JP3925171B2 - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
JP3925171B2
JP3925171B2 JP2001360332A JP2001360332A JP3925171B2 JP 3925171 B2 JP3925171 B2 JP 3925171B2 JP 2001360332 A JP2001360332 A JP 2001360332A JP 2001360332 A JP2001360332 A JP 2001360332A JP 3925171 B2 JP3925171 B2 JP 3925171B2
Authority
JP
Japan
Prior art keywords
fuel
pipe
oxidant
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360332A
Other languages
English (en)
Other versions
JP2002260697A (ja
Inventor
順 秋草
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001360332A priority Critical patent/JP3925171B2/ja
Publication of JP2002260697A publication Critical patent/JP2002260697A/ja
Application granted granted Critical
Publication of JP3925171B2 publication Critical patent/JP3925171B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電セルでの発電にて発生する熱により、燃料電池の温度上昇を制御可能な燃料電池モジュールに関するものである。
【0002】
【従来の技術】
従来、発電セルがアノード、固体電解質及びカソードからなり、セパレート板が上記発電セルに交互に積層され、セパレート板のうちのリブ付多孔質基材に形成されたリブが燃料ガス及び酸化剤ガスを上記アノード及びカソードに個別に分配するように構成された固体電解質型燃料電池が開示されている(特開平3−129675号)。この燃料電池では、上記リブが反応ガスをリブ付多孔質基材の中央部から周縁部の反応ガス排出口に向って放射状に流すように構成される。また反応ガス排出口はセパレート板と発電セルの積層体であるスタックの周縁部に均一に分布するように配置される。更にスタックの中央部には燃料ガス導入管及び酸化剤ガス導入管が積層方向に貫通して設けられ、これらの導入管から反応ガスがセパレート板に供給されるように構成される。
このように構成された固体電解質型燃料電池では、反応ガスがスタックの中央部から周縁部に向って流れるので、発電セルとセパレート板との間のガスシールが不要になる。また反応ガス排出口から出た反応ガスは燃料電池の周囲で燃焼するけれども、上記排出口の分布が均一であるため、燃料電池の周囲の温度は均一に保たれる。更に燃料電池の周縁部に達した燃料ガス及び酸化剤ガスの燃焼により、燃料電池の温度を所定の高温度に維持できるとともに、反応ガスの予熱用熱源として利用できるようになっている。
【0003】
一方、アノード、固体電解質体及びカソードの積層体からなる集合体と、反応ガス供給管が配されたセパレータとが交互に積層され、セパレータの一方の面に燃料ガスが通流する溝が形成され、セパレータの他方の面に酸化剤ガスが通流する溝が形成された固体電解質型燃料電池が開示されている(特開平6−13088号)。この燃料電池では、セパレータから燃料ガス及び酸化剤ガスを排出する反応ガス排出管がそれぞれ接続される。
このように構成された固体酸化物型燃料電池では、反応ガス供給管が各セパレータに個別に接続されるため、従来、集合体及びセパレータに形成された円形のガスマニホルドをシールする円形のガラスリングを不要にできるとともに、従来、集合体及びセパレータ間の外形をガスシールしていた方形のガラスリングを不要にできる。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の特開平3−129675号に記載された固体電解質型燃料電池では、燃料電池の周縁部に達した燃料ガス及び酸化剤ガスの燃焼により、燃料電池の周縁部の温度が上昇し、発電にて燃料電池内部に流れる電流により、ジュール熱が発生する。このため、燃料電池の中心部の温度が最も高くなって、燃料電池の温度分布が不均一になるため、発電セルに熱応力が作用して、発電セルが損傷するおそれがあった。
また、上記従来の特開平6−13088号公報に示された固体電解質型燃料電池では、各発電セルでの電池反応により、燃料電池の温度が次第に上昇し、燃料電池の発電に適した温度を越えてしまい、発電効率が低下する不具合があった。
【0005】
本発明の目的は、燃料電池に供給される酸化剤ガスの温度を制御することにより、燃料電池を発電に適した温度に保ち、燃料電池の過熱を防止できる、燃料電池モジュールを提供することにある。
本発明の別の目的は、燃料用ディストリビュータ及び燃料用短管内の蒸気による酸化スケールの発生を抑制でき、また燃料予熱管に水蒸気を供給するための気化器を不要にできるとともに、発電セルの損傷を防止できる、燃料電池モジュールを提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図2に示すように、発電セル12とこの発電セル12に燃料ガスを供給可能な燃料供給通路23,26と発電セル12に酸化剤ガスを供給可能な酸化剤供給通路24,27とを有する固体酸化物型又は炭酸溶融塩型の燃料電池11と、酸化剤供給通路24,27に酸化剤用短管29を通して酸化剤ガスを供給する酸化剤用ディストリビュータ14とを備えた燃料電池モジュールの改良である。
その特徴ある構成は、酸化剤用ディストリビュータ14に酸化剤ガスを供給する酸化剤予熱管44と、酸化剤予熱管44に接続され酸化剤予熱管44に冷却酸化剤ガスを供給可能な冷却管56と、燃料電池11に挿入され燃料電池11の温度を検出する温度センサ58と、冷却管56に設けられ冷却酸化剤ガスの流量を調整する流量調整弁59と、温度センサ58の検出出力に基づいて流量調整弁59を制御するコントローラとを備え、650±50℃で作動するように構成されたところにある。
【0007】
この請求項1に記載された燃料電池モジュールでは、燃料電池11の運転中に燃料電池11が設定温度を越えたことを温度センサ58が検出すると、コントローラは温度センサ58の検出出力に基づいて流量調整弁59を制御し、酸化剤予熱管44を通る酸化剤ガスに冷却管56を通る冷却酸化剤ガスを混ぜ、設定温度より低い温度の酸化剤ガスを燃料電池11に供給する。これにより燃料電池11が過熱されるのを防止できる。
【0008】
請求項2に係る発明は、請求項1に係る発明であって、更に図1及び図2に示すように、燃料供給通路23,26に燃料用短管28を通して燃料ガスを供給する燃料用ディストリビュータ13と、燃料用ディストリビュータ13に燃料ガスを供給する燃料予熱管43とを更に備え、燃料予熱管43が燃料電池11の外周面に巻回され、酸化剤予熱管44が燃料電池11の外周面に巻回され、燃料電池11が燃料予熱管43及び酸化剤予熱管44とともにインナケース46に収容され、発電セル12から排出された燃料ガス及び酸化剤ガスをインナケース46外に導く排気管51がインナケース46に接続されたことを特徴とする。
この請求項2に記載された燃料電池モジュールでは、燃料予熱管43内を通る燃料ガスが発電セル12から排出される高温の排ガス(燃料ガス及び酸化剤ガスより生成された水蒸気やCO2)により、速やかに加熱されて燃料用ディストリビュータ13に供給され、酸化剤予熱管44内を通る酸化剤ガスも発電セル12から排出される上記高温の排ガスにより、速やかに加熱されて酸化剤用ディストリビュータ44に供給される。このため燃料ガス及び酸化剤ガスが発電に適した温度で各発電セル12に供給されるので、発電効率を向上できる。
【0009】
請求項3に係る発明は、請求項1又は2に係る発明であって、更に図1に示すように、インナケース46の外面が断熱材47により被覆されるとともに、インナケース46の外周面に燃料予熱管43、酸化剤予熱管44及び排気管51が巻回され、更にインナケース46が燃料予熱管43、酸化剤予熱管44及び排気管51とともにアウタケース48に収容されたことを特徴とする。
この請求項3に記載された燃料電池モジュールでは、燃料予熱管43内の燃料ガス及び酸化剤予熱管44内の酸化剤ガスがインナケース46内に導入される前に、インナケース46の外周面に巻回された排気管51内を通る高温の排ガスにより加熱される。このため、燃料ガス及び酸化剤ガスがインナケース46内で予熱される前にも予熱されるため、発電効率を更に向上できる。
【0010】
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、更に燃料予熱管の上部に水供給管の先端が挿入され、この水供給管の基端に噴霧器又はポンプが接続されたことを特徴とする。
この請求項4に記載された燃料電池モジュールでは、燃料予熱管に供給された水が燃料予熱管を下るに従って気化される。この結果、燃料予熱管に水蒸気を供給するための気化器が不要になる。
【0011】
請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、更に図1に示すように、燃料予熱管43の最下端に水分離器53が接続されたことを特徴とする。
この請求項5に記載された燃料電池モジュールでは、燃料電池モジュール10が停止して温度が低下し、水蒸気が液化して水になったときに、この水は水分離器53に溜る。この結果、燃料電池モジュール10を再始動しても、水が液体のまま発電セル12に供給されないので、発電セル12の性能は低下せず、発電セル12が破損することはない。
【0012】
請求項6に係る発明は、請求項1ないし5いずれか1項に係る発明であって、更に図1に示すように、発電セル12から排出された燃料ガス及び酸化剤ガスをインナケース46及びアウタケース48外に導く排気管51,52が水蒸気タービンに接続されたことを特徴とする。
この請求項6に記載された燃料電池モジュールでは、燃料電池モジュール10から排出された高温の排ガスを利用して水を加熱し、圧縮水蒸気を発生させ、この圧縮水蒸気をタービンに噴射して回転させることにより、発電機を回転させて熱エネルギを電気エネルギに変換する。この燃料電池−水蒸気タービンのシステムは燃料電池単体より発電効率が高い。
【0013】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、燃料電池モジュール10は積層された(n+1)個の発電セル12を有する燃料電池11と、この燃料電池11の近傍にそれぞれ設けられた燃料用ディストリビュータ13及び空気用ディストリビュータ14(酸化剤用ディストリビュータ)とを備える。ここで、nは正の整数である。発電セル12は円板状の固体電解質層12aと、この固体電解質層12aの両面に配設された円板状の燃料極層12b及び空気極層12c(酸化剤極層)とからなる。i番目(i=1,2,…,n)の発電セル12の燃料極層12bとこの燃料極層12bに隣接する(i+1)番目の発電セル12の空気極層12cとの間には導電性材料により正方形板状に形成されたセパレータ16がそれぞれ1枚ずつ合計n枚介装される。またi番目の発電セル12の燃料極層12bとj番目(j=1,2,…,n)のセパレータ16との間には円板状に形成されかつ導電性を有する多孔質の燃料極集電体17が介装され、(i+1)番目の発電セル12の空気極層12cとj番目のセパレータ16との間には円板状に形成されかつ導電性を有する多孔質の空気極集電体18(酸化剤極集電体)が介装される。更に1番目の発電セル12の空気極層12cには空気極集電体18を介して導電性材料により正方形板状に形成された単一の第1端板21が積層され、(n+1)番目の発電セル12の燃料極層12bには燃料極集電体17を介して導電性材料により正方形板状に形成された単一の第2端板22が積層される。なお、固体電解質層、燃料極層、空気極層、燃料極集電体及び空気極集電体は円板状ではなく、四角形板状、六角形板状、八角形板状等の多角形板状に形成してもよい。また、セパレータ、第1端板及び第2端板は正方形板状ではなく、円板状、或いは長方形板状、六角形板状、八角形板状等の多角形板状に形成してもよい。
【0014】
固体電解質層12aは酸化物イオン伝導体により形成される。具体的には、一般式(1):Ln1 A Ga B1 B2 B3 Oで示される酸化物イオン伝導体である。但し、上記一般式(1)において、Ln1はLa,Ce,Pr,Nd及びSmからなる群より選ばれた1種又は2種以上の元素であって43.6〜51.2重量%含まれ、AはSr,Ca及びBaからなる群より選ばれた1種又は2種以上の元素であって5.4〜11.1重量%含まれ、Gaは20.0〜23.9重量%含まれ、B1はMg,Al及びInからなる群より選ばれた1種又は2種以上の元素であり、B2はCo,Fe,Ni及びCuからなる群より選ばれた1種又は2種以上の元素であり、B3はAl,Mg,Co,Ni,Fe,Cu,Zn,Mn及びZrからなる群より選ばれた1種又は2種以上の元素であり、B1とB3又はB2とB3がそれぞれ同一の元素でないとき、B1は1.21〜1.76重量%含まれ、B2は0.84〜1.26重量%含まれ、B3は0.23〜3.08重量%含まれ、B1とB3又はB2とB3がそれぞれ同一の元素であるとき、B1の含有量とB3の含有量の合計が1.41〜2.70重量%であり、B2の含有量とB3の含有量の合計が1.07〜2.10重量%である。
【0015】
また固体電解質層12aを一般式(2):Ln11-x x Ga1-y-z-w B1y B2z B3w 3-dで示される酸化物イオン伝導体により形成してもよい。但し、上記一般式(2)において、Ln1はLa,Ce,Pr,Nd及びSmからなる群より選ばれた1種又は2種以上の元素であって、AはSr,Ca及びBaからなる群より選ばれた1種又は2種以上の元素であって、B1はMg,Al及びInからなる群より選ばれた1種又は2種以上の元素であって、B2はCo,Fe,Ni及びCuからなる群より選ばれた1種又は2種以上の元素であって、B3はAl,Mg,Co,Ni,Fe,Cu,Zn,Mn及びZrからなる群より選ばれた1種又は2種以上の元素であって、xは0.05〜0.3、yは0.025〜0.29、zは0.01〜0.15、wは0.01〜0.15、y+z+wは0.035〜0.3及びdは0.04〜0.3である。上記のような酸化物イオン伝導体にて固体電解質層12aを形成することにより、燃料電池11の発電効率を低下させずに、発電運転を650±50℃と比較的低温で行うことが可能となる。
【0016】
燃料極層12bはNi等の金属により構成されたり、又はNi−YSZ等のサーメットにより構成されたり、或いはNiと一般式(3):Ce1-mm2で表される化合物との混合体により多孔質に形成される。但し、上記一般式(3)において、DはSm,Gd,Y及びCaからなる群より選ばれた1種又は2種以上の元素であり、mはD元素の原子比であり、0.05〜0.4、好ましくは0.1〜0.3の範囲に設定される。
【0017】
空気極層12cは一般式(4):Ln21-x Ln3x1-y Coy3+dで示される酸化物イオン伝導体により多孔質に形成される。 但し、上記一般式(4)において、Ln2はLa又はSmのいずれか一方又は双方の元素であり、Ln3はBa,Ca又はSrのいずれか一方又は双方の元素であり、EはFe又はCuのいずれか一方又は双方の元素である。またxはLn3の原子比であり、0.5を越え1.0未満の範囲に設定される。yはCo元素の原子比であり、0を越え1.0以下、好ましくは0.5以上1.0以下の範囲に設定される。dは−0.5以上0.5以下の範囲に設定される。
【0018】
上記発電セル12の製造方法の一例を下記に示す。先ず原料粉末として、La23,SrCO3,Ga23,MgO,CoOの各粉末をLa0.8Sr0.2Ga0.8Mg0.15Co0.052.8となるように秤量して混合した後に、1100℃で予備焼成して仮焼体を作製する。次いでこの仮焼体を粉砕した後に、所定のバインダ、溶剤などを加えて混合することによりスラリーを調製し、このスラリーをドクタブレード法によりグリーンシートを作製する。次にこのグリーンシートを空気中で十分に乾燥し、所定の寸法に切出した後に、1450℃で焼結することにより固体電解質層12aを得る。この固体電解質層12aの一方の面に、Niと(Ce0.8Sm0.2)O2が体積比で6:4となるように、NiO粉末と(Ce0.8Sm0.2)O2粉末とを混合した後に、この混合粉末を1100℃で焼付けることにより燃料極層12bを形成する。更に上記固体電解質層12aの他方の面に(Sm0.5Sr0.5)CoO3を1000℃で焼付けることにより空気極層12cを形成する。このようにして発電セル12が作製される。
【0019】
セパレータ16はステンレス鋼、ニッケル基合金又はクロム基合金のいずれかにより形成されることが好ましい。例えば、SUS316、インコネル600、ハステロイX(Haynes Stellite社の商品名)、ヘインズアロイ214などが挙げられる。またセパレータ16には燃料供給通路23と、空気供給通路24(酸化剤供給通路)と、複数の挿入穴16aが形成される(図2及び図3)。燃料供給通路23はセパレータ16の外周面から略中心に向う第1燃料穴23aと、第1燃料穴23aに連通しセパレータ16の略中心から燃料極集電体17に臨む第2燃料穴23bとを有する。また空気供給通路24はセパレータ16の厚さ方向に直交する方向に延びて形成され基端がセパレータ16外周面に開口しかつ先端が閉止された略T字状の第1空気穴24aと、セパレータ16の厚さ方向に直交する方向に延びかつ互いに所定の間隔をあけて形成され第1空気穴24aに連通し更に両端が閉止された複数の第2空気穴24bと、セパレータ16の空気極集電体18に対向する面に所定の間隔をあけかつ第2空気穴24bに連通するように形成された多数の第3空気穴24cとを有する。
【0020】
第1空気穴24aは第1燃料穴23aと穴芯が同一のベース穴24dと、このベース穴24dに連通するとともに複数の第2空気穴24bに連通し両端が閉止された分配穴24eからなる。分配穴24eはベース穴24dの基端が形成されたセパレータ16の一方の側面に隣接する側面からベース穴24dに直交するように形成した後に、この隣接する側面に閉止板25を接合することにより両端が閉止された長穴となる。また複数の第2空気穴24bはベース穴24dの基端が形成されたセパレータ16の一方の側面からベース穴24dに平行に形成した後に、この側面に閉止板25を接合することにより両端が閉止された複数の長穴となる。複数の挿入穴16aは燃料供給通路23及び空気供給通路24のいずれにも連通しないように第1燃料穴23a及び第2空気穴24bに平行に形成され、これらの挿入穴16aには第1ヒータ31がそれぞれ挿入される(図3)。またセパレータ16の燃料極集電体17に対向する面には3本のスリット16bがセパレータ16の略中心から渦巻き状にそれぞれ形成され(図4)、これらのスリット16bの深さは全長にわたって同一となるように形成される。なお、上記スリットは3本ではなく、2本又は4本以上であってもよい。また、スリットの深さはセパレータの中心から離れるに従って次第に深く若しくは浅くなるように形成してもよい。
【0021】
図2に戻って、燃料極集電体17はステンレス鋼、ニッケル基合金又はクロム基合金、或いはニッケル、銀、銀合金、白金又は銅により多孔質に形成され、ステンレス鋼、ニッケル基合金又はクロム基合金により形成した場合、ニッケルめっき、銀めっき、ニッケル下地めっき上への銀めっき若しくは銅めっきを施すことが好ましい。空気極集電体18は銀めっき、ニッケル下地めっき上への銀めっき又は白金めっきされたステンレス鋼、ニッケル基合金又はクロム基合金、或いは銀、銀合金又は白金により多孔質に形成され、ステンレス鋼、ニッケル基合金又はクロム基合金により形成した場合、銀めっき、ニッケル下地めっき上への銀めっき若しくは白金めっきを施すことが好ましい。なお、燃料ガスとして炭化水素を用いた場合には、燃料極集電体はニッケルめっきされたステンレス鋼、ニッケル基合金又はクロム基合金、或いはニッケルにより形成され、燃料ガスとして水素を用いた場合には、燃料極集電体は銀めっき、ニッケル下地めっき上への銀めっき若しくは銅めっきされたステンレス鋼、ニッケル基合金又はクロム基合金、或いは銀、銀合金、白金又は銅により形成される。上記燃料極集電体13の製造方法の一例を下記に示す。先ずステンレス鋼などのアトマイズ粉末とHPMC(水溶性樹脂結合剤)を混練した後に、蒸留水及び添加剤(n−ヘキサン(有機溶剤)、DBS(界面活性剤)、グリセリン(可塑剤)など)を加えて混練して混合スラリーを調製する。次にこの混合スラリーをドクタブレード法により成形体を作製した後に、所定の条件で発泡、脱脂及び焼結して多孔質板を得る。更にこの多孔質板を所定の寸法に切出して燃料極集電体17を作製する。なお、ステンレス鋼のアトマイズ粉末を用いた場合には、表面にニッケルめっき、クロムめっき、銀めっき、ニッケル下地めっき上への銀めっきが施される。また上記空気極集電体18も上記燃料極集電体17とほぼ同様にして作製される。
【0022】
第1端板21及び第2端板22はセパレータ16と同一材料により同一形状(正方形板状)に形成される。第1端板21には空気供給通路27及び複数の挿入穴(図示せず)が形成され、第2端板22には燃料供給通路26及び複数の挿入穴(図示せず)が形成される。空気供給通路27は空気供給通路23と同様に形成され、第1端板21の厚さ方向に直交する方向に延びて形成され基端が第1端板21外周面に開口しかつ先端が閉止されたT字状の第1空気穴27aと、第1端板21の厚さ方向に直交する方向に延びかつ互いに所定の間隔をあけて形成され第1空気穴27aに連通し更に両端が閉止された複数の第2空気穴(図示せず)と、第1端板21の空気極集電体14に対向する面に所定の間隔をあけかつ第2空気穴に連通するように形成された多数の第3空気穴(図示せず)とを有する。また燃料供給通路26は燃料供給通路23と同様に形成され、第2端板22の外周面から略中心に向う第1燃料穴26aと、第1燃料穴26aに連通し第2端板22の略中心から燃料極集電体13に臨む第2燃料穴26bとを有する。
【0023】
第1端板21に形成された第1空気穴27aはベース穴27dと、このベース穴27dに連通するとともに複数の第2空気穴に連通し両端が閉止された分配穴27eからなる。分配穴27eはベース穴27dの基端が形成された第1端板21の一方の側面に隣接する側面からベース穴24dに直交するように形成した後に、この隣接する側面に閉止板25を接合することにより両端が閉止された長穴となる。複数の第2空気穴はベース穴24dの基端が形成された第1端板21の一方の側面からベース穴27dに平行に形成した後に、この側面に閉止板を接合することにより両端が閉止された複数の長穴となる。また第1端板21の複数の挿入穴は空気供給通路27に連通しないように第2空気穴に平行に形成され、これらの挿入穴にはヒータ(図示せず)がそれぞれ挿入される。第2端板22の複数の挿入穴は燃料供給通路26に連通しないように第1燃料穴26aに平行に形成され、これらの挿入穴にはヒータ(図示せず)がそれぞれ挿入される。第2端板22の上面、即ち第2端板22の燃料極集電体13への対向面には3本のスリット22bが第2端板22の略中心から渦巻き状に形成される(図2)。これらのスリット22bの深さは全長にわたって同一となるように形成される。なお、上記スリットは3本ではなく、2本又は4本以上であってもよい。また、スリットの深さはセパレータの中心から離れるに従って次第に深く若しくは浅くなるように形成してもよい。
【0024】
更にセパレータ16、第1端板21及び第2端板22の四隅にはボルト(図示せず)を挿通可能な通孔16cが形成される(図3及び図4)。(n+1)個の発電セル12と、n枚のセパレータ16と、(n+1)個の燃料極集電体17と、(n+1)個の空気極集電体18と、単一の第1端板21と、単一の第2端板22とを積層したときに、上記セパレータ16、第1端板21及び第2端板22の四隅に形成された通孔16cにボルトをそれぞれ挿通した後に、これらのボルトの先端にナットをそれぞれ螺合することにより、燃料電池11が上記積層した状態で固定されるようになっている。
【0025】
図1に戻って、燃料用ディストリビュータ13及び空気用ディストリビュータ14は発電セル12の積層方向に延びてそれぞれ設けられ、両端が閉止された筒状に形成される。燃料用ディストリビュータ13は(n+1)本の燃料用短管28を通ってn枚のセパレータ16の燃料供給通路23の第1燃料穴23a及び単一の第2端板22の燃料供給通路26aの第1燃料穴26aにそれぞれ連通接続され、空気用ディストリビュータ14は(n+1)本の空気用短管29を通ってn枚のセパレータ16の空気供給通路24の第1空気穴24a及び単一の第1端板21の空気供給通路27の第1空気穴27aにそれぞれ連通接続される。この実施の形態では、燃料用ディストリビュータ13、空気用ディストリビュータ14、燃料用短管28及び空気用短管29はステンレス鋼、ニッケル基合金又はクロム基合金などの導電性材料により形成される。
【0026】
燃料用短管28と燃料用ディストリビュータ13との電気的絶縁を確保するために、燃料用短管28と燃料用ディストリビュータ13との間にはアルミナ等の電気絶縁性材料により形成された燃料用絶縁管36が介装され、これらの隙間はガラスやセメント等の電気絶縁性を有する燃料用封止部材37により封止される。また空気用短管29と空気用ディストリビュータ14との電気的絶縁を確保するために、空気用短管29と空気用ディストリビュータ14との間にはアルミナ等の電気絶縁性材料により形成された空気用絶縁管38が介装され、これらの隙間はガラスやセメント等の電気絶縁性を有する空気用封止部材39により封止される。
【0027】
第1端板21の上面中央及び第2端板22の下面中央には一対の電極端子41,42(この実施の形態では電極棒)が電気的にそれぞれ接続される。燃料用ディストリビュータ13の上部外周面には燃料予熱管43が接続され、この燃料予熱管43は燃料電池11の外周面から所定の間隔をあけかつ一対の電極端子41,42の軸線を中心とする螺旋状に巻回される。また空気用ディストリビュータ14の外周面には空気予熱管44(酸化剤予熱管)が接続され、この空気予熱管44は燃料電池11の外周面から所定の間隔をあけかつ一対の電極端子41,42の軸線を中心とする螺旋状に巻回される。更に燃料電池11の外周面には第2ヒータ32が燃料電池11の外周面から所定の間隔をあけかつ一対の電極端子41,42の軸線を中心とする螺旋状に巻回される。上記燃料予熱管43の螺旋半径は上記空気予熱管44の螺旋半径より小さく形成され、第2ヒータ32の螺旋半径は燃料予熱管43の螺旋半径と空気予熱管44の螺旋半径の中間の値になるように形成される。
【0028】
この実施の形態では、燃料予熱管43及び空気予熱管44はステンレス鋼、ニッケル基合金又はクロム基合金などにより形成される。また空気予熱管44は空気用ディストリビュータ14の長手方向の略中央に接続される。これは、発電中に燃料電池11の内部抵抗によりジュール熱を発生し、燃料電池11の積層方向の中央部分が最も熱くなり、この部分に空気予熱管44及び空気用ディストリビュータ14を通って比較的低い温度の酸化剤ガスを供給することにより、発電セル12の均熱を保つためである。
【0029】
上記燃料電池11は螺旋状の燃料予熱管43、螺旋状の空気予熱管44及び螺旋状の第2ヒータ32とともにインナケース46に収容される。このインナケース46の下部外周面及び上面には発電セル12から排出された燃料ガス及び空気をインナケース46外に導く第1排気管51及び第2排気管52がそれぞれ接続される。またインナケース46の外面は断熱材47により被覆されるとともに、インナケース46の外周面には燃料予熱管43、空気予熱管44及び第1排気管51がそれぞれ螺旋状に巻回される。この実施の形態では、第1排気管51は燃料予熱管43及び空気予熱管44より大径に形成され、燃料予熱管43及び空気予熱管44を内部に遊挿した状態でインナケース46の外周面から所定の間隔をあけて螺旋状に巻回される。
【0030】
また燃料予熱管43及び空気予熱管44は、インナケース46の内側及び外側の双方にそれぞれ螺旋状に巻回されており、2段階で予熱できるとともに非常にコンパクトな構造になっているけれども、燃料予熱管及び空気予熱管をインナケースの外側のみで螺旋状に巻回し、インナケースの外側のみで予熱を行ってもよい。この場合、インナケースの内側に螺旋状の燃料予熱管及び空気予熱管がないため、インナケースの外側に巻回した螺旋状の燃料予熱管及び空気予熱管の長さを長くする必要があり、燃料電池モジュール全体の体積が多少大きくなるけれども、構造上の面からは簡素になるため、組立工数を簡略化できる。なお、インナケースの外側の燃料予熱管及び空気予熱管の構造については、燃料予熱管及び空気予熱管を第1排気管の内部に遊挿するのではなく、第1排気管の外周面に密着させた状態でインナケースの外周面に螺旋状に巻回してもよい。
【0031】
上記インナケース46は螺旋状の第1排気管51と、この第1排気管51に遊挿された燃料予熱管43及び空気予熱管44と、断熱材47とともにアウタケース48に収容される。上記第1排気管51はこの第1排気管51に遊挿された燃料予熱管43及び空気予熱管44とともに、アウタケース48の上部外周面からアウタケース48外に突出し、燃料予熱管43及び空気予熱管44はこの突出した部分から第1排気管51外に突出する。第1排気管51から突出した燃料予熱管43にはこの燃料予熱管43内の燃料ガスに水蒸気を混合するための水供給管49の先端が挿入され、この水供給管49には噴霧器(図示せず)が接続される。上記水供給管の49先端はアウタケース48内に位置することが好ましい。なお、燃料ガスとしては、例えばメタンガス(CH4))が挙げられる。また図示しないが上記噴霧器から噴射された霧状の水は第2排気管52内を通る排ガスの熱により気化されて水蒸気になるように構成される。燃料予熱管43には燃料ガスが流通可能な密度で改質粒子(図示せず)が充填される。この改質粒子はNi、NiO、Al23、SiO2、MgO、CaO、Fe23、Fe34、V23、NiAl24、ZrO2、SiC、Cr23、ThO2、Ce23、B23、MnO2、ZnO、Cu、BaO及びTiO2からなる群より選ばれた1種又は2種以上を含む元素又は酸化物により形成されることが好ましい。
【0032】
燃料電池11に螺旋状に巻回された燃料予熱管43のうちインナケース46内に位置する最下端には、水分離器53が接続される。これは、燃料電池モジュール10が停止して温度が低下し、水蒸気が液化して水になったときに、この水は水分離器53に溜るように構成される。この結果、燃料電池モジュール10を再始動しても、水が液体のまま発電セル12に供給されないので、発電セル12の性能は低下せず、発電セル12は破損しないようになっている。なお、上記水分離器はインナケース外の燃料予熱管に接続してもよい。
【0033】
また燃料電池11に螺旋状に巻回された空気予熱管44のうちインナケース46内に位置する上端には、冷却空気(冷却酸化剤ガス)を空気予熱管44に供給可能な冷却管56が接続される。また空気予熱管44のうち冷却管56の接続部と空気用ディストリビュータ14の接続部との間には、空気予熱管44内の空気と冷却管56内の冷却空気とを混合する混合部が接続される。この混合部には図示しないが上記空気及び冷却空気を混合するためにバッフル板や撹拌機等が内蔵される。また燃料電池11にはこの燃料電池11の温度を検出する温度センサ58が挿入され、冷却管56には冷却空気の流量を調整する流量調整弁59が設けられる。温度センサ58の検出出力はコントローラ(図示せず)の制御入力に接続され、コントローラの制御出力は流量調整弁59に接続される。なお、図1の符号54はインナケース46及びアウタケース48を一対の電極端子41,42から電気的に絶縁するための絶縁リングである。
【0034】
このように構成された燃料電池モジュール10の動作を説明する。
燃料ガス(例えば、メタンガス(CH4))を燃料予熱管43に供給し、水(H2O)を水供給管49から上記燃料予熱管43に供給して水蒸気にし、この水蒸気を上記燃料ガスに混合する。一方、空気(酸化剤ガス)を空気予熱管44に供給する。上記水蒸気を含む燃料ガスは第1排気管51に挿入された燃料予熱管43内でインナケース46の外周面を螺旋状に回りながら高温の排ガス(発電セル12から排出された燃料ガス及び酸化剤ガスの混合ガス)と熱交換することにより加熱され、上記空気は第1排気管51に挿入された空気予熱管44内でインナケース46の外周面を螺旋状に回りながら高温の排ガスと熱交換することにより加熱される。また燃料予熱管43及び空気予熱管44が遊挿された第1排気管51は断熱材47により覆われているため、上記第1排気管51内を通る排ガスは冷え難い。
【0035】
インナケース46の外周面を螺旋状に回りながら加熱された燃料ガス及び空気はインナケース46内に入るときに第1排気管51から出て燃料電池11の外周面を螺旋状に回る。このとき燃料予熱管43内を通る燃料ガスは発電セル12から排出される高温の排ガス及び第2ヒータ32により加熱される。上記燃料予熱管43内には改質粒子が充填されているため、水蒸気を含む燃料ガスを上述のように加熱することにより、この水蒸気を含む燃料ガスは改質粒子により改質されて(例えば、水素ガス(H2)に改質される。)て、燃料用ディストリビュータ13に供給される。また空気予熱管44内を通る空気も上記高温の排ガス及び第2ヒータ32により加熱されて空気用ディストリビュータ14に供給される。
【0036】
発電に最適な温度に加熱されかつ改質された燃料ガスを燃料用ディストリビュータ13に導入すると、この燃料ガスは燃料用短管28及び燃料供給通路23,26を通り、セパレータ16及び第2端板22の略中心から燃料極集電体17の中心に向って吐出する。これにより燃料ガスは燃料極集電体17内の気孔を通過して燃料極層12bの略中心に速やかに供給され、更にスリット16b,22bにより案内されて燃料極層12bの略中心から外周縁に向って渦巻き状に流れる。同時に発電に最適な温度に加熱された空気を空気用ディストリビュータ14に導入すると、この空気は空気用短管29及び空気供給通路24,27を通り、セパレータ16の多数の第3空気穴24c及び第1端板21の多数の第3空気穴からシャワー状に空気極集電体18に向って吐出する。これにより空気は空気極集電体18内の気孔を通過して空気極層11cに略均一に供給される。
【0037】
空気極層12cに供給された空気は空気極層12c内の気孔を通って固体電解質層12aとの界面近傍に到達し、この部分で空気中の酸素は空気極層12cから電子を受け取って、酸化物イオン(O2-)にイオン化される。この酸化物イオンは燃料極層12bの方向に向って固体電解質層12a内を拡散移動し、燃料極層12bとの界面近傍に到達すると、この部分で燃料ガスと反応して反応生成物(例えば、H2O)を生じ、燃料極層12bに電子を放出する。この電子を燃料極集電体17により取り出すことにより電流が発生し、電力が得られる。上記のように燃料ガスがセパレータ16の略中央及び第2端板22の略中央から吐出され、かつスリット16b,22bにより案内されるので、燃料ガスの反応経路が長くなる。この結果、燃料ガスがセパレータ16及び第2端板22の外周縁に到達するまでに、燃料ガスが燃料極層12bと極めて多く衝突するので、上記反応回数が増え、燃料電池11の性能向上を図ることができる。従って、セパレータ16及び第2端板22の外径が大きくなればなるほど、燃料ガスの反応経路が長くなり、これに伴って反応回数が増え、燃料電池11の出力向上に繋がる。なお、(n+1)個の発電セル12は導電性材料により形成されたセパレータ16、燃料極集電体17及び空気極集電体18を介して直列に接続され、かつ燃料電池11の両端の第1端板21及び第2端板22には一対の電極端子41,42が設けられているため、これらの電極端子41,42から大きな電力を取出すことができる。
【0038】
また従来の燃料電池、即ち発電セルの略中心に燃料ガス導入管及び酸化剤ガス導入管の挿通用の2個の孔が形成されるため、反応面積が小さくなるとともに反応前に燃料ガスが空気に混ざって、発電効率が低下する燃料電池と比較して、本発明の燃料電池モジュール10は発電セル12の表面の全てが発電に寄与するとともに、反応前に燃料ガスが空気と混ざることがないため、発電効率が向上する。
また燃料電池モジュール10の起動時には、第1ヒータ31に通電することにより発電セル12を速やかに昇温できるので、昇温時間を短縮できるとともに、発電セル12が均一に昇温し、発電セル12の中心と外周縁との温度差がなくなって均一に熱膨張するため、発電セル12の損傷を防止できる。なお、挿入穴にヒータを挿入しない場合、即ち挿入穴を軽量化穴とした場合には、セパレータ、第1端板及び第2端板の重量を小さくできるので、燃料電池の軽量化を図ることができる。
【0039】
またインナケース46の両面及びアウタケース48の内面には銀めっき、ニッケル下地めっき上への銀めっき又は白金めっきが施され、更に燃料用短管28、燃料用ディストリビュータ13、燃料予熱管43、空気用短管29、空気用ディストリビュータ14及び空気予熱管44の外面には銀めっき、ニッケル下地めっき上への銀めっき又は白金めっきが施されることが好ましい。これにより燃料電池11の運転中に発電セル12が発生する輻射熱を、燃料予熱管43及び酸化剤予熱管44の保温のために利用でき、発電セル12及びセパレータ16の保温効果を高めることができる。
また燃料予熱管43、燃料用ディストリビュータ13、燃料用短管28、酸化剤予熱管44、酸化剤用ディストリビュータ14及び酸化剤用短管27がステンレス鋼、ニッケル基合金又はクロム基合金のいずれかにより形成されかつ内面に銀めっき、ニッケル下地めっき上への銀めっき又は白金めっきされることが好ましい。これにより酸化剤予熱管44、酸化剤用ディストリビュータ14及び酸化剤用短管27の内部が酸化されず、酸化スケール(粉状の酸化物)の生成を抑制できる。一方、還元雰囲気である燃料予熱管43、燃料用ディストリビュータ13及び燃料用短管28の内部には水蒸気が存在するけれども、この水蒸気による酸化スケールの発生を抑制できる。
また燃料予熱管43、燃料用ディストリビュータ13及び燃料用短管28の内面にニッケルめっきされることが好ましい。これにより燃料予熱管43、燃料用ディストリビュータ13及び燃料用短管28の内部で炭化水素の改質反応が可能となる。
【0040】
一方、セパレータ16の下面及び第1端板21の下面には多数の第3空気穴24cが所定の間隔をあけて並んで形成されているため、空気がセパレータ16の下面及び第1端板21の下面から略均一に吐出される。この結果、空気により発電セル12を均一に加熱・冷却できる。特に、燃料電池モジュール10の発電中におけるジュール熱の発生により、発電セル12が加熱されて設定温度(例えば、650℃)より上昇したときに、この設定温度より僅かに低い温度(例えば、630)の空気を上記空気供給通路24,27から吐出させることにより、発電セル12を均一に冷却できるので、発電セル12の局所的な加熱又は冷却による損傷を防止できる。また上述の燃料電池11の温度制御は温度センサ58の検出出力に基づくコントローラの流量調整弁59の制御により行うことができる。即ち、燃料電池11の運転中に燃料電池11が設定温度(例えば、650℃)を越えたことを温度センサ58が検出すると、コントローラが温度センサ58の検出出力に基づいて流量調整弁59の開度を変え、空気予熱管44を通る空気に冷却管56を通る冷却空気を混ぜ、設定温度より低い温度(例えば、630℃)の空気を燃料電池11に供給する。
【0041】
更にステンレス鋼、ニッケル基合金又はクロム基合金製のセパレータ16及び第2端板22の上面に、ニッケルめっき、銀めっき、ニッケル下地めっき上への銀めっき若しくは銅めっきされたステンレス鋼、ニッケル基合金又はクロム基合金、或いはニッケル、銀、銀合金、白金又は銅製の燃料極集電体17をそれぞれ接合し、ステンレス鋼、ニッケル基合金又はクロム基合金製のセパレータ16及び第2端板22の下面に、銀めっき、ニッケル下地めっき上への銀めっき若しくは白金めっきされたステンレス鋼、ニッケル基合金又はクロム基合金、或いは銀、銀合金又は白金製の空気極集電体18をそれぞれ接合すれば、セパレータ16及び第1端板21が高温で空気に曝されても、即ちセパレータ16及び第1端板21が高温酸化雰囲気に曝されても、セパレータ16及び空気極集電体18の接合部分と、第1端板22及び空気極集電体18の溶着された接合部分が溶着されているため、これらの接合部分の酸化を防止できる。この結果、セパレータ16及び燃料極集電体17の電気的導通と、第2端板22及び燃料極集電体17の電気的導通のみならず、セパレータ16及び空気極集電体18の電気的導通と、第1端板21及び空気極集電体18の電気的導通を上記接合部分を通して長期間保持できるとともに、上記接合により燃料電池モジュール10の組立作業時間を短縮し、組立作業性を向上できる。なお、上記接合方法としては銀ろう付け、スポット溶接又はレーザ溶接等が挙げられる。またステンレス鋼、ニッケル基合金又はクロム基合金製の上記セパレータ16、第1端板21及び第2端板22にニッケルめっき、クロムめっき、銀めっき又はニッケル下地めっき上への銀めっきを施せば、セパレータ16、第1端板21及び第2端板22と、燃料極集電体17及び空気極集電体18との電気的導通を更に長期間保持できる。
【0042】
なお、上記実施の形態では、酸化剤ガスとして空気を用いたが、酸素又はその他の酸化剤ガスを用いてもよい。
また、上記実施の形態では、燃料電池として、発電セルが燃料極層及び空気極層(酸化剤極層)にて固体電解質層を挟持して構成された固体酸化物型の燃料電池を挙げたが、炭酸溶融塩型燃料電池などでもよい。
また、上記実施の形態では、燃料予熱管に水供給管の先端を挿入し、この水供給管に噴霧器を接続したが、燃料予熱管の上部に水供給管の先端を挿入し、この水供給管の基端にポンプを接続してもよい。この場合、燃料予熱管に供給された水は第2排気管内を通る排ガスの熱により、燃料予熱管を下るに従って気化される。
更に、発電セル12から排出された燃料ガス及び酸化剤ガスをインナケース46及びアウタケース48外に導く排気管51,52を水蒸気タービンに接続してもよい。この場合、燃料電池モジュール10から排出された高温の排ガスを利用して水を加熱し、圧縮水蒸気を発生させ、この圧縮水蒸気をタービンに噴射して回転させることにより、発電機を回転させて熱エネルギを電気エネルギに変換することができる。
【0043】
【発明の効果】
以上述べたように、本発明によれば、酸化剤用ディストリビュータに酸化剤ガスを供給可能な酸化剤予熱管を接続し、酸化剤予熱管に冷却酸化剤ガスを供給可能な冷却管を酸化剤予熱管に接続し、冷却管に冷却酸化剤ガスの流量を調整する流量調整弁を設け、更にコントローラが燃料電池の温度を検出する温度センサの検出出力に基づいて流量調整弁を制御し、燃料電池が650±50℃で作動するように構成したので、燃料電池の運転中に燃料電池が設定温度を越えると、酸化剤予熱管を通る酸化剤ガスに冷却管を通る冷却酸化剤ガスが混合される。この結果、燃料電池に設定温度より低い温度の酸化剤ガスが供給されるので、燃料電池が設定温度に保たれ、燃料電池の過熱を防止できる
【0044】
また燃料用ディストリビュータに燃料ガスを供給する燃料予熱管を燃料電池の外周面に巻回し、酸化剤用ディストリビュータに酸化剤ガスを供給する酸化剤予熱管を燃料電池の外周面に巻回し、燃料電池を燃料予熱管及び酸化剤予熱管とともにインナケースに収容し、発電セルから排出された燃料ガス及び酸化剤ガスをインナケース外に導く排気管をインナケースに接続すれば、燃料予熱管内を通る燃料ガスが発電セルから排出される高温の排ガスにより加熱されて燃料用ディストリビュータに供給され、酸化剤予熱管内を通る酸化剤ガスも発電セルから排出される上記高温の排ガスにより加熱されて酸化剤用ディストリビュータに供給される。この結果、燃料ガス及び酸化剤ガスが発電に適した温度で各発電セルに供給されるので、発電効率を向上できる。
【0045】
またインナケースの外面を断熱材により被覆するとともに、インナケースの外周面に燃料予熱管、酸化剤予熱管及び排気管を巻回し、インナケースを燃料予熱管、酸化剤予熱管及び排気管とともにアウタケースに収容すれば、燃料予熱管内の燃料ガス及び酸化剤予熱管内の酸化剤ガスがインナケース内に導入される前に、インナケースの外周面に巻回された排気管内を通る高温の排ガスにより加熱される。この結果、燃料ガス及び酸化剤ガスがインナケース内で予熱される前に更に予熱されるため、発電効率を更に向上できる。
また燃料予熱管の上部に水供給管の先端を挿入し、水供給管の基端に噴霧器又はポンプを接続すれば、燃料予熱管に供給された水が燃料予熱管を下るに従って気化される。この結果、燃料予熱管に水蒸気を供給するための気化器が不要になる。
【0046】
また燃料予熱管の最下端に水分離器を接続すれば、燃料電池モジュールが停止して温度が低下し、水蒸気が液化して水になったときに、この水は水分離器に溜る。この結果、燃料電池モジュールを再始動しても、水が液体のまま発電セルに供給されないので、発電セルの性能は低下せず、発電セルが破損することはない。
更に発電セルから排出された燃料ガス及び酸化剤ガスをインナケース及びアウタケース外に導く排気管を水蒸気タービンに接続すれば、燃料電池モジュールから排出された高温の排ガスを利用して水を加熱し、圧縮水蒸気を発生させ、この圧縮水蒸気をタービンに噴射して回転させることにより、発電機を回転させて熱エネルギを電気エネルギに変換することができる。この結果、上記燃料電池−水蒸気タービンのシステムは燃料電池単体より発電効率が高くなる。
【図面の簡単な説明】
【図1】本発明実施形態の燃料電池モジュールの縦断面図。
【図2】その燃料電池の図3のA−A線断面図。
【図3】図2のB−B線断面図。
【図4】図2のC−C線断面図。
【符号の説明】
10 燃料電池モジュール
11 燃料電池
12 発電セル
13 燃料用ディストリビュータ
14 空気用ディストリビュータ(酸化剤用ディストリビュータ)
23,26 燃料供給通路
24,27 空気供給通路(酸化剤供給通路)
28 燃料用短管
29 空気用短管(酸化剤用短管)
43 燃料予熱管
44 空気予熱管(酸化剤予熱管)
46 インナケース
47 断熱材
48 アウタケース
51 第1排気管
52 第2排気管
53 水分離器
58 温度センサ
59 流量調整弁

Claims (6)

  1. 発電セル(12)と前記発電セル(12)に燃料ガスを供給可能な燃料供給通路(23,26)と前記発電セル(12)に酸化剤ガスを供給可能な酸化剤供給通路(24,27)とを有する固体酸化物型又は炭酸溶融塩型の燃料電池(11)と、
    記酸化剤供給通路(24,27)に酸化剤用短管(29)を通して酸化剤ガスを供給する酸化剤用ディストリビュータ(14)と
    を備えた燃料電池モジュールにおいて、
    前記酸化剤用ディストリビュータ(14)に前記酸化剤ガスを供給する酸化剤予熱管(44)と、
    前記酸化剤予熱管(44)に接続され前記酸化剤予熱管(44)に冷却酸化剤ガスを供給可能な冷却管(56)と、
    前記燃料電池(11)に挿入され前記燃料電池(11)の温度を検出する温度センサ(58)と、
    前記冷却管(56)に設けられ前記冷却酸化剤ガスの流量を調整する流量調整弁(59)と、
    前記温度センサ(58)の検出出力に基づいて前記流量調整弁(59)を制御するコントローラと
    を備え
    650±50℃で作動するように構成されたことを特徴とする燃料電池モジュール。
  2. 料供給通路(23,26)に燃料用短管(28)を通して燃料ガスを供給する燃料用ディストリビュータ(13)と、前記燃料用ディストリビュータ(13)に前記燃料ガスを供給する燃料予熱管(43)とを更に備え、前記燃料予熱管(43)が前記燃料電池(11)の外周面に巻回され、酸化剤予熱管(44)が前記燃料電池(11)の外周面に巻回され、前記燃料電池(11)が前記燃料予熱管(43)及び前記酸化剤予熱管(44)とともにインナケース(46)に収容され、発電セル(12)から排出された燃料ガス及び酸化剤ガスを前記インナケース(46)外に導く排気管(51)が前記インナケース(46)に接続された請求項記載の燃料電池モジュール。
  3. インナケース(46)の外面が断熱材(47)により被覆されるとともに、前記インナケース(46)の外周面に燃料予熱管(43)、酸化剤予熱管(44)及び排気管(51)が巻回され、更に前記インナケース(46)が前記燃料予熱管(43)、前記酸化剤予熱管(44)及び前記排気管(51)とともにアウタケース(48)に収容された請求項1又は2記載の燃料電池モジュール。
  4. 燃料予熱管の上部に水供給管の先端が挿入され、前記水供給管の基端に噴霧器又はポンプが接続された請求項1ないし3いずれか1項に記載の燃料電池モジュール。
  5. 燃料予熱管(43)の最下端に水分離器(53)が接続された請求項1ないし4いずれか1項に記載の燃料電池モジュール。
  6. 発電セル(12)から排出された燃料ガス及び酸化剤ガスをインナケース(46)及びアウタケース(48)外に導く排気管(51,52)が水蒸気タービンに接続された請求項1ないし5いずれか1項に記載の燃料電池モジュール。
JP2001360332A 2000-12-28 2001-11-27 燃料電池モジュール Expired - Fee Related JP3925171B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360332A JP3925171B2 (ja) 2000-12-28 2001-11-27 燃料電池モジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000402474 2000-12-28
JP2000-402474 2000-12-28
JP2001360332A JP3925171B2 (ja) 2000-12-28 2001-11-27 燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2002260697A JP2002260697A (ja) 2002-09-13
JP3925171B2 true JP3925171B2 (ja) 2007-06-06

Family

ID=26607171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360332A Expired - Fee Related JP3925171B2 (ja) 2000-12-28 2001-11-27 燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP3925171B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369666B (zh) 2003-03-03 2010-09-22 百拉得动力系统公司 采用部分空气加湿的环境压力燃料电池系统
JP4736309B2 (ja) * 2003-05-01 2011-07-27 三菱マテリアル株式会社 固体電解質型燃料電池の運転開始時の予熱方法
US7169495B2 (en) * 2003-05-06 2007-01-30 Versa Power Systems, Ltd. Thermally integrated SOFC system
JP2004349214A (ja) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp 固体酸化物型燃料電池の運転方法
JP4906248B2 (ja) * 2003-08-20 2012-03-28 京セラ株式会社 燃料電池組立体
JP4863600B2 (ja) * 2003-11-26 2012-01-25 京セラ株式会社 燃料電池組立体
JP2005209579A (ja) * 2004-01-26 2005-08-04 Kyocera Corp 燃料電池組立体
JP4733354B2 (ja) * 2004-02-18 2011-07-27 東京瓦斯株式会社 発電装置
JP4797352B2 (ja) * 2004-09-17 2011-10-19 三菱マテリアル株式会社 固体酸化物形燃料電池
JP5009496B2 (ja) * 2004-09-22 2012-08-22 東京瓦斯株式会社 発電装置
JP5194352B2 (ja) * 2004-11-09 2013-05-08 大日本印刷株式会社 燃料電池を用いたコージェネレーションシステム
WO2006051830A1 (ja) 2004-11-09 2006-05-18 Dai Nippon Printing Co., Ltd. 燃料電池を用いたコージェネレーションシステム
JP5017845B2 (ja) * 2004-11-09 2012-09-05 大日本印刷株式会社 燃料電池を用いたコージェネレーションシステム
JP2007128717A (ja) * 2005-11-02 2007-05-24 Mitsubishi Materials Corp 燃料電池の運転方法
JP2007080761A (ja) * 2005-09-16 2007-03-29 Mitsubishi Materials Corp 燃料電池およびその起動方法
JP5044921B2 (ja) * 2005-11-02 2012-10-10 三菱マテリアル株式会社 燃料電池モジュールおよび運転方法
JP4979952B2 (ja) * 2006-01-30 2012-07-18 三菱マテリアル株式会社 燃料電池発電装置及び制御プログラム並びに制御方法
JP2007287633A (ja) * 2006-04-20 2007-11-01 Mitsubishi Materials Corp 燃料電池発電装置及び制御プログラム並びに制御方法
JP5186124B2 (ja) * 2006-05-26 2013-04-17 本田技研工業株式会社 燃料電池用セパレータ
DE102006042109B4 (de) * 2006-09-07 2011-12-29 Staxera Gmbh Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels und dessen Verwendung
JP2008300276A (ja) * 2007-06-01 2008-12-11 Toto Ltd 燃料電池
JP2008300275A (ja) * 2007-06-01 2008-12-11 Toto Ltd 燃料電池
JP5262241B2 (ja) * 2008-03-31 2013-08-14 三菱マテリアル株式会社 固体酸化物形燃料電池
JP6177881B2 (ja) * 2013-03-25 2017-08-09 住友精密工業株式会社 燃料電池
DE102014207143A1 (de) * 2014-04-14 2015-10-15 Robert Bosch Gmbh Brennstoffzellenvorrichtung
JP6356481B2 (ja) * 2014-05-15 2018-07-11 東京瓦斯株式会社 燃料電池システム
EP3035431B1 (de) 2014-12-19 2019-04-24 Hexis AG Brennstoffzellenmodul und verfahren zum betrieb eines brennstoffzellenmoduls
JP6325717B2 (ja) * 2017-04-10 2018-05-16 ダイニチ工業株式会社 燃料電池装置

Also Published As

Publication number Publication date
JP2002260697A (ja) 2002-09-13

Similar Documents

Publication Publication Date Title
JP3925171B2 (ja) 燃料電池モジュール
US7960068B2 (en) Fuel cell module and structure for gas supply to fuel cell
JP3960035B2 (ja) ハイブリッド動力システム
JP3925172B2 (ja) 燃料電池モジュール
KR102481589B1 (ko) Sofc-전도
JP4453201B2 (ja) 燃料電池
US7659021B2 (en) Power generating apparatus using solid oxide fuel cell
CA2161957C (en) Solid oxide fuel cell structures
EP1796192B1 (en) Solid oxide fuel cell module, fuel cell system using the same and manufacturing method thereof
JP3860733B2 (ja) 燃料電池
JP4654567B2 (ja) 固体酸化物形燃料電池およびその運転方法
JPH03219563A (ja) 固体電解質型燃料電池
JP2009099267A (ja) 固体酸化物形燃料電池モジュール
US7078120B2 (en) Fuel cell
JP2002203588A (ja) 固体酸化物型燃料電池
JP2007227390A (ja) ハイブリッド動力システム
JP2002280009A (ja) 燃料電池にガスを供給するための構造
JP2002280008A (ja) 燃料電池のガス供給構造
JPH02168568A (ja) 固体電解質型燃料電池
JP2002343408A (ja) 燃料電池を含む発電炉
JP2008159524A (ja) 固体酸化物型燃料電池発電装置
JP2002280021A (ja) 燃料電池
JPH06150958A (ja) 固体電解質燃料電池
JP2004335161A (ja) 固体酸化物形燃料電池およびセパレータおよび運転方法
TOMPSETT et al. Integrated catalytic burner/micro-SOFC design and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3925171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees