WO2008004621A1 - Système de conditionnement d'air - Google Patents

Système de conditionnement d'air Download PDF

Info

Publication number
WO2008004621A1
WO2008004621A1 PCT/JP2007/063457 JP2007063457W WO2008004621A1 WO 2008004621 A1 WO2008004621 A1 WO 2008004621A1 JP 2007063457 W JP2007063457 W JP 2007063457W WO 2008004621 A1 WO2008004621 A1 WO 2008004621A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor
refrigerant
air
heat
Prior art date
Application number
PCT/JP2007/063457
Other languages
English (en)
French (fr)
Inventor
Hiromune Matsuoka
Toshiyuki Kurihara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2007270354A priority Critical patent/AU2007270354B2/en
Priority to EP07768206.0A priority patent/EP2040009B1/en
Priority to KR1020097002404A priority patent/KR101185257B1/ko
Priority to CN200780024262XA priority patent/CN101479535B/zh
Priority to US12/307,241 priority patent/US8656729B2/en
Publication of WO2008004621A1 publication Critical patent/WO2008004621A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02321Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02342Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02344Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to an air conditioner, and particularly relates to improving comfort during defrost operation.
  • the air conditioner of Patent Document 1 includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a radiant panel are sequentially connected.
  • the refrigerant circuit is configured so that the refrigerant circulates reversibly and the refrigeration cycle is performed.
  • the refrigerant discharged from the compressor flows in the radiation panel and the indoor heat exchanger in order and condenses, so that the warm air and the radiation panel of the indoor heat exchanger are condensed. Radiant heat is supplied into the room.
  • the refrigerant condensed in the outdoor heat exchanger evaporates in the indoor heat exchanger, so that the cold air in the indoor heat exchanger is supplied into the room.
  • the refrigerant evaporated in the indoor heat exchanger bypasses the radiation panel and returns to the compressor.
  • Patent Document 1 Actual Fairness 7-18935
  • the conventional air conditioner described above has a problem that heating by the indoor heat exchanger has to be stopped when the defrosting of the outdoor heat exchange is performed in the cooling cycle. As a result, the problem is that indoor comfort is impaired during defrosting.
  • the refrigerant discharged from the compressor flows to the outdoor heat exchanger and condenses to perform defrosting, and the condensed refrigerant is decompressed by the expansion valve. It will evaporate in the indoor heat exchanger and radiation panel. That is, the indoor heat located downstream of the expansion valve Because it was necessary to make the exchange function as an evaporator, it was not possible to heat it with indoor heat exchange.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide an air conditioner having a radiant panel and an indoor heat exchanger and defrosting in a cooling cycle.
  • driving defrosted
  • the first invention includes a compressor (21), a heat exchanger for indoor radiation (23), a first pressure reducing mechanism (24), an indoor air heat exchanger (25), and a second pressure reducing mechanism. (26) and an outdoor heat exchanger (27) are connected in order, and a refrigerant circuit (20) for performing a vapor compression refrigeration cycle by reversibly circulating the refrigerant is provided.
  • the present invention dissipates heat in the outdoor heat exchanger (27) and the indoor air heat exchanger (25), and absorbs heat in the indoor radiant heat exchanger (23).
  • the first pressure reducing mechanism (24) is pressure-controlled so as to evaporate.
  • the refrigerant discharged from the compressor (21) radiates heat to the air by the indoor air heat exchanger (25), and the outdoor heat exchanger (27)
  • the refrigerant circulates in the heating cycle that absorbs heat and evaporates.
  • the refrigerant discharged from the compressor (21) dissipates heat in the outdoor heat exchanger (27), absorbs heat from the air in the indoor air heat exchanger (25), and evaporates.
  • the refrigerant circulates in the cooling cycle.
  • the refrigerant discharged from the compressor (21) dissipates heat in the outdoor heat exchanger (27) to perform defrosting. Is called.
  • the indoor air heat exchanger (25) heats the remaining heat to the air to heat the room.
  • the radiated refrigerant is decompressed to a predetermined pressure by the first decompression mechanism (24), and flows into the indoor radiation heat exchanger (23). This refrigerant absorbs heat from the indoor radiation heat exchanger (23) and evaporates. The evaporated refrigerant returns to the compressor (21).
  • the refrigerant is evaporated by using the heat of the indoor radiant heat exchanger (23) itself, which is not evaporated by the indoor air heat exchanger (25). Therefore, it is possible to heat the room while defrosting the outdoor heat exchanger (27).
  • a second invention is the heating cycle of the refrigerant circuit (20) according to the first invention,
  • the second decompression mechanism (26) is pressure-reduced so that the refrigerant dissipates heat in the indoor radiant heat exchanger (23) and the indoor air heat exchanger (25), absorbs heat in the outdoor heat exchanger (27) and evaporates. It is something.
  • the refrigerant discharged from the compressor (21) radiates heat in the indoor radiant heat exchanger (23) and decreases in temperature, and then in the indoor air heat exchanger (25). Furthermore, it is cooled by releasing heat to the air.
  • the indoor radiant heat exchanger (23) the amount of heat absorbed from the high-temperature refrigerant is supplied to the room as radiant heat, and in the indoor air heat exchanger (25), the heated air is supplied to the room as hot air. The room is heated by the radiant heat and warm air.
  • a third invention is the cooling air of the refrigerant circuit (20) according to the first or second invention, wherein the refrigerant dissipates heat in the outdoor heat exchanger (27), and an indoor air heat exchanger (The second pressure reducing mechanism (26) is controlled to be depressurized so as to absorb heat and evaporate in 25) and the indoor radiant heat exchanger (23).
  • the heat exchanger for indoor radiation is further used. It absorbs heat from (23) and evaporates.
  • the indoor air heat exchanger (25) the cooled air is supplied into the room as cold air.
  • the heat radiation for indoor radiation (23) is cooled by the heat absorption of the refrigerant, and the ambient air is cooled. That is, the indoor air is radiatively cooled. Therefore, the room is cooled by cold air and radiation cooling.
  • the refrigerant circuit (20) is configured such that the refrigerant flows by bypassing the indoor radiant heat exchanger (23) and the first pressure reducing mechanism (24).
  • a passage (28) is provided, and an on-off valve (29) is provided in the bypass passage (28).
  • the on-off valve (29) is opened, and the refrigerant that has evaporated and absorbed the aerodynamic force in the indoor air heat exchanger (25) is the indoor radiant heat exchanger. Flow to bypass passage (28) without flowing to (32). As a result, the indoor air heat exchanger (25) is cooled only by the cold air.
  • the indoor radiant heat exchanger (23) and the indoor air heat exchanger (25) are provided in one indoor unit (11). It has been.
  • the indoor radiant heat exchanger (23) is configured such that the radiant surface that emits radiant heat faces the room.
  • the indoor air heat exchanger (25) is housed in the casing (12) of the indoor unit (11) while being provided in the casing (12) of the inner unit (11).
  • the installation space of the indoor radiant heat exchanger (23) and the indoor air heat exchanger (25) can be reduced.
  • a sixth invention is the above first invention, wherein in the cooling cycle of the refrigerant circuit (20), the refrigerant dissipates heat in the outdoor heat exchanger (27) and the indoor air heat exchanger (25), and the indoor circuit
  • depressurization of the refrigerant in the second depressurization mechanism (26) is prevented so that the heat is absorbed by the radiation heat exchanger (23) and evaporated.
  • the refrigerant radiated by the outdoor heat exchanger (27) is not decompressed at all by the second decompression mechanism (26). Therefore, since the refrigerant flows into the indoor air heat exchanger (25) without lowering the temperature, the heating capacity of the indoor air heat exchanger (25) is improved.
  • a seventh invention is the invention according to any one of the first to third inventions, wherein the refrigerant is carbon dioxide.
  • the compressor (21) compresses the refrigerant that is carbon dioxide and its supercritical pressure.
  • the supercritical pressure refrigerant after discharge has a larger high-temperature region than a normal so-called subcritical refrigerant. Therefore, for example, in the case of the defrost operation, the heat release amount of the refrigerant in the outdoor heat exchanger (27) and the indoor air heat exchanger (25) increases. Thereby, both a defrost capability and a heating capability improve. In the heating operation, the amount of heat released from the refrigerant in the indoor radiant heat exchanger (23) and the indoor air heat exchanger (25) increases. Therefore, the heating capability by radiant heat and warm air is improved.
  • the first heat is generated so that the refrigerant dissipates heat in both the outdoor heat exchanger (27) and the indoor air heat exchanger (25) and evaporates in the indoor radiant heat exchanger (23).
  • the decompression mechanism (24) was controlled. Therefore, indoor heating can be performed by the warm air of the indoor air heat exchanger (25) while defrosting the outdoor heat exchanger (27). Therefore, it is not necessary to stop the heating during the defrosting operation, so there is no risk of impairing indoor comfort.
  • the second pressure reducing mechanism (26) is controlled so that the refrigerant evaporates in the indoor radiation heat exchanger (23) and the indoor air heat exchanger (25). did.
  • This makes the room Indoor cooling can also be performed by radiative cooling of the indoor radiant heat exchanger (23) that is connected only by the cold air of the internal air heat exchanger (25). Therefore, since the amount of cold air can be suppressed by the amount of radiation cooling, the feeling of drafting to the user can be suppressed and comfort can be improved.
  • the second pressure reducing mechanism (26) is controlled such that the refrigerant dissipates heat by the indoor radiation heat exchanger (23) and the indoor air heat exchanger (25). .
  • the room can be heated also by the radiant heat of the indoor radiant heat exchanger (23) which is heated only by the warm air of the indoor air heat exchanger (25). Therefore, the amount of hot air can be suppressed by the amount of radiant heat, and the draft feeling to the user can be suppressed.
  • the cooling load is small! /, In some cases, radiant cooling can be disabled. Furthermore, under conditions where the radiation surface of the indoor radiation heat exchanger (23) is exposed to dew, the dew can be prevented by disabling radiation cooling.
  • the indoor radiation heat exchanger (23) and the indoor air heat exchanger (25) are provided in one indoor unit (11), The installation space can be reduced.
  • the seventh aspect since carbon dioxide is used as the refrigerant, if the refrigerant is compressed to the supercritical pressure, a high temperature region of the refrigerant can be increased. Therefore, for the defrosting operation, it is possible to sufficiently obtain the heat radiation amount of the refrigerant necessary for defrosting the outdoor air heat exchanger (27) and heating the indoor air heat exchanger (25). . Thereby, defrosting and heating can be performed reliably. In the heating operation, the radiant heat of the indoor radiant panel (23) can be increased, and accordingly, the air volume in the indoor air heat exchanger (25) can be reduced, and the draft feeling can be reduced. As a result, indoor comfort is improved.
  • FIG. 1 is a refrigerant circuit diagram showing an overall configuration of an air conditioner.
  • FIG. 2 shows a configuration of an indoor unit, where (A) is a front view and (B) is a cross-sectional view as viewed from the right side. o
  • FIG. 3 is a plan view showing the interior of the indoor radiant panel.
  • FIG. 4 is a refrigerant circuit diagram showing the heating operation.
  • FIG. 5 is a Mollier diagram showing the state of the refrigerant during heating operation and defrosting operation.
  • FIG. 6 is a refrigerant circuit diagram showing operations of cooling operation and defrosting operation.
  • FIG. 7 is a Mollier diagram showing the state of the refrigerant during the cooling operation.
  • FIG. 8 is a refrigerant circuit diagram showing the operation of the cooling operation.
  • FIG. 9 shows the configuration of an indoor unit according to Modification 1.
  • FIG. 9 (A) is a front view
  • FIG. 9 (B) is a right side sectional view.
  • FIG. 10 shows the configuration of an indoor unit according to Modification 2.
  • FIG. 10 (A) is a front view
  • FIG. 10 (B) is a cross-sectional view as viewed from the right side.
  • the air conditioner (10) of the present embodiment performs indoor cooling and heating.
  • the air conditioner (10) includes a refrigerant circuit (20).
  • the refrigerant circuit (20) includes a compressor (21), an indoor radiant panel (23), a first expansion valve (24), an indoor air heat exchanger (25), a second expansion valve (26), and an outdoor The air heat exchanger (27) is connected to the pipe in order to form a closed circuit.
  • the refrigerant circuit (20) also has a four-way switching valve (22) connected by piping between the compressor (21), the indoor radiant panel (23), and the outdoor air heat exchanger (27). ing.
  • the refrigerant circuit (20) is configured so as to perform a vapor compression refrigeration cycle by filling the carbon dioxide (C02) as a refrigerant and circulating the refrigerant.
  • the circulation direction of the refrigerant becomes reversible by switching the four-way switching valve (22).
  • the circulation in which the refrigerant flows in the cooling cycle and the circulation in which the refrigerant flows in the heating cycle are switched.
  • the four-way selector valve (22) switches to the state shown by the solid line in FIG. 1, the refrigerant circulates counterclockwise in the heating cycle.
  • the four-way selector valve (22) is switched to the state shown by the broken line in FIG. 1, the refrigerant circulates clockwise in the cooling cycle.
  • the compressor (21) is, for example, a positive displacement compressor such as a rotary compressor or a scroll compressor.
  • the compressor (21) is configured to compress the sucked refrigerant (diacid carbon) to its supercritical pressure. That is, in the refrigerant circuit (20), the high pressure is higher than the critical pressure of the refrigerant.
  • the indoor air heat exchanger (25) and the outdoor air heat exchanger (27) are both constituted by a cross-fin type fin 'and' tube heat exchanger, and the refrigerant exchanges heat with air. It is.
  • the indoor air heat exchanger (25) is provided with an indoor fan (25F)
  • the outdoor air heat exchanger (27) is provided with an outdoor fan (27F).
  • air heated or cooled by exchanging heat with the refrigerant is supplied to the room, and heating or cooling is performed.
  • the outdoor air heat exchanger (27) constitutes an outdoor heat exchange according to the present invention!
  • the indoor radiant panel (23) absorbs heat from the refrigerant and supplies radiant heat to the room. That is, radiant heating is performed. Further, in the cooling operation, the indoor radiant panel (23) is cooled by the heat absorption of the refrigerant, and the ambient air is cooled. In other words, radiant cooling is performed.
  • the indoor radiant panel (23) constitutes an indoor radiant heat exchanger according to the present invention.
  • Each of the first expansion valve (24) and the second expansion valve (26) constitutes a refrigerant expansion mechanism. ing.
  • the first expansion valve (24) and the second expansion valve (26) adjust the opening to control the decompression of the refrigerant, and constitute the first decompression mechanism and the second decompression mechanism according to the present invention. ing.
  • the refrigerant circuit (20) is provided with a bypass passage (28) that bypasses the indoor radiant panel (23) and the first expansion valve (24).
  • the bypass passage (28) is provided with a solenoid valve (29) as an on-off valve.
  • the indoor radiant panel (23), the first expansion valve (24), the solenoid valve (29), the indoor air heat exchanger (25) and the indoor fan (25F) are as shown in FIG. Constitutes an indoor unit (11).
  • the indoor unit (11) is configured as a so-called floor-standing type.
  • the first expansion valve (24) and the solenoid valve (29) are omitted.
  • the indoor unit (11) includes a casing (12) formed in a horizontally-long rectangular body.
  • the casing (12) is provided with legs (13) at both ends of the bottom surface.
  • the casing (12) is provided with an air inlet (12a) at the center of the bottom surface and an air outlet (12b) along the longitudinal direction of the upper surface.
  • the indoor radiant panel (23) is fitted over the entire front surface of the casing (12).
  • Inside the casing (12) is housed an indoor air heat exchanger (25) and an indoor fan (25F).
  • the indoor air heat exchanger (25) is disposed on the back side of the indoor radiant panel (23), and its upper end is inclined toward the back side of the casing (12).
  • the indoor fan (25F) is arranged on the back side of the indoor radiant panel (23) and below the indoor air heat exchanger (25).
  • the indoor radiant panel (23) is provided with a heat transfer tube (23a) inside as shown in FIG.
  • the heat transfer tube (23a) has a refrigerant flowing through it, and is arranged in a plane over the entire panel.
  • the refrigerant radiates heat to the panel body through the heat transfer tube (23a) or absorbs heat from the panel body.
  • both ends of the heat transfer tube (23a) are connected to the first expansion valve (24) and the four-way switching valve (22) by refrigerant piping.
  • the air conditioner (10) of the present embodiment includes a defrosting operation for performing defrosting (defrosting) of the outdoor air heat exchanger (27).
  • This defrosting operation is performed by circulating the refrigerant in the cooling cycle.
  • the refrigerant radiates heat in the outdoor air heat exchanger (27) and the indoor air heat exchanger (25), and absorbs heat in the indoor radiant heat exchanger (23).
  • the second expansion valve (26) is set to fully open so that it evaporates, and the first expansion valve (24) is pressure-controlled.
  • defrosting is performed by the heat release of the refrigerant in the outdoor air heat exchanger (27), and the air is heated by the heat release of the refrigerant in the indoor air heat exchanger (25), thereby heating the room.
  • the air conditioner (10) is configured to be switchable between a heating operation, a cooling operation, and a defrosting operation.
  • This heating operation is an operation in which the room is heated by the radiant heat of the indoor radiant panel (23) and the hot air of the indoor air heat exchanger (25).
  • the four-way selector valve (22) is switched so that the refrigerant circulates in the heating cycle.
  • the electromagnetic valve (29) is set to a closed state
  • the first expansion valve (24) is set to an open state
  • the second expansion valve (26) is set to a predetermined opening.
  • the compressor (21) when the compressor (21) is driven, the refrigerant is compressed by the compressor (21), discharged as a high-temperature refrigerant in a supercritical pressure state, and flows to the indoor radiant panel (23).
  • the indoor radiant panel (23) In this indoor radiant panel (23), the amount of heat radiated from the high-temperature refrigerant is supplied indoors as radiant heat. At that time, since the refrigerant is in a supercritical pressure state, the temperature decreases without condensing even if heat is released.
  • the refrigerant cooled by the indoor radiant panel (23) passes through the first expansion valve (24) and flows to the indoor air heat exchanger (25).
  • the refrigerant dissipates heat to the indoor air taken in by the indoor fan (25F), and the heated indoor air is supplied to the room as warm air.
  • the low-temperature refrigerant cooled by the indoor air heat exchanger (25) is decompressed to a predetermined pressure by the second expansion valve (26).
  • the decompressed refrigerant flows into the outdoor air heat exchanger (27), absorbs heat from the outdoor air taken in by the outdoor fan (27F), and evaporates.
  • This evaporative refrigerant is compressed again by the compressor (21), and this refrigerant circulation is repeated. In this way, the room is heated by the radiant heat of the indoor radiant panel (23) and the warm air of the indoor air heat exchanger (25).
  • the refrigerant is compressed up to the refrigerant point of the sucked point A to become a high-temperature refrigerant in a supercritical pressure state.
  • the refrigerant at point B lowers in temperature by radiating heat from the indoor radiant panel (23) and becomes refrigerant at point C, and further radiates heat in the indoor air heat exchanger (25), causing the temperature to drop and Becomes a refrigerant.
  • the refrigerant at point D is depressurized to point E by the second expansion valve (26).
  • the refrigerant at point E evaporates in the outdoor air heat exchanger (27) and becomes refrigerant at point A, and is sucked into the compressor (21) again.
  • This cooling operation is an operation in which the room is cooled by radiation cooling of the indoor radiation panel (23) and cold air of the indoor air heat exchanger (25).
  • the four-way switching valve (22) is switched so that the refrigerant circulates in the cooling cycle.
  • the electromagnetic valve (29) is set to a closed state
  • the first expansion valve (24) is set to an open state
  • the second expansion valve (26) is set to a predetermined opening.
  • the refrigerant absorbs heat from the indoor air and evaporates, and the cooled indoor air is supplied to the room as cold air.
  • the refrigerant absorbs heat from the indoor radiation panel (23) and becomes superheated steam.
  • the indoor radiant panel (23) is cooled, and the surrounding room air is radiatively cooled.
  • the evaporated refrigerant is compressed again by the compressor (21), and this refrigerant circulation is repeated. In this way, the room is cooled by the radiation cooling of the indoor radiation panel (23) and the cold air of the indoor air heat exchanger (25).
  • the refrigerant is compressed up to the refrigerant point of the sucked point A to become a high-temperature refrigerant in a supercritical pressure state.
  • the refrigerant at point B is radiated by the outdoor air heat exchanger (27), and the temperature is lowered to become refrigerant at point C.
  • the refrigerant at point C is depressurized to point D by the second expansion valve (26).
  • the refrigerant at point D evaporates in room air heat exchange (25) and becomes refrigerant at point E.
  • the refrigerant at point E is superheated by absorbing heat from the indoor radiant panel (23), becomes a refrigerant at point A, and is sucked into the compressor (21) again.
  • the refrigerant may flow through the bypass passage (28). That is, in this case, the first expansion valve (24) is set in the closed state, and the solenoid valve (29) is set in the open state. Then, the refrigerant evaporated in the indoor air heat exchanger (25) bypasses the first expansion valve (24) and the indoor radiation panel (23) and returns to the compressor (21). This makes it possible to disable the radiant cooling of the indoor radiant panel (23) when the cooling capacity is not so much required. Further, under the condition that the radiant surface of the indoor radiant panel (23) is exposed to dew, this operation can prevent the dew.
  • This defrosting operation is an operation in which the defrosting of the outdoor air heat exchanger (27) and the indoor heating by the warm air of the indoor air heat exchanger (25) are performed simultaneously.
  • the four-way selector valve (22) is switched so that the refrigerant circulates in the cooling cycle. Also, the solenoid valve (29) is set to the closed state, while the first expansion valve (24) is The second expansion valve (26) is set to the fully open state at the opening of. The refrigerant flow is the same as in the cooling operation described above (see FIG. 6).
  • the refrigerant is depressurized to a predetermined pressure by the first expansion valve (24) and then flows to the indoor radiation panel (23).
  • the indoor radiant panel (23) absorbs the heat of the indoor radiant panel (23) itself and evaporates. That is, the first expansion valve (24) is subjected to pressure reduction control (opening degree control) so that the refrigerant can be evaporated by the heat of the indoor radiation panel (23).
  • pressure reduction control opening degree control
  • frost formation in outdoor air heat exchange (27) generally occurs during heating operation, so defrosting operation is often performed during heating operation. Then, the heat absorbed from the refrigerant during the heating operation is stored in the indoor radiant panel (23).
  • the defrosting operation it is possible to reliably evaporate the refrigerant using the heat stored in the indoor radiant panel (23).
  • the refrigerant evaporated in the indoor radiant panel (23) is compressed again by the compressor (21), and this refrigerant circulation is repeated. In this way, the defrosting of the outdoor air heat exchanger (27) and the heating of the room by the warm air of the indoor air heat exchanger (25) are performed.
  • the sucked refrigerant at point A1 is compressed to point B1 and becomes a high-temperature refrigerant in a supercritical pressure state.
  • the refrigerant at point B1 is cooled by the outdoor air heat exchanger (27) and the temperature is lowered to become the refrigerant at point C1.
  • the refrigerant at point C1 is further radiated by the indoor air heat exchanger (25), and the temperature is lowered to become the refrigerant at point D1.
  • the refrigerant at point D1 is depressurized to point E1 by the second expansion valve (26).
  • the refrigerant at point E1 evaporates by absorbing heat from the indoor radiant panel (23), becomes refrigerant at point A1, and is sucked into the compressor (21) again.
  • the indoor radiant panel (23) is made to function as an evaporator using its heat storage, and the outdoor air heat exchange (27) and the indoor air heat exchange (25 ) was made to function as a radiator.
  • the outdoor air heat exchange (27) and the indoor air heat exchange (25 ) was made to function as a radiator.
  • the outdoor air heat exchanger (27) and the indoor air heat exchanger (25) function as a radiator,
  • the second expansion valve (26) is fully opened and the first expansion valve (24) is pressure-reduced so that (23) functions as an evaporator.
  • the indoor air can be heated while defrosting the outdoor air heat exchanger (27).
  • the comfort in the room is not impaired even during the defrosting operation.
  • the refrigerant is operated in a supercritical cycle using carbon dioxide as a refrigerant, the high temperature region of the refrigerant can be increased. Therefore, in the defrosting operation, it is possible to sufficiently earn the heat radiation amount of the refrigerant necessary for defrosting the outdoor air heat exchanger (27) and heating the indoor air heat exchanger (25). Thereby, defrosting and heating can be performed reliably.
  • the heating operation since the radiant heat of the indoor radiant panel (23) can be increased, the air volume in the indoor air heat exchanger (25) can be reduced correspondingly, and the draft feeling can be reduced. As a result, indoor comfort is improved.
  • the room is also cooled by radiation cooling by the indoor radiation panel (23). Therefore, the amount of cold air in the indoor air heat exchanger (25) can be reduced correspondingly, and the draft feeling can be reduced.
  • the arrangement of the inlet (12a) and the outlet (12b) of the casing (12) is changed.
  • the suction port (12a) is formed in the longitudinal direction of the upper surface of the casing (12), and the air outlet (12b) is formed in the central portion of the bottom surface of the casing (12).
  • the indoor air heat exchanger (25) is disposed with its upper end inclined toward the indoor radiant panel (23).
  • the arrangement of the indoor radiant panel (23), the suction port (12a), and the outlet (12b) is changed.
  • the indoor radiant panel (23) is erected on the upper side of the upper surface of the casing (12).
  • the radiation surface of the indoor radiation panel (23) faces the front side.
  • the inlet (12a) and the outlet (12b) are formed on the front surface of the casing (12).
  • the suction port (12a) is located in the upper half of the front surface of the casing (12) and is formed in a horizontally long shape extending in the longitudinal direction.
  • the air outlet (12b) is located below the suction port (12a) in the front surface of the casing (12) and is formed in a horizontally long shape extending in the longitudinal direction.
  • the outdoor heat exchanger is the outdoor air heat exchange (27) in which the refrigerant exchanges heat with the air. You might make up a heat exchange that exchanges heat with ⁇ .
  • the no-pass passage (28) may be omitted in the above-described embodiment, and the indoor radiant panel (23) and the indoor air heat exchanger (25) are separately and independently provided. Please do it like this.
  • the air conditioner that can perform the cooling operation is described.
  • the present invention relates to an air conditioner that can perform only the heating operation and the defrosting operation excluding the cooling operation. Is also applicable.
  • the present invention is useful as an air conditioner including a refrigerant circuit having an indoor radiation panel and an indoor heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

明 細 書
空気調和装置
技術分野
[0001] 本発明は、空気調和装置に関し、特に、デフロスト運転時の快適性向上に係るも のである。
背景技術
[0002] 従来より、輻射パネルと室内熱交 を備え、輻射熱と温風によって室内の暖房 を行う空気調和装置が知られている。例えば、特許文献 1の空気調和装置は、圧縮 機、室外熱交換器、膨張弁、室内熱交換器および輻射パネルが順に接続された冷 媒回路を備えている。そして、冷媒回路は、冷媒が可逆に循環して冷凍サイクルが行 われるように構成されて 、る。
[0003] この空気調和装置では、暖房運転 (暖房サイクル)の場合、圧縮機の吐出冷媒が 輻射パネルおよび室内熱交換器を順に流れて凝縮することにより、室内熱交換器の 温風と輻射パネルの輻射熱が室内へ供給される。また、冷房運転 (冷房サイクル)の 場合は、室外熱交換器で凝縮した冷媒が室内熱交換器にて蒸発することにより、室 内熱交換器の冷風が室内へ供給される。室内熱交換器で蒸発した冷媒は、輻射パ ネルをバイパスして圧縮機へ戻る。
特許文献 1 :実公平 7— 18935号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上述した従来の空気調和装置では、冷房サイクルで室外熱交 の除霜を行おうとすると、室内熱交換器による暖房を停止しなければならないという 問題があった。その結果、除霜運転中は、室内の快適性が損なわれるという問題が めつに。
[0005] 具体的には、除霜運転の場合、圧縮機の吐出冷媒が室外熱交換器へ流れて凝 縮することで除霜が行われ、凝縮後の冷媒は膨張弁で減圧された後、室内熱交 および輻射パネルで蒸発することになる。つまり、膨張弁の下流に位置する室内熱 交 を蒸発器として機能させる必要があるため、室内熱交^^で暖房することが できなかった。
[0006] 本発明は、斯カる点に鑑みてなされたものであり、その目的は、輻射パネルと室 内熱交^^とを有した空気調和装置にぉ 、て、冷房サイクルで除霜運転 (デフロスト 運転)を行う場合、同時に室内の暖房も可能にし、室内の快適性低下を防止すること である。
課題を解決するための手段
[0007] 第 1の発明は、圧縮機 (21)と、室内輻射用熱交換器 (23)と、第 1減圧機構 (24)と 、室内空気熱交換器 (25)と、第 2減圧機構 (26)と、室外熱交換器 (27)とが順に接続 され、冷媒が可逆に循環して蒸気圧縮式冷凍サイクルを行う冷媒回路 (20)を備えて いる。そして、本発明は、上記冷媒回路 (20)の冷房サイクルで、冷媒が室外熱交換 器 (27)および室内空気熱交換器 (25)で放熱し、室内輻射用熱交換器 (23)で吸熱し て蒸発するように第 1減圧機構 (24)が減圧制御されるものである。
[0008] 上記の発明では、暖房運転の場合、冷媒回路 (20)において、圧縮機 (21)の吐出 冷媒が室内空気熱交換器 (25)で空気に放熱し、室外熱交換器 (27)で吸熱して蒸発 する暖房サイクルで冷媒が循環する。また、冷房運転の場合、冷媒回路 (20)におい て、圧縮機 (21)の吐出冷媒が室外熱交換器 (27)で放熱し、室内空気熱交換器 (25) で空気から吸熱して蒸発する冷房サイクルで冷媒が循環する。
[0009] そして、本発明では、室外熱交換器 (27)の除霜 (デフロスト)を行う場合、圧縮機 ( 21)の吐出冷媒が室外熱交換器 (27)で放熱して除霜が行われる。この放熱後の冷 媒は、室内空気熱交換器 (25)で余熱を空気に放熱して室内の暖房が行われる。続 いて、放熱後の冷媒は、第 1減圧機構 (24)で所定圧力まで減圧され、室内輻射用熱 交 (23)へ流入する。この冷媒は、室内輻射用熱交 (23)から吸熱して蒸発 する。なお、蒸発した冷媒は、圧縮機 (21)へ戻る。つまり、本発明のデフロスト運転で は、室内空気熱交換器 (25)で冷媒を蒸発させるのではなぐ室内輻射用熱交換器( 23)自体が有する熱を利用して冷媒を蒸発させる。したがって、室外熱交換器 (27)の 除霜を行いつつ、室内の暖房を行うことが可能になる。
[0010] 第 2の発明は、上記第 1の発明において、上記冷媒回路 (20)の暖房サイクルで、 冷媒が室内輻射用熱交換器 (23)および室内空気熱交換器 (25)で放熱し、室外熱 交換器 (27)で吸熱して蒸発するように第 2減圧機構 (26)が減圧制御されるものであ る。
[0011] 上記の発明では、暖房運転の場合、圧縮機 (21)の吐出冷媒が室内輻射用熱交 換器 (23)で放熱して温度低下した後、室内空気熱交換器 (25)でさらに空気に放熱 して冷却される。室内輻射用熱交換器 (23)では、高温冷媒から吸熱した熱量を輻射 熱として室内に供給し、室内空気熱交換器 (25)では、加熱された空気が温風として 室内に供給される。この輻射熱および温風によって室内の暖房が行われる。
[0012] 第 3の発明は、上記第 1または第 2の発明において、上記冷媒回路 (20)の冷房サ イタルで、冷媒が室外熱交換器 (27)で放熱し、室内空気熱交換器 (25)および室内 輻射用熱交換器 (23)で吸熱して蒸発するように第 2減圧機構 (26)が減圧制御される ものである。
[0013] 上記の発明では、冷房運転の場合、第 2減圧機構 (26)で所定圧力まで減圧され た冷媒が室内空気熱交 (25)で空気力 吸熱した後、さらに室内輻射用熱交換 器 (23)から吸熱して蒸発する。室内空気熱交換器 (25)では、冷却された空気が冷 風として室内に供給される。一方、室内輻射用熱交 (23)は、冷媒の吸熱によつ て冷却され、周囲空気が冷却される。つまり、室内空気が輻射冷却される。したがつ て、冷風および輻射冷却によって室内の冷房が行われる。
[0014] 第 4の発明は、上記第 3の発明において、上記冷媒回路 (20)は、冷媒が室内輻 射用熱交換器 (23)および第 1減圧機構 (24)をバイパスして流れるバイパス通路 (28) を備え、該バイパス通路 (28)に開閉弁 (29)が設けられているものである。
[0015] 上記の発明では、例えば冷房運転の場合、開閉弁 (29)を開状態にして、室内空 気熱交換器 (25)で空気力 吸熱して蒸発した冷媒が室内輻射用熱交換器 (32)へ 流さずにバイパス通路 (28)へ流す。これにより、室内空気熱交換器 (25)の冷風のみ による冷房が行われる。
[0016] 第 5の発明は、上記第 1または第 2の発明において、上記室内輻射用熱交換器 (2 3)と室内空気熱交 (25)は、 1台の室内ユニット(11)に設けられている。そして、 上記室内輻射用熱交換器 (23)は、輻射熱を発する輻射面が室内に面するように室 内ユニット(11)のケーシング(12)に設けられる一方、上記室内空気熱交換器 (25)は 、室内ユニット(11)のケーシング(12)の内部に収納されているものである。
[0017] 上記の発明では、室内輻射用熱交換器 (23)および室内空気熱交換器 (25)の設 置スペースの縮小化が図られる。
[0018] 第 6の発明は、上記第 1の発明において、上記冷媒回路 (20)の冷房サイクルで、 冷媒が室外熱交換器 (27)および室内空気熱交換器 (25)で放熱し、室内輻射用熱 交換器 (23)で吸熱して蒸発するように第 2減圧機構 (26)における冷媒の減圧が阻止 されるちのである。
[0019] 上記の発明では、室外熱交換器 (27)で放熱した冷媒が第 2減圧機構 (26)にお ヽ て全く減圧されない。したがって、冷媒が温度低下することなく室内空気熱交換器 (2 5)へ流入するので、その室内空気熱交換器 (25)の暖房能力が向上する。
[0020] 第 7の発明は、上記第 1乃至第 3の何れか 1の発明において、上記冷媒がニ酸ィ匕 炭素であるものである。
[0021] 上記の発明では、圧縮機 (21)によって二酸ィ匕炭素である冷媒がその超臨界圧力 まで圧縮される。この吐出後の超臨界圧力状態の冷媒は、通常のいわゆる亜臨界状 態の冷媒に比べて高温領域が大きい。したがって、例えばデフロスト運転の場合、室 外熱交換器 (27)および室内空気熱交換器 (25)における冷媒の放熱量が増大する。 これにより、デフロスト能力および暖房能力の双方が向上する。また、暖房運転の場 合、室内輻射用熱交換器 (23)および室内空気熱交換器 (25)における冷媒の放熱 量が増大する。したがって、輻射熱および温風による暖房能力が向上する。
発明の効果
[0022] 本発明によれば、冷媒が室外熱交換器 (27)および室内空気熱交換器 (25)の双 方で放熱し、室内輻射用熱交換器 (23)で蒸発するように第 1減圧機構 (24)を制御す るようにした。これにより、室外熱交換器 (27)の除霜を行いつつ、室内空気熱交換器 (25)の温風による室内の暖房を行うことができる。したがって、除霜運転中も暖房を 停止しなくてよ!、ので、室内の快適性を損なうおそれはな 、。
[0023] また、第 2の発明によれば、冷媒が室内輻射用熱交換器 (23)および室内空気熱 交換器 (25)で蒸発するように第 2減圧機構 (26)を制御するようにした。これにより、室 内空気熱交換器 (25)の冷風だけでなぐ室内輻射用熱交換器 (23)の輻射冷却によ つても室内の冷房を行うことができる。したがって、輻射冷却の分だけ、冷風量を抑え ることができるので、ユーザーへのドラフト感を抑制することができ、快適性を向上さ せることができる。
[0024] また、第 3の発明によれば、冷媒が室内輻射用熱交換器 (23)および室内空気熱 交 (25)で放熱するように第 2減圧機構 (26)を制御するようにした。これにより、室 内空気熱交換器 (25)の温風だけでなぐ室内輻射用熱交換器 (23)の輻射熱によつ ても室内の暖房を行うことができる。したがって、輻射熱の分だけ、温風量を抑えるこ とができ、ユーザーへのドラフト感を抑制することができる。
[0025] また、第 4の発明によれば、室内輻射用熱交換器 (23)および第 1減圧機構 (24) のバイパス通路 (28)を設けるようにしたので、冷房負荷が小さ!/、場合にぉ 、て輻射 冷却を無効にすることができる。さらに、室内輻射用熱交 (23)の輻射面に露が 付くような条件下では、輻射冷却を無効にすることで、その露付きを防止することがで きる。
[0026] また、第 5の発明によれば、室内輻射用熱交換器 (23)と室内空気熱交換器 (25) とを 1台の室内ユニット(11)に設けるようにしたので、装置の設置スペースの縮小化を 図ることができる。
[0027] また、第 7の発明によれば、冷媒に二酸化炭素を用いるので、その冷媒を超臨界 圧力まで圧縮すれば、冷媒の高温領域を大きくとることができる。したがって、除霜運 転にお!、て、室外空気熱交換器 (27)の除霜と室内空気熱交換器 (25)の暖房のため に必要な冷媒の放熱量を十分に稼ぐことができる。これにより、除霜と暖房とを確実 に行うことができる。暖房運転においては、室内輻射パネル (23)の輻射熱を高めるこ とができるので、その分室内空気熱交 (25)における風量を減らすことができ、ド ラフト感を低減することができる。その結果、室内の快適性が向上する。
図面の簡単な説明
[0028] [図 1]図 1は、空気調和装置の全体構成を示す冷媒回路図である。
[図 2]図 2は、室内ユニットの構成を示すもので、(A)は正面図、(B)は右側から視た 断面図である。 o
[図 3]図 3は、室内輻射パネルの内部を示す平面図である。
[図 4]図 4は、暖房運転の動作を示す冷媒回路図である。
[図 5]図 5は、暖房運転時および除霜運転時の冷媒の状態を示すモリエル線図であ る。
[図 6]図 6は、冷房運転および除霜運転の動作を示す冷媒回路図である。
[図 7]図 7は、冷房運転時の冷媒の状態を示すモリエル線図である。
[図 8]図 8は、冷房運転の動作を示す冷媒回路図である。
[図 9]図 9は、変形例 1に係る室内ユニットの構成を示すもので、(A)は正面図、(B) は右側力 視た断面図である。
[図 10]図 10は、変形例 2に係る室内ユニットの構成を示すもので、 (A)は正面図、(B )は右側力 視た断面図である。
符号の説明
空気調和装置
11 室内ユニット
12 ケーシング
20 冷媒回路
21 圧縮機
23 室内輻射パネル (室内輻射用熱交換器)
24 第 1膨張弁 (第 1減圧機構)
25 室内空気熱交換器
26 第 2膨張弁 (第 2減圧機構)
27 室外空気熱交換器 (室外熱交換器)
28 バイパス通路
29 電磁弁 (開閉弁)
発明を実施するための最良の形態
[0030] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0031] 図 1〜図 3に示すように、本実施形態の空気調和装置(10)は、室内の冷房および 暖房を行うものである。この空気調和装置(10)は、冷媒回路 (20)を備えている。 [0032] 上記冷媒回路 (20)は、圧縮機 (21)と室内輻射パネル (23)と第 1膨張弁 (24)と室 内空気熱交 (25)と第 2膨張弁 (26)と室外空気熱交 (27)とが順に配管接続 されて閉回路に構成されている。また、この冷媒回路 (20)は、圧縮機 (21)と室内輻 射パネル (23)および室外空気熱交 (27)との間に配管接続された四路切換弁 (2 2)を有している。そして、冷媒回路 (20)は、冷媒として二酸ィ匕炭素 (C02)が充填さ れ、冷媒が循環して蒸気圧縮式冷凍サイクルを行うように構成されて!ヽる。
[0033] 上記冷媒回路 (20)は、四路切換弁 (22)の切換によって、冷媒の循環方向が可 逆になる。つまり、冷媒が冷房サイクルで流れる循環と暖房サイクルで流れる循環と が切り換わる。例えば、四路切換弁 (22)が図 1に実線で示す状態に切り換わると、暖 房サイクルで冷媒が反時計回りに循環する。また、四路切換弁 (22)が図 1示す破線 で示す状態に切り換わると、冷房サイクルで冷媒が時計回りに循環する。
[0034] 上記圧縮機 (21)は、例えば、ロータリ式圧縮機やスクロール式圧縮機などの容積 型圧縮機である。そして、圧縮機 (21)は、吸入した冷媒 (二酸ィ匕炭素)をその超臨界 圧力まで圧縮するように構成されている。つまり、冷媒回路 (20)において、高圧が冷 媒の臨界圧力よりも高くなる。
[0035] 上記室内空気熱交換器 (25)および室外空気熱交換器 (27)は、何れもクロスフィ ン式のフィン 'アンド'チューブ型熱交換器により構成され、冷媒が空気と熱交換する ものである。また、室内空気熱交換器 (25)には室内ファン (25F)が、室外空気熱交 换器 (27)には室外ファン (27F)がそれぞれ近接して設けられている。そして、室内空 気熱交換器 (25)では、冷媒と熱交換して加熱または冷却された空気が室内へ供給 され、暖房または冷房が行われる。なお、室外空気熱交換器 (27)は、本発明に係る 室外熱交 を構成して!/、る。
[0036] 上記室内輻射パネル (23)は、暖房運転の場合、冷媒から吸熱して輻射熱を室内 へ供給する。つまり、輻射暖房が行われる。また、室内輻射パネル (23)は、冷房運転 の場合、冷媒の吸熱によって冷却され、その周囲空気が冷却される。つまり、輻射冷 房が行われる。なお、この室内輻射パネル (23)は、本発明に係る室内輻射用熱交換 器を構成している。
[0037] 上記第 1膨張弁 (24)および第 2膨張弁 (26)は、何れも冷媒の膨張機構を構成し ている。これら第 1膨張弁 (24)および第 2膨張弁 (26)は、開度を調節して冷媒の減圧 制御を行うものであり、本発明に係る第 1減圧機構および第 2減圧機構を構成してい る。
[0038] また、上記冷媒回路 (20)には、室内輻射パネル (23)および第 1膨張弁 (24)をバ ィパスするバイパス通路 (28)が設けられている。このバイパス通路 (28)には、開閉弁 である電磁弁 (29)が設けられて 、る。
[0039] 上記室内輻射パネル (23)、第 1膨張弁 (24)、電磁弁 (29)、室内空気熱交換器 (2 5)および室内ファン(25F)は、図 2に示すように、 1台の室内ユニット(11)を構成して いる。この室内ユニット(11)は、いわゆる床置き式に構成されている。なお、図 2では 、第 1膨張弁 (24)および電磁弁 (29)を省略する。
[0040] 上記室内ユニット (11)は、横長の矩形体に形成されたケーシング(12)を備えてい る。ケーシング(12)は、底面の両端に脚(13)が設けられている。ケーシング(12)は、 底面の中央部分に空気の吸込口(12a)が設けられると共に、上面の長手方向に亘っ て空気の吹出口(12b)が設けられている。また、ケーシング(12)の前面には、概ね全 体に亘つて、室内輻射パネル (23)が嵌め込まれている。ケーシング(12)内には、室 内空気熱交^^ (25)および室内ファン (25F)が収納されて 、る。室内空気熱交 (25)は、室内輻射パネル (23)の背面側に配置され、上端がケーシング(12)の背面 側に傾斜している。一方、室内ファン (25F)は、室内輻射パネル (23)の背面側であつ て、室内空気熱交換器 (25)の下方に配置されている。室内輻射パネル (23)は、図 3 に示すように、内部に伝熱管 (23a)が設けられている。伝熱管 (23a)は、内部を冷媒 が流れるもので、パネル全体に亘つて平面的に配設されている。冷媒は、この伝熱管 (23a)を介してパネル本体に放熱し、またはパネル本体から吸熱する。なお、伝熱管 (23a)の両端は、冷媒配管によって第 1膨張弁 (24)と四路切換弁 (22)に接続されて いる。
[0041] 本実施形態の空気調和装置(10)は、室外空気熱交換器 (27)の除霜 (デフロスト) を行うための除霜運転を備えている。この除霜運転は、冷媒が冷房サイクルで循環し て行われる。そして、本発明の特徴として、除霜運転では、冷媒が室外空気熱交換 器 (27)および室内空気熱交換器 (25)で放熱し、室内輻射用熱交換器 (23)で吸熱し て蒸発するように、第 2膨張弁 (26)が全開に設定され、第 1膨張弁 (24)が減圧制御さ れる。これにより、室外空気熱交 (27)で冷媒の放熱によって除霜が行われると 共に、室内空気熱交換器 (25)で冷媒の放熱によって空気が加熱されて室内の暖房 が行われる。
[0042] 運転動作
次に、上記空気調和装置(10)の運転動作について、図 4〜図 8を参照しながら説 明する。この空気調和装置(10)は、暖房運転、冷房運転および除霜運転が切換可 能に構成されている。
[0043] 〈暖房運転〉
この暖房運転は、室内輻射パネル (23)の輻射熱と室内空気熱交換器 (25)の温 風とによって室内を暖房する運転である。
[0044] 図 4に示すように、この暖房運転では、冷媒が暖房サイクルで循環するように、四 路切換弁 (22)が切り換えられる。また、電磁弁 (29)が閉状態に設定される一方、第 1 膨張弁 (24)が開状態に、第 2膨張弁 (26)が所定の開度に設定される。
[0045] この状態において、圧縮機 (21)を駆動すると、冷媒が圧縮機 (21)で圧縮されて 超臨界圧力状態の高温冷媒となって吐出され、室内輻射パネル (23)へ流れる。この 室内輻射パネル (23)では、高温冷媒から放熱された熱量が輻射熱として室内に供 給される。その際、冷媒は、超臨界圧力状態であるため、放熱しても凝縮することなく 温度が低下する。室内輻射パネル (23)で冷却された冷媒は、第 1膨張弁 (24)を通 過して室内空気熱交換器 (25)へ流れる。
[0046] 上記室内空気熱交換器 (25)では、冷媒が室内ファン (25F)によって取り込まれた 室内空気へ放熱し、加熱された室内空気が温風となって室内に供給される。その際 、冷媒は、超臨界圧力状態であるため、上述と同様に、放熱しても凝縮することなく 温度が低下する。室内空気熱交換器 (25)で冷却された低温冷媒は、第 2膨張弁 (26 )で所定圧力に減圧される。この減圧後の冷媒は、室外空気熱交換器 (27)に流れ、 室外ファン (27F)によって取り込まれた室外空気から吸熱して蒸発する。この蒸発冷 媒は、圧縮機 (21)で再び圧縮され、この冷媒循環を繰り返す。このように、室内輻射 パネル (23)の輻射熱および室内空気熱交換器 (25)の温風によって室内が暖房され る。
[0047] ここで、上述した暖房運転時の冷凍サイクル (超臨界サイクル)における冷媒の状 態を図 5に実線で示すモリエル線図に基づいて説明する。冷媒の状態は、 A点→B 点→ ^→D点→E点→A点の順に繰り返し変化する。
[0048] 具体的に、圧縮機 (21)において、吸入された A点の冷媒カ ¾点まで圧縮され、超 臨界圧力状態の高温冷媒になる。 B点の冷媒は、室内輻射パネル (23)で放熱するこ とにより温度が低下して C点の冷媒となり、室内空気熱交 (25)でさらに放熱する ことにより温度が低下して D点の冷媒となる。 D点の冷媒は、第 2膨張弁 (26)で E点ま で減圧される。 E点の冷媒は、室外空気熱交換器 (27)で蒸発して A点の冷媒になり 、再び圧縮機 (21)に吸入される。
[0049] このように、亜臨界サイクルに比べて超臨界サイクルでは、凝縮域が存在しな 、た め、高温領域が広い。したがって、室内輻射パネル (23)における冷媒の放熱量が高 い高くなり、高温の輻射熱を得ることができる。この結果、輻射熱による暖房能力が向 上する。また、室内輻射パネル (23)の輻射熱による暖房能力が高いので、室内空気 熱交換器 (25)の温風による必要な暖房能力が少なくてすむ。この結果、室内空気熱 交 (25)における必要な風量を減らすことができ、温風によるドラフト感を低減す ることがでさる。
[0050] 〈冷房運転〉
この冷房運転は、室内輻射パネル (23)の輻射冷却と室内空気熱交換器 (25)の 冷風とによって室内を冷房する運転である。
[0051] 図 6に示すように、この冷房運転では、冷媒が冷房サイクルで循環するように、四 路切換弁 (22)が切り換えられる。また、電磁弁 (29)が閉状態に設定される一方、第 1 膨張弁 (24)が開状態に、第 2膨張弁 (26)が所定の開度に設定される。
[0052] この状態において、圧縮機 (21)を駆動すると、冷媒が圧縮機 (21)で圧縮されて 超臨界圧力状態の高温冷媒となって吐出され、室外空気熱交換器 (27)へ流れる。こ の室外空気熱交換器 (27)では、高温冷媒が室外空気へ放熱する。その際、冷媒は 、超臨界圧力状態であるため、放熱しても凝縮することなく温度が低下する。この冷 媒は、第 2膨張弁 (26)で所定圧力に減圧された後、室内空気熱交換器 (25)へ流れ る。
[0053] 上記室内空気熱交換器 (25)では、冷媒が室内空気から吸熱して蒸発し、冷却さ れた室内空気が冷風となって室内へ供給される。次に、冷媒は、室内輻射パネル (2 3)から吸熱して過熱蒸気となる。これにより、室内輻射パネル (23)が冷却され、周囲 の室内空気が輻射冷却される。蒸発した冷媒は、圧縮機 (21)で再び圧縮され、この 冷媒循環を繰り返す。このように、室内輻射パネル (23)の輻射冷却および室内空気 熱交^^ (25)の冷風によって室内が冷房される。
[0054] ここで、上述した冷房運転時の冷凍サイクル (超臨界サイクル)における冷媒の状 態を図 7に示すモリエル線図に基づいて説明する。冷媒の状態は、 A点→B点→C 点→D点→E点→A点の順に繰り返し変化する。
[0055] 具体的に、圧縮機 (21)において、吸入された A点の冷媒カ ¾点まで圧縮され、超 臨界圧力状態の高温冷媒になる。 B点の冷媒は、室外空気熱交換器 (27)で放熱す ることにより温度が低下して C点の冷媒となる。 C点の冷媒は、第 2膨張弁 (26)で D点 まで減圧される。 D点の冷媒は、室内空気熱交 (25)で蒸発して E点の冷媒とな る。 E点の冷媒は、室内輻射パネル (23)から吸熱することにより過熱されて A点の冷 媒となり、再び圧縮機 (21)に吸入される。
[0056] なお、この冷房運転では、図 8に示すように、冷媒がバイパス通路 (28)を流れるよ うにしてもよい。つまり、この場合、第 1膨張弁 (24)が閉状態に設定され、電磁弁 (29) が開状態に設定される。そうすると、室内空気熱交換器 (25)で蒸発した冷媒が第 1 膨張弁 (24)および室内輻射パネル (23)をバイパスして圧縮機 (21)へ戻る。これによ り、それ程冷房能力が必要でない場合、室内輻射パネル (23)の輻射冷却を無効に することができる。また、室内輻射パネル (23)の輻射面に露が付くような条件下では 、この運転を行うことにより、その露付きを防止することができる。
[0057] 〈除霜運転〉
この除霜運転は、室外空気熱交換器 (27)の除霜と、室内空気熱交換器 (25)の温 風による室内の暖房とを同時に行う運転である。
[0058] この除霜運転では、冷媒が冷房サイクルで循環するように、四路切換弁 (22)が切 り換えられる。また、電磁弁 (29)が閉状態に設定される一方、第 1膨張弁 (24)が所定 の開度に、第 2膨張弁 (26)が全開状態に設定される。なお、冷媒の流れは、上述し た冷房運転 (図 6参照)と同様である。
[0059] この状態において、圧縮機 (21)を駆動すると、冷媒が圧縮機 (21)で圧縮されて 超臨界圧力状態の高温冷媒となって吐出され、室外空気熱交換器 (27)へ流れる。こ の室外空気熱交換器 (27)では、高温冷媒の放熱によって除霜される。その際、冷媒 は、超臨界圧力状態であるため、放熱しても凝縮することなく温度が低下する。この 冷媒は、第 2膨張弁 (26)を減圧されることなく通過し、室内空気熱交 (25)へ流 れる。室内空気熱交換器 (25)では、冷媒が室内空気へ放熱し、加熱された室内空 気が温風となって室内へ供給される。
[0060] 次に、冷媒は、第 1膨張弁 (24)で所定圧力に減圧された後、室内輻射パネル (23 )へ流れる。室内輻射パネル (23)では、該室内輻射パネル (23)自体が有する熱を吸 熱して蒸発する。つまり、第 1膨張弁 (24)は、冷媒が室内輻射パネル (23)の熱によつ て蒸発し得るよう減圧制御(開度制御)される。また、室外空気熱交翻 (27)の着霜 は概ね暖房運転時に発生するため、除霜運転は暖房運転の途中に行われることが 多い。そうすると、室内輻射パネル (23)には、暖房運転時に冷媒から吸熱した熱が 蓄熱されている。したがって、除霜運転では、室内輻射パネル (23)の蓄熱を利用し て冷媒を確実に蒸発させることができる。室内輻射パネル (23)で蒸発した冷媒は、 圧縮機 (21)で再び圧縮され、この冷媒循環を繰り返す。このように、室外空気熱交換 器 (27)の除霜と、室内空気熱交 (25)の温風による室内の暖房とが行われる。
[0061] ここで、上述した除霜運転時の冷凍サイクル (超臨界サイクル)における冷媒の状 態を図 5に破線で示すモリエル線図に基づいて説明する。冷媒の状態は、 A1点→B 1点→C 1点→D 1点→E 1点→A 1点の j噴に繰り返し変ィ匕する。
[0062] 具体的に、圧縮機 (21)において、吸入された A1点の冷媒が B1点まで圧縮され、 超臨界圧力状態の高温冷媒になる。 B1点の冷媒は、室外空気熱交換器 (27)で放 熱することにより温度が低下して C1点の冷媒となる。 C1点の冷媒は、室内空気熱交 (25)でさらに放熱することにより温度が低下して D1点の冷媒になる。 D1点の冷 媒は、第 2膨張弁 (26)で E1点まで減圧される。 E1点の冷媒は、室内輻射パネル (23 )から吸熱することにより蒸発して A1点の冷媒となり、再び圧縮機 (21)に吸入される。 [0063] 以上のように、本実施形態の除霜運転では、室内輻射パネル (23)をその蓄熱を 利用して蒸発器として機能させ、室外空気熱交 (27)および室内空気熱交 ( 25)を放熱器として機能させるようにした。つまり、超臨界サイクルでは冷媒の高温領 域が広いため、室外空気熱交換器 (27)および室内空気熱交換器 (25)において必 要な冷媒の放熱量を得ることができる。したがって、室外空気熱交換器 (27)の除霜を 行いつつも、室内空気熱交^^ (25)の温風によって十分な暖房を行うことができる。 つまり、従来のように、除霜運転を行うために暖房運転を停止する必要がないため、 室内の快適性の低下を防止することができる。また、圧縮機 (21)の吐出冷媒は、亜 臨界サイクルに比べて高温であるため、室外空気熱交換器 (27)における除霜能力を 高めることができる。
[0064] 実施形態の効果
以上説明したように、本実施形態によれば、冷房サイクルで行う除霜運転におい て、室外空気熱交換器 (27)および室内空気熱交換器 (25)を放熱器として機能させ 、室内輻射パネル (23)を蒸発器として機能させるように、第 2膨張弁 (26)を全開に、 第 1膨張弁 (24)を減圧制御するようにした。これにより、室外空気熱交換器 (27)の除 霜を行いつつも、室内の暖房を行うことができる。その結果、除霜運転中であっても、 室内の快適性を損なうことはない。
[0065] また、冷媒にニ酸ィ匕炭素を用いて超臨界サイクルで運転するようにしたので、冷 媒の高温領域を大きくとることができる。したがって、除霜運転において、室外空気熱 交換器 (27)の除霜と室内空気熱交換器 (25)の暖房のために必要な冷媒の放熱量 を十分に稼ぐことができる。これにより、除霜と暖房とを確実に行うことができる。暖房 運転においては、室内輻射パネル (23)の輻射熱を高めることができるので、その分 室内空気熱交 (25)における風量を減らすことができ、ドラフト感を低減すること ができる。その結果、室内の快適性が向上する。
[0066] また、冷房運転では、室内輻射パネル (23)による輻射冷却によっても室内の冷房 を行うようにした。したがって、その分、室内空気熱交換器 (25)における冷風量を減 らすことができ、ドラフト感を低減することができる。
[0067] 実施形態の変形例 次に、上記実施形態の変形例 1および 2について説明する。この変形例 1および 2 は、何れも上記実施形態における室内ユニット(11)の構成を変更するようにしたもの である。
[0068] 変形例 1は、図 9に示すように、ケーシング(12)の吸込口(12a)および吹出口(12b )の配置を変更したものである。吸込口(12a)は、ケーシング(12)の上面の長手方向 に亘つて形成され、吹出口(12b)は、ケーシング(12)の底面の中央部分に形成され ている。なお、室内空気熱交換器 (25)は、上端が室内輻射パネル (23)側に傾斜し て配置されている。
[0069] 変形例 2は、図 10に示すように、室内輻射パネル (23)、吸込口(12a)および吹出 口(12b)の配置を変更したものである。室内輻射パネル (23)は、ケーシング(12)の上 面における後側寄りに立設されている。室内輻射パネル (23)の輻射面は、前側に向 いている。吸込口(12a)および吹出口(12b)は、ケーシング(12)の前面に形成されて いる。そして、吸込口(12a)は、ケーシング(12)の前面における上半分に位置し、長 手方向に延びる横長に形成されている。吹出口(12b)は、ケーシング(12)の前面に おける吸込口(12a)の下方に位置し、長手方向に延びる横長に形成されている。
[0070] 《その他の実施形態》
上記実施形態および変形例にっ 、ては、以下のような構成としてもょ 、。
[0071] 例えば、上記実施形態等では、室外熱交換器を冷媒が空気と熱交換する室外空 気熱交 (27)としたが、これに限らず、冷媒が水やブライン等その他の熱媒体と熱 交換する熱交翻を構成するようにしてもょ ヽ。
[0072] また、本発明は、上記実施形態等において、ノ ィパス通路 (28)を省略するように してもょ 、し、室内輻射パネル (23)と室内空気熱交 (25)を別個独立にこうせ 、 するようにしてちょい。
[0073] また、上記実施形態等では、冷房運転が可能な空気調和装置につ!、て説明した 力 本発明は、冷房運転を除く暖房運転と除霜運転のみが可能な空気調和装置に ついても適用できる。
[0074] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物 、あるいはその用途の範囲を制限することを意図するものではない。 産業上の利用可能性
以上説明したように、本発明は、室内輻射パネルと室内熱交換器を有する冷媒回 路を備えた空気調和装置として有用である。

Claims

請求の範囲
[1] 圧縮機 (21)と、室内輻射用熱交換器 (23)と、第 1減圧機構 (24)と、室内空気熱 交換器 (25)と、第 2減圧機構 (26)と、室外熱交換器 (27)とが順に接続され、冷媒が 可逆に循環して蒸気圧縮式冷凍サイクルを行う冷媒回路 (20)を備え、
上記冷媒回路 (20)の冷房サイクルで、冷媒が室外熱交換器 (27)および室内空 気熱交換器 (25)で放熱し、室内輻射用熱交換器 (23)で吸熱して蒸発するように第 1 減圧機構 (24)が減圧制御される
ことを特徴とする空気調和装置。
[2] 請求項 1において、
上記冷媒回路 (20)の暖房サイクルで、冷媒が室内輻射用熱交換器 (23)および 室内空気熱交換器 (25)で放熱し、室外熱交換器 (27)で吸熱して蒸発するように第 2 減圧機構 (26)が減圧制御される
ことを特徴とする空気調和装置。
[3] 請求項 1または 2において、
上記冷媒回路 (20)の冷房サイクルで、冷媒が室外熱交換器 (27)で放熱し、室内 空気熱交換器 (25)および室内輻射用熱交換器 (23)で吸熱して蒸発するように第 2 減圧機構 (26)が減圧制御される
ことを特徴とする空気調和装置。
[4] 請求項 3において、
上記冷媒回路 (20)は、冷媒が室内輻射用熱交換器 (23)および第 1減圧機構 (24
)をバイパスして流れるバイパス通路 (28)を備え、該バイパス通路 (28)に開閉弁 (29) が設けられている
ことを特徴とする空気調和装置。
[5] 請求項 1または 2において、
上記室内輻射用熱交換器 (23)と室内空気熱交換器 (25)は、 1台の室内ユニット(
11)に設けられ、
上記室内輻射用熱交換器 (23)は、輻射熱を発する輻射面が室内に面するよう〖こ 室内ユニット(11)のケーシング(12)に設けられる一方、 上記室内空気熱交換器 (25)は、室内ユニット(11)のケーシング(12)の内部に収 納されている
ことを特徴とする空気調和装置。
[6] 請求項 1において、
上記冷媒回路 (20)の冷房サイクルで、冷媒が室外熱交換器 (27)および室内空 気熱交換器 (25)で放熱し、室内輻射用熱交換器 (23)で吸熱して蒸発するように第 2 減圧機構 (26)における冷媒の減圧が阻止される
ことを特徴とする空気調和装置。
[7] 請求項 1または 2において、
上記冷媒は、二酸化炭素である
ことを特徴とする空気調和装置。
PCT/JP2007/063457 2006-07-06 2007-07-05 Système de conditionnement d'air WO2008004621A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2007270354A AU2007270354B2 (en) 2006-07-06 2007-07-05 Air conditioning system
EP07768206.0A EP2040009B1 (en) 2006-07-06 2007-07-05 A method of performing a heating operation and a defrosting operation of an air conditioning system
KR1020097002404A KR101185257B1 (ko) 2006-07-06 2007-07-05 공기조화장치
CN200780024262XA CN101479535B (zh) 2006-07-06 2007-07-05 空气调和装置
US12/307,241 US8656729B2 (en) 2006-07-06 2007-07-05 Air conditioning system with defrosting operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006186738A JP4923794B2 (ja) 2006-07-06 2006-07-06 空気調和装置
JP2006-186738 2006-07-06

Publications (1)

Publication Number Publication Date
WO2008004621A1 true WO2008004621A1 (fr) 2008-01-10

Family

ID=38894588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063457 WO2008004621A1 (fr) 2006-07-06 2007-07-05 Système de conditionnement d'air

Country Status (7)

Country Link
US (1) US8656729B2 (ja)
EP (1) EP2040009B1 (ja)
JP (1) JP4923794B2 (ja)
KR (1) KR101185257B1 (ja)
CN (1) CN101479535B (ja)
AU (1) AU2007270354B2 (ja)
WO (1) WO2008004621A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122801A (ja) * 2009-12-14 2011-06-23 Mitsubishi Heavy Industries Air-Conditioning & Thermal Systems Corp 空気熱源ヒートポンプシステムおよびその運転方法
CN101694311B (zh) * 2009-10-23 2011-11-30 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
WO2012099192A1 (ja) * 2011-01-19 2012-07-26 ダイキン工業株式会社 空気調和機
US20140260386A1 (en) * 2013-03-14 2014-09-18 Mitsubishi Electric Us, Inc. Air conditioning system including pressure control device and bypass valve

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306708B2 (ja) * 2008-05-28 2013-10-02 大陽日酸株式会社 冷媒冷却装置
IT1397613B1 (it) 2009-07-16 2013-01-18 Termal Srl Dispositivo di riscaldamento ad irraggiamento
JP5626365B2 (ja) * 2010-12-28 2014-11-19 富士電機株式会社 外気利用空調システム、その内気ユニット、外気ユニット、積層体
JP5674572B2 (ja) * 2011-07-06 2015-02-25 三菱電機株式会社 空気調和機
JP5573881B2 (ja) 2012-04-16 2014-08-20 ダイキン工業株式会社 空気調和機
KR101414860B1 (ko) 2012-08-01 2014-07-03 엘지전자 주식회사 공기 조화기 및 그의 제어방법
US9890976B2 (en) * 2012-08-08 2018-02-13 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3006865A4 (en) * 2013-05-31 2017-01-11 Mitsubishi Electric Corporation Refrigeration cycle device
JP6189098B2 (ja) * 2013-06-14 2017-08-30 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
CN107709900B (zh) * 2015-07-06 2020-04-24 三菱电机株式会社 制冷循环装置
CN104949377B (zh) * 2015-07-07 2018-04-27 珠海格力电器股份有限公司 空调器
CN105352214B (zh) * 2015-11-09 2018-11-02 珠海格力电器股份有限公司 一种空调、热泵系统及控制方法
CN111615608B (zh) * 2018-02-19 2022-04-05 大金工业株式会社 空调装置
EP3546854B1 (en) 2018-03-26 2022-08-31 Mitsubishi Electric R&D Centre Europe B.V. Defrosting a heat pump system with waste heat
CN111928343A (zh) * 2020-07-03 2020-11-13 珠海格力电器股份有限公司 一种热泵空调系统及其除霜方法
CN113669938B (zh) * 2021-07-27 2023-03-14 澳柯玛股份有限公司 冰箱制冷及自清洁控制方法
CN114815927B (zh) * 2022-05-24 2024-01-09 国网江苏省电力有限公司泰州供电分公司 一种配电站大型电源温度控制系统
CN117803984A (zh) * 2022-09-26 2024-04-02 开利公司 热泵系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718935Y2 (ja) 1987-05-25 1995-05-01 株式会社東芝 輻射パネル付空気調和機の運転制御装置
JP2005016919A (ja) * 2003-06-30 2005-01-20 Daikin Ind Ltd 空気調和装置
JP2006162173A (ja) * 2004-12-08 2006-06-22 Toshiba Kyaria Kk 空気調和機

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072643A (en) * 1934-05-12 1937-03-02 Charles B Mays Dehumidifier
JPS4636051Y1 (ja) * 1968-12-30 1971-12-11
AU567636B2 (en) * 1985-05-31 1987-11-26 Toshiba, Kabushiki Kaisha Air conditioner with temperature control
JPS6269071A (ja) * 1985-09-24 1987-03-30 東京電力株式会社 冷暖房除湿機
AU591324B2 (en) * 1986-07-16 1989-11-30 Graeme Clement Mudford Air-conditioning system
JPH07117274B2 (ja) * 1986-10-30 1995-12-18 株式会社東芝 空気調和機
EP0269282B1 (en) * 1986-10-30 1992-09-30 Kabushiki Kaisha Toshiba Air conditioner
JPS63210575A (ja) * 1987-02-27 1988-09-01 株式会社東芝 空気調和機
JPS6428449A (en) * 1987-07-22 1989-01-31 Toshiba Corp Air-conditioning machine
JPH01181032A (ja) * 1988-01-13 1989-07-19 Toshiba Corp 空気調和機
JP2714825B2 (ja) * 1988-08-17 1998-02-16 コニカ株式会社 電子写真感光体の製造装置
US5409272A (en) 1993-06-28 1995-04-25 Southco, Inc. Over-center latch assembly
JPH07127994A (ja) * 1993-11-05 1995-05-19 Toshiba Corp 空気調和機の輻射パネル
JP2001124434A (ja) * 1999-10-29 2001-05-11 Daikin Ind Ltd 空調装置
KR100357988B1 (ko) 2000-05-08 2002-10-25 진금수 히트 펌프식 냉·난방장치
NO20005575D0 (no) * 2000-09-01 2000-11-03 Sinvent As Metode og arrangement for avriming av kulde-/varmepumpeanlegg
JP3576092B2 (ja) * 2000-11-10 2004-10-13 松下冷機株式会社 冷蔵庫
JP4639541B2 (ja) * 2001-03-01 2011-02-23 株式会社デンソー エジェクタを用いたサイクル
JP4269752B2 (ja) * 2002-06-24 2009-05-27 株式会社デンソー 蒸気圧縮式冷凍機
KR100499507B1 (ko) * 2003-01-13 2005-07-05 엘지전자 주식회사 멀티공기조화기
KR100569930B1 (ko) * 2004-05-21 2006-04-10 엘지전자 주식회사 히트펌프 시스템의 난방 운전 제어장치
JP2006125793A (ja) * 2004-11-01 2006-05-18 Hitachi Home & Life Solutions Inc 空気調和装置
JP2006207974A (ja) 2005-01-31 2006-08-10 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
KR100712483B1 (ko) * 2005-09-16 2007-04-30 삼성전자주식회사 냉장고 및 그 운전제어방법
KR20070074301A (ko) * 2006-01-09 2007-07-12 삼성전자주식회사 공기조화기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718935Y2 (ja) 1987-05-25 1995-05-01 株式会社東芝 輻射パネル付空気調和機の運転制御装置
JP2005016919A (ja) * 2003-06-30 2005-01-20 Daikin Ind Ltd 空気調和装置
JP2006162173A (ja) * 2004-12-08 2006-06-22 Toshiba Kyaria Kk 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2040009A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694311B (zh) * 2009-10-23 2011-11-30 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
JP2011122801A (ja) * 2009-12-14 2011-06-23 Mitsubishi Heavy Industries Air-Conditioning & Thermal Systems Corp 空気熱源ヒートポンプシステムおよびその運転方法
WO2012099192A1 (ja) * 2011-01-19 2012-07-26 ダイキン工業株式会社 空気調和機
JP2012149836A (ja) * 2011-01-19 2012-08-09 Daikin Industries Ltd 空気調和機
US20140260386A1 (en) * 2013-03-14 2014-09-18 Mitsubishi Electric Us, Inc. Air conditioning system including pressure control device and bypass valve
RU2612995C1 (ru) * 2013-03-14 2017-03-14 Мицубиси Электрик Корпорейшн Система кондиционирования воздуха, включающая в себя устройство для управления давлением и перепускной клапан
US9605885B2 (en) * 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Also Published As

Publication number Publication date
CN101479535A (zh) 2009-07-08
KR101185257B1 (ko) 2012-09-21
AU2007270354A1 (en) 2008-01-10
EP2040009B1 (en) 2019-03-13
JP4923794B2 (ja) 2012-04-25
US20090282854A1 (en) 2009-11-19
EP2040009A4 (en) 2014-04-23
KR20090038889A (ko) 2009-04-21
CN101479535B (zh) 2013-02-20
US8656729B2 (en) 2014-02-25
JP2008014576A (ja) 2008-01-24
EP2040009A1 (en) 2009-03-25
AU2007270354B2 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
WO2008004621A1 (fr) Système de conditionnement d'air
JP4771721B2 (ja) 空気調和装置
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
KR100357988B1 (ko) 히트 펌프식 냉·난방장치
JP2003291635A (ja) 空調装置
JP3702855B2 (ja) ヒートポンプ床暖房空調装置
JP4556453B2 (ja) ヒートポンプ給湯エアコン
WO2019064335A1 (ja) 冷凍サイクル装置
JP2011133133A (ja) 冷凍装置
JP2005016919A (ja) 空気調和装置
JP2005214558A (ja) 加熱/冷却システム
KR20090006334U (ko) 공기조화기
JPH04332350A (ja) 空気調和機及びその運転方法
WO2009096179A1 (ja) 暖房用補助ユニットおよび空気調和装置
JP4075844B2 (ja) ヒートポンプ給湯装置
JP4429960B2 (ja) 冷却加温システムを有する自動販売機
JP4444146B2 (ja) 冷却加温システムを有する自動販売機
JP2004098974A (ja) 車両用空調装置
JP2007155203A (ja) 空気調和機
JP2004177064A (ja) 空気調和機
JP2008082609A (ja) 空気調和装置
KR100591323B1 (ko) 히트 펌프식 공기조화기
WO2008004620A1 (fr) Appareil de chauffage
JP2004218855A (ja) 蒸気圧縮式冷凍機
JP4572470B2 (ja) 空気調和機の運転制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024262.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12307241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007270354

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007768206

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007270354

Country of ref document: AU

Date of ref document: 20070705

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097002404

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU