JPH0766326A - 半導体装置 - Google Patents
半導体装置Info
- Publication number
- JPH0766326A JPH0766326A JP23882193A JP23882193A JPH0766326A JP H0766326 A JPH0766326 A JP H0766326A JP 23882193 A JP23882193 A JP 23882193A JP 23882193 A JP23882193 A JP 23882193A JP H0766326 A JPH0766326 A JP H0766326A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- chip
- glass substrate
- substrate
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
(57)【要約】
【目的】望ましい特性の充填材で、その充填形状を制限
して半導体装置の信頼性を高めること。 【構成】図1で、ガラス基板2上にフリップチップIC1
がバンプ半田付けされ、基板2とIC1との間にできたす
き間が樹脂で固定されている。この構造の有限要素法に
よる理論解析では、樹脂が基板2に及ぼす要因は、樹脂
の物性値である線膨張係数α、フィレット長Lが基板2
の応力に大きく影響し、αが小さく、Lが短ければ短い
程、応力は小さくなることが判明した。それで、最終的
な条件として、フィレット長Lはフィレット高さの3倍
を越えない長さで、約2mm以下、線膨張係数αは35ppm/
℃より小さければ、一般的な2000サイクルという耐久性
の基準をクリアできる。
して半導体装置の信頼性を高めること。 【構成】図1で、ガラス基板2上にフリップチップIC1
がバンプ半田付けされ、基板2とIC1との間にできたす
き間が樹脂で固定されている。この構造の有限要素法に
よる理論解析では、樹脂が基板2に及ぼす要因は、樹脂
の物性値である線膨張係数α、フィレット長Lが基板2
の応力に大きく影響し、αが小さく、Lが短ければ短い
程、応力は小さくなることが判明した。それで、最終的
な条件として、フィレット長Lはフィレット高さの3倍
を越えない長さで、約2mm以下、線膨張係数αは35ppm/
℃より小さければ、一般的な2000サイクルという耐久性
の基準をクリアできる。
Description
【0001】
【産業上の利用分野】本発明は、ガラスを基板とする半
導体装置に関し、特に、ガラス基板にICチップを実装
する構造を有する液晶表示装置等の半導体装置に関す
る。
導体装置に関し、特に、ガラス基板にICチップを実装
する構造を有する液晶表示装置等の半導体装置に関す
る。
【0002】
【従来の技術】近年、液晶表示装置等において、表示部
分と駆動回路とを一体化させたCOG(チップオンガラ
ス)技術が実施検討されている。このCOG技術は、ガ
ラス基板上に配線をパターン化して、ICチップ等を基
板上に実装させるものである。その際に、ICチップと
ガラス基板との間は半田付けされた部分以外は隙間が出
来ており、従来は、このままでは熱サイクル試験での耐
久性が確保されないことが判明しており、このギャップ
に樹脂を充填することが行われている。例えば特公昭63
-64055号公報では、エポキシ樹脂を用い、さらにこの樹
脂に、樹脂よりも小さい熱膨張係数をもつ無機材料から
なる粉粒体を混入させている。
分と駆動回路とを一体化させたCOG(チップオンガラ
ス)技術が実施検討されている。このCOG技術は、ガ
ラス基板上に配線をパターン化して、ICチップ等を基
板上に実装させるものである。その際に、ICチップと
ガラス基板との間は半田付けされた部分以外は隙間が出
来ており、従来は、このままでは熱サイクル試験での耐
久性が確保されないことが判明しており、このギャップ
に樹脂を充填することが行われている。例えば特公昭63
-64055号公報では、エポキシ樹脂を用い、さらにこの樹
脂に、樹脂よりも小さい熱膨張係数をもつ無機材料から
なる粉粒体を混入させている。
【0003】
【発明が解決しようとする課題】しかしながら、この樹
脂補強技術によると、確かに接続に関する信頼性は確保
されるが、この充填に用いられる樹脂は、ガラス基板と
ICチップとのギャップを抜け漏れなく完全に充填でき
る必要があり、市販の樹脂をそのまま適用すると、完全
に充填できなかったり、線膨張係数の差から基板にひび
割れ(クラック)を生じて配線を断線させたり、チップ
剥がれを起こしたりするという問題がある。上記の粉粒
体を混入させるエポキシ樹脂の材料を調整するのみで
は、多く発生する問題を解決できない。即ち補強樹脂が
無い場合に見られたバンプ半田部やガラス基板上の配線
端のクラックは、補強樹脂によって抑えられたが、バン
プ半田の下部の配線部の下のガラス基板においてクラッ
クが認められ、問題が解決されていないことが判明し
た。従って、本発明の目的は、ガラス基板上にICがバ
ンプ半田付けされた構造において、基板とICとの間に
できたすき間を樹脂で固定する構造で、ICチップと基
板との熱膨張係数の差によって生じるICの剥がれ、バ
ンプ半田のひび割れなどを防ぎ、製品の信頼性低下を防
ぐことである。
脂補強技術によると、確かに接続に関する信頼性は確保
されるが、この充填に用いられる樹脂は、ガラス基板と
ICチップとのギャップを抜け漏れなく完全に充填でき
る必要があり、市販の樹脂をそのまま適用すると、完全
に充填できなかったり、線膨張係数の差から基板にひび
割れ(クラック)を生じて配線を断線させたり、チップ
剥がれを起こしたりするという問題がある。上記の粉粒
体を混入させるエポキシ樹脂の材料を調整するのみで
は、多く発生する問題を解決できない。即ち補強樹脂が
無い場合に見られたバンプ半田部やガラス基板上の配線
端のクラックは、補強樹脂によって抑えられたが、バン
プ半田の下部の配線部の下のガラス基板においてクラッ
クが認められ、問題が解決されていないことが判明し
た。従って、本発明の目的は、ガラス基板上にICがバ
ンプ半田付けされた構造において、基板とICとの間に
できたすき間を樹脂で固定する構造で、ICチップと基
板との熱膨張係数の差によって生じるICの剥がれ、バ
ンプ半田のひび割れなどを防ぎ、製品の信頼性低下を防
ぐことである。
【0004】
【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、ガラス基板上にICチップを実装
し、該ICチップと該ガラス基板とのギャップに補強の
ための樹脂を充填する構造を有する半導体装置におい
て、充填された前記樹脂が前記ICチップの下部のみな
らず、該ICチップの側面と前記ガラス基板とのフィレ
ット(すみ肉)を有し、前記フィレットの脚長が略指数
関数の裾形状で広がり、該ICチップ側面におけるフィ
レット頂点の前記ガラス基板からの高さの3倍を越えな
い長さで形成されていることである。本発明の関連発明
の構成はまた、前記樹脂が、平均径3μmのシリカ粒が
約65wt%混合された、線膨張係数が35ppm/℃以下のエポ
キシ系樹脂であることを特徴とする。本発明の別の関連
発明の構成はさらに、前記フィレットの脚長が、前記I
Cチップの側面から前記フィレット膜厚が 100μmまで
の長さが2mm以下であることを特徴とする。本発明のさ
らに別の関連発明の構成は、前記ICチップが、該IC
チップの電極部にもられたバンプで、前記ガラス基板上
の電極に固着されたフリップチップICとなっているこ
とである。
め本発明の構成は、ガラス基板上にICチップを実装
し、該ICチップと該ガラス基板とのギャップに補強の
ための樹脂を充填する構造を有する半導体装置におい
て、充填された前記樹脂が前記ICチップの下部のみな
らず、該ICチップの側面と前記ガラス基板とのフィレ
ット(すみ肉)を有し、前記フィレットの脚長が略指数
関数の裾形状で広がり、該ICチップ側面におけるフィ
レット頂点の前記ガラス基板からの高さの3倍を越えな
い長さで形成されていることである。本発明の関連発明
の構成はまた、前記樹脂が、平均径3μmのシリカ粒が
約65wt%混合された、線膨張係数が35ppm/℃以下のエポ
キシ系樹脂であることを特徴とする。本発明の別の関連
発明の構成はさらに、前記フィレットの脚長が、前記I
Cチップの側面から前記フィレット膜厚が 100μmまで
の長さが2mm以下であることを特徴とする。本発明のさ
らに別の関連発明の構成は、前記ICチップが、該IC
チップの電極部にもられたバンプで、前記ガラス基板上
の電極に固着されたフリップチップICとなっているこ
とである。
【0005】
【作用】ICチップの一側面部から供給される充填用の
樹脂は、ガラス基板とICチップとのすき間に毛管現象
によって染み込んで充填されていく。樹脂の供給量を制
限するので、樹脂はICチップから広がらず、また覆い
かぶさることもない。そして、ICチップ側面に形成さ
れるフィレット部は不必要に長くならず、ガラス基板に
余分な応力をかけない。
樹脂は、ガラス基板とICチップとのすき間に毛管現象
によって染み込んで充填されていく。樹脂の供給量を制
限するので、樹脂はICチップから広がらず、また覆い
かぶさることもない。そして、ICチップ側面に形成さ
れるフィレット部は不必要に長くならず、ガラス基板に
余分な応力をかけない。
【0006】
【発明の効果】樹脂充填で従来発生していた、ガラス基
板のクラックを抑制し、歩留り良く、信頼性、耐久性の
ある半導体装置を供給できる。
板のクラックを抑制し、歩留り良く、信頼性、耐久性の
ある半導体装置を供給できる。
【0007】
【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は、ガラス基板2上にフリップチップIC
1がバンプ半田付けされ、基板とICとの間にできたす
き間を樹脂で固定してある。問題のクラック発生などを
抑制するためには、このすき間に充填する樹脂4はすき
間をもれなく埋める必要がある。発明者らが経験する通
常30〜90μmの基板とICとのすき間を漏れなく充填す
るには、粘度が適度に抑制された樹脂を用いる必要があ
ることが判っており、さらにまた樹脂の供給量を制御し
て、ICの端よりはみ出した部分であるフィレットの樹
脂の形状を規定することで耐久性向上が得られたもので
ある。
明する。図1は、ガラス基板2上にフリップチップIC
1がバンプ半田付けされ、基板とICとの間にできたす
き間を樹脂で固定してある。問題のクラック発生などを
抑制するためには、このすき間に充填する樹脂4はすき
間をもれなく埋める必要がある。発明者らが経験する通
常30〜90μmの基板とICとのすき間を漏れなく充填す
るには、粘度が適度に抑制された樹脂を用いる必要があ
ることが判っており、さらにまた樹脂の供給量を制御し
て、ICの端よりはみ出した部分であるフィレットの樹
脂の形状を規定することで耐久性向上が得られたもので
ある。
【0008】一般に充填として利用可能な市販されてい
るエポキシ系樹脂単体では線膨張係数がガラス基板より
大きく、およそ10倍である。そのため、樹脂の中にフィ
ラーを混入させて線膨張係数を緩和させることが行われ
ている。ここではフィラーとして線膨張係数の小さいシ
リカ粒を混入させることを行う。シリカはガラス材料と
同質であり、その線膨張係数はガラス基板に近い。しか
し、今度は逆に、通常、粉末状の材料を混合すると粘性
が高まり、つまり流動性が低下して、すき間に浸透させ
ることが難しくなる。
るエポキシ系樹脂単体では線膨張係数がガラス基板より
大きく、およそ10倍である。そのため、樹脂の中にフィ
ラーを混入させて線膨張係数を緩和させることが行われ
ている。ここではフィラーとして線膨張係数の小さいシ
リカ粒を混入させることを行う。シリカはガラス材料と
同質であり、その線膨張係数はガラス基板に近い。しか
し、今度は逆に、通常、粉末状の材料を混合すると粘性
が高まり、つまり流動性が低下して、すき間に浸透させ
ることが難しくなる。
【0009】本発明を適用する構造は、ガラス基板2と
IC1とのすき間 30〜90μmがほとんどであるので、
樹脂に混入する材料の大きさを最大でも30μmにする必
要がある。従ってシリカ粒はふるい(メッシュ)にかけ
る等でその粒径を揃えておく。また、粒径の大きいフィ
ラーの含有率が多い程、線膨張係数が小さくなり、ガラ
ス基板で実用上差し支えない程度の35ppm/℃以下を条件
とした。また、粘度の観点からは、これも実用上差し支
えない程度の650poise以下であることを条件とした。そ
れで、望ましいフィラーのシリカ粒径として3μmの場
合が最もバランスがとれた特性を示した。この場合フィ
ラーの含有率は65%で、この樹脂の線膨張係数は23ppm/
℃、粘度はおよそ500poiseとなった。ただし、粒径の最
大径は30μm以下である。
IC1とのすき間 30〜90μmがほとんどであるので、
樹脂に混入する材料の大きさを最大でも30μmにする必
要がある。従ってシリカ粒はふるい(メッシュ)にかけ
る等でその粒径を揃えておく。また、粒径の大きいフィ
ラーの含有率が多い程、線膨張係数が小さくなり、ガラ
ス基板で実用上差し支えない程度の35ppm/℃以下を条件
とした。また、粘度の観点からは、これも実用上差し支
えない程度の650poise以下であることを条件とした。そ
れで、望ましいフィラーのシリカ粒径として3μmの場
合が最もバランスがとれた特性を示した。この場合フィ
ラーの含有率は65%で、この樹脂の線膨張係数は23ppm/
℃、粘度はおよそ500poiseとなった。ただし、粒径の最
大径は30μm以下である。
【0010】従来の構造の、このIC1とガラス基板2
との間に樹脂4の充填がない図2のような場合では、図
2中に示すバンプ半田3の周囲の矢印の部位に、耐久試
験のさいにクラックが生じていたが、これはガラス基板
とICとの熱膨張係数の差による応力発生が原因であ
り、これを抑える工夫として図3のような樹脂を充填す
る構造が提案され、半田部位のクラックは抑制すること
ができた。しかしこの構造でも発明者らによる耐久試験
の結果、図3中の矢印の部位、即ちガラス基板にクラッ
クが生じ、なおも改善が必要と判明した。
との間に樹脂4の充填がない図2のような場合では、図
2中に示すバンプ半田3の周囲の矢印の部位に、耐久試
験のさいにクラックが生じていたが、これはガラス基板
とICとの熱膨張係数の差による応力発生が原因であ
り、これを抑える工夫として図3のような樹脂を充填す
る構造が提案され、半田部位のクラックは抑制すること
ができた。しかしこの構造でも発明者らによる耐久試験
の結果、図3中の矢印の部位、即ちガラス基板にクラッ
クが生じ、なおも改善が必要と判明した。
【0011】そこで発明者らは、この樹脂のガラス基板
にもたらす応力の影響を調べることとし、この構造の有
限要素法シュミレーションによる理論解析を行ったとこ
ろ、以下の事が判明した。即ち、樹脂がガラス基板に及
ぼす要因は、樹脂の物性値である線膨張係数αと弾性率
E、および樹脂のフィレットの長さLがガラス基板の応
力に大きく影響することが示された。なお、樹脂に添加
するフィラーの影響で弾性率Eは線膨張係数αと共に変
化するため、Eの値はαの従属的要因とみなす。図4
は、樹脂にフィラーとしてシリカ粒を添加して線膨張係
数を変化させた場合のガラス基板の応力の理論的変化を
示している。つまり図から明らかなように、どのような
樹脂(図4中、α×Eの各値の違い)においても、ガラ
ス基板の線膨張係数に近い小さい線膨張係数のもの程、
ガラス基板に与える応力は小さいことである。従って樹
脂の充填条件として線膨張係数に対して上限値を与える
ことができる。
にもたらす応力の影響を調べることとし、この構造の有
限要素法シュミレーションによる理論解析を行ったとこ
ろ、以下の事が判明した。即ち、樹脂がガラス基板に及
ぼす要因は、樹脂の物性値である線膨張係数αと弾性率
E、および樹脂のフィレットの長さLがガラス基板の応
力に大きく影響することが示された。なお、樹脂に添加
するフィラーの影響で弾性率Eは線膨張係数αと共に変
化するため、Eの値はαの従属的要因とみなす。図4
は、樹脂にフィラーとしてシリカ粒を添加して線膨張係
数を変化させた場合のガラス基板の応力の理論的変化を
示している。つまり図から明らかなように、どのような
樹脂(図4中、α×Eの各値の違い)においても、ガラ
ス基板の線膨張係数に近い小さい線膨張係数のもの程、
ガラス基板に与える応力は小さいことである。従って樹
脂の充填条件として線膨張係数に対して上限値を与える
ことができる。
【0012】同様に、フィレット長(脚長)Lの違いに
よる、ガラス基板への影響として、図5に示すような、
フィレットの形状を直角三角形構造断面図で近似し、有
限要素法で分析し、ガラス基板の応力を求めた。その結
果、フィレット長Lが短ければ短い程応力は小さくなる
ことが判明した。つまり、樹脂はICの端面よりはみ出
さないのが最も良い。現実には樹脂をICの端面部より
注入するために、ICの下部のみに樹脂を充填すること
はできない。なお、フィレット長とは樹脂の膜厚が 100
μmになるまでの範囲をさす。また樹脂を注入する側面
では、注入により樹脂がガラス基板に薄く広がってしま
うため、その点でもガラス基板に対する影響を理論分析
してみた所、図6のように、樹脂拡がり部の樹脂膜厚が
100μmとなっても、この薄膜がガラス基板に生じる最
大応力の値には影響しないでほぼ一定であることが判明
し、以上のことから樹脂の注入に際して形状としての方
針が明らかになった。
よる、ガラス基板への影響として、図5に示すような、
フィレットの形状を直角三角形構造断面図で近似し、有
限要素法で分析し、ガラス基板の応力を求めた。その結
果、フィレット長Lが短ければ短い程応力は小さくなる
ことが判明した。つまり、樹脂はICの端面よりはみ出
さないのが最も良い。現実には樹脂をICの端面部より
注入するために、ICの下部のみに樹脂を充填すること
はできない。なお、フィレット長とは樹脂の膜厚が 100
μmになるまでの範囲をさす。また樹脂を注入する側面
では、注入により樹脂がガラス基板に薄く広がってしま
うため、その点でもガラス基板に対する影響を理論分析
してみた所、図6のように、樹脂拡がり部の樹脂膜厚が
100μmとなっても、この薄膜がガラス基板に生じる最
大応力の値には影響しないでほぼ一定であることが判明
し、以上のことから樹脂の注入に際して形状としての方
針が明らかになった。
【0013】即ち理論解析の結果から、α×Eがおよそ
25000 以下の範囲で、目標は20000以下、フィレット長
Lは3mmまでを、実際の樹脂物性を3種類、樹脂のフィ
レット長Lを3種類、それぞれの組み合わせで9種のサ
ンプルを用意して、冷熱サイクルをかける評価(耐久評
価)を実施し検証した。その結果、図7に示すような理
論を裏付ける結果が得られた。図7(a) はフィレット長
が0〜1mm、(b) は1〜2mm、(c) は2〜3mmの各場合
に、各αの違いによる耐久性を示しており、図7(b) の
フィレット長2mm以下で、α=31ppm/℃のもの(丸印)
が耐久サイクル2000回を越え合格している。図7(a)
は、ほぼ全てのα値で2000サイクルの耐久試験をクリア
し、逆に図7 (c) は1000サイクルを越えない内に全サン
プルが故障を発生している。故に最終的な条件として、
フィレット長は長くても2mm以下、樹脂の線膨張係数は
およそ35ppm/℃より小さいものであれば、一般的な2000
サイクルという耐久性の基準をクリアできる。
25000 以下の範囲で、目標は20000以下、フィレット長
Lは3mmまでを、実際の樹脂物性を3種類、樹脂のフィ
レット長Lを3種類、それぞれの組み合わせで9種のサ
ンプルを用意して、冷熱サイクルをかける評価(耐久評
価)を実施し検証した。その結果、図7に示すような理
論を裏付ける結果が得られた。図7(a) はフィレット長
が0〜1mm、(b) は1〜2mm、(c) は2〜3mmの各場合
に、各αの違いによる耐久性を示しており、図7(b) の
フィレット長2mm以下で、α=31ppm/℃のもの(丸印)
が耐久サイクル2000回を越え合格している。図7(a)
は、ほぼ全てのα値で2000サイクルの耐久試験をクリア
し、逆に図7 (c) は1000サイクルを越えない内に全サン
プルが故障を発生している。故に最終的な条件として、
フィレット長は長くても2mm以下、樹脂の線膨張係数は
およそ35ppm/℃より小さいものであれば、一般的な2000
サイクルという耐久性の基準をクリアできる。
【0014】この確認に用いた形状においてフィレット
長Lが2mm以下と言う場合、使用したICの厚さは 600
μmであり、ギャップを 100μmとしても全体で0.7mm
であり、従ってフィレット長はフィレット高さの3倍を
越えないことが必要であると言える。たとえICの厚み
が増えても、フィレット高さは注入量を調節することで
制限され、また理論解析で近似した直角三角形の形状よ
りも、通常は指数関数に似た裾の形状となり、フィレッ
ト長はさほど長くはならないので、図3のような従来の
問題は発生しない。
長Lが2mm以下と言う場合、使用したICの厚さは 600
μmであり、ギャップを 100μmとしても全体で0.7mm
であり、従ってフィレット長はフィレット高さの3倍を
越えないことが必要であると言える。たとえICの厚み
が増えても、フィレット高さは注入量を調節することで
制限され、また理論解析で近似した直角三角形の形状よ
りも、通常は指数関数に似た裾の形状となり、フィレッ
ト長はさほど長くはならないので、図3のような従来の
問題は発生しない。
【0015】このように、ガラス基板上に半導体装置を
実装する際、補強材としての樹脂に対して、シリカ粒の
フィラーを用いて望ましい特性の充填材とすることがで
き、この調整により、ICチップとガラス基板とのすき
間に流動性よく、均一に充填できる。また、その充填形
状を上記のように制限することで耐久性を向上させるこ
とができ、半導体装置の信頼性を高めることができた。
実装する際、補強材としての樹脂に対して、シリカ粒の
フィラーを用いて望ましい特性の充填材とすることがで
き、この調整により、ICチップとガラス基板とのすき
間に流動性よく、均一に充填できる。また、その充填形
状を上記のように制限することで耐久性を向上させるこ
とができ、半導体装置の信頼性を高めることができた。
【図1】半導体装置のICチップの搭載されたガラス基
板の模式的断面図。
板の模式的断面図。
【図2】従来の、バンプ半田付けされた補強なしの場合
の模式的断面図。
の模式的断面図。
【図3】従来の、バンプ半田付けされた補強材(充填樹
脂)が十分に供給された場合の模式的断面図。
脂)が十分に供給された場合の模式的断面図。
【図4】線膨張係数の違いによるガラス基板応力の影響
の理論計算値一覧図。
の理論計算値一覧図。
【図5】フィレット長の違いによるガラス基板応力の影
響の理論計算値一覧図。
響の理論計算値一覧図。
【図6】樹脂拡がり部の厚み差によるガラス基板応力の
影響の理論計算値一覧図。
影響の理論計算値一覧図。
【図7】各サンプルの耐久評価結果の一覧図。
1 半導体装置 2 ガラス基板 3 半田バンプ 4 充填樹脂 5 配線導体
Claims (4)
- 【請求項1】 ガラス基板上にICチップを実装し、該
ICチップと該ガラス基板とのギャップに補強のための
樹脂を充填する構造を有する半導体装置において、 充填された前記樹脂が前記ICチップの下部のみなら
ず、該ICチップの側面と前記ガラス基板とのフィレッ
トを有し、 前記フィレットの脚長が略指数関数の裾形状で広がり、
該ICチップ側面における該フィレット頂点の前記ガラ
ス基板からの高さの3倍を越えない長さで形成されてい
ることを特徴とする半導体装置。 - 【請求項2】 前記樹脂は、 平均径3μmのシリカ粒が約65wt%混合された、線膨張
係数が35ppm/℃以下のエポキシ系樹脂であることを特徴
とする請求項1に記載の半導体装置。 - 【請求項3】 前記フィレットの脚長は、 前記ICチップの側面から前記フィレット膜厚が 100μ
mまでの長さが2mm以下であることを特徴とする請求項
1に記載の半導体装置。 - 【請求項4】 前記ICチップは、 該ICチップの電極部に盛られたバンプで、前記ガラス
基板上の電極に固着されたフリップチップICであるこ
とを特徴とする請求項1、2、3に記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23882193A JPH0766326A (ja) | 1993-08-30 | 1993-08-30 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23882193A JPH0766326A (ja) | 1993-08-30 | 1993-08-30 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0766326A true JPH0766326A (ja) | 1995-03-10 |
Family
ID=17035783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23882193A Pending JPH0766326A (ja) | 1993-08-30 | 1993-08-30 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766326A (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980070399A (ko) * | 1997-02-04 | 1998-10-26 | 존에이치.무어 | 플립칩 부착물 |
US5880530A (en) * | 1996-03-29 | 1999-03-09 | Intel Corporation | Multiregion solder interconnection structure |
US6054171A (en) * | 1996-09-20 | 2000-04-25 | Nec Corporation | Method for forming protruding electrode |
JP2000164610A (ja) * | 1998-11-30 | 2000-06-16 | Ngk Spark Plug Co Ltd | 半導体装置及びその製造方法 |
US6265784B1 (en) | 1998-11-10 | 2001-07-24 | Hitachi, Ltd. | Resin sealed semiconductor device having improved arrangement for reducing thermal stress within the device |
JP2006032625A (ja) * | 2004-07-15 | 2006-02-02 | Fujitsu Ltd | 半導体装置及びその製造方法 |
US7015131B2 (en) * | 2000-04-28 | 2006-03-21 | Sony Corporation | Semiconductor device using bumps, method for fabricating same, and method for forming bumps |
WO2008018557A1 (fr) * | 2006-08-10 | 2008-02-14 | Sumitomo Bakelite Co., Ltd. | Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement |
WO2008072491A1 (ja) * | 2006-12-11 | 2008-06-19 | Sharp Kabushiki Kaisha | Icチップ実装パッケージ及びその製造方法 |
JP2009049218A (ja) * | 2007-08-21 | 2009-03-05 | Nec Electronics Corp | 半導体装置及び半導体装置の製造方法 |
JP2011054867A (ja) * | 2009-09-04 | 2011-03-17 | Lintec Corp | Icチップの接続構造、icインレット及びicタグ |
JP2011086705A (ja) * | 2009-10-14 | 2011-04-28 | Renesas Electronics Corp | 半導体装置及びその製造方法 |
US8252419B2 (en) | 1998-08-13 | 2012-08-28 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
JP2012168708A (ja) * | 2011-02-14 | 2012-09-06 | Lintec Corp | Icタグ |
US8264079B2 (en) | 2007-06-28 | 2012-09-11 | Panasonic Corporation | Semiconductor device mounted structure and its manufacturing method, semiconductor device mounting method, and pressing tool |
-
1993
- 1993-08-30 JP JP23882193A patent/JPH0766326A/ja active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880530A (en) * | 1996-03-29 | 1999-03-09 | Intel Corporation | Multiregion solder interconnection structure |
US6030854A (en) * | 1996-03-29 | 2000-02-29 | Intel Corporation | Method for producing a multilayer interconnection structure |
US6054171A (en) * | 1996-09-20 | 2000-04-25 | Nec Corporation | Method for forming protruding electrode |
KR19980070399A (ko) * | 1997-02-04 | 1998-10-26 | 존에이치.무어 | 플립칩 부착물 |
US8273458B2 (en) | 1997-02-14 | 2012-09-25 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US8252419B2 (en) | 1998-08-13 | 2012-08-28 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US8273457B2 (en) | 1998-08-13 | 2012-09-25 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US6265784B1 (en) | 1998-11-10 | 2001-07-24 | Hitachi, Ltd. | Resin sealed semiconductor device having improved arrangement for reducing thermal stress within the device |
JP2000164610A (ja) * | 1998-11-30 | 2000-06-16 | Ngk Spark Plug Co Ltd | 半導体装置及びその製造方法 |
US7015131B2 (en) * | 2000-04-28 | 2006-03-21 | Sony Corporation | Semiconductor device using bumps, method for fabricating same, and method for forming bumps |
JP2006032625A (ja) * | 2004-07-15 | 2006-02-02 | Fujitsu Ltd | 半導体装置及びその製造方法 |
JP4688443B2 (ja) * | 2004-07-15 | 2011-05-25 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
WO2008018557A1 (fr) * | 2006-08-10 | 2008-02-14 | Sumitomo Bakelite Co., Ltd. | Emballage à semi-conducteurs et son procédé de fabrication et résine de scellement |
WO2008072491A1 (ja) * | 2006-12-11 | 2008-06-19 | Sharp Kabushiki Kaisha | Icチップ実装パッケージ及びその製造方法 |
US8193627B2 (en) | 2006-12-11 | 2012-06-05 | Sharp Kabushiki Kaisha | IC chip mounting package provided with IC chip located in device hole formed within a package base member |
US8264079B2 (en) | 2007-06-28 | 2012-09-11 | Panasonic Corporation | Semiconductor device mounted structure and its manufacturing method, semiconductor device mounting method, and pressing tool |
US8426965B2 (en) | 2007-06-28 | 2013-04-23 | Panasonic Corporation | Semiconductor device mounted structure and its manufacturing method, semiconductor device mounting method, and pressing tool |
JP2009049218A (ja) * | 2007-08-21 | 2009-03-05 | Nec Electronics Corp | 半導体装置及び半導体装置の製造方法 |
JP2011054867A (ja) * | 2009-09-04 | 2011-03-17 | Lintec Corp | Icチップの接続構造、icインレット及びicタグ |
JP2011086705A (ja) * | 2009-10-14 | 2011-04-28 | Renesas Electronics Corp | 半導体装置及びその製造方法 |
JP2012168708A (ja) * | 2011-02-14 | 2012-09-06 | Lintec Corp | Icタグ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0766326A (ja) | 半導体装置 | |
JP2848357B2 (ja) | 半導体装置の実装方法およびその実装構造 | |
JPH08195414A (ja) | 半導体装置 | |
JPH1154662A (ja) | フリップチップ樹脂封止構造及び樹脂封入方法 | |
JPS62149157A (ja) | 半導体素子の封止構造 | |
US20090197370A1 (en) | Method and apparatus for manufacturing semiconductor device | |
KR940010536B1 (ko) | 반도체장치 및 그 제조방법 | |
JPH08250551A (ja) | フリップチップおよびその製造方法ならびに実装方法、バーンイン検査基板 | |
KR100594343B1 (ko) | 열경화성 접착재료 | |
JPH0766329A (ja) | 半導体装置 | |
JP2002284849A (ja) | 液状樹脂組成物および半導体装置 | |
JP2675003B2 (ja) | Lsi実装構造体 | |
JP2000260792A (ja) | 半導体装置 | |
JPS6124255A (ja) | 半導体パツケ−ジ構造 | |
JP3566680B2 (ja) | 半導体装置の製造方法 | |
JPH0639563B2 (ja) | 半導体装置の製法 | |
JPS6124253A (ja) | 半導体パツケ−ジ構造 | |
JPH03245558A (ja) | 半導体装置 | |
JP3303162B2 (ja) | 半導体装置及びその製造方法 | |
JP3384259B2 (ja) | 樹脂封止半導体装置 | |
JPS6364055B2 (ja) | ||
JP4366971B2 (ja) | 液状封止樹脂組成物の設計方法、および半導体装置の製造方法 | |
WO2007139101A1 (ja) | 電子部品の実装構造 | |
JPH1126641A (ja) | 半導体装置及びその製造方法 | |
JP2584424B2 (ja) | 樹脂封止型半導体装置 |