WO2008035416A1 - Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide - Google Patents

Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide Download PDF

Info

Publication number
WO2008035416A1
WO2008035416A1 PCT/JP2006/318691 JP2006318691W WO2008035416A1 WO 2008035416 A1 WO2008035416 A1 WO 2008035416A1 JP 2006318691 W JP2006318691 W JP 2006318691W WO 2008035416 A1 WO2008035416 A1 WO 2008035416A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid
film
region
base film
flex
Prior art date
Application number
PCT/JP2006/318691
Other languages
English (en)
French (fr)
Inventor
Akihiro Sato
Masahiro Sasaki
Tadahiro Ohmi
Akihiro Morimoto
Original Assignee
Daisho Denshi Co., Ltd.
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisho Denshi Co., Ltd., Tohoku University filed Critical Daisho Denshi Co., Ltd.
Priority to CN2006800558825A priority Critical patent/CN101518163B/zh
Priority to KR1020097006241A priority patent/KR101156751B1/ko
Priority to EP06798183.7A priority patent/EP2071907B1/en
Priority to US12/442,016 priority patent/US8188372B2/en
Priority to PCT/JP2006/318691 priority patent/WO2008035416A1/ja
Publication of WO2008035416A1 publication Critical patent/WO2008035416A1/ja
Priority to US13/459,628 priority patent/US9155209B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • C23F4/04Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by physical dissolution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/243Reinforcing the conductive pattern characterised by selective plating, e.g. for finish plating of pads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a flex-rigid printed wiring board including a rigid part on which a component can be mounted and a flexible part that can be bent by being connected to the rigid part, and a method for manufacturing the same.
  • this printed wiring board includes a rigid portion on which a component can be mounted, and a flexible portion that can be bent by being connected to the rigid portion.
  • Patent Document 1 As this type of technology, for example, in Patent Document 1, a low-orientation copper layer is formed on both sides of a base film in advance on a copper layer having a high orientation of copper crystals, and In addition, a flexible rigid wiring board is proposed in which a laminate in which a conductor circuit is formed is joined. By adopting such a configuration, a wiring without electrical anisotropy is provided while suppressing disconnection due to bending deformation of the flexible portion, and durability is improved. Patent Document 1: JP 2005-5413 JP
  • a copper layer having a predetermined thickness is formed on both surfaces of the base film, and each copper layer is etched halfway in the thickness direction (no fetching) to reduce the thickness.
  • the flexibility of the flexible part A method for improving the rupture resistance while securing it can be considered.
  • the copper layer is simply fetched, the thickness of the copper layer formed on the rigid part will be reduced accordingly, and it will be difficult to ensure conduction such as increased wiring resistance. There is.
  • the present invention is a flex-rigid printed wiring board that can improve the durability of the flexible portion against bending while ensuring the flexibility of the flexible portion, and can ensure conduction in the rigid portion. And its manufacturing method
  • a conductor layer is formed on at least one surface of the base film, one region including the base film is a rigid region, and the other layer including the base film is included.
  • the area is a flexible rigid printed wiring board that is a flexible area!
  • the average thickness tf of the conductor layer on the base film formed in the flexible region and the average thickness tR of the conductor layer on the base film formed in the rigid region satisfy the relationship tf ⁇ tR.
  • the rigid part conductor layer is thicker than the flexible part conductor layer, it is possible to suppress an increase in wiring resistance due to the rigid part conductor layer.
  • the thinner the tf the better the durability (2Z3) X tR or less (1Z3) X tR or less. I like it.
  • by thinning for example, when forming a thin conductor layer by etching. In this case, the smallest possible thickness is suitable as long as etching variation occurs and the process permits.
  • the thickness when forming a thin conductor layer in the flexible part by an etching method, it is preferable to set the thickness to about 1 ⁇ m or more by electroless plating method or sputtering method which is preferable from the viewpoint of manufacturing yield. In the case of forming a thin conductor layer in the portion, it is preferable that the thickness is about 0.1 ⁇ m or more from the viewpoint of manufacturing yield.
  • the rigid region is configured by laminating a rigid layer having a higher elastic modulus than the base film on at least one surface side of the base film.
  • the rigid region is a glass fiber-containing layer.
  • a boundary between the rigid region and the flexible region is defined across a boundary between the rigid region and the flexible region, and the conductor layer on the base film at the boundary position is defined.
  • the thickness tB and the average thickness tR of the conductor layer on the base film formed in the rigid region satisfy the relationship of tB and tR.
  • a plurality of conductor wirings are formed on at least one surface of the base film, one region including the base film is a rigid region, and the other including the base film.
  • the area of the flexible rigid printed wiring board that is a flexible area is a thickness of at least one wiring ti force in the plurality of conductor wirings on the base film formed in the flexible area.
  • a flex-rigid printed wiring board is provided which is smaller than the average thickness tR of the conductor layer on the base film.
  • the rigid region is configured by laminating a rigid layer having a higher elastic modulus than the base film on at least one surface side of the base film.
  • the rigid region is a glass fiber-containing layer.
  • a boundary between the rigid region and the flexible region is defined along a boundary between the rigid region and the flexible region, and at least one wiring on the base film at the boundary position is defined.
  • Thickness tiB and the average thickness tR of the conductor layer on the base film formed in the rigid region satisfy the relationship tiB ⁇ tR.
  • the rigid layer constituting the rigid portion is less than the base film. Since the efficiency is high, the stress generated in the rigid part wiring in the rigid part can be relieved, while the stress accompanying the bending of the flexible part is generated in the flexible part, so long-term reliability is achieved. Can be secured.
  • the material constituting the rigid portion is not particularly limited as long as the elastic modulus is higher than that of the base film. However, it is necessary to use a layer containing a glass fiber with an adhesive or the like in terms of manufacturing cost. Force is also suitable. It is also possible to use composite materials that have a higher modulus of elasticity by incorporating fillers such as silica and ceramic beads into the synthetic resin.
  • the above-described invention applies not only to the entire conductor layer on the base film in the flexible part and the rigid part, but also patterns the conductor layer on the base film. This holds for each wiring obtained. In other words, the same argument holds even if tf is changed to the thickness ti of at least one of the plurality of wirings on the base film of the flexible part.
  • a portion to be a flexible region of the conductor film is pre-etched, and A step of making the conductor film thickness of 1 thinner than the thickness of other portions, a step of bonding a protective layer to the base film, and a prep provided with an opening in the flexible region.
  • the thin conductor layer of the flexible part can be formed by an etching method, the thin conductor layer can be provided at low cost.
  • a step of forming a first conductor film on a base film, a mask is formed with a photoresist at a portion to be a flexible region of the first conductor film, and A step of opening a photoresist in a region to be a rigid portion wiring region of the first conductor film, and a step of opening the photoresist opening with the first conductor film exposed through the photoresist opening as a base.
  • the conductor film formed on the base film can be formed by the sputtering method, the thin conductor layer can be easily obtained. Furthermore, since the wiring of the rigid portion can be selectively formed in the rigid portion wiring formation region by an electric field plating method or an electric field plating method, there is an advantage that a fine wiring pattern can be easily formed.
  • the step of forming the first conductive film on the base film, and the portion that becomes the flexible region of the first conductive film is protected by the photosensitive protective film. And a step of opening a photosensitive protective film in a region to be a rigid region of the first conductor film, a step of curing the photosensitive protective film, and the first step exposed by the photosensitive protective film opening.
  • the conductor film formed on the base film is formed by the sputtering method or the sputtering method, a thin conductor layer can be easily obtained.
  • the rigid part wiring is selectively formed in the rigid part wiring formation region by the electric field plating method or the electric field plating method. Therefore, it is easy to form a fine wiring pattern.
  • the photosensitive protective film remains on the first conductive film on the base film so as to have the same thickness as the second conductive film, so that the wiring of the rigid portion can be made thick. In addition, it is possible to improve the manufacturing yield without causing a significant step in the wiring layer. Further, since the photosensitive resin protective film serves as a protective film for the wiring on the base film of the flexible part, it is not necessary to separately bond the protective film, and the manufacturing cost can be reduced.
  • the present invention it is possible to suppress disconnection associated with bending of the flexible portion, and thus it is possible to manufacture a flex-rigid printed wiring board with high durability and reliability. Furthermore, according to the present invention, since the conductor thickness on the base film in the rigid portion can be set larger than the conductor thickness on the base film in the flexible portion, an increase in wiring resistance can be suppressed. . Furthermore, according to the present invention, since the change point of the conductor layer on the base film is present on the rigid part side with respect to the boundary between the rigid part and the flexible part, it is possible to ensure durability, reliability and flexibility with respect to bending. Both can be achieved.
  • FIG. 1 is a cross-sectional view showing a main part of a flex-rigid printed wiring board in an embodiment of the present invention.
  • FIG. 2A is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2B is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2C is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2D is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2E is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2F is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 2G is a diagram showing a manufacturing process of the flex-rigid printed wiring board in the embodiment of the present invention.
  • FIG. 3A is a schematic view showing a manufacturing process of a flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 3B is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 3C is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 3D is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 3E is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 3F is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 1 of the present invention.
  • FIG. 4 A diagram showing the number of bendings until a broken wire is detected in the flexible part by performing a repeated bending test on both sides.
  • FIG. 6 is a characteristic diagram showing bending resistance performance when the constituent material of the rigid layer is changed from the glass fiber-containing adhesive layer shown in Example 1 to an adhesive layer with glass fibers removed.
  • FIG. 7 A diagram showing the bending resistance when the conductor film thickness change point on the base film is located at the boundary between the rigid part and the flexible part, and when placed on the lmm rigid part side from the boundary. is there.
  • FIG. 8A is a schematic view showing a manufacturing process of a flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8B is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8C is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8D is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8E is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8F is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 8G is a schematic view showing a manufacturing process of a flex-rigid printed wiring board in Example 4 of the present invention.
  • FIG. 9A is a schematic view showing a manufacturing process of a flex-rigid printed wiring board in Example 5 of the present invention.
  • FIG. 9B is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 5 of the present invention.
  • FIG. 9C is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 5 of the present invention.
  • FIG. 9D is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 5 of the present invention.
  • FIG. 9E is a schematic view showing a manufacturing process of the flex-rigid printed wiring board in Example 5 of the present invention.
  • FIG. 10 is an explanatory view showing a boundary between a flexible part and a rigid part in the flex-rigid printed wiring board of the present invention.
  • FIG. 1 is a cross-sectional view showing a main part of a flex-rigid printed wiring board according to an embodiment of the present invention.
  • the flex-rigid printed wiring board 1 includes a rigid portion 2 on which components can be mounted, and a flexible portion 3 that is connected to the rigid portion 2 and can be bent.
  • the flexible part 3 includes a base film 9 and cover lay films 10 and 10 laminated on both sides thereof. These are referred to as laminated film 16.
  • the base film 9 is usually formed of a heat-resistant resin such as polyimide or polyester.
  • force barley films 10 and 10 which are insulating materials covering the metal conductors 11 and 15 are laminated.
  • coverlay films 10 and 10 an insulating film made of the same material as the base film 9 such as polyimide or polyester is usually used.
  • the rigid part 2 is obtained by laminating a rigid printed wiring board 17 on a laminated film 16 having the same structure as the flexible part 3 with an insulating resin layer 4 formed by a prepreg interposed therebetween.
  • the pre-preda is a semi-cured state obtained by impregnating a substrate such as glass cloth or paper with a resin such as epoxy or polyimide and drying.
  • a metal conductor 12 having a copper foil and the like is attached to the rigid printed wiring board 17, and a circuit pattern is formed on the metal conductor 12. Further, a solder resist 5 covering the surface of the metal conductor 12 is formed on the rigid printed wiring board 17!
  • the rigid portion 2 is provided with a through hole 19 penetrating in the thickness direction. Then, on the inner peripheral wall surface that defines the through hole 19, there is formed a plating portion 20 that is formed by attaching a metal conductor such as copper. As described above, the laminated film 16 is provided across the rigid portion 2 and the flexible portion 3.
  • a metal conductor flexible conductor layer 15
  • a metal conductor (rigid conductor layer) 11 such as a copper foil on which a circuit pattern is formed is attached to a portion where the rigid portion 2 is formed. Then, the rigid conductor layer 11 formed in the vicinity of the through hole 19 and the plating portion 20 are connected, whereby the layers 9, 10, 10 constituting the laminated film 16 are electrically connected.
  • the flexible conductor layer 15 is made of the same material as the rigid conductor layer 11, and is thinner than the rigid conductor layer 11 (approximately 1Z3).
  • An adhesive layer (not shown) is interposed between the cover lay films 10 and 10 and the flexible conductor layer 15 and the rigid conductor layer 11. As a result, it is integrated with the cover lay film 10 and 10 force base film 9.
  • FIGS. 2A to 2G are process explanatory views showing the manufacturing process of the flex-rigid printed wiring board.
  • a conductor layer 21 made of a metal conductor such as copper is formed on both surfaces of the base film 9 by being bonded over the entire surface.
  • the thickness of each conductor layer 21 is substantially the same as the thickness of the rigid conductor layer 11, and is set so as to ensure a necessary and sufficient thickness for conduction.
  • an etching resist 22 is laminated (laminated) on each conductor layer 21 in the formation region of the rigid portion 2.
  • the etching resist 22 is preferably formed by applying a photosensitive resist to the entire surface of each conductor layer 21 and exposing the portion of the flexible portion 3 to ultraviolet rays using a photomask and further developing. .
  • each conductor layer 21 in the formation region of the flexible portion 3 is thinned to the middle in the thickness direction (approximately half the thickness). This thinned portion becomes the flexible conductor layer 15.
  • This half-etching process For example, it is preferable to carry out with an etching solution using a mixed solution of sulfuric acid and peroxyhydrogen water. It is also possible to use physical etching such as laser trimming, ion milling, sand blasting and plasma etching.
  • the etching resist 22 is removed.
  • an etching resist 23 for circuit formation is laminated.
  • the etching resist 23 is coated with a photosensitive resist, exposed to ultraviolet rays using a photomask, and further developed so that a predetermined wiring pattern is formed on the surface of each conductor layer 21 forming the rigid portion 2. It is preferable to form.
  • an etching process is performed.
  • the conductor layer 21 where the etching resist 22 is not laminated is etched, so that the rigid conductor layer 11 constituting the circuit pattern is formed on the rigid portion 2.
  • This etching process can be performed with an etchant using, for example, a mixed solution of sulfuric acid and hydrogen peroxide, as in the case shown in FIG. 2C, or physical etching may be used.
  • the etching resist 23 is removed.
  • the cover lay films 10 and 19 are adhered to form a laminated film 16.
  • the pre-preder 4 is formed on the both sides of the laminated film 16 at the portion constituting the rigid portion 2, and the metal conductor 12 and the solder resist 5 are formed thereon. Further, the force for forming the through hole 19 at a predetermined location of the rigid portion 2 to form the mating portion 20 will not be described in detail.
  • the flexible conductor layer 15 formed on the base film 9 can improve the bending durability of the flexible portion 3. Since the flexible conductor layer 15 is thinner than the rigid conductor layer 11, the flexibility of the flexible portion 3 can be ensured accordingly. In addition, since the flexible part conductor layer 15 is formed over the part where the flexible part 3 is formed, the bending durability of the flexible part 3 is made substantially equal at each part of the flexible part 3. be able to. Therefore, when the flexible part 3 is bent, it is possible to prevent a situation where bending stress concentrates on a specific part of the flexible part 3. In this respect, it is preferable that the flexible conductor layer 15 is formed so that its thickness is uniform over the respective portions.
  • the rigid conductor layer 11 is thicker than the flexible conductor layer 15, it is possible to easily ensure conduction with the plating part 20 by the rigid conductor layer 11.
  • the contents of the present invention are not limited to the above-described embodiments.
  • the cover lay films 10 and 10 may be provided only on both sides of the base film 9, and the cover lay film 10 may not be provided.
  • half-etching is suitable as described above.
  • the present invention is not limited to this method, and other methods may be used.
  • FIGS. 3A to 3F are schematic views showing a manufacturing process of the flex-rigid printed wiring board in Embodiment 1 of the present invention.
  • a commercially available copper-clad polyimide film (copper thickness: 18 m, polyimide thickness: 15 m) shown in FIG. 3A is used as a base film 9, and dry type photoresist is laminated on the base film 9.
  • the copper foil (first conductor film) 21 exposed from the opening is etched using a second copper chloride solution, and all the copper foil is etched.
  • the substrate was washed with water and dried to form a half-etched state as shown in FIG. 3B.
  • the etching time is controlled and flexible after half-etching.
  • the average copper thickness of the remaining copper foil 15 was 15 m, 12 m, and 6 m.
  • coverlay (-Kakkane Industries Co., Ltd.-Caflex) 10 was bonded.
  • a prepreg (adhesive layer containing glass fiber) 4 obtained by cutting and removing a portion corresponding to the flexible portion 3 and a copper foil (third conductor film) 31 are laminated, and 180
  • the rigid part 2 was formed by performing press processing for 2 hours at 2 ° C. and 2 to 3 MPs for 3 hours!
  • FIG. 3E a dry type photoresist is laminated, the outer layer wiring 12 of the rigid portion 2 is formed by the photolithography method, and the illustrations necessary for connection to the inner layer by a known method are shown. Nah !, through holes were formed.
  • solder resist layer 5 was formed on the rigid portion 2 by a known method, whereby the flex-rigid printed wiring board of this example was obtained.
  • FIG. 4 shows the results of repeated bending tests on the flex-rigid printed wiring board of this example.
  • FIG. 6 is a characteristic diagram showing bending resistance performance when the constituent material of the rigid layer is changed from the adhesive layer with glass fibers shown in Example 1 to the adhesive layer with the glass fibers removed.
  • the flexural modulus is low in the case of an adhesive layer that does not contain glass fiber
  • the conductor thickness is reduced with respect to the bending of the flexible part, and stress is generated in the wiring of the rigid part. It was revealed that the fracture had occurred.
  • glass fiber In the case of the adhesive layer, the stress was relieved by the glass fiber layer, so that the bending resistance was improved.
  • FIG. Figure 7 shows the bending resistance when the conductor film thickness change point on the base film is located at the boundary between the rigid part and the flexible part, and when it is placed on the lmm rigid part side from the boundary. If the conductor layer thickness change point exists on the boundary or the flexible part side, the stress is concentrated on the conductor layer thickness change point, so that the bending resistance is lowered. On the other hand, it can be seen that the bending resistance can be improved by arranging the conductor layer thickness change point in the rigid part.
  • FIG. 8A a polyimide film was prepared as the base film 9.
  • a copper film (first conductor film) 32 was formed thereon by sputtering.
  • the thickness of the copper film 32 was set to 0.1 ⁇ m. Note that the copper film 32 may be formed by electroless plating instead of the sputtering method.
  • a dry type photoresist is laminated, and a pattern is formed so that the photoresist 33 remains at a position corresponding to the flexible portion 3 by using a known photolithographic method. Performed.
  • a copper film (second conductor film) 34 corresponding to the rigid portion 2 was formed by using an electroless plating method with the copper film 32 exposed from the opening of the photoresist 33 as a base.
  • coverlay (Nitzkan Kogyo Co., Ltd.-Kaflex) 10 is applied and 7 pieces o
  • Example 5 Thereafter, as shown in FIG. 8F and FIG. 8G, the same method as that shown in Example 1 is repeated. Thus, a flex-rigid printed wiring board of this example was obtained. As a result of bending test of the obtained flex-rigid printed wiring board, the same result as in Example 1 was obtained.
  • Example 5 Example 5
  • FIGS. 9A to 9E are schematic views showing a manufacturing process of the flex-rigid printed wiring board according to the fifth embodiment of the present invention.
  • polyimide was prepared as the base film 9.
  • a copper film (first conductor film) 32 was formed thereon by sputtering.
  • the thickness of the copper film 32 was set to 0.1 ⁇ m. Note that the copper film may be formed by electroless plating instead of sputtering.
  • a photosensitive protective layer 35 is applied by a known dipping method, and is dried in an N2 oven at 90 ° C. for 30 minutes, so that the photosensitive material remaining in the flexible part 3 is obtained.
  • the protective layer 35 was cured.
  • a copper film (second conductor film) 34 corresponding to the rigid part 2 was formed by using an electroless plating method with the copper film 32 exposed from the opening of the photoresist as a base.
  • the present invention can be used for a flex-rigid printed wiring board including a rigid portion on which a component can be mounted and a flexible portion that is connected to the rigid portion and can be bent, and a method for manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Description

明 細 書
フレックスリジッドプリント配線板およびフレックスリジッドプリント配線板の 製造方法
技術分野
[0001] 本発明は、部品を搭載可能なリジッド部と、該リジッド部に接続されて折り曲げ可能 なフレキシブル部とを備えるフレックスリジッドプリント配線板およびその製造方法に 関するものである。
背景技術
[0002] 周知のように、現在、フレックスリジッドプリント配線板はあらゆる電子機器に使用さ れている。一般に、このプリント配線基板は、部品を搭載可能なリジッド部と、該リジッ ド部に接続されて折り曲げ可能なフレキシブル部とを備えている。
[0003] この種の技術として、例えば、特許文献 1には、ベースフィルムの両面に、予め銅結 晶の配向性の高い銅層の上に配向性の低い銅層をそれぞれ形成して、かつ、導体 回路が形成された積層体が接合されているフレキシブルリジッド配線板が提案されて いる。このような構成とすることで、フレキシブル部の屈曲変形による断線を抑制しな がら、電気的に異方性のない配線が提供され、かつ、耐久性の向上が図られている 特許文献 1:特開 2005— 5413号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来技術のように、配向性の異なる銅層をそれぞれ形成すると、それ ぞれの銅層を形成する工数に手間が力かるとともに、形成する銅層が複数であるた め、フレキシブル部の厚さが増大してしまい、その結果、フレキシブル部の可撓性を 損なうおそれがあるという問題がある。
[0005] これに対して、ベースフィルムの両面に所定の厚さの銅層を形成しておき、それぞ れの銅層を厚さ方向途中までエッチング (ノ、一フェッチング)することで薄肉化し、曲 げに伴って導体内部に発生する応力を低減することで、フレキシブル部の可撓性を 確保しながら破断耐カを向上する手法が考えられる。し力しながら、単に、銅層をノヽ 一フェッチングすると、これに伴いリジッド部に形成される銅層の厚さも薄くなつてしま い、配線抵抗の増大など、導通の確保が困難になるという問題がある。
[0006] 従って、本発明は、フレキシブル部の可撓性を確保しつつ、フレキシブル部の折り 曲げに対する耐久性を向上することができ、かつ、リジッド部における導通を確保で きるフレックスリジッドプリント配線板およびその製造方法を提供することを目的とする
課題を解決するための手段
[0007] 本発明の第 1の視点によれば、ベースフィルムの少なくとも一方の面に導体層が形 成され、該ベースフィルムを含む一領域はリジッド領域であり、該ベースフィルムを含 むその他の領域はフレキシブル領域となっているフレックスリジッドプリント配線板に お!、て、該フレキシブル領域に形成されたベースフィルム上の導体層の平均厚み tf と該リジッド領域に形成されたベースフィルム上の導体層の平均厚み tRとは、 tfく tR の関係を満たす。
[0008] 前記ベースフィルムに形成されたフレキシブル部導体層(フレキシブル領域に形成 された導体層)をリジッド部導体層(リジッド領域に形成された導体層)に比べ薄肉化 することにより、フレキシブル部における折り曲げの耐久性を向上することができる。 一方、前記リジッド部導体層は前記フレキシブル部導体層に比べ厚肉であるため、 配線抵抗の上昇を最小限度に抑えながら、フレキシブル部の可撓性と耐久性を確保 しながら電気的な信頼性も確保することができる。また、前記フレキシブル部導体層 は、前記フレキシブル部を形成する部位に亘り形成されるので、折り曲げの耐久性を 前記フレキシブル部の各部位で略等しくすることができる。ゆえに、前記フレキシブル 部を折り曲げる際に、前記フレキシブル部の特定の部位に曲げ応力が集中する事態 を抑制することができる。一方、前記リジッド部導体層は前記フレキシブル部導体層 よりも厚肉であるため、前記リジッド部導体層による配線抵抗の上昇を抑制することが できる。本発明の発明者らの検討によれば、 tfは tRに比べ薄肉であるほど耐久性が よぐ(2Z3) X tR以下であることが好ましぐ(1Z3) X tR以下であることがより好まし い。一方薄肉化することにより、例えばエッチング法により薄肉導体層を形成する場 合は、エッチングばらつきなどが発生しやすぐ工程の許す範囲で可能な最小厚さが 好適である。一般的にエッチング法により前記フレキシブル部における薄肉導体層を 形成する場合は、 1 μ m程度以上の厚さとすることが製造歩留まり等の観点から好ま しぐ無電解メツキ法ゃスパッタ法などにより前記フレキシブル部における薄肉導体層 を形成する場合は 0. 1 μ m程度以上の厚さとすることが製造歩留まり等の観点から 好ましい。
[0009] 好ましくは、前記リジッド領域は、前記ベースフィルムの少なくとも片表面側に前記 ベースフィルムに比べ弾性率の高いリジッド層を積層することで、構成される。
[0010] 好ましくは、前記リジッド領域は、ガラス繊維含有層である。
[0011] 好ましくは、前記リジッド領域の前記フレキシブル領域との境界にぉ 、て前記リジッ ド領域と前記フレキシブル領域との境界が定義されており、該境界位置における前 記ベースフィルム上の導体層の厚み tBと、前記リジッド領域に形成されたベースフィ ルム上の導体層の平均厚み tRとは、 tBく tRの関係を満たす。
[0012] 本発明の第 2の視点によれば、ベースフィルムの少なくとも一方の表面に複数の導 体配線が形成され、該ベースフィルムを含む一領域はリジッド領域であり、該ベース フィルムを含むその他の領域はフレキシブル領域となっているフレックスリジッドプリン ト配線板にぉ 、て、該フレキシブル領域に形成されたベースフィルム上の複数の導 体配線において、少なくとも一本の配線の厚み ti力 該リジッド領域に形成されたべ 一スフイルム上の導体層の平均厚み tRに比べ小さいフレックスリジッドプリント配線板 を提供する。
[0013] 好ましくは、前記リジッド領域は、前記ベースフィルムの少なくとも片表面側に前記 ベースフィルムに比べ弾性率の高いリジッド層を積層することで、構成される。
[0014] 好ましくは、前記リジッド領域は、ガラス繊維含有層である。
[0015] 好ましくは、前記リジッド領域の前記フレキシブル領域との境界にぉ 、て前記リジッ ド領域と前記フレキシブル領域との境界が定義されており、該境界位置における前 記ベースフィルム上の少なくとも一配線の厚み tiBと、前記リジッド領域に形成された ベースフィルム上の導体層の平均厚み tRとは、 tiB<tRの関係を満たす。
[0016] これらの発明によれば、リジッド部を構成するリジッド層はベースフィルムに比べ弹 性率が高 、ため、リジッド部における前記リジッド部配線に発生する応力を緩和する ことができ、一方でフレキシブル部の曲げに伴う応力は前記フレキシブル部に対して 発生するため長期的な信頼性を確保することができる。リジッド部を構成する材料とし ては、ベースフィルムに比べ弾性率が高ければ特に限定されることはないが、ガラス 繊維に榭脂ゃ接着剤などを含有した層を用いることが、製造コストの面力も好適であ る。合成樹脂にシリカやセラミックビーズ等のフィラーを含有させることによって弾性率 を高めたコンポジット材料などを用いてもょ 、。
[0017] 前記フレキシブル部と前記リジッド部との境界線に、前記リジッド部導体層と前記フ レキシブル部導体層の厚みの変化点が存在すると、前記フレキシブル層の屈曲に際 して発生する応力が該導体層厚みの変化点に集中して発生する可能性がある。これ による導体層の破断を防止するためには、該境界部と該導体層厚みの変化点とをず らして配置することが好適である。発明者らの検討によれば、該導体層厚みの変化 点は該境界部よりも前記リジッド部側に存在することが好適である。逆に該導体層厚 みの変化点が該境界部よりもフレキシブル部側に存在すると、曲げに伴って発生す る応力が該導体層厚みの変化点に集中するため、導体層の破断が発生しやすぐ好 ましくない。このことを換言すれば、該境界部におけるベースフィルム上の導体層厚 み tBは前記リジッド部における導体層の平均厚み tRとの間に tBく tRの関係が存在 することになる。本発明の前記フレキシブル部と前記リジッド部との境界は、前記リジ ッド層のフレキシブル部側に存在する端面で定義される(図 10参照)。
[0018] 本発明の発明者らの検討によれば、上述の発明は、フレキシブル部およびリジッド 部におけるベースフィルム上の導体層全体に当てはまるのみならず、ベースフィルム 上の導体層をパター-ングすることで得た配線毎に成り立つ。つまり、前記 tfをフレキ シブル部のベースフィルム上の複数の配線の内、少なくとも一配線の厚み tiに変更し ても同様の議論が成り立つ。
[0019] 本発明の第 3の視点によれば、少なくとも片面に第 1の導体膜が貼合されたベース フィルム上に、該導体膜のフレキシブル領域となる部位を予めエッチングし、該部位 の第 1の導体膜膜厚を他の部位の膜厚に比べ薄くする工程と、前記ベースフィルム に保護層を貼合する工程と、前記フレキシブル領域となる部位に開口を設けたプリプ レグ層と、第 3の導体膜とを、前記ベースフィルムに順次積層し熱圧着する工程とを 含む。
この発明によれば、エッチング法により前記フレキシブル部の薄肉導体層を形成す ることができるため、安価に薄肉導体層を提供することができる。
[0020] 本発明の第 4の視点によれば、ベースフィルム上に第 1の導体膜を形成する工程と 、該第 1の導体膜のフレキシブル領域となる部位にフォトレジストによりマスクを行 、か っ該第 1の導体膜のリジッド部配線領域となる領域にフォトレジストの開口を行う工程 と、該フォトレジスト開口部により露出された該第 1の導体膜を下地として該フォトレジ スト開口部の第 1の導体膜厚を実効的に増加させるベく第 2の導体膜を形成するェ 程と、該フォトレジストを除去する工程と、前記フォトレジストを除去したベースフィルム に保護層を貼合する工程と、前記フレキシブル領域となる部位に開口を設けたプリプ レグ層と、第 3の導体膜とを、前記ベースフィルムに順次積層し熱圧着する工程とを 含む。
この発明によれば、ベースフィルム上に形成する導体膜をメツキ法ゃスパッタ法によ り形成できるため、薄肉の導体層を簡便に得ることができる。さらに、リジッド部の配線 は無電界メツキ法や電界メツキ法によりリジッド部配線形成領域に選択的に形成する ことができるため、微細な配線パターンの形成が容易であるメリットがある。
[0021] 本発明の第 5の視点によれば、ベースフィルム上に第 1の導体膜を形成する工程と 、該第 1の導体膜のフレキシブル領域となる部位に感光性保護膜により保護を行 ヽ かつ該第 1の導体膜のリジッド領域となる領域に感光性保護膜の開口を行う工程と、 該感光性保護膜を硬化する工程と、該感光性保護膜開口部により露出された該第 1 の導体膜を下地として該感光性保護膜開口部の第 1の導体膜厚を実効的に増加さ せるべく第 2の導体膜を形成する工程と、前記フレキシブル領域となる部位に開口を 設けたプリプレダ層と、第 3の導体膜とを、前記第 2の導体膜を形成したベースフィル ムに順次積層し熱圧着する工程と、を含む。
[0022] この発明によれば、ベースフィルム上に形成する導体膜をメツキ法ゃスパッタ法によ り形成されるため、薄肉の導体層を簡便に得ることができる。さらに、リジッド部の配線 は無電界メツキ法や電界メツキ法によりリジッド部配線形成領域に選択的に形成する ことができるため、微細な配線パターンの形成が容易である。さらに、リジッド部にお いてベースフィルム上の前記第 1の導体膜上に第 2の導体膜と同じ厚みとなるように 感光性保護膜が残存することで、リジッド部の配線を厚膜としても、配線層に著しい 段差を生じることがなぐ製造歩留まりを向上することができる。さらに、該感光性榭脂 保護膜はフレキシブル部のベースフィルム上の配線の保護膜となるため、保護膜を 別途貼合する必要が無ぐ製造コストを削減することが可能である。
発明の効果
[0023] 本発明によれば、フレキシブル部の屈曲に伴う断線を抑制することができるため、 耐久性および信頼性の高いフレックスリジッドプリント配線板を製造することができる。 さらに本発明によれば、リジッド部におけるベースフィルム上の導体厚みは、フレキシ ブル部におけるベースフィルム上の導体厚みに比べて大きく設定することができるた め、配線抵抗の上昇を抑制することができる。さらに、本発明によれば、ベースフィル ム上の導体層の変化点がリジッド部とフレキシブル部の境界よりもリジッド部側に存在 するため、折り曲げに対する耐久性および信頼性と可撓性の確保を両立することが できる。
図面の簡単な説明
[0024] [図 1]本発明の実施の形態におけるフレックスリジッドプリント配線板の要部を示す断 面図である。
[図 2A]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 2B]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 2C]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 2D]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 2E]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。 [図 2F]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 2G]本発明の実施の形態におけるフレックスリジッドプリント配線板の製造工程を 示す図である。
[図 3A]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 3B]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 3C]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 3D]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 3E]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 3F]本発明の実施例 1におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 4]両側折り曲げの繰り返し屈曲試験を行って、フレキシブル部における配線の破 断が検知されるまでの屈曲回数を示した図である。
圆 5]屈曲前後のフレキシブル部配線の光学顕微鏡写真に基づく説明図である。
[図 6]リジッド層の構成材料を、実施例 1に示すガラス繊維入り接着層からガラス繊維 を抜 ヽた接着層に変更した際の耐屈曲性能を示す特性図である。
[図 7]ベースフィルム上の導体膜厚変化点をリジッド部とフレキシブル部の境界に位 置させた場合と、該境界から lmmリジッド部側に配置した場合の、耐屈曲特性を示し た図である。
[図 8A]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 8B]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。 [図 8C]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 8D]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 8E]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 8F]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 8G]本発明の実施例 4におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 9A]本発明の実施例 5におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 9B]本発明の実施例 5におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 9C]本発明の実施例 5におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 9D]本発明の実施例 5におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 9E]本発明の実施例 5におけるフレックスリジッドプリント配線板の製造工程を示す 概略図である。
[図 10]本発明のフレックスリジッドプリント配線板におけるフレキシブル部とリジッド部と の境界を示す説明図である。
符号の説明
1 フレックスリジッドプリント配線板
2 リジッ
3 フレキシブル部
4 絶縁榭脂層
9 ベースフイノレム 11 リジッド導体層
15 フレキシブル導体層
21 第 1の導体膜
31 第 3の導体膜
発明を実施するための最良の形態
[0026] 次に本発明を実施するための最良の形態について図面を参照して説明する。この 発明の実施の形態におけるフレックスリジッドプリント配線板を図面と共に説明する。 まず、この発明の実施の形態により製造されるフレックスリジッドプリント配線板につい て図 1を用いて説明する。図 1は本発明の実施の形態におけるフレックスリジッドプリ ント配線板の要部を示す断面図である。
[0027] 同図に示すように、フレックスリジッドプリント配線板 1は、部品を搭載可能なリジッド 部 2と、該リジッド部 2に接続されて折り曲げ可能なフレキシブル部 3と、を備えている 。フレキシブル部 3は、ベースフィルム 9と、その両側に積層配置されたカバーレイフィ ルム 10、 10とを備えて構成されている。これらを積層フィルム 16と称す。
[0028] ベースフィルム 9は通常ポリイミド、ポリエステル等の耐熱性榭脂で形成されている。
そして、ベースフィルム 9の両面には、金属導体 11、 15を覆う絶縁材である力バーレ ィフィルム 10、 10が積層されている。カバーレイフイルム 10、 10としては、通常ポリィ ミド、ポリエステル等のベースフィルム 9と同質の材料の絶縁フィルムが用いられる。
[0029] 一方、リジッド部 2は、前記フレキシブル部 3と同一構造の積層フィルム 16に、プリプ レグにより形成される絶縁榭脂層 4を介在してリジッドプリント配線板 17を積層したも のである。ここでプリプレダは、ガラス布や紙等の基材にエポキシ、ポリイミド等の樹脂 を含浸させ乾燥処理して半硬化状態としたものである。そして、リジッドプリント配線板 17には、銅箔等力もなる金属導体 12が貼りつけられており、この金属導体 12には回 路パターンが形成されている。さらに、リジッドプリント配線板 17の上に、金属導体 12 の表面を覆うソルダレジスト 5が形成されて!、る。
[0030] また、リジッド部 2には、厚さ方向に貫通するスルーホール 19が穿設されている。そ して、スルーホール 19を区画する内周壁面には、銅等の金属導体をめつきしてなるメ ツキ部 20が形成されて 、る。 [0031] このように、前記積層フィルム 16は、リジッド部 2とフレキシブル部 3とに跨って設け られている。そして、積層フィルム 16を構成するベースフィルム 9において、フレキシ ブル部 3を形成する部位には、屈曲性に優れた銅箔等の金属導体 (フレキシブル導 体層 15)が貼りつけられている。一方、ベースフィルム 9において、リジッド部 2を形成 する部位には、回路パターンの形成された、銅箔等の金属導体 (リジッド導体層) 11 が貼り付けられている。そして、スルーホール 19近傍に形成されたリジッド導体層 11 と、メツキ部 20とが接続されることにより、積層フィルム 16を構成する各層 9、 10、 10 間が電気的に接続される。
[0032] そして、フレキ導体層 15は、リジッド導体層 11と同一の材質で構成され、リジッド導 体層 11よりも薄肉(略 1Z3程度)に形成されている。なお、カバーレイフイルム 10、 1 0とフレキ導体層 15、リジッド導体層 11との間には接着剤層(図示せず)が介在して いる。これにより、カバーレイフイルム 10、 10力 ベースフィルム 9と一体化されている
[0033] 以下、本発明の実施の形態におけるフレックスリジッドプリント配線板の製造方法に ついて、図 2A乃至 2Gを用いて説明する。図 2A乃至 2Gは、フレックスリジッドプリント 配線板の製造工程を示す工程説明図である。
まず、図 2Aに示すように、ベースフィルム 9の両面には、銅等の金属導体からなる 導体層 21が、全面に亘り貼り付けられて形成されている。ここで、各導体層 21の厚さ は、リジッド導体層 11の厚さと略同一であり、導通に必要十分な厚さを確保できるよう に設定されている。
[0034] 次に、図 2Bに示すように、リジッド部 2の形成領域における各導体層 21に、エッチ ングレジスト 22をラミネート(積層)する。このエッチングレジスト 22は、感光性レジスト を各導体層 21の全面に塗布し、フォトマスクを用いてフレキシブル部 3の部位を紫外 線露光、更に、現像を行うことで、形成することが好適である。
[0035] ついで、図 2Cに示すように、フレキシブル部 3の形成領域における各導体層 21に 、ハーフエッチング処理を行う。このハーフエッチング処理により、フレキシブル部 3の 形成領域における各導体層 21が、厚さ方向途中まで (略半分の厚さ)まで薄肉化さ れる。この薄肉化された部位がフレキ導体層 15となる。このハーフエッチング処理は 、例えば硫酸と過酸ィ匕水素水の混合溶液を用いたエッチング液により行うことが好適 である。なお、レーザートリミング、イオンミーリング、サンドブラスト、プラズマエツチン グ等の物理的エッチングを用いてもょ 、。
[0036] そして、図 2Dに示すように、エッチングレジスト 22を除去する。この処理を行うにあ たっては、アルカリ溶液を用いることが好適である。
[0037] それから、図 2Eに示すように、回路形成用のエッチングレジスト 23をラミネートする 。このエッチングレジスト 23は、感光性レジストを塗布し、フォトマスクを用いて紫外線 露光、更に、現像を行って、リジッド部 2を形成する各導体層 21の表面に所定の配線 ノ ターンを有するように形成することが好適である。
[0038] その後、図 2Fに示すように、エッチング処理を行う。このエッチング処理により、エツ チングレジスト 22がラミネートされていない部位の導体層 21がエッチングされて、リジ ッド部 2〖こは、回路パターンを構成するリジッド導体層 11が形成される。このエツチン グ処理は、図 2Cに示した場合と同様に、例えば硫酸と過酸化水素水の混合溶液を 用いたエッチング液により行うことができ、また、物理的エッチングを用いてもよい。
[0039] そして、図 2Gに示すように、エッチングレジスト 23を除去する。この処理を行うにあ たっては、図 2Dに示した場合と同様に、アルカリ溶液を用いることが好適である。 このようにして、ベースフィルム 9の両面に、前記リジッド部 2に形成されるリジッド導 体層 11よりも薄肉なフレキ導体層 15を形成することができる。
[0040] その後、接着剤を塗布して、カバーレイフイルム 10、 19を接着して、積層フィルム 1 6を形成する。さらに、積層フィルム 16の両面における、リジッド部 2を構成する部位 にプリプレダ 4を形成し、その上に金属導体 12、ソルダレジスト 5を形成する。また、リ ジッド部 2の所定個所にスルーホール 19を穿設してメツキ部 20を形成する力 これら の工程については詳細を省略する。
[0041] 以上説明したようにして、フレックスリジッドプリント配線板 1を構成すると、前記べ一 スフイルム 9に形成されたフレキ導体層 15により、フレキシブル部 3における折り曲げ の耐久性を向上することができる。そして、前記フレキ導体層 15は、前記リジッド導体 層 11よりも薄肉であるので、その分フレキシブル部 3の可撓性を確保することができ る。 [0042] また、前記フレキシブル部導体層 15は、前記フレキシブル部 3を形成する部位に亘 り形成されるので、前記フレキシブル部 3の折り曲げの耐久性を前記フレキシブル部 3の各部位で略等しくすることができる。ゆえに、前記フレキシブル部 3を折り曲げる 際に、前記フレキシブル部 3の特定の部位に曲げ応力が集中する事態を防止するこ とができる。この点で、前記フレキシブル部導体層 15は、その厚さが各部位に亘り均 一となるように形成することが好ま 、。
一方、前記リジッド導体層 11は前記フレキ導体層 15よりも厚肉であるので、前記リ ジッド導体層 11によるメツキ部 20との導通を容易に確保することができる。
[0043] なお、本発明の内容は上述の実施の形態のみに限られるものでないことはもちろん である。例えば、実施の形態では、ベースフィルム 9の両側にカバーレイフイルム 10、 10をそれぞれ積層した場合について説明した力 片側のみに設けるようにしてもよく 、カバーレイフイルム 10を設けなくてもよい。また、実施の形態のようにプリプレダを用 V、ることが剛性等の点で好ま 、が、これに替えて他の材料で絶縁榭脂層を形成し てもよい。
また、前記フレキシブル部導体層 15を形成するにあたっては、上述のようにハーフ エッチングが好適であるが、この手法に限られず、他の手法も用いてもよい。
[0044] 本発明の実施例について説明する。
実施例 1
[0045] 本発明の実施例 1におけるフレックスリジッドプリント酉 S線板について図 3A乃至 3F を用いて説明する。図 3A乃至 3Fは、本発明の実施例 1におけるフレックスリジッドプ リント配線板の製造工程を示す概略図である。
[0046] まず、図 3Aに示す市販の銅張りポリイミドフィルム (銅厚 18 m、ポリイミド厚 15 m)をベースフィルム 9として、これにドライタイプフォトレジストをラミネートし、フレキシ ブル部 3にあたる部位のフォトレジストを公知のフォトリソグラフィ法により除去し開口 部を設けた後、開口部より露出した銅箔 (第 1の導体膜) 21を第二塩化銅溶液を用い てエッチングし、全ての銅箔がエッチング除去される前に、水洗、乾燥を行い、図 3B に示すようにハーフエッチング状態とした。
[0047] 図 3Cに示すように、エッチング時間を制御し、ハーフエッチング後のフレキシブル 部残存銅箔 15の平均銅厚を 15 m、 12 m、 6 mとした。次に、カバーレイ(-ッ カンエ業 (株)製-カフレックス) 10を貼合した。
[0048] 次に、図 3Dに示すように、フレキシブル部 3にあたる部位を切断除去したプリプレ グ (ガラス繊維入り接着層) 4と、 の銅箔 (第 3の導体膜) 31を積層し、 180°C、 2〜3MPsで 2時間な!/、しは 3時間のプレス処理を行 、、リジッド部 2を形成した。
[0049] 引き続き、図 3Eに示すように、ドライタイプフォトレジストをラミネートし、フォトリソダラ フィ法によりリジッド部 2の外層配線 12を形成し、公知の手法により内層との接続に必 要な図示しな!、スルーホールの形成を行った。
[0050] 最後に、図 3Fに示すように、リジッド部 2にソルダレジスト層 5を公知の手法により形 成することで、本実施例のフレックスリジッドプリント配線板を得た。
[0051] 本実施例のフレックスリジッドプリント配線板に対して、繰り返し屈曲試験を行った結 果を図 4に示す。図 4は両側折り曲げの繰り返し屈曲試験を行って、フレキシブル部 3 における配線 12の破断が検知されるまでの屈曲回数を示したものであり、リジッド部 2のベースフィルム 9上の銅厚 tR= 18 μ mに対し、フレキシブル部 3の銅厚を薄くす るにつれて耐久性が向上していることがわかる。リジッド部 2のベースフィルム 9上の 銅厚 tR= 18 μ mの 2Ζ3にあたる tf = 12 μ m程度以下になると耐久性の向上が見ら れ、 1Z3の tf=6 /z mでは 30倍の耐久性が得られていることがわかる。 tf =6 mの 60万回屈曲前後のフレキシブル部配線の光学顕微鏡写真に基づく説明図を図 5に 示す。
同図に示すように、 60万回の屈曲を行っても、クラックなどの疲労は観察されず、良 好な特性を有していることが明らかになった。
実施例 2
[0052] 本発明の実施例 2におけるフレックスリジッドプリント配線板について図 6を用いて説 明する。図 6は、リジッド層の構成材料を、実施例 1に示すガラス繊維入り接着層から 、ガラス繊維を抜いた接着層に変更した際の、耐屈曲性能を示す特性図である。試 験の結果、ガラス繊維の入っていない接着層の場合には曲げ弾性率が低いため、フ レキシブル部の屈曲に対して導体厚を減少させて ヽな 、リジッド部の配線に応力が 発生し、破断が発生してしまっていることが明らかになった。一方でガラス繊維の入つ ている接着層の場合にはガラス繊維層により応力が緩和されるため、耐屈曲性が向 上した。
実施例 3
[0053] 本発明の実施例 3におけるフレックスリジッドプリント配線板について図 7を用いて説 明する。図 7はベースフィルム上の導体膜厚変化点をリジッド部とフレキシブル部の 境界に位置させた場合と、該境界から lmmリジッド部側に配置した場合の、耐屈曲 特性を示したものである。導体層厚変化点が該境界あるいはフレキシブル部側に存 在すると、該導体層厚変化点に応力が集中するため、耐屈曲性が低下してしまう。一 方で、導体層厚変化点をリジッド部に配置することで耐屈曲性を向上できることがわ かる。
実施例 4
[0054] 本発明の実施例 4におけるフレックスリジッドプリント酉 S線板について図 8A乃至 8G を用いて説明する。図 8A乃至 8Gは本発明の実施例 4におけるフレックスリジッドプリ ント配線板の製造工程を示す概略図である。まず、図 8Aに示すように、ベースフィル ム 9としてポリイミドフィルムを用意した。
[0055] 次に、図 8Bに示すように、これにスパッタ法によって銅膜 (第 1の導体膜) 32を形成 した。この銅膜 32の厚みは 0. 1 μ mとした。なお、スパッタ法に代えて、無電界メツキ により銅膜 32を形成しても良い。
[0056] 次に、図 8Cに示すように、ドライタイプフォトレジストを積層し、公知のフォトリソダラ フィ法を用いて、フレキシブル部 3に相当する位置に該フォトレジスト 33が残存するよ うにパター-ングを行った。これに引き続き、無電界メツキ法により該フォトレジスト 33 の開口部より露出する銅膜 32を下地としてリジッド部 2に相当する部位の銅膜 (第 2 の導体膜) 34を形成した。
[0057] 続いて、図 8Dに示すように、フレキシブル部 3に残存する該フォトレジスト 33を除去 し、ベースフィルム 9上の導体層 21 (32、 34)を得た。
次に、図 8Eに示すように、カバーレイ (ニツカン工業 (株)製-カフレックス) 10を貼 口し 7こ o
[0058] 以降、図 8F及び図 8Gに示すように、実施例 1に示す手法と同様の手法を繰り返す ことにより、本実施例のフレックスリジッドプリント配線板を得た。得られたフレックスリジ ッドプリント配線板の耐屈曲試験を行った結果、実施例 1と同様の結果が得られた。 実施例 5
[0059] 本発明の実施例 5におけるフレックスリジッドプリント配線板について図 9A乃至 9E を用いて説明する。図 9A乃至 9Eは本発明の実施例 5におけるフレックスリジッドプリ ント配線板の製造工程を示す概略図である。
まず、図 9Aに示すように、ベースフィルム 9としてポリイミドを用意した。
[0060] 次に、図 9Bに示すように、これにスパッタ法によって銅膜 (第 1の導体膜) 32を形成 した。この銅膜 32の厚みは 0. 1 μ mとしたとした。なお、スパッタ法に代えて、無電界 メツキにより銅膜を形成してもよい。
[0061] 次に、図 9Cに示すように、感光性保護層 35を公知のディップ法により塗布し、 N2 オーブン中で 90°C、 30分の乾燥処理を行い、フレキシブル部 3に残存する感光性 保護層 35の硬化を行った。これに引き続き、無電界メツキ法により該フォトレジストの 開口部より露出する銅膜 32を下地としてリジッド部 2に相当する部位の銅膜 (第二の 導体膜) 34を形成した。
[0062] 続いて、図 9Dに示すように、フレキシブル部 3に残存する該フォトレジストを除去し 、ベースフィルム 9上の導体層 21 (32、 34)を得た。以降、図 9D及び図 9Eに示すよ うに、実施例 1に示す手法と同様の手法を繰り返すことにより、本実施例のフレックス リジッドプリント配線板を得た。得られたフレックスリジッドプリント配線板の耐屈曲試験 を行った結果、実施例 1と同様の結果が得られた。
産業上の利用可能性
[0063] 本発明は、部品を搭載可能なリジッド部と、該リジッド部に接続されて折り曲げ可能 なフレキシブル部とを備えるフレックスリジッドプリント配線板およびその製造方法に 利用し得る。

Claims

請求の範囲
[1] ベースフィルムの少なくとも一方の面に導体層が形成され、該ベースフィルムを含 む一領域はリジッド領域であり、該ベースフィルムを含むその他の領域はフレキシブ ル領域となって 、るフレックスリジッドプリント配線板にぉ ヽて、
該フレキシブル領域に形成されたベースフィルム上の導体層の平均厚み tfと該リジ ッド領域に形成されたベースフィルム上の導体層の平均厚み tRとは、 tfく tRの関係 を満たすフレックスリジッドプリント配線板。
[2] 請求項 1に記載のフレックスリジッドプリント配線板にぉ 、て、前記リジッド領域は、 前記ベースフィルムの少なくとも片表面側に前記ベースフィルムに比べ弾性率の高
V、リジッド層を積層することで、構成されるフレックスリジッドプリント配線板。
[3] 請求項 2に記載のフレックスリジッドプリント配線板にぉ 、て、前記リジッド領域は、 ガラス繊維含有層であるフレックスリジッドプリント配線板。
[4] 請求項 2または請求項 3に記載のフレックスリジッドプリント配線板において、前記リ ジッド領域の前記フレキシブル領域との境界において前記リジッド領域と前記フレキ シブル領域との境界が定義されており、該境界位置における前記ベースフィルム上 の導体層の厚み tBと、前記リジッド領域に形成されたベースフィルム上の導体層の 平均厚み tRとは、 tBく tRの関係を満たすフレックスリジッドプリント配線板。
[5] ベースフィルムの少なくとも一方の表面に複数の導体配線が形成され、該ベースフ イルムを含む一領域はリジッド領域であり、該ベースフィルムを含むその他の領域は フレキシブル領域となって!/、るフレックスリジッドプリント配線板にお!、て、該フレキシ ブル領域に形成されたベースフィルム上の前記複数の導体配線のうち、少なくとも一 本の配線の厚み ti力 該リジッド領域に形成されたベースフィルム上の導体層の平均 厚み tRに比べ小さいフレックスリジッドプリント配線板。
[6] 請求項 5に記載のフレックスリジッドプリント配線板にぉ 、て、前記リジッド領域は、 前記ベースフィルムの少なくとも片表面側に前記ベースフィルムに比べ弾性率の高
V、リジッド層を積層することで、構成されるフレックスリジッドプリント配線板。
[7] 請求項 6に記載のフレックスリジッドプリント配線板にぉ 、て、前記リジッド領域は、 ガラス繊維含有層であるフレックスリジッドプリント配線板。
[8] 請求項 6または請求項 7に記載のフレックスリジッドプリント配線板において、前記リ ジッド領域の前記フレキシブル領域との境界において前記リジッド領域と前記フレキ シブル領域との境界が定義されており、該境界位置における前記ベースフィルム上 の少なくとも一配線の厚み tiBと、前記リジッド領域に形成されたベースフィルム上の 導体層の平均厚み tRとは、 tiBく tRの関係を満たすフレックスリジッドプリント配線板
[9] 少なくとも片面に第 1の導体膜が貼合されたベースフィルム上に、該導体膜のフレ キシブル領域となる部位を予めエッチングし、該部位の第 1の導体膜の膜厚を他の 部位の膜厚に比べ薄くする工程と、前記ベースフィルムに保護層を貼合する工程と、 前記フレキシブル領域となる部位に開口を設けたプリプレダ層と、第 3の導体膜とを、 前記ベースフィルムに順次積層し熱圧着する工程とを含むフレックスリジッドプリント 配線板の製造方法。
[10] ベースフィルム上に第 1の導体膜を形成する工程と、該第 1の導体膜のフレキシブ ル領域となる部位にフォトレジストによりマスクを行いかつ該第 1の導体膜のリジッド部 配線領域となる領域にフォトレジストの開口を行う工程と、該フォトレジスト開口部によ り露出された該第 1の導体膜を下地として該フォトレジスト開口部の第 1の導体膜厚を 実効的に増加させるベく第 2の導体膜を形成する工程と、該フォトレジストを除去する 工程と、前記フォトレジストを除去したベースフィルムに保護層を貼合する工程と、前 記フレキシブル領域となる部位に開口を設けたプリプレダ層と、第 3の導体膜とを、前 記ベースフィルムに順次積層し熱圧着する工程とを含むフレックスリジッドプリント配 線板の製造方法。
[11] ベースフィルム上に第 1の導体膜を形成する工程と、該第 1の導体膜のフレキシブ ル領域となる部位に感光性保護膜により保護を行いかつ該第 1の導体膜のリジッド領 域となる領域に感光性保護膜の開口を行う工程と、該感光性保護膜を硬化する工程 と、該感光性保護膜開口部により露出された該第 1の導体膜を下地として該感光性 保護膜開口部の第 1の導体膜厚を実効的に増力 tlさせるべく第 2の導体膜を形成する 工程と、前記フレキシブル領域となる部位に開口を設けたプリプレダ層と、第 3の導体 膜とを、前記第 2の導体膜を形成したベースフィルムに順次積層し熱圧着する工程と 、を含むフレックスリジッドプリント配線板の製造方法。
PCT/JP2006/318691 2006-09-21 2006-09-21 Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide WO2008035416A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2006800558825A CN101518163B (zh) 2006-09-21 2006-09-21 刚挠性印刷电路板及该刚挠性印刷电路板的制造方法
KR1020097006241A KR101156751B1 (ko) 2006-09-21 2006-09-21 리지드 플렉서블 프린트 배선판 및 리지드 플렉서블 프린트배선판의 제조방법
EP06798183.7A EP2071907B1 (en) 2006-09-21 2006-09-21 Flex-rigid printed circuit board, and method for manufacturing the flex-rigid printed circuit board
US12/442,016 US8188372B2 (en) 2006-09-21 2006-09-21 Flex-rigid printed wiring board and manufacturing method thereof
PCT/JP2006/318691 WO2008035416A1 (fr) 2006-09-21 2006-09-21 Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide
US13/459,628 US9155209B2 (en) 2006-09-21 2012-04-30 Flex-rigid printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318691 WO2008035416A1 (fr) 2006-09-21 2006-09-21 Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/442,016 A-371-Of-International US20060213685A1 (en) 2002-06-27 2006-05-26 Single or multi-layer printed circuit board with improved edge via design
US13/459,628 Division US9155209B2 (en) 2006-09-21 2012-04-30 Flex-rigid printed wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2008035416A1 true WO2008035416A1 (fr) 2008-03-27

Family

ID=39200249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318691 WO2008035416A1 (fr) 2006-09-21 2006-09-21 Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide

Country Status (5)

Country Link
US (2) US8188372B2 (ja)
EP (1) EP2071907B1 (ja)
KR (1) KR101156751B1 (ja)
CN (1) CN101518163B (ja)
WO (1) WO2008035416A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252307A1 (en) * 2009-04-07 2010-10-07 Au Optronics Corp. Flexible printed circuit board
CN103313530A (zh) * 2012-03-08 2013-09-18 宏恒胜电子科技(淮安)有限公司 软硬结合电路板的制作方法
JP2020017589A (ja) * 2018-07-24 2020-01-30 株式会社フジクラ リジッドフレックス多層配線板
JP7475511B2 (ja) 2022-08-03 2024-04-26 トライポッド (ウーシー) エレクトロニック カンパニー リミテッド セミフレックスプリント回路基板の製造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267081A (ja) * 2008-04-25 2009-11-12 Sony Chemical & Information Device Corp フレックスリジッド配線基板とその製造方法
KR101051491B1 (ko) 2009-10-28 2011-07-22 삼성전기주식회사 다층 경연성 인쇄회로기판 및 다층 경연성 인쇄회로기판의 제조방법
US8493747B2 (en) * 2010-02-05 2013-07-23 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
CN103222352A (zh) * 2010-11-12 2013-07-24 国立大学法人东北大学 多层布线基板
CN102740612B (zh) * 2011-04-13 2014-11-05 富葵精密组件(深圳)有限公司 软硬结合电路板的制作方法
CN106332474B (zh) * 2011-04-26 2020-08-14 株式会社村田制作所 刚性柔性基板及其制造方法
JP5597176B2 (ja) * 2011-10-11 2014-10-01 株式会社フジクラ プリント配線板の製造方法
US9928762B2 (en) * 2012-09-28 2018-03-27 Apple Inc. Electronic devices with flexible circuit light shields
US8941128B2 (en) * 2012-11-21 2015-01-27 Intel Corporation Passivation layer for flexible display
US9560748B2 (en) 2013-01-04 2017-01-31 Bose Corporation Flexible printed circuit
KR102051803B1 (ko) * 2013-07-29 2020-01-09 삼성디스플레이 주식회사 접이식 표시 장치
WO2015015975A1 (ja) * 2013-07-30 2015-02-05 株式会社村田製作所 多層基板および多層基板の製造方法
CN104349609A (zh) * 2013-08-08 2015-02-11 北大方正集团有限公司 印刷线路板及其制作方法
KR102093156B1 (ko) * 2013-09-02 2020-03-25 삼성전기주식회사 리지드 플렉서블 기판 및 그 제조방법
US9338915B1 (en) 2013-12-09 2016-05-10 Flextronics Ap, Llc Method of attaching electronic module on fabrics by stitching plated through holes
US10015880B1 (en) * 2013-12-09 2018-07-03 Multek Technologies Ltd. Rip stop on flex and rigid flex circuits
CN103687284B (zh) * 2013-12-11 2017-02-15 广州兴森快捷电路科技有限公司 飞尾结构的刚挠结合线路板及其制作方法
US9560746B1 (en) 2014-01-24 2017-01-31 Multek Technologies, Ltd. Stress relief for rigid components on flexible circuits
KR20150125424A (ko) * 2014-04-30 2015-11-09 삼성전기주식회사 강연성 인쇄회로기판 및 강연성 인쇄회로기판의 제조 방법
US9549463B1 (en) 2014-05-16 2017-01-17 Multek Technologies, Ltd. Rigid to flexible PC transition
US20150373830A1 (en) * 2014-06-19 2015-12-24 Kabushiki Kaisha Toshiba Composite substrate including foldable portion
US9764532B2 (en) * 2014-07-01 2017-09-19 Isola Usa Corp. Prepregs including UV curable resins useful for manufacturing semi-flexible PCBs
KR102205106B1 (ko) * 2014-08-19 2021-01-21 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
JP2016066711A (ja) * 2014-09-25 2016-04-28 イビデン株式会社 フレックスリジッド配線板
JP6538372B2 (ja) * 2015-02-26 2019-07-03 東芝ディーエムエス株式会社 多層リジッドフレキシブル基板の製造方法
KR20160108761A (ko) * 2015-03-06 2016-09-20 삼성전자주식회사 연결 기판
JP6528272B2 (ja) * 2015-04-22 2019-06-12 Tianma Japan株式会社 接続用基板および表示装置
CN207009625U (zh) * 2015-09-25 2018-02-13 株式会社村田制作所 天线模块以及电子设备
CN107484323B (zh) * 2016-06-07 2019-09-20 鹏鼎控股(深圳)股份有限公司 多层柔性电路板及其制作方法
JP2019036616A (ja) * 2017-08-14 2019-03-07 住友電気工業株式会社 フレキシブルプリント配線板
CN109429443B (zh) * 2017-08-31 2020-08-21 鹏鼎控股(深圳)股份有限公司 软硬结合电路板的制作方法
JP6962641B2 (ja) * 2018-01-30 2021-11-05 株式会社伸光製作所 集合回路基板とその製造方法
US10912204B2 (en) * 2018-03-30 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Electronic device and rigid-flexible substrate module
CN108566729B (zh) * 2018-06-25 2020-12-15 Oppo广东移动通信有限公司 电路板组件及具有其的电子设备
US20200053887A1 (en) 2018-08-09 2020-02-13 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Mechanically Robust Component Carrier With Rigid and Flexible Portions
US10638616B1 (en) * 2018-10-30 2020-04-28 Taiwan Semiconductor Manufacturing Co., Ltd. Circuit carrier and manifacturing method thereof
CN209572202U (zh) * 2018-10-31 2019-11-01 奥特斯(中国)有限公司 半柔性部件承载件
KR20210088225A (ko) * 2020-01-06 2021-07-14 삼성전기주식회사 리지드-플렉서블 인쇄회로기판 및 전자부품 모듈
DE102020121033A1 (de) * 2020-08-10 2022-02-10 Semikron Elektronik Gmbh & Co. Kg Leistungselektronische Schalteinrichtung, Leistungshalbleitermodul damit und Verfahren zur Herstellung
KR20220072540A (ko) * 2020-11-25 2022-06-02 삼성전기주식회사 플렉서블 인쇄회로기판 및 이를 포함하는 전자장치
CN112969300A (zh) * 2021-01-28 2021-06-15 盐城维信电子有限公司 一种柔性电路板蚀刻加工方法
WO2022231016A1 (ko) * 2021-04-26 2022-11-03 엘지이노텍 주식회사 회로기판 및 이를 포함하는 패키지 기판
WO2023243903A1 (ko) * 2022-06-17 2023-12-21 삼성전자주식회사 복합필름, 리지드 플렉서블 인쇄 회로 기판 및 이를 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368187A (ja) * 1989-11-22 1991-03-25 Nippon Mektron Ltd フレキシブル回路基板
JPH06334279A (ja) * 1993-05-20 1994-12-02 Minolta Camera Co Ltd 多層フレキシブル電装基板
JPH07106766A (ja) 1993-10-05 1995-04-21 Sumitomo Electric Ind Ltd フレックスリジッド多層板及びその製造方法
JP2000012991A (ja) * 1998-06-18 2000-01-14 Nitto Denko Corp 異なる厚さの導体層を有する回路基板形成部材およびそれを用いた回路基板
JP2002158445A (ja) 2000-11-22 2002-05-31 Cmk Corp リジッドフレックスプリント配線板及びその製造方法
US20050215124A1 (en) 2004-01-20 2005-09-29 Michael Vale Fuel cell voltage monitoring system and associated electrical connectors

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946726C2 (de) * 1979-11-20 1982-05-19 Ruwel-Werke Spezialfabrik für Leiterplatten GmbH, 4170 Geldern Leiterplatte mit starren und flexiblen Bereichen und Verfahren zu deren Herstellung
JPS6112094A (ja) * 1984-06-27 1986-01-20 日本メクトロン株式会社 フレキシブル回路基板の製造法
US4625786A (en) * 1984-12-05 1986-12-02 Neil A. Carter Insulated window shade assembly
US5008496A (en) * 1988-09-15 1991-04-16 Siemens Aktiengesellschaft Three-dimensional printed circuit board
US4931134A (en) * 1989-08-15 1990-06-05 Parlex Corporation Method of using laser routing to form a rigid/flex circuit board
DE4003344C1 (ja) * 1990-02-05 1991-06-13 Fa. Carl Freudenberg, 6940 Weinheim, De
US5206463A (en) * 1990-07-24 1993-04-27 Miraco, Inc. Combined rigid and flexible printed circuits and method of manufacture
US5072074A (en) * 1990-07-24 1991-12-10 Interflex Corporation High yield combined rigid and flexible printed circuits and method of manufacture
US5152997A (en) * 1990-12-11 1992-10-06 Theratech, Inc. Method and device for transdermally administering testosterone across nonscrotal skin at therapeutically effective levels
US5219640A (en) * 1991-02-08 1993-06-15 Rogers Corporation Flexible circuit having flexing section of reduced stiffness, and method of manufacture thereof
JPH04268783A (ja) 1991-02-25 1992-09-24 Furukawa Electric Co Ltd:The 複合回路基板
US5144742A (en) * 1991-02-27 1992-09-08 Zycon Corporation Method of making rigid-flex printed circuit boards
JP3209772B2 (ja) * 1991-07-08 2001-09-17 株式会社フジクラ リジッドフレックス配線板の製造方法
EP0700630B1 (de) * 1994-03-23 2003-02-05 Dyconex AG Folienleiterplatten und verfahren zu deren herstellung
US5629497A (en) * 1994-10-04 1997-05-13 Cmk Corporation Printed wiring board and method of manufacturing in which a basefilm including conductive circuits is covered by a cured polyimide resin lay
JPH08107266A (ja) * 1994-10-04 1996-04-23 Cmk Corp プリント配線板
JPH08335759A (ja) 1995-06-07 1996-12-17 Toshiba Corp プリント配線板およびその製造方法
JP3666955B2 (ja) 1995-10-03 2005-06-29 日本メクトロン株式会社 可撓性回路基板の製造法
US6099745A (en) 1998-06-05 2000-08-08 Parlex Corporation Rigid/flex printed circuit board and manufacturing method therefor
KR100278609B1 (ko) * 1998-10-08 2001-01-15 윤종용 인쇄회로기판
JP2001024339A (ja) 1999-07-12 2001-01-26 Sharp Corp フレキシブル多層配線基板、及びその製造方法
US7059868B1 (en) * 2000-03-07 2006-06-13 Western Digital (Fremont), Inc. Connection of trace circuitry in a computer disk drive system
JP4459406B2 (ja) * 2000-07-27 2010-04-28 ソニーケミカル&インフォメーションデバイス株式会社 フレキシブル配線板製造方法
JP3788917B2 (ja) * 2001-04-02 2006-06-21 日東電工株式会社 フレキシブル多層配線回路基板の製造方法
DE10243637B4 (de) * 2002-09-19 2007-04-26 Ruwel Ag Leiterplatte mit mindestens einem starren und mindestens einem flexiblen Bereich sowie Verfahren zur Herstellung von starr-flexiblen Leiterplatten
JP3902752B2 (ja) * 2002-10-01 2007-04-11 日本メクトロン株式会社 多層回路基板
TWI233771B (en) * 2002-12-13 2005-06-01 Victor Company Of Japan Flexible rigid printed circuit board and method of fabricating the board
JP2005005413A (ja) * 2003-06-11 2005-01-06 Ibiden Co Ltd フレキシブル−リジッド配線基板
JP2005215124A (ja) 2004-01-28 2005-08-11 Konica Minolta Business Technologies Inc 誘導加熱定着装置を備える画像形成装置
US6927344B1 (en) * 2004-02-27 2005-08-09 Motorola, Inc. Flexible circuit board assembly
KR100632557B1 (ko) 2004-04-20 2006-10-09 삼성전기주식회사 감광성 폴리이미드에 의해 성형된 커버레이를 구비한인쇄회로기판의 제조 방법
JP5124984B2 (ja) * 2005-05-20 2013-01-23 日立化成工業株式会社 印刷配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368187A (ja) * 1989-11-22 1991-03-25 Nippon Mektron Ltd フレキシブル回路基板
JPH06334279A (ja) * 1993-05-20 1994-12-02 Minolta Camera Co Ltd 多層フレキシブル電装基板
JPH07106766A (ja) 1993-10-05 1995-04-21 Sumitomo Electric Ind Ltd フレックスリジッド多層板及びその製造方法
JP2000012991A (ja) * 1998-06-18 2000-01-14 Nitto Denko Corp 異なる厚さの導体層を有する回路基板形成部材およびそれを用いた回路基板
JP2002158445A (ja) 2000-11-22 2002-05-31 Cmk Corp リジッドフレックスプリント配線板及びその製造方法
US20050215124A1 (en) 2004-01-20 2005-09-29 Michael Vale Fuel cell voltage monitoring system and associated electrical connectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2071907A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252307A1 (en) * 2009-04-07 2010-10-07 Au Optronics Corp. Flexible printed circuit board
US8487190B2 (en) 2009-04-07 2013-07-16 Au Optronics Corp. Flexible printed circuit board
TWI484873B (zh) * 2009-04-07 2015-05-11 Au Optronics Corp 軟性電路板
CN103313530A (zh) * 2012-03-08 2013-09-18 宏恒胜电子科技(淮安)有限公司 软硬结合电路板的制作方法
JP2020017589A (ja) * 2018-07-24 2020-01-30 株式会社フジクラ リジッドフレックス多層配線板
JP7475511B2 (ja) 2022-08-03 2024-04-26 トライポッド (ウーシー) エレクトロニック カンパニー リミテッド セミフレックスプリント回路基板の製造方法

Also Published As

Publication number Publication date
EP2071907B1 (en) 2014-01-22
CN101518163A (zh) 2009-08-26
US20120211465A1 (en) 2012-08-23
KR101156751B1 (ko) 2012-07-03
US20100051325A1 (en) 2010-03-04
KR20090063223A (ko) 2009-06-17
EP2071907A1 (en) 2009-06-17
US9155209B2 (en) 2015-10-06
US8188372B2 (en) 2012-05-29
CN101518163B (zh) 2011-06-08
EP2071907A4 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
WO2008035416A1 (fr) Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide
JP4147298B2 (ja) フレックスリジッドプリント配線板およびフレックスリジッドプリント配線板の製造方法
JP2010027917A (ja) 電気・電子部品内蔵回路基板とその製造方法
JPWO2009069683A1 (ja) 多層プリント配線板の製造方法
TW200412205A (en) Double-sided printed circuit board without via holes and method of fabricating the same
JP2001111218A (ja) 多層プリント回路基板および電子装置
TWI492689B (zh) 多層配線基板之製造方法
JP2009283671A (ja) プリント配線板の製造方法
US20110056732A1 (en) Flex-rigid wiring board and method for manufacturing the same
JP2005236205A (ja) 多層プリント配線板の製造方法及び多層プリント配線板
JP2002158445A (ja) リジッドフレックスプリント配線板及びその製造方法
JPH08335759A (ja) プリント配線板およびその製造方法
WO2007116622A1 (ja) ケーブル部を有する多層回路基板およびその製造方法
JP2009177071A (ja) ポリイミドフィルム回路基板およびその製造方法
JP2006156760A (ja) リジッド・フレックスプリント配線板の製造方法
TWI755556B (zh) 載體基板以及使用該基板製造的印刷電路板
JP2008112879A (ja) リジッドフレックスプリント配線板及びその製造方法
JP2006148072A (ja) 配線板
JP2005123333A (ja) フレックス−リジッド回路基板
JPH08335758A (ja) プリント配線板およびその製造方法
JP4745014B2 (ja) ケーブル部を有するプリント基板の製造方法
JP2004335602A (ja) プリント配線基板
KR101231343B1 (ko) 인쇄회로기판 및 그의 제조 방법
JP2006049587A (ja) プリント配線板及びその製造方法
JP3535509B2 (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055882.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097006241

Country of ref document: KR

Ref document number: 2006798183

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12442016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP