WO2008026255A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2008026255A1
WO2008026255A1 PCT/JP2006/316986 JP2006316986W WO2008026255A1 WO 2008026255 A1 WO2008026255 A1 WO 2008026255A1 JP 2006316986 W JP2006316986 W JP 2006316986W WO 2008026255 A1 WO2008026255 A1 WO 2008026255A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
land portion
width
vehicle
block
Prior art date
Application number
PCT/JP2006/316986
Other languages
English (en)
French (fr)
Inventor
Isamu Kishizoe
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to US12/304,453 priority Critical patent/US8210222B2/en
Priority to CN2006800556478A priority patent/CN101505976B/zh
Priority to DE602006018667T priority patent/DE602006018667D1/de
Priority to PCT/JP2006/316986 priority patent/WO2008026255A1/ja
Priority to EP06796963A priority patent/EP2058144B1/en
Publication of WO2008026255A1 publication Critical patent/WO2008026255A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S152/00Resilient tires and wheels
    • Y10S152/902Non-directional tread pattern having no circumferential rib and having blocks defined by circumferential grooves and transverse grooves

Definitions

  • the present invention relates to a pneumatic tire suitable as a studless tire. More specifically, the present invention improves the running performance on snow and improves the driving stability and wear resistance on a dry road surface. Related to tires.
  • a pneumatic tire for icy and snowy roads a plurality of main grooves extending in the tire circumferential direction and a plurality of lug grooves extending in the tire width direction are provided in the tread portion, and a large number of blocks are partitioned by these main grooves and lug grooves.
  • a pneumatic tire for icy and snowy roads it is possible to demonstrate excellent running performance on snow by setting a large groove area, but usually soft force and tread rubber are used, At present, the block rigidity is insufficient, and the steering stability on dry roads is not always sufficient for wear resistance.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2004-34903
  • An object of the present invention is to provide a pneumatic tire capable of improving running performance on snow and improving steering stability and wear resistance on a dry road surface.
  • a pneumatic tire of the present invention for achieving the above object is a pneumatic tire in which a tire front and back mounting direction with respect to a vehicle is specified, and a first main groove extending in a tire circumferential direction in a tread portion; One shoulder side, a second main groove extending in the tire circumferential direction in the shoulder region inside the vehicle from the first main groove, a third main groove extending in the tire circumferential direction in the shoulder region outside the vehicle from the first main groove, Force A plurality of lug grooves extending to the other shoulder side are provided, and the width of the first land portion defined between the first main groove and the second main groove is set between the first main groove and the third main groove.
  • a plurality of inclined grooves that are larger than the width of the second land portion defined between them and communicate with at least three lug grooves while being inclined with respect to the tire circumferential direction are provided in the first land portion.
  • One end of the groove The other end is terminated in the block while opening in the lug groove.
  • the tread portion is divided into a plurality of rows of land portions by the first main groove, the second main groove, and the third main groove, and the width of the first land portion inside the vehicle is set to the second width outside the vehicle. It is larger than the width of the land, and a long inclined groove is placed in the first land.
  • the inclined groove communicates with the three lag grooves, and four types of blocks divided by the three lug grooves and the inclined grooves are arranged in the first land portion as repeating units, and the second land A plurality of blocks partitioned by multiple lug grooves are arranged in the section, the surface area Sa of the block A located on the other end side of the inclined groove on the inner side of the vehicle on the first land portion, the inner side of the vehicle on the first land portion Surface area Sb of block B located on one end side of the sloping groove at B, surface area Sc of block C located on the other end side of the sloping groove outside the first land portion of the vehicle, one end of the sloping groove outside the first land portion of the vehicle.
  • the surface area Sd of the block D located on the side, the surface area Se of the block E adjacent to the block C in the second land part, and the surface area
  • the width of the first land portion is set to 50% to 70% of the ground contact half width
  • the width of the second land portion is set to 15% to 35% of the ground contact half width.
  • the groove width yl at the outer part should be 40% to 50% of the groove width y2 at the vehicle inner part in the second land, and the tire circumferential direction of the inclined groove It is also possible to set the inclination angle to 10 ° to 30 ° and the total width of the first main groove, second main groove, and third main groove to 15% to 35% of the tread contact width. This is effective in achieving both driving performance on the road, steering stability on the road surface, and wear resistance.
  • the inclined groove communicates with the three lug grooves, and the lug grooves located at both ends of the three lug grooves in the first land portion communicate with the first main groove, while the lug grooves are located in the middle.
  • block G located on the outer side of the vehicle on the first land portion is relatively larger.
  • the angle of inclination of the portion adjacent to the block G of the lug groove with respect to the tire circumferential direction is 60 ° to 90 °.
  • a plurality of sipes extending in the tire width direction are provided on each land portion including the first land portion and the second land portion. It is preferable to provide it.
  • the present invention provides a remarkable effect when applied to a pneumatic tire for icy and snowy roads, but can also be applied to a pneumatic tire for all seasons.
  • FIG. 1 is a development view showing a tread pattern of a pneumatic tire for an snowy and snowy road according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a first land portion in FIG.
  • FIG. 3 is an enlarged plan view showing a second land portion in FIG.
  • FIG. 4 is a development view showing a modification of the tread pattern of FIG.
  • FIG. 5 is a development view showing a tread pattern of a pneumatic tire for an icy and snowy road that is another embodiment of the present invention.
  • FIG. 6 is an enlarged plan view showing a first land portion in FIG.
  • FIG. 7 is a development view showing a modification of the tread pattern of FIG.
  • FIG. 1 shows a tread pattern of a pneumatic tire for icy and snowy roads that is an embodiment of the present invention.
  • the mounting direction of the tire front and back with respect to the vehicle is specified.
  • IN is the vehicle inner side
  • OUT is the vehicle outer side.
  • the tread portion 1 includes a main groove 11 (first main groove) extending in the tire circumferential direction in the tread central region, and a tire circumferential direction in a shoulder region inside the vehicle from the main groove 11
  • a plurality of lug grooves 14 extending in the direction are formed.
  • the lug grooves 14 are curved and inclined in one direction with respect to the tire width direction, and are arranged at intervals in the tire circumferential direction.
  • a land portion 21 (first land portion) is defined between the main groove 11 and the main groove 12, and a land portion 22 (second land portion) is defined between the main groove 11 and the main groove 13. Further, a land portion 23 (third land portion) is defined outside the main groove 12 in the tire width direction, and a land portion 24 (fourth land portion) is defined outside the main groove 13 in the tire width direction. ing. The width of the land portion 21 is larger than the width of the land portion 22.
  • the land portion 21 is formed with a plurality of inclined grooves 15 communicating with the three lug grooves 14 while being inclined with respect to the tire circumferential direction.
  • One end 15a of the inclined groove 15 opens into the lug groove 14, and the other end 15b terminates in the block.
  • the inclined groove 15 is inclined in the direction opposite to the lug groove 14, and is arranged so that the other end 15b terminating in the block faces the vehicle inside.
  • four types of blocks having different shapes defined by the three lug grooves 14 and the inclined grooves 15 are arranged in the land portion 21 as repeating units.
  • a plurality of blocks divided by lug grooves 14 are arranged on land portions 22 to 24, respectively! RU
  • Each block included in the land portions 21 to 24 has a plurality of sipes 16 extending in the tire width direction.
  • the shape of the sipe 16 is not particularly limited, and a shape having a zigzag shape or a linear shape in a plan view, or a shape having a three-dimensional shape can be employed.
  • the tread portion 1 is divided into four rows of land portions by three main grooves 11 to 13, and the width of the land portion 21 inside the vehicle is larger than the width of the land portion 22 outside the vehicle.
  • the block rigidity is optimized by increasing the width and providing a long inclined groove 15 for the wide land portion 21.
  • the product Sd, the surface area Se of the block E adjacent to the block C in the land part 22, and the surface area Sf of the block F adjacent to the block D in the land part 22 are set as follows.
  • the blocks A to D constituting one unit by four types are mixed so that relatively large blocks B and C are diagonally positioned. Therefore, it is possible to improve the driving performance on the dry road and the driving performance on the snow in a well-balanced manner.
  • the width W1 of the land portion 21 is set to 50% to 70% of the ground half width, and the width W2 of the land portion 22 is set to 15% to 35% of the ground half width.
  • the ground contact half width is the air pressure load capacity correspondence table stipulated in the JATMA Yearbook (2004 edition). Fill the tire with air pressure corresponding to the maximum load capacity and apply a load of 80% of the load capacity.
  • the tread contact width measured in the tire axial direction is 1Z2 of TCW.
  • the groove width of the lug groove 14 is optimized according to the position in the tire width direction. That is, as shown in FIG. 2, the groove width xl at the vehicle inner side in the land 21 of the lug groove 14 and the slope in the land 21
  • the groove width yl at the vehicle outer portion in the land portion 22 of the lug groove 14 is set to 40% to 50% of the groove width y 2 at the vehicle inner portion in the land portion 22. Being! By making the groove width yl smaller than the groove width y2, it is possible to improve the driving performance on dry roads and on snow in a well-balanced manner. If the groove width yl exceeds the above range, the turning performance on the dry road surface deteriorates. On the other hand, if the groove width yl falls below the above range, the traction performance on snow decreases. If the dry performance is important, the lug groove 14 may be closed in the middle of the land 22 (see Fig. 4).
  • the inclination angle 0 of the inclined groove 15 with respect to the tire circumferential direction is set to 10 ° to 30 °.
  • the total groove width of the main grooves 11 to 13 is set to 15% to 35% of the tread ground contact width TCW. If the sum of the groove widths of the main grooves 11 to 13 is less than 15% of the tread contact width TCW, the wet performance will decrease, and conversely if it exceeds 35%, the handling stability on the dry road surface will decrease.
  • FIG. 5 shows a tread pattern of a pneumatic tire for an icy and snowy road, which is another embodiment of the present invention.
  • the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the land portion 21 has three lug grooves 1 while being inclined with respect to the tire circumferential direction.
  • a plurality of inclined grooves 15 communicating with 4 are formed.
  • One end 15a of the inclined groove 15 opens into the lug groove 14 and the other end 15b terminates in the block.
  • the lug grooves 14a located at both ends of the three lug grooves 14 to which the lug grooves 14 communicate are communicated with the main groove 11, but the lug grooves 14b located in the middle are the main grooves. 11 is out of communication.
  • three types of blocks having different shapes defined by the three lug grooves 14a, 14b and the inclined grooves 15 are arranged as repeating units in the land portion 21.
  • Block G located at is relatively large.
  • the circumferential length of block G is approximately equal to the circumferential length of the aggregate of blocks A and B.
  • the tread portion 1 is divided into four rows of land portions by three main grooves 11 to 13, and the width of the land portion 21 inside the vehicle is larger than the width of the land portion 22 outside the vehicle. Since the block rigidity is optimized by increasing the width and providing a long inclined groove 15 for the wide land portion 21, it is possible to sufficiently ensure steering stability and wear resistance on a dry road surface. it can. In addition, it is possible to improve driving performance such as steering stability on the snow and turning performance based on the inclined groove 15 of the land portion 21. In particular, because the block G located in the central area of the tread is enlarged, the handling stability on dry roads can be greatly improved.
  • the inclination angle ⁇ with respect to the tire circumferential direction of the portion adjacent to the block G of the lug groove 14a is preferably 60 ° to 90 °.
  • the rigidity of the block G can be sufficiently secured.
  • the inclination angle a is less than 60 °, the rigidity of the block G is lowered and the effect of improving the steering stability is lowered.
  • the portion of the lug groove 14a adjacent to the block G may be inclined in the direction of deviation with respect to the tire circumferential direction (see FIG. 7).
  • the tread portion is provided with five main grooves extending in the tire circumferential direction and a plurality of lug grooves extending in the tire width direction, and a plurality of rectangular blocks are formed by the main grooves and the lug grooves. It is a compartmentalized one.
  • Example 1 has the tread pattern shown in FIG. 1
  • Example 2 has the tread pattern shown in FIG. 4
  • Example 3 has the tread pattern shown in FIG. .
  • the width of the first land part is 56% of the tread ground half width
  • the width of the second land part is 27% of the tread ground half width
  • the inclination angle of the inclined groove with respect to the tire circumferential direction is 15%.
  • the total groove width of the first main groove, the second main groove, and the third main groove was 21.4% of the tread ground contact width.
  • test tire was assembled on a wheel with a rim size of 16 X 6.5 J, mounted on a 2000cc rear-wheel drive vehicle with an air pressure of 200kPa, and subjected to a sensory evaluation by a test driver on a dry road test course.
  • the evaluation results are shown as an index with the conventional example as 100. The larger the index value, the better the steering stability on the dry road surface.
  • the test tire was mounted on a wheel with a rim size of 16 X 6.5J, mounted on a 2000cc rear-wheel drive vehicle with an air pressure of 200kPa, and sensory evaluation was performed by a test driver on a snowy test course.
  • the evaluation results are shown as an index with the conventional example as 100. The larger the index value, the better the handling stability on snow.
  • the test tire was mounted on a wheel with a rim size of 16 X 6.5J, mounted on a 2000cc rear-wheel drive vehicle with an air pressure of 200kPa, and sensory evaluation was performed by a test driver on a snowy test course.
  • the evaluation results are shown as an index with the conventional example as 100. The larger the index value, the better the turning performance on snow.
  • the test tire is mounted on a wheel with a rim size of 16 X 6.5 J and exhausted at an air pressure of 200 kPa. It was mounted on a 2000cc rear-wheel drive vehicle, traveled about 10,000 km on a dry road surface, and the amount of wear at one position on the tread center was measured.
  • the evaluation results are shown as an index with the conventional example being 100, using the reciprocal of the measured value. The larger the index value, the better the wear resistance.
  • the tires of Examples 1 to 3 have a handling stability on a dry road surface, a handling stability on snow, a turning ability on snow, and wear resistance. The property was excellent. In particular, the tire of Example 3 had a great effect of improving the handling stability on the dry road surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明 細 書
空気入りタイヤ
技術分野
[0001] 本発明は、スタッドレスタイヤとして好適な空気入りタイヤに関し、更に詳しくは、雪 上での走行性能を向上すると共に、ドライ路面での操縦安定性及び耐摩耗性を向上 するようにした空気入りタイヤに関する。
背景技術
[0002] 一般に、空気入りタイヤにおいて、雪上での走行性能とドライ路面での走行性能を 両立させることは困難である。例えば、氷雪路用空気入りタイヤにおいて、トレッド部 にタイヤ周方向に延びる複数本の主溝とタイヤ幅方向に延びる複数本のラグ溝とを 設け、これら主溝及びラグ溝によって多数のブロックを区画することが行われている( 例えば、特許文献 1参照)。このような氷雪路用空気入りタイヤでは、溝面積を大きく 設定することで雪上での優れた走行性能を発揮することが可能であるが、通常、軟ら 力 、トレッドゴムが採用されるため、ブロック剛性が不足し、ドライ路面での操縦安定 性ゃ耐摩耗性が必ずしも十分ではないのが現状である。
特許文献 1 :日本国特開 2004— 34903号公報
発明の開示
[0003] 本発明の目的は、雪上での走行性能を向上すると共に、ドライ路面での操縦安定 性及び耐摩耗性を向上することを可能にした空気入りタイヤを提供することにある。
[0004] 上記目的を達成するための本発明の空気入りタイヤは、車両に対するタイヤ表裏 の装着向きが指定された空気入りタイヤにおいて、トレッド部に、タイヤ周方向に延び る第 1主溝と、第 1主溝よりも車両内側のショルダー領域でタイヤ周方向に延びる第 2 主溝と、第 1主溝よりも車両外側のショルダー領域でタイヤ周方向に延びる第 3主溝 と、一方のショルダー側力 他方のショルダー側へ延びる複数本のラグ溝とを設け、 第 1主溝と第 2主溝との間に区画された第 1陸部の幅を第 1主溝と第 3主溝との間に 区画された第 2陸部の幅よりも大きくし、前記第 1陸部にタイヤ周方向に対して傾斜し ながら少なくとも 3本のラグ溝に連通する複数本の傾斜溝を設け、該傾斜溝の一端を ラグ溝に開口する一方で他端をブロック内で終端させたことを特徴とするものである。
[0005] 本発明では、トレッド部を第 1主溝、第 2主溝及び第 3主溝により複数列の陸部に区 分し、車両内側の第 1陸部の幅を車両外側の第 2陸部の幅よりも大きくし、第 1陸部 に長めの傾斜溝を配置している。上記構成により、ブロック剛性を最適化し、ドライ路 面での操縦安定性及び耐摩耗性を十分に確保することができ、し力ゝも第 1陸部に配 置された傾斜溝に基づいて雪上での操縦安定性や旋回性等の走行性能を改善する ことができる。
[0006] 本発明にお ヽて、雪上での走行性能とドライ路面での操縦安定性及び耐摩耗性と を両立するために、以下の構成を採用することが好ましい。即ち、傾斜溝が 3本のラ グ溝に連通し、第 1陸部に 3本のラグ溝と傾斜溝とで区画された 4種類のブロックを繰 り返し単位として配置すると共に、第 2陸部に複数本のラグ溝で区画された複数のブ ロックを配置し、第 1陸部の車両内側で傾斜溝の他端側に位置するブロック Aの表面 積 Sa、第 1陸部の車両内側で傾斜溝の一端側に位置するブロック Bの表面積 Sb、第 1陸部の車両外側で傾斜溝の他端側に位置するブロック Cの表面積 Sc、第 1陸部の 車両外側で傾斜溝の一端側に位置するブロック Dの表面積 Sd、第 2陸部でブロック Cと隣り合うブロック Eの表面積 Se、第 2陸部でブロック Dと隣り合うブロック Fの表面積 Sfを、以下の関係にすると良い。勿論、ここで言う表面積は踏面の表面積である。
Sa = Se X 92%~100%
Sb = Sf X 110%〜118%
Sc = Se X 110%〜115%
Sd=Sf X 95%~100%
[0007] また、ラグ溝の第 1陸部内の車両内側部分での溝幅 xl、第 1陸部内の傾斜溝間で の溝幅 x2、第 1陸部内の車両外側部分での溝幅 x3を、以下の関係にすると良い。 x2=xl X 101%〜180%
x3=xl X 60%〜 99%
[0008] 更に、第 1陸部の幅を接地半幅の 50%〜70%としつつ第 2陸部の幅を接地半幅 の 15%〜35%とすること、ラグ溝の第 2陸部内の車両外側部分での溝幅 ylを第 2陸 部内の車両内側部分での溝幅 y2の 40%〜50%とすること、傾斜溝のタイヤ周方向 に対する傾斜角度を 10° 〜30° とすること、並びに、第 1主溝、第 2主溝及び第 3主 溝の溝幅の総和をトレッド接地幅の 15%〜35%とすることも、雪上での走行性能とド ライ路面での操縦安定性及び耐摩耗性とを両立する上で有効である。
[0009] 特に、ドライ路面での操縦安定性を重視する場合、以下の構成を採用することが好 ましい。即ち、傾斜溝が 3本のラグ溝に連通し、第 1陸部内で 3本のラグ溝のうち両端 に位置するラグ溝を第 1主溝に対して連通させる一方で中間に位置するラグ溝を第 1 主溝に対して非連通とし、第 1陸部に 3本のラグ溝と傾斜溝とで区画された 3種類の ブロックを繰り返し単位として配置し、第 1陸部の車両内側で傾斜溝の他端側に位置 するブロック A及び第 1陸部の車両内側で傾斜溝の一端側に位置するブロック Bに比 ベて第 1陸部の車両外側に位置するブロック Gを相対的に大きくすると良い。この場 合、ブロック剛性を確保するために、ラグ溝のブロック Gに隣接する部分のタイヤ周方 向に対する傾斜角度は 60° 〜90° とすることが好ましい。
[0010] 本発明では、スタッドレスタイヤに代表される氷雪路用空気入りタイヤを構成する場 合、第 1陸部及び第 2陸部を含む各陸部にタイヤ幅方向に延びる複数本のサイプを 設けることが好ましい。本発明は、氷雪路用空気入りタイヤに適用した場合に顕著な 作用効果が得られるが、オールシーズン用の空気入りタイヤにも適用することが可能 である。
図面の簡単な説明
[0011] [図 1]本発明の実施形態からなる氷雪路用空気入りタイヤのトレッドパターンを示す展 開図である。
[図 2]図 1における第 1陸部を拡大して示す平面図である。
[図 3]図 1における第 2陸部を拡大して示す平面図である。
[図 4]図 1のトレッドパターンの変形例を示す展開図である。
[図 5]本発明の他の実施形態力もなる氷雪路用空気入りタイヤのトレッドパターンを示 す展開図である。
[図 6]図 5における第 1陸部を拡大して示す平面図である。
[図 7]図 5のトレッドパターンの変形例を示す展開図である。
発明を実施するための最良の形態 [0012] 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
図 1は本発明の実施形態力もなる氷雪路用空気入りタイヤのトレッドパターンを示 すものである。本実施形態の空気入りタイヤは、車両に対するタイヤ表裏の装着向き が指定されており、図 1において、 INは車両内側、 OUTは車両外側である。
[0013] 図 1に示すように、トレッド部 1には、トレッド中央領域でタイヤ周方向に延びる主溝 11 (第 1主溝)と、主溝 11よりも車両内側のショルダー領域でタイヤ周方向に延びる 主溝 12 (第 2主溝)と、主溝 11よりも車両外側のショルダー領域でタイヤ周方向に延 びる主溝 13 (第 3主溝)と、一方のショルダー側から他方のショルダー側へ延びる複 数本のラグ溝 14とが形成されている。ラグ溝 14は湾曲しながらタイヤ幅方向に対して 一方向に傾斜し、タイヤ周方向に間隔をおいて配置されている。これにより、主溝 11 と主溝 12との間には陸部 21 (第 1陸部)が区画され、主溝 11と主溝 13との間には陸 部 22 (第 2陸部)が区画され、更に、主溝 12よりタイヤ幅方向外側には陸部 23 (第 3 陸部)が区画され、主溝 13よりタイヤ幅方向外側には陸部 24 (第 4陸部)が区画され ている。そして、陸部 21の幅は陸部 22の幅よりも大きくなつている。
[0014] 陸部 21には、タイヤ周方向に対して傾斜しながら 3本のラグ溝 14に連通する複数 本の傾斜溝 15が形成されている。傾斜溝 15の一端 15aはラグ溝 14に開口し、他端 15bはブロック内で終端している。特に、傾斜溝 15は、ラグ溝 14とは反対方向に傾 斜し、ブロック内で終端する他方の端部 15bが車両内側を向くように配置されている 。これにより、陸部 21には 3本のラグ溝 14と傾斜溝 15とで区画された形状が異なる 4 種類のブロックが繰り返し単位として配置されている。また、陸部 22〜24にはそれぞ れラグ溝 14により区画された複数のブロックが配置されて!、る。
[0015] 陸部 21〜24に含まれる各ブロックには、それぞれタイヤ幅方向に延びる複数本の サイプ 16が形成されている。これらサイプ 16の形状は特に限定されるものではなぐ 平面視でジグザグ形状や直線形状を有するもの、或いは、 3次元形状を有するもの を採用することができる。
[0016] 上記空気入りタイヤでは、トレッド部 1を 3本の主溝 11〜13により 4列の陸部に区画 し、車両内側の陸部 21の幅を車両外側の陸部 22の幅よりも大きくし、その広幅の陸 部 21に対して長めの傾斜溝 15を設けることにより、ブロック剛性を最適化しているの で、ドライ路面での操縦安定性及び耐摩耗性を十分に確保することができる。しかも
、陸部 21の傾斜溝 15に基づいて雪上での操縦安定性や旋回性等の走行性能を改 善することができる。
[0017] 上記空気入りタイヤにおいて、陸部 21の車両内側で傾斜溝 15の他端側に位置す るブロック Aの表面積 Sa、陸部 21の車両内側で傾斜溝 15の一端側に位置するプロ ック Bの表面積 Sb、陸部 21の車両外側で傾斜溝 15の他端側に位置するブロック C の表面積 Sc、陸部 21の車両外側で傾斜溝 15の一端側に位置するブロック Dの表面 積 Sd、陸部 22でブロック Cと隣り合うブロック Eの表面積 Se、陸部 22でブロック Dと隣 り合うブロック Fの表面積 Sfは、以下の関係に設定されている。
Sa = Se X 92%~100%
Sb = Sf X 110%〜118%
Sc = Se X 110%〜115%
Sd=Sf X 95%~100%
[0018] 陸部 21におけるブロック表面積を上記の如く規定し、 4種類で 1つの単位を構成す るブロック A〜Dを比較的大きなブロック B, Cが対角位置となるように混在させること により、ドライ路面での走行性能と雪上での走行性能をバランス良く向上することが可 會 になる。
[0019] 陸部 21の幅 W1は接地半幅の 50%〜70%に設定され、陸部 22の幅 W2は接地半 幅の 15%〜35%に設定されている。陸部 21, 22の幅を上記範囲に設定することに より、ドライ路面での走行性能と雪上での走行性能をバランス良く向上することが可能 になる。陸部 21の幅 W1が上記範囲を下回ると傾斜溝 15の傾斜が不十分になって 雪上での操縦安定性が低下し、陸部 22の幅 W2が上記範囲を下回るとドライ路面で の操縦安定性及び旋回性が低下する。なお、接地半幅とは、 JATMAイヤーブック( 2004年度版)に規定される空気圧 負荷能力対応表において、最大負荷能力に対 応する空気圧をタイヤに充填し、その負荷能力の 80%の荷重を掛けたときにタイヤ 軸方向に測定されるトレッド接地幅 TCWの 1Z2の幅である。
[0020] ラグ溝 14の溝幅は、タイヤ幅方向の位置に応じて適正化されている。即ち、図 2に 示すように、ラグ溝 14の陸部 21内の車両内側部分での溝幅 xl、陸部 21内の傾斜 溝 15, 15間での溝幅 x2、陸部 21内の車両外側部分での溝幅 x3は、以下の関係に 設定されている。但し、ラグ溝 14が主溝への連通部位でブロックの面取りにより局部 的に拡大されている場合、上記溝幅 xl, x3は拡大部分を除いた部分の溝幅である x2=xl X 101%〜180%
x3=xl X 60%〜 99%
[0021] このように溝幅 x3を小さくすることで、トレッド中央領域の溝面積を少なくし、ドライ路 面や氷上での走行性能を向上することができ、傾斜溝 15, 15間での溝幅 x2を大きく することで、雪上での操縦安定性や旋回性を向上することができる。
[0022] 図 3に示すように、ラグ溝 14の陸部 22内の車両外側部分での溝幅 ylは陸部 22内 の車両内側部分での溝幅 y2の 40%〜50%に設定されて!、る。溝幅 ylを溝幅 y2よ りも狭くすることにより、ドライ路面での走行性能と雪上での走行性能をバランス良く 向上することが可能になる。溝幅 ylが上記範囲を上回るとドライ路面での旋回性が 低下し、逆に上記範囲を下回ると雪上でのトラクシヨン性能が低下する。なお、ドライ 性能を重視する場合、ラグ溝 14を陸部 22の途中で閉じてしまっても良い(図 4参照)
[0023] 傾斜溝 15のタイヤ周方向に対する傾斜角度 0は 10° 〜30° に設定されている。
傾斜溝 15の傾斜角度 Θが上記範囲より大きくなると、陸部 21におけるブロック間の 寸法差が大きくなつてブロック剛性が不均一となるため耐偏摩耗性が低下し、逆に上 記範囲より小さい場合、旋回時に傾斜溝 15による効果を十分に発揮することができ ず、雪上での操縦安定性が低下する。
[0024] 主溝 11〜13の溝幅の総和はトレッド接地幅 TCWの 15%〜35%に設定されてい る。主溝 11〜 13の溝幅の総和がトレッド接地幅 TCWの 15%未満であるとウエット性 能が低下し、逆に 35%を超えるとドライ路面での操縦安定性が低下する。
[0025] 図 5は本発明の他の実施形態力もなる氷雪路用空気入りタイヤのトレッドパターン を示すものである。本実施形態において、図 1〜図 4と同一物には同一符号を付して その部分の詳細な説明は省略する。
[0026] 図 5に示すように、陸部 21には、タイヤ周方向に対して傾斜しながら 3本のラグ溝 1 4に連通する複数本の傾斜溝 15が形成されている。傾斜溝 15の一端 15aはラグ溝 1 4に開口し、他端 15bはブロック内で終端している。陸部 21において、ラグ溝 14が連 通する 3本のラグ溝 14のうち両端に位置するラグ溝 14aは主溝 11に対して連通して いるが、中間に位置するラグ溝 14bは主溝 11に対して非連通となっている。これによ り、陸部 21には 3本のラグ溝 14a, 14bと傾斜溝 15とで区画された形状が異なる 3種 類のブロックが繰り返し単位として配置されている。そして、陸部 21の車両内側で傾 斜溝 15の他端側に位置するブロック A及び陸部 21の車両内側で傾斜溝 15の一端 側に位置するブロック Bに比べて陸部 21の車両外側に位置するブロック Gは相対的 に大きくなつている。ブロック Gの周方向長さはブロック A, Bの集合体の周方向長さと 概ね等しいものである。
[0027] 上記空気入りタイヤでは、トレッド部 1を 3本の主溝 11〜13により 4列の陸部に区画 し、車両内側の陸部 21の幅を車両外側の陸部 22の幅よりも大きくし、その広幅の陸 部 21に対して長めの傾斜溝 15を設けることにより、ブロック剛性を最適化しているの で、ドライ路面での操縦安定性及び耐摩耗性を十分に確保することができる。しかも 、陸部 21の傾斜溝 15に基づいて雪上での操縦安定性や旋回性等の走行性能を改 善することができる。特に、トレッド中央領域に位置するブロック Gを大型化しているた め、ドライ路面での操縦安定性を大幅に改善することができる。
[0028] ここで、図 6に示すように、ラグ溝 14aのブロック Gに隣接する部分のタイヤ周方向に 対する傾斜角度 αは 60° 〜90° とすることが好ましい。これにより、ブロック Gの剛 性を十分に確保することができる。傾斜角度 aが 60° 未満であるとブロック Gの剛性 が低下し、操縦安定性の改善効果が低下する。なお、ラグ溝 14aのブロック Gに隣接 する部分はタイヤ周方向に対して 、ずれの方向に傾斜して 、ても良 、(図 7参照)。
[0029] 以上、本発明の好ましい実施形態について詳細に説明したが、添付の請求の範囲 によって規定される本発明の精神及び範囲を逸脱しない限りにおいて、これに対して 種々の変更、代用及び置換を行うことができると理解されるべきである。
実施例
[0030] タイヤサイズが 205Z55R16である氷雪路用空気入りタイヤにおいて、トレッドパタ ーンだけを種々異ならせた従来例及び実施例 1〜3のタイヤをそれぞれ製作した。 [0031] 従来例は、トレッド部に、タイヤ周方向に延びる 5本の主溝と、タイヤ幅方向に延び る複数本のラグ溝とを設け、これら主溝とラグ溝により多数の矩形ブロックを区画した ものである。一方、実施例 1は図 1に示すトレッドパターンを有するものであり、実施例 2は図 4に示すトレッドパターンを有するものであり、実施例 3は図 5に示すトレッドパタ ーンを有するものである。実施例 1〜3において、第 1陸部の幅はトレッド接地半幅の 56%とし、第 2陸部の幅はトレッド接地半幅の 27%とし、傾斜溝のタイヤ周方向に対 する傾斜角度は 15° とし、第 1主溝、第 2主溝及び第 3主溝の溝幅の総和はトレッド 接地幅の 21. 4%とした。
[0032] これら試験タイヤについて、下記の試験方法により、ドライ路面での操縦安定性、雪 上での操縦安定性、雪上での旋回性、耐摩耗性を評価し、その結果を表 1に示した
[0033] ドライ路面での操縦安定性:
試験タイヤをリムサイズ 16 X 6. 5Jのホイールに組付け、空気圧 200kPaとして排気 量 2000ccの後輪駆動車に装着し、ドライ路面のテストコースにぉ 、てテストドライバ 一による官能評価を行った。評価結果は、従来例を 100とする指数にて示した。この 指数値が大き 、ほどドライ路面での操縦安定性が優れて 、ることを意味する。
[0034] 雪上での操縦安定性:
試験タイヤをリムサイズ 16 X 6. 5Jのホイールに組付け、空気圧 200kPaとして排気 量 2000ccの後輪駆動車に装着し、雪上のテストコースにおいてテストドライバーによ る官能評価を行った。評価結果は、従来例を 100とする指数にて示した。この指数値 が大き ヽほど雪上での操縦安定性が優れて ヽることを意味する。
[0035] 雪上での旋回性:
試験タイヤをリムサイズ 16 X 6. 5Jのホイールに組付け、空気圧 200kPaとして排気 量 2000ccの後輪駆動車に装着し、雪上のテストコースにおいてテストドライバーによ る官能評価を行った。評価結果は、従来例を 100とする指数にて示した。この指数値 が大き 、ほど雪上での旋回性が優れて 、ることを意味する。
[0036] 耐摩耗性:
試験タイヤをリムサイズ 16 X 6. 5Jのホイールに組付け、空気圧 200kPaとして排気 量 2000ccの後輪駆動車に装着し、ドライ路面にて約 1万 km走行後、トレッドセンタ 一位置での摩耗量を測定した。評価結果は、測定値の逆数を用い、従来例を 100と する指数にて示した。この指数値が大き ヽほど耐摩耗性が優れて ヽることを意味する
[0037] [表 1] 表
Figure imgf000011_0001
[0038] この表 1から判るように、実施例 1〜3のタイヤは、従来例との対比において、ドライ 路面での操縦安定性、雪上での操縦安定性、雪上での旋回性、耐摩耗性が優れて いた。特に、実施例 3のタイヤはドライ路面での操縦安定性の改善効果が大きいもの であった。

Claims

請求の範囲
[1] 車両に対するタイヤ表裏の装着向きが指定された空気入りタイヤにおいて、トレッド 部に、タイヤ周方向に延びる第 1主溝と、第 1主溝よりも車両内側のショルダー領域で タイヤ周方向に延びる第 2主溝と、第 1主溝よりも車両外側のショルダー領域でタイヤ 周方向に延びる第 3主溝と、一方のショルダー側から他方のショルダー側へ延びる複 数本のラグ溝とを設け、第 1主溝と第 2主溝との間に区画された第 1陸部の幅を第 1 主溝と第 3主溝との間に区画された第 2陸部の幅よりも大きくし、前記第 1陸部にタイ ャ周方向に対して傾斜しながら少なくとも 3本のラグ溝に連通する複数本の傾斜溝を 設け、該傾斜溝の一端をラグ溝に開口する一方で他端をブロック内で終端させたこと を特徴とする空気入りタイヤ。
[2] 前記傾斜溝が 3本のラグ溝に連通し、前記第 1陸部に前記 3本のラグ溝と前記傾斜 溝とで区画された 4種類のブロックを繰り返し単位として配置すると共に、前記第 2陸 部に前記複数本のラグ溝で区画された複数のブロックを配置し、前記第 1陸部の車 両内側で傾斜溝の他端側に位置するブロック Aの表面積 Sa、前記第 1陸部の車両 内側で傾斜溝の一端側に位置するブロック Bの表面積 Sb、前記第 1陸部の車両外 側で傾斜溝の他端側に位置するブロック Cの表面積 Sc、前記第 1陸部の車両外側で 傾斜溝の一端側に位置するブロック Dの表面積 Sd、前記第 2陸部で前記ブロックじと 隣り合うブロック Eの表面積 Se、前記第 2陸部で前記ブロック Dと隣り合うブロック Fの 表面積 Sfを、
Sa = Se X 92%~100%
Sb = Sf X 110%〜118%
Sc = Se X 110%〜115%
Sd=Sf X 95%~100%
の関係にした請求項 1に記載の空気入りタイヤ。
[3] 前記傾斜溝が 3本のラグ溝に連通し、前記第 1陸部内で前記 3本のラグ溝のうち両 端に位置するラグ溝を前記第 1主溝に対して連通させる一方で中間に位置するラグ 溝を前記第 1主溝に対して非連通とし、前記第 1陸部に前記 3本のラグ溝と前記傾斜 溝とで区画された 3種類のブロックを繰り返し単位として配置し、前記第 1陸部の車両 内側で傾斜溝の他端側に位置するブロック A及び前記第 1陸部の車両内側で傾斜 溝の一端側に位置するブロック Bに比べて前記第 1陸部の車両外側に位置するプロ ック Gを相対的に大きくした請求項 1に記載の空気入りタイヤ。
[4] 前記ラグ溝の前記ブロック Gに隣接する部分のタイヤ周方向に対する傾斜角度を 6
0° 〜90° とした請求項 3に記載の空気入りタイヤ。
[5] 前記ラグ溝の第 1陸部内の車両内側部分での溝幅 xl、第 1陸部内の一対の傾斜 溝間での溝幅 x2、第 1陸部内の車両外側部分での溝幅 x3を、
x2=xl X 101%〜180%
x3=xl X 60%〜 99%
の関係にした請求項 1〜4のいずれかに記載の空気入りタイヤ。
[6] 前記第 1陸部の幅を接地半幅の 50%〜70%とし、前記第 2陸部の幅を接地半幅 の 15%〜35%とした請求項 1〜5のいずれかに記載の空気入りタイヤ。
[7] 前記ラグ溝の第 2陸部内の車両外側部分での溝幅 ylを第 2陸部内の車両内側部 分での溝幅 y2の 40%〜50%とした請求項 1〜6のいずれかに記載の空気入りタイ ャ。
[8] 前記傾斜溝のタイヤ周方向に対する傾斜角度を 10° 〜30° とした請求項 1〜7の
V、ずれかに記載の空気入りタイヤ。
[9] 前記第 1主溝、第 2主溝及び第 3主溝の溝幅の総和をトレッド接地幅の 15%〜35
%とした請求項 1〜8のいずれかに記載の空気入りタイヤ。
[10] 前記第 1陸部及び第 2陸部を含む各陸部にタイヤ幅方向に延びる複数本のサイプ を設けた請求項 1〜9のいずれかに記載の空気入りタイヤ。
PCT/JP2006/316986 2006-08-29 2006-08-29 Pneumatic tire WO2008026255A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/304,453 US8210222B2 (en) 2006-08-29 2006-08-29 Pneumatic tire
CN2006800556478A CN101505976B (zh) 2006-08-29 2006-08-29 充气轮胎
DE602006018667T DE602006018667D1 (de) 2006-08-29 2006-08-29 Luftreifen
PCT/JP2006/316986 WO2008026255A1 (en) 2006-08-29 2006-08-29 Pneumatic tire
EP06796963A EP2058144B1 (en) 2006-08-29 2006-08-29 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316986 WO2008026255A1 (en) 2006-08-29 2006-08-29 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2008026255A1 true WO2008026255A1 (en) 2008-03-06

Family

ID=39135547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316986 WO2008026255A1 (en) 2006-08-29 2006-08-29 Pneumatic tire

Country Status (5)

Country Link
US (1) US8210222B2 (ja)
EP (1) EP2058144B1 (ja)
CN (1) CN101505976B (ja)
DE (1) DE602006018667D1 (ja)
WO (1) WO2008026255A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120608A1 (en) * 2008-07-10 2011-05-26 Bridgestone Corporation Studless tire
CN103826873A (zh) * 2011-09-28 2014-05-28 株式会社普利司通 充气轮胎
CN107444024A (zh) * 2016-04-12 2017-12-08 住友橡胶工业株式会社 充气轮胎
JP2019043309A (ja) * 2017-08-31 2019-03-22 Toyo Tire株式会社 空気入りタイヤ
JP2019182143A (ja) * 2018-04-06 2019-10-24 住友ゴム工業株式会社 タイヤ
JP2020196285A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ
JP2020196279A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ
JP2020196284A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898837B2 (ja) * 2010-09-02 2016-04-06 株式会社ブリヂストン 空気入りタイヤ
FR2964601B1 (fr) * 2010-09-10 2012-09-07 Michelin Soc Tech Bande de roulement pour pneumatique
JP5705487B2 (ja) * 2010-09-29 2015-04-22 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP5320427B2 (ja) * 2011-04-12 2013-10-23 住友ゴム工業株式会社 空気入りタイヤ
JP4905599B1 (ja) 2011-04-27 2012-03-28 横浜ゴム株式会社 空気入りタイヤ
CN103253088B (zh) * 2012-02-20 2015-12-30 建大橡胶(中国)有限公司 全地型越野用轮胎
JP5842885B2 (ja) * 2013-09-04 2016-01-13 横浜ゴム株式会社 空気入りタイヤ
DE102013225302A1 (de) * 2013-12-09 2015-06-11 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP5830079B2 (ja) * 2013-12-20 2015-12-09 住友ゴム工業株式会社 空気入りタイヤ
JP5870123B2 (ja) * 2014-01-20 2016-02-24 住友ゴム工業株式会社 空気入りタイヤ
JP5903117B2 (ja) * 2014-02-28 2016-04-13 住友ゴム工業株式会社 空気入りタイヤ
EP3078507B1 (en) * 2013-12-20 2019-05-22 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP6362910B2 (ja) * 2014-04-11 2018-07-25 株式会社ブリヂストン 空気入りタイヤ
USD796423S1 (en) 2015-08-18 2017-09-05 Bridgestone Americas Tire Operations, Llc Tire tread
USD772790S1 (en) 2015-09-09 2016-11-29 Bridgestone Americas Tire Operations, Inc. Tire tread
USD788695S1 (en) 2015-09-10 2017-06-06 Bridgestone Americas Tire Operations, Llc Tire shoulder
JP6663684B2 (ja) * 2015-10-30 2020-03-13 Toyo Tire株式会社 空気入りタイヤ
WO2017082410A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
RU2687392C1 (ru) * 2015-11-12 2019-05-13 Бриджстоун Корпорейшн Шина
JP6867121B2 (ja) * 2016-08-03 2021-04-28 Toyo Tire株式会社 空気入りタイヤ
JP7108632B2 (ja) * 2017-12-13 2022-07-28 株式会社ブリヂストン 空気入りタイヤ
CN108274958A (zh) * 2018-02-09 2018-07-13 建大橡胶(中国)有限公司 一种高尔夫球车轮胎
JP7121695B2 (ja) * 2019-06-19 2022-08-18 株式会社ブリヂストン タイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648120A (ja) * 1992-01-08 1994-02-22 Bridgestone Corp 空気入りタイヤ
JPH11321240A (ja) * 1997-12-04 1999-11-24 Continental Ag 冬用タイヤのトレッドパターン
JP2003146016A (ja) * 2001-11-08 2003-05-21 Bridgestone Corp 空気入りタイヤ及びその装着方法
JP2004034903A (ja) 2002-07-05 2004-02-05 Yokohama Rubber Co Ltd:The 氷雪路用空気入りタイヤ
WO2005032855A1 (ja) * 2003-10-01 2005-04-14 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
EP1529659A2 (de) * 2003-11-04 2005-05-11 Continental Aktiengesellschaft Fahrzeugluftreifen
JP2006510534A (ja) * 2002-12-19 2006-03-30 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ ウィンタータイヤ用トレッドパターン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852982B2 (ja) * 1991-11-06 1999-02-03 横浜ゴム株式会社 空気入りタイヤ
FI944892A (fi) * 1993-11-18 1995-08-18 Bridgestone Corp Pneumaattinen rengas
JPH07186622A (ja) * 1993-12-27 1995-07-25 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
DE19700101A1 (de) * 1997-01-03 1998-07-09 Pirelli Reifenwerke Laufflächenprofil für einen Fahrzeugreifen
CN1189335C (zh) * 1998-10-29 2005-02-16 倍耐力轮胎公司 轮胎及其胎面
US6595255B1 (en) * 1999-10-25 2003-07-22 Bridgestone Corporation Pneumatic tire including three circumferential grooves
JP4147284B2 (ja) * 2002-06-14 2008-09-10 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648120A (ja) * 1992-01-08 1994-02-22 Bridgestone Corp 空気入りタイヤ
JPH11321240A (ja) * 1997-12-04 1999-11-24 Continental Ag 冬用タイヤのトレッドパターン
JP2003146016A (ja) * 2001-11-08 2003-05-21 Bridgestone Corp 空気入りタイヤ及びその装着方法
JP2004034903A (ja) 2002-07-05 2004-02-05 Yokohama Rubber Co Ltd:The 氷雪路用空気入りタイヤ
JP2006510534A (ja) * 2002-12-19 2006-03-30 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ ウィンタータイヤ用トレッドパターン
WO2005032855A1 (ja) * 2003-10-01 2005-04-14 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
EP1529659A2 (de) * 2003-11-04 2005-05-11 Continental Aktiengesellschaft Fahrzeugluftreifen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2058144A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120608A1 (en) * 2008-07-10 2011-05-26 Bridgestone Corporation Studless tire
US8997811B2 (en) * 2008-07-10 2015-04-07 Bridgestone Corporation Studless tire
CN103826873A (zh) * 2011-09-28 2014-05-28 株式会社普利司通 充气轮胎
CN103826873B (zh) * 2011-09-28 2016-08-17 株式会社普利司通 充气轮胎
US9481211B2 (en) 2011-09-28 2016-11-01 Bridgestone Corporation Pneumatic tire
CN107444024A (zh) * 2016-04-12 2017-12-08 住友橡胶工业株式会社 充气轮胎
JP2019043309A (ja) * 2017-08-31 2019-03-22 Toyo Tire株式会社 空気入りタイヤ
JP2019182143A (ja) * 2018-04-06 2019-10-24 住友ゴム工業株式会社 タイヤ
JP7035740B2 (ja) 2018-04-06 2022-03-15 住友ゴム工業株式会社 タイヤ
JP2020196285A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ
JP2020196279A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ
JP2020196284A (ja) * 2019-05-31 2020-12-10 住友ゴム工業株式会社 タイヤ

Also Published As

Publication number Publication date
US20090188595A1 (en) 2009-07-30
EP2058144A1 (en) 2009-05-13
EP2058144A4 (en) 2010-01-13
US8210222B2 (en) 2012-07-03
CN101505976A (zh) 2009-08-12
CN101505976B (zh) 2011-03-09
EP2058144B1 (en) 2010-12-01
DE602006018667D1 (de) 2011-01-13

Similar Documents

Publication Publication Date Title
WO2008026255A1 (en) Pneumatic tire
JP4899787B2 (ja) 空気入りタイヤ
JP4215751B2 (ja) 空気入りタイヤ
US10994575B2 (en) Tire
JP4830005B2 (ja) 空気入りタイヤ
EP2163405B1 (en) Pneumatic tire
JP6724451B2 (ja) 空気入りタイヤ
JP4048058B2 (ja) 空気入りタイヤ
EP2602127B1 (en) Tire
JP5114890B2 (ja) 空気入りタイヤ
JP4316569B2 (ja) 氷雪路用空気入りタイヤ
JP3359000B2 (ja) 空気入りタイヤ
JPH04232106A (ja) タイヤトレッド
JP2002029224A (ja) 空気入りタイヤ
JP4367667B1 (ja) 空気入りタイヤ
EP1124698A1 (en) Tyre and tread thereof
JP4381869B2 (ja) 空気入りタイヤ
JP4595503B2 (ja) 空気入りタイヤ
JP4256004B2 (ja) 空気入りタイヤ
EP2316664B1 (en) Pneumatic tire
JP2019142446A (ja) 冬用タイヤ
JP3954397B2 (ja) 空気入りタイヤ
JP4688551B2 (ja) 空気入りタイヤ
JP4377017B2 (ja) 空気入りタイヤ
JP2008062841A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055647.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006796963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12304453

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009107194

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP