WO2008028440A1 - Gehäuse zum aufnehmen zumindest eines brennstoffzellenstapels - Google Patents

Gehäuse zum aufnehmen zumindest eines brennstoffzellenstapels Download PDF

Info

Publication number
WO2008028440A1
WO2008028440A1 PCT/DE2007/001188 DE2007001188W WO2008028440A1 WO 2008028440 A1 WO2008028440 A1 WO 2008028440A1 DE 2007001188 W DE2007001188 W DE 2007001188W WO 2008028440 A1 WO2008028440 A1 WO 2008028440A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
fuel cell
cell stack
housing shell
shell
Prior art date
Application number
PCT/DE2007/001188
Other languages
English (en)
French (fr)
Other versions
WO2008028440A8 (de
Inventor
Jens Hafemeister
Original Assignee
Enerday Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday Gmbh filed Critical Enerday Gmbh
Priority to EA200970254A priority Critical patent/EA200970254A1/ru
Priority to JP2009527005A priority patent/JP2010503159A/ja
Priority to CA002662017A priority patent/CA2662017A1/en
Priority to EP07764431A priority patent/EP2059970A1/de
Priority to AU2007294310A priority patent/AU2007294310A1/en
Priority to US12/439,631 priority patent/US20090269652A1/en
Publication of WO2008028440A1 publication Critical patent/WO2008028440A1/de
Publication of WO2008028440A8 publication Critical patent/WO2008028440A8/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Housing for receiving at least one fuel cell stack
  • the invention relates to a housing for receiving at least one fuel cell stack, with a first housing shell and a second housing shell.
  • the invention relates to a system of such a housing and a fuel cell stack.
  • SOFC Solid Oxide Fuel Cell
  • SOFC fuel cell systems consist of several components, including but not limited to a reformer, an afterburner, and a SOFC fuel cell stack. These components are operated at temperatures around 900 0 C.
  • SOFC fuel cell stacks are produced under a defined tension. This tension is ensured during manufacture, storage and installation in the system by temporary tension. From DE 103 08 382 B3, for example, a possibility for clamping a fuel cell stack is known.
  • the invention provides a housing for receiving at least one fuel cell stack available.
  • the housing comprises a first housing shell and a second housing shell, wherein the first and second housing shell with a clamping device are braced against each other so that the elasticity of the
  • This housing has the advantage that at least the fuel cell stack is always optimally braced in any operating state and at any temperature. Furthermore, this creates a housing which combines recording function and bracing function and is nevertheless very easy and uncomplicated to assemble. As a result, not only the assembly costs and the assembly costs can be reduced, but also the production costs. Furthermore, an improved accessibility for maintenance purposes is created, without having to perform a costly disassembly. Another advantage of the housing is the protection of the recorded elements from dirt and damage. -
  • the housing can be configured in such a way that the housing shells can be moved apart in the stacking direction of the fuel cell stack by a certain distance away from each other in a gap-free manner. This offers the advantage that even with temperature-induced expansion of the fuel cell stack to be clamped, this is always arranged in a space closed off from the environment. Thus, the interior is always protected from dirt and damage.
  • This gap-free movement can be realized by arranging an elastic seal between the mutually facing edges of the housing shells. In a movement of the housing shells away from each other, such, preferably very strong elastic seal by the reduced compression take up additional space, thereby preventing a gap between the housing shells is formed.
  • this gap-free movement can also be realized in that the housing shells are pushed into one another.
  • This has the advantage that the housing shells mutually support and stabilize one another in a direction perpendicular to a stacking direction of the fuel cell stack, so that a very robust and simply constructed clamping can be realized.
  • Another advantage is that a heat radiation of the elements received by the housing can be greatly reduced to the outside, since the elements are always surrounded in the interior, regardless of the operating state of a wall.
  • the housing according to the invention can advantageously be further developed in that the clamping device a Comprises a plurality of spring-loaded tensioners.
  • the use of spring-loaded clamps does not require tools for mounting and fixing the housing shells. This is a very simple and inexpensive way to ensure optimal tension of the fuel cell stack.
  • the clamping device is a clamping frame with springs.
  • a clamping frame offers the possibility of a robust clamping with high clamping force.
  • the housing according to the invention can be further formed such that the housing shells are made of an insulating material.
  • this further development offers the advantage that the housing also provides an insulation function.
  • the housing according to the invention may be further developed such that the inner housing shell, which is slidable into the outer housing shell, extends so far in the stacking direction of the fuel cell stack that at least 90% of the stack height of the fuel cell stack to be accommodated is taken up by the inner housing shell become.
  • This variant offers the advantage that almost the complete fuel cell stack is supported in a direction perpendicular to the stacking direction. Elaborate attachments of the individual fuel cell elements of the fuel cell stack can thus be dispensed with.
  • the housing according to the invention can be developed such that the housing is designed to at least partially accommodate a reformer and / or an afterburner of a fuel cell system. This creates a possibility to accommodate a complete fuel cell system in the housing. This also offers the advantage that a very simple and inexpensive mounting option can be realized.
  • This embodiment can be developed in an advantageous manner so that both housing shells for receiving the reformer and / or the afterburner have recesses which are open in each case to the open side of the housing shells.
  • a simple assembly is guaranteed and at the same time created the opportunity to pass a tubular reformer and / or afterburner through the two end faces of the housing.
  • the recesses offer in addition to the simple installation and the advantage of clamping these elements through the housing walls.
  • the present invention provides a system comprising such a housing and a fuel cell stack. This system offers the advantages mentioned above in a metaphorical way.
  • FIG. 1 shows an inventive housing according to a first embodiment in an open state
  • FIG. 2 shows the housing according to the invention from FIG. 1 in a closed state
  • FIG. 3 shows an inventive housing according to a second embodiment in an open state
  • Figure 4 shows the housing of Figure 3 in a closed
  • Figure 5 shows an inventive housing according to a third embodiment in an open state
  • FIG. 6 shows the housing from FIG. 5 in a closed state
  • Figure 7 shows an inventive housing according to a fourth embodiment in an open state
  • FIG. 8 shows an inventive housing according to a fifth embodiment in an open state
  • Figures 1 and 2 show a first embodiment of the housing according to the invention, wherein Figure 1 shows an open and Figure 2 shows a closed state of the housing.
  • the housing according to the invention comprises an outer housing shell 10 and an inner housing shell 12, which are preferably made of insulating material. Alternatively, the outer and / or the inner housing shell 10, 12 on its inner and / or outer sides with a Be provided insulation material.
  • the two housing shells 10, 12 are parallelepiped-shaped, unilaterally open shells, which are designed such that they can be slid into each other with a precise fit or with little play.
  • the outer shell 10 is provided with four Federklappspannern 14, which act as a tensioning device.
  • spring clip 14 are fixed to the outside of the outer housing shell 10, that the gripping arms of the spring clip 14 in the closed state of the housing (see FIG. 2), the inner housing shell 12 can partially embrace. That is, the gripping arms abut on the outside of the bottom of the inner housing shell 12 and press them with a certain elastic force into the outer housing shell 10, so that the inner housing shell 12 is held in the outer housing shell 10.
  • the spring-loaded tensioners 14 can as
  • Clamping device also serve a clamping frame, as disclosed in DE 103 08 382 B3.
  • the housing is provided for receiving at least one fuel cell stack 16. This fuel cell stack 16 is inserted into the inner housing shell 12 such that the walls of the inner
  • Housing shell 12 support the fuel cell stack 16 in a direction perpendicular to the stacking direction of the fuel cell stack 16 (the fuel cell stacking direction corresponds in Figure 1 of the vertical direction).
  • the inner housing shell 12 is dimensioned so that the fuel cell stack 16 is almost completely received by the inner housing shell 12, preferably more than 90% of the fuel cell stack is received by the inner housing shell 12.
  • For the leads to the fuel cell stack 16 holes not shown in the bottom of the inner housing shell 12 may be provided
  • Figures 3 and 4 show a second embodiment of the housing according to the invention, wherein Figure 3 shows an open and Figure 4 shows a closed state of the housing.
  • the housing according to the second embodiment comprises an outer housing shell 110 and an inner housing shell 112, wherein the outer housing shell is provided with spring-loaded tensioners 114.
  • the housing shell 110 differs from the housing shell 10 of the first exemplary embodiment and the housing shell 120 from the housing shell 12 of the first exemplary embodiment only by the aspects which are described below.
  • the spring-loaded clamps 14 are identical to the spring-loaded clamps 114 (alternatively, the clamping frame mentioned in the first embodiment may be provided).
  • the housing accommodates not only a fuel cell stack 116, but the entire fuel cell system.
  • a combustion tube 118 is shown in FIG. 3, which can be a reformer or an afterburner or a part thereof.
  • the outer housing shell 110 and the inner housing shell 112 are each provided with recesses 120 which are each to the side of- fen, which faces the respective bottom of the corresponding housing shell 110, 112.
  • the radii at the closed end of the recesses 120 correspond substantially to half the diameter of the combustion tube 118.
  • the width of the recesses 120 substantially corresponds to the diameter of the combustion tube 118.
  • the combustion tube 118 can improve the insulation and compensate for manufacturing tolerances and thus for better Clamping be provided with a sheath 122 of an insulating and damping material. With regard to the operation of the tension reference is made to the preceding embodiment.
  • FIGS 5 and 6 show a third embodiment of the housing according to the invention, wherein Figure 5 shows an open and Figure 6 shows a closed state of the housing.
  • the housing according to the third embodiment comprises an upper housing shell 210 and a lower housing shell 212.
  • the housing shells 210, 212 are preferably made of insulating material. Alternatively, the upper and / or the lower housing shell 210, 212 may be provided on their inner and / or outer sides with an insulating material.
  • the two housing shells 210, 212 are cuboid-shaped shells open on one side, the edges of which clamp on the respectively open side an interposed, highly elastic seal 224.
  • the housing accommodates not only a fuel cell stack 216, but the entire fuel cell system.
  • a combustion tube 218 is shown in FIGS. 5 and 6 which may be a reformer or an afterburner or a part thereof.
  • the upper housing shell 210 and the lower housing shell 212 are each provided with recesses. provided 220, which are each open to the side opposite to the respective bottom of the corresponding housing shell 210, 212.
  • the four recesses 220 for the combustion tube 218 each correspond to a semicircle whose radius is slightly larger than half the outer diameter of the combustion tube 218.
  • the radius is therefore slightly larger, because between the inserted combustion tube 218 and the housing shells 210 and 212, the seal 224 is arranged.
  • the seal 224 is preferably in the plan view (top view of FIG. 5) frame-shaped. At the portions of the recesses 220, the seal 224 is annular, wherein the annular shape surrounds the combustion tube 218. These annular portions of the seal 224 are preferably integrally connected to the remaining flat portions.
  • the upper housing shell 210 is provided with eight spring-loaded clamps 214 acting as a tensioning device (four of the spring-action clamps 214 are shown in Fig. 6, for the sake of clarity, Fig. 5 does not show a spring-folding clamp).
  • each case two of the spring flap clamps 214 are attached to a side surface of the housing shell 210.
  • the gripping arms of the spring-folding clamps 214 in this exemplary embodiment engage in indentations or slots which are provided in the lower housing shell 212 at the corresponding points up to which the gripping arms of the spring-folding clamps extend.
  • corresponding projections or pins may be provided.
  • the upper and lower housing shells 210, 212 can be braced against one another with the aid of the spring-folding clamps 214 with a certain elastic force.
  • the fuel cell stack 216 is inserted such that the fuel cell stack between the bottoms of the two housing shells 210, 212 is braced.
  • the fuel cell stack 216 In the initial state while the seal 224 is strongly compressed. Through the Fe the folding clamp 214, the fuel cell stack 216 is clamped in its stacking direction between these bottoms so that the tension is maintained by the elasticity of the spring-folding clamps 214 in each operating state ' .
  • bores may be provided in the bottom of the inner housing shell 212.
  • the already mentioned clamping frame can be provided.
  • the housing shells 210 and 212 are actually minimally spaced apart, however, with the seal 224 following this movement, ie, the compression of the seal 224 is reduced, thereby taking up more space. In this way prevents an open gap between the housing shells 210 and 212 is formed. Due to the force of the spring-loaded clamps 214 on the one hand and the expansion force on the other hand, as well as by heat may under certain circumstances, the material of the housing shells 210, 212 permanently dwindle. The elastic spring force of the spring flap clamps 214 and the elastic deformation of the seal 224 compensate for these movements in any operating state, so that both the fuel cell stack is always optimally braced and it is always prevented that a gap between the housing shells 210, 212 arises.
  • FIG. 7 shows an inventive housing according to a fourth embodiment in an open state.
  • This housing comprises an upper housing shell 310 and a lower housing shell 312.
  • the lower housing shell 312 is provided with a shoulder, which corresponds to the upper edge of the housing shell 212 of the third embodiment. Consequently, a highly elastic seal 324 is arranged on the shoulder, on which in turn the edge of the open side of the housing shell 310 rests.
  • the wall of the housing shell 312 is thinner than below the paragraph.
  • the outside of the lower housing shell 312 is fit to the inside of the upper housing shell 310 or with slight play to this slidably disposed.
  • this embodiment combines the slidable arrangement of the two housing shells according to the first and second embodiments and the provision of an elastic seal according to the third embodiment.
  • the fuel cell stack 316 is almost completely absorbed by the unt r older housing shell 312 opposite the functionality of the third exemplary embodiment is added in the fourth embodiment, preferably more than 90% of the fuel cell stack from the lower housing shell 312 are added, whereby the fuel cell stack in the direction is supported perpendicular to its stacking direction.
  • the other components for example, the provision of spring-loaded clamps or a clamping frame
  • the functionality reference is made to the third embodiment.
  • Figures 8 and 9 show a fifth embodiment of the housing according to the invention, wherein Figure 8 shows an open and Figure 9 shows a closed state of the housing.
  • This embodiment differs from the third embodiment in that in this case only a fuel cell stack 416 is received and clamped by an upper housing shell 410 and a lower housing shell 412. Consequently, there are no recesses for a combustion tube or the like intended.
  • an elastic seal 424 is not provided with annular portions, but is formed as a frame (in the plan view of Fig. 8) of uniform thickness.
  • the spring-loaded clamps 414 together with the associated possibility of engagement correspond to those of the third exemplary embodiment, wherein alternatively the clamping frame already mentioned several times may be provided.
  • the sealing surfaces of the housing shells i. the mutually facing surfaces of the housing shells are executed toothed, wherein the toothing of a housing shell fits into the toothing of the other housing shell.
  • the elastic seal arranged therebetween is preferably formed so that its shape follows this toothing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft ein Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels (16; 116; 216; 316; 416), mit einer ersten Gehäuseschale (10; 110; 210; 310; 410) und einer zweiten Gehäuseschale (12; 112; 212; 312; 412), wobei die erste und zweite Gehäuseschale mit einer Spanneinrichtung so gegeneinander verspannbar sind, dass durch die Elastizitätskraft der Spanneinrichtung der aufzunehmende Brennstoffzellenstapel in seiner Stapelrichtung verspannbar ist.

Description

Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels
Die Erfindung betrifft ein Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels, mit einer ersten Gehäuseschale und einer zweiten Gehäuseschale.
Ferner betrifft die Erfindung ein System aus solch einem Gehäuse und einem Brennstoffzellenstapel.
SOFC-BrennstoffZellensysteme (SOFC = "Solid Oxide Fuel Cell") bestehen aus mehreren Komponenten, wozu unter anderem ein Reformer, ein Nachbrenner sowie ein SOFC-Brenn- stoffzellenstapel gehören. Diese Komponenten werden bei Temperaturen um 900 0C betrieben.
Bekanntermaßen werden SOFC-Brennstoffzellenstapel unter einer definierten Verspannung hergestellt. Diese Verspannung wird während der Fertigung, der Lagerung sowie des Einbaus im System durch temporäre Verspannungen gewährleistet. Aus der DE 103 08 382 B3 ist beispielsweise eine Möglichkeit zur Verspannung eines Brennstoffzellenstapels bekannt.
Bisherige Möglichkeiten der Verspannung haben jedoch den
Nachteil, dass, falls die hochtemperaturbeständige Isolation unter Druck und hoher Temperatur schwindet, die Verspannung diesem Schwinden nicht in ausreichendem Maße begegnet, so dass die Verspannung des Brennstoffzellenstapels nicht dauerhaft gewährleistet werden kann. Ein weiterer Nachteil der bisherigen Verspannungen ist der, dass die Montage der Spannelemente keine montagegünstige Lösung darstellt.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine montagegünstige Möglichkeit zur dauerhaften Verspannung zumindest eines Brennstoffzellenstapels zu schaffen.
Diese Aufgabe wird durch das Gehäuse gemäß Anspruch 1 ge- löst.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Zur Lösung der Aufgabe stellt die Erfindung ein Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels zur Verfügung. Das Gehäuse umfasst eine erste Gehäuseschale und eine zweite Gehäuseschale, wobei die erste und zweite Gehäuseschale mit einer Spanneinrichtung so gegeneinander verspannbar sind, dass durch die Elastizitätskraft der
Spanneinrichtung der aufzunehmende Brennstoffzellenstapel in seiner Stapelrichtung verspannbar ist . Dieses Gehäuse hat den Vorteil, dass zumindest der Brennstoffzellenstapel in jedem Betriebszustand und bei jeder Temperatur stets op- timal verspannt ist. Ferner wird dadurch ein Gehäuse geschaffen, welches Aufnahmefunktion und Verspannfunktion kombiniert und trotzdem sehr einfach und unkompliziert zu montieren ist. Dadurch können nicht nur der Montageaufwand bzw. die Montagekosten verringert werden, sondern auch die Herstellungskosten. Ferner wird eine verbesserte Zugänglichkeit für Wartungszwecke geschaffen, ohne eine aufwendige Demontage durchführen zu müssen. Ein weiterer Vorteil des Gehäuses ist der Schutz der aufgenommenen Elemente vor Schmutz und Beschädigungen. -
Ferner kann das Gehäuse derart aufgebaut sein, dass die Gehäuseschalen in der Stapelrichtung des Brennstoffzellensta- pels spalterzeugungsfrei um eine bestimmte Distanz vonein- ander weg bewegbar sind. Dies bietet den Vorteil, dass auch bei temperaturbedingter Ausdehnung des zu verspannenden Brennstoffzellenstapels, dieser stets in einem von der Umgebung abgeschlossenen Raum angeordnet ist. Somit ist der Innenraum stets vor Schmutz und Beschädigungen geschützt.
Diese spalterzeugungsfreie Bewegung kann dadurch realisiert werden, dass zwischen den einander zugewandten Kanten der Gehäuseschalen eine elastische Dichtung angeordnet ist. Bei einer Bewegung der Gehäuseschalen voneinander weg kann eine solche, vorzugsweise sehr stark elastische, Dichtung durch die verringerte Komprimierung zusätzlichen Raum einnehmen, wodurch verhindert wird, dass ein Spalt zwischen den Gehäuseschalen entsteht .
Alternativ oder zusätzlich kann diese spalterzeugungsfreie Bewegung auch dadurch realisiert werden, dass die Gehäuseschalen ineinander schiebbar sind. Dies hat den Vorteil, dass sich die Gehäuseschalen gegenseitig in einer Richtung senkrecht zu einer Stapelrichtung des Brennstoffzellensta- pels stützen und stabilisieren, so dass eine sehr robuste und einfach aufgebaute Verspannung verwirklicht werden kann. Ein weiterer Vorteil ist, dass eine Hitzeabstrahlung der vom Gehäuse aufgenommenen Elemente nach Außen stark verringert werden kann, da die Elemente im Inneren unabhän- gig vom Betriebszustand immer von einer Wandung umgeben sind.
Das erfindungsgemäße Gehäuse kann in vorteilhafter Weise dadurch weitergebildet sein, dass die Spanneinrichtung eine Mehrzahl von Federklappspannern umfasst. Durch die Verwendung von Federklappspannern sind keine Werkzeuge zur Montage und Befestigung der Gehäuseschalen erforderlich. Dies ist eine sehr einfache und kostengünstige Möglichkeit eine optimale Verspannung des Brennstoffzellenstapels zu gewährleisten.
Alternativ kann vorgesehen sein, dass die Spanneinrichtung ein Spannrahmen mit Federn ist . Ein Spannrahmen bietet die Möglichkeit einer robusten Verspannung mit hoher Verspan- nungskraft .
Darüber hinaus kann das erfindungsgemäße Gehäuse so weiter gebildet sein, dass die Gehäuseschalen aus einem Isolati- onsmaterial hergestellt sind. Zusätzlich zur Aufnahme und Verspannfunktion bietet diese Weiterbildung den Vorteil, dass das Gehäuse auch noch eine Isolationsfunktion zur Verfügung stellt.
Dieser Vorteil kann alternativ dadurch erreicht werden, dass die Gehäuseschalen mit einer Isolationsschicht versehen sind.
Des Weiteren kann das erfindungsgemäße Gehäuse so weiterge- bildet sein, dass die innere Gehäuseschale, welche in die äußere Gehäuseschale schiebbar ist, sich soweit in der Stapelrichtung des Brennstoffzellenstapels erstreckt, dass mindestens 90 % der Stapelhöhe des aufzunehmenden Brennstoffzellenstapels von der inneren Gehäuseschale aufgenom- men werden. Diese Variante bietet den Vorteil, dass nahezu der komplette Brennstoffzellenstapel in einer Richtung senkrecht zur Stapelrichtung gestützt wird. Aufwendige Befestigungen der einzelnen BrennstoffZellenelemente des Brennstoffzellenstapels können somit entbehrlich werden. Darüber hinaus kann das erfindungsgemäße Gehäuse so weitergebildet sein, dass das Gehäuse dazu ausgelegt ist, einen Reformer und/oder einen Nachbrenner eines Brennstoffzellen- Systems zumindest teilweise aufzunehmen. Dadurch ist eine Möglichkeit geschaffen ein komplettes Brennstoffzellensys- tem in dem Gehäuse unterzubringen. Auch dies bietet den Vorteil, dass eine sehr einfache und kostengünstige Montagemöglichkeit realisiert werden kann.
Diese Ausführungsform kann in vorteilhafter Weise so weitergebildet sein, dass beide Gehäuseschalen zur Aufnahme des Reformers und/oder des Nachbrenners Aussparungen aufweisen, die jeweils zur offenen Seite der Gehäuseschalen offen sind. Dadurch ist eine einfache Montage gewährleistet und zugleich die Möglichkeit geschaffen, einen rohrartigen Reformer und/oder Nachbrenner durch die beiden Stirnseiten des Gehäuses hindurchzuführen. Die Aussparungen bieten neben der einfachen Montage auch den Vorteil, diese Elemente durch die Gehäusewände zu verspannen.
Ferner stellt die vorliegende Erfindung ein System umfassend ein solches Gehäuse und einen Brennstoffzellenstapel bereit . Dieses System bietet die vorstehend genannten Vor- teile in übertragener Weise.
Eine bevorzugte Ausführungsform der Erfindung wird nachfolgend mit Bezug auf die begleitenden Zeichnungen beispielhaft erläutert .
Es zeigen:
Figur 1 ein erfindungsgemäßes Gehäuse gemäß einem ersten Ausführungsbeispiel in einem geöffneten Zustand; Figur 2 das erfindungsgemäße Gehäuse aus Figur 1 in einem geschlossenen Zustand;
Figur 3 ein erfindungsgemäßes Gehäuse gemäß einem zweiten Ausführungsbeispiel in einem geöffneten Zustand;
Figur 4 das Gehäuse aus Figur 3 in einem geschlossenen
Zustand;
Figur 5 ein erfindungsgemäßes Gehäuse gemäß einem dritten Ausführungsbeispiel in einem geöffneten Zustand;
Figur 6 das Gehäuse aus Figur 5 in einem geschlossenen Zustand;
Figur 7 ein erfindungsgemäßes Gehäuse gemäß einem vierten Ausführungsbeispiel in einem geöffneten Zustand;
Figur 8 ein erfindungsgemäßes Gehäuse gemäß einem fünften Ausführungsbeispiel in einem geöffneten Zustand; und
Figur 9 das Gehäuse aus Figur 8 in einem geschlossenen Zustand.
Die Figuren 1 und 2 zeigen ein erstes Ausführungsbeispiel des erfindungsgemäßen Gehäuses, wobei Figur 1 einen geöffneten und Figur 2 einen geschlossenen Zustand des Gehäuses darstellt. Das erfindungsgemäße Gehäuse umfasst eine äußere Gehäuseschale 10 und eine innere Gehäuseschale 12, die vorzugsweise aus Isolationsmaterial hergestellt sind. Alternativ dazu können die äußere und/oder die innere Gehäuseschale 10, 12 auf ihren Innen- und/oder Außenseiten mit einem Isolationsmaterial versehen sein. Die beiden Gehäuseschalen 10, 12 sind quaderförmige einseitig offene Schalen, die so ausgebildet sind, dass sie passgenau oder mit kleinem Spiel ineinander schiebbar sind. Die äußere Gehäuseschale 10 ist mit vier Federklappspannern 14 versehen, die als Spanneinrichtung fungieren. Diese Federklappspanner 14 sind so an die Außenseite der äußeren Gehäuseschale 10 fixiert, dass die Greifarme der Federklappspanner 14 im geschlossenen Zustand des Gehäuses (siehe Fig. 2) die innere Gehäuseschale 12 teilweise umgreifen können. Das heißt die Greifarme liegen an der Außenseite des Bodens der inneren Gehäuseschale 12 an und drücken diese mit einer gewissen elastischen Kraft in die äußere Gehäuseschale 10, so dass die innere Gehäuseschale 12 in der äußeren Gehäuseschale 10 gehalten wird. Alternativ zu den Federklappspannern 14 kann als
Spanneinrichtung auch ein Spannrahmen dienen, wie er in der DE 103 08 382 B3 offenbart ist. Das Gehäuse ist für die Aufnahme zumindest eines Brennstoffzellenstapels 16 vorgesehen. Dieser Brennstoffzellenstapel 16 ist so in die inne- re Gehäuseschale 12 eingesetzt, dass die Wände der inneren
Gehäuseschale 12 den Brennstoffzellenstapel 16 in einer Richtung senkrecht zur Stapelrichtung des Brennstoffzellenstapels 16 stützen (die Brennstoffzellenstapelrichtung entspricht in Figur 1 der Vertikalrichtung) . Die innere Gehäu- seschale 12 ist so dimensioniert, dass der Brennstoffzellenstapel 16 nahezu vollständig von der inneren Gehäuseschale 12 aufgenommen wird, vorzugsweise werden mehr als 90% des Brennstoffzellenstapels von der inneren Gehäuseschale 12 aufgenommen. Dadurch, dass der Brennstoffzellen- Stapel 16 über die Oberkante der inneren Gehäuseschale 12 hervorsteht wird der Brennstoffzellenstapel 16 im geschlossenen Zustand des Gehäuses durch die angebrachten und fixierten Federklappspanner 14 in seiner Stapelrichtung verspannt, d.h. die Böden der beiden Gehäuseschalen 10, 12 werden durch die Federklappspanner 14 so gegeneinander gedrückt, dass der Brennstoffzellenstapel 16 in seiner Stapelrichtung zwischen diesen Böden verspannt wird. Auf diese Weise wird die Verspannung durch die Elastizität der Feder- klappspanner 14 und die Verschiebbarkeit der Gehäuseschalen 10, 12 in jedem Betriebszustand beibehalten. Für die Zuleitungen zum Brennstoffzellenstapel 16 können nicht dargestellte Bohrungen im Boden der inneren Gehäuseschale 12 vorgesehen sein.
Die Figuren 3 und 4 zeigen ein zweites Ausführungsbeispiel des erfindungsgemäßen Gehäuses, wobei Figur 3 einen geöffneten und Figur 4 einen geschlossenen Zustand des Gehäuses darstellt. Das Gehäuse gemäß dem zweiten Ausführungsbei- spiel umfasst eine äußere Gehäuseschale 110 und eine innere Gehäuseschale 112, wobei die äußere Gehäuseschale mit Federklappspannern 114 versehen ist. Zur Vermeidung von Wiederholung wird explizit darauf hingewiesen, dass sich die Gehäuseschale 110 von der Gehäuseschale 10 des ersten Aus- führungsbeispiels und die Gehäuseschale 120 von der Gehäuseschale 12 des ersten Ausführungsbeispiels nur durch die Aspekte unterscheiden, die nachfolgend beschrieben werden. Die Federklappspanner 14 sind identisch zu den Federklappspannern 114 (wobei alternativ der im ersten Ausführungs- beispiel genannte Spannrahmen vorgesehen sein kann) . Im Unterscheid zum ersten Ausführungsbeispiel nimmt gemäß dem zweiten Ausführungsbeispiel das Gehäuse nicht nur einen Brennstoffzellenstapel 116 auf, sondern das komplette Brennstoffzellensystem. Als Teil des Brennstoffzellensys- tems ist in Figur 3 ein Brennrohr 118 dargestellt, welches ein Reformer oder ein Nachbrenner oder ein Teil davon sein kann. Zur Aufnahme dieses Brennrohrs 118 sind die äußere Gehäuseschale 110 und die innere Gehäuseschale 112 jeweils mit Aussparungen 120 versehen, die jeweils zu der Seite of- fen sind, welche dem jeweiligen Boden der entsprechenden Gehäuseschale 110, 112 gegenüberliegt. Die Radien am geschlossenen Ende der Aussparungen 120 entsprechen im Wesentlichen dem halben Durchmesser des Brennrohrs 118. Die Breite der Aussparungen 120 entspricht im Wesentlichen dem Durchmesser des Brennrohrs 118. Zusätzlich kann das Brennrohr 118 zur Verbesserung der Isolation und zum Ausgleich von Fertigungstoleranzen und somit zur besseren Verspannung mit einer Ummantelung 122 aus einem Isolations- und Dämpf- material versehen sein. Hinsichtlich der Funktionsweise der Verspannung wird auf das vorhergehende Ausführungsbeispiel verwiesen.
Die Figuren 5 und 6 zeigen ein drittes Ausführungsbeispiel des erfindungsgemäßen Gehäuses, wobei Figur 5 einen geöffneten und Figur 6 einen geschlossenen Zustand des Gehäuses darstellt. Das Gehäuse gemäß dem dritten Ausführungsbeispiel umfasst eine obere Gehäuseschale 210 und eine untere Gehäuseschale 212. Die Gehäuseschalen 210, 212 sind vor- zugsweise aus Isolationsmaterial hergestellt. Alternativ dazu können die obere und/oder die untere Gehäuseschale 210, 212 auf ihren Innen- und/oder Außenseiten mit einem Isolationsmaterial versehen sein. Die beiden Gehäuseschalen 210, 212 sind quaderförmige einseitig offene Schalen, deren Kanten auf der jeweils offenen Seite eine dazwischen angeordnete, stark elastische Dichtung 224 einklemmen. Wie im zweiten Ausführungsbeispiel nimmt gemäß dem dritten Ausführungsbeispiel das Gehäuse nicht nur einen Brennstoffzellen- stapel 216 auf, sondern das komplette Brennstoffzellensys- tem. Als Teil des BrennstoffZeilensystems ist in Figur 5 und 6 ein Brennrohr 218 dargestellt, welches ein Reformer oder ein Nachbrenner oder ein Teil davon sein kann. Zur Aufnahme dieses Brennrohrs 218 sind die obere Gehäuseschale 210 und die untere Gehäuseschale 212 jeweils mit Aussparun- gen 220 versehen, die jeweils zu der Seite offen sind, welche dem jeweiligen Boden der entsprechenden Gehäuseschale 210, 212 gegenüberliegt. Die vier Aussparungen 220 für das Brennrohr 218 entsprechen dabei jeweils einem Halbkreis, dessen Radius etwas größer als der halbe Außendurchmesser des Brennrohrs 218 ist. Der Radius ist deshalb etwas größer, weil zwischen eingesetztem Brennrohr 218 und den Gehäuseschalen 210 und 212 die Dichtung 224 angeordnet ist. Die Dichtung 224 ist dabei in der Draufsicht (Draufsicht der Fig. 5) vorzugsweise rahmenförmig. An den Abschnitten der Aussparungen 220 ist die Dichtung 224 ringförmig ausgebildet, wobei die Ringform das Brennrohr 218 umgibt. Diese ringförmigen Abschnitte der Dichtung 224 sind vorzugsweise einstückig mit den übrigen flachen Abschnitten verbunden. Ferner ist die obere Gehäuseschale 210 mit acht Federklappspannern 214 versehen, die als Spanneinrichtung fungieren (vier der Federklappspanner 214 sind in Fig. 6 dargestellt; aus Gründen der Übersichtlichkeit zeigt Fig. 5 keinen Federklappspanner) . Jeweils zwei der Federklappspanner 214 sind an einer Seitenfläche der Gehäuseschale 210 angebracht. Die Greifarme der Federklappspanner 214 greifen in diesem Ausführungsbeispiel in Einkerbungen oder Schlitze, die an den entsprechenden Stellen, bis zu denen die Greifarme der Federklappspanner 214 reichen, in der unteren Ge- häuseschale 212 vorgesehen sind. Alternativ zu den Einkerbungen oder Schlitzen können entsprechende Vorsprünge oder Stifte vorgesehen sein. Über die Federklappspanner 214 können die obere und die untere Gehäuseschale 210, 212 mit einer gewissen elastischen Kraft gegeneinander verspannt wer- den. Im geschlossenen Zustand des Gehäuses ist der Brennstoffzellenstapel 216 derart eingesetzt, dass der Brennstoffzellenstapel zwischen den Böden der beiden Gehäuseschalen 210, 212 verspannt wird. Im Ausgangszustand ist dabei die Dichtung 224 stark zusammengedrückt. Durch die Fe- derklappspanner 214 wird der Brennstoffzellenstapel 216 in seiner Stapelrichtung zwischen diesen Böden so verspannt, dass die Verspannung durch die Elastizität der Federklappspanner 214 in jedem Betriebszustand beibehalten wird'. Für die Zuleitungen zum Brennstoffzellenstapel 216 können nicht dargestellte Bohrungen im Boden der inneren Gehäuseschale 212 vorgesehen sein. Alternativ zu den Federklappspannern 214 kann der bereits genannte Spannrahmen vorgesehen sein. Wenn das vorstehend beschriebene System in Betrieb genommen wird, dehnt sich der Brennstoffzellenstapel 216 hitzebedingt aus. Die Gehäuseschalen 210 und 212 bewegen sich e- ventuell minimal auseinander, wobei jedoch die Dichtung 224 dieser Bewegung folgt, d.h. die Kompression der Dichtung 224 wird verringert, wodurch diese mehr Raum einnimmt. Auf diese Weise wird verhindert, dass ein offener Spalt zwischen den Gehäuseschalen 210 und 212 entsteht. Durch die Kraft der Federklappspanner 214 einerseits und die Ausdehnungskraft andererseits sowie durch Hitze kann unter Umständen das Material der Gehäuseschalen 210, 212 dauerhaft schwinden. Die elastische Federkraft der Federklappspanner 214 und die elastische Verformung der Dichtung 224 gleichen diese Bewegungen in jedem Betriebszustand aus, so dass sowohl der Brennstoffzellenstapel immer optimal verspannt ist und immer verhindert wird, dass ein Spalt zwischen den Ge- häuseschalen 210, 212 entsteht.
Figur 7 zeigt ein erfindungsgemäßes Gehäuse gemäß einem vierten Ausführungsbeispiel in einem geöffneten Zustand. Dieses Gehäuse umfasst eine obere Gehäuseschale 310 und ei- ne untere Gehäuseschale 312. Zur Vermeidung von Wiederholung werden in der folgenden Beschreibung des vierten Ausführungsbeispiels nur die Unterschiede zum dritten Ausführungsbeispiel erläutert. Im vierten Ausführungsbeispiel ist die untere Gehäuseschale 312 mit einem Absatz versehen, welcher der Oberkante der Gehäuseschale 212 des dritten Ausführungsbeispiels entspricht. Auf dem Absatz ist folglich eine stark elastische Dichtung 324 angeordnet, auf der wiederum die Kante der offenen Seite der Gehäuseschale 310 aufliegt. Oberhalb des Absatzes ist die Wandung der Gehäuseschale 312 dünner als unterhalb des Absatzes. Oberhalb des Absatzes ist die Außenseite der unteren Gehäuseschale 312 passgenau zur Innenseite der oberen Gehäuseschale 310 oder mit leichtem Spiel zu dieser verschiebbar angeordnet . Somit vereint dieses Ausführungsbeispiel die verschiebbare Anordnung der zwei Gehäuseschalen entsprechend des ersten und zweiten Ausführungsbeispiels und das Vorsehen einer e- lastischen Dichtung entsprechend des dritten Ausführungsbeispiels. Gegenüber der Funktionalität des dritten Ausfüh- rungsbeispiels kommt beim vierten Ausführungsbeispiel hinzu, dass der Brennstoffzellenstapel 316 nahezu vollständig von der untreren Gehäuseschale 312 aufgenommen wird, vorzugsweise werden mehr als 90% des Brennstoffzellenstapels von der unteren Gehäuseschale 312 aufgenommen, wodurch der Brennstoffzellenstapel auch in der Richtung senkrecht zu seiner Stapelrichtung gestützt. Hinsichtlich der übrigen Komponenten (z.B. dem Vorsehen von Federklappspannern oder eines Spannrahmens) und der Funktionalität wird auf das dritte Ausführungsbeispiel verwiesen.
Die Figuren 8 und 9 zeigen ein fünftes Ausführungsbeispiel des erfindungsgemäßen Gehäuses, wobei Figur 8 einen geöffneten und Figur 9 einen geschlossenen Zustand des Gehäuses darstellt. Dieses Ausführungsbeispiel unterscheidet sich von dem dritten Ausführungsbeispiel dadurch, dass bei diesem Gehäuse lediglich einen Brennstoffzellenstapel 416 von einer oberen Gehäuseschale 410 und einer unteren Gehäuseschale 412 aufgenommen und verspannt wird. Folglich sind auch keine Aussparungen für ein Brennrohr oder dergleichen vorgesehen. Ferner ist eine elastische Dichtung 424 nicht mit ringförmigen Abschnitten versehen, sondern ist als Rahmen (in der Draufsicht der Fig. 8) gleichmäßiger Dicke ausgebildet. Die Federklappspanner 414 samt zugeordneter Ein- griffsmöglichkeit entsprechen denen des dritten Ausführungsbeispiels, wobei alternativ der bereits mehrfach genannte Spannrahmen vorgesehen sein kann.
Als Abwandlung kann im dritten, vierten und fünften Ausfüh- rungsbeispiel auch vorgesehen sein, dass die Dichtflächen der Gehäuseschalen, d.h. die einander zugewandten Flächen der Gehäuseschalen, verzahnt ausgeführt sind, wobei die Verzahnung der einen Gehäuseschale in die Verzahnung der anderen Gehäuseschale passt. Die elastische, dazwischen an- geordnete Dichtung ist vorzugsweise so ausgebildet, so ihre Form dieser Verzahnung folgt. Der Vorteil einer solchen Ausführung ist, dass durch die Verzahnung eine Hitzeab- strahlung verringert werden kann, weil die einzelnen Zähne die Hitze im Inneren des Gehäuses besser zurückhalten als wenn die Dichtflächen eben ausgebildet sind.
Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein.
Bezugszeichenliste:
10 Äußere Gehäuseschale
12 Innere Gehäuseschale 14 Federklappspanner
16 Brennstoffzellenstapel
110 Äußere Gehäuseschale
112 Innere Gehäuseschale
114 Federklappspanner 116 Brennstoffzellenstapel
118 Brennrohr
120 Aussparungen
122 Ummantelung
210 Obere Gehäuseschale 212 Untere Gehäuseschale
214 Federklappspanner
216 Brennstoffzellenstapel
218 Brennrohr
220 Aussparungen 224 Dichtung
310 Obere Gehäuseschale
312 Untere Gehäuseschale
316 Brennstoffzellenstapel
318 Brennrohr 320 Aussparungen
324 Dichtung
410 Obere Gehäuseschale
412 Untere Gehäuseschale
414 Federklappspanner 416 Brennstoffzellenstapel
424 Dichtung

Claims

ANSPRUCHE
1. Gehäuse zum Aufnehmen zumindest eines Brennstoffzel- lenstapels (16; 116; 216; 316; 416), mit einer ersten Gehäuseschale (10; 110; 210; 310; 410) und einer zweiten Gehäuseschale (12; 112; 212; 312; 412), wobei die erste und zweite Gehäuseschale mit einer Spanneinrichtung so gegeneinander verspannbar sind, dass durch die Elastizitätskraft der Spanneinrichtung der aufzunehmende Brennstoffzellensta- pel in seiner Stapelrichtung verspannbar ist.
2. Gehäuse nach Anspruch 1, dadurch gekennzeichnet, dass die Gehäuseschalen (10, 12; 110, 112; 210, 212; 310, 312; 410, 412) in der Stapelrichtung des Brennstoffzellenstapels (16; 116; 216; 316; 416) spalterzeugungsfrei um eine bestimmte Distanz voneinander weg bewegbar sind.
3. Gehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den einander zugewandten Kanten der Gehäuseschalen (10, 12; 110, 112; 210, 212; 310, 312; 410, 412) eine elastische Dichtung (224; 324; 424) angeordnet ist.
4. Gehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gehäuseschalen (10, 12; 110, 112; 310, 312) ineinander schiebbar sind.
5. Gehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spanneinrichtung eine Mehrzahl von Federklappspannern (14; 114; 214; 414) umfasst.
6. Gehäuse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Spanneinrichtung ein Spannrahmen mit Federn ist.
7. Gehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gehäuseschalen (10, 12; 110, 112; 210, 212; 310, 312; 410, 412) aus einem Isolationsma- terial hergestellt sind.
8. Gehäuse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Gehäuseschalen (10, 12; 110, 112; 210, 212; 310, 312; 410, 412) mit einer Isolationsschicht versehen sind.
9. Gehäuse nach Anspruch 4, dadurch gekennzeichnet, dass die innere Gehäuseschale (12; 112; 312), welche in die äußere Gehäuseschale (10; 110; 310) schiebbar ist, sich soweit in der Stapelrichtung des Brennstoffzellenstapels (16; 116; 316) erstreckt, dass mindestens 90 % der Stapelhöhe des aufzunehmenden Brennstoffzellenstapels von der inneren Gehäuseschale aufgenommen werden.
10. Gehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse dazu ausgelegt ist, einen Reformer und/oder einen Nachbrenner eines Brennstoff- zellensystems zumindest teilweise aufzunehmen.
11. Gehäuse nach Anspruch 10, dadurch gekennzeichnet, dass beide Gehäuseschalen (110, 112; 210, 212; 310, 312) zur Aufnahme des Reformers und/oder des Nachbrenners Aussparungen (120; 220; 320) aufweisen, die jeweils zur offenen Seite der Gehäuseschalen (110, 112; 210, 212; 310, 312) offen sind.
12. System umfassend ein Gehäuse gemäß einem der vorhergehenden Ansprüche und einen Brennstoffzellenstapel (16; 116; 216; 316; 416) .
PCT/DE2007/001188 2006-09-07 2007-07-05 Gehäuse zum aufnehmen zumindest eines brennstoffzellenstapels WO2008028440A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA200970254A EA200970254A1 (ru) 2006-09-07 2007-07-05 Корпус для размещения по меньшей мере одной батареи топливных элементов
JP2009527005A JP2010503159A (ja) 2006-09-07 2007-07-05 少なくとも1つの燃料電池スタックを収容するためのハウジング
CA002662017A CA2662017A1 (en) 2006-09-07 2007-07-05 Housing for accommodating at least one fuel cell stack
EP07764431A EP2059970A1 (de) 2006-09-07 2007-07-05 Gehäuse zum aufnehmen zumindest eines brennstoffzellenstapels
AU2007294310A AU2007294310A1 (en) 2006-09-07 2007-07-05 Housing for accommodating at least one fuel cell stack
US12/439,631 US20090269652A1 (en) 2006-09-07 2007-07-05 Housing for accommodating at least a fuell cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006042109A DE102006042109B4 (de) 2006-09-07 2006-09-07 Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels und dessen Verwendung
DE102006042109.4 2006-09-07

Publications (2)

Publication Number Publication Date
WO2008028440A1 true WO2008028440A1 (de) 2008-03-13
WO2008028440A8 WO2008028440A8 (de) 2008-06-05

Family

ID=38578432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001188 WO2008028440A1 (de) 2006-09-07 2007-07-05 Gehäuse zum aufnehmen zumindest eines brennstoffzellenstapels

Country Status (9)

Country Link
US (1) US20090269652A1 (de)
EP (1) EP2059970A1 (de)
JP (1) JP2010503159A (de)
CN (1) CN101584072A (de)
AU (1) AU2007294310A1 (de)
CA (1) CA2662017A1 (de)
DE (1) DE102006042109B4 (de)
EA (1) EA200970254A1 (de)
WO (1) WO2008028440A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243384A (ja) * 2007-03-23 2008-10-09 Honda Motor Co Ltd 燃料電池スタック
EP2102934A1 (de) * 2006-12-21 2009-09-23 Enerday GmbH Gehäuse zur aufnahme und verspannung zumindest eines brennstoffzellenstapels
WO2009127189A1 (de) * 2008-04-14 2009-10-22 Enerday Gmbh Brennstoffzellenstapel und verfahren zur herstellung eines brennstoffzellenstapels
WO2014096804A1 (en) * 2012-12-21 2014-06-26 Intelligent Energy Limited Fuel cell stack assembly and method of assembly

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851102B2 (en) * 2007-06-14 2010-12-14 Gm Global Technology Operations, Inc. Fuel cell stack compression retention system using overlapping sheets
DE102008059966B4 (de) * 2008-12-02 2011-06-22 Daimler AG, 70327 Batterie mit mehreren in einem Zellenverbund angeordneten Batteriezellen und Verwendung einer Batterie
US9200618B2 (en) * 2011-10-03 2015-12-01 American Metal Specialties, Inc. Retention systems
DE102012024963B4 (de) * 2012-12-20 2023-03-16 Cellcentric Gmbh & Co. Kg Brennstoffzellen-Anordnung mit einem geschlossenen Gehäuse
JP6154252B2 (ja) * 2013-08-30 2017-06-28 京セラ株式会社 燃料電池
DE102015225350A1 (de) * 2015-12-16 2017-06-22 Bayerische Motoren Werke Aktiengesellschaft Gehäuse zur Aufnahme eines Brennstoffzellen-, Batterie- oder Kondensatorstapels
JP6414095B2 (ja) * 2016-02-17 2018-10-31 トヨタ自動車株式会社 燃料電池車両
CN107180936B (zh) * 2017-05-26 2020-09-04 陈宇飞 有效固定燃料电池组的结构
WO2019012134A1 (de) 2017-07-14 2019-01-17 Elringklinger Ag Brennstoffzellenvorrichtung
CN108206297A (zh) * 2017-12-20 2018-06-26 新源动力股份有限公司 一种燃料电池模块封装固定结构
CN110061278A (zh) * 2018-01-18 2019-07-26 郑州宇通客车股份有限公司 车辆及其燃料电池、燃料电池封装外壳
CN110289433B (zh) * 2019-06-21 2020-08-14 山东建筑大学 一种便于快速拆装的燃料电池夹具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US949619A (en) * 1909-06-21 1910-02-15 Henry Burch Clamp for boxes.
US3868041A (en) * 1973-03-16 1975-02-25 Lippy Can Co Can or container with resealable lid
US4330050A (en) * 1980-05-23 1982-05-18 Sangster Marshall A Portable article carrying case
US4430390A (en) * 1982-09-23 1984-02-07 Engelhard Corporation Compact fuel cell stack
EP0881867A2 (de) * 1997-05-30 1998-12-02 Lucent Technologies Inc. Stabiles Gehäuse für tragbare Vorrichtungen
US20050255342A1 (en) * 2004-05-11 2005-11-17 Dong-Hun Lee Fuel cell stack and fastening and reinforcing mechanisms for a fuel cell stack
JP2006221824A (ja) * 2005-02-08 2006-08-24 Pentax Corp 電池ボックス
WO2006090835A1 (ja) * 2005-02-25 2006-08-31 Toyota Jidosha Kabushiki Kaisha 燃料電池用ケース

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011477U (ja) * 1983-07-01 1985-01-25 株式会社ケンウッド 電子機器用ケ−ス
JPS60163378A (ja) * 1984-02-03 1985-08-26 Sanyo Electric Co Ltd 燃料電池スタツクの締付装置
US4849308A (en) * 1988-03-17 1989-07-18 The United States Of America As Represented By The United States Department Of Energy Manifold seal for fuel cell stack assembly
JPH06310166A (ja) * 1993-04-28 1994-11-04 Sanyo Electric Co Ltd 可搬式燃料電池電源
JP3212227B2 (ja) * 1993-10-06 2001-09-25 大日本インキ化学工業株式会社 燃料電池ヘッダーとその成形体の製造方法
JPH0727238U (ja) * 1993-10-25 1995-05-19 矢崎総業株式会社 電気接続箱
JPH07249426A (ja) * 1994-03-11 1995-09-26 Toyota Motor Corp 燃料電池およびその製造方法ならびに燃料電池の収納ケース
JPH07272149A (ja) * 1994-03-30 1995-10-20 Nohmi Bosai Ltd 火災報知設備用機器
JPH1097862A (ja) * 1996-09-24 1998-04-14 Matsushita Electric Ind Co Ltd 電源装置
JPH10214634A (ja) * 1997-01-30 1998-08-11 Japan Storage Battery Co Ltd 燃料電池
JPH10284100A (ja) * 1997-03-31 1998-10-23 Sanyo Electric Co Ltd 燃料電池
DE19724428C2 (de) * 1997-06-10 1999-09-16 Ballard Power Systems Gehäuse für einen Niedertemperatur-Brennstoffzellenstapel
JPH11233131A (ja) * 1998-02-19 1999-08-27 Sanyo Electric Co Ltd 固体高分子型燃料電池システム
JP4026260B2 (ja) * 1998-12-29 2007-12-26 ソニー株式会社 電子機器用蓋開閉装置
JP4862206B2 (ja) * 1999-10-08 2012-01-25 トヨタ自動車株式会社 燃料電池
JP2002170591A (ja) * 2000-12-04 2002-06-14 Sanyo Electric Co Ltd 固体高分子形燃料電池発電装置
JP3925171B2 (ja) * 2000-12-28 2007-06-06 三菱マテリアル株式会社 燃料電池モジュール
JP2004063173A (ja) * 2002-07-26 2004-02-26 Nissan Motor Co Ltd 燃料電池の構造
JP4438291B2 (ja) * 2003-01-08 2010-03-24 株式会社ニコン 電子機器
JP2005285650A (ja) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd 燃料電池の基板に対する取付構造
JP4849201B2 (ja) * 2004-08-13 2012-01-11 三菱マテリアル株式会社 固体酸化物形燃料電池
JP5182540B2 (ja) * 2004-12-07 2013-04-17 トヨタ自動車株式会社 燃料電池用ケース

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US949619A (en) * 1909-06-21 1910-02-15 Henry Burch Clamp for boxes.
US3868041A (en) * 1973-03-16 1975-02-25 Lippy Can Co Can or container with resealable lid
US4330050A (en) * 1980-05-23 1982-05-18 Sangster Marshall A Portable article carrying case
US4430390A (en) * 1982-09-23 1984-02-07 Engelhard Corporation Compact fuel cell stack
EP0881867A2 (de) * 1997-05-30 1998-12-02 Lucent Technologies Inc. Stabiles Gehäuse für tragbare Vorrichtungen
US20050255342A1 (en) * 2004-05-11 2005-11-17 Dong-Hun Lee Fuel cell stack and fastening and reinforcing mechanisms for a fuel cell stack
JP2006221824A (ja) * 2005-02-08 2006-08-24 Pentax Corp 電池ボックス
WO2006090835A1 (ja) * 2005-02-25 2006-08-31 Toyota Jidosha Kabushiki Kaisha 燃料電池用ケース

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2102934A1 (de) * 2006-12-21 2009-09-23 Enerday GmbH Gehäuse zur aufnahme und verspannung zumindest eines brennstoffzellenstapels
JP2008243384A (ja) * 2007-03-23 2008-10-09 Honda Motor Co Ltd 燃料電池スタック
WO2009127189A1 (de) * 2008-04-14 2009-10-22 Enerday Gmbh Brennstoffzellenstapel und verfahren zur herstellung eines brennstoffzellenstapels
KR101353332B1 (ko) 2008-04-14 2014-01-17 스탁세라 게엠베하 연료 전지 스택 및 연료 전지 스택의 제조방법
US8691468B2 (en) 2008-04-14 2014-04-08 Enerday Gmbh Fuel cell stack, and method for the production of a fuel cell stack
WO2014096804A1 (en) * 2012-12-21 2014-06-26 Intelligent Energy Limited Fuel cell stack assembly and method of assembly

Also Published As

Publication number Publication date
AU2007294310A1 (en) 2008-03-13
CN101584072A (zh) 2009-11-18
DE102006042109A1 (de) 2008-03-27
EA200970254A1 (ru) 2009-08-28
WO2008028440A8 (de) 2008-06-05
CA2662017A1 (en) 2008-03-13
JP2010503159A (ja) 2010-01-28
US20090269652A1 (en) 2009-10-29
DE102006042109B4 (de) 2011-12-29
EP2059970A1 (de) 2009-05-20

Similar Documents

Publication Publication Date Title
DE102006042109B4 (de) Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels und dessen Verwendung
DE102007012763B4 (de) Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels und Brennstoffzellensystem mit einem solchen Gehäuse
EP2755838B1 (de) Anordnung zum befestigen eines energiespeichermoduls auf einem modulträger
DE102019205777A1 (de) Spanneinrichtung für ein Batteriemodul, Batteriemodul und Kraftfahrzeug
WO2016045871A1 (de) Zellkontaktiersystem eines kraftfahrzeugbatteriemoduls sowie kraftfahrzeugbatteriemodul
DE102015217630A1 (de) Verpressungselement eines zumindest eine Batteriezelle aufweisenden Batteriemoduls, Batteriemodul mit einem solchen Verpressungselement und Verfahren zu dessen Herstellung sowie Batterie
DE102008040251A1 (de) Brennstoffzellenstapel eines Brennstoffzellenfahrzeugs
WO2008074280A1 (de) Gehäuse zur aufnahme und verspannung zumindest eines brennstoffzellenstapels
DE102011009102A1 (de) Batterie mit einer Mehrzahl von Batteriezellen
DE102012219022B4 (de) Spannsystem für einen Brennstoffzellenstack
WO2011076938A2 (de) Akkumulator mit spannungserzeugenden zellen
EP2718993B1 (de) Batterie und kraftfahrzeug mit dieser batterie
DE102014221944A1 (de) Spannvorrichtung zum Verspannen von Speichereinheiten eines elektrischen Energiespeichermoduls und entsprechendes Energiespeichermodul
DE102015225351A1 (de) Verfahren zum Herstellen einer Energieversorgungseinheit
DE102009034141A1 (de) Gehäuse für eine elektrochemische Vorrichtung
EP1870951A1 (de) Brennstoffzellenstapel
DE102013012643A1 (de) Zellmodul mit elektrochemischer Energiespeicherzelle
EP1652260A2 (de) Brennstoffzellenanordnung und vorrichtung zum befestigen einer brennstoffzellenanordnung an einem geh use
EP1827916A1 (de) Energieaufnahmevorrichtung
DE102010041701A1 (de) Gehäuse für einen Lithium-Ionen-Akkumulator, ein Lithium-Iionen-Akkumulator sowie ein Kraftfahrzeug mit einem Lithium-Ionen-Akkumulator
DE102021132874A1 (de) Zelltrennelement, Batteriezellenanordnung und Kraftfahrzeug
DE102017111514A1 (de) Gehäuse für einen Stapel aus elektrochemischen Einheiten zur Montage in einer elektrochemischen Vorrichtung
EP2718995A1 (de) Batteriemodul, batterie mit diesem batteriemodul und kraftfahrzeug mit dieser batterie
DE102011120247A1 (de) Batterie und Fahrzeug mit einer Batterie
DE102020214637A1 (de) Batteriezellenanordnung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037567.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2662017

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12439631

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007764431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009527005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007294310

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200970254

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2007294310

Country of ref document: AU

Date of ref document: 20070705

Kind code of ref document: A