおこ なって作成される。
ここで、ペースト中の固形分濃度としては、好ましくは 30〜80質量%であり、より好 ましくは 40〜70質量%である。
[0028] 正極や、負極の作成にあたって必要に応じて使用する導電助剤としては、例えば、 グラフアイト、アセチレンブラック、カーボンブラック、ケッチェンブラック、炭素繊維等 力 S挙げられる。また、バインダーとしては、例えば、 PVDF、 PTFE、ポリアクリル酸、ス チレンブタジエンゴム、フッ素ゴム等が挙げられる。
このような導電助剤の平均粒径としては、好ましくは 0. l ^ m-lOO ^ m,より好ま しくは 1 μ m〜 0 μ mである。
[0029] 前記正極と負極とは、その間にセパレータを介在させて巻回して巻回構造の積層 体にしたり、折り曲げや複数層の積層などによって積層体にしたりして、電池として成 型すること力 Sできる。本実施の形態の電解液を内部に注液し、封印することによって、 本実施の形態のリチウムイオン二次電池を作成することができる。本実施の形態のリ チウムイオン二次電池の電池形態は、特定のものに限ることなぐ円筒形、楕円形、 角筒型、ボタン形、コイン形、扁平形、ラミネート形などが好適に用いられる。
実施例
[0030] 次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実 施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。な お、実施例中の物性は以下の方法により測定した。
[0031] ω平均粒径
平均粒径測定は SYMPATEC社製の乾式流動分散ユニット RODOS (商標)、及 びレーザー回折式粒度分布測定光学システム HEROS— BASIS/KA (商標)を使 用して測定した。平均粒径は 50%累積径値を用いた。
(ii)初充電効率、容量維持率 (サイクル試験)
初充電、及び充放電サイクル試験は、北斗電工 (株)製充放電装置 HJ— 201B、及 び、タバイエステック社製恒温槽 PU— 2Kを用いて行った。初充電は、 0. 67mAの 定電流で充電し、 4. 2Vに到達した後、 4. 2Vの定電圧で合計 8時間充電を行った。 その後 0. 67mAの定電流で電圧が 3. 0Vに到達するまで放電させた。初充電効率 は、初回の放電時の容量を初回の充電時の容量で除した値とした。なお、初充放電 は、室温で行った。充放電サイクル試験条件は、 2mAの定電流で充電し、 4. 2Vに 到達した後、 4. 2Vの定電圧で、合計 3時間充電を行った。その後、 10mAの定電流 で放電し、 3. 0Vに到達した時点で再び、充電を繰り返した。 1サイクルは、充電と放 電とを各々 1回行なうことを意味する。電池の周囲温度は 60°Cとした。なお、容量維 持率は、初期の容量を 100%としたときの割合とした。
(iii)電極表面評価
サイクル試験後の電池をアルゴンボックス中で解体し電極を取り出した。電極をエタ ノールで洗浄し(電解液を洗浄し)、その後乾燥させ、サーモフィッシャー社製 X線光 電子分光測定装置(ESCALAB 250)で電極表面に存在する元素の分析を行った 。なお、 X線光電子分光測定により、極表層(数 nm)の表面における水素を除いた相 対元素濃度を測定することができる。
[0032] [製造例 1]
(正極の作成)
正極活物質として平均粒径 5 mのリチウムコバルト酸(LiCoO )、導電助剤として
2
は平均粒径 3 mの炭素粉末、バインダーとしてポリフッ化ビニリデン(PVdF)を 85 : 10 : 5の質量比で混合した。混合物に N メチルー 2 ピロリドンを投入混合して固 形分 60質量%になるようにスラリー状の溶液を作成した。このスラリーを厚さ 20 m のアルミニウム片面に塗布し、溶剤を乾燥したのち、ロールプレスで圧延した。その 後、直径 16mmの円盤状に打ち抜いた。
[0033] [製造例 2]
(負極の作成)
負極活物質として、平均粒径 5 mのメソカーボンマイクロビーズ、バインダーとして ジェン系からなるバインダー(ガラス転移温度: 5°C、乾燥時の粒径: 120nm、分散 媒:水、固形分濃度 40%)を負極活物質の固形分濃度が 60質量%になるようにスラ リー状の溶液を作成した。このスラリーを厚み 10 πιの銅片面に塗布し、溶剤を乾燥 したのち、ロールプレスで圧延した。その後、直径 16mmの円盤状に打ち抜いた。
[0034] [実施例;!〜 5、比較例;!〜 4]
下表 1に示す配合にて電解液を作製した。
製造例 1 , 2で作製した正極と負極とを、ポリエチレンからなるセパレータ(膜厚 25 m、空孔率 50%、孔径 0· 1 111〜1 111)を介して重ね合わせた後、 SUS製の円盤 型電池に揷入し、前述の添加剤群を含む電解液を lml注入し、密閉して電池を作成 した。
得られた電池についてサイクル試験を行ない、容量維持率を測定した。結果を下 表 1に併記した。また、実施例 1、比較例 1 , 2について容量維持率変化を図 1にまと めた。
[0035] [表 1] 実施例 比較例
質量%
1 2 3 4 5 1 2 3 4
(A) V C 0. 8 0. 9 0. 8 0. 5 0. 25 0 1 1 0
0. 1 0. 2 0. 5 0. 75 1
( B ) TAIC or TAC 0. 2 (TAIC) 0 0 0
(TAC) (TAC) (TAC) (TAC) (TAC) 溶液 1 99 99 99 99 99 100 99 99 99 初充電効率 0 86 - - - - 85 81 - 容量維持率の変化 図 1 - - - - 図 1 図 1 - -
20サイクル経過後の - 89 90 86 85 - - 80 80 容量維持率 (%)
電極表面評価 TAIC混入
[0036] (VC)
ビニレンカーボネート
(TAC)
トリァリルシアヌレート
(TAIC)
(溶液 1)
エチレンカーボネートとメチルェチルカーボネートを質量比で 1: 2になるように調整 し、その後、 LiPFを 1モル/ Lに調整した溶液。
6
(TAIC混入)
正極、負極ともにトリアリルイソシァヌレート由来の窒素が約 4 atom% (極表層(数 nm)の表面における水素を除いた相対元素濃度)検出され、電極表面被膜にトリァリ ルイソシァヌレートが取り込まれていることが確認された。
[0037] 表 1の結果から、本実施の形態のリチウムイオン二次電池は、高温(60°C)、 20サイ クル経過後の容量維持率が!/、ずれも 85 %以上であり、サイクル特性が良好であった
また、図 1の結果から、本実施の形態のリチウムイオン二次電池は、サイクル試験の

Claims

請求の範囲
[1] 添加剤群と溶媒とを含み、前記添加剤群が以下の (A)、 (B)の各成分、
(A)重合性官能基を分子内に 2個以上有する添加剤、
(B)重合性官能基を分子内に 1個有する添加剤
を含み、
前記 (A)成分と前記 (B)成分との配合比が (A)成分/ (B)成分 (質量比)として、 0. 01/99. 99〜99/1であり、
前記添加剤群の含有率が 0. 0001質量%〜; 10質量%であることを特徴とするリチウ ムイオン二次電池用電解液。
[2] 前記 (A)成分が、非共有電子対を備える原子を有する請求項 1記載のリチウムィォ ン二次電池用電解液。
[3] 前記 (A)成分が、トリアジン環構造及び/又はその異性体構造を有する請求項 2 記載のリチウムイオン二次電池用電解液。
[4] 前記 (A)成分が、トリァリルシアヌレート及び/又はトリアリルイソシァヌレートである 請求項 3記載のリチウムイオン二次電池用電解液。
[5] 前記(B)成分が、ビニレンカーボネートである請求項 1〜4のいずれか 1項に記載 のリチウムイオン二次電池用電解液。
[6] 請求項;!〜 5のいずれかに記載のリチウムイオン二次電池用電解液と、正極と、負 極と、セパレータとを備えたリチウムイオン二次電池。
PCT/JP2007/069602 2006-10-23 2007-10-05 Solution électrolytique pour accumulateur à ion lithium WO2008050599A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008540935A JPWO2008050599A1 (ja) 2006-10-23 2007-10-05 リチウムイオン二次電池用電解液
EP07829340A EP2063483A4 (en) 2006-10-23 2007-10-05 ELECTROLYTE SOLUTION FOR A LITHIUMION SECONDARY BATTERY
US12/446,685 US20100021814A1 (en) 2006-10-23 2007-10-05 Electrolyte for lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006287335 2006-10-23
JP2006-287335 2006-10-23

Publications (1)

Publication Number Publication Date
WO2008050599A1 true WO2008050599A1 (fr) 2008-05-02

Family

ID=39324404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069602 WO2008050599A1 (fr) 2006-10-23 2007-10-05 Solution électrolytique pour accumulateur à ion lithium

Country Status (6)

Country Link
US (1) US20100021814A1 (ja)
EP (1) EP2063483A4 (ja)
JP (1) JPWO2008050599A1 (ja)
KR (1) KR20090064583A (ja)
CN (1) CN101536242A (ja)
WO (1) WO2008050599A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282906A (ja) * 2009-06-08 2010-12-16 Asahi Kasei E-Materials Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2011165449A (ja) * 2010-02-09 2011-08-25 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2014063733A (ja) * 2012-09-03 2014-04-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
KR20150125928A (ko) 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
JP2018063942A (ja) * 2017-09-22 2018-04-19 三菱ケミカル株式会社 非水系電解液及びそれを用いた蓄電デバイス
WO2019189670A1 (ja) * 2018-03-29 2019-10-03 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP2020021747A (ja) * 2014-08-22 2020-02-06 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2020122158A1 (ja) * 2018-12-12 2020-06-18 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108505A1 (ja) * 2011-02-10 2012-08-16 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
CN103199302B (zh) * 2013-03-18 2015-08-19 宁德新能源科技有限公司 锂离子二次电池及其电解液
CN103618109B (zh) * 2013-12-09 2016-08-24 山东海容电源材料有限公司 电解液用阻燃添加剂及阻燃型锂离子电池电解液
CA3069975A1 (en) * 2017-07-17 2019-01-24 NOHMs Technologies, Inc. Modified triazine functional compounds
JP7455498B2 (ja) 2017-11-29 2024-03-26 株式会社Gsユアサ 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
CN112885606A (zh) * 2021-01-11 2021-06-01 深圳市金富康电子有限公司 一种电解液添加剂、高压高电导率电解液及其制备方法、铝电解电容器及其制备方法
CN113851714B (zh) * 2021-09-18 2022-12-02 蜂巢能源科技有限公司 一种电解液及其应用
CN117917792A (zh) * 2022-10-21 2024-04-23 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液和锂二次电池
CN115911562B (zh) * 2022-12-30 2023-11-28 湖南法恩莱特新能源科技有限公司 一种长寿命高安全性能锂电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192757A (ja) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd 非水系電解液電池
JP2000348765A (ja) * 1999-04-02 2000-12-15 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358999A (ja) * 2001-06-01 2002-12-13 Gs-Melcotec Co Ltd 非水電解質二次電池
JP2006221972A (ja) * 2005-02-10 2006-08-24 Sony Corp 電解液および電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192757A (ja) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd 非水系電解液電池
JP2000348765A (ja) * 1999-04-02 2000-12-15 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2063483A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282906A (ja) * 2009-06-08 2010-12-16 Asahi Kasei E-Materials Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2011165449A (ja) * 2010-02-09 2011-08-25 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2014063733A (ja) * 2012-09-03 2014-04-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
KR20150125928A (ko) 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
US11942601B2 (en) 2013-02-27 2024-03-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
US11424482B2 (en) 2013-02-27 2022-08-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP2020021747A (ja) * 2014-08-22 2020-02-06 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2018063942A (ja) * 2017-09-22 2018-04-19 三菱ケミカル株式会社 非水系電解液及びそれを用いた蓄電デバイス
JPWO2019189670A1 (ja) * 2018-03-29 2021-04-01 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
WO2019189670A1 (ja) * 2018-03-29 2019-10-03 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP7231615B2 (ja) 2018-03-29 2023-03-01 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
WO2020122158A1 (ja) * 2018-12-12 2020-06-18 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JPWO2020122158A1 (ja) * 2018-12-12 2021-10-21 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP7342028B2 (ja) 2018-12-12 2023-09-11 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池

Also Published As

Publication number Publication date
EP2063483A1 (en) 2009-05-27
JPWO2008050599A1 (ja) 2010-02-25
US20100021814A1 (en) 2010-01-28
CN101536242A (zh) 2009-09-16
EP2063483A4 (en) 2011-07-20
KR20090064583A (ko) 2009-06-19

Similar Documents

Publication Publication Date Title
WO2008050599A1 (fr) Solution électrolytique pour accumulateur à ion lithium
EP2899794B1 (en) Lithium secondary battery
US9225037B2 (en) Lithium secondary battery using ionic liquid
US11431025B2 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and electrochemical device including the same
JP2016521444A (ja) リチウムバッテリ用正電極
EP1995817A1 (en) Lithium rechargeable battery using ionic liquid
US12021217B2 (en) Method of manufacturing negative electrode for secondary battery
JPWO2015046492A1 (ja) リチウムイオン二次電池用電極およびリチウムイオン二次電池
KR20080052389A (ko) 리튬 이차 전지 및 리튬 이차 전지용 비수 전해질
CN112563563A (zh) 复合固态电解质、固态电池及其制备方法
JP7536331B2 (ja) 二次電池の製造方法
CN111801836A (zh) 锂二次电池用电解质
KR20220109699A (ko) 이차전지의 제조방법
KR102661591B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
EP3203547A1 (en) Electrode for lithium batteries, lithium battery and paste for electrochemical cells
EP3975305A1 (en) Method for manufacturing secondary battery
JP2023512820A (ja) ゲルポリマー電解質二次電池の製造方法、及びそれによって製造されたゲルポリマー電解質二次電池
JP2021163654A (ja) 全固体電池およびその製造方法
JP2017079193A (ja) 非水二次電池用電解液及びそれを用いた非水二次電池
JP4474717B2 (ja) 非水系二次電池とその製造方法
CN105655516A (zh) 一种可避免胀气的钛酸锂基锂二次电池
JP2015125950A (ja) リチウムイオン二次電池
KR102327722B1 (ko) 복합 양극재 및 이를 포함하는 이차전지 양극 및 이의 제조방법
JP2015213004A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
KR20240097028A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039344.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008540935

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007829340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097007952

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12446685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE