WO2008018557A1 - Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement - Google Patents

Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement Download PDF

Info

Publication number
WO2008018557A1
WO2008018557A1 PCT/JP2007/065648 JP2007065648W WO2008018557A1 WO 2008018557 A1 WO2008018557 A1 WO 2008018557A1 JP 2007065648 W JP2007065648 W JP 2007065648W WO 2008018557 A1 WO2008018557 A1 WO 2008018557A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
chip
flip
semiconductor package
circuit board
Prior art date
Application number
PCT/JP2007/065648
Other languages
English (en)
French (fr)
Inventor
Teppei Ito
Masahiro Wada
Hiroshi Hirose
Original Assignee
Sumitomo Bakelite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd. filed Critical Sumitomo Bakelite Co., Ltd.
Priority to JP2008528883A priority Critical patent/JPWO2008018557A1/ja
Publication of WO2008018557A1 publication Critical patent/WO2008018557A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the technical field of the present invention is generally the field of semiconductor packages and manufacturing methods thereof, and more specifically, the field of flip chip semiconductor packages.
  • the flip chip connection method is a method in which bumps and / or electrodes are formed on a semiconductor chip to form input / output terminals on the semiconductor chip and connected to the electrode terminals of the substrate. Further, the gap between the substrate and the semiconductor chip is sealed with an underfill material.
  • a thermosetting resin underfill material (sealing resin) is injected between the chip and the substrate from the periphery of the semiconductor chip using the capillary phenomenon, What is heat-cured is known.
  • Patent Document 1 In the flip chip semiconductor package, stress is applied to the interface between the semiconductor chip and the underfill material due to the curing and shrinkage stress of the sealing resin and the difference in the linear expansion coefficient between the semiconductor chip and the substrate. There is a force S that can cause cracks due to concentration and breakage of the chip. Therefore, various measures have been proposed in order to solve such problems (Patent Document 1). Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 11 67979
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-40775
  • the present invention has been made in view of the above circumstances, and aims to solve at least a part of the problems in the prior art, and in particular, reliably suppress or reduce the occurrence of cracks. To provide a flip chip semiconductor package with improved reliability and a method for manufacturing the same, it is an excellent feature.
  • the semiconductor chip connecting electrode surface of the circuit board and the electrode surface force of the semiconductor chip are S flip chip bonded, and the sealing resin is injected between the circuit board and the semiconductor chip.
  • a sealing resin is applied to the outer peripheral side portion of the semiconductor chip to form a fillet portion, and the fillet portion is inclined so that the surface extends outwardly from the upper edge of the outer peripheral side portion of the semiconductor chip toward the substrate.
  • a flip chip semiconductor package characterized in that the inclined angle formed between the inclined surface and the outer peripheral side portion of the semiconductor chip is 50 degrees or less in the vicinity of the upper edge of the outer peripheral side portion of the semiconductor chip. Is provided.
  • the fillet portion has a stress reduction structure with a predetermined inclination angle, the generation of cracks due to stress concentration near the boundary between the fillet portion and the semiconductor chip is prevented or reduced. And high reliability can be achieved. Furthermore, according to the present invention, a bonding step of flip-chip bonding the semiconductor chip connecting electrode surface of the circuit board and the electrode surface of the semiconductor chip, and a sealing resin between the circuit board and the semiconductor chip.
  • a sealing step of forming a fillet portion by injecting and applying a sealing resin to an outer peripheral side portion of the semiconductor chip in the sealing step, the fillet portion
  • the surface forms an inclined surface extending outward from the upper edge of the outer peripheral side of the semiconductor chip toward the substrate, and the inclination angle formed by the inclined surface and the outer peripheral side of the semiconductor chip is near the upper edge of the outer peripheral side of the semiconductor chip.
  • a method of manufacturing a flip-chip semiconductor package is provided, which is characterized in that the structure is formed at a temperature of 50 degrees or less.
  • Such a method does not require a complicated process because the structure of the fillet part is merely an inclined structure with a predetermined inclination angle, and the force and force near the boundary between the fillet part and the semiconductor chip are not required. The generation of cracks due to stress concentration can be effectively prevented or reduced.
  • the flip-chip semiconductor package according to the present invention has the effect of preventing or reducing the occurrence of cracks and achieving high reliability.
  • the flip chip semiconductor package manufacturing method according to the present invention produces an effect that a highly reliable flip chip semiconductor package can be manufactured without resorting to complicated additional steps.
  • FIG. 1 is a schematic cross-sectional view showing a flip chip semiconductor package according to a first embodiment of the present invention.
  • 1 is a circuit board
  • 2 is a semiconductor chip disposed above the circuit board, and its thickness is, for example, in the range of about 100 ⁇ m to 750 ⁇ m.
  • the semiconductor chip connecting electrode surface on the upper surface of the circuit board 1 and the electrode surface on the lower surface of the semiconductor chip 2 are flip-chip bonded via solder balls 3.
  • the sealing resin 4 is injected between the circuit board 1 and the semiconductor chip 2 to form an underfill portion 4a, while the sealing resin 4 is also applied to the outer peripheral side portion of the semiconductor chip 2.
  • the fillet 4b is shaped It is made.
  • the fillet portion 4b has a stress reducing structure, more specifically, a structure that reduces the peeling stress from the semiconductor chip 2 acting on the fillet portion 4b.
  • This structure is a structure in which the surface of the fillet portion 4b forms an inclined surface extending outward from the upper edge of the outer peripheral side portion 2a of the semiconductor chip 2 toward the circuit board 1, and the inclined surface and the semiconductor chip are formed.
  • the inclination angle ⁇ formed by the outer peripheral side of the semiconductor chip is set to 50 degrees or less near the upper edge of the outer peripheral side of the semiconductor chip.
  • the inclination angle ⁇ is the height (thickness) of the semiconductor chip, and the upper edge of the outer peripheral side of the semiconductor chip (that is, the circuit board of the circuit board on which the semiconductor chip is mounted) Is a line segment having a length of 1 / 2T extending from the opposite side of the semiconductor chip surface) to the circuit board along the outer peripheral side of the semiconductor chip. If the first side and the line extending perpendicularly to side 1 to the surface of the fillet part are the second side m, and the hypotenuse of the right triangle with sides 1 and m being the two sides is hypotenuse n, It is defined to mean the angle between side 1 of 1 and hypotenuse n.
  • This inclination angle ⁇ is preferably between 30 and 50 degrees.
  • the fillet portion 4b By forming the fillet portion 4b in the inclined portion having such a predetermined angle, it is possible to reduce the distortion of heat generated due to the difference in linear expansion coefficient between the fillet portion 4b and the semiconductor chip 2.
  • the peeling stress from the semiconductor chip 2 acting on the fillet portion 4b caused by thermosetting shrinkage, etc. is reduced, and the generation of cracks due to stress concentration, which was generated in the conventional structure, is suppressed or reduced, and the damage to the semiconductor chip is suppressed.
  • the reliability of the flip-chip semiconductor knocker can be improved.
  • the tensile stress applied in the width direction of the fillet part is distributed to the tensile stress in the height direction, so that force is applied to the component members and stress concentration in one direction is reduced. This is because mitigation can be achieved.
  • the inclined surface of the fillet portion 4b is an accurate flat inclined surface as long as the above-defined inclination angle ⁇ is 50 degrees or less, advantageously 30 degrees to 50 degrees. It is not necessary, it may be convex or concave, or it may be stepped.
  • FIG. 2 shows an example of the shape of the fillet portion 4b curved in a concave shape in a sectional side view. With such a fillet shape, manufacturing is easy and the volume of the fillet 4b can be reduced. In addition, since the concentration of force and stress on the hypotenuse of the fillet can be dispersed, the peeling stress from the semiconductor chip 2 acting on the fillet portion 4b in particular from the width direction can be further reduced. It is possible to provide an optimal stress reduction structure.
  • the sealing resin 4 uses, as one form, a resin that satisfies at least one, preferably two, and most preferably all of the following characteristics:
  • Resin whose glass transition temperature of the cured product is 60 to 130 ° C, more preferably 70 to 115 ° C;
  • the sealing resin 4 having such characteristics When the sealing resin 4 having such characteristics is used, the difference in linear expansion coefficient from the circuit board 1 and the semiconductor chip 2 can be reduced. In addition to the effect, it is possible to more effectively achieve the suppression or reduction of crack generation due to stress concentration.
  • the thermal curing shrinkage rate of the sealing resin 4 is larger than the thermal shrinkage rate of the circuit board 1 and the semiconductor chip 2, each component member is warped due to a change in environmental temperature, etc.
  • the sealing resin 4 is a resin containing at least one epoxy resin, and a resin containing a curing agent, a silane coupling agent, and an inorganic filler can be used.
  • a sealing resin is excellent in heat resistance, dielectric properties, etc. contributing to reliability improvement, and lowering the glass transition temperature, elastic modulus, etc. of the cured product by adjusting the cross-linking density. It is preferable to contribute to the stress reduction structure as described above.
  • the sealing resin 4 may be the same as the sealing resin used for forming the underfill portion 4a and the sealing resin force used for forming the fillet portion 4b, or the viscosity. And sealing resins having different properties such as linear expansion coefficient.
  • the same sealing resin is used, there are advantages in that it is not necessary to consider the influence of stress generation due to the difference in linear expansion coefficient between both sealing resins, and that workability is excellent.
  • a different sealing resin for example, a resin having excellent fluidity is used for the underfill portion 4a to improve the filling property and adhesion of the underfill portion, and the fillet portion 4b is used. In order to improve easy moldability and adhesion, it is necessary to use a resin having an appropriate viscosity.
  • the sealing resin 4 is a thermosetting resin composition, and as one form, (A) an epoxy resin, (B) a curing agent, (C This is a cured product of a liquid epoxy resin composition containing (a) a silane coupling agent and (D) an inorganic filler.
  • the sealing resin may contain (E) other additives as necessary.
  • each component will be described.
  • the (A) epoxy resin used for the sealing resin 4 is not particularly limited in molecular weight or structure as long as it has two or more epoxy groups in one molecule! /.
  • nopolac type epoxy resin bisphenol type epoxy resin, aromatic glycidylamine type epoxy resin, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenol methane type epoxy resin, triphenol propane type epoxy Resin, alkyl-modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentagen-modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl Type epoxy resin, aliphatic epoxy resin and the like.
  • an aliphatic or alicyclic epoxy resin containing a structure in which a glycidyl ether structure or a glycidylamine structure is bonded to an aromatic ring is preferred from the viewpoint of heat resistance, mechanical properties, and moisture resistance.
  • the sealing resin composition it is preferable that the epoxy resin is finally liquid at room temperature (25 ° C)! /, But even an epoxy resin that is solid at room temperature is liquid at room temperature. It should be dissolved in epoxy resin and eventually liquid! /
  • the (B) curing agent used for the sealing resin 4 contains two or more functional groups capable of forming a covalent bond with an epoxy group in the epoxy resin, provided that the functional group is In the case of an acid anhydride group, the molecular weight and the structure are not particularly limited as long as they contain one or more acid anhydride functional groups. Specific examples of functional groups include phenolic hydroxyl groups, acid anhydrides, primary amines and secondary amines.
  • the above-mentioned curing agents may be used alone or in combination with two or more curing agents containing the same functional group, and within a range that does not impair pot life and curability with an epoxy resin. If so, two or more curing agents containing different functional groups may be used in combination.
  • phenol resins and aromatic polyamine type curing agents are preferred from the viewpoints of heat resistance, electrical and mechanical properties. From the viewpoint of adhesion and moisture resistance, V is preferred from the viewpoint of aromatic polyamine type curing agent!
  • the compounding amount of the curing agent is in the range of 0.6 to 1.4 in terms of the active hydrogen equivalent of the curing agent with respect to the epoxy equivalent of the epoxy resin, more preferably 0.7 to 1.3. Range.
  • the active hydrogen equivalent of the curing agent is out of the above range, the reactivity and the heat resistance of the composition are remarkably impaired.
  • the functional group contained in the curing agent is an acid anhydride group, two carboxylic acid functional groups are derived from one acid anhydride functional group. Calculated as including two active hydrogens.
  • the (C) silane coupling agent used in the sealing resin 4 has a chemical structure that includes a silicon atom to which an alkoxy group is bonded and a hydrocarbon portion to which a functional group is bonded in one molecule. If it is a thing, especially molecular weight and a structure will not be limited. For example
  • silane coupling agents that exhibit the same function as mercapto silane coupling agents by thermal decomposition such as (3-triethoxysilylpropyl) disulfide. These silane coupling agents may be blended in advance with a hydrolysis reaction. These may be used alone or in combination of two or more.
  • the epoxy silane coupling agent has relatively good adhesion to circuit boards and semiconductor device member surfaces (solder resist on the circuit board surface, polyimide on the silicon chip surface, side surfaces of the silicon chip). It is preferable from the viewpoint.
  • Aminosilane coupling agents, latent aminosilane coupling agents, and mercaptosilane force coupling agents are preferred because of their very good adhesion to the polyimide and silicon nitride surfaces on the silicon chip surface.
  • the blending method of the silane coupling agent is an integral blend method in which the silica filler and other materials are mixed, dispersed, and mixed at the same time when the resin composition is manufactured.
  • a masterbatch method in which a coupling agent is dispersed and dissolved in advance in an epoxy resin, (ii) aromatic amine curing agent and / or other additives other than silica filler, and then mixed in the remaining materials.
  • There is a method of chemically modifying the agent on the surface of the silica filler and any combination method may be used, or a combination method combining these may be performed. More preferably, a master batch method or a master batch
  • the compounding method combining the method and the method of chemically modifying the silica surface layer can be achieved with the ability S to obtain a uniform resin composition.
  • Inorganic filler used for the sealing resin 4 'Filler includes talc, calcined clay, uncalcined clay, my strength, silicates such as glass, titanium oxide, alumina, fused silica ( Fused spherical silica, fused crushed silica), oxides such as silica powder such as synthetic silica and crystalline silica, carbonates such as calcium carbonate, magnesium carbonate, hydrated talcite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide Hydroxides such as barium sulfate, calcium sulfate, calcium sulfite, etc., borate such as zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride And nitrides such as boron nitride and boron nitride. These inorganic fillers may be used alone or in combination. Among these, fused silica, crystalline silica, and synthetic silica
  • the shape of the inorganic filler is not particularly limited, but the shape is preferably spherical from the viewpoint of filling characteristics.
  • the average particle size of the inorganic filler is preferably from 0.2;! To 2 O ⁇ m, particularly preferably from 0.2 to 8111.
  • the viscosity of the resin composition decreases, so that the filling property is improved, and when the upper limit is not exceeded! /, When the resin composition fills the gap of the semiconductor device Resin clogging is less likely to occur.
  • additives such as a low stress material, a diluent, a pigment, a flame retardant, a surfactant, a leveling agent, and an antifoaming agent are added to the sealing resin 4 as necessary.
  • Compound (E) may be added.
  • each component, additive, and the like are dispersed and kneaded using an apparatus such as a planetary mixer, a three-roller roll, a two-heat roll, or a laika machine, and then defoamed under vacuum. Processed and manufactured.
  • an apparatus such as a planetary mixer, a three-roller roll, a two-heat roll, or a laika machine, and then defoamed under vacuum.
  • temperature range where reaction between epoxy resin and curing agent and decomposition reaction of each component does not occur under atmospheric pressure or reduced pressure atmosphere for example, 50 ° C to 200 ° C Heat treatment at ° C is acceptable.
  • curing may be performed at a temperature of 5 ° C to 35 ° C for 12 to 96 hours.
  • circuit board 1 has a glass transition temperature of a cured product on a core layer containing a resin composition having a glass transition temperature of 160 to 270 ° C. and a linear expansion coefficient of 10 to 20 ppm / ° C.
  • the core layer has a thickness of 20 to 400 111
  • the insulating layer has a thickness of 10 to 60 Hm, and includes a core layer and, for example, 2 to 6 insulating layers.
  • the outer surface of the circuit board is provided with a heat-resistant coating layer such as solder resist for the purpose of protecting the conductor and maintaining insulation!
  • Adjustment of the characteristics of the circuit board 1 can be performed by those skilled in the art without undue experimentation.
  • the circuit board 1 having such characteristics is used, the difference in linear expansion coefficient between the circuit board 1 and the sealing resin 4 can be reduced. Therefore, the effect of the stress reduction structure of the fillet portion 4b described above can be obtained.
  • the characteristics of the sealing resin 4 it is possible to achieve better suppression or reduction of cracks due to stress concentration.
  • the core material used for the core layer is not particularly limited as long as it satisfies the above-mentioned conditions of the glass transition temperature and the linear expansion coefficient and has an appropriate strength.
  • a plate-like base material (so-called so-called glass fiber sheet, for example) impregnated into a fiber base material (for example, a glass fiber sheet) and cured with a resin composition including a cyanate resin, a phenol resin, an epoxy resin and an inorganic filler. Prepreda) can be suitably used.
  • thermosetting resin When a cyanate resin (including cyanate resin prepolymers) is used as the thermosetting resin, the linear expansion coefficient of the pre-preda can be reduced, and the electrical characteristics of the pre-preda (low dielectric constant, low dielectric loss tangent) Further, it is preferable because of its excellent mechanical strength.
  • the cyanate resin can be obtained, for example, by reacting a cyanogen halide with phenols and pre-polymerizing it by a method such as heating as necessary.
  • Specific examples include bisphenol type cyanate resins such as nopolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin.
  • nopolak-type shiane A salt resin is preferred.
  • the heat resistance can be improved by increasing the crosslinking density, and the flame retardancy of the resin composition and the like can be improved. This is because the nopolac cyanate resin forms a triazine ring after the curing reaction.
  • the nopolac-type cyanate resin is thought to be because of its high benzene ring ratio due to its structure and easy carbonization. Furthermore, even when the thickness of the prepreader is 0.5 mm or less, excellent rigidity can be imparted to a circuit board produced by curing the prepreader. In particular, since it has excellent rigidity during heating, it is particularly excellent in reliability when mounting semiconductor elements.
  • nopolac-type cyanate resin for example, a compound represented by the formula (I) can be used.
  • the average repeating unit n of the nopolak-type cyanate resin represented by the above formula (I) is not particularly limited, but 1 to 10 is preferable, and 2 to 7 is particularly preferable.
  • the average repeating unit n is less than the lower limit, the nopolac-type cyanate resin has low heat resistance, and the low-mer may be desorbed and volatilized during heating.
  • the average repeating unit n exceeds the above upper limit, the melt viscosity becomes too high, and the moldability of the prepreg may be lowered.
  • the weight average molecular weight of the cyanate resin is not particularly limited!
  • 500 force S is preferable, particularly 600 to 3,000 force S is preferable.
  • the weight average molecular weight is less than the above lower limit, tackiness may occur when the prepreg is produced, and when the prepreaders are in contact with each other, they may adhere to each other or transfer of the resin may occur.
  • the weight average molecular weight exceeds the above upper limit, the reaction becomes too fast, and when it is used as a circuit board, molding defects may occur or the interlayer peel strength may be reduced.
  • the weight average molecular weight of the cyanate resin and the like can be measured by, for example, GPC (gel permeation mouth matography, standard substance: converted to polystyrene).
  • the cyanate resin can be used alone or in combination of two or more having different weight average molecular weights, or one or two or more thereof. It is also possible to use the preboli-mer together.
  • the content of the thermosetting resin is not particularly limited, but is preferably 5 to 50% by weight, particularly preferably 20 to 40% by weight, based on the entire resin composition. If the content is less than the above lower limit value, it may be difficult to form a pre-predder. If the content exceeds the above upper limit value, the strength of the pre-predder may be reduced.
  • the resin composition preferably contains an inorganic filler. As a result, even if the circuit board is made thin (thickness 0.5 mm or less), it can be excellent in strength. In addition, the linear expansion of the circuit board can be improved.
  • Examples of the inorganic filler include, for example, talc, calcined clay, unfired clay, my strength, silicates such as glass, oxides such as titanium oxide, alumina, silica, and fused silica, calcium carbonate, Carbonates such as magnesium carbonate, hydrated talcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate, Borates such as barium metaborate, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanic acid such as strontium titanate and barium titanate A salt etc.
  • silicates such as glass, oxides such as titanium oxide, alumina, silica, and fused silica
  • calcium carbonate Carbonates such as
  • the inorganic filler one of these can be used alone, or two or more can be used in combination.
  • fused silica especially spherical fused silica
  • silica is preferred because it is excellent in low linear expansion. Its shape is crushed and spherical.
  • a method of use that suits the purpose is used, such as using spherical silica to lower the melt viscosity of the resin composition. .
  • thermosetting resin When a cyanate resin (particularly a nopolac-type cyanate resin) is used as the thermosetting resin, it is preferable to use an epoxy resin (substantially free of halogen atoms).
  • substantially free of halogen atoms means, for example, halogen in epoxy resin
  • the atomic content is 0.15 wt% or less (IPCA-ES01-2003).
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol.
  • Bisphenol type epoxy resin such as Nord Z type epoxy resin, phenol nopolac type epoxy resin, nopolac type epoxy resin such as cresol nopolac epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin
  • Alylene alkylene type epoxy resins such as silicone resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentagen type epoxy resin, norbornene type epoxy resin, adamantane Type epoxy resin, fluorene type epoxy resin, and the like.
  • One of these can be used alone as an epoxy resin, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination. You can also.
  • epoxy resins arylene type epoxy resins are particularly preferable. As a result, moisture-absorbing solder heat resistance and flame retardancy can be improved.
  • the above aryl alkylene type epoxy resin refers to an epoxy resin having one or more aryl groups in a repeating unit.
  • xylylene type epoxy resin, biphenol type epoxy resin and the like can be mentioned.
  • biphenyl dimethylene type epoxy resin is preferable.
  • the biphenyldimethylene type epoxy resin can be represented by, for example, the formula (II).
  • the average repeating unit n of the biphenyldimethylene type epoxy resin represented by the above formula (II) is not particularly limited, but 1 to 10 is preferable, and 2 to 5 is particularly preferable. If the average repeating unit n is less than the above lower limit value, the biphenyldimethylene type epoxy resin is easily crystallized, and the solubility in a general-purpose solvent is relatively lowered, which may be difficult to handle. On the other hand, when the average repeating unit n exceeds the upper limit, the fluidity of the resin is lowered, which may cause molding defects.
  • the content of the epoxy resin is not particularly limited, but is preferably from 2 to 40% by weight, more preferably from! To 55% by weight of the entire resin composition. If the content is less than the above lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the resulting product may decrease, and if it exceeds the upper limit, the heat resistance may decrease.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 500 to 20,000, particularly preferably 800 to 15,000. If the weight average molecular weight is less than the above lower limit, tackiness may occur in the prepreader. If the above upper limit is exceeded, impregnation into the fiber base material will be reduced during prepreparation and a uniform product will not be obtained. There is.
  • the weight average molecular weight of the epoxy resin can be measured by GPC, for example.
  • a cyanate resin especially a nopolac-type cyanate resin
  • a phenol resin examples include nopolac type phenol resin, resol type phenol resin, arylene alkylene type phenol resin, and the like.
  • One of these can be used alone as a phenol resin, or two or more having different weight average molecular weights are used in combination, or one or two or more of these prepolymers are used in combination. You can also.
  • arylene alkylene type phenol resins are preferable. Thereby, moisture absorption solder heat resistance can be improved further.
  • Examples of the arylene-type phenol resins include xylylene-type phenol resins and biphenyldimethylene-type phenol resins.
  • the biphenyldimethylene type phenol resin can be represented by, for example, the formula (III).
  • the repeating unit n of the biphenyldimethylene phenol resin represented by the above formula (III) is not particularly limited, but 1 to 12 is preferable, and 2 to 8 is particularly preferable. If the average repeating unit n is less than the lower limit, the heat resistance may be lowered. If the upper limit is exceeded, compatibility with other resins may be reduced, and workability may be reduced.
  • the content of the phenol resin is not particularly limited, but is preferably from! To 55% by weight of the whole resin composition, and particularly preferably from 5 to 40% by weight. If the content is less than the above lower limit, the heat resistance may be lowered, and if it exceeds the upper limit, the characteristics of low linear expansion may be impaired.
  • the weight average molecular weight of the phenol resin is not particularly limited.
  • the weight average molecular weight is less than the above lower limit, tackiness may occur in the prepreader. If the above upper limit is exceeded, the impregnation of the fiber base material will be reduced during preparation of the prepreader, and a uniform product will be obtained. There may not be.
  • the weight average molecular weight of the phenol resin can be measured by GPC, for example.
  • the cyanate resin especially nopolac-type cyanate resin
  • the phenol resin especially phenol resin
  • the resin composition is not particularly limited, but a coupling agent is preferably used.
  • the coupling agent improves the wettability of the interface between the thermosetting resin and the inorganic filler.
  • the thermosetting resin or the like and the inorganic filler can be uniformly fixed to the fiber base material, and the heat resistance, particularly the solder heat resistance after moisture absorption can be improved.
  • any of those usually used can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type strength. It is preferable to use one or more coupling agents selected from among the coupling agents. As a result, the wettability with the interface of the organic filler can be increased, thereby further improving the heat resistance.
  • the content of the coupling agent is not particularly limited because it depends on the specific surface area of the inorganic filler, but is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the inorganic filler. ; ⁇ 2 parts by weight are preferred. If the content is less than the above lower limit value, the inorganic filler cannot be sufficiently covered, so the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit value, the reaction is affected, and the bending strength Etc. may decrease.
  • a curing accelerator may be used in the resin composition as required.
  • a known material can be used as the curing accelerator.
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylethylacetoate cobalt (11), trisacetylacetonatecobalt (III), triethylamine, tributylamine, diazabicyclo Tertiary amines such as [2, 2, 2] octane, 2 phenyl 4-methyl imidazole, 2 ethyl 4-ethyl imidazole, 2 phenyl 4-methyl imidazole, 2 phenyl mono 4 methyl 5 hydroxy imidazole, 2 Examples include imidazoles such as phenolol 4,5 dihydroxyimidazole, phenol compounds such as phenol, bisphenol A, nonyl phenol, organic acids such as acetic acid, benzoic
  • the content of the curing accelerator is not particularly limited, but is preferably 0.05 to 5% by weight of the whole resin composition, and particularly preferably 0.2 to 2% by weight. If the content is less than the above lower limit value, the effect of accelerating curing may not appear. Storage stability may be reduced.
  • a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, a polyethersulfone resin, a polyester resin, a polyethylene resin, a thermoplastic resin such as a polystyrene resin, a styrene-butadiene copolymer, Polystyrene thermoplastic elastomers such as styrene-isoprene copolymers, polyolefin thermoplastic elastomers, polyamide elastomers, thermoplastic elastomers such as polyester elastomers, polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, methacryl Gen-type elastomers such as modified polybutadiene may be used in combination.
  • the resin composition may include other components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. These additives may be added.
  • the core material which is a plate-like base material (so-called pre-preda) made by impregnating a fiber base material (for example, a glass fiber sheet) with the resin composition described above, has a dielectric property and mechanical properties under high temperature and high humidity. It is suitable for manufacturing a circuit board having excellent characteristics such as reliability and electrical connection reliability.
  • the fiber substrate examples include glass fiber substrates such as glass woven fabric and glass nonwoven fabric, polyamide resin fibers, aromatic polyamide resin fibers, polyamide resin fibers such as wholly aromatic polyamide resin fibers, polyester resin fibers, Synthetic fiber base materials composed of woven or non-woven fabrics mainly composed of polyester resin fibers such as aromatic polyester resin fibers and wholly aromatic polyester resin fibers, polyimide resin fibers and fluororesin fibers, kraft paper, cotton fiber And organic fiber base materials such as paper base materials mainly composed of paper, mixed paper of linter and kraft pulp, and the like.
  • a glass fiber base material is preferable. As a result, the strength and water absorption of the prepreg can be improved. Also, the force S is used to reduce the linear expansion coefficient of the pre-preda.
  • Examples of the method of impregnating the fiber base material with the resin composition include a method of preparing a resin varnish using the resin composition, immersing the fiber base material in the resin varnish, and applying with various coaters. And a spraying method.
  • the method of immersing the fiber base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to the fiber base material can be improved.
  • a normal impregnation coating equipment can be used.
  • the solvent used in the resin varnish desirably has good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not have an adverse effect.
  • solvents that exhibit good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, and carbitol. Can be mentioned.
  • the solid content of the resin varnish is not particularly limited, but the solid content of the resin composition is preferably 40 to 80 wt%, particularly preferably 50 to 65 wt%. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved.
  • a core material can be obtained by impregnating the fiber base material with the resin composition and drying at a predetermined temperature, for example, 80 to 200 ° C.
  • the material used for the insulating layer is not particularly limited as long as it satisfies the above-mentioned glass transition temperature and linear expansion coefficient conditions of the circuit board 1 and has an appropriate strength. It is preferable that / is made of a resin composition containing a thermosetting resin. Thereby, the heat resistance of an insulating layer can be improved.
  • thermosetting resin examples include nopolac-type phenol resins such as phenol nopolac resin, cresol novolac resin, bisphenol A novolak resin, unmodified resole phenol resin, tung oil, amani oil, Phenolic resins such as resol-type phenolic resins such as oil-modified resole phenolic resins modified with talmi oil, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin Bisphenol type epoxy resin such as bisphenol Z type epoxy resin, bisphenol P type epoxy resin, bisphenol M type epoxy resin, nopolac such as phenol nopolac type epoxy resin, cresol nopolac epoxy resin Type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentagen type epoxy resin, nor Boronene type epoxy resin
  • One of these may be used alone, or two or more having different weight average molecular weights may be used in combination, or one or more of them may be used in combination with their prepolymers.
  • cyanate resins are particularly preferable.
  • the linear expansion coefficient of an insulating layer can be made small.
  • it has excellent electrical properties (low dielectric constant, low dielectric loss tangent), mechanical strength, etc. of the insulating layer.
  • the cyanate resin can be obtained, for example, by reacting a cyanogen halide with phenols and pre-polymerizing it by a method such as heating as necessary.
  • Specific examples include bisphenol type cyanate resins such as nopolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin.
  • nopolac-type silicate resins are preferred.
  • the heat resistance can be improved by increasing the crosslinking density, and the flame retardancy of the resin composition and the like can be improved. This is because the nopolac cyanate resin forms a triazine ring after the curing reaction.
  • the nopolac-type cyanate resin is thought to be because of its high benzene ring ratio due to its structure and easy carbonization.
  • nopolac-type cyanate resin for example, a compound represented by the formula (I) can be used.
  • the average repeating unit n of the nopolak-type cyanate resin represented by the above formula (I) is not particularly limited, but 1 to 10 is preferable, and 2 to 7 is particularly preferable.
  • the average repeating unit n is less than the above lower limit, the nopolac-type cyanate resin is easily crystallized, and the solubility in general-purpose solvents is relatively lowered, which may make handling difficult.
  • the average repeating unit n exceeds the above upper limit, the melt viscosity becomes too high, and the formability of the insulating layer may be lowered.
  • the weight average molecular weight of the cyanate resin is not particularly limited! /, But the weight average molecular weight
  • 500 force S is preferable, particularly 600 to 3,000 force S is preferable.
  • the weight average molecular weight is less than the above lower limit, the mechanical strength of the cured product of the insulating layer may be reduced, and when the insulating layer is produced, tackiness may occur and resin transfer may occur. is there.
  • the weight average molecular weight exceeds the above upper limit, the curing reaction is accelerated, and in the case of a substrate (particularly, a circuit substrate), molding defects may occur or the interlayer peel strength may be reduced.
  • the weight average molecular weight of the cyanate resin and the like can be measured by, for example, GPC (gel permeation mouth matography, standard substance: converted to polystyrene).
  • the above-mentioned cyanate resins including derivatives thereof can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two kinds can be used. It is possible to use these prepolymers together.
  • the content of the thermosetting resin is not particularly limited, but is preferably 5 to 50% by weight of the whole resin composition, and particularly preferably 10 to 40% by weight. If the content is less than the lower limit, it may be difficult to form an insulating layer, and if the content exceeds the upper limit, the strength of the insulating layer may be reduced.
  • a cyanate resin especially a nopolac-type cyanate resin
  • an epoxy resin substantially free of halogen atoms
  • substantially free of halogen atoms means, for example, those in which the content of halogen atoms in the epoxy resin is 0.15% by weight or less (IPCA-ES01-2003).
  • epoxy resin examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin, bisphenol P type epoxy resin, bisphenol M Type epoxy resin, bisphenol type epoxy resin, phenol nopolac type epoxy resin, cresol nopolac epoxy resin, etc.
  • nopolac type epoxy resin nopolac type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy
  • Alylene alkylene type epoxy resin such as resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentagen type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin Carboxymethyl resins, fluorene type epoxy resins and the like.
  • epoxy resin one of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination. You can also.
  • epoxy resins arylene type epoxy resins are particularly preferable. As a result, moisture-absorbing solder heat resistance and flame retardancy can be improved.
  • the above aryl alkylene type epoxy resin refers to an epoxy resin having one or more aryl alkylene groups in a repeating unit.
  • xylylene type epoxy resin, biphenyl dimethylene type epoxy resin and the like can be mentioned.
  • biphenyl dimethylene type epoxy resin is preferable.
  • the biphenyldimethylene type epoxy resin can be represented by, for example, the formula (II).
  • the average repeating unit n of the biphenyldimethylene type epoxy resin represented by the above formula (II) is not particularly limited, but 1 to 10 is preferable, and 2 to 5 is particularly preferable. If the average repeating unit n is less than the above lower limit, the biphenyldimethylene type epoxy resin is likely to be crystallized, and its solubility in general-purpose solvents is relatively lowered, which may make handling difficult. On the other hand, if the average repeating unit n exceeds the above upper limit, the fluidity of the resin is lowered, which may cause molding defects. By setting the number of average repeating units n within the above range, the balance of these characteristics can be excellent.
  • the content of the epoxy resin is not particularly limited, but is preferably from 5 to 40% by weight, more preferably from! To 55% by weight of the entire resin composition. If the content is less than the above lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the resulting product may decrease.If the content exceeds the upper limit, the low linear expansion and heat resistance will decrease. There is a case.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 500 to 20,000, especially ⁇ 800 to 15,000. If the weight average molecular weight is less than the above lower limit value, tackiness may occur on the surface of the insulating layer, and if the upper limit value is exceeded, solder heat resistance may decrease. By making the weight average molecular weight within the above range, it is possible to achieve an excellent balance of these characteristics.
  • the weight average molecular weight of the epoxy resin can be measured by GPC, for example.
  • the resin composition preferably contains a film-forming resin. Thereby, the film-forming property and handling property when producing an insulating layer with a substrate can be further improved.
  • Examples of the film-forming resin include phenoxy resins, bisphenol F resins, and olefin resins.
  • a film-forming resin one of them can be used alone, including its derivatives.
  • two or more types having different weight average molecular weights can be used in combination, or one or more types and their prepolymers can be used in combination.
  • phenoxy resins are preferred. As a result, it is possible to improve the heat resistance and flame retardancy with the power S.
  • the phenoxy resin is not particularly limited.
  • a phenoxy resin having a bisphenol A skeleton a phenoxy resin having a bisphenol F skeleton, a phenoxy resin having a bisphenol S skeleton, and a phenoxy having a bisphenol M skeleton.
  • phenoxy resin having bisphenol P skeleton phenoxy resin having bisphenol Z skeleton, etc.
  • phenoxy resin having bisphenol skeleton phenoxy resin having nopolac skeleton, phenoxy resin having anthracene skeleton, phenoxy having fluorene skeleton
  • phenoxy resin having dicyclopentagen skeleton phenoxy resin having norbornene skeleton, phenoxy resin having naphthalene skeleton, phenoxy resin having biphenyl skeleton, adamantane skeleton Phenoxy resins that are exemplified.
  • phenoxy resin a structure having a plurality of skeletons in these can be used, or phenoxy resins having different ratios of the skeletons can be used. Furthermore, a plurality of types of phenoxy resins having different skeletons can be used, or a plurality of types of phenoxy resins having different weight average molecular weights can be used or their prepolymers can be used in combination.
  • a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton it is possible to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton. This makes it possible to increase the glass transition temperature due to the rigidity of the biphenyl skeleton, and to improve the adhesion of metal plating when manufacturing a multilayer circuit board due to the bisphenol S skeleton.
  • a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton it is possible to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton. As a result, it is possible to improve the adhesion to the inner circuit board when manufacturing the multilayer circuit board. Furthermore, a phenoxy resin having the above biphenyl skeleton and a bisphenol S skeleton and a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton may be used in combination.
  • the molecular weight of the film-forming resin is not particularly limited, but the weight average molecular weight is 1000. ⁇ ; 100000 is preferable. More preferably, it is 10000-60000.
  • the weight average molecular weight of the film forming resin is less than the lower limit, the effect of improving the film forming property may not be sufficient. On the other hand, when the above upper limit is exceeded, the solubility of the film-forming resin may decrease. By making the weight average molecular weight of the film-forming resin within the above range, the balance of these properties can be excellent.
  • the content of the film-forming resin is not particularly limited, but is preferably !! to 40% by weight of the entire resin composition. More preferably, it is 5 to 30% by weight.
  • the content of the film-forming resin is less than the above lower limit, the effect of improving the film-forming property may not be sufficient.
  • the above upper limit is exceeded, the content of cyanate resin is relatively reduced, and the effect of imparting low linear expansion may be reduced.
  • thermosetting resin and the film-forming resin used in the insulating layer are substantially free of atoms and rogen atoms. As a result, it is possible to impart flame retardancy without using halogen compounds.
  • the phrase “substantially free of halogen atoms” means, for example, that the content of halogen atoms in the epoxy resin or phenoxy resin is 0.15 wt% or less (IPCA-ES01-2003).
  • a curing accelerator may be used in the resin composition as required.
  • a known material can be used as the curing accelerator.
  • hardening accelerators one of them can be used alone including these derivatives, or two or more of them can be used together including these derivatives.
  • imidazole compounds are particularly preferable. This makes the moisture absorption half Field heat resistance can be improved.
  • the imidazole compound is not particularly limited, but desirably has compatibility with the cyanate resin, epoxy resin, and film-forming resin component.
  • having compatibility with the cyanate resin, epoxy resin, and film-forming resin component means that the imidazole compound is mixed with the cyanate resin, epoxy resin, and film-forming resin component, or the imidazole compound is mixed with the cyanate resin.
  • Epoxy resin, film-forming property When mixed together with a resin component and an organic solvent, it refers to a property that can be dissolved substantially up to the molecular level, or can be dispersed to a state close to that.
  • the resin composition can effectively promote the reaction of cyanate resin or epoxy resin, and equivalent properties can be achieved even if the amount of imidazole compound is reduced. Can be granted.
  • a resin composition using such an imidazole compound can be cured with high uniformity from a small matrix unit between the resin components.
  • the insulating properties and heat resistance of the insulating layer formed on the multilayer circuit board can be improved.
  • the insulating layer formed from such a resin composition is subjected to a roughening treatment on the surface using an oxidizing agent such as permanganate or dichromate. Many minute uneven shapes with high uniformity can be formed on the surface of the insulating layer.
  • the smoothness of the roughened surface is high, so that a fine conductor circuit can be accurately formed.
  • the anchor effect is enhanced by the minute uneven shape, and the high strength S is applied to provide high adhesion between the insulating layer and the metal plating.
  • Examples of the imidazole compound used in the resin composition of the insulating layer include 1-benzyl-1-methylimidazole, 1-benzyl1-2-phenylimidazole, 2-phenyl-4-methylimidazole. , 2 ethyl 4-methylimidazole, 2,4 diamine 6- [2'-methylimidazolyl (1 ')]-ethyl s-triazine, 2,4 diamino-6- (2, undecylimidazolyl) -ethyl s-triazine 2, 4 Diamino-6- [2'-ethyl-4-methylimidazolinole (1,)]-ethyl triazine, 2 phenolinore —4, 5 dihydroxymethylimidazole, 2 phenyl 4 methyl 5 hydroxyme
  • Examples include tilimidazole.
  • an imidazole compound selected from 1-benzyl-1,2-methylimidazole, 1-benzyl-1,2-phenol imidazole, and 2-ethyl-4-methylimidazole is preferable.
  • These imidazole compounds have a particularly excellent compatibility, so that a highly uniform cured product can be obtained, and a fine and uniform roughened surface can be formed.
  • the multilayer circuit board can exhibit high heat resistance.
  • the content of the imidazole compound is not particularly limited, but is preferably 0.0;! To 5 wt% based on the total of the cyanate resin and the epoxy resin. % By weight is preferred. Thereby, especially heat resistance can be improved.
  • the resin composition preferably includes an inorganic filler! /.
  • an inorganic filler preferably includes an inorganic filler! /.
  • the elastic modulus can be improved by a combination of the cyanate resin and / or its prepolymer (particularly a nopolac-type cyanate resin) and an inorganic filler.
  • Examples of the inorganic filler include talc, calcined clay, uncalcined clay, myotite, silicates such as glass, oxides such as titanium oxide, alumina, silica, and fused silica, calcium carbonate, Carbonates such as magnesium carbonate, hydrated talcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate, Borates such as barium metaborate, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanic acid such as strontium titanate and barium titanate A salt etc.
  • silicates such as glass, oxides such as titanium oxide, alumina, silica, and fused silica
  • calcium carbonate Carbonates such as
  • the inorganic filler one of these can be used alone, or two or more can be used in combination.
  • fused silica especially spherical fused silica
  • silica is preferred because it is excellent in low linear expansion. Its shape is crushed and spherical.
  • a method of use that suits the purpose is used, such as using spherical silica to lower the melt viscosity of the resin composition. .
  • the average particle diameter of the inorganic filler is not particularly limited, but is 0.01-5. Being force S is preferable. More preferably 0.;! ⁇ 2. C ⁇ m.
  • the average particle size of the inorganic filler is less than the above lower limit, the viscosity of the resin varnish increases when the resin varnish is prepared using the resin composition of the present invention. It may affect the workability in manufacturing. On the other hand, if the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the resin varnish. By making the average particle diameter of the inorganic filler within the above range, the balance of these characteristics can be made excellent.
  • the inorganic filler is not particularly limited, and an inorganic filler having a monodispersed average particle diameter may be used, or an inorganic filler having a polydispersed average particle diameter may be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination.
  • the content of the inorganic filler is not particularly limited, but is preferably 20 to 70% by weight of the entire resin composition. More preferably, it is 30 to 60% by weight.
  • the content of the inorganic filler is less than the above lower limit, the effect of imparting low thermal expansion and low water absorption may be reduced.
  • the upper limit is exceeded, the moldability of the insulating layer may deteriorate due to the decrease in fluidity of the resin composition.
  • the resin composition is not particularly limited, but a coupling agent is preferably used.
  • the coupling agent can improve heat resistance, particularly moisture-absorbing solder heat resistance, by improving the wettability of the interface between the thermosetting resin and the inorganic filler.
  • any of those usually used can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type strength. It is preferable to use one or more coupling agents selected from among the coupling agents. As a result, the wettability with the interface of the organic filler can be increased, thereby further improving the heat resistance.
  • the content of the coupling agent is not particularly limited, but is preferably 0.05 to 3.00 parts by weight with respect to 100 parts by weight of the inorganic filler. If the content of the coupling agent is less than the above lower limit, the effect of improving the heat resistance by coating the inorganic filler may not be sufficient. On the other hand, when the above upper limit is exceeded, the bending strength of the insulating layer with the base material may decrease. By setting the content of the coupling agent within the above range, it is possible to achieve an excellent balance of these characteristics.
  • thermoplastic resin such as a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, a polyethersulfone resin, a polyester resin, a polyethylene resin, a polystyrene resin, a styrene-butadiene copolymer, Polystyrene thermoplastic elastomers such as styrene-isoprene copolymers, polyolefin thermoplastic elastomers, polyamide elastomers, thermoplastic elastomers such as polyester elastomers, polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, methacryl Gen-type elastomers such as modified polybutadiene may be used in combination.
  • a thermoplastic resin such as a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, a polyethersulfone resin
  • the resin composition may include other components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. These additives may be added.
  • the resin composition used for the insulating layer may be directly cured by impregnating a fiber substrate such as a glass fiber sheet.
  • the method of impregnating the base material with the resin composition is not particularly limited, but the insulating layer with a base material is formed by forming a resin layer composed of the above resin composition on the base material.
  • the method for forming the resin composition on the substrate is not particularly limited.
  • a resin varnish is prepared by dissolving and dispersing the resin composition in a solvent or the like, and various coater apparatuses are used.
  • a method of drying the resin varnish after coating the substrate with a resin varnish a method of spraying the resin varnish onto the substrate using a spray device, and then drying the resin varnish.
  • the solvent used in the resin varnish is good with respect to the resin component in the resin composition. It is desirable to show good solubility, but a poor solvent may be used as long as it does not adversely affect it.
  • solvents that exhibit good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, and carbitol. Can be mentioned.
  • the solid content in the resin varnish is not particularly limited, but is preferably 30 to 80% by weight, particularly preferably 40 to 70% by weight.
  • the thickness of the insulating layer composed of the resin composition is not particularly limited, but is preferably 5 to 100 m. More preferably, it is 10-80111.
  • the thickness of the insulating layer composed of the resin composition is not particularly limited, but is preferably 5 to 100 m. More preferably, it is 10-80111.
  • the base material used for the insulating layer with the base material is not particularly limited.
  • a thermoplastic resin having heat resistance such as a polyester resin such as polyethylene terephthalate or polybutylene terephthalate, a fluorine resin, or a polyimide resin.
  • metal foils such as nickel alloys, tin and tin alloys can be used.
  • the thickness of the base material is not particularly limited, but a thickness of 10 to 100 m is preferable because the handleability when producing an insulating sheet with a base material is good.
  • the unevenness on the surface of the insulating substrate on the side bonded to the insulating layer is as small as possible. Thereby, the effect
  • the multilayer circuit board 1 is formed by heating and press-molding the insulating layer with a base material on one side or both sides of an inner layer circuit board. Specifically, the insulating layer side of the insulating layer with the base material and the inner layer circuit board are combined and vacuum-heated and pressure-molded using a vacuum pressurizing laminator device, etc., and then heated with a hot air dryer or the like. It can be gained by letting it go.
  • the conditions for the heat and pressure molding are not particularly limited, but as an example, it can be carried out at a temperature of 60 to 160 ° C and a pressure of 0.23 MPa.
  • the conditions for heat curing are not particularly limited, but the temperature 140 240 ° C, time 30 to;
  • the insulating resin with the base material can be obtained by superposing the insulating resin on the inner layer circuit board and heating and pressing it using a flat plate press device or the like.
  • the conditions for the heat and pressure molding are not particularly limited, but for example, it can be carried out at a temperature of 140 240 ° C. and a pressure of 14 MPa.
  • a method for manufacturing a flip chip semiconductor package in FIG. 1 will be described.
  • a semiconductor chip connecting electrode surface of a circuit board 1 and a semiconductor chip 2 electrode surface are joined by flip chip bonding.
  • the sealing resin 4 is injected between the circuit board 1 and the semiconductor chip 2 to form the underfill portion 4a, and the sealing resin 4 is applied to the outer peripheral side portion of the semiconductor chip 2 A sealing step for forming the fillet portion 4b is provided.
  • the flip chip bonding process is the same as the conventional process, so the explanation is omitted.
  • the process procedure itself is not different from the conventional process! /, however, in this process, the fillet portion 4b is exposed from the upper edge of the outer peripheral side portion of the semiconductor chip 2.
  • An inclined surface extending outwardly toward the substrate is formed, and an inclined angle formed by the inclined surface and the outer peripheral side portion of the semiconductor chip 2 is 50 degrees or less near the upper edge of the outer peripheral side portion of the semiconductor chip. And force S.
  • the sealing step includes an injection step of injecting a sealing resin between the circuit board 1 and the semiconductor chip 2 to form the underfill portion 4a, and sealing on the outer peripheral side portion of the semiconductor chip.
  • a fillet portion forming step of forming a fillet portion 4b by applying a stop resin is provided. That is, the underfill portion 4a and the fillet portion 4b may be implemented by a single injection operation, but the injection process for forming the underfill portion 4a and the fillet portion 4b are formed. It is a two-step process with a fillet part forming process, and the structure of the fillet part is desired.
  • the semiconductor package before filling the sealing resin in which the circuit board 1 and the semiconductor chip 2 are flip-chip bonded and the sealing resin composition are heated and sealed on the side edge of the semiconductor chip 2. Applying a stop resin composition and spreading it to the gap by capillary action. For the purpose of shortening the production cycle, the semiconductor package is tilted or the injection is accelerated using a pressure difference. May be used in combination.
  • the sealing resin composition is applied to the side edge portion of the semiconductor chip 2, and the sealing resin composition is applied to the side edge portion of the semiconductor chip 2 to form the fillet portion 4b. At this time, it is preferable to fill the fillet portion 4b so as not to generate voids.
  • heating is performed for 1 to 12 hours in a temperature range of 100 ° C to 170 ° C to cure the sealing resin.
  • the curing temperature profile may be changed.
  • the heating and curing may be performed while changing the temperature stepwise, such as heating at 100 ° C. for 1 hour and then heating at 150 ° C. for 2 hours.
  • the sealing resin composition for forming the underfill portion 4a and the sealing resin composition for forming the fillet portion 4b may be the same or various. It is good also as another sealing resin composition from which the characteristic differs. However, even if another sealing resin composition is used, the force selected from those having the characteristics described in the above embodiment of the semiconductor package is any case. However, it is desirable that the viscosity of the sealing resin composition for forming the sealing resin is 50 Pa′sec or less (25 ° C.). Further, even if the circuit board 1 is selected from the semiconductor package having the characteristics described in the above embodiment, the same is true.
  • the viscosity of the sealing resin composition when injecting the sealing resin is preferably 2 Pa′sec or less.
  • the temperature at the time of injection is 60 to 140 ° C, more preferably 100 to 120 ° C.
  • the fillet portion 4b having a stress reducing structure can be formed by a conventional method, and an additional process for forming a fillet having a desired shape, for example, In other words, no cutting process is required.
  • the structure design of the fillet portion is facilitated by using different types of sealing resin compositions for forming the underfill portion and the fillet portion. Become.
  • the characteristics of the sealing resin 4 and the characteristics of the circuit board 1 are adjusted to contribute to the stress reduction. Adjustment of the characteristics of the stop resin 4 and the characteristics of the circuit board 1 is arbitrary.
  • the characteristics of the sealing resin 4 are adjusted as described above to prevent or reduce the occurrence of cracks due to stress concentration. .
  • the characteristics of the circuit board 1 are adjusted as described above to prevent or reduce the occurrence of cracks due to stress concentration.
  • the flip-chip semiconductor package obtained above is mounted on a printed wiring board to produce a semiconductor device.
  • a printed wiring board is called a mother board and is generally used! /, But if it is, it is not particularly limited! /.
  • Sealing resin compositions;! -6 were prepared.
  • Table 1 shows the measurement results of the composition and glass transition temperature, linear expansion coefficient, elastic modulus and viscosity of the sealing resin composition.
  • the glass transition temperature after curing the sealing resin composition at 150 ° CX for 120 minutes, a 5 ⁇ 5 ⁇ 10 mm test piece was obtained by cutting, and this test piece was compressed using a Seiko TMA / SS120 with a compression load of 5 g. Measures the temperature range from 100 ° C to 300 ° C at a temperature increase rate of 10 ° C / min. did. The linear expansion coefficient was also obtained by the same measurement.
  • the encapsulating resin composition was formed into a width of 10 mm, a length of about 150 mm, and a thickness of 4 mm, cured for 30 minutes in a 200 ° C oven, and then in a three-point bending mode using a Tensilon tester.
  • the elastic modulus was calculated from the initial slope of the stress-strain curve obtained by measuring in a room temperature (19-26 ° C) atmosphere with a span of 64 mm and a speed of 1 mm / min.
  • Viscosity measurement at 25 ° C was carried out under the condition of 5 rpm with a CP-51 type cone attached to a Brookfield viscometer. The viscosity at 110 ° C was measured under the condition of 1 Hz with a PP-60 cone plate attached to a RheoStre ssRS150 rheometer manufactured by HAAAKE.
  • KBM-403 Shin-Etsu Chemical Co., Ltd., 3 glycidoxypropyltrimethoxysilane, molecular weight 236.3, theoretical coverage 330m 2 / g
  • Epoxy-modified polybutadiene (1) Shin Nippon Petrochemical Co., Ltd., E— 1800— 6.5, number average Molecular weight 1800, epoxy equivalent 250,
  • Circuit board A Size 50mm X 50mm Thickness 0.7 mm (690 m), 8 circuit layers (Core board: Hitachi Chemical Co., Ltd. 679FG, Thickness 0.4 mm, Insulation layer: Ajinomoto Co., Inc. ABF— GX 13 thickness 40 111, SR (solder resist) layer 25 m above and below)
  • Circuit board B Size 50mm X 50mm Thickness 0.5mm (490 m), Circuit layer 8 layers (Core board: Hitachi Chemical Co., Ltd. 679FG, Thickness 0 ⁇ 2mm, Insulation layer: Ajinomoto Co., Inc. ABF— G X13 Thickness 40 111, SR (solder resist) layer 25 m above and below)
  • Circuit board C Size 50mm X 50mm Thickness 0.7mm (690 m), Eight circuit layers (Core substrate: Sumitomo Bakelite Co., Ltd. ELC4785GS, Thickness 0.4mm, Insulation layer: Sumitomo Beichikuri ( APL3601 thickness 40 m, SR (sonoreder resist) layer upper and lower 25 m, circuit board D: size 50mm X 50mm thickness 0.5mm (490 m), circuit layer 8 layers (core board: Sumitomo Bakelite) ELC4785GS manufactured by Co., Ltd., thickness 0.2 mm, insulating layer: APL3601 manufactured by Sumitomo Beichi Crit Co., Ltd. 40 m thick, SR (Sono-Leder Resist) layer 25 m above and below)
  • Circuit board E Size 50mm X 50mm Thickness 0.5mm (490 m), Eight circuit layers (Core substrate: Sumitomo Bakelite Co., Ltd. ELC4785GS, Thickness 0.2mm, Insulation layer: Sumitomo Beichikuri ( APL3651 thickness 40 m, SR layer top and bottom 25 m)
  • Circuit board F Size 50mm X 50mm Thickness 0.7mm (690 m), 8 circuit layers (Core substrate: 679FG, Hitachi Chemical Co., Ltd., thickness 0.4mm, insulation layer)
  • Sealing resin 1 Sealing resin 2
  • Sealing resin 3 Sealing resin 4
  • Sealing resin 5 Sealing resin 6 Circuit board A 679FG 0. t ABF-GX13 3/3 3/3 3/3 1/1 1/1 1 / 1 Circuit board B 679FG 0.2 mm t ABF-GX13 2/3 3/3 2/3 3/3 3/3 Circuit board C
  • Embodiment 1 6 of the present invention small fillet size: inclination angle of 50 degrees or less
  • Fig. 3 is a cross-sectional photograph of a conventional semiconductor package in which defects occurred in the reliability test. Similarly, as a result of measuring the angle near the upper edge of the fillet portion shown in FIG. 3 by the measurement method shown in FIG. 1, the inclination angles ⁇ of Comparative Examples 1 to 18 are all greater than 50 degrees 55 degrees, 53 degrees. It was either 51 degrees or 51 degrees. As shown in Fig. 5, the semiconductor chip was cracked due to cracks.
  • FIG. 4 is a cross-sectional photograph of the semiconductor package of the present invention in which no defect occurred in the reliability test.
  • the inclination angles of Examples:! To 6 are 43 degrees, 35 degrees, 35 degrees, 43 degrees, 35 degrees and 35 degrees.
  • the inclined surface is curved concavely in a side sectional view of the fillet part. It was. As shown in Fig. 6, no cracking of the semiconductor chip due to cracking occurred.
  • solder composition: for example, Sn-3Ag-0.5Cu
  • solder balls are attached by, for example, 250 ° C reflow.
  • FR-4 mother board board
  • solder ball pads for testing prepared in advance were placed, and connected by, for example, 250 ° C. reflow to obtain a semiconductor device.
  • the operation of this semiconductor device was confirmed, and it was confirmed that Examples 1 to 6 had no problem.
  • Comparative Examples 1 to 18 a good product and a defective product were mixed.
  • FIG. 1 is a schematic sectional view showing an example of a flip chip semiconductor package of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a flip chip semiconductor package of the present invention.
  • FIG. 3 is a cross-sectional photograph showing an example of a conventional flip chip semiconductor package.
  • FIG. 4 is a cross-sectional photograph showing an example of a flip chip semiconductor package of the present invention.
  • FIG. 5 is a top view photograph showing an example of a conventional flip chip semiconductor package.
  • FIG. 6 is a top view photograph showing an example of a flip chip semiconductor package of the present invention. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Description

明 細 書
半導体パッケージ及びその製造方法、並びに封止樹脂
技術分野
[0001] 本発明の技術分野は、一般に半導体パッケージとその製造方法の分野であり、より 詳細には、フリップチップ半導体パッケージの分野である。
背景技術
[0002] 近年の電子機器の高機能化並びに軽薄短小化の要求に伴い、電子部品の高密 度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される 半導体パッケージは、従来にも増して、益々、小型化が進んできている。
[0003] かかる状況下、半導体パッケージ分野では、従来のようなリードフレームを使用した 形態のパッケージでは、小型化に限界があるため、最近では回路基板上にチップを 実装したボールグリッドアレイ(BGA)、チップスケールパッケージ(CSP)のようなエリ ァ実装型パッケージ方式が提案されている。これらの半導体パッケージにおいて、 B GAに搭載される半導体素子を基板に接続する方式には、ワイヤーボンディング方 式や TAB (Tape Automated Bonding)方式、さらにはフリップチップ(FC)方式な どが知られているが、最近では、半導体パッケージの小型化に有利なフリップチップ 接続方式を用いた BGAや CSPの構造が盛んに提案されて!/、る。
[0004] フリップチップ接続方式とは、一般に、半導体チップに入出力端子を形成するため に、半導体チップにバンプと!/、われる電極を形成して基板の電極端子と接続する方 式であり、さらに、基板と半導体チップの隙間をアンダーフィル材で封止する。基板と 半導体チップとの接合強度を向上させるために、チップと基板の間に半導体チップ の周辺部から熱硬化性樹脂のアンダーフィル材 (封止樹脂)を、毛細管現象を利用し て注入し、熱硬化させるものが知られている。
[0005] 前記フリップチップ半導体パッケージでは、封止樹脂の硬化'収縮応力や、半導体 チップと基板の線膨張係数の違レ、等に起因して、半導体チップとアンダーフィル材の 界面等に応力が集中してクラックが発生し、チップが破損すること力 Sある。そこで、こ のような問題を解消するために、従来から種々の対策が提案されている(特許文献 1 、特許文献 2)。
特許文献 1に記載の方法では、半導体チップと基板との空隙への封止樹脂の注入 工程後に、フィレット部と半導体チップとの最高点を略一致するまで、半導体チップと フィレット部を切削する工程を設けて、フィレット部が半導体チップを取り囲む台形形 状となるように形成することが提案されている。特許文献 2に記載の方法では、半導 体チップの側面を覆うフィレット部の高さ寸法を所定の条件範囲に規定することが提 案されている。
[0006] 特許文献 1 :特開平 11 67979号公報
特許文献 2:特開 2000— 40775号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、従来の対策では、クラックの発生防止が確実には達成されな力、つたり
、工程が煩雑になったりするという問題があった。
[0008] 本発明は、上記事情に鑑みてなされたもので、従来の技術における課題を少なくと も部分的に解消することを目的とし、特に、クラックの発生を確実に抑制又は低減さ せて信頼性を高めたフリップチップ半導体パッケージ及びその製造方法を提供する ことを目白勺とする。
課題を解決するための手段
[0009] 本発明によれば、回路基板の半導体チップ接続用電極面と半導体チップの電極面 力 Sフリップチップ接合され、かつ前記回路基板と半導体チップとの間に封止樹脂が 注入されると共に、半導体チップの外周側部に封止樹脂が付与されてフィレット部が 形成されてなり、前記フィレット部は、表面が半導体チップの外周側部の上縁から基 板に向けて外方に延びる傾斜面をなす構造とされ、前記傾斜面と半導体チップの外 周側部のなす傾斜角が半導体チップの外周側部の上縁近傍において 50度以下とさ れたことを特徴とするフリップチップ半導体パッケージが提供される。
[0010] このような構成によれば、フィレット部が所定の傾斜角の応力低減構造とされている ので、フィレット部と半導体チップとの境界近傍への応力集中によるクラックの発生を 防止又は低減することができ、高信頼性を達成することができる。 [0011] 更に本発明によれば、回路基板の半導体チップ接続用電極面と半導体チップの電 極面をフリップチップ接合する接合工程と、前記回路基板と前記半導体チップとの間 に封止樹脂を注入すると共に、半導体チップの外周側部に封止樹脂を付与してフィ レット部を形成する封止工程を具備するフリップチップ半導体パッケージの製造方法 において、前記封止工程において、前記フィレット部を、表面が半導体チップの外周 側部の上縁から基板に向けて外方に延びる傾斜面をなし、該傾斜面と半導体チップ の外周側部のなす傾斜角が半導体チップの外周側部の上縁近傍において 50度以 下となる構造に形成することを特徴とする、フリップチップ半導体パッケージの製造方 法が提供される。
[0012] このような方法は、フィレット部の構造を所定の傾斜角の傾斜構造にするだけである ので、煩雑な工程を必要とせず、し力、もフィレット部と半導体チップとの境界近傍の応 力集中によるクラックの発生を効果的に防止又は低減することができる。
発明の効果
[0013] 本発明に係るフリップチップ半導体パッケージは、クラックの発生を防止又は低減 すること力 Sでき、高信頼性を達成することができるという効果を奏する。また、本発明 に係るフリップチップ半導体パッケージの製造方法は、煩雑な付加工程に頼らなくと も高信頼性のフリップチップ半導体パッケージを製造できるという効果を奏する。 発明を実施するための最良の形態
[0014] 以下、本発明に係るフリップチップ半導体パッケージ及びその製造方法の実施形 態について図面を参照しながら詳細に説明する。
[0015] <半導体パッケージの構造について〉
図 1は、本発明の第一の実施形態に係るフリップチップ半導体パッケージを示す略 断面模式図である。図中、 1は回路基板、 2は回路基板の上方に配設された半導体 チップであり、その厚みは、例えば約 100 μ m〜750 μ mの範囲である。上記回路基 板 1の上面の半導体チップ接続用電極面と、半導体チップ 2の下面の電極面との間 は、半田ボール 3を介してフリップチップ接合されている。そして、上記回路基板 1と 半導体チップ 2との間には、封止樹脂 4が注入されてアンダーフィル部 4aが形成され る一方、半導体チップ 2の外周側部にも封止樹脂 4が付与されてフィレット部 4bが形 成されている。
[0016] この第一の実施形態では、上記フィレット部 4bは、応力低減構造、より詳細にはフィ レット部 4bに作用する半導体チップ 2からの引き剥がし応力を低減させる構造とされ ている。この構造は、フィレット部 4bの表面が半導体チップ 2の外周側部 2aの上縁か ら回路基板 1に向けて外方に延びる傾斜面をなす構造であって、上記傾斜面と半導 体チップの外周側部のなす傾斜角 αが半導体チップの外周側部の上縁近傍におい て 50度以下とされた構造である。
ここで、本明細書の全体を通して、傾斜角 αは、半導体チップの高さ寸法 (厚み)を Τとし、半導体チップの外周側部の上縁 (つまり半導体チップを搭載した回路基板の 回路基板とは反対側の半導体チップ表面の側縁部)から回路基板に向けて半導体 チップの外周側部に沿って延びる 1/2Tの長さを持つ線分を第 1の辺 1とし、該第 1 の辺 1と直交して第 1の辺 、らフィレット部の表面部まで延びる線分を第 2の辺 mとし、 辺 1と mを二辺とする直角三角形の斜辺を斜辺 nとした場合、第 1の辺 1と斜辺 nがなす 角度を意味するものと定義される。この傾斜角 αは、有利には 30度〜 50度である。
[0017] フィレット部 4bをこのような所定の角度の傾斜部に形成することにより、フィレット部 4 bと半導体チップ 2との線膨張率の差のために発生する熱の歪みを小さくすることが でき、熱硬化収縮等により生じるフィレット部 4bに作用する半導体チップ 2からの引き 剥がし応力が低減し、従来の構造では生じていた応力集中によるクラックの発生が抑 制もしくは低減され半導体チップ破損が抑制されることとなり、フリップチップ半導体 ノ クケージの信頼性を高めることができる。また、フィレット部の上縁の傾斜角を小さく することで、フィレット部の幅方向に掛かる引っ張り応力を、高さ方向の引っ張り応力 に分散させて、構成部材に力、かる一方向の応力集中の緩和を図ることができるから である。
[0018] ここで、上記フィレット部 4bの傾斜面は、前述の定義の傾斜角 αが 50度以下、有 利には 30度〜 50度であればよぐ正確な平面状の傾斜面である必要はないし、凸 や凹に湾曲していたり、場合によっては段状になっていたりしてもよい。図 2は、この フィレット部 4bの形状力 側断面視で凹に湾曲した形状の例を示すものである。この ようなフィレット形状とすると、製作が容易である上、フィレット部 4bの体積を小さくでき ると共に、フィレットの斜辺に力、かる応力の集中を分散させることができるため、特に、 フィレット部 4bに作用する幅方向から半導体チップ 2からの引き剥がし応力を更に低 減することができ、より最適な応力低減構造を提供することが可能となる。
[0019] <封止樹脂の組成について〉
図 1において、封止樹脂 4には、一形態として、次の特性の少なくとも一つ、望ましく は二つ、最も望ましくは全てを満たす樹脂が使用される:
(1)その硬化物のガラス転移温度が 60〜130°C、より好ましくは 70〜; 115°Cである 樹脂;
(2)その硬化物の線膨張係数が 15〜35ppm/°C、より好ましくは 20〜35ppm/°C である樹脂;
(3)その硬化物の曲げ弾性率が 5〜; 15Ga/Pa (25°C)である樹脂。
かかる封止樹脂の特性の調整は、当業者であれば、過度の実験を行うことなぐ実 施すること力 Sでさる。
[0020] このような特性を有する封止樹脂 4を用いると、回路基板 1や半導体チップ 2との線 膨張率の差を低くすることができるため、上述したフィレット部 4bの応力低減構造の 作用効果に加えて、応力集中によるクラックの発生の抑制もしくは低減を更に効果的 に達成することができる。
封止樹脂 4の熱硬化収縮率は、回路基板 1や半導体チップ 2の熱収縮率に比べて 大きいので、環境温度等の変化により各構成部材が相反して反りが生じるため、特に 各構成部材の境界近傍であるフィレット部と半導体チップの 2a部分に応力が集中し 、クラックの発生要因となりやすいという問題がある。そこで、上記の条件を満たすガ ラス転移温度や線膨張率が低い封止樹脂 4を用いることで、封止樹脂 4と回路基板 1 や半導体チップ 2との線膨張率等の違!/、から生じる熱応力を緩和することできると!/、 う効果が得られる。
[0021] また、図 1において、封止樹脂 4は、少なくとも一種のエポキシ樹脂を含む樹脂であ り、硬化剤、シランカップリング剤、及び無機充填材を含有するものを使用することが できる。このような封止樹脂は、信頼性向上に寄与する耐熱性や誘電特性等に優れ るとともに、架橋密度の調節により硬化物のガラス転移温度や弾性率等を低くし、上 記のような応力低減構造に寄与するものとすることが好ましい。
[0022] 図 1において、封止樹脂 4は、アンダーフィル部 4aの形成に使用される封止樹脂と フィレット部 4bの形成に使用される封止樹脂力 同一のものでもよいし、あるいは粘 度や線膨張係数等の特性が互いに異なる封止樹脂であってもよい。同一の封止樹 脂を用いる場合には、両封止樹脂間の線膨張率の差異による応力の発生の影響を 考慮する必要がないことや作業性等に優れるという利点がある。一方、異なる封止樹 脂を用いる場合には、例えば、アンダーフィル部 4aにはアンダーフィル部の充填性 や接着性を向上させるために流動性等に優れる樹脂を使用すると共に、フィレット部 4bには易成形性や密着性を向上させるために適度な粘度を有する樹脂を使用する こと力 Sでさる。
[0023] ここで、封止樹脂について更に詳細に説明すると、上記封止樹脂 4は、熱硬化樹脂 組成物であり、一形態としては、(A)エポキシ樹脂、(B)硬化剤、(C)シランカップリン グ剤、及び (D)無機充填材'フイラ一を含有する液状エポキシ樹脂組成物の硬化物 である。また、上記封止樹脂は、上記成分 (A)〜(D)に加えて、必要に応じて(E)そ の他の添加剤を含有してもよい。以下、各成分について説明する。
[0024] 封止樹脂 4に用いられる (A)エポキシ樹脂とは、一分子中にエポキシ基を 2個以上 有するものであれば特に分子量や構造は限定されるものではな!/、。例えばノポラック 型エポキシ樹脂、ビスフエノール型エポキシ樹脂、芳香族グリシジルァミン型エポキシ 樹脂、ハイドロキノン型エポキシ樹脂、ビフエニル型エポキシ樹脂、スチルベン型ェポ キシ樹脂、トリフエノールメタン型エポキシ樹脂、トリフエノールプロパン型エポキシ樹 脂、アルキル変性トリフエノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹 脂、ジシクロペンタジェン変性フエノール型エポキシ樹脂、ナフトール型エポキシ樹 脂、ナフタレン型エポキシ樹脂、フエノールァラルキル型エポキシ樹脂、ナフトールァ ラルキル型エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。
[0025] この場合、芳香族環にグリシジルエーテル構造またはグリシジルァミン構造が結合 した構造を含むものが耐熱性、機械特性、耐湿性という観点から好ましぐ脂肪族ま たは脂環式エポキシ樹脂は信頼性、特に接着性とレ、う観点から使用する量を制限す るほうが好ましい。これらは単独でも 2種以上混合して使用しても良い。本発明に用い る封止樹脂組成物の態様としては、エポキシ樹脂として最終的に常温 (25°C)で液状 であることが好まし!/、が、常温で固体のエポキシ樹脂であっても常温で液状のェポキ シ樹脂に溶解させ、結果的に液状であればよ!/、。
[0026] 封止樹脂 4に用いられる(B)硬化剤は、エポキシ樹脂中のエポキシ基と共有結合を 形成することが可能な官能基を 1分子中に 2個以上含むもの、ただし官能基が酸無 水物基である場合には酸無水物官能基を 1個以上含むものであれば特に分子量や 構造は限定されるものではない。官能基の具体例としてはフエノール性水酸基、酸無 水物、 1級ァミン、 2級ァミンなどがある。
[0027] 上記の硬化剤は、単独で用いても、同じ官能基を含む 2種以上の硬化剤を配合し て用いても良ぐさらにポットライフやエポキシ樹脂との硬化性を損なわない範囲であ れば、異なる官能基を含む硬化剤を 2種以上配合して用いてもよい。半導体装置の 封止用途を考慮すると、耐熱性、電気的及び機械的特性という観点からフエノール 樹脂及び芳香族ポリアミン型硬化剤が好ましい。更に密着性、耐湿性を兼ね備えると V、う観点からは芳香族ポリアミン型硬化剤が好まし!/、。
[0028] 硬化剤の配合量は、エポキシ樹脂のエポキシ当量に対して硬化剤の活性水素当 量で 0. 6〜; 1. 4の範囲であり、より好ましくは 0. 7〜; 1. 3の範囲である。ここで硬化剤 の活性水素当量が上記範囲を外れる場合には反応性や組成物の耐熱性が著しく損 なわれるため好ましくない。ただし、硬化剤に含まれる官能基が酸無水物基の場合 は、 1個の酸無水物官能基から 2個のカルボン酸官能基が誘導されることから、酸無 水物官能基 1個につき 2個の活性水素が含まれるものとして計算する。
[0029] 封止樹脂 4に用いられる(C)シランカップリング剤は、その化学構造としては一分子 中にアルコキシ基が結合した珪素原子と官能基が結合した炭化水素部を含む化学 構造を有するものであれば、特に分子量や構造は限定されるものではない。例えば
ジエトキシシラン、 2—(3, 4エポキシシクロへキシノレ)ェチノレトリメトキシシランなどの リロキシプロピルトリエトキシシラン、 3—メタクリロキシプロピルメチルジメトキシシラン、 3—メタクリロキシプロピルェチルジェトキシシラン、 3—アタリロキシプロピルトリメトキ シシランなどのアタリレート基が結合したシランカップリング剤、 N—アミノエチル化アミ ノプロピルメチルジアルコキシシラン、 N—アミノエチル化ァミノプロピルトリアルコキシ シラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 N— フエニル- γ -ァミノプロビルトリメトキシシラン、 Ν—フエニル- γ -ァミノプロピルトリエト キシシラン、 Ν—フエニル- γ -ァミノブチルトリメトキシシラン、 Ν—フエニル- γ -ァミノ ブチルトリエトキシシランなどのアミノシランカップリング剤、 Ν— (1 , 3—ジメチルブチ リデン) - 3- (トリエトキシシリル)プロピルァミン、 Ν— (ベンジリデン) - 3- (トリエト キシシリル)プロピルァミンなどアミノシランカップリング剤の 1級ァミノ基をケトンまたは アルデヒドを反応させて保護した潜在性アミノシランカップリング剤、 3—メルカプトプ
3—トリエトキシシリルプロピル)ジスルフイドのような熱分解することによってメルカプト シランカップリング剤と同様の機能を発現するシランカップリング剤などがある。またこ れらのシランカップリング剤は予め加水分解反応させたものを配合しても良い。これら は単独でも 2種以上混合して使用しても良い。本発明の場合、エポキシシランカップ リング剤は回路基板、半導体装置の部材表面(回路基板表面のソルダーレジスト、シ リコンチップ表面のポリイミド、シリコンチップの側面)への密着性が比較的良好である という観点から好ましい。アミノシランカップリング剤、潜在性アミノシランカップリング 剤およびメルカプトシラン力ップリング剤はシリコンチップ表面のポリイミドおよび窒化 珪素表面との密着性が非常に良好であるため好ましい。
シランカップリング剤の配合方法としては、樹脂組成物を製造する過程でシリカフィ ラーと他の材料とを混合する際に同時にカップリング剤を配合、分散、混合するイン テグラルブレンド方式、(Α)エポキシ樹脂、(Β)芳香族ァミン硬化剤および、またはシ リカフィラー以外の他の添加剤に事前にカップリング剤を分散'溶解させたのち残りの 材料へ配合されるマスターバッチ方式、事前にカップリング剤をシリカフィラー表層へ 化学修飾する方式などがあり、いずれの配合方法をとつても、これらを組み合わせた 配合方法を行ってもよい。より好ましくは、マスターバッチ方式またはマスターバッチ 方式とシリカ表層へ化学修飾する方法を組み合わせた配合方法が均一な樹脂組成 物を得ること力 Sでさる。
[0031] 封止樹脂 4に用いられる(D)無機充填材 'フイラ一には、タルク、焼成クレー、未焼 成クレー、マイ力、ガラス等のケィ酸塩、酸化チタン、アルミナ、溶融シリカ(溶融球状 シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカ等のシリカ粉末等の酸化物、炭酸力 ルシゥム、炭酸マグネシウム、ハイド口タルサイト等の炭酸塩、水酸化アルミニウム、水 酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム 、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホ ゥ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミユウ ム、窒化ホウ素、窒化ケィ素等の窒化物等を挙げることができる。これらの無機充填 材は、単独でも混合して使用しても良い。これらの中でも樹脂組成物の耐熱性、耐湿 性、強度等を向上できることから溶融シリカ、結晶シリカ、合成シリカ粉末が好ましい。
[0032] 上記無機充填材の形状は、特に限定されないが、充填特性の観点から形状は球 状であることが好ましい。この場合、無機充填材の平均粒子径は、好ましくは 0. ;!〜 2 O ^ mであり、特に好ましくは 0. 2〜8 111である。平均粒子径が上記下限値を超える 場合は樹脂組成物の粘度が低下するため充填性が向上し、上記上限値を超えな!/、 場合は樹脂組成物が半導体装置の隙間へ充填する際に樹脂詰まりが生じにくいの で好ましい。
[0033] 封止樹脂 4には、必要に応じて、上記成分の他に低応力材、希釈剤、顔料、難燃 剤、界面活性剤、レべリング剤、消泡剤等の他の添加物(E)を配合しても差し支えな い。
[0034] 封止樹脂の製造方法としては各成分、添加物等をプラネタリーミキサー、三本ロー ノレ、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡 処理して製造する。予めまたは製造途中段階で原材料中の揮発分を除去する目的 で、大気圧または減圧雰囲気の下、エポキシ樹脂と硬化剤の反応や各成分の分解 反応が起こらない温度範囲、例えば 50°C〜200°Cで加熱処理を行っても差し支えな い。また分散混合工程の途中段階または最終段階に、 5°C〜35°Cの温度で 12〜96 時間の範囲で養生を行っても良い。 [0035] <回路基板について〉
図 1において、回路基板 1は、硬化物のガラス転移温度が 160〜270°C、線膨張係 数が 10〜20ppm/°Cである樹脂組成物を含むコア層に、硬化物のガラス転移温度 力 S170〜250°C、線膨張係数が 10〜45ppm/°Cである樹脂組成物を含む少なくと も 1層の絶縁層が形成された多層回路基板である。
限定されるものではないが、コァ層の厚みは20〜400 111、絶縁層の厚みは 10〜 60 H mであって、コア層と例えば 2〜6層の絶縁層を含んで構成される。
上記回路基板の外層表面には、導体の保護、絶縁性の維持等の目的で、ソルダー レジスト等の耐熱性コーティング層を設けて!/、てもよ!/、。
[0036] 回路基板 1の特性の調整は、当業者であれば、過度の実験を行うことなぐ実施す ること力 Sできる。このような特性を有する回路基板 1を用いると、回路基板 1と封止樹脂 4との線膨張率の差を小さくすることができるため、上述したフィレット部 4bの応力低 減構造の作用効果と、封止樹脂 4の特性の調整による作用効果に加えて、応力集中 によるクラックの発生の抑制もしくは低減を更に良好に達成することができる。
[0037] <コア層について〉
回路基板 1において、コア層に用いられるコア材は、上述のガラス転移温度及び線 膨張係数の条件を満たし、適切な強度を有していればよぐ特に限定するものではな いが、熱硬化性樹脂、例えば、シァネート樹脂とフエノール樹脂とエポキシ樹脂と無 機充填材とを含む樹脂組成物を繊維基材 (例えばガラス繊維シートなど)に含浸させ て硬化させてなる板状の基材(いわゆるプリプレダ)を好適に用いることができる。
[0038] 上記熱硬化性樹脂としてシァネート樹脂(シァネート樹脂のプレボリマーを含む)を 用いると、プリプレダの線膨張係数を小さくすることができ、さらに、プリプレダの電気 特性 (低誘電率、低誘電正接)、機械強度等にも優れるので好ましい。
[0039] 上記シァネート樹脂は、例えばハロゲン化シアン化合物とフエノール類とを反応さ せ、必要に応じて加熱等の方法でプレボリマー化することにより得ることができる。具 体的には、ノポラック型シァネート樹脂、ビスフエノール A型シァネート樹脂、ビスフエ ノール E型シァネート樹脂、テトラメチルビスフエノール F型シァネート樹脂等のビスフ ェノール型シァネート樹脂等を挙げることができる。これらの中でもノポラック型シァネ ート樹脂が好ましい。これにより、架橋密度増加による耐熱性向上と、樹脂組成物等 の難燃性を向上することができる。ノポラック型シァネート樹脂は、硬化反応後にトリ アジン環を形成するからである。さらに、ノポラック型シァネート樹脂は、その構造上 ベンゼン環の割合が高ぐ炭化しやすいためと考えられる。さらに、プリプレダを厚さ 0 . 5mm以下にした場合であっても、プリプレダを硬化させて作製した回路基板に優 れた剛性を付与することができる。特に加熱時における剛性に優れるので、半導体 素子実装時の信頼性にも特に優れる。
[0040] 上記ノポラック型シァネート樹脂としては、例えば式 (I)で示されるものを使用するこ と力 Sできる。
[0041] [化 1]
Figure imgf000013_0001
[0042] 上記式 (I)で示されるノポラック型シァネート樹脂の平均繰り返し単位 nは、特に限 定されないが、 1〜; 10が好ましぐ特に 2〜7が好ましい。平均繰り返し単位 nが上記 下限値未満であるとノポラック型シァネート樹脂は耐熱性が低下し、加熱時に低量体 が脱離、揮発する場合がある。また、平均繰り返し単位 nが上記上限値を超えると溶 融粘度が高くなりすぎ、プリプレダの成形性が低下する場合がある。
[0043] 上記シァネート樹脂の重量平均分子量は、特に限定されな!/、が、重量平均分子量
500-4, 500力 S好ましく、特に 600〜3, 000力 S好ましい。重量平均分子量が上記下 限値未満であるとプリプレダを作製した場合にタック性が生じ、プリプレダ同士が接触 したとき互いに付着したり、樹脂の転写が生じたりする場合がある。また、重量平均分 子量が上記上限値を超えると反応が速くなりすぎ、回路基板とした場合に、成形不良 が生じたり、層間ピール強度が低下したりする場合がある。 上記シァネート樹脂等の重量平均分子量は、例えば GPC (ゲルパーミエーシヨンク 口マトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
[0044] また、特に限定されないが、上記シァネート樹脂は、 1種類を単独で用いることもで きるし、異なる重量平均分子量を有する 2種類以上を併用したり、 1種類または 2種類 以上と、それらのプレボリマーを併用したりすることもできる。
[0045] 上記熱硬化性樹脂の含有量は、特に限定されないが、上記樹脂組成物全体の 5 〜50重量%が好ましぐ特に 20〜40重量%が好ましい。含有量が上記下限値未満 であるとプリプレダを形成するのが困難となる場合があり、上記上限値を超えるとプリ プレダの強度が低下する場合がある。
[0046] また、上記樹脂組成物は、無機充填材を含むことが好ましい。これにより、回路基板 を薄膜化(厚さ 0. 5mm以下)にしても強度に優れることができる。さらに、回路基板 の低線膨張化を向上することもできる。
[0047] 上記無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイ力、ガラ ス等のケィ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシ ゥム、炭酸マグネシウム、ハイド口タルサイト等の炭酸塩、水酸化アルミニウム、水酸化 マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜 硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸 アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、 窒化ホウ素、窒化ケィ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バ リウム等のチタン酸塩等を挙げることができる。無機充填材として、これらの中の 1種 類を単独で用いることもできるし、 2種類以上を併用したりすることもできる。これらの 中でも特に、シリカが好ましぐ溶融シリカ(特に球状溶融シリカ)が低線膨張性に優 れる点で好ましい。その形状は破砕状、球状がある力 繊維基材への含浸性を確保 するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあ わせた使用方法が採用される。
[0048] 上記熱硬化性樹脂としてシァネート樹脂(特にノポラック型シァネート樹脂)を用い る場合は、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いることが好ましい 。ここで、実質的にハロゲン原子を含まないとは、例えば、エポキシ樹脂中のハロゲン 原子の含有量が 0. 15重量%以下 (IPCA—ES01— 2003)のものをいう。
上記エポキシ樹脂としては、例えばビスフエノール A型エポキシ樹脂、ビスフエノー ル F型エポキシ樹脂、ビスフエノール E型エポキシ樹脂、ビスフエノール S型エポキシ 樹脂、ビスフエノール M型エポキシ樹脂、ビスフエノール P型エポキシ樹脂、ビスフエ ノール Z型エポキシ樹脂等のビスフエノール型エポキシ樹脂、フエノールノポラック型 エポキシ樹脂、クレゾールノポラックエポキシ樹脂等のノポラック型エポキシ樹脂、ビ フエニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフエニルァラルキル型ェポキ シ樹脂等のァリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラ セン型エポキシ樹脂、フエノキシ型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹 脂、ノルボルネン型エポキシ樹脂、ァダマンタン型エポキシ樹脂、フルオレン型ェポ キシ樹脂等が挙げられる。
エポキシ樹脂として、これらの中の 1種類を単独で用いることもできるし、異なる重量 平均分子量を有する 2種類以上を併用したり、 1種類または 2種類以上と、それらの プレボリマーを併用したりすることもできる。
これらエポキシ樹脂の中でも特にァリールアルキレン型エポキシ樹脂が好ましい。こ れにより、吸湿半田耐熱性および難燃性を向上させることができる。
[0049] 上記ァリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のァリー 基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフ エ 型エポキシ樹脂等が挙げられる。これらの中でもビフエ二ルジメチレ ン型エポキシ樹脂が好ましい。ビフエ二ルジメチレン型エポキシ樹脂は、例えば式 (II )で示すことができる。
[0050] [化 2]
( I I )
Figure imgf000015_0001
[0051] 上記式 (II)で示されるビフエ二ルジメチレン型エポキシ樹脂の平均繰り返し単位 n は、特に限定されないが、 1〜; 10が好ましぐ特に 2〜5が好ましい。平均繰り返し単 位 nが上記下限値未満であるとビフエ二ルジメチレン型エポキシ樹脂は結晶化しやす くなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合 力 る。また、平均繰り返し単位 nが前記上限値を超えると樹脂の流動性が低下し、 成形不良等の原因となる場合がある。
[0052] 上記エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の;!〜 55重 量%が好ましぐ特に 2〜40重量%が好ましい。含有量が上記下限値未満であると シァネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合 があり、上記上限値を超えると耐熱性が低下する場合がある。
[0053] 上記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量 5 00-20, 000カ好まし <、特に 800〜; 15, 000カ好ましレヽ。重量平均分子量カ上記 下限値未満であるとプリプレダにタック性が生じる場合が有り、上記上限値を超えると プリプレダ作製時、繊維基材への含浸性が低下し、均一な製品が得られない場合が ある。
上記エポキシ樹脂の重量平均分子量は、例えば GPCで測定することができる。
[0054] 上記熱硬化性樹脂としてシァネート樹脂(特にノポラック型シァネート樹脂)を用い る場合は、フエノール樹脂を用いることが好ましい。上記フエノール樹脂としては、例 えばノポラック型フエノール樹脂、レゾール型フエノール樹脂、ァリールアルキレン型 フエノール樹脂等が挙げられる。フエノール樹脂として、これらの中の 1種類を単独で 用いることもできるし、異なる重量平均分子量を有する 2種類以上を併用したり、 1種 類または 2種類以上と、それらのプレボリマーを併用したりすることもできる。これらの 中でも特に、ァリールアルキレン型フエノール樹脂が好ましい。これにより、さらに吸 湿半田耐熱性を向上させることができる。
[0055] 上記ァリールアルキレン型フエノール樹脂としては、例えばキシリレン型フエノール 樹脂、ビフエ二ルジメチレン型フエノール樹脂等が挙げられる。ビフエ二ルジメチレン 型フエノール樹脂は、例えば式 (III)で示すことができる。
[0056] [化 3]
Figure imgf000017_0001
[0057] 上記式(III)で示されるビフエ二ルジメチレン型フエノール樹脂の繰り返し単位 nは、 特に限定されないが、 1〜; 12が好ましぐ特に 2〜8が好ましい。平均繰り返し単位 n が上記下限値未満であると耐熱性が低下する場合がある。また、上記上限値を超え ると他の樹脂との相溶性が低下し、作業性が低下する場合がある。
[0058] 前述のシァネート樹脂(特にノポラック型シァネート樹脂)とァリールアルキレン型フ ェノール樹脂との組合せにより、架橋密度をコントロールし、反応性を容易に制御で きる。
[0059] 上記フエノール樹脂の含有量は、特に限定されないが、樹脂組成物全体の;!〜 55 重量%が好ましぐ特に 5〜40重量%が好ましい。含有量が上記下限値未満である と耐熱性が低下する場合があり、上記上限値を超えると低線膨張の特性が損なわれ る場合がある。
[0060] 上記フエノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量
400—18, 000カ好ましく、特に 500〜; 15, 000カ好ましレヽ。重量平均分子量カ上 記下限値未満であるとプリプレダにタック性が生じる場合が有り、上記上限値を超え るとプリプレダ作製時、繊維基材への含浸性が低下し、均一な製品が得られない場 合がある。
上記フエノール樹脂の重量平均分子量は、例えば GPCで測定することができる。
[0061] 更に、上記シァネート樹脂(特にノポラック型シァネート樹脂)と上記フエノール樹脂
(ァリールアルキレン型フエノール樹脂、特にビフヱ二ルジメチレン型フエノール樹脂) と上記エポキシ樹脂(ァリールアルキレン型エポキシ樹脂、特にビフエ二ルジメチレン 型エポキシ樹脂)との組合せを用いて回路基板を作製した場合、特に優れた寸法安 定性を得ることが出来る。
[0062] 上記樹脂組成物は、特に限定されないが、カップリング剤を用いることが好ましい。
該カップリング剤は、上記熱硬化性樹脂と、上記無機充填材との界面の濡れ性を向 上させることにより、繊維基材に対して熱硬化性樹脂等および無機充填材を均一に 定着させ、耐熱性、特に吸湿後の半田耐熱性を改良することができる。
上記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的 にはエポキシシランカップリング剤、カチォニックシランカップリング剤、アミノシラン力 ップリング剤、チタネート系カツプリング剤およびシリコ一ンオイル型力ップリング剤の 中から選ばれる 1種以上のカップリング剤を使用することが好ましい。これにより、無 機充填材の界面との濡れ性を高くすることができ、それによつて耐熱性をより向上さ せることでさる。
[0063] 上記カップリング剤の含有量は、上記無機充填材の比表面積に依存するので特に 限定されないが、無機充填材 100重量部に対して 0. 05〜3重量部が好ましぐ特に 0. ;!〜 2重量部が好ましい。含有量が上記下限値未満であると無機充填材を十分に 被覆できなレ、ため耐熱性を向上する効果が低下する場合があり、上記上限値を超え ると反応に影響を与え、曲げ強度等が低下する場合がある。
[0064] 上記樹脂組成物には、必要に応じて硬化促進剤を用いても良!/、。該硬化促進剤と しては公知の物を用いることが出来る。例えばナフテン酸亜鉛、ナフテン酸コバルト、 ォクチル酸スズ、ォクチル酸コバルト、ビスァセチルァセトナートコバルト(11)、トリスァ セチルァセトナートコバルト(III)等の有機金属塩、トリェチルァミン、トリブチルァミン 、ジァザビシクロ [2, 2, 2]オクタン等の 3級ァミン類、 2 フエ二ルー 4ーメチルイミダ ゾール、 2 ェチルー 4ーェチルイミダゾール、 2 フエ二ルー 4ーメチルイミダゾール 、 2 フエニル一 4 メチル 5 ヒドロキシイミダゾール、 2 フエ二ノレ一 4, 5 ジヒド ロキシイミダゾール等のイミダゾール類、フエノーノレ、ビスフエノール A、ノニルフエノー ル等のフエノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等 の有機酸等、またはこの混合物が挙げられる。硬化促進剤として、これらの中の誘導 体も含めて 1種類を単独で用いることもできるし、これらの誘導体も含めて 2種類以上 を併用したりすることもできる。
[0065] 上記硬化促進剤の含有量は、特に限定されないが、上記樹脂組成物全体の 0. 05 〜5重量%が好ましぐ特に 0. 2〜2重量%が好ましい。含有量が上記下限値未満 であると硬化を促進する効果が現れない場合があり、上記上限値を超えるとプリプレ グの保存性が低下する場合がある。
[0066] 上記樹脂組成物では、フエノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフ ェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン 樹脂、ポリスチレン樹脂等の熱可塑性樹脂、スチレン ブタジエン共重合体、スチレ ンーイソプレン共重合体等のポリスチレン系熱可塑性エラストマ一、ポリオレフイン系 熱可塑性エラストマ一、ポリアミド系エラストマ一、ポリエステル系エラストマ一等の熱 可塑性エラストマ一、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリ ブタジエン、メタクリル変性ポリブタジエン等のジェン系エラストマ一を併用しても良い
また、上記樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レべリング剤、紫 外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分以外の添 加物を添加しても良い。
[0067] 次に、プリプレダについて説明する。
上記の樹脂組成物を繊維基材 (例えばガラス繊維シートなど)に含浸させて硬化さ せてなる板状の基材(いわゆるプリプレダ)であるコア材は、誘電特性、高温多湿下で の機械的信頼性、電気的接続信頼性等の各種特性に優れた回路基板などを製造 するのに好適である。
[0068] 上記繊維基材としては、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド 樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系 樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエス テル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等 を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリ ンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維 基材等が挙げられる。これらの中でもガラス繊維基材が好ましい。これにより、プリプ レグの強度、吸水率を向上することができる。また、プリプレダの線膨張係数を小さく すること力 Sでさる。
[0069] 樹脂組成物を繊維基材に含浸させる方法には、例えば、樹脂組成物を用いて樹脂 ワニスを調製し、繊維基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布す る方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、繊維基材を 樹脂ワニスに浸漬する方法が好ましい。これにより、繊維基材に対する樹脂組成物の 含浸性を向上することができる。なお、繊維基材を樹脂ワニスに浸漬する場合、通常 の含浸塗布設備を使用することができる。
[0070] 上記樹脂ワニスに用いられる溶媒は、上記樹脂組成物中の樹脂成分に対して良好 な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても 構わない。良好な溶解性を示す溶媒としては、例えばアセトン、メチルェチルケトン、 メチルイソブチルケトン、シクロへキサノン、テトラヒドロフラン、ジメチルホルムアミド、 ジメチルァセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カル ビトール系等が挙げられる。
[0071] 上記樹脂ワニスの固形分は、特に限定されないが、上記樹脂組成物の固形分 40 〜8 0重量%が好ましぐ特に 50〜65重量%が好ましい。これにより、樹脂ワニスの 繊維基材への含浸性を更に向上できる。上記繊維基材に上記樹脂組成物を含浸さ せ、所定温度、例えば 80〜200°C等で乾燥させることによりコア材を得ることが出来
[0072] <絶縁層について〉
回路基板 1において、絶縁層に用いられる材料は、前述した回路基板 1のガラス転 移温度及び線膨張係数の条件を満たし、適切な強度を有していればよぐ特に限定 するものではな!/、が、熱硬化性樹脂を含む樹脂組成物で構成されてレ、ることが好ま しい。これにより、絶縁層の耐熱性を向上することができる。
[0073] 上記熱硬化性樹脂としては、例えば、フエノールノポラック樹脂、クレゾールノボラッ ク樹脂、ビスフエノール Aノボラック樹脂等のノポラック型フエノール樹脂、未変性のレ ゾールフエノール樹脂、桐油、アマ二油、タルミ油等で変性した油変性レゾールフエノ ール樹脂等のレゾール型フエノール樹脂等のフエノール樹脂、ビスフエノール Aェポ キシ樹脂、ビスフエノール Fエポキシ樹脂、ビスフエノール E型エポキシ樹脂、ビスフエ ノール S型エポキシ樹脂、ビスフエノール Z型エポキシ樹脂、ビスフエノール P型ェポ キシ樹脂、ビスフエノール M型エポキシ樹脂等のビスフエノール型エポキシ樹脂、フ エノールノポラック型エポキシ樹脂、クレゾールノポラックエポキシ樹脂等のノポラック 型エポキシ樹脂、ビフエニル型エポキシ樹脂、ビフエニルァラルキル型エポキシ樹脂 、ァリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型ェ ポキシ樹脂、フエノキシ型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹脂、ノル ボルネン型エポキシ樹脂、ァダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂 等のエポキシ樹脂、ユリア (尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、 不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジァリルフタレート樹 脂、シリコーン樹脂、ベンゾォキサジン環を有する樹脂、シァネート樹脂等が挙げら れる。
これらの中の 1種類を単独で用いることもできるし、異なる重量平均分子量を有する 2種類以上を併用したり、 1種類または 2種類以上と、それらのプレボリマーを併用し たりすることあでさる。
[0074] またこれらの中でも、特にシァネート樹脂(シァネート樹脂のプレボリマーを含む)が 好ましい。これにより、絶縁層の線膨張係数を小さくすることができる。さらに、絶縁層 の電気特性 (低誘電率、低誘電正接)、機械強度等にも優れる。
[0075] 上記シァネート樹脂は、例えばハロゲン化シアン化合物とフエノール類とを反応さ せ、必要に応じて加熱等の方法でプレボリマー化することにより得ることができる。具 体的には、ノポラック型シァネート樹脂、ビスフエノール A型シァネート樹脂、ビスフエ ノール E型シァネート樹脂、テトラメチルビスフエノール F型シァネート樹脂等のビスフ ェノール型シァネート樹脂等を挙げることができる。これらの中でもノポラック型シァネ ート樹脂が好ましい。これにより、架橋密度増加による耐熱性向上と、樹脂組成物等 の難燃性を向上することができる。ノポラック型シァネート樹脂は、硬化反応後にトリ アジン環を形成するからである。さらに、ノポラック型シァネート樹脂は、その構造上 ベンゼン環の割合が高ぐ炭化しやすいためと考えられる。
[0076] 上記ノポラック型シァネート樹脂としては、例えば式 (I)で示されるものを使用するこ と力 Sできる。
[0077] [化 4] H ( I )
Figure imgf000022_0001
」 n
[0078] 上記式 (I)で示されるノポラック型シァネート樹脂の平均繰り返し単位 nは、特に限 定されないが、 1〜; 10が好ましぐ特に 2〜7が好ましい。平均繰り返し単位 nが上記 下限値未満であるとノポラック型シァネート樹脂は結晶化しやすくなり、汎用溶媒に 対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、平均 繰り返し単位 nが上記上限値を超えると溶融粘度が高くなりすぎ、絶縁層の成形性が 低下する場合がある。
[0079] 上記シァネート樹脂の重量平均分子量は、特に限定されな!/、が、重量平均分子量
500-4, 500力 S好ましく、特に 600〜3, 000力 S好ましい。重量平均分子量が上記下 限値未満であると絶縁層を硬化物の機械的強度が低下する場合があり、さらに絶縁 層を作製した場合にタック性が生じ、樹脂の転写が生じたりする場合がある。また、重 量平均分子量が上記上限値を超えると硬化反応が速くなり、基板 (特に回路基板)と した場合に、成形不良が生じたり、層間ピール強度が低下したりする場合がある。 上記シァネート樹脂等の重量平均分子量は、例えば GPC (ゲルパーミエーシヨンク 口マトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
[0080] また、特に限定されないが、上記シァネート樹脂はその誘導体も含め、 1種類を単 独で用いることもできるし、異なる重量平均分子量を有する 2種類以上を併用したり、 1種類または 2種類以上と、それらのプレボリマーを併用したりすることもできる。
[0081] 上記熱硬化性樹脂の含有量は、特に限定されないが、上記樹脂組成物全体の 5 〜50重量%が好ましぐ特に 10〜40重量%が好ましい。含有量が上記下限値未満 であると絶縁層を形成するのが困難となる場合があり、上記上限値を超えると絶縁層 の強度が低下する場合がある。 [0082] 上記熱硬化性樹脂としてシァネート樹脂(特にノポラック型シァネート樹脂)を用い る場合は、エポキシ樹脂 (実質的にハロゲン原子を含まなレ、)を併用することが好まし い。ここで、実質的にハロゲン原子を含まないとは、例えば、エポキシ樹脂中のハロゲ ン原子の含有量が 0. 15重量%以下 (IPCA—ES01— 2003)のものをいう。
上記エポキシ樹脂としては、例えばビスフエノール Aエポキシ樹脂、ビスフエノール Fエポキシ樹脂、ビスフエノール E型エポキシ樹脂、ビスフエノール S型エポキシ樹脂 、ビスフエノール Z型エポキシ樹脂、ビスフエノール P型エポキシ樹脂、ビスフエノール M型エポキシ樹脂等のビスフエノール型エポキシ樹脂、フエノールノポラック型ェポキ シ樹脂、クレゾールノポラックエポキシ樹脂等のノポラック型エポキシ樹脂、ビフエ二 ル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフエニルァラルキル型エポキシ樹 脂等のァリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン 型エポキシ樹脂、フエノキシ型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹脂、 ノルボルネン型エポキシ樹脂、ァダマンタン型エポキシ樹脂、フルオレン型エポキシ 樹脂等が挙げられる。
[0083] エポキシ樹脂として、これらの中の 1種類を単独で用いることもできるし、異なる重量 平均分子量を有する 2種類以上を併用したり、 1種類または 2種類以上と、それらの プレボリマーを併用したりすることもできる。
これらエポキシ樹脂の中でも特にァリールアルキレン型エポキシ樹脂が好ましい。こ れにより、吸湿半田耐熱性および難燃性を向上させることができる。
[0084] 上記ァリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のァリー ルアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフ ェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でもビフエ二ルジメチレ ン型エポキシ樹脂が好ましい。ビフエ二ルジメチレン型エポキシ樹脂は、例えば式 (II )で示すことができる。
[0085] [化 5]
Figure imgf000024_0001
[0086] 上記式 (II)で示されるビフエ二ルジメチレン型エポキシ樹脂の平均繰り返し単位 n は、特に限定されないが、 1〜; 10が好ましぐ特に 2〜5が好ましい。平均繰り返し単 位 nが上記下限値未満であるとビフエ二ルジメチレン型エポキシ樹脂は結晶化しやす くなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合 がある。また、平均繰り返し単位 nが上記上限値を超えると樹脂の流動性が低下し、 成形不良等の原因となる場合がある。平均繰り返し単位 nの数を上記範囲内とするこ とにより、これらの特性のバランスに優れたものとすることができる。
[0087] 上記エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の;!〜 55重 量%が好ましぐ特に 5〜40重量%が好ましい。含有量が上記下限値未満であると シァネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合 があり、上記上限値を超えると低線膨張性、耐熱性が低下する場合がある。
[0088] 上記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量 5 00-20, 000カ好まし <、特に 800〜; 15, 000カ好ましレヽ。重量平均分子量カ上記 下限値未満であると絶縁層の表面にタック性が生じる場合が有り、上記上限値を超 えると半田耐熱性が低下する場合がある。重量平均分子量を上記範囲内とすること により、これらの特性のバランスに優れたものとすることができる。
上記エポキシ樹脂の重量平均分子量は、例えば GPCで測定することができる。
[0089] 上記樹脂組成物は製膜性樹脂を含有することが好ましい。これにより、基材付き絶 縁層を製造する際の製膜性やハンドリング性をさらに向上させることができる。
[0090] 上記製膜性樹脂としては、例えば、フエノキシ系樹脂、ビスフエノール F系樹脂、ォ レフイン系樹脂等が挙げられる。
製膜性樹脂として、これらの中の誘導体も含めて 1種類を単独で用いることもできる し、異なる重量平均分子量を有する 2種類以上を併用したり、 1種類または 2種類以 上と、それらのプレボリマーを併用したりすることもできる。
これらの中でも、フエノキシ系樹脂が好ましい。これにより、耐熱性および難燃性を 向上させること力 Sでさる。
[0091] 上記フエノキシ樹脂として、特に限定はされないが、例えば、ビスフエノール A骨格 を有するフエノキシ樹脂、ビスフエノール F骨格を有するフエノキシ樹脂、ビスフエノー ル S骨格を有するフエノキシ樹脂、ビスフエノール M骨格を有するフエノキシ樹脂、ビ スフェノール P骨格を有するフエノキシ樹脂、ビスフエノール Z骨格を有するフエノキシ 樹脂等ビスフエノール骨格を有するフエノキシ樹脂、ノポラック骨格を有するフエノキ シ樹脂、アントラセン骨格を有するフエノキシ樹脂、フルオレン骨格を有するフエノキ シ樹脂、ジシクロペンタジェン骨格を有するフエノキシ樹脂、ノルボルネン骨格を有す るフエノキシ樹脂、ナフタレン骨格を有するフエノキシ樹脂、ビフヱニル骨格を有する フエノキシ樹脂、ァダマンタン骨格を有するフエノキシ樹脂等が挙げられる。
[0092] またフエノキシ樹脂として、これら中の骨格を複数種類有した構造を用いることもで きるし、それぞれの骨格の比率が異なるフエノキシ樹脂を用いることができる。さらに 異なる骨格のフエノキシ樹脂を複数種類用いることもできるし、異なる重量平均分子 量を有するフエノキシ樹脂を複数種類用いたり、それらのプレボリマーを併用したりす ることあでさる。
[0093] これらの中でも、ビフエニル骨格と、ビスフエノール S骨格とを有するフエノキシ樹脂 を用いること力 Sできる。これにより、ビフエニル骨格が有する剛直性によりガラス転移 温度を高くすることができるとともに、ビスフエノール S骨格により、多層回路基板を製 造する際のメツキ金属の付着性を向上させることができる。
また、ビスフエノール A骨格とビスフエノール F骨格とを有するフエノキシ樹脂を用い ること力 Sできる。これにより、多層回路基板の製造時に内層回路基板への密着性を向 上させること力 Sできる。さらに、上記ビフエ二ル骨格とビスフエノール S骨格とを有する フエノキシ樹脂と、ビスフエノール A骨格とビスフエノール F骨格とを有するフエノキシ 樹脂とを併用してもよい。
[0094] 上記製膜性樹脂の分子量としては特に限定されないが、重量平均分子量が 1000 〜; 100000であることカ好ましい。さらに好ましくは 10000〜60000である。
製膜性樹脂の重量平均分子量が上記下限値未満であると、製膜性を向上させる効 果が充分でない場合がある。一方、上記上限値を超えると、製膜性樹脂の溶解性が 低下する場合がある。製膜性樹脂の重量平均分子量を上記範囲内とすることにより、 これらの特性のバランスに優れたものとすることができる。
[0095] 製膜性樹脂の含有量としては特に限定されないが、樹脂組成物全体の;!〜 40重量 %であることが好ましい。さらに好ましくは 5〜30重量%である。
製膜性樹脂の含有量が上記下限値未満であると、製膜性を向上させる効果が充分 でないことがある。一方、上記上限値を超えると、相対的にシァネート樹脂の含有量 が少なくなるため、低線膨張性を付与する効果が低下することがある。製膜性樹脂の 含有量を上記範囲内とすることにより、これらの特性のバランスに優れたものとするこ と力 Sできる。
[0096] 絶縁層に用いられる上記熱硬化性樹脂及び、製膜性樹脂は、いずれも、実質的に ノ、ロゲン原子を含まないものであることが好ましい。これにより、ハロゲン化合物を用 いることなく、難燃十生を付与すること力 Sできる。
ここで、実質的にハロゲン原子を含まないとは、例えば、エポキシ樹脂あるいはフエ ノキシ樹脂中のハロゲン原子の含有量が 0. 15重量%以下 (IPCA— ES01— 2003) のものをいう。
[0097] 上記樹脂組成物には、必要に応じて硬化促進剤を用いても良!/、。該硬化促進剤と しては公知の物を用いることが出来る。例えばイミダゾール化合物、ナフテン酸亜鉛 、ナフテン酸コバルト、ォクチル酸スズ、ォクチル酸コバルト、ビスァセチルァセトナー トコバルト(11)、トリスァセチルァセトナートコバルト(III)等の有機金属塩、トリェチル ァミン、トリブチルァミン、ジァザビシクロ [2, 2, 2]オクタン等の 3級ァミン類、フエノー ノレ、ビスフエノール A、ノユルフェノール等のフエノール化合物、酢酸、安息香酸、サリ チル酸、パラトルエンスルホン酸等の有機酸等、またはこの混合物が挙げられる。硬 化促進剤として、これらの中の誘導体も含めて 1種類を単独で用いることもできるし、 これらの誘導体も含めて 2種類以上を併用したりすることもできる。
[0098] これら硬化促進剤の中でも特にイミダゾール化合物が好ましい。これにより、吸湿半 田耐熱性を向上させることができる。そして、上記イミダゾール化合物は、特に限定さ れないが、上記シァネート樹脂、エポキシ樹脂、製膜性樹脂成分との相溶性を有す ることが望ましい。
ここで、上記シァネート樹脂、エポキシ樹脂、製膜性樹脂成分との相溶性を有する とは、イミダゾール化合物を上記シァネート樹脂、エポキシ樹脂、製膜性樹脂成分と 混合、あるいは、イミダゾール化合物を上記シァネート樹脂、エポキシ樹脂、製膜性 樹脂成分と有機溶剤とともに混合した場合に、実質的に分子レベルまで溶解、また は、それに近レ、状態まで分散することができるような性状を指すものである。
[0099] 樹脂組成物は、このようなイミダゾール化合物を用いることにより、シァネート樹脂や エポキシ樹脂の反応を効果的に促進させることができ、また、イミダゾール化合物の 配合量を少なくしても同等の特性を付与することができる。
さらに、このようなイミダゾール化合物を用いた樹脂組成物は、樹脂成分との間で微 小なマトリックス単位から高い均一性で硬化させることができる。これにより、多層回路 基板に形成された絶縁層の絶縁性、耐熱性を高めることができる。
[0100] そして、このような樹脂組成物から形成された絶縁層は、例えば過マンガン酸塩、 重クロム酸塩等の酸化剤を用いて表面の粗化処理を行うと、粗化処理後の絶縁層表 面に均一性の高い微小な凹凸形状を多数形成することができる。
このような粗化処理後の絶縁層表面に金属メツキ処理を行うと、粗化処理面の平滑 性が高いため、微細な導体回路を精度よく形成することができる。また、微小な凹凸 形状によりアンカー効果を高め、絶縁層とメツキ金属との間に高い密着性を付与する こと力 Sでさる。
[0101] 絶縁層の樹脂組成物で用いられる上記イミダゾール化合物としては、例えば、 1 - ベンジル一 2—メチルイミダゾール、 1—ベンジル一 2—フエ二ルイミダゾ一ノレ、 2—フ ェニルー 4 メチルイミダゾーノレ、 2 ェチルー 4ーメチルイミダゾール、 2, 4 ジアミ ノー 6—〔2 '—メチルイミダゾリルー(1 ' )〕ーェチルー s トリアジン、 2, 4 ジアミノー 6 - (2,ーゥンデシルイミダゾリル)ーェチルー s—トリァジン、 2, 4 ジアミノー 6—〔2 'ーェチルー 4ーメチルイミダゾリノレ一(1,)〕ーェチルー s トリアジン、 2 フエ二ノレ —4, 5 ジヒドロキシメチルイミダゾール、 2 フエ二ルー 4 メチル 5 ヒドロキシメ チルイミダゾールなどを挙げることができる。
[0102] これらの中でも、 1—ベンジル一 2—メチルイミダゾール、 1—ベンジル一 2—フエ二 ノレイミダゾーノレ、及び、 2—ェチルー 4ーメチルイミダゾールから選ばれるイミダゾール 化合物であることが好ましい。これらのイミダゾール化合物は、特に優れた相溶性を 有することで、均一性の高い硬化物が得られるとともに、微細かつ均一な粗化面を形 成すること力 Sできるので、微細な導体回路を容易に形成することができるとともに、多 層回路基板に高い耐熱性を発現させることができる。
[0103] 上記イミダゾール化合物の含有量としては特に限定されないが、上記シァネート樹 脂とエポキシ樹脂との合計に対して、 0. 0;!〜 5重量%が好ましぐ特に 0. 05〜3重 量%が好ましい。これにより、特に耐熱性を向上させることができる。
[0104] また、上記樹脂組成物は、無機充填材を含むことが好まし!/、。これにより、低線膨張 性及び難燃性の向上を図ることができる。また、上記シァネート樹脂及び/又はその プレボリマー(特にノポラック型シァネート樹脂)と無機充填材との組合せにより、弾性 率を向上させることができる。
[0105] 上記無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイ力、ガラ ス等のケィ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシ ゥム、炭酸マグネシウム、ハイド口タルサイト等の炭酸塩、水酸化アルミニウム、水酸化 マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜 硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸 アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、 窒化ホウ素、窒化ケィ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バ リウム等のチタン酸塩等を挙げることができる。無機充填材として、これらの中の 1種 類を単独で用いることもできるし、 2種類以上を併用したりすることもできる。これらの 中でも特に、シリカが好ましぐ溶融シリカ(特に球状溶融シリカ)が低線膨張性に優 れる点で好ましい。その形状は破砕状、球状がある力 繊維基材への含浸性を確保 するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあ わせた使用方法が採用される。
[0106] 上記無機充填材の平均粒子径としては特に限定されないが、 0. 01 -5. O ^ mで あること力 S好ましい。さらに好ましくは 0. ;!〜 2. C^ mである。
無機充填材の平均粒子径が上記下限値未満であると、本発明の樹脂組成物を用 いて樹脂ワニスを調製する際に、樹脂ワニスの粘度が高くなるため、基材付き絶縁シ ートを作製する際の作業性に影響を与える場合がある。一方、上記上限値を超えると 、樹脂ワニス中で無機充填材の沈降等の現象が起こる場合がある。無機充填材の平 均粒子径を上記範囲内とすることにより、これらの特性のバランスに優れたものとする こと力 Sでさる。
[0107] また上記無機充填材は、特に限定されないが、平均粒子径が単分散の無機充填 材を用いることもできるし、平均粒子径が多分散の無機充填材を用いることができる。 さらに平均粒子径が単分散及び/または、多分散の無機充填材を 1種類または 2種 類以上を併用したりすることもできる。
[0108] 上記無機充填材の含有量として特に限定されないが、樹脂組成物全体の 20〜70 重量%であることが好ましい。さらに好ましくは 30〜60重量%である。
無機充填材の含有量が上記下限値未満であると、低熱膨脹性、低吸水性を付与 する効果が低下する場合がある。また、上記上限値を超えると、樹脂組成物の流動 性の低下により絶縁層の成形性が低下することがある。無機充填材の含有量を上記 範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
[0109] 上記樹脂組成物は、特に限定されないが、カップリング剤を用いることが好ましい。
上記カップリング剤は、上記熱硬化性樹脂と、上記無機充填材との界面の濡れ性を 向上させることにより、耐熱性、特に吸湿半田耐熱性を向上させることができる。 上記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的 にはエポキシシランカップリング剤、カチォニックシランカップリング剤、アミノシラン力 ップリング剤、チタネート系カツプリング剤およびシリコ一ンオイル型力ップリング剤の 中から選ばれる 1種以上のカップリング剤を使用することが好ましい。これにより、無 機充填材の界面との濡れ性を高くすることができ、それによつて耐熱性をより向上さ せることでさる。
[0110] 上記カップリング剤の含有量としては特に限定されないが、無機充填材 100重量部 に対して 0. 05-3. 00重量部であることが好ましい。 カップリング剤の含有量が上記下限値未満であると、無機充填材を被覆して耐熱 性を向上させる効果が充分でないことがある。一方、上記上限値を超えると、基材付 き絶縁層の曲げ強度が低下することがある。カップリング剤の含有量を上記範囲内と することにより、これらの特性のバランスに優れたものとすることができる。
[0111] 上記樹脂組成物では、フエノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフ ェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン 樹脂、ポリスチレン樹脂等の熱可塑性樹脂、スチレン ブタジエン共重合体、スチレ ンーイソプレン共重合体等のポリスチレン系熱可塑性エラストマ一、ポリオレフイン系 熱可塑性エラストマ一、ポリアミド系エラストマ一、ポリエステル系エラストマ一等の熱 可塑性エラストマ一、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリ ブタジエン、メタクリル変性ポリブタジエン等のジェン系エラストマ一を併用しても良い
また、上記樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レべリング剤、紫 外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分以外の添 加物を添加しても良い。
[0112] なお、絶縁層に用いる樹脂組成物は、ガラス繊維シートをはじめとする繊維基材に 含浸させてもよぐ樹脂組成物をそのまま硬化させてもよい。ここで、樹脂組成物を基 材に含浸させる方法としては特に限定されないが、基材付き絶縁層は、上記樹脂組 成物で構成される樹脂層を基材に形成してなるものである。
[0113] ここで、樹脂組成物を基材に形成させる方法としては特に限定されないが、例えば 、樹脂組成物を溶剤などに溶解 ·分散させて樹脂ワニスを調製して、各種コーター装 置を用いて樹脂ワニスを基材に塗工した後、これを乾燥する方法、樹脂ワニスをスプ レー装置を用いて基材に噴霧塗工した後、これを乾燥する方法、などが挙げられる。 これらの中でも、コンマコーター、ダイコーターなどの各種コーター装置を用いて、 樹脂ワニスを基材に塗工した後、これを乾燥する方法が好ましい。これにより、ボイド カ ぐ均一な絶縁層の厚みを有する基材付き絶縁層を効率よく製造することができ
[0114] 上記樹脂ワニスに用いられる溶媒は、上記樹脂組成物中の樹脂成分に対して良好 な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても 構わない。良好な溶解性を示す溶媒としては、例えばアセトン、メチルェチルケトン、 メチルイソブチルケトン、シクロへキサノン、テトラヒドロフラン、ジメチルホルムアミド、 ジメチルァセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カル ビトール系等が挙げられる。
上記樹脂ワニス中の固形分含有量としては特に限定されないが、 30〜80重量% が好ましぐ特に 40〜70重量%が好ましい。
[0115] 基材付き絶縁層において、樹脂組成物から構成される絶縁層の厚さとしては特に 限定されないが、 5〜; 100 mであることが好ましい。さらに好ましくは 10〜80 111で ある。これにより、この基材付き絶縁層を用いて多層回路基板を製造する際に、内層 回路の凹凸を充填して成形することができるとともに、好適な絶縁層厚みを確保する こと力 Sできる。また、基材付き絶縁層においては、絶縁層の割れ発生を抑え、裁断時 の粉落ちを少なくすることができる。
[0116] 基材付き絶縁層に用いられる基材としては特に限定されないが、例えば、ポリェチ レンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂、フッ素系樹 脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂フィルム、あるいは、銅及び/ 又は銅系合金、アルミ及び/又はアルミ系合金、鉄及び/又は鉄系合金、銀及び/ 又は銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系 合金、錫及び錫系合金等の金属箔などを用いることができる。
上記基材の厚みとしては特に限定されないが、 10〜; 100 mのものを用いると、基 材付き絶縁シートを製造する際の取り扱い性が良好であり好ましい。
なお、基材付き絶縁層を製造するにあたっては、絶縁層と接合される側の絶縁基 材表面の凹凸は極力小さいものであることが好ましい。これにより、本発明の作用を 効果的に発現させることができる。
[0117] <多層回路基板の製造方法について〉
次に、基材付き絶縁層を用いた多層回路基板につ!/、て説明する。
上記多層回路基板 1は、上記基材付き絶縁層を内層回路板の片面又は両面に重 ね合わせて加熱加圧成形してなるものである。 具体的には、上記基材付き絶縁層の絶縁層側と内層回路板とを合わせて、真空加 圧式ラミネーター装置などを用いて真空加熱加圧成形させ、その後、熱風乾燥装置 等でカロ熱硬ィ匕させることにより得ること力できる。
[0118] ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度 60〜; 160°C、圧力 0. 2 3MPaで実施することができる。また、加熱硬化させる条件 としては特に限定されないが、温度 140 240°C、時間 30〜; 120分間で実施するこ と力 Sできる。
あるいは、上記基材付き絶縁層の絶縁樹脂を内層回路板に重ね合わせ、これを平 板プレス装置などを用いて加熱加圧成形することにより得ることができる。ここで加熱 加圧成形する条件は特に限定されないが、一例を挙げると、温度 140 240°C、圧 力 1 4MPaで実施することができる。
[0119] <半導体パッケージの製造方法について〉
次に、図 1におけるフリップチップ半導体パッケージの製造方法について説明する 本発明方法の一実施形態では、回路基板 1の半導体チップ接続用電極面と半導 体チップ 2の電極面をフリップチップ接合する接合工程と、上記回路基板 1と上記半 導体チップ 2との間に封止樹脂 4を注入してアンダーフィル部 4aを形成すると共に、 半導体チップ 2の外周側部に封止樹脂 4を付与してフィレット部 4bを形成する封止ェ 程を具備する。
フリップチップ接合工程は、従来の工程と変わるところはないので、説明を省略する
[0120] 封止工程は、工程の手順自体は従来の工程と変わるところはな!/、が、この工程に おいて、フィレット部 4bを、表面が半導体チップ 2の外周側部の上縁から基板に向け て外方に延びる傾斜面をなし、該傾斜面と半導体チップ 2の外周側部のなす傾斜角 が半導体チップの外周側部の上縁近傍において 50度以下となる構造に形成するこ と力 Sできる。
上記封止工程は、より詳細には、回路基板 1と半導体チップ 2との間に封止樹脂を 注入してアンダーフィル部 4aを形成する注入工程と、半導体チップの外周側部に封 止樹脂を付与してフィレット部 4bを形成するフィレット部形成工程を具備する。すなわ ち、アンダーフィル部 4aとフィレット部 4bを、これを単一の注入操作で実施することも 可能であろうが、アンダーフィル部 4aを形成する注入工程と、フィレット部 4bを形成す るフィレット部形成工程との二工程とし、フィレット部の構造を所望のものとする。
[0121] 上記注入工程は、回路基板 1と半導体チップ 2をフリップチップ接合した封止樹脂 充填前の半導体パッケージと、封止樹脂組成物とを加熱しながら、半導体チップ 2の 側縁部に封止樹脂組成物を塗布し、毛細管現象により隙間へ行き渡らせるものであ り、生産サイクルを短縮させる目的から、半導体パッケージを傾斜させたり、圧力差を 利用して注入を加速させたりするなどの方法を併用してもよい。
上記注入工程が終了した後に、半導体チップ 2の側縁部に封止樹脂組成物を塗布 し、半導体チップ 2の側縁部に封止樹脂組成物を塗布し、フィレット部 4bを形成させ る。この際に、フィレット部 4bにボイドの発生がないように充填することが好ましい。 このようにして封止樹脂が充填.塗布されたところで、 100°C〜170°Cの温度範囲 で 1〜; 12時間加熱を行い、封止樹脂を硬化させる。ここで、硬化の温度プロファィノレ を変更してもよく、例えば、 100°C 1時間加熱した後にひきつづき 150°C2時間加熱 するような段階的に温度を変化させながら加熱硬化を行ってもよい。
[0122] ここで、図 1において、アンダーフィル部 4aを形成するための封止樹脂組成物と、フ ィレット部 4bを形成するための封止樹脂組成物を同一のものとしてもよいし、種々の 特性が異なった別の封止樹脂組成物としてもよい。但し、別の封止樹脂組成物を用 V、る場合であっても、半導体パッケージの上記実施形態におレ、て述べたような特性 を有するものから選択される力 何れの場合であっても、封止樹脂を形成するための 封止樹脂組成物の粘度は、 50Pa ' sec以下(25°C)とするのが望ましい。また、回路 基板 1につ!/、ても、半導体パッケージの上記実施形態にお!/、て述べたような特性を 有するものから選択される点は同様である。
また、封止樹脂を注入する時の封止樹脂組成物の粘度は、 2Pa ' sec以下とするの が望ましい。注入時の温度は、 60〜; 140°Cで、より好ましくは 100〜120°Cである。
[0123] 上記実施形態によれば、応力低減構造を有するフィレット部 4bを、従来の方法で 形成することができ、所望の形状のフィレットを成形するための付加的な工程、例え ば切削工程を必要とすることもない。また、上記実施形態においては、封止樹脂組成 物の種類を、アンダーフィル部の形成とフィレット部の形成にお!/、て異なったものとす ることにより、フィレット部の構造設計が容易になる。
[0124] なお、上記の形態では、フィレット部 4bの応力低減構造に加えて、封止樹脂 4の特 性と回路基板 1の特性を調整して、応力低減に寄与するものとしたが、封止樹脂 4の 特性と回路基板 1の特性の調整は任意である。
更に、他の実施形態においては、フィレット部 4bの応力低減構造に加えて、封止樹 脂 4の特性が前述のように調整されて、応力集中によるクラックの発生の防止又は低 減が図られる。
また、他の実施形態においては、フィレット部 4bの応力低減構造に加えて、回路基 板 1の特性が前述のように調整されて、応力集中によるクラックの発生の防止又は低 減が図られる。
[0125] <半導体装置について〉
上記で得られたフリップチップ半導体パッケージをプリント配線板に実装して半導 体装置を作製する。プリント配線板は、マザ一ボードと言われるもので、一般的に用 いられて!/、るものであれば特に限定されるものではな!/、。
上述したように、フリップチップ半導体パッケージの応力集中によるクラックの発生 の防止又は低減されるため、半導体パッケージ全体の反りを低減することができ、プ リント配線板に実装した際の接続信頼性の向上が図られる。
実施例
[0126] 以下、本発明を実施例により説明する力 本発明はこれに限定されるものではない
1.樹脂硬化物の物性試験
封止樹脂組成物;!〜 6を調製した。表 1に封止樹脂組成物の組成及びガラス転移 温度、線膨張係数、弾性率、粘度の測定結果を示す。
ガラス転移温度については、封止樹脂組成物を 150°C X 120分で硬化後、切削に より 5 X 5 X 10mmの試験片を得、この試験片をセイコー製 TMA/SS120を用いて 圧縮荷重 5g 100°Cから 300°Cの温度範囲を昇温速度 10°C/分の条件で測定 した。同測定により線膨張係数も得た。
弾性率については、封止樹脂組成物を幅 10mm、長さ約 150mm、厚さ 4mmに成 形し、 200°Cオーブン中 30分間硬化した後、テンシロン試験機を用いて 3点曲げモ ード、スパン 64mm、速度 lmm/分の条件で室温(19〜26°C)雰囲気下にて測定 し、得られた応力一ひずみ曲線の初期勾配より弾性率を算出した。
25°Cでの粘度測定は、ブルックフィールド型粘度計に CP— 51型コーンを装着し 5 rpmの条件で測定を実施した。 110°Cでの粘度測定は、 HAAAKE社製 RheoStre ssRS150型レオメーターに PP— 60型コーン ·プレートを装着し 1Hzの条件で測定を 実施した。
[表 1]
Figure imgf000035_0001
EXA— 830LVP :大日本インキ化学工業(株)製、エポキシ当量 161、
E— 630 :ジャパン'エポキシ'レジン(株)製、 N, N ビス (2, 3-エポキシプロピル)一 4一(2, 3 エポキシプロポキシ)ァニロン、エポキシ当量 97. 5
カャハード AA:日本化薬(株)製、 3, 3' ジェチルー 4, 4'ージァミノフエニルメタン 、ァミン当量 63. 5
KBM— 403 :信越化学工業 (株)製、 3 グリシドキシプロピルトリメトキシシラン、 分子量 236. 3、理論被覆面積 330m2/g
エポキシ変性ポリブタジエン (1) :新日本石油化学 (株)製、 E— 1800— 6. 5、数平均 分子量 1800、エポキシ当量 250、
試薬 ジエチレングリコールモノェチルエーテル;和光純薬工業 (株)製
[0129] 2.信頼性試験:耐リフロー試験 +熱サイクル試験
更に、上記封止樹脂;!〜 6と、回路基板 A〜Fと、シリコンチップとを用いて、表 2〜5 に示す組合せによりフリップチップ実装による半導体パッケージを作製した。
[0130] 回路基板 A〜Fの構成は以下に示す通りである。
回路基板 A:サイズ 50mm X 50mm 厚さ 0· 7mm(690 m)、回路層 8層(コア基 板:日立化成工業 (株)製 679FG、厚さ 0· 4mm、絶縁層:味の素 (株)製 ABF— GX 13 厚さ 40 111、 SR (ソルダーレジスト)層上下 25 m)
回路基板 B :サイズ 50mm X 50mm 厚さ 0. 5mm (490 m)、回路層 8層(コア基 板:日立化成工業 (株)製 679FG、厚さ 0· 2mm、絶縁層:味の素 (株)製 ABF— G X13 厚さ 40 111、 SR (ソルダーレジスト)層上下 25 m)
回路基板 C :サイズ 50mm X 50mm 厚さ 0. 7mm (690 m)、回路層 8層(コア基 板:住友ベークライト(株)製 ELC4785GS、厚さ 0. 4mm、絶縁層:住友べ一クライ ト(株)製 APL3601 厚さ 40 m、 SR (ソノレダーレジスト)層上下 25 m、) 回路基板 D :サイズ 50mm X 50mm 厚さ 0. 5mm (490 m)、回路層 8層(コア基 板:住友ベークライト(株)製 ELC4785GS、厚さ 0. 2mm、絶縁層:住友べ一クライ ト(株)製 APL3601 厚さ 40 m、 SR (ソノレダーレジスト)層上下 25 m)
回路基板 E :サイズ 50mm X 50mm 厚さ 0. 5mm (490 m)、回路層 8層(コア基 板:住友ベークライト(株)製 ELC4785GS、厚さ 0. 2mm、絶縁層:住友べ一クライ ト(株)製 APL3651 厚さ 40 m、 SR層上下 25 m)
回路基板 F :サイズ 50mm X 50mm 厚さ 0. 7mm(690 m)、回路層 8層 (コア基板:日立化成工業 (株)製 679FG、厚さ 0. 4mm、絶縁層
:住友ベークライト(株)製 APL3601 厚さ 40 111、 SR (ソルダーレジスト)層上下 25 μ m)
[0131] (1)比較例 1〜; 18 (フィレットサイズ大:傾斜角 αが 50度より大きい)
条件: 30°C、 60%、 168時間の前処理を行い、耐リフロー試験(ピーク温度 260°C 3回実施) +熱サイクル試験(一 55。C (30分)/ 125。C (30分)で、 100、 200、 300 サイクル)を行った後に、クラックの観察を行った。サンプル総数に対するクラックが発 生した不良な半導体パッケージの数を「不良数/サンプル総数」で表示する。
評価結果を表 2〜4に示す。
[0132] [表 2]
Figure imgf000037_0001
[0133] 100回の熱サイクル試験において、フィレット形状の上縁角度が 50度より大きい場 合であっても、ガラス転移温度が低い封止樹脂 1及び封止樹脂 4を用いた半導体パ ッケージが、特に信頼性に優れており、クラック発生率が低い。
[0134] [表 3]
Figure imgf000037_0002
[0135] 200回の熱サイクル試験において、フィレット形状の角度が 50度より大きい場合で あっても、ガラス転移温度が低い封止樹脂 1及び封止樹脂 4を使用し、且つ、回路基 板 C及び回路基板 Dを用いた半導体パッケージ力 特に信頼性に優れており、クラッ ク発生率が低い。回路基板 C及び Dは他の回路基板と比べて線膨張率が小さぐガ ラス転移温度が高!/、特性を有するものである。
[0136] [表 4] 比較例 1 3 比較例 1 4 比較例 1 5 比較例 1 6 比較例 1 7 比較例 1 8 回路基板 コア層種類 コア層厚絶縁層種類 封止樹脂種類
封止樹脂 1 封止樹脂 2 封止樹脂 3 封止樹脂 4 封止樹脂 5 封止樹脂 6 回路基板 A 679FG 0. t ABF-GX13 3/3 3/3 3/3 1/1 1/1 1/1 回路基板 B 679FG 0. 2mm t ABF-GX13 2/3 3/3 2/3 2/3 3/3 3/3 回路基板 C ELC4785GS 0. 4 t APL3601 111 2/3 2/2 1/1 1/1 1/1 回路基板 D ELC4785GS 0. 2mm t APL3601 2/4 4/4 3/4 3/4 3/4 3/4 回路基板 E ELC4785GS 0. 2mm t APL3651 1/3 2/3 3/3 1/3 2/3 2/3
[0137] 300回の熱サイクル試験において、フィレット形状の角度が 50度より大きい場合に は、封止樹脂や回路基板の特性に依らず、信頼性を満足するものはない。
[0138] (2)本発明の実施例 1 6 (フィレットサイズ小:傾斜角が 50度以下)
条件: 30°C 60% 168時間の前処理を行い、耐リフロー試験(ピーク温度 260°C 3回実施) +熱サイクル試験(― 55°C (30分)/ 125°C (30分)で、 500サイクル)を行 つた後に、クラックの観察を行った。サンプル総数に対するクラックが発生した不良な 半導体パッケージの数を「不良数/サンプル総数」で表示する。評価結果を表 5に示 す。
[0139] [表 5]
Figure imgf000038_0001
3. フィレット部の形状観察
図 3は、上記信頼性試験にぉレ、て不良が発生した従来の半導体パッケージの断面 写真である。同様に、図 1に示す測定方法によって、図 3に示すフィレット部の上縁近 傍の角度を測定した結果、比較例 1〜; 18の傾斜角 αは全て 50度より大きぐ 55度、 53度、 51度の何れかであった。図 5に示す通り、クラック発生による半導体チップの 割れが発生した。
図 4は、上記信頼性試験において不良が発生しなかった本発明の半導体パッケ ジの断面写真である。図 1に示す測定方法によって、図 4に示すフィレット部の上縁 近傍の角度を測定した結果、実施例:!〜 6の傾斜角《が順に 43度、 35度、 35度、 4 3度、 35度、 35度であった。また、傾斜面が、フィレット部の側断面視で凹に湾曲して いた。図 6に示す通り、クラック発生による半導体チップの割れは発生しなかった。
[0141] 以上の実験結果より、フィレット部の上縁近傍の角度が 50度以下の場合には、フィ レット部に力、かる半導体チップからの引き剥がし応力を低減させる構造とすることによ り、フィレット部における樹脂の収縮に伴う引き剥がし応力の集中を抑制し、クラック発 生を抑制又は低減できることが明らかとなった。
更に、上記フィレット形状に加えて、封止樹脂及び回路基板の特性を最適化するこ とで、各構成部材間の応力低減構造を実現することができ、クラック等の発生のない 信頼性の高いフリップチップ半導体パッケージが得られることが明らかとなった。
[0142] また、上記で得られた半導体パッケージの BGA面に半田(組成:例えば Sn— 3Ag -0. 5Cu)印刷を行い、例えば 250°Cリフローで半田ボールを付ける。その後予め 準備したテスト用の半田ボール用パッドが配置されたマザ一ボード基板 (FR— 4)に 配置し、例えば 250°Cのリフローで接続して半導体装置とした。この半導体装置につ いて動作確認し、実施例 1〜6については問題のないことを確認した。また、比較例 1 〜18は、良好なものと動作不具合のあるものが混在していた。
図面の簡単な説明
[0143] [図 1]本発明のフリップチップ半導体パッケージの一例を示す略断面模式図である。
[図 2]本発明のフリップチップ半導体パッケージの一例を示す略断面図である。
[図 3]従来のフリップチップ半導体パッケージの一例を示す断面写真である。
[図 4]本発明のフリップチップ半導体パッケージの一例を示す断面写真である。
[図 5]従来のフリップチップ半導体パッケージの一例を示す上面の写真である。
[図 6]本発明のフリップチップ半導体パッケージの一例を示す上面の写真である。 符号の説明
[0144] 1 回路基板
2 半導体チップ
3 半田ボール
4 封止樹脂
4a アンダーフィノレ部
4b フィレット T 半導体チップの高さ寸法 (厚み)

Claims

請求の範囲
[1] 回路基板の半導体チップ接続用電極面と半導体チップの電極面がフリップチップ 接合され、かつ前記回路基板と半導体チップとの間に封止樹脂が注入されると共に 、半導体チップの外周側部に封止樹脂が付与されてフィレット部が形成されてなるフ リップチップ半導体パッケージにおいて、前記フィレット部は、表面が半導体チップの 外周側部の上縁から基板に向けて外方に延びる傾斜面をなす構造とされ、前記傾 斜面と半導体チップの外周側部のなす傾斜角が半導体チップの外周側部の上縁近 傍において 50度以下とされたことを特徴とするフリップチップ半導体パッケージ。
[2] 前記傾斜角が 30度〜 50度の範囲にあることを特徴とする、請求項 1に記載のフリツ プチップ半導体パッケージ。
[3] 前記傾斜面が、フィレット部の側断面視で凹に湾曲していることを特徴とする、請求 項 1又は 2に記載のフリップチップ半導体パッケージ。
[4] 前記封止樹脂の硬化物のガラス転移温度が 60〜130°Cであることを特徴とする、 請求項 1ないし 3の何れか一項に記載のフリップチップ半導体パッケージ。
[5] 前記封止樹脂の硬化物の線膨張係数が 15〜35ppm/°Cであることを特徴とする
、請求項 1ないし 4の何れか一項に記載のフリップチップ半導体パッケージ。
[6] 前記封止樹脂が、少なくとも 1種のエポキシ樹脂を含み、硬化剤、シランカップリン グ剤、及び無機充填材を更に含有した樹脂組成物であることを特徴とする、請求項 1 ないし 5の何れか一項に記載のフリップチップ半導体パッケージ。
[7] 前記封止樹脂の粘度を、 50Pa'SeC以下(25°C)とすることを特徴とする請求項 1な いし 6の何れか一項に記載のフリップチップ半導体パッケージ
[8] 前記回路基板が、硬化物のガラス転移温度が 160〜270°C、線膨張係数が 10〜2
0ppm/°Cである樹脂組成物を含むコア層に、硬化物のガラス転移温度が 170〜25
0°C、線膨張係数が 10〜45ppm/°Cである樹脂組成物を含む少なくとも 1層の絶縁 層が積層された多層回路基板であることを特徴とする、請求項 1ないし 7の何れか一 項に記載のフリップチップ半導体パッケージ。
[9] 請求項 4ないし 8の何れか一項に記載のフリップチップ半導体パッケージに用いら れることを特徴とする封止樹脂。
[10] プリント配線板に、請求項 1ないし 8の何れか一項に記載のフリップチップ半導体パ ッケージを実装してなることを特徴とする半導体装置。
[11] 回路基板の半導体チップ接続用電極面と半導体チップの電極面をフリップチップ 接合する接合工程と、前記回路基板と前記半導体チップとの間に封止樹脂を注入 すると共に、半導体チップの外周側部に封止樹脂を付与してフィレット部を形成する 封止工程を具備するフリップチップ半導体パッケージの製造方法において、前記封 止工程において、前記フィレット部を、表面が半導体チップの外周側部の上縁から基 板に向けて外方に延びる傾斜面をなし、該傾斜面と半導体チップの外周側部のなす 傾斜角が半導体チップの外周側部の上縁近傍において 50度以下となる構造に形成 することを特徴とする、フリップチップ半導体パッケージの製造方法。
[12] 前記封止樹脂の注入時の粘度を、 2Pa ' sec以下とすることを特徴とする請求項 11 に記載のフリップチップ半導体パッケージの製造方法。
[13] 前記封止樹脂を、その硬化物のガラス転移温度が 60°C〜130°Cである樹脂とする ことを特徴とする、請求項 11又は 12に記載のフリップチップ半導体パッケージの製 造方法。
[14] 前記封止樹脂を、その硬化物の線膨張係数が 15〜35ppm/°Cである樹脂とする ことを特徴とする、請求項 11ないし 13の何れか一項に記載のフリップチップ半導体 パッケージの製造方法。
[15] 前記回路基板を、硬化物のガラス転移温度が 160〜270°C、線膨張係数が 10〜2 Oppm/°Cである樹脂組成物を含むコア層に、硬化物のガラス転移温度が 170〜25 0°C、線膨張係数が 10〜45ppm/°Cである樹脂組成物を含む少なくとも 1層の絶縁 層が積層された多層回路基板とすることを特徴とする、請求項 11ないし 14の何れか 一項に記載のフリップチップ半導体パッケージの製造方法。
PCT/JP2007/065648 2006-08-10 2007-08-09 Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement WO2008018557A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528883A JPWO2008018557A1 (ja) 2006-08-10 2007-08-09 半導体パッケージ及びその製造方法、並びに封止樹脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-218117 2006-08-10
JP2006218117 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018557A1 true WO2008018557A1 (fr) 2008-02-14

Family

ID=39033086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065648 WO2008018557A1 (fr) 2006-08-10 2007-08-09 Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement

Country Status (6)

Country Link
US (1) US20080036097A1 (ja)
JP (1) JPWO2008018557A1 (ja)
KR (1) KR20090045319A (ja)
CN (1) CN101523588A (ja)
TW (1) TW200814256A (ja)
WO (1) WO2008018557A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129272A1 (ja) * 2010-04-13 2011-10-20 積水化学工業株式会社 半導体チップ接合用接着材料、半導体チップ接合用接着フィルム、半導体装置の製造方法、及び、半導体装置
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体
JP2014140006A (ja) * 2012-12-18 2014-07-31 Sekisui Chem Co Ltd 半導体パッケージ
KR20160145552A (ko) 2014-04-22 2016-12-20 세키스이가가쿠 고교가부시키가이샤 관통 전극이 형성된 반도체 칩용 접착 필름

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117345A2 (en) 2008-03-17 2009-09-24 Henkel Corporation Adhesive compositions for use in die attach applications
JPWO2010038703A1 (ja) * 2008-10-03 2012-03-01 住友ベークライト株式会社 金属張フェノール樹脂積層板
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
WO2010122757A1 (ja) * 2009-04-24 2010-10-28 パナソニック株式会社 半導体パッケージ部品の実装方法と実装構造体
EP2265099B1 (en) * 2009-06-04 2013-11-27 Honda Motor Co., Ltd. Semiconductor device and method of manufacturing the same
US8698320B2 (en) * 2009-12-07 2014-04-15 Henkel IP & Holding GmbH Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices
TWI432477B (zh) * 2010-08-18 2014-04-01 Benq Materials Corp 環氧樹脂組成物
US9064881B2 (en) * 2010-11-11 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Protecting flip-chip package using pre-applied fillet
KR101233668B1 (ko) * 2010-12-23 2013-02-15 전자부품연구원 반도체 패키지 기판용 수지조성물
KR20140063710A (ko) * 2011-09-22 2014-05-27 히타치가세이가부시끼가이샤 적층체, 적층판, 다층 적층판, 프린트 배선판 및 적층판의 제조 방법
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
KR102000709B1 (ko) * 2012-08-31 2019-09-30 삼성디스플레이 주식회사 디스플레이 패널의 제조방법
JP6106389B2 (ja) * 2012-09-13 2017-03-29 ナミックス株式会社 先設置型半導体封止用フィルム
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
CN105008949A (zh) 2012-10-09 2015-10-28 Mc10股份有限公司 与服装整合的保形电子装置
JP2014091744A (ja) * 2012-10-31 2014-05-19 3M Innovative Properties Co アンダーフィル組成物、半導体装置およびその製造方法
US8847412B2 (en) 2012-11-09 2014-09-30 Invensas Corporation Microelectronic assembly with thermally and electrically conductive underfill
JP6308344B2 (ja) * 2013-04-08 2018-04-11 味の素株式会社 硬化性樹脂組成物
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
US9372123B2 (en) 2013-08-05 2016-06-21 Mc10, Inc. Flexible temperature sensor including conformable electronics
CA2925387A1 (en) 2013-10-07 2015-04-16 Mc10, Inc. Conformal sensor systems for sensing and analysis
JP6711750B2 (ja) 2013-11-22 2020-06-17 エムシー10 インコーポレイテッドMc10,Inc. 心臓活動の検知および分析のためのコンフォーマルセンサシステム
JP6549150B2 (ja) 2014-01-06 2019-07-24 エムシー10 インコーポレイテッドMc10,Inc. コンフォーマル電子デバイスの封入方法
JP6637896B2 (ja) 2014-03-04 2020-01-29 エムシー10 インコーポレイテッドMc10,Inc. 電子デバイス用の可撓性を有するマルチパート封止ハウジングを備えるコンフォーマルなicデバイス
CN104078432A (zh) * 2014-07-15 2014-10-01 南通富士通微电子股份有限公司 Pop封装结构
DE102014112540A1 (de) * 2014-09-01 2016-03-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
US9899330B2 (en) 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
TWI526129B (zh) * 2014-11-05 2016-03-11 Elite Material Co Ltd Multilayer printed circuit boards with dimensional stability
WO2016134306A1 (en) 2015-02-20 2016-08-25 Mc10, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
US10398343B2 (en) 2015-03-02 2019-09-03 Mc10, Inc. Perspiration sensor
KR20230169471A (ko) 2015-03-31 2023-12-15 하마마츠 포토닉스 가부시키가이샤 반도체 장치
US10653332B2 (en) 2015-07-17 2020-05-19 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
JP6695046B2 (ja) * 2015-09-25 2020-05-20 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、配線板、並びに、配線板材料の熱応力の測定方法
WO2017059215A1 (en) 2015-10-01 2017-04-06 Mc10, Inc. Method and system for interacting with a virtual environment
CN108289630A (zh) 2015-10-05 2018-07-17 Mc10股份有限公司 用于神经调节和刺激的方法和系统
EP3420733A4 (en) 2016-02-22 2019-06-26 Mc10, Inc. SYSTEM, DEVICE AND METHOD FOR ACQUIRING ON THE BODY OF SENSOR AND CONCENTRATOR NODE COUPLED WITH SENSOR INFORMATION
EP3829187A1 (en) 2016-02-22 2021-06-02 Medidata Solutions, Inc. System, devices, and method for on-body data and power transmission
TWI694569B (zh) * 2016-04-13 2020-05-21 日商濱松赫德尼古斯股份有限公司 半導體裝置
US11154235B2 (en) 2016-04-19 2021-10-26 Medidata Solutions, Inc. Method and system for measuring perspiration
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
CN106132080A (zh) * 2016-08-30 2016-11-16 江门全合精密电子有限公司 一种具有边绝缘结构的电银板及其制作方法
JP6991014B2 (ja) * 2017-08-29 2022-01-12 キオクシア株式会社 半導体装置
CN107732860B (zh) * 2017-10-16 2024-05-10 贵州南度度城市供用电运营有限责任公司 一种高压铜芯电缆防水中间接头
KR102660753B1 (ko) * 2018-02-01 2024-04-26 미쓰이금속광업주식회사 수지 조성물, 수지를 구비하는 구리박, 유전체층, 동장 적층판, 커패시터 소자 및 커패시터 내장 프린트 배선판
CN108648623B (zh) * 2018-04-24 2021-06-29 广州国显科技有限公司 显示屏、其制造方法及显示终端
CN111900094A (zh) * 2020-07-15 2020-11-06 中国电子科技集团公司第五十八研究所 一种高传输率晶圆级扇出型封装方法及其结构
CN115466486B (zh) * 2022-07-05 2023-07-28 上海道宜半导体材料有限公司 一种环氧树脂组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766326A (ja) * 1993-08-30 1995-03-10 Nippondenso Co Ltd 半導体装置
JPH1154927A (ja) * 1997-06-03 1999-02-26 Toshiba Corp 複合配線基板、フレキシブル基板、半導体装置、および複合配線基板の製造方法
JP2002293883A (ja) * 2001-03-30 2002-10-09 Sunstar Eng Inc 一液加熱硬化型エポキシ樹脂組成物および半導体実装用アンダーフィル材
JP2003258034A (ja) * 2002-03-06 2003-09-12 Mitsubishi Electric Corp 多層配線基体の製造方法および多層配線基体
JP2004273540A (ja) * 2003-03-05 2004-09-30 Seiko Epson Corp アンダーフィル材の充填方法、アンダーフィル材の充填装置、半導体実装基板および電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173459B2 (ja) * 1998-04-21 2001-06-04 日本電気株式会社 半導体装置の製造方法
US6571466B1 (en) * 2000-03-27 2003-06-03 Amkor Technology, Inc. Flip chip image sensor package fabrication method
US6885107B2 (en) * 2002-08-29 2005-04-26 Micron Technology, Inc. Flip-chip image sensor packages and methods of fabrication
US20040155358A1 (en) * 2003-02-07 2004-08-12 Toshitsune Iijima First and second level packaging assemblies and method of assembling package
JP2005350647A (ja) * 2004-05-11 2005-12-22 Nitto Denko Corp 液状エポキシ樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766326A (ja) * 1993-08-30 1995-03-10 Nippondenso Co Ltd 半導体装置
JPH1154927A (ja) * 1997-06-03 1999-02-26 Toshiba Corp 複合配線基板、フレキシブル基板、半導体装置、および複合配線基板の製造方法
JP2002293883A (ja) * 2001-03-30 2002-10-09 Sunstar Eng Inc 一液加熱硬化型エポキシ樹脂組成物および半導体実装用アンダーフィル材
JP2003258034A (ja) * 2002-03-06 2003-09-12 Mitsubishi Electric Corp 多層配線基体の製造方法および多層配線基体
JP2004273540A (ja) * 2003-03-05 2004-09-30 Seiko Epson Corp アンダーフィル材の充填方法、アンダーフィル材の充填装置、半導体実装基板および電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129272A1 (ja) * 2010-04-13 2011-10-20 積水化学工業株式会社 半導体チップ接合用接着材料、半導体チップ接合用接着フィルム、半導体装置の製造方法、及び、半導体装置
JP4922474B2 (ja) * 2010-04-13 2012-04-25 積水化学工業株式会社 半導体装置
CN102834907A (zh) * 2010-04-13 2012-12-19 积水化学工业株式会社 半导体芯片接合用粘接材料、半导体芯片接合用粘接膜、半导体装置的制造方法及半导体装置
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体
JP2014140006A (ja) * 2012-12-18 2014-07-31 Sekisui Chem Co Ltd 半導体パッケージ
KR20160145552A (ko) 2014-04-22 2016-12-20 세키스이가가쿠 고교가부시키가이샤 관통 전극이 형성된 반도체 칩용 접착 필름
US10131826B2 (en) 2014-04-22 2018-11-20 Sekisui Chemical Co., Ltd. Adhesive film for semiconductor chip with through electrode

Also Published As

Publication number Publication date
US20080036097A1 (en) 2008-02-14
TW200814256A (en) 2008-03-16
KR20090045319A (ko) 2009-05-07
JPWO2008018557A1 (ja) 2010-01-07
CN101523588A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
WO2008018557A1 (fr) Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement
JP5608977B2 (ja) 半導体パッケージ、コア層材料、ビルドアップ層材料および封止樹脂組成物
JP5660272B2 (ja) フリップチップ半導体パッケージ用の接続構造、ビルドアップ層材料、封止樹脂組成物および回路基板
JP4802246B2 (ja) 半導体装置
JP5771987B2 (ja) 多層回路基板、絶縁シート、および多層回路基板を用いた半導体パッケージ
JP4888147B2 (ja) 樹脂組成物、フィルム付きまたは金属箔付き絶縁樹脂シート、多層プリント配線板、多層プリント配線板の製造方法および半導体装置
JP5533657B2 (ja) 積層板、回路板および半導体装置
JP5493948B2 (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板、および半導体装置
JP2010080609A (ja) 半導体装置
JP2009094216A (ja) 半導体装置の製造方法および半導体装置用プリント配線板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036695.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528883

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097004796

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792298

Country of ref document: EP

Kind code of ref document: A1