WO2008020601A1 - Ressort hélicoïdal pour pile à combustible - Google Patents

Ressort hélicoïdal pour pile à combustible Download PDF

Info

Publication number
WO2008020601A1
WO2008020601A1 PCT/JP2007/065921 JP2007065921W WO2008020601A1 WO 2008020601 A1 WO2008020601 A1 WO 2008020601A1 JP 2007065921 W JP2007065921 W JP 2007065921W WO 2008020601 A1 WO2008020601 A1 WO 2008020601A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
fuel cell
metal ions
concentration
ppb
Prior art date
Application number
PCT/JP2007/065921
Other languages
English (en)
French (fr)
Inventor
Kouki Kinouchi
Wataru Kurokawa
Shouzou Shintani
Daisuke Imoda
Kenji Yoshihiro
You Yamamori
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to CN2007800302508A priority Critical patent/CN101501915B/zh
Priority to EP07792555A priority patent/EP2053682A4/en
Priority to US12/376,397 priority patent/US20100248079A1/en
Publication of WO2008020601A1 publication Critical patent/WO2008020601A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell coil spring used in a fuel cell or a fuel cell cartridge, and more specifically, elutes metal ions from an acidic content liquid in a fuel cell or fuel cell cartridge.
  • the present invention relates to a coil spring for a fuel cell that is effectively suppressed.
  • Direct methanol fuel cell (DMFC) power device that can supply methanol directly to the anode electrode (fuel electrode) without using a reformer to remove hydrogen and cause an electrochemical reaction
  • DMFC Direct methanol fuel cell
  • the cartridge In such a small fuel cell, the cartridge must be miniaturized and used under high-temperature conditions.
  • the use of metal members has been proposed.
  • the fuel cell main body fuel tank and the fuel cell cartridge are each provided with a valve in the fuel flow path so that the flow path can be communicated only when connected, and such a valve is stable under various operating conditions.
  • Metal springs are suitable for operation, but in the manufacture of conventional springs, in order to improve the lubricity during wire drawing, the wire is generally plated with nickel. Coil springs with nickel plating on the surface are used for fuel cells When it is used in the field, it is difficult to use it because nickel ion elution may cause a decrease in power generation performance.
  • Japanese Laid-Open Patent Publication No. 9-85332 discloses a nickel plating formed by performing a nitriding treatment on a surface of austenitic stainless steel by a molten salt method to a thickness of 0.1 to 50 m and then drawing the wire. There has been proposed a stainless steel wire for springs that is not subjected to.
  • the metal surface is passivated as described in JP-A-2 002-42827 and JP-A-2000-345363.
  • gold plating has been proposed. Disclosure of the invention
  • any of the above-described coil springs is insufficient as a coil spring in contact with a fuel such as methanol in a fuel cell or fuel cell cartridge in terms of low elution, and gold plating and titanium are Although satisfactory in terms of elution resistance, it is expensive to use as a general-purpose member, and is not satisfactory in terms of economic efficiency. Coil springs are needed.
  • an object of the present invention is to provide a coil spring for a fuel cell or a cartridge for a fuel cell, in which elution of metal ions is reliably suppressed even when it comes into contact with the content liquid showing the acidity of the fuel cell.
  • a coil spring for a fuel cell used for a fuel cell or a cartridge for a fuel cell is made of austenitic stainless steel, and a nickel plating layer is not formed on the surface.
  • A, B, and C are coil coils in a methanol solution when the coil spring is immersed in a methanol solution (containing 1% water + 40,000 ppm formic acid) and stored at 60 ° C for 1 week.
  • Coil spring for a fuel cell characterized by having a cation index I represented by Provided.
  • the coil spring for a fuel cell used in the fuel cell or fuel cell cartridge of the present invention is made of austenitic stainless steel and does not form a double gel layer on the surface like a normal coil spring. It has been molded.
  • the wire is plated with nickel in order to improve the lubricity during wire drawing.
  • the forming is performed without applying nickel plating.
  • the austenitic stainless steel used in the present invention has a low magnetic permeability and is excellent in low elution itself.
  • the martensite transformation is performed. In the present invention, even when such martensitic transformation occurs, it is possible to reduce processing-induced martensite by applying a temper treatment described later. Thus, the excellent low elution property possessed by the austenitic stainless steel is maintained.
  • the coil spring for a fuel cell according to the present invention has an excellent low elution property with a cation index I force represented by the above formula (1) ⁇ 60 or less, particularly 6 or less. The hindrance to performance is effectively prevented.
  • the force thion index is a constant value.
  • the following coil springs have a satisfactory low elution property, and can be suitably used for fuel cell or fuel cell cartridge applications.
  • the cation index I was measured using methanol solution (water 1% + formic acid 4000ppm) in stainless steel 25mI and stored in methanol solution when stored at 60 ° C for 1 week. Measure the metal ion concentration and calculate the value per coil spring.
  • formic acid is contained in the solution based on the assumption that formic acid is generated by a side reaction of methanol in the fuel cell and flows backward to the spring use part. Formic acid is generated. This is because elution of metal ions from the coil spring is promoted.
  • the monovalent metal ion A in the above formula (1) is L ⁇ +, Na +, K + , a metal ion other than monovalent or trivalent, specifically, a divalent or tetravalent metal ion.
  • the coil spring of the present invention by forming the end winding, it is possible to improve the stack prevention, and it is also possible to provide a gap between the end windings in order to improve the cleaning performance.
  • the coil spring has a short pitch portion 1 that is an end winding portion in which a gap is formed and a long pitch portion 2 that is a portion other than the end winding, and the short pitch portion 1
  • the distance L1 between the wires is larger than 1 ⁇ m and smaller than the coil spring wire diameter 0, and the length of the short pitch L2 force ⁇ , the distance L3 of the long pitch 2 is larger than
  • the cleaning property can be improved without impairing the prevention of stacking due to the recoil winding.
  • the coil spring of the present invention has a force thione index I of 60 even when it is used in a fuel cell using a fuel whose acid content is acidic, such as the methanol solution in the present invention, or in a force trough for the fuel cell. Since it has the following excellent low elution properties, there is no risk of impeding the power generation performance of the fuel cell.
  • the coil spring of the present invention can improve the washability of the coil spring while having anti-stacking properties by forming the end winding having a gap of a predetermined interval.
  • the coil spring of the present invention can be particularly suitably used for a valve at a connection portion of a fuel cell cartridge to a fuel cell.
  • FIG. 1 is a side view showing an example of a coil spring for a fuel cell according to the present invention.
  • the coil spring for a fuel cell of the present invention having the above-described characteristics includes (1) a wire drawing process, a coiling process, an alkali ultrasonic cleaning process, a water cleaning process, a tempering process, a water cleaning process, a passivation processing process, (2) Wire drawing process, coiling process, alkali ultrasonic cleaning process, water cleaning process, tempering process, water cleaning process, pure water ultrasonic cleaning It can be suitably manufactured by a manufacturing process comprising the steps. Each step will be described below.
  • a wire made of austenitic stainless steel is used.
  • austenitic stainless steel those having a magnetic permeability in the range of 1.0 00 to 2.5 00 can be preferably used.
  • wire drawing is performed in order to make the wire rod made of austenitic stainless steel the required wire diameter.
  • a wire rod with nickel plating was used as a lubricant.
  • a wire rod without nickel plating is used. Used.
  • Conventionally known lubricants can be used as the lubricant, but calcium stearate or sodium stearate can be particularly preferably used in the present invention.
  • it is subjected to a conventionally known coiling process to form a coil spring shape.
  • Al force ultrasonic cleaning is performed by applying ultrasonic vibration while the coil spring is immersed in the Al force solution.
  • the pH of the alkaline solution is not limited to this, but is preferably in the range of 8 to 13, and the temperature of the alkaline solution is not limited to this, but is 30 to It is preferably in the range of 70 ° C.
  • water washing is performed to remove the alkaline solution adhering to the spring coil by alkaline ultrasonic cleaning.
  • the water used at this time may be well water.
  • the tempering process is an essential process in the manufacturing process of the coil spring, and is a process for removing the residual stress caused by the drawing and coiling and stabilizing the shape of the coil spring.
  • the work-induced martensite is reduced to reduce the permeability.
  • the effect of making the stainless steel base material itself low elution is achieved by reducing the amount of iron and forming an iron oxide film.
  • a salt bath temper process can be exemplified.
  • the salt bath has a large heat capacity and can be heat-treated in a relatively short time, so that the above-mentioned effects can be achieved effectively, and the cation index I of the coil spring can be obtained without performing the passivation treatment described later. It can be made 6 or less, and it is possible to ensure excellent low elution.
  • the salt bath tempering treatment is not limited to this, but nitrate, nitrite, etc. can be suitably used as a salt bath agent.
  • a salt bath heated in the range of 2700 to 4220 ° C It is processed by immersing the spring and heating for 10 to 30 minutes.
  • tempering with an electric furnace can be performed.
  • the temperature is preferably in the range of 2 70 to 4 20 ° C, and the treatment time is preferably in the range of 10 to 30 minutes.
  • the cation index can be reduced to a value less than 20 by performing the passivation treatment described later.
  • the iron not forming the oxide film is washed away and a chromium oxide film is formed to improve the low elution property of the stainless steel base material and to make the cation index smaller.
  • Passivation treatment (acid cleaning) is preferably performed.
  • the passivation treatment can be carried out by a method known per se. Depending on the type, concentration, temperature and treatment time of the organic acid solution to be used, the removal amount of iron not forming the oxide film and the chromium oxide coating However, when nitric acid with a concentration of 30 wt% is used, the treatment is performed at 30 to 50 ° C for 5 to 30 minutes. It is suitable.
  • the water used for removing the acid may be well water.
  • the spring coil subjected to the cleaning process after the passivation treatment is cleaned by applying ultrasonic vibration while being immersed in pure water containing no metal ions.
  • impurities attached to the spring coil are removed and cleaned, and a coil spring for a fuel cell or a power cell ridge for a fuel cell is manufactured.
  • chromium oxide film The definition of chromium oxide film is defined as follows. First, the chromium, iron, and oxygen on the outermost surface of the spring are measured using an X-ray photoelectron spectrometer (XPS). At this time, an oxygen peak was measured, and the chromium oxide film was defined as having a Cr / Fe ratio of Cr rFe of 3.0 or more. In general, when measuring the spring, hold the spring in a compressed state and press it lightly so that the curvature of the wire does not collapse. XPS measurement was performed with a measuring diameter of 100 m. This is difficult when the spring wire diameter is small, but if possible, a larger measurement diameter is desirable in terms of sensitivity.
  • XPS X-ray photoelectron spectrometer
  • Calcium stearate is applied to a 0.6 mm diameter wire made of austenitic stainless steel with a magnetic permeability of 1.500, and then this wire is drawn and coiled, with a free length of 1 1.7 mm, wire diameter (0) Is 0.4 "1 mm, outer diameter is 3.79 mm, short pitch length (L 2) is 1.62 mm, short pitch distance between lines (L 1) is 0.20, long pitch length A coil spring with a length of 8.7 7 mm and a long pitch distance (L3) of 0.83 mm was formed, and then the coil spring was washed with pH 9 treatment solution.
  • the coil spring was tempered by immersing it in a salt bath composed of nitrate and nitrite at a temperature of 350 ° C for 20 minutes, further rinsing in pure water, Washing was performed by applying vibration by sonic waves.
  • Example 2 A coil spring was manufactured in the same manner as in Example 1 except that the coil spring was subjected to tempering and washed with water, and then the coil spring was passivated at 40 ° C. for 10 minutes using nitric acid (concentration 30 wt ⁇ 1 ⁇ 4).
  • the coil spring is manufactured in the same manner as in Example 1 except that the short pitch length (L2) is 1.23 mm and the short pitch distance (L 1) is Omm. did. (Example 4)
  • Coil springs were manufactured in the same manner as in Example 1 except that the temper treatment was performed in an electric furnace at 270 ° C. for 10 minutes.
  • Coil springs were manufactured in the same manner as in Example 1 except that the temper treatment was performed in an electric furnace at 350 ° C for 30 minutes.
  • Coil springs were produced in the same manner as in Example 1 except that the temper treatment was performed for 30 minutes in an electric furnace at 420 ° C.
  • a coil spring was manufactured in the same manner as in Example 2 except that the temper treatment was performed in an electric furnace at 270 ° C. for 10 minutes.
  • a coil spring was manufactured in the same manner as in Example 2 except that the temper treatment was performed in an electric furnace at 350 ° C. for 30 minutes.
  • a 0.6 mm diameter wire made of austenitic stainless steel with a magnetic permeability of 1.500 is subjected to ⁇ ⁇ ⁇ plating, and this is subjected to wire drawing and coiling, with a free length of 11.7 mm, wire diameter ( ⁇ ) Is 0.41 mm, outer diameter is 3.79 mm, short pitch length (L2) is 1.62 mm, short pitch distance between lines (L 1) is 0.20, long pitch length A coil spring with a length of 7.87 mm and a long-pitch distance (L3) of 0.83 mm was formed. Next, this coil spring was washed with an alkaline solution having pH 9 and then washed with water.
  • the coil spring was tempered for 10 minutes in an electric furnace at 270 ° C. More water After washing, it was immersed in pure water and washed by applying ultrasonic vibration.
  • a coil spring was manufactured in the same manner as in Comparative Example 1, except that Ni plating was not performed and calcium stearate was used instead.
  • a coil spring was manufactured in the same manner as in Comparative Example 2 except that the temper treatment was not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Springs (AREA)

Description

明 細 書 燃料電池用コイルスプリング 技術分野
本発明は、 燃料電池或いは燃料電池カー卜リッジに用いられる燃料電池用コイルスプリ ングに関するものであり、 より詳細には燃料電池又は燃料電池用カートリッジ中の酸性内 容液に対しても金属イオンを溶出することが有効に抑制された燃料電池用コイルスプリン グに関する。 背景技術
水素を取リ出すための改質器を用いることなく燃料であるメタノールを直接ァノード極 (燃料極) に供給して、 電気化学反応を生じさせることができるダイレクトメタノール型 燃料電池 (D M F C ) 力 機器の小型化に適していることから、 特に携帯機器用の燃料電 池として注目されており、 このような小型の燃料電池においては、 カートリッジの小型化 や高温条件下での使用を可能にすべく、 金属部材の使用が提案されている。
その一方、 このようなダイレクトメタノール型燃料電池においては、 燃料であるメタノ ールを直接アノード極に供給して電気化学反応を生じさせるものであるため、 燃料メタノ ール中に金属イオンが存在すると電気化学反応を阻害し、 起電力の低下等、 発電性能が低 下するおそれがある。 このため、 メタノールのように発電時に酸化され酸性酸化物になり 内容液が酸性を示す燃料や、 或いは内容液として酸性を示す燃料を用いる燃料電池におい ては、 かかる燃料と接触する部位に用いられる金属部材が、 金属イオンを溶出しないこと が必要である。
燃料電池の本体燃料タンクと燃料電池用カートリッジは互いに燃料流路中に弁を備え、 接続したときだけ流路が通じるように形成されており、 このような弁を様々な使用条件下 で安定して動作させるには金属スプリングが好適であるが、 従来のスプリングの製造にお いては、 伸線加工時の潤滑性を向上させるために、 一般に線材にニッケルめっきが施され ており、 このような表面にニッケルめっきが施されたコイルスプリングを燃料電池の用途 に用いる場合には、 ニッケルイオンの溶出によって、 発電性能の低下が懸念されるためそ の利用は困難であった。
一方、 特開平 9一 85332号公報には、 オーステナイト系ステンレスの表面に溶融塩 法により膜厚が 0. 1〜50 mの窒化処理を行った後、 伸線加工を施して成る、 ニッケ ルめっきを施さないばね用ステンレス鋼線が提案されている。
また燃料電池に用いられる金属部材から金属イオンの溶出を防止するためには、 特開 2 002— 42827号公報及び特開 2000-345363号公報に記載されているよう に、 金属表面を不動態化処理すること等の他、 金メッキを施すこと等が提案されている。 発明の開示
しかしながら、 上述した何れの方法によるコイルスプリングも、 燃料電池又は燃料電池 用カートリッジにおいてメタノール等の'燃料と接触するコイルスプリングとしては低溶出 性の点で不十分であり、また金メツキやチタンは、耐溶出性の点では満足し得るとしても、 汎用部材として用いるには高価であり、 経済性の点で満足するものではなく、 金属イオン の溶出が確実に抑制されていると共に経済性をも兼ね備えたコイルスプリングが求められ ている。
従って本発明の目的は、 燃料電池の酸性を示す内容液に接触した場合にも金属イオンの 溶出が確実に抑制されている燃料電池又は燃料電池用カートリッジ用のコイルスプリング を提供することである。
本発明によれば、 燃料電池或いは燃料電池用カートリッジに用いられる燃料電池用コィ ルスプリングであって、 オーステナイト系ステンレスから成ると共に、 表面にニッケルめ つき層が形成されることなく、 下記式 (1 )
I =A+ 2 B+3 C - ■ ■ ( 1 )
式中、 A、 B、 Cはそれぞれ、 コイルスプリングをメタノール溶液 (水 1 %+蟻酸 40 00 p p m含有) 中に浸潰し、 60°C 1週間の条件で保存した際のメタノール溶液中の、 コイルスプリング 1個当たりの 1価金属イオンの濃度 (p p b) 、 1価又は 3価以外の金 属イオンの濃度 (p p b) 、 3価金属イオンの濃度 (p p b) を表す、
で表されるカチオン指数 Iが 60以下であることを特徴とする燃料電池用コイルスプリン グが提供される。
本発明の燃料電池又は燃料電池用コィルスプリングにおいては、
1 . 短ピッチ部及び長ピッチ部を有し、 短ピッチ部の線間距離が、 より大きく且つ コイルスプリングの線径よりも小さいと共に、 短ピッチ部長さが長ピッチ部の線間距離よ リ大きいこと、
2 . 表層にクロムの酸化被膜を有すること、
3 . ソルトバステンパー処理に付されて成ること、
が好適である。
本発明の燃料電池又は燃料電池用カートリッジに用いられる燃料電池用コイルスプリン グは、 オーステナイト系ステンレスから成り、 通常のコイルスプリングのように表面に二 ッゲルめつき層を形成することがなく、 コイルスプリングへ成形加工されている。
前述したとおり、 一般にコイルスプリングの成形方法においては、 伸線加工時の潤滑性 を向上させるために線材にニッケルめっきが施されているが、 本発明においては、 ニッケ ルめっきを施すことなく成形することによって、ニッケルイオンの溶出が防止されている。 更に、 本発明において用いるオーステナイト系ステンレスは、 透磁率が低く、 それ自体 低溶出性に優れたものであるが、 コイルスプリング形成のための伸線及びコイリングの加 ェを施すことにより、 マルテンサイ卜変態を誘起して低溶出性が損なわれるおそれがある が、 本発明においては、 かかるマルテンサイト変態を生じた場合にも、 後述するテンパー 処理を施すことによって、 加工誘起マルテンサイトを低減させることが可能となり、 ォー ステナイ卜系ステンレスが有する優れた低溶出性を維持しているのである。
そのため、 本発明の燃料電池用コイルスプリングは、 上記式 (1 ) で表されるカチオン 指数 I力《6 0以下、 特に 6以下であリ、 優れた低溶出性を有し、 燃料電池の発電性能を阻 害することが有効に防止されている。
すなわち、 燃料中にコイルスプリングから金属イオンが溶出すると、 かかる溶出金属ィ オンに起因して、 本来カソード極での反応に使用される水素イオンのカソード極への移動 が阻害されることから、 コイルスプリングから溶出される金属イオンにより減少した水素 イオン量を上記式 (1 ) で表されるカチオン指数として測定することにより、 コイルスプ リングが燃料電池の発電性能に与える影響を知ることができる。 従って、 かかるカチオン指数はその値が小さいほど、 金属イオンの溶出量が少なく、 燃 料電池の発電への性能に影響が低いことを意味するのであり、 本発明においてはかかる力 チオン指数が一定値以下であるコイルスプリングが、 満足する低溶出性を有し、 燃料電池 又は燃料電池用カートリッジの用途に好適に使用できることを表している。
尚、 カチオン指数 Iの測定方法は、 メタノ一ル溶液 (水 1 %+蟻酸 4000 p p m含有) 25m I中にステンレス部材を浸潰し、 60°C1週間の条件で保存した際のメタノール溶 液中の金属イオン濃度を測定し、 コイルスプリング 1個当たりの値として算出する。 尚、 溶液中に蟻酸を含有するのは、 燃料電池中でメタノールの副反応により蟻酸が発生し、 ス プリング使用部に逆流した場合を想定する事に基づくものであリ、 蟻酸が発生することに 伴い、コイルスプリングからの金属イオンの溶出が促進されるからである。また上記式(1 ) における一価の金属イオン Aとしては、 L ί +、 N a+、 K +であり、 1価又は 3価以外の 金属イオン、 具体的には 2価又は 4価の金属イオン Βとしては、 Mg2+, C a 2+, T i 2 +, Mr>2 +、 F e 2 + , C o 2+, N i 2+, C u 2+, Z n 2+, G e 4+, M o 4+, P b 2 +であ リ、 3価の金属イオン Cとしては A I 3+, C r 3+, S b3 +を測定する。
また本発明のコイルスプリングにおいては、 座巻きを形成することにより、 スタック防 止性を向上させることができ、 また洗浄性を向上させるためにかかる座巻き間に隙間を設 けることもできる。
図 1に示す本発明のコイルスプリングの一例においては、 隙間が形成された座巻き部分 である短ピッチ部 1及び座巻き以外の部分である長ピッチ部 2を有しており、 短ピッチ部 1の線間距離 L 1が 1 〃 mより大きく且つコィルスプリングの線径 0よりも小さいと共に 短ピッチ部長さ L2力《、 長ピッチ部 2の線間距離 L 3より大きいこと、 すなわち
1 im< L 1 <ø 且つ L 3く L 2
を満足することが特に好適である。 これによリ座巻きによるスタック防止性を損なうこと なく、 洗浄性を向上することができる。
本発明のコィルスプリングは、 本発明におけるメタノール溶液のように内容液が酸性を 示す燃料を用いる燃料電池或いは該燃料電池用の力一トリッジに使用された場合にも、 力 チオン指数 Iが 60以下と優れた低溶出性を有しているため、 燃料電池の発電性能を阻害 するおそれがない。 また本発明のコイルスプリングは、 所定間隔の隙間を有する座巻きを形成することによ リ、スタック防止性を有しながらコイルスプリングの洗浄性を向上することが可能となる。 本発明のコイルスプリングは、 燃料電池用カートリッジの燃料電池への接続部分の弁に 特に好適に使用することができる。 図面の簡単な説明
図 1は、 本発明の燃料電池用コイルスプリングの一例を示す側面図である。 発明を実施するための最良の形態
(製造方法)
上述した特性を有する本発明の燃料電池用コイルスプリングは、 (1 ) 伸線工程、 コィ リング工程、 アルカリ超音波洗浄工程、 水洗浄工程、 テンパー処理工程、 水洗浄工程、 不 動態化処理工程、 水洗浄工程、 純水超音波洗浄工程、 から成る製造工程、 或いは (2 ) 伸 線工程、 コィリング工程、 アルカリ超音波洗浄工程、 水洗浄工程、 テンパー処理工程、 水 洗浄工程、 純水超音波洗浄工程、 から成る製造工程により好適に製造することができる。 以下に各工程について説明する。
[線材]
本発明の燃料電池用コイルスプリングにおいては、 オーステナイ卜系ステンレス鋼から なる線材を用いる。オーステナイト系ステンレス鋼としては、透磁率が 1 . 0 0 0乃至 2 . 5 0 0の範囲にあるものを好適に使用できる。
[伸線 'コィリング工程]
オーステナイト系ステンレス鋼から成る線材を必要な線径にするために、 まず伸線加工 を施す。 この際従来のコイルスプリングの製造工程においては、 潤滑剤としてニッケルメ ツキが施された線材が使用されていたが、 本発明においては、 低溶出性の観点から、 ニッ ケルメツキが施されていない線材が用いられる。 このため本発明のコイルスプリングの製 造方法においては、 減摩剤を用いることが好ましい。 減摩剤としては、 従来公知のものを 使用することができるが、 本発明においては特にステアリン酸カルシウム、 或いはステア リン酸ナトリウムを好適に用いることができる。 次いで、 従来公知のコイリング加工に付されてコイルスプリング形状に付形される。
[アル力リ超音波洗浄■水洗浄]
次いで、 伸線の際に用いた減摩剤を除去すべく、 アルカリ超音波洗浄に付される。 アル 力リ超音波洗浄は、 アル力リ性溶液にコイルスプリングを浸漬した状態で超音波振動を加 えて洗浄する。 アルカリ性溶液の p Hは、 これに限定されるものではないが、 8乃至 1 3 の範囲あることが好適であり、 またアルカリ性溶液の温度は、 これに限定されるものでは ないが、 3 0乃至 7 0 °Cの範囲にあることが好ましい。
次いで、 アルカリ超音波洗浄により、 スプリングコイルに付着したアルカリ性溶液を除 去すべく、 水洗浄を行う。 この際用いる水は井水であってもよい。
[テンパー処理]
アル力リ除去のために水洗浄に付されたコイルスプリングは、 次いでテンパー処理に付 される。一般にテンパー処理は、コイルスプリングの製造工程において必須の工程であり、 伸線及びコィリングにより生じた残留応力が除去されると共に、 コイルスプリングの形状 を安定化させる処理であるが、 本発明で採用するテンパー処理においては、 伸線加工或い はコィリング加工により、 コイルスプリングに存在する残留応力を除去すること及び形状 の安定化という作用効果以外に、 前述した加工誘起マルテンサイトを低減させて、 透磁率 を低減させ、 酸化鉄被膜を形成することにより、 ステンレス母材自体を低溶出性のものに するという作用効果が奏される。
このような作用効果を奏することができるテン/ 一処理としては、 ソルトバステンパー 処理を挙げることができる。 ソルトバスは熱容量が大きく、 比較的短時間で加熱処理を行 うことができるため効果的に上記作用効果を達成でき、 後述する不動態化処理を施さなく ても、 コイルスプリングのカチオン指数 Iを 6以下にすることができ、 優れた低溶出性を 確保することが可能となる。
ソルトバステンパー処理は、 これに限定されないが塩浴剤として硝酸塩、 亜硝酸塩等を 好適に用いることができ、 2 7 0乃至 4 2 0 °Cの範囲に加熱されたソルトバス中に、 コィ ルスプリングを浸潰して、 1 0乃至 3 0分加熱することにより処理される。
また目的とするコイルスプリングが有すべきカチオン指数が 3 0乃至 6 0の範囲であれ ば、 電気炉によるテンパー処理を行うこともできる。 電気炉によるテンパー処理において は、 温度は 2 7 0乃至 4 2 0 °Cの範囲にあることが好ましく、 また処理時間は、 1 0乃至 3 0分の範囲であることが好適である。
尚、 電気炉によりテンパー処理を行う場合であっても、 後述する不動態化処理を施すこ とによリカチオン指数が 2 0未満の値に低減させることが可能となる。
[水洗浄]
テンパー処理後、 水洗浄を行う。 特にソルトバスによるテンパー処理では、 コイルスプ リングに付着した岩塩を除去する必要がある。 この際用いる水は井水であってもよい。
[不動態化処理]
本発明のコイルスプリングにおいては、 酸化膜を形成していない鉄を洗い流すと共に酸 化クロム被膜を形成し、 ステンレス母材の低溶出性を向上させ、 カチオン指数をより小さ い値にするために、 不動態化処理 (酸洗浄) を行うことが好ましい。
不動態化処理は、それ自体公知の方法によリ行うことができ、用いる有機酸溶液の種類、 濃度、 温度及び処理時間によって、 酸化膜を形成していない鉄の除去量及び酸化クロム被 膜の形成量が変わってくるので、 処理条件を一概に規定することはできないが、 濃度 3 0 w t %の硝酸を用いた場合には、 3 0乃至 5 0 °Cで 5乃至 3 0分間処理することが好適で o5る。
不動態化処理後、 スプリングコイルに付着した酸を除去すべく、 水洗浄を行う。 この際 後述するように、 最終工程として純水を用いた洗浄工程があるので、 酸を除去するために 用いる水は井水であってもよい。
[純水超音波洗浄]
不動態化処理後洗浄工程に付されたスプリングコイルは、 金属イオンなどを含有しない 純水中に浸潰された状態で超音波振動が加えられて洗浄される。 かかる超音波洗浄に付さ れることにより、 スプリングコイルに付着した不純物等が除去、 清浄化されて、 燃料電池 又は燃料電池用力一卜リッジ用のコイルスプリングが製造される。 実施例
(評価方法)
[カチオン指数] コイルスプリング (表面積 1. 64 cm2) をメタノール溶液 (水 1 % +蟻酸 4000 p pm含有) 25m l中に浸潰し、 60 °C 1週間の条件で保存した際のメタノール溶液中 の金属イオン濃度を I CP— MSを用いて測定し、 前記式 (1 ) を用いてカチオン指数を 測定した。
[スタック防止性]
底面の直径、 高さがコイルスプリングの自由長 1 0倍以上の金属、 またはガラス容器に コイルスプリングを自由長の 5倍以上の高さになるまで入れ、 J I SZ0232に規定される振動 条件により振動試験を行った後、 スプリング同士のスタックの有無を観察した。
[クロム酸化膜]
クロム酸化膜の存在の定義は、 以下のように定義している。 まず、 X線光電子分光分析 装置 (XPS) により、スプリング最表面のクロム、鉄、 および酸素を測定する。 この時、 酸素のピークが計測されると共に、 クロムと鉄の原子%の比 C rZF eが 3. 0以上の場 合をクロム酸化膜が存在すると定義した。 一般にスプリングの測定にあたっては、 スプリ ングを圧縮した状態に保持し、 その状態のまま、 線材の曲率がつぶれない程度に軽くプレ ス加工しておおよその平面を出してから、 直径 1 Oj!im〜1 00 mの測定径で X P S測 定を行った。 スプリングの線径が小さい場合には困難であるが、 可能であれば測定径は大 きい方が感度の点から望ましい。
(実施例 1 )
透磁率が 1. 500のオーステナイト系ステンレス鋼から成る直径 0. 6mmの線材に ステアリン酸カルシウムを施し、 これを伸線加工及びコィリング加工を施し、 自由長が 1 1. 7 mm, 線径 (0) が 0. 4 "1 mm、 外径が 3. 79mm短ピッチ部の長さ (L 2) が 1. 62mm、 短ピッチ部の線間距離 (L 1 ) が 0. 20、 長ピッチ部の長さが 7. 8 7 mm, 長ピッチ部の線間距離 (L3) が 0. 83 mmのコイルスプリングを成形した。 次いでこのコイルスプリングを p H 9のアル力リ処理液を用いて洗浄した後、 水洗した。 洗浄後、 コイルスプリングを硝酸塩、 亜硝酸塩から成る温度 350°Cのソルトバス中に 2 0分間浸潰してテンパー処理を行った。 更に水洗した後、 純水中に浸潰し、 超音波による 振動を加えて洗浄した。
(実施例 2) テンパー処理を施し、 水洗した後に、 コイルスプリングを硝酸 (濃度 30wt<¼) を用い て 40°C1 0分不動態化した以外は実施例 1 と同様にしてコイルスプリングを製造した。
(実施例 3)
短ピッチ部の長さ (L2) が 1. 23mm、 短ピッチ部の線間距離 (L 1 ) が Ommす なわち短ピッチ部を持たない事以外は実施例 1と同様にしてコイルスプリングを製造した。 (実施例 4)
テンパー処理を 270°Cの電気炉で 1 0分行った以外は実施例 1 と同様にしてコイルス プリングを製造した。
(実施例 5)
テンパー処理を 350°Cの電気炉で 30分行った以外は実施例 1と同様にしてコイルス プリングを製造した。
(実施例 6)
テンパー処理を 420°Cの電気炉で 30分行った以外は実施例 1と同様にしてコイルス プリングを製造した。
(実施例 7)
テンパー処理を 270°Cの電気炉で 1 0分行った以外は実施例 2と同様にしてコイルス プリングを製造した。
(実施例 8)
テンパー処理を 350°Cの電気炉で 30分行った以外は実施例 2と同様にしてコイルス プリングを製造した。
(比較例 1 )
透磁率が 1. 500のオーステナイト系ステンレス鋼から成る直径 0. 6 mmの線材に Ν ί メツキを施し、 これを伸線加工及びコィリング加工を施し、 自由長が 1 1. 7mm、 線径 (ø) が 0. 41 mm、 外径が 3. 79mm短ピッチ部の長さ (L2) が 1. 62m m、 短ピッチ部の線間距離 (L 1 ) が 0. 20、 長ピッチ部の長さが 7. 87mm、 長ピ ツチ部の線間距離 (L3) が 0. 83mmのコイルスプリングを成形した。 次いでこのコ ィルスプリングを p H 9のアル力リ処理液を用いて洗浄した後、 水洗した。
洗浄後、 コイルスプリングを 270°Cの電気炉で 1 0分間テンパー処理を行った。 更に水 洗した後、 純水中に浸潰し、 超音波による振動を加えて洗浄した。
(比較例 2 )
N i メツキを行わず、 代わりにステアリン酸カルシウムを施した以外は比較例 1 と同様 にしてコイルスプリングを製造した。
(比較例 3 )
テンパー処理を行わなかった以外は比較例 2と同様にしてコイルスプリングを製造した。
U I I
座巻き隙間 酸化クロム被膜
Niメツキ テンパー処理 テ
(短ピッチ部有) (不動態化) '
比較例 1 有 有 無 気炉 27 比較例 2 有 無 電気炉 27 比較例 3 無 有 無 無
実施 ! 1 無 有 無 ソル卜バス 35 実施例 2 無 有 有 ソルトバス 35 実施例 3 無 無 ソルトバス 35 実施例 4 無 有 無 電気炉 27 実施例 5 無 有 電気炉 35 実施例 6 無 有 . 無 電気炉 42 実施例 7 無 有 有 電気炉 27 実施例 8 無 有 有 電気炉 35

Claims

1. 燃料電池或いは燃料電池用カートリッジに用いられる燃料電池用コイルスプリング であって、 オーステナイト系ステンレスから成ると共に、 表面にニッケルめっき層が形成 されることなく、 下記式
I = A+ 2 B+ 3 C
式中、 A、 B、 Cはそれぞれ、 ステンレス部材をメタノール溶液 (水 1 %+蟻酸 400 0 p p m含有) 25m l中に浸潰し主冃、 60°C 1週間の条件で保存した際のメタノ一ル溶液 中の、 コイルスプリング 1個当たりの 1価金属イオンの濃度 (p p b) 、 1価又は 3価以 外の金属イオンの濃度 (p p b) 、 3価金属のイオンの濃度 (p p b) を表す、
で表されるカチオン指数 Iが 60以下であることを特徴とする燃料電池用コイルスプリン グ。 囲
2. 短ピッチ部及び長ピッチ部を有し、 短ピッチ部の線間距離が、 1 /mより大きく且 つコイルスプリングの線径よりも小さいと共に、 短ピッチ部長さが長ピッチ部の線間距離 よリ大きい請求項 1記載の燃料電池用コイルスプリング。
3. 表層にクロムの酸化被膜を有する請求項 1記載の燃料電池用コイルスプリング。
4. ソルトバステンパー処理に付されて成る請求項 1記載の燃料電池用コイルスプリン グ。
PCT/JP2007/065921 2006-08-14 2007-08-09 Ressort hélicoïdal pour pile à combustible WO2008020601A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800302508A CN101501915B (zh) 2006-08-14 2007-08-09 燃料电池用螺旋弹簧
EP07792555A EP2053682A4 (en) 2006-08-14 2007-08-09 SPIRAL SPRING FOR A FUEL CELL
US12/376,397 US20100248079A1 (en) 2006-08-14 2007-08-09 Coil spring for a fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006220953A JP5286551B2 (ja) 2006-08-14 2006-08-14 燃料電池用コイルスプリング
JP2006-220953 2006-08-14

Publications (1)

Publication Number Publication Date
WO2008020601A1 true WO2008020601A1 (fr) 2008-02-21

Family

ID=39082125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065921 WO2008020601A1 (fr) 2006-08-14 2007-08-09 Ressort hélicoïdal pour pile à combustible

Country Status (7)

Country Link
US (1) US20100248079A1 (ja)
EP (1) EP2053682A4 (ja)
JP (1) JP5286551B2 (ja)
KR (1) KR20090042915A (ja)
CN (1) CN101501915B (ja)
TW (1) TW200826344A (ja)
WO (1) WO2008020601A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047381A (ja) * 2006-08-14 2008-02-28 Toyo Seikan Kaisha Ltd 燃料電池用ステンレス部材
CN104057262B (zh) * 2014-07-02 2016-04-06 安庆谢德尔汽车零部件有限公司 一种高效的螺旋弹簧打样处理方法
EP2993341B1 (en) * 2014-09-08 2017-03-29 Magneti Marelli S.p.A. Fuel pump for a direct injection system
CN108779823B (zh) * 2016-03-31 2020-02-28 日本发条株式会社 螺旋弹簧

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268599A (ja) * 1994-03-30 1995-10-17 Shinko Pantec Co Ltd 高純度アルコール用ステンレス鋼及びその表面処理方法
JPH0985332A (ja) 1995-09-21 1997-03-31 Shinko Kosen Kogyo Kk コイリング特性に優れたばね用ステンレス鋼線およびその製造方法
JP2000345363A (ja) 1999-06-07 2000-12-12 Nisshin Steel Co Ltd Feイオンの溶出抑制作用が強化されたステンレス鋼酸洗仕上げ材及びその製造方法
JP2002042827A (ja) 2000-07-28 2002-02-08 Shinko Pantec Co Ltd 燃料電池用セパレータとその製造方法、および燃料電池
JP2003226940A (ja) * 2002-02-01 2003-08-15 Sumitomo Denko Steel Wire Kk ばね用ステンレス鋼線
WO2004019437A1 (ja) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha 燃料電池用金属部材とその製造方法、固体高分子形燃料電池用オーステナイトステンレス鋼とそれを用いた燃料電池用金属部材、固体高分子型燃料電池材料とその製造方法、耐食性導電部材とその製造方法、及び燃料電池
WO2005013393A2 (en) * 2003-07-29 2005-02-10 Societe Bic Fuel cartridge with connecting valve
JP2006177492A (ja) * 2004-12-24 2006-07-06 Toyo Seikan Kaisha Ltd カップラー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204885A (en) * 1979-03-21 1980-05-27 Union Carbide Corporation Method for providing strong wire
JPS6056215B2 (ja) * 1980-01-18 1985-12-09 新日本製鐵株式会社 線材の熱処理方法
JPS63125614A (ja) * 1986-11-14 1988-05-28 Nippon Mining Co Ltd 薄板ばね用オ−ステナイト系ステンレス鋼の製造方法
JPH02179889A (ja) * 1988-12-28 1990-07-12 Nippon Steel Corp 伸線性および耐食性の優れたオーステナイト系ステンレス鋼線材の製造方法
CA2354665C (en) * 2000-08-09 2006-10-31 Nippon Steel Corporation Soluble lubricating surface-treated stainless steel sheet with excellent shapability for fuel tank and method for manufacturing fuel tank
US6913845B2 (en) * 2002-10-28 2005-07-05 Utc Fuel Cells, Llc Reducing fuel cell cathode potential during startup and shutdown
US20060177676A1 (en) * 2003-08-13 2006-08-10 Ulrich Bast Heat-insulation material and arrangement of a heat-insulation layer containing said heat-insulation material
JP4699730B2 (ja) * 2004-09-14 2011-06-15 株式会社東海 ロック機構付コネクタ構造
JP2006286364A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 燃料電池の液注入装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268599A (ja) * 1994-03-30 1995-10-17 Shinko Pantec Co Ltd 高純度アルコール用ステンレス鋼及びその表面処理方法
JPH0985332A (ja) 1995-09-21 1997-03-31 Shinko Kosen Kogyo Kk コイリング特性に優れたばね用ステンレス鋼線およびその製造方法
JP2000345363A (ja) 1999-06-07 2000-12-12 Nisshin Steel Co Ltd Feイオンの溶出抑制作用が強化されたステンレス鋼酸洗仕上げ材及びその製造方法
JP2002042827A (ja) 2000-07-28 2002-02-08 Shinko Pantec Co Ltd 燃料電池用セパレータとその製造方法、および燃料電池
JP2003226940A (ja) * 2002-02-01 2003-08-15 Sumitomo Denko Steel Wire Kk ばね用ステンレス鋼線
WO2004019437A1 (ja) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha 燃料電池用金属部材とその製造方法、固体高分子形燃料電池用オーステナイトステンレス鋼とそれを用いた燃料電池用金属部材、固体高分子型燃料電池材料とその製造方法、耐食性導電部材とその製造方法、及び燃料電池
WO2005013393A2 (en) * 2003-07-29 2005-02-10 Societe Bic Fuel cartridge with connecting valve
JP2006177492A (ja) * 2004-12-24 2006-07-06 Toyo Seikan Kaisha Ltd カップラー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2053682A4 *

Also Published As

Publication number Publication date
JP5286551B2 (ja) 2013-09-11
US20100248079A1 (en) 2010-09-30
JP2008047382A (ja) 2008-02-28
CN101501915B (zh) 2011-04-13
EP2053682A1 (en) 2009-04-29
CN101501915A (zh) 2009-08-05
KR20090042915A (ko) 2009-05-04
TW200826344A (en) 2008-06-16
EP2053682A4 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2008020601A1 (fr) Ressort hélicoïdal pour pile à combustible
JP2015537124A (ja) ステンレス鋼表面の光沢化および不動態化
JP2008047381A (ja) 燃料電池用ステンレス部材
JP5190726B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP5392016B2 (ja) 導電性を有するステンレス鋼材とその製造方法
WO2021006099A1 (ja) 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
JP2011236499A (ja) ステンレス鋼材とその製造方法
JP6605066B2 (ja) Fe−Cr合金およびその製造方法
TWI444506B (zh) 不銹鋼製導電性構件及其製造方法
JP2009221512A (ja) Al含有フェライト系ステンレス鋼製導電性部材およびその製造方法
JP5309385B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP2017155311A (ja) 高耐食性合金材の製造方法
JP5315576B2 (ja) Si含有フェライト系ステンレス鋼製導電性部材およびその製造方法
JPH11172476A (ja) 鉄系金属の酸洗処理方法及び酸洗処理装置
JP3878376B2 (ja) 耐食Ti合金
WO1998044168A1 (fr) Bande d&#39;acier laminee a chaud contenant du chrome et son procede de production
JP4174141B2 (ja) 硝酸を用いないステンレス鋼の不動態化処理液
JP6104011B2 (ja) 接触抵抗の低いステンレス鋼板
US3378411A (en) Stress corrosion crack inhibitors
AU2021259899B2 (en) Austenitic stainless steel and spring
JP5315571B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP2006302729A (ja) 固体高分子型燃料電池用ステンレス鋼製セパレータ及び固体高分子型燃料電池
JP3984903B2 (ja) ステンレス鋼製閉ループ循環水系
EP4341453A1 (en) A straight stainless steel wire for flexible card clothing
JP2006302731A (ja) 固体高分子型燃料電池用ステンレス鋼製セパレータ及び固体高分子型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030250.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007792555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12376397

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097003049

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU