WO2012099192A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2012099192A1
WO2012099192A1 PCT/JP2012/051055 JP2012051055W WO2012099192A1 WO 2012099192 A1 WO2012099192 A1 WO 2012099192A1 JP 2012051055 W JP2012051055 W JP 2012051055W WO 2012099192 A1 WO2012099192 A1 WO 2012099192A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
heat exchanger
temperature
indoor
frequency
Prior art date
Application number
PCT/JP2012/051055
Other languages
English (en)
French (fr)
Inventor
裕記 藤岡
木澤 敏浩
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES12737161.5T priority Critical patent/ES2579612T3/es
Priority to CN201280005575.1A priority patent/CN103314258B/zh
Priority to EP12737161.5A priority patent/EP2667103B1/en
Priority to AU2012207833A priority patent/AU2012207833B2/en
Publication of WO2012099192A1 publication Critical patent/WO2012099192A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/008Details related to central heating radiators
    • F24D19/0087Fan arrangements for forced convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner including an indoor heat exchanger, a fan, and a radiant heat exchanger.
  • an indoor unit of an air conditioner an indoor unit having an indoor fan, an indoor heat exchanger disposed to face the indoor fan, and a radiation panel (radiant heat exchanger) disposed on the surface of the indoor unit is known. ing.
  • the indoor heat exchanger and the radiation panel are supplied with high-temperature and high-pressure refrigerant discharged from a compressor provided in the outdoor unit.
  • the air conditioner described in Patent Literature 1 has a heating operation in which a refrigerant flows through an indoor heat exchanger without flowing the refrigerant through the radiant panel, and a heating operation in which the refrigerant flows through the radiant panel without flowing through the indoor heat exchanger. And can be done.
  • the operating frequency of the compressor is controlled based on the above temperature difference.
  • the operating frequency of a compressor is controlled based on the temperature difference of room temperature and indoor target temperature also at the time of the driving
  • the frequency of the compressor decreases when the temperature difference between the indoor temperature and the indoor target temperature is small.
  • the temperature of the radiant heat exchanger significantly decreases. Therefore, there is a problem that the radiant heat exchanger cannot be maintained at a high temperature during the operation in which both hot air heating and radiant heating are performed.
  • an object of the present invention is to provide an air conditioner capable of maintaining the temperature of a radiant panel (radiant heat exchanger) at a high temperature during heating operation in which both hot air heating and radiant heating are performed.
  • An air conditioner is an air conditioner including a refrigerant circuit having a compressor, an indoor heat exchanger, a radiant heat exchanger, a decompression mechanism, and an outdoor heat exchanger, wherein the indoor heat exchanger is The radiant heat exchanger is provided on the surface of the indoor unit, and the frequency of the compressor is set to a temperature difference between the indoor target temperature and the indoor temperature.
  • the timing of lowering the frequency of the compressor during radiant heating operation in which both hot air heating and radiant heating are performed By making it slower than the time of the warm air heating operation in which only the warm air heating operation is performed, it is possible to suppress a decrease in the temperature of the radiant heat exchanger as compared with the case of the same as the time of the warm air heating operation.
  • the timing for increasing the frequency of the compressor during the radiant heating operation is set earlier than that during the hot air heating operation.
  • the temperature of the radiant heat exchanger can be increased quickly compared to the case where the time is the same. Therefore, the temperature of the radiant heat exchanger can be maintained at a high temperature.
  • the “temperature difference between the indoor target temperature and the indoor temperature” is a value obtained by subtracting the indoor temperature from the indoor target temperature, and is a negative value when the indoor temperature is higher than the indoor target temperature.
  • the air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein when the temperature difference decreases to the first switching value in the case where the temperature difference decreases, the control means reduces the frequency of the compressor. In this case, the first switching value during the radiant heating operation is smaller than the first switching value during the hot air heating operation.
  • An air conditioner according to a third invention is the air conditioner according to the second invention, wherein, in the second invention, when the temperature difference decreases, the temperature difference decreases to a second switching value greater than the first switching value.
  • the control is switched from the increase control that increases the frequency of the compressor to the maintenance control that does not change the frequency of the compressor, and when the temperature difference decreases to the first switching value, the maintenance control is switched to the decrease control. It is characterized by switching.
  • the compressor frequency is decreased after switching from control that increases the compressor frequency to control that does not change the compressor frequency. Since the control is performed, the blowing temperature and the temperature of the radiant heat exchanger can be gradually lowered, so that the comfort is high.
  • the air conditioner according to a fourth invention is characterized in that, in the third invention, the second switching value during the radiant heating operation is smaller than the second switching value during the hot air heating operation.
  • the timing to change from the control to increase the frequency during the radiant heating operation to the control to be maintained is slower than during the hot air heating operation.
  • the temperature reduction of the radiant heat exchanger can be delayed.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the second aspect, wherein when the temperature difference decreases to the first switching value when the temperature difference decreases, the control means It is characterized by switching from increasing control for increasing the frequency to decreasing control for decreasing the frequency of the compressor.
  • the control when the temperature difference between the indoor target temperature and the indoor temperature decreases, the control is performed from the control for increasing the compressor frequency to the control for decreasing the compressor frequency. be able to.
  • An air conditioner according to a sixth aspect of the present invention provides the air conditioner according to any one of the first to fifth aspects, wherein the temperature difference increases to a third switching value when the temperature difference increases. Starting the increase control for increasing the frequency of the compressor, wherein the third switching value during the radiant heating operation is smaller than the third switching value during the hot air heating operation. To do.
  • the frequency is increased faster during radiant heating operation than during warm air heating operation, so the radiant heat exchanger temperature is raised faster than when the same as during hot air heating operation. it can.
  • An air conditioner according to a seventh invention is the air conditioner according to the seventh invention, wherein, in the sixth invention, when the temperature difference increases, the temperature difference increases to a fourth switching value smaller than the third switching value.
  • the control is switched from the decrease control that decreases the frequency of the compressor to the maintenance control that does not change the frequency of the compressor, and when the temperature difference increases to the third switching value. It is characterized by switching.
  • the compressor frequency is increased after switching from the control that reduces the compressor frequency to the control that does not change the compressor frequency. Since the control is performed, the blowing temperature and the temperature of the radiant heat exchanger can be gradually increased, so that the comfort is high.
  • the air conditioner according to an eighth invention is characterized in that, in the seventh invention, the fourth switching value during the radiant heating operation is smaller than the fourth switching value during the hot air heating operation.
  • the timing to change from the control to reduce the frequency during the radiant heating operation to the control to maintain is made earlier than during the hot air heating operation, so compared to the case where it is the same as during the hot air heating operation.
  • the temperature of the radiant heat exchanger can be increased quickly.
  • An air conditioner according to a ninth aspect of the present invention is the air conditioner according to the sixth aspect, wherein when the temperature difference increases to the third switching value, the frequency of the compressor is increased from a decrease control that decreases the frequency of the compressor. It is characterized by switching to increase control.
  • An air conditioner according to a tenth aspect of the present invention is the air conditioner according to any one of the first to ninth aspects, wherein the refrigerant circuit includes a main flow path in which the decompression mechanism, the outdoor heat exchanger, and the compressor are provided in order.
  • the branch section provided on the downstream side of the compressor in the main flow path is connected to the merging section provided on the upstream side of the decompression mechanism, and the first heat exchanger is provided with the indoor heat exchanger.
  • the branch portion and the merging portion are connected in parallel with the first passage, and the second passage provided with the radiant heat exchanger, and the second passage in the second passage
  • a valve mechanism is provided between the radiant heat exchanger and the junction, and adjusts the amount of refrigerant supplied to the radiant heat exchanger.
  • the ratio of the refrigerant amount flowing in the radiant heat exchanger and the indoor heat exchanger can be adjusted by controlling the valve mechanism.
  • An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to any one of the first to tenth aspects, wherein the indoor unit has a casing that houses the fan and the indoor heat exchanger, and the upper end of the casing is Is characterized in that an air outlet for blowing out air is provided.
  • the indoor unit since the air outlet is provided at the upper end of the casing of the indoor unit, the indoor unit can be installed near the floor.
  • the timing of lowering the frequency of the compressor during radiant heating operation in which both hot air heating and radiant heating are performed By making it slower than the time of the warm air heating operation in which only the warm air heating operation is performed, it is possible to suppress a decrease in the temperature of the radiant heat exchanger as compared with the case of the same as the time of the warm air heating operation.
  • the timing for increasing the frequency of the compressor during the radiant heating operation is set earlier than that during the hot air heating operation.
  • the temperature of the radiant heat exchanger can be increased quickly compared to the case where the time is the same. Therefore, the temperature of the radiant heat exchanger can be maintained at a high temperature.
  • the control when the temperature difference between the indoor target temperature and the indoor temperature decreases, the control is performed by switching from the control for increasing the compressor frequency to the control for not changing the frequency of the compressor, and then the frequency of the compressor is decreased. Since the control is performed, the blowing temperature and the temperature of the radiant heat exchanger can be gradually lowered, so that the comfort is high.
  • the control when the temperature difference between the indoor target temperature and the indoor temperature decreases, the control is performed from the control for increasing the compressor frequency to the control for decreasing the compressor frequency. be able to.
  • the radiant heat exchanger temperature is increased to a higher temperature than when the same as that during the hot air heating operation. it can.
  • the control when the temperature difference between the indoor target temperature and the indoor temperature increases, the control is performed by switching from the control for reducing the frequency of the compressor to the control for not changing the frequency of the compressor, and then the frequency of the compressor is increased. Since the control is performed, the blowing temperature and the temperature of the radiant heat exchanger can be gradually increased, so that the comfort is high.
  • the timing for changing from the control for reducing the frequency during the radiant heating operation to the control for maintaining is made earlier than during the hot air heating operation, and therefore compared with the case where the same timing as during the hot air heating operation is used.
  • the temperature of the radiant heat exchanger can be increased quickly.
  • the control when the temperature difference between the indoor target temperature and the indoor temperature increases, the control is performed from the control for decreasing the compressor frequency to the control for increasing the compressor frequency.
  • the temperature can be raised quickly.
  • the ratio of the refrigerant amount flowing in the radiant heat exchanger and the indoor heat exchanger can be adjusted by controlling the valve mechanism.
  • the indoor unit can be installed near the floor.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • A is a figure for demonstrating control of the compressor at the time of warm air heating operation
  • (b) is a figure for demonstrating control of the compressor at the time of warm air heating operation.
  • the air conditioner 1 of the present embodiment includes an indoor unit 2 installed indoors, an outdoor unit 3 installed outdoor, and a remote controller 4 (see FIG. 3).
  • the indoor unit 2 includes an indoor heat exchanger 20, an indoor fan 21 disposed in the vicinity of the indoor heat exchanger 20, a radiant heat exchanger 22 provided in a radiant panel 29 (see FIGS. 4 and 5), An electric valve (valve mechanism) 23 and an indoor temperature sensor 24 for detecting the indoor temperature are provided.
  • the outdoor unit 3 includes a compressor 30, a four-way switching valve 31, an outdoor heat exchanger 32, an outdoor fan 33 disposed in the vicinity of the outdoor heat exchanger 32, and an outdoor electric valve (pressure reduction mechanism) 34.
  • the indoor unit 2 and the outdoor unit 3 are connected by an annular refrigerant circuit 10.
  • the refrigerant circuit 10 includes a main channel 11, a first channel 12, and a second channel 13.
  • the main flow path 11 is provided with an outdoor electric valve 34, an outdoor heat exchanger 32, and a compressor 30 in this order.
  • the main flow path 11 is provided with a four-way switching valve 31, and the outdoor heat exchanger 32 is connected to either the discharge side or the suction side of the compressor 30 by switching the four-way switching valve 31.
  • the An accumulator 35 is provided between the suction side of the compressor 30 in the main flow path 11 and the four-way switching valve 31, and between the discharge side of the compressor 30 in the main flow path 11 and the four-way switching valve 31.
  • a discharge temperature sensor 36 is provided.
  • the outdoor heat exchanger 32 is provided with an outdoor heat exchange temperature sensor 37.
  • the outdoor electric valve 34 can change its opening degree and functions as a pressure reducing mechanism.
  • a branch portion 11 a is provided on the downstream side of the compressor 30.
  • a junction portion 11b is provided on the upstream side of the outdoor electric valve 34.
  • the first flow path 12 and the second flow path 13 are provided between the branching portion 11a and the merging portion 11b, and are connected in parallel.
  • the first flow path 12 is provided with an indoor heat exchanger 20, and the second flow path 13 is provided with a radiant heat exchanger 22 and an indoor electric valve 23 in order from the branching portion 11a side.
  • the flow path excluding the first flow path 12 and the second flow path 13, and the flow path between the branching portion 11 a and the merging portion 11 b becomes the main flow path.
  • the indoor unit 2 of the present embodiment has a rectangular parallelepiped shape, and is installed on the wall surface in a state of floating from the indoor floor surface.
  • the height H (see FIG. 4) of the indoor unit 2 from the floor is about 10 cm.
  • the indoor unit 2 includes a casing 28 that houses the indoor fan 21, the indoor heat exchanger 20, and the like.
  • a part of the front surface of the casing 28 is constituted by a radiation panel 29.
  • a main suction port 28 a is formed in the lower wall of the casing 28, auxiliary suction ports 28 b and 28 c are formed in the front wall of the casing 28, and an air outlet 28 d is formed in the upper wall of the casing 28. Yes.
  • the indoor heat exchanger 20 is provided inside the indoor unit 2 so as to face the indoor fan 21, and is disposed on the windward side of the indoor fan 21.
  • the indoor fan 21 is driven to suck air from the auxiliary suction ports 28b and 28c while sucking air in the vicinity of the floor surface from the main suction port 28a.
  • the sucked air is heated or cooled in the indoor heat exchanger 22 and then blown out into the room through an air outlet 28d formed in the upper wall of the casing 28, whereby refrigerant or hot air heating is performed.
  • the indoor heat exchanger 20 is provided with an indoor heat exchanger temperature sensor 27.
  • the radiation panel 29 is disposed on the surface of the indoor unit 2.
  • the radiation panel 29 is fixed to the radiation plate 22a constituting a part of the surface of the indoor unit 2, the rear surface side of the radiation plate 22a, and supplies the refrigerant to the U-shaped pipe 22b through which the refrigerant flows and the pipe 22b.
  • Connection piping (not shown).
  • the radiant heat exchanger 22 includes a radiant plate 22a and a pipe 22b. In the indoor unit 2, radiant heating is performed by the heat of the refrigerant flowing through the pipe 22b being radiated indoors through the radiation plate 22a. Further, as shown in FIGS. 1 and 2, a panel incoming temperature sensor 25 and a panel outgoing temperature sensor 26 are provided on both sides of the radiant heat exchanger 22 in the second flow path 13.
  • the indoor motor operated valve 23 is provided to adjust the flow rate of the refrigerant supplied to the radiant heat exchanger 22.
  • the indoor motor-operated valve 23 is provided on the downstream side of the radiant heat exchanger 22 in the refrigerant flow direction during a radiant heating operation and a radiant wind heating operation, which will be described later.
  • the air conditioner 1 of the present embodiment can perform a cooling operation, a hot air heating operation, and a radiant heating operation.
  • the cooling operation is an operation in which the refrigerant is flown to the indoor heat exchanger 20 without flowing the refrigerant to the radiant heat exchanger 22, and the warm air heating operation is the room heat without flowing the refrigerant to the radiant heat exchanger 22.
  • the refrigerant is passed through the exchanger 20 to perform hot air heating.
  • the radiant heating operation is an operation in which the refrigerant is passed through the indoor heat exchanger 20 to perform hot air heating, and the refrigerant is passed through the radiant heat exchanger 22 to perform radiant heating.
  • the remote controller 4 allows the user to perform operation start / stop operation, operation mode setting, indoor temperature target temperature (indoor target temperature) setting, blowing air volume setting, and the like.
  • operation mode setting indoor temperature target temperature (indoor target temperature) setting
  • blowing air volume setting and the like.
  • indoor temperature target temperature indoor target temperature
  • blowing air volume setting and the like.
  • Table 1 in the air conditioner 1 of the present embodiment, either the cooling operation mode or the heating operation mode can be selected as the main operation mode by operating the remote controller 4.
  • the heating operation mode is selected as the main operation mode, as shown in Table 1, one of the warm air heating operation mode and the radiation 1 operation mode and the radiation 2 operation mode included in the radiant heating operation mode can be selected. It is like that.
  • the cooling operation mode is a mode for performing a cooling operation
  • the warm air heating operation mode is a mode for performing warm air heating operation
  • the radiation 1 operation mode is a mode in which the amount of blown air is changed to the room temperature.
  • the radiant heating operation is a mode in which the radiant heating operation is performed by setting the blown air volume to a constant air volume lower than that in the warm air heating operation.
  • the air volume is automatically controlled.
  • the hot air heating operation mode or the cooling operation mode is selected, the air volume can be selected from “air volume automatic” or “strong” to “weak” by operating the remote controller 4.
  • the control unit 5 includes a storage unit 51, an indoor fan control unit 52, an indoor electric valve control unit 53, a compressor control unit 54, and an outdoor electric valve control unit 55. Yes. Further, the control unit 5 determines that the temperature difference ⁇ T R between the indoor target temperature and the indoor temperature is ⁇ 2.0 or less in the heating operation when the indoor temperature is higher than the indoor target temperature by a predetermined temperature or more. In the case where the room temperature is lowered and the room temperature is lower than the indoor target temperature by a predetermined temperature or more (in this embodiment, the target room temperature and the room temperature).
  • the operation is started again (thermo-on).
  • the room temperature at which the thermo-off is performed and the room temperature at which the thermo-on is performed are not limited to the above.
  • the storage unit 51 stores various operation settings related to the air conditioner 1, a control program, a data table necessary for executing the control program, and the like.
  • the operation setting includes one set by operating the remote controller 4 by the user, such as a target temperature of the room temperature, and one set in advance for the air conditioner 1.
  • the target temperature range of the radiant heat exchanger 22 is set in advance to a predetermined temperature range (for example, 50 to 55 ° C.). Note that the target temperature range of the radiant heat exchanger 22 may be set by operating the remote controller 4.
  • the indoor fan control unit 52 controls the rotation speed of the indoor fan 21.
  • Table 2 shows the fan taps selected during the air volume automatic operation in the warm air heating operation mode, the radiation 1 operation mode, and the radiation 2 operation mode operation, and the rotation speed corresponding to each fan tap.
  • the indoor fan control unit 52 selects one of the five stages of fan taps A1 to A5 shown in Table 2 based on the difference ⁇ T R between the indoor target temperature and the indoor temperature.
  • the indoor fan 21 is controlled to the rotational speed (a1 to a5) corresponding to the fan tap.
  • the indoor fan control unit 52 sets the indoor fan to a predetermined number of rotations. 21 is controlled.
  • the indoor fan control unit 52 controls the indoor fan 21 to a constant rotational speed c1 smaller than the rotational speeds a1 to a5 during the hot air heating operation.
  • the rotation speed c1 is a value at which almost no sound is generated due to the rotation of the indoor fan 21 and the draft feeling is hardly felt.
  • the indoor fan control unit 52 when the operation of the radiation 1 operation mode start is performed, when the temperature difference [Delta] T R between the indoor target temperature and the indoor temperature is higher than 0 °C starts first air volume control , when the temperature difference [Delta] T R is 0 °C below, initiates a second air volume control.
  • the second air volume control is the same as the control in the radiation two-operation mode operation, and controls the indoor fan 21 to a constant rotation speed c1 smaller than the rotation speeds a1 to a5 in the warm air heating operation.
  • the first air volume control one of the seven stages of fan taps B1 to B7 shown in Table 2 is selected based on the difference ⁇ T R between the indoor target temperature and the indoor temperature, and the rotational speed ( The indoor fan 21 is controlled in b1 to b7).
  • the number of fan taps (B1 to B7) at the time of the first air flow control is larger than the number of fan taps (A1 to A5) at the time of the hot air heating operation, and the rotation speed of the indoor fan 21 is finely adjusted at the time of the first air flow control. Change. Thereby, the sound accompanying rotation of the indoor fan 21 when switching from the first air volume control to the second air volume control can be reduced.
  • the indoor fan control unit 52 switches from the first air flow control to the second air flow control.
  • the indoor fan control unit 52 performs the second air volume control. To the first air volume control.
  • the indoor electric valve control unit 53 controls the opening degree of the indoor electric valve 23.
  • Table 3 shows control states during each mode operation of the heating operation. As shown in Table 3, the indoor motorized valve control unit 53 closes the indoor motorized valve 23 during the hot air heating operation.
  • the indoor motor-operated valve control unit 53 performs indoor electric motor operation based on the temperature of the radiant heat exchanger 22.
  • the opening degree of the valve 23 is controlled. Specifically, a predicted value of the temperature of the radiation plate 22a of the radiant heat exchanger 22 (hereinafter referred to as a radiant heat exchanger temperature) is calculated based on the temperatures detected by the panel entrance temperature sensor 25 and the panel exit temperature sensor 26, respectively. Then, the opening degree of the indoor motor-operated valve 23 is controlled so that the radiant heat exchanger temperature falls within a target temperature range (for example, 50 to 55 ° C.).
  • a target temperature range for example, 50 to 55 ° C.
  • the indoor motor-operated valve control unit 53 When the radiant heat exchanger temperature is lower than a predetermined temperature (for example, 51 ° C.) within the target temperature range, the indoor motor-operated valve control unit 53 performs control so that the opening degree of the indoor motor-operated valve 23 is increased. However, the indoor motor-operated valve control unit 53 controls the indoor motor-operated valve 23 to the initial opening until the predetermined time t1 has elapsed from the start of the radiant heating operation.
  • a predetermined temperature for example, 51 ° C.
  • both the detected temperature of the panel input temperature sensor 25 and the panel output temperature sensor 26 are used, but only the detected temperature of the panel input temperature sensor 25 is used. Alternatively, only the temperature detected by the panel temperature sensor 26 may be used.
  • the compressor control unit 54 controls the operating frequency of the compressor 30.
  • the compressor control unit 54 performs compression based on the temperature difference ⁇ T R between the indoor target temperature and the indoor temperature during the warm air heating operation and the radiant heating operation (during the radiation 1 operation mode operation and the radiation 2 operation mode operation). Control the frequency of the machine 30.
  • the compressor control unit 54 selects one of the zones (P1 to P12 or Q1 to Q12) shown in FIG. 6 based on the temperature difference ⁇ T R , and performs a control operation preset for each zone. (Compressor stop, decrease control, maintenance control, increase control) are executed.
  • FIG. 6A shows a zone selected during the hot air heating operation
  • FIG. 6B shows a zone selected during the radiant heating operation.
  • 6A and 6B show zones when the temperature difference ⁇ T R decreases, that is, when the room temperature rises.
  • FIGS. 6A and 6B The right part of () shows a zone when the temperature difference ⁇ T R increases, that is, when the room temperature decreases.
  • the frequency of the compressor 30 is increased by the increased width (increase control). However, when the frequency of the compressor 30 approaches the upper limit frequency, the compressor control unit 54 controls the frequency of the compressor 30 so as not to exceed the upper limit frequency.
  • the upper limit frequency of the compressor 30 is an upper limit value of the frequency at which the pressure in the refrigerant circuit 10 does not cause a high pressure abnormality.
  • the “decrease control” in the present invention is a decrease control in which a decrease zone is selected and the frequency of the compressor is decreased based on the temperature difference between the indoor target temperature and the indoor temperature.
  • the reduction control in the present invention does not include control for reducing the frequency of the compressor 30 so that the frequency of the compressor 30 does not exceed the upper limit frequency when the increase zone or the maintenance zone is selected.
  • increment of the set for each increment zone frequency is greater the greater the increase zone temperature difference [Delta] T R.
  • the increase width of the frequency set in the increase zone P12 is larger than the increase width of the frequency set in the increase zone P6.
  • the compressor control unit 54 selects the maintaining zone P5
  • the frequency of the compressor 30 is maintained without being changed (maintenance control).
  • the compressor control unit 54 selects one of the decrease zones P2, P3, and P4. Is selected, and the frequency of the compressor 30 is reduced by a reduction range set for each zone (decrease control).
  • the frequency decrease width increases as the decrease zone has a smaller temperature difference ⁇ T R.
  • the frequency reduction range set in the reduction zone P2 is larger than the frequency reduction range set in the reduction zone P4.
  • the compressor control unit 54 restarts the operation of the compressor 30 at an initial frequency set in advance according to the temperature difference [Delta] T R. Then, select the left zone shown in FIG. 6 (a) according to the temperature difference [Delta] T R at the beginning of operation, to control the frequency of the compressor 30 according to the selected zone.
  • the frequency is increased from the initial frequency by an increase width set for each zone.
  • the decrease zones P2, P3, and P4 is selected, the frequency is decreased from the initial frequency by a decrease width set for each zone.
  • the maintenance zone P5 is selected, it is maintained at the initial frequency.
  • the compressor control unit 54 determines that the zone P2 Is selected, and the operation of the compressor 30 is restarted at a preset initial frequency.
  • the zone P2 serves as both a return zone for reducing the operation of the compressor 30 and a decrease zone.
  • the compressor controller 54 selects the maintaining zone P5
  • the frequency of the compressor 30 is maintained without being changed (maintenance control).
  • the compressor control unit 54 selects any one of the increase zones P6 to P12, and increases with the increase width set for each zone.
  • the frequency of the compressor 30 is increased (increase control).
  • the compressor control unit 54 controls the frequency of the compressor 30 so as not to exceed the upper limit frequency.
  • the compressor control unit 54 selects a zone based on the actual temperature difference ⁇ T R and controls the frequency of the compressor 30.
  • the compressor control unit 54 depending on the temperature difference [Delta] T R, selects the left side of the zone of Figure 6 (b). Also, if you start the operation by the operation of the remote controller 4, the compressor control unit 54 restarts the operation of the compressor 30 at an initial frequency set in advance according to the temperature difference [Delta] T R. Then, select the left zone shown in FIG. 6 (b) depending on the temperature difference [Delta] T R at the beginning of operation, to control the frequency of the compressor 30 according to the selected zone.
  • the frequency is increased from the initial frequency with an increase width set for each zone.
  • the reduction zone Q2 is selected, the frequency is reduced from the initial frequency by the reduction width set for each zone.
  • the maintenance zone Q3 it is maintained at the initial frequency.
  • the temperature difference [Delta] T R decreases during the radiation heating operation
  • the frequency of the compressor 30 is controlled based not on the temperature difference ⁇ T R but on the pseudo temperature, and when the temperature difference ⁇ T R is equal to or less than E1b, the frequency of the compressor 30 is controlled based on the actual temperature difference ⁇ T R. . Therefore, when the temperature difference ⁇ T R is larger than E1b, the compressor control unit 54 selects a zone based on the pseudo temperature instead of the actual temperature difference ⁇ T R.
  • the pseudo temperature is set to a relatively large value (for example, 3.0 to 3.5 ° C.) so that an increase zone having a large frequency increase range is selected.
  • a relatively large value for example, 3.0 to 3.5 ° C.
  • the frequency of the compressor 30 rapidly increases. And when the frequency of the compressor 30 approaches an upper limit frequency, it controls so that it may not become larger than an upper limit frequency. That is, in the present embodiment, when the temperature difference [Delta] T R is greater than E1b is controlled to be maintained at (a value slightly smaller than the upper limit frequency or the upper limit frequency) frequency near the upper limit frequency of the compressor 30 . Therefore, radiant heating with high heating capability can be performed.
  • the compressor control unit 54 selects the maintenance zone Q3 based on the actual temperature difference ⁇ T R and maintains the frequency of the compressor 30.
  • the compressor control unit 54 depending on the temperature difference [Delta] T R, switches and control based on the pseudo temperature, and control based on the actual temperature difference [Delta] T R.
  • the compressor control unit 54 controls the zone Q2 Is selected, and the operation of the compressor 30 is restarted at a preset initial frequency.
  • the zone Q2 serves as both a return zone for reducing the operation of the compressor 30 and a decrease zone.
  • the compressor control unit 54 selects any one of the increase zones Q4 to Q12 and increases the increase width set for each zone. To increase the frequency of the compressor 30 (increase control). However, when the frequency of the compressor 30 approaches the upper limit frequency, the compressor control unit 54 controls the frequency of the compressor 30 so as not to exceed the upper limit frequency.
  • the frequency of the compressor 30 is controlled based on the pseudo temperature rather than the actual temperature difference ⁇ T R , and when the temperature difference ⁇ T R is equal to or less than F1b, the frequency of the compressor 30 is determined based on the actual temperature difference ⁇ T R. Is controlled.
  • the compressor control unit 54 selects any one of the maintenance zone Q3, the decrease zone Q2, and the stop zone Q1 based on the actual temperature difference ⁇ T R and performs compression.
  • the machine 30 is controlled.
  • the compressor control unit 54 selects a zone based on the pseudo temperature instead of the actual temperature difference ⁇ T R.
  • the pseudo temperature is set to a relatively large value (for example, 3.0 to 3.5 ° C.) so that an increase zone having a large frequency increase range is selected.
  • the frequency of the compressor 30 is increased by an increase corresponding to the increase zone selected based on the pseudo temperature, the frequency of the compressor 30 rapidly increases.
  • the frequency of the compressor 30 when the frequency of the compressor 30 approaches an upper limit frequency, it controls so that it may not become larger than an upper limit frequency. That is, in the present embodiment, when the temperature difference [Delta] T R is greater than F1b is controlled to be maintained at (a value slightly smaller than the upper limit frequency or the upper limit frequency) frequency near the upper limit frequency of the compressor 30 . Therefore, radiant heating with high heating capability can be performed.
  • the compressor control unit 54 depending on the temperature difference [Delta] T R, switches and control based on the pseudo temperature, and control based on the actual temperature difference [Delta] T R.
  • FIG. 7 is a diagram in place of the frequency of the compressor 30 when the temperature difference [Delta] T R decreases during radiation heating operation of the present embodiment (the embodiment shown in FIG. 7), FIG. 6 for the control of the compressor 30 (b) 6 (a) is used, the other control is the frequency of the compressor 30 (comparative example shown in FIG. 7) in the same case as the radiant heating operation of the present embodiment.
  • the temperature difference [Delta] T R is the timing of switching from the sustain zone Q3 to decrease zone Q2 becomes slower than the timing of switching to the reduction zone P4 from maintaining zone P5. Therefore, as shown in FIG. 7, in the radiant heating operation of the present embodiment in which the compressor 30 is controlled based on FIG. 6A, the compressor is the same as in the hot air heating operation based on FIG. Compared with the case of controlling 30, the timing of switching from the maintenance control to the decrease control is delayed, and the timing of lowering the frequency of the compressor 30 is delayed. Thereby, since the fall of a radiant heat exchanger temperature can be delayed, a radiant heat exchanger temperature can be maintained at high temperature.
  • Figure 8 is a view in place of the frequency of the compressor 30 when the temperature difference [Delta] T R increases at the time of radiation heating operation of the present embodiment (the embodiment shown in FIG. 8), 6 to the control of the compressor 30 (b) 6 (a) is used, the other control shows the frequency of the compressor 30 (comparative example shown in FIG. 8) in the same case as the radiant heating operation of the present embodiment.
  • the temperature difference [Delta] T R is the timing of switching from the reduction zone Q2 to maintain zone Q3 is slower than the timing of switching from the reduction zone P4 to maintain zone P5. Therefore, as shown in FIG. 8, in the radiant heating operation of the present embodiment in which the compressor 30 is controlled based on FIG. 6 (a), the compressor is the same as in the warm air heating operation based on FIG. 6 (a).
  • the timing for switching from the decrease control to the maintenance control is earlier than when controlling 30. Thereby, since the fall of a radiant heat exchanger temperature can be suppressed quickly, a radiant heat exchanger temperature can be maintained at high temperature.
  • the compressor is the same as in the warm air heating operation based on FIG. 6 (a).
  • the timing for switching from maintenance control to increase control is earlier than when controlling 30, and the timing for increasing the frequency of the compressor 30 can be earlier. Thereby, since a radiant heat exchanger temperature can be made high temperature quickly, a radiant heat exchanger temperature can be maintained at a high temperature.
  • Outdoor motorized valve controller 55 The outdoor motor-operated valve control unit 55 based on the temperature difference [Delta] T R, etc. between the indoor target temperature and the indoor temperature, controls the opening degree of the outdoor electric valve 34.
  • the indoor fan control unit 52 causes the indoor fan 21 to be set between the indoor target temperature and the indoor temperature.
  • the number of rotations is controlled according to the difference ⁇ T R. Further, the indoor electric valve control unit 53 closes the indoor electric valve 23.
  • the compressor control unit 54 increases the frequency of the compressor 30. To be controlled.
  • the frequency of the compressor 30 is maintained.
  • the frequency of the compressor 30 is controlled to decrease.
  • the rotational speed of the indoor fan 21 is a predetermined rotational speed.
  • the indoor motor-operated valve 23 and the compressor 30 are controlled in the same manner as when “automatic air volume” is selected.
  • the indoor fan control unit 52 starts the first air volume control , the indoor fan 21 is controlled to the rotational speed corresponding to the difference [Delta] T R between the indoor target temperature and the indoor temperature.
  • the compressor control unit 54 controls the frequency of the compressor 30 to increase. However, when it increases to near the upper limit frequency, control is performed so as not to exceed the upper limit frequency. In FIG. 9, the frequency of the compressor 30 is maintained at the upper limit frequency, but this is a simple indication that it is near the upper limit frequency (the upper limit frequency or a frequency slightly lower than the upper limit frequency).
  • the frequency of the compressor 30 since the frequency of the compressor 30 is high, the temperature of the air flow blown out from the indoor unit 2 (blowing temperature) is high.
  • the frequency of the compressor 30 is maintained near the upper limit frequency, but the temperature difference ⁇ T R is ⁇ 1.0 when the increase width of the increase zone corresponding to the pseudo temperature is small or from the start of operation.
  • the frequency of the compressor 30 may not rise to the vicinity of the upper limit frequency.
  • the indoor fan control unit 52 switches from the first air flow control to the second air flow control. Thereby, the rotation speed of the indoor fan 21 is reduced to the rotation speed c1.
  • the frequency of the compressor 30 is controlled to decrease from the upper limit frequency. Therefore, blowing temperature falls. Therefore, the indoor temperature can be brought close to the indoor target temperature, and the warm air accumulated in the vicinity of the ceiling in the room is stirred, and the temperature difference between the vicinity of the indoor ceiling and the floor surface can be reduced.
  • the radiant heat exchanger temperature is temporarily lowered by the decrease in the frequency of the compressor 30, but when the radiant heat exchanger temperature becomes lower than a predetermined temperature (for example, 51 ° C.) within the target temperature range, the indoor motor-operated valve control unit 53, the opening degree of the indoor motor-operated valve 23 is increased, and the radiant heat exchanger temperature is increased. Therefore, a decrease in the radiant heat exchanger temperature can be suppressed.
  • a predetermined temperature for example, 51 ° C.
  • the indoor fan control unit 52 switches from the second air flow control to the first air flow control.
  • D1 may be a numerical value greater than 0 ° C.
  • the indoor fan control unit 52 does not display when switching from the second air volume control to the first air volume control.
  • the indoor fan control unit 52 controls the indoor fan 21 to a constant rotational speed c1.
  • the indoor motor-operated valve 23 is controlled to the initial opening until a predetermined time t1 has elapsed from the start of operation.
  • the indoor motor operated valve 23 is opened based on the radiant heat exchanger temperature and the target temperature range. The degree is controlled.
  • the compressor control unit 54 determines the frequency of the compressor 30. Controlled to increase. However, when it increases to near the upper limit frequency, control is performed so as not to exceed the upper limit frequency. At this time, since the frequency of the compressor 30 is high and the amount of blowing air is small, the blowing temperature is high.
  • the compressor controller 54 causes the frequency of the compressor 30 to decrease from the upper limit frequency. Controlled. Thereby, since the blowing temperature is lowered, the indoor temperature can be brought close to the indoor target temperature, and the temperature difference between the vicinity of the indoor ceiling and the floor surface can be reduced.
  • the radiant heat exchanger temperature is temporarily lowered by the decrease in the frequency of the compressor 30, but when the radiant heat exchanger temperature becomes lower than a predetermined temperature (for example, 51 ° C.) within the target temperature range, the indoor motor-operated valve control unit 53, the opening degree of the indoor motor-operated valve 23 is increased, and the radiant heat exchanger temperature is increased. Therefore, a decrease in the radiant heat exchanger temperature can be suppressed.
  • a predetermined temperature for example, 51 ° C.
  • the four-way switching valve 31 is switched to the state shown with the broken line in FIG.1 and FIG.2, and heating operation is carried out.
  • defrost operation defrost operation
  • the indoor motor operated valve 23 is closed during the defrosting operation.
  • the control of the indoor motor operated valve 23 during the defrosting operation is not limited to this, and the indoor motor operated valve 23 is maintained at a predetermined opening degree until the radiant heat exchanger temperature reaches a predetermined temperature.
  • the indoor motor-operated valve 23 may be switched to a closed state.
  • the low-temperature refrigerant flows through the radiant heat exchanger 22, the radiant heat exchanger temperature decreases to some extent.
  • the high-temperature refrigerant in the radiant heat exchanger 22 can be used for defrosting the outdoor heat exchanger 32. Therefore, the frost attached to the outdoor heat exchanger 32 can be removed more quickly than in the case described above. Moreover, it can prevent that frost adheres to the radiation heat exchanger 22 during a defrost operation.
  • the timing of lowering the frequency of the compressor 30 during the radiant heating operation is made slower than during the hot air heating operation, compared with the case where it is the same as during the hot air heating operation.
  • a decrease in the temperature of the radiant heat exchanger 22 can be suppressed.
  • the temperature of the radiant heat exchanger 22 can be made faster by setting the timing of increasing the frequency of the compressor 30 during the radiant heating operation earlier than during the hot air heating operation, compared with the case where the frequency is increased. Can be hot. Therefore, the temperature of the radiant heat exchanger 22 can be maintained at a high temperature.
  • the temperature of the radiant heat exchanger 22 can be quickly increased. Therefore, the temperature of the radiant heat exchanger 22 can be maintained at a high temperature.
  • the temperature of the hot air heating is lowered, so that the temperature difference between the vicinity of the indoor ceiling and the floor surface can be reduced. Moreover, the fall of the temperature of the radiant heat exchanger 22 can be suppressed because the opening degree of the indoor motor operated valve 23 is increased after the frequency of the compressor 30 is decreased. Therefore, comfort can be improved.
  • the frequency of the compressor 30 is controlled based on the room temperature, so that the frequency of the compressor 30 is reduced when the temperature difference between the vicinity of the indoor ceiling and the floor is large. be able to.
  • the opening degree of the indoor motor-operated valve 23 is controlled based on the temperature of the radiant heat exchanger 22, the frequency of the compressor 30 decreases, and the temperature of the radiant heat exchanger 22 increases. When it decreases, the opening degree of the indoor motor operated valve 23 increases, so that a decrease in the temperature of the radiant heat exchanger 22 can be reliably suppressed.
  • the radiant heat exchanger 22 and the indoor motorized valve 23 are provided in parallel with the indoor heat exchanger 20, so that the radiant heat exchange is performed by controlling the opening degree of the indoor motorized valve 23. It is possible to adjust the ratio of the amount of refrigerant flowing through the condenser 22 and the indoor heat exchanger 20. Further, it is possible to switch between a warm air heating operation in which only warm air heating is performed without flowing a refrigerant through the radiant heat exchanger 22 and a radiant heating operation in which a refrigerant is flowed through the radiant heat exchanger 22 simply by opening and closing the indoor motor-operated valve 23. .
  • the air conditioner 1 of the present embodiment since warm air is blown from the upper end of the casing, warm air is accumulated near the ceiling of the room, and a temperature difference is likely to occur between the ceiling and the floor. Therefore, a configuration that can reduce the temperature difference between the indoor ceiling and the floor is particularly effective.
  • the frequency of the compressor 30 is controlled using the pseudo temperature. Therefore, the frequency of the compressor 30 can be quickly increased to the vicinity of the upper limit frequency. Therefore, the heating capacity of radiant heating is high, and the temperature of the radiant heat exchanger 22 can be maintained at a high temperature.
  • the room temperature is set to the indoor target even if the timing of the increase / decrease in the frequency of the compressor 30 during the radiation 1 operation mode operation is different from the timing during the hot air heating operation. It is possible to prevent the temperature from becoming too high. Further, in the second air volume control in the radiation 1 operation mode operation, the blown air volume is low, and the first air volume control in which the blown air volume is larger than the second air volume control is control until the room temperature reaches the indoor target temperature. Even if the frequency increase / decrease timing of the compressor 30 during the radiation 1 operation mode operation is different from the timing during the warm air heating operation, it is possible to prevent the room temperature from becoming higher than the indoor target temperature.
  • the indoor fan 21 is rotated at a small number of rotations so that the user hardly feels a draft feeling. Hot air heating can be performed. Further, by not stopping the indoor fan 21, it is possible to prevent the amount of heat exchange by the indoor heat exchanger 20 from being large and the pressure in the refrigerant circuit 10 from becoming too high. Therefore, compared with the case where the indoor fan 21 is stopped and only radiant heating is performed, the operating frequency of the compressor 30 of the outdoor unit can be increased, and the heating capacity can be improved.
  • the first air volume control is performed when the room temperature is low
  • the second air volume control is performed when the room temperature is high.
  • the temperature difference ⁇ T R (E1a, F1a) at which the increase zone and the maintenance zone are switched in the control of the compressor 30 during the hot air heating operation is not limited to the temperature shown in FIG. It may be a positive value. Further, the temperature difference ⁇ T R (E1b, F1b) at which the increase zone and the maintenance zone are switched in the control of the compressor 30 during the radiant heating operation is not limited to the temperature shown in FIG. However, E1b and F1b are preferably smaller than E1a and F1a, respectively.
  • the temperature difference ⁇ T R (E2a, F2a) at which the maintenance zone and the decrease zone are switched in the control of the compressor 30 during the hot air heating operation is not limited to the temperature shown in FIG. It may be a positive value. Further, the temperature difference ⁇ T R (E2b, F2b) at which the maintenance zone and the decrease zone are switched in the control of the compressor 30 during the radiant heating operation is not limited to the temperature shown in FIG. However, E2b and F2b are preferably smaller than E2a and F2a, respectively.
  • the temperature difference ⁇ T R at which the control based on the actual temperature difference ⁇ T R and the control based on the pseudo temperature are switched when the temperature difference ⁇ T R decreases is limited to E1b. It may be a temperature difference ⁇ T R (E2b) at which the maintenance zone and the increase zone are switched. Further, it may be a temperature difference [Delta] T R otherwise. Further, in the control of the compressor 30 during the radiant heating operation, the temperature difference ⁇ T R at which the control based on the actual temperature difference ⁇ T R and the control based on the pseudo temperature are switched when the temperature difference ⁇ T R increases is limited to F1b. The temperature difference ⁇ T R (F2b) at which the maintenance zone and the increase zone are switched may be used. Further, it may be a temperature difference [Delta] T R otherwise.
  • the compressor 30 when radiation heating operation, when the temperature difference [Delta] T R is large, in order to maintain the frequency of the compressor 30 to the upper limit frequency, select the zone based on the actual temperature difference [Delta] T in R without pseudo Temperature Thus, the compressor 30 is controlled.
  • the frequency of the compressor 30 may be controlled by always selecting a zone based on the actual temperature difference ⁇ T R. In this variation, depending the temperature difference [Delta] T R, the frequency of the compressor 30 may not reach the upper limit frequency.
  • FIG. 11 shows the frequency of the compressor 30 when the frequency of the compressor 30 does not reach the upper limit frequency (not shown in FIG. 11) in the above-described modified form (the pseudo temperature is not used for control of the compressor 30 during the radiation heating operation).
  • Example and FIG. 6A is used instead of FIG. 6B for the control of the compressor 30, and the other control is the frequency of the compressor 30 in the same case as the above modification (shown in FIG. 11). Comparative example) is shown.
  • E1b ⁇ 1.0 ° C., which is the temperature difference ⁇ T R that switches from the increase zone Q4 to the maintenance zone Q3 when the temperature difference ⁇ T R decreases, is the increase zone P6 to the maintenance zone in FIG.
  • the control when the temperature difference ⁇ T R is decreased in both the hot air heating operation and the radiant heating operation, the control is performed by switching from the control for increasing the frequency of the compressor 30 to the control for not changing the frequency, and then the frequency is decreased.
  • the control may be switched from the control for increasing the frequency to the control for decreasing the frequency. That is, the maintenance zone on the left side (when the temperature difference ⁇ T R decreases) shown in FIG. 6A or 6B may be changed to a decrease zone or an increase zone.
  • the timing for stopping the increase control is delayed, so that the temperature of the radiant heat exchanger 22 can be maintained at a high temperature.
  • the configuration of the above-described embodiment that can gently decrease the blowing temperature and the temperature of the radiant heat exchanger 22 is preferable.
  • both the time and during radiation heating operation warm-air heating operation when the increase of the temperature difference [Delta] T R, since switching to a control that does not change the frequency from the control to decrease the frequency of the compressor 30 increases the frequency control
  • the control may be switched from the control for decreasing the frequency to the control for increasing the frequency. In other words, it may be changed to reduce the zone or increase zone to maintain the zone of the right (when an increase of the temperature difference [Delta] T R) shown in FIG. 6 (a) or FIG. 6 (b).
  • the timing for starting the increase control is advanced, so that the temperature of the radiant heat exchanger 22 can be quickly increased.
  • the configuration of the above-described embodiment that can gradually raise the blowing temperature and the temperature of the radiant heat exchanger 22 is preferable.
  • the rotational speed of the indoor fan 21 during the second air volume control in the radiation 1 operation mode and during the radiation 2 operation mode operation is constant at the rotation speed c1, but during the first air volume control and the hot air heating operation. As long as the rotation speed is smaller than the rotation speed of the indoor fan 21 at the time, it may vary.
  • the indoor unit 2 of the above embodiment is configured to suck indoor air from a main suction port 28a provided mainly on the lower wall of the casing 28 and blow it out from an air outlet 28d provided at the upper end portion of the casing 28.
  • a main suction port 28a provided mainly on the lower wall of the casing 28
  • an air outlet 28d provided at the upper end portion of the casing 28.
  • the positions of the main suction port 28a and the air outlet 28d are not limited to the above embodiment. For example, you may comprise so that it may inhale from the upper part of the indoor unit 2, and it blows off from the lower part.
  • the temperature of the radiant panel can be maintained at a high temperature during heating operation in which both hot air heating and radiant heating are performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Central Heating Systems (AREA)

Abstract

 温風暖房と輻射暖房の両方を行う暖房運転時に、輻射熱交換器の温度を高温に維持する。 空気調和機は、圧縮機、室内熱交換器、輻射熱交換器、減圧機構および室外熱交換器を有する冷媒回路を備えており、室内熱交換器は、室内機の内部において室内ファンに対向するように設けられており、輻射熱交換器は、室内機の表面に設けられている。空気調和機は、圧縮機の周波数を室内目標温度と室内温度との温度差に基づいて増減させる制御手段を有しており、輻射パネルに冷媒を流さないで室内熱交換器に冷媒を流して温風暖房を行う温風暖房運転と、室内熱交換器に冷媒を流して温風暖房を行い且つ輻射パネルに冷媒を流して輻射暖房を行う輻射暖房運転とが可能である。制御手段が、輻射暖房運転時と温風暖房運転時とにおいて、圧縮機の周波数を互いに異なるタイミングで増加または減少させることを特徴とする。

Description

空気調和機
 本発明は、室内熱交換器とファンと輻射熱交換器とを備えた空気調和機に関するものである。
 空気調和機の室内機として、室内ファンと、室内ファンに対向して配置される室内熱交換器と、室内機の表面に配置される輻射パネル(輻射熱交換器)とを備えたものが知られている。暖房運転時、室内熱交換器と輻射パネルには、室外機に設けられた圧縮機から吐出された高温高圧の冷媒が供給される。
 例えば特許文献1に記載の空気調和機は、輻射パネルに冷媒を流さずに室内熱交換器に冷媒を流す暖房運転と、室内熱交換器に冷媒を流さずに輻射パネルに冷媒を流す暖房運転とを行うことができるようになっている。
特開平5-280762号公報
 一般的な空気調和機では、室内温度と室内目標温度との温度差によって暖房負荷が決まることから、圧縮機の運転周波数が上記の温度差に基づいて制御される。そして、特許文献1の空気調和機において、温風暖房と輻射暖房の両方を行う運転時にも、圧縮機の運転周波数が、室内温度と室内目標温度との温度差に基づいて制御されると考えられる。しかしながら、温風暖房と輻射暖房の両方を行う運転時に上記と同様の制御が行われた場合、室内温度と室内目標温度との温度差が小さい場合に圧縮機の周波数が低下するが、このとき、圧縮機の周波数の低下に伴って輻射熱交換器の温度が著しく低下してしまう。したがって、温風暖房と輻射暖房の両方を行う運転時において、輻射熱交換器を高温に維持することができないという問題がある。
 そこで、本発明の目的は、温風暖房と輻射暖房の両方を行う暖房運転時に、輻射パネル(輻射熱交換器)の温度を高温に維持することのできる空気調和機を提供することである。
 第1の発明に係る空気調和機は、圧縮機、室内熱交換器、輻射熱交換器、減圧機構および室外熱交換器を有する冷媒回路を備えた空気調和機であって、前記室内熱交換器は、室内機の内部においてファンに対向するように設けられており、前記輻射熱交換器は、前記室内機の表面に設けられており、前記圧縮機の周波数を室内目標温度と室内温度との温度差に基づいて増減させる制御手段を有しており、前記輻射熱交換器に冷媒を流さないで前記室内熱交換器に冷媒を流して温風暖房を行う温風暖房運転と、前記室内熱交換器に冷媒を流して温風暖房を行い且つ前記輻射熱交換器に冷媒を流して輻射暖房を行う輻射暖房運転とが可能であって、前記制御手段が、前記輻射暖房運転時と前記温風暖房運転時とにおいて、圧縮機の周波数を互いに異なるタイミングで増加または減少させることを特徴とする。
 この空気調和機では、例えば室内温度が室内目標温度と大きく離れた状態から室内目標温度に近付く場合において、温風暖房と輻射暖房の両方を行う輻射暖房運転時に圧縮機の周波数を下げるタイミングを、温風暖房だけを行う温風暖房運転時よりも遅くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を抑制することができる。また、例えば室内温度が室内目標温度に近い状態から室内目標温度から離れる場合において、輻射暖房運転時に圧縮機の周波数を上げるタイミングを、温風暖房運転時よりも早くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度を早く高温にできる。したがって、輻射熱交換器の温度を高温に維持できる。
 なお、「室内目標温度と室内温度との温度差」とは、室内目標温度から室内温度を差し引くことで得られる値であって、室内温度が室内目標温度より大きい場合、負の値となる。
 第2の発明に係る空気調和機は、第1の発明において、前記制御手段が、前記温度差が減少する場合において、前記温度差が第1切換値まで減少したときに、前記圧縮機の周波数を減少させる減少制御を開始するものであって、前記輻射暖房運転時における前記第1切換値が、前記温風暖房運転時における前記第1切換値より小さいことを特徴とする。
 この空気調和機では、輻射暖房運転時に周波数を下げるタイミングを、温風暖房運転時よりも遅くしているため、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を遅らせることができる。
 第3の発明に係る空気調和機は、第2の発明において、前記制御手段が、前記温度差が減少する場合において、前記温度差が前記第1切換値より大きい第2切換値まで減少したときに、前記圧縮機の周波数を増加させる増加制御から前記圧縮機の周波数を変更しない維持制御に切り換えると共に、前記温度差が前記第1切換値まで減少したときに、前記維持制御から前記減少制御に切り換えることを特徴とする。
 この空気調和機では、室内目標温度と室内温度との温度差が減少する場合に、圧縮機の周波数を増加させる制御から圧縮機の周波数を変更しない制御に切り換えてから、圧縮機の周波数を減少させる制御を行うため、吹出温度および輻射熱交換器の温度を緩やかに低下させることができるため、快適性が高い。
 第4の発明に係る空気調和機は、第3の発明において、前記輻射暖房運転時における前記第2切換値が、前記温風暖房運転時における前記第2切換値より小さいことを特徴とする。
 この空気調和機では、輻射暖房運転時に周波数を増加させる制御から維持する制御に変えるタイミングを、温風暖房運転時よりも遅くしているため、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を遅らせることができる。
 第5の発明に係る空気調和機は、第2の発明において、前記制御手段が、前記温度差が減少する場合において、前記温度差が前記第1切換値まで減少したときに、前記圧縮機の周波数を増加させる増加制御から前記圧縮機の周波数を減少させる減少制御に切り換えることを特徴とする。
 この空気調和機では、室内目標温度と室内温度との温度差が減少する場合に、圧縮機の周波数を増加させる制御から圧縮機の周波数を減少させる制御に切り換えるため、吹出温度を迅速に低下させることができる。
 第6の発明に係る空気調和機は、第1~第5のいずれかの発明において、前記制御手段が、前記温度差が増加する場合において、前記温度差が第3切換値まで増加したときに、前記圧縮機の周波数を増加させる増加制御を開始するものであって、前記輻射暖房運転時における前記第3切換値が、前記温風暖房運転時における前記第3切換値より小さいことを特徴とする。
 この空気調和機では、輻射暖房運転時に周波数を上げるタイミングを、温風暖房運転時よりも早くしているため、温風暖房運転時と同じにした場合に比べて輻射熱交換器温度を早く高温にできる。
 第7の発明に係る空気調和機は、第6の発明において、前記制御手段が、前記温度差が増加する場合において、前記温度差が前記第3切換値より小さい第4切換値まで増加したときに、前記圧縮機の周波数を減少させる減少制御から前記圧縮機の周波数を変更しない維持制御に切り換えると共に、前記温度差が前記第3切換値まで増加したときに、前記維持制御から前記増加制御に切り換えることを特徴とする。
 この空気調和機では、室内目標温度と室内温度との温度差が増加する場合に、圧縮機の周波数を減少させる制御から圧縮機の周波数を変更しない制御に切り換えてから、圧縮機の周波数を増加させる制御を行うため、吹出温度および輻射熱交換器の温度を緩やかに上昇させることができるため、快適性が高い。
 第8の発明に係る空気調和機は、第7の発明において、前記輻射暖房運転時における前記第4切換値が、前記温風暖房運転時における前記第4切換値より小さいことを特徴とする。
 この空気調和機では、輻射暖房運転時に周波数を減少させる制御から維持する制御に変えるタイミングを、温風暖房運転時よりも早くしているため、温風暖房運転時と同じにした場合に比べて輻射熱交換器の温度を早く高温にできる。
 第9の発明に係る空気調和機は、第6の発明において、前記温度差が前記第3切換値まで増加したとき、前記圧縮機の周波数を減少させる減少制御から前記圧縮機の周波数を増加させる増加制御に切り換えることを特徴とする。
 この空気調和機では、室内目標温度と室内温度との温度差が増加する場合に、圧縮機の周波数を減少させる制御から圧縮機の周波数を増加させる制御に切り換えるため、吹出温度および輻射熱交換器の温度を迅速に上昇させることができる。
 第10の発明に係る空気調和機は、第1~第9のいずれかの発明において、前記冷媒回路が、前記減圧機構、前記室外熱交換器及び前記圧縮機が順に設けられた主流路と、暖房運転時、前記主流路の前記圧縮機の下流側に設けられた分岐部と前記減圧機構の上流側に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、暖房運転時、前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射熱交換器が設けられた第2流路と、前記第2流路において前記輻射熱交換器と前記合流部との間に設けられ、前記輻射熱交換器に供給される冷媒量を調整する弁機構とを有していることを特徴とする。
 この空気調和機では、弁機構を制御することで輻射熱交換器と室内熱交換器に流れる冷媒量の比率を調整できる。
 第11の発明に係る空気調和機は、第1~第10のいずれかの発明において、前記室内機が、前記ファン及び前記室内熱交換器を収容するケーシングを有し、前記ケーシングの上端部には、空気を吹き出す吹出口が設けられていることを特徴とする。
 この空気調和機では、室内機のケーシングの上端部に吹出口が設けられているため、室内機を床面付近に設置することができる。
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。
 第1の発明では、例えば室内温度が室内目標温度と大きく離れた状態から室内目標温度に近付く場合において、温風暖房と輻射暖房の両方を行う輻射暖房運転時に圧縮機の周波数を下げるタイミングを、温風暖房だけを行う温風暖房運転時よりも遅くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を抑制することができる。また、例えば室内温度が室内目標温度に近い状態から室内目標温度から離れる場合において、輻射暖房運転時に圧縮機の周波数を上げるタイミングを、温風暖房運転時よりも早くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度を早く高温にできる。したがって、輻射熱交換器の温度を高温に維持できる。
 第2の発明では、輻射暖房運転時に周波数を下げるタイミングを、温風暖房運転時よりも遅くしているため、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を遅らせることができる。
 第3の発明では、室内目標温度と室内温度との温度差が減少する場合に、圧縮機の周波数を増加させる制御から圧縮機の周波数を変更しない制御に切り換えてから、圧縮機の周波数を減少させる制御を行うため、吹出温度および輻射熱交換器の温度を緩やかに低下させることができるため、快適性が高い。
 第4の発明では、輻射暖房運転時に周波数を増加させる制御から維持する制御に変えるタイミングを、温風暖房運転時よりも遅くしているため、温風暖房運転時と同じにした場合に比べて、輻射熱交換器の温度の低下を遅らせることができる。
 第5の発明では、室内目標温度と室内温度との温度差が減少する場合に、圧縮機の周波数を増加させる制御から圧縮機の周波数を減少させる制御に切り換えるため、吹出温度を迅速に低下させることができる。
 第6の発明では、輻射暖房運転時に周波数を上げるタイミングを、温風暖房運転時よりも早くしているため、温風暖房運転時と同じにした場合に比べて輻射熱交換器温度を早く高温にできる。
 第7の発明では、室内目標温度と室内温度との温度差が増加する場合に、圧縮機の周波数を減少させる制御から圧縮機の周波数を変更しない制御に切り換えてから、圧縮機の周波数を増加させる制御を行うため、吹出温度および輻射熱交換器の温度を緩やかに上昇させることができるため、快適性が高い。
 第8の発明では、輻射暖房運転時に周波数を減少させる制御から維持する制御に変えるタイミングを、温風暖房運転時よりも早くしているため、温風暖房運転時と同じにした場合に比べて輻射熱交換器の温度を早く高温にできる。
 第9の発明では、室内目標温度と室内温度との温度差が増加する場合に、圧縮機の周波数を減少させる制御から圧縮機の周波数を増加させる制御に切り換えるため、吹出温度および輻射熱交換器の温度を迅速に上昇させることができる。
 第10の発明では、弁機構を制御することで輻射熱交換器と室内熱交換器に流れる冷媒量の比率を調整できる。
 第11の発明では、室内機のケーシングの上端部に吹出口が設けられているため、室内機を床面付近に設置することができる。
本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、冷房運転時と温風暖房運転時の冷媒の流れを示す図である。 本発明の実施形態に係る空気調和機の概略構成を示す回路図であって、輻射暖房運転時の冷媒の流れを示す図である。 空気調和機を制御する制御部の概略構成を示すブロック図である。 室内機の斜視図である。 図4のV-V線断面図である。 (a)は温風暖房運転時の圧縮機の制御を説明するための図であって、(b)は温風暖房運転時の圧縮機の制御を説明するための図である。 輻射暖房運転時の室内温度が上昇する場合の圧縮機の周波数の変化を示すグラフであって、圧縮機の制御に図6(b)を用いた実施例と、図6(a)を用いた比較例とを示す。 輻射暖房運転時の室内温度が低下する場合の圧縮機の周波数の変化を示すグラフであって、圧縮機の制御に図6(b)を用いた実施例と、図6(a)を用いた比較例とを示す。 輻射1運転モード運転時の空気調和機の各部の動作と、室内温度および輻射熱交換器温度を示すグラフである。 輻射2運転モード運転時の空気調和機の各部の動作と、室内温度および輻射熱交換器温度を示すグラフである。 輻射暖房運転時の室内温度が低下する場合の圧縮機の周波数の変化を示すグラフであって、圧縮機の制御に図6(b)を用いた実施例と、図6(a)を用いた比較例とを示す。
 以下、本発明に係る空気調和機1の実施の形態について説明する。
<空気調和機1の全体構成>
 図1および図2に示すように、本実施形態の空気調和機1は、室内に設置される室内機2と、室外に設置される室外機3と、リモコン4(図3参照)とを備えている。室内機2は、室内熱交換器20と、室内熱交換器20の近傍に配置された室内ファン21と、輻射パネル29(図4および図5参照)に設けられた輻射熱交換器22と、室内電動弁(弁機構)23と、室内温度を検出するための室内温度センサ24とを備えている。また、室外機3は、圧縮機30と、四路切換弁31と、室外熱交換器32と、室外熱交換器32の近傍に配置された室外ファン33と、室外電動弁(減圧機構)34とを備えている。室内機2と室外機3とは環状の冷媒回路10で接続されている。冷媒回路10は、主流路11と第1流路12と第2流路13を有している。
 主流路11には、室外電動弁34、室外熱交換器32、および圧縮機30がこの順に設けられている。また、主流路11には、四路切換弁31が設けられており、四路切換弁31を切り換えることにより、圧縮機30の吐出側と吸入側のいずれかが室外熱交換器32が接続される。主流路11における圧縮機30の吸入側と四路切換弁31との間にはアキュムレータ35が設けられており、主流路11における圧縮機30の吐出側と四路切換弁31との間には、吐出温度センサ36が設けられている。また、室外熱交換器32には、室外熱交温度センサ37が付設されている。室外電動弁34は、その開度を変更可能であって、減圧機構として機能する。また、主流路11において、圧縮機30の吸入側が室外熱交換器32に接続されたとき(図2に示した暖房運転時)に、圧縮機30の下流側には、分岐部11aが設けられており、室外電動弁34の上流側には、合流部11bが設けられている。
 第1流路12および第2流路13は、分岐部11aと合流部11bとの間に設けられ、並列に接続されている。第1流路12には、室内熱交換器20が設けられており、第2流路13には、分岐部11a側から順に、輻射熱交換器22および室内電動弁23が設けられている。本実施形態では、冷媒回路10において、第1流路12及び第2流路13を除いた流路であって、分岐部11aと合流部11bとの間の流路が、主流路となる。
 図4に示すように、本実施形態の室内機2は、直方体形状を有しており、室内の床面から浮かした状態で壁面に据え付けられる。本実施形態においては、室内機2の床面からの高さH(図4参照)は10cm程度である。図5に示すように、室内機2は、室内ファン21および室内熱交換器20などを収容するケーシング28を有している。ケーシング28の前面の一部は、輻射パネル29で構成されている。ケーシング28の下壁には主吸込口28aが形成されており、ケーシング28の前壁には補助吸込口28b、28cが形成されており、ケーシング28の上壁には吹出口28dが形成されている。
 図5に示すように、室内熱交換器20は、室内機2の内部において室内ファン21と対向するように設けられ、室内ファン21の風上側に配置されている。この室内機2では、室内ファン21の駆動により、主吸込口28aから床面近傍にある空気を吸い込みつつ、補助吸込口28b、28cからも空気を吸い込む。吸い込まれた空気は、室内熱交換器22において加熱または冷却された後、ケーシング28の上壁に形成された吹出口28dから室内に吹き出され、これにより、冷媒または温風暖房が行われる。また、図1および図2に示すように、室内熱交換器20には、室内熱交温度センサ27が設けられている。
 輻射パネル29は、室内機2の表面に配置されている。輻射パネル29は、室内機2の表面の一部を構成する輻射板22aと、輻射板22aの裏面側に固定され、冷媒が流れるU字状の配管22bと、配管22bに冷媒を供給するための接続配管(図示省略)とを有している。なお、輻射熱交換器22は、輻射板22aと配管22bとによって構成される。室内機2では、配管22bを流れる冷媒の熱が輻射板22aを介して室内に輻射されることで輻射暖房が行われる。また、図1および図2に示すように、第2流路13における輻射熱交換器22の両側には、パネル入温度センサ25と、パネル出温度センサ26が設けられている。
 室内電動弁23は、輻射熱交換器22に供給される冷媒の流量を調整するために設けられている。室内電動弁23は、後述する輻射暖房運転時および輻射微風暖房運転時の冷媒の流れ方向における輻射熱交換器22の下流側に設けられている。
 本実施形態の空気調和機1は、冷房運転、温風暖房運転および輻射暖房運転を行うことができる。冷房運転は、輻射熱交換器22に冷媒を流さないで室内熱交換器20に冷媒を流して冷房を行う運転であって、温風暖房運転は、輻射熱交換器22に冷媒を流さないで室内熱交換器20に冷媒を流して温風暖房を行う運転である。輻射暖房運転は、室内熱交換器20に冷媒を流して温風暖房を行うと共に、輻射熱交換器22に冷媒を流して輻射暖房を行う運転である。
 リモコン4では、ユーザーによって、運転の開始/停止の操作、運転モードの設定、室内温度の目標温度(室内目標温度)の設定、吹出風量の設定などが行われる。表1に示すように、本実施形態の空気調和機1では、リモコン4の操作により、主運転モードとして、冷房運転モード及び暖房運転モードのいずれかを選択できるようになっている。主運転モードとして暖房運転モードを選択した場合には、表1に示すように、温風暖房運転モードと、輻射暖房運転モードに含まれる輻射1運転モードと輻射2運転モードのいずれかを選択できるようになっている。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、冷房運転モードは、冷房運転を行うモードであって、温風暖房運転モードは、温風暖房運転を行うモードであって、輻射1運転モードは、吹出風量を室内温度に応じて変化させて輻射暖房運転を行うモードであって、輻射2運転モードは、吹出風量を温風暖房運転時よりも低い一定の風量として輻射暖房運転を行うモードである。輻射1運転モードまたは輻射2運転モードが選択された場合には、風量は自動的に制御される。温風暖房運転モードまたは冷房運転モードを選択した場合には、リモコン4の操作により、風量設定として「風量自動」または「強」から「弱」のいずれかの風量を選択できる。
<制御部5>
 次に、空気調和機1を制御する制御部5について図3を参照しつつ説明する。
 図3に示すように、制御部5は、記憶部51と、室内ファン制御部52と、室内電動弁制御部53と、圧縮機制御部54と、室外電動弁制御部55とを有している。また、制御部5は、暖房運転時、室内温度が室内目標温度より所定温度以上高くなった場合(本実施形態では室内目標温度と室内温度との温度差ΔTRが-2.0以下になった場合)に、自動的に運転を停止し(サーモオフ)、その後、室温が低下して、室内温度が室内目標温度より所定温度以上低くなった場合(本実施形態では室内目標温度と室内温度との温度差ΔTRが-2.0℃よりも大きくなった場合)に、再び運転を開始する(サーモオン)。なお、温度差ΔTRは、室内目標温度から室内温度を差し引いた値であって、室内温度が室内目標温度より大きい場合、負の値となる。なお、サーモオフとなる室内温度およびサーモオンとなる室内温度は、上記に限定されるものではない。
(記憶部51)
 記憶部51には、空気調和機1に関する種々の運転設定や、制御プログラムや、その制御プログラムの実行に必要なデータテーブルなどが記憶されている。運転設定には、室内温度の目標温度のように、ユーザーによってリモコン4が操作されることで設定されるものと、空気調和機1に対して予め設定されたものとがある。本実施形態の空気調和機1では、輻射熱交換器22の目標温度範囲は、予め所定の温度範囲(例えば50~55℃)に設定されている。なお、リモコン4の操作によって輻射熱交換器22の目標温度範囲を設定できるようになっていてもよい。
(室内ファン制御部52)
 室内ファン制御部52は、室内ファン21の回転数を制御する。
 温風暖房運転モードの風量自動運転時、輻射1運転モード、および輻射2運転モード運転時にそれぞれ選択されるファンタップと、各ファンタップに対応する回転数を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 温風暖房運転の風量自動運転時には、室内ファン制御部52は、室内目標温度と室内温度との差ΔTRに基づいて、表2に示す5段階のファンタップA1~A5のいずれかを選択して、このファンタップに対応する回転数(a1~a5)に室内ファン21を制御する。また、温風暖房運転時であって、「強」から「弱」のいずれかの風量が選択された場合には、室内ファン制御部52は、それぞれ予め設定された一定の回転数に室内ファン21を制御する。
 また、輻射2運転モード運転時には、室内ファン制御部52は、温風暖房運転時の回転数a1~a5よりも小さい一定の回転数c1に室内ファン21を制御する。回転数c1は、室内ファン21の回転に伴う音がほとんど生じず、且つ、ドラフト感をほとんど感じさせない値である。
 また、室内ファン制御部52は、輻射1運転モード開始の操作が行われると、室内目標温度と室内温度との温度差ΔTRが0℃よりも大きい場合には、第1風量制御を開始し、温度差ΔTRが0℃以下の場合には、第2風量制御を開始する。
 第2風量制御は、輻射2運転モード運転時の制御と同じであって、温風暖房運転時の回転数a1~a5よりも小さい一定の回転数c1に室内ファン21を制御する。
 第1風量制御では、室内目標温度と室内温度との差ΔTRに基づいて、表2に示す7段階のファンタップB1~B7のいずれかを選択して、このファンタップに対応する回転数(b1~b7)に室内ファン21を制御する。第1風量制御時のファンタップ(B1~B7)の数は、温風暖房運転時のファンタップ(A1~A5)の数よりも多く、第1風量制御時には、細かく室内ファン21の回転数が変化する。これにより、第1風量制御から第2風量制御に切り換える際の室内ファン21の回転に伴う音を低減することができる。
 第1風量制御中に、室内目標温度と室内温度との温度差ΔTRが0℃以下になった場合には、室内ファン制御部52は、第1風量制御から第2風量制御に切り換える。また、第2風量制御中に、室内目標温度と室内温度との温度差ΔTRが所定値D1(例えば0℃)よりも大きくなった場合には、室内ファン制御部52は、第2風量制御から第1風量制御に切り換える。
(室内電動弁制御部53)
 室内電動弁制御部53は、室内電動弁23の開度を制御する。暖房運転の各モード運転時の制御状態を表3に示す。表3に示すように、温風暖房運転時には、室内電動弁制御部53は、室内電動弁23を閉弁する。
Figure JPOXMLDOC01-appb-T000003
 また、表3に示すように、輻射暖房運転時(輻射1運転モード運転時または輻射2運転モード運転時)には、室内電動弁制御部53は、輻射熱交換器22の温度に基づいて室内電動弁23の開度を制御する。具体的には、パネル入温度センサ25およびパネル出温度センサ26でそれぞれ検出された温度に基づいて、輻射熱交換器22の輻射板22aの温度の予測値(以下、輻射熱交換器温度という)を算出し、この輻射熱交換器温度が、目標温度範囲(例えば50~55℃)となるように、室内電動弁23の開度を制御する。輻射熱交換器温度が目標温度範囲内の所定の温度(例えば51℃)よりも低い場合には、室内電動弁制御部53は、室内電動弁23の開度が大きくなるように制御する。但し、輻射暖房運転開始時から所定時間t1が経過するまでは、室内電動弁制御部53は、室内電動弁23を初期開度に制御する。
 なお、本実施形態では、輻射熱交換器温度を算出するために、パネル入温度センサ25とパネル出温度センサ26の検出温度の両方を用いているが、パネル入温度センサ25の検出温度のみを用いてもよく、パネル出温度センサ26の検出温度のみを用いてもよい。
(圧縮機制御部54)
 圧縮機制御部54は、圧縮機30の運転周波数を制御する。
 圧縮機制御部54は、温風暖房運転時および輻射暖房運転時(輻射1運転モード運転時と輻射2運転モード運転時)とも、室内目標温度と室内温度との温度差ΔTRに基づいて圧縮機30の周波数を制御する。
 詳細は後述するが、圧縮機制御部54は、温度差ΔTR基づいて、図6に示すゾーン(P1~P12またはQ1~Q12)のいずれかを選択し、ゾーンごとに予め設定された制御動作(圧縮機停止、減少制御、維持制御、増加制御)を実行する。図6(a)は、温風暖房運転時に選択されるゾーンを示しており、図6(b)は、輻射暖房運転時に選択されるゾーンを示している。また、図6(a)および図6(b)の左側部分は、温度差ΔTRが減少する場合、即ち、室内温度が上昇する場合のゾーンを示し、図6(a)および図6(b)の右側部分は、温度差ΔTRが増加する場合、即ち、室内温度が下がる場合のゾーンを示している。
 まず、温風暖房運転時において温度差ΔTRが減少する場合について、図6(a)の左側部分に基づいて説明する。
 温度差ΔTRが、所定値E1a=0℃(第2切換値)よりも大きい場合には、圧縮機制御部54は、増加ゾーンP6~P12のいずれかを選択して、ゾーンごとに設定された増加幅で圧縮機30の周波数を増加させる(増加制御)。但し、圧縮機30の周波数が上限周波数に近付くと、圧縮機制御部54は上限周波数よりも大きくならないように圧縮機30の周波数を制御する。なお、圧縮機30の上限周波数とは、冷媒回路10内の圧力が高圧異常とならない周波数の上限値である。また、本発明における「減少制御」とは、減少ゾーンが選択されて、圧縮機の周波数を室内目標温度と室内温度との温度差に基づいて減少させる減少制御のことである。本発明における減少制御には、増加ゾーンまたは維持ゾーンが選択された場合に、圧縮機30の周波数が上限周波数を超えないように圧縮機30の周波数を減少させる制御は含まれない。
 また、増加ゾーンごとに設定された周波数の増加幅は、温度差ΔTRの大きい増加ゾーンほど大きくなっている。例えば、増加ゾーンP12に設定された周波数の増加幅は、増加ゾーンP6に設定された周波数の増加幅よりも大きい。
 また、温度差ΔTRが、所定値E2a=-0.5℃(第1切換値)よりも大きく、E1a=0℃以下の場合には、圧縮機制御部54は、維持ゾーンP5を選択して、圧縮機30の周波数を変更せずに維持する(維持制御)。
 また、温度差ΔTRが、所定値E3a=-2.0よりも大きく、E2a=-0.5℃以下の場合には、圧縮機制御部54は、減少ゾーンP2、P3、P4のいずれかを選択して、ゾーンごとに設定された減少幅で圧縮機30の周波数を減少させる(減少制御)。周波数の減少幅は、温度差ΔTRの小さい減少ゾーンほど大きくなっている。例えば、減少ゾーンP2に設定された周波数の減少幅は、減少ゾーンP4に設定された周波数の減少幅よりも大きい。
 また、温度差ΔTRが、E3a=-2.0℃以下の場合には、圧縮機制御部54は、停止ゾーンP1を選択して、圧縮機30の運転を停止させる(サーモオフ)。
 また、リモコン4の操作により運転を開始した場合は、圧縮機制御部54は、温度差ΔTRに応じて予め設定された初期周波数で圧縮機30の運転を再開する。そして、運転開始時の温度差ΔTRに応じて図6(a)の左側のゾーンを選択し、選択したゾーンに応じて圧縮機30の周波数を制御する。増加ゾーンP6~P12のいずれかを選択した場合には、ゾーンごとに設定された増加幅で初期周波数から増加させる。減少ゾーンP2、P3、P4のいずれかを選択した場合には、ゾーンごとに設定された減少幅で初期周波数から減少させる。維持ゾーンP5を選択した場合には、初期周波数で維持する。
 次に、温風暖房運転時において温度差ΔTRが増加する場合について、図6(a)の右側部分に基づいて説明する。
 サーモオフによって圧縮機30の運転を停止させた後、温度差ΔTRが増加して、温度差ΔTRが-2.0℃よりも大きくなった場合には、圧縮機制御部54は、ゾーンP2を選択し、予め設定された初期周波数で圧縮機30の運転を再開する。ゾーンP2は、圧縮機30の運転を再開させる復帰ゾーンと減少ゾーンとを兼ねている。サーモオフによって圧縮機30の運転を停止させた後、温度差ΔTRが-2.0℃以下の場合には、圧縮機30の運転は停止されたままである。
 また、圧縮機30の運転が継続されている状態で、温度差ΔTRが、E3a=-2.0℃よりも大きく、-1.0℃以下の場合には、圧縮機制御部54は、減少ゾーンP2を選択して、この減少ゾーンP2に対応する減少幅で圧縮機30の周波数を減少させる(減少制御)。
 また、温度差ΔTRが、-1.0℃よりも大きく、所定値F2a=0℃(第4切換値)以下の場合には、圧縮機制御部54は、減少ゾーンP3、P4のいずれかを選択して、ゾーンごとに設定された減少幅で圧縮機30の周波数を減少させる(減少制御)。
 また、温度差ΔTRが、F2a=0℃よりも大きく、所定値F1a=0.5℃(第3切換値)以下の場合には、圧縮機制御部54は、維持ゾーンP5を選択して、圧縮機30の周波数を変更せずに維持する(維持制御)。
 また、温度差ΔTRが、F1a=0.5℃よりも大きい場合には、圧縮機制御部54は、増加ゾーンP6~P12のいずれかを選択して、ゾーンごとに設定された増加幅で圧縮機30の周波数を増加させる(増加制御)。但し、温度差ΔTR減少時と同じく、圧縮機30の周波数が上限周波数に近付くと、圧縮機制御部54は上限周波数よりも大きくならないように圧縮機30の周波数を制御する。
 本実施形態では、温風暖房運転時には、圧縮機制御部54は、実際の温度差ΔTRに基づいてゾーンを選択して、圧縮機30の周波数を制御する。
 次に、輻射暖房運転時において温度差ΔTRが減少する場合について、図6(b)の左側部分に基づいて説明する。
 温度差ΔTRが、所定値E1b=-1.0℃(第2切換値)よりも大きい場合には、圧縮機制御部54は、増加ゾーンQ4~Q12のいずれかを選択して、ゾーンごとに設定された増加幅で圧縮機30の周波数を増加させる(増加制御)。但し、温風暖房運転時と同じく、圧縮機30の周波数が上限周波数に近付くと、圧縮機制御部54は上限周波数よりも大きくならないように圧縮機30の周波数を制御する。また、ゾーンごとに設定された周波数の増加幅は、温度差ΔTRの大きい増加ゾーンほど大きくなっている。
 また、温度差ΔTRが、所定値E2b=-1.5℃(第1切換値)よりも大きく、E1b=-1.0℃以下の場合には、圧縮機制御部54は、維持ゾーンQ3を選択して、圧縮機30の周波数を変更せずに維持する(維持制御)。
 また、温度差ΔTRが、所定値E3b=-2.0℃よりも大きく、E2b=-1.5℃以下の場合には、圧縮機制御部54は、減少ゾーンQ2を選択して、圧縮機30の周波数を減少させる(減少制御)。
 また、温度差ΔTRが、E3b=-2.0℃以下の場合には、圧縮機制御部54は、停止ゾーンQ1を選択して、圧縮機30の運転を停止させる(サーモオフ)。
 また、リモコン4の操作により運転を開始した場合は、圧縮機制御部54は、温度差ΔTRに応じて、図6(b)の左側のゾーンを選択する。
 また、リモコン4の操作により運転を開始した場合は、圧縮機制御部54は、温度差ΔTRに応じて予め設定された初期周波数で圧縮機30の運転を再開する。そして、運転開始時の温度差ΔTRに応じて図6(b)の左側のゾーンを選択し、選択したゾーンに応じて圧縮機30の周波数を制御する。増加ゾーンQ4~Q12のいずれかを選択した場合には、ゾーンごとに設定された増加幅で初期周波数から増加させる。減少ゾーンQ2を選択した場合には、ゾーンごとに設定された減少幅で初期周波数から減少させる。維持ゾーンQ3を選択した場合には、初期周波数で維持する。
 本実施形態では、輻射暖房運転の温度差ΔTR減少時(運転開始時を含む)、温度差ΔTRがE1b=-1.0℃(第2切換値)よりも大きい場合には、実際の温度差ΔTRではなく擬似温度に基づいて圧縮機30の周波数は制御され、温度差ΔTRがE1b以下の場合には、実際の温度差ΔTRに基づいて圧縮機30の周波数は制御される。
 したがって、温度差ΔTRがE1bよりも大きい場合には、圧縮機制御部54は、実際の温度差ΔTRではなく擬似温度に基づいてゾーンを選択する。擬似温度は、周波数の増加幅の大きい増加ゾーンが選択されるように、比較的大きい値(例えば3.0~3.5℃)に設定されている。擬似温度に基づいて選択された増加ゾーンに対応する増加幅で圧縮機30の周波数を増加させると、圧縮機30の周波数は迅速に上昇する。そして、圧縮機30の周波数が上限周波数に近付くと、上限周波数よりも大きくならないように制御される。つまり、本実施形態では、温度差ΔTRがE1bよりも大きい場合には、圧縮機30の周波数は上限周波数付近(上限周波数または上限周波数よりも若干小さい値)に維持されるように制御される。そのため、暖房能力の高い輻射暖房を行うことができる。
 また、温度差ΔTRがE1bまで減少したときは、圧縮機制御部54は、実際の温度差ΔTRに基づいて維持ゾーンQ3を選択し、圧縮機30の周波数を維持する。
 このように、圧縮機制御部54は、温度差ΔTRに応じて、擬似温度に基づく制御と、実際の温度差ΔTRに基づく制御と切り換える。
 次に、輻射暖房運転時において温度差ΔTRが増加する場合について、図6(b)の右側部分に基づいて説明する。
 サーモオフによって圧縮機30の運転を停止させた後、温度差ΔTRが増加して、温度差ΔTRが-2.0℃よりも大きくなった場合には、圧縮機制御部54は、ゾーンQ2を選択して、予め設定された初期周波数で圧縮機30の運転を再開する。ゾーンQ2は、圧縮機30の運転を再開させる復帰ゾーンと減少ゾーンとを兼ねている。サーモオフによって圧縮機30の運転を停止させた後、温度差ΔTRが-2.0℃以下の場合には、圧縮機30の運転は停止されたままである。
 また、圧縮機30の運転が継続されている状態で、温度差ΔTRが、E3b=-2.0℃よりも大きく、所定値F2b=-1.0℃(第4切換値)以下の場合には、圧縮機制御部54は、減少ゾーンQ2を選択して、圧縮機30の周波数を減少させる(減少制御)。
 また、温度差ΔTRが、F2b=-1.0℃よりも大きく、所定値F1b=-0.5℃(第3切換値)以下の場合には、圧縮機制御部54は、維持ゾーンQ3を選択して、圧縮機30の周波数を変更せずに維持する(維持制御)。
 また、温度差ΔTRが、F1b=-0.5℃よりも大きい場合には、圧縮機制御部54は、増加ゾーンQ4~Q12のいずれかを選択して、ゾーンごとに設定された増加幅で圧縮機30の周波数を増加させる(増加制御)。但し、圧縮機30の周波数が上限周波数に近付くと、圧縮機制御部54は上限周波数を超えないように圧縮機30の周波数を制御する。
 本実施形態では、輻射暖房運転の温度差ΔTR増加時、温度差ΔTRがF1b=-0.5℃(第3切換値)よりも大きい場合には、温度差ΔTRの減少時と同様に、実際の温度差ΔTRではなく擬似温度に基づいて圧縮機30の周波数が制御され、温度差ΔTRがF1b以下の場合には、実際の温度差ΔTRに基づいて圧縮機30の周波数が制御される。
 したがって、温度差ΔTRがF1b以下の場合には、圧縮機制御部54は、実際の温度差ΔTRに基づいて維持ゾーンQ3、減少ゾーンQ2または停止ゾーンQ1のいずれかを選択して、圧縮機30を制御する。
 また、温度差ΔTRがF1bよりも大きくなった場合には、圧縮機制御部54は、実際の温度差ΔTRではなく擬似温度に基づいてゾーンを選択する。擬似温度は、周波数の増加幅の大きい増加ゾーンが選択されるように、比較的大きい値(例えば3.0~3.5℃)に設定されている。擬似温度に基づいて選択された増加ゾーンに対応する増加幅で圧縮機30の周波数を増加させると、圧縮機30の周波数は迅速に上昇する。そして、圧縮機30の周波数が上限周波数に近付くと、上限周波数よりも大きくならないように制御される。つまり、本実施形態では、温度差ΔTRがF1bよりも大きい場合には、圧縮機30の周波数は上限周波数付近(上限周波数または上限周波数よりも若干小さい値)に維持されるように制御される。そのため、暖房能力の高い輻射暖房を行うことができる。
 このように、圧縮機制御部54は、温度差ΔTRに応じて、擬似温度に基づく制御と、実際の温度差ΔTRに基づく制御と切り換える。
 図7は、本実施形態の輻射暖房運転時の温度差ΔTR減少時における圧縮機30の周波数(図7に示す実施例)と、圧縮機30の制御に図6(b)の代わりに図6(a)を使用して、その他の制御は本実施形態の輻射暖房運転と同じ場合における圧縮機30の周波数(図7に示す比較例)を示している。
 図6(b)において温度差ΔTRの減少時に維持ゾーンQ3から減少ゾーンQ2に切り換わる温度差ΔTRであるE2b=-1.5℃は、図6(a)において維持ゾーンP5から減少ゾーンP4に切り換わる温度差ΔTRであるE2a=-0.5℃よりも小さい。
 そのため、温度差ΔTRが同じ条件では、維持ゾーンQ3から減少ゾーンQ2に切り換わるタイミングは、維持ゾーンP5から減少ゾーンP4に切り換わるタイミングよりも遅くなる。
 したがって、図7に示すように、図6(a)に基づいて圧縮機30を制御する本実施形態の輻射暖房運転では、図6(a)に基づいて温風暖房運転時と同様に圧縮機30を制御する場合よりも、維持制御から減少制御に切り換わるタイミングが遅くなり、圧縮機30の周波数を下げるタイミングが遅くなる。これにより、輻射熱交換器温度の低下を遅らせることができるため、輻射熱交換器温度を高温に維持できる。
 図8は、本実施形態の輻射暖房運転時の温度差ΔTR増加時における圧縮機30の周波数(図8に示す実施例)と、圧縮機30の制御に図6(b)の代わりに図6(a)を使用して、その他の制御は本実施形態の輻射暖房運転と同じ場合における圧縮機30の周波数(図8に示す比較例)を示している。
 図6(b)において温度差ΔTRの増加時に減少ゾーンQ2から維持ゾーンQ3に切り換わる温度差ΔTRであるF2b=-1.0℃は、図6(a)において減少ゾーンP4から維持ゾーンP5に切り換わる温度差ΔTRであるF2a=0℃よりも小さい。
 そのため、温度差ΔTRが同じ条件では、減少ゾーンQ2から維持ゾーンQ3に切り換わるタイミングは、減少ゾーンP4から維持ゾーンP5に切り換わるタイミングよりも遅くなる。
 したがって、図8に示すように、図6(a)に基づいて圧縮機30を制御する本実施形態の輻射暖房運転では、図6(a)に基づいて温風暖房運転時と同様に圧縮機30を制御する場合よりも、減少制御から維持制御に切り換わるタイミングが早くなる。これにより、輻射熱交換器温度の低下を早く抑制できるため、輻射熱交換器温度を高温に維持できる。
 また、図6(b)において温度差ΔTRの増加時に維持ゾーンQ3から増加ゾーンQ4に切り換わる温度差ΔTRであるF1b=-0.5℃は、図6(a)において維持ゾーンP5から増加ゾーンP6に切り換わる温度差ΔTRであるF1a=0.5℃よりも小さい。
 そのため、温度差ΔTRが同じ条件では、維持ゾーンQ3から増加ゾーンQ4に切り換わるタイミングは、維持ゾーンP5から増加ゾーンP6に切り換わるタイミングよりも遅くなる。
 したがって、図8に示すように、図6(a)に基づいて圧縮機30を制御する本実施形態の輻射暖房運転では、図6(a)に基づいて温風暖房運転時と同様に圧縮機30を制御する場合よりも、維持制御から増加制御に切り換わるタイミングが早くなり、圧縮機30の周波数を上げるタイミングを早くすることができる。これにより、輻射熱交換器温度を早く高温にできるため、輻射熱交換器温度を高温に維持できる。
(室外電動弁制御部55)
 室外電動弁制御部55は、室内目標温度と室内温度との温度差ΔTR等に基づいて、室外電動弁34の開度を制御する。
<空気調和機1の動作>
 次に、空気調和機1の各暖房運転モードの動作について説明する。
 輻射1運転モードおよび輻射2運転モードについては、図9および図10のグラフを参照しつつ説明する。図9および図10のグラフは、横軸が時間を表し、縦軸が室内温度、室内ファン21の回転数、圧縮機30の運転周波数、輻射熱交換器温度(計算値)、および室内電動弁23の開度をそれぞれ表している。
(温風暖房運転モード運転)
 リモコン4により温風暖房運転モード運転開始の操作が行われると共に、風量設定として「風量自動」が選択されると、室内ファン制御部52によって、室内ファン21は、室内目標温度と室内温度との差ΔTRに応じた回転数に制御される。また、室内電動弁制御部53により、室内電動弁23は閉弁される。
 運転開始時の室内温度が室内目標温度よりも低い(室内目標温度と室内温度との温度差ΔTRが0℃より大きい)場合には、圧縮機制御部54により、圧縮機30の周波数は増加するように制御される。室内温度が上昇して、室内目標温度と室内温度との温度差ΔTRがE1a=0℃まで減少すると、圧縮機30の周波数は維持される。さらに室内温度が上昇して、温度差ΔTRがE2a=-0.5℃まで減少すると、圧縮機30の周波数は減少するように制御される。
 また、リモコン4により温風暖房運転モード運転開始の操作が行われると共に、「強」から「弱」のいずれかの風量が選択された場合には、室内ファン21の回転数は所定の回転数で維持され、室内電動弁23と圧縮機30は「風量自動」が選択された場合と同様に制御される。
(輻射1運転モード運転)
 図9に示すように、リモコン4により輻射1運転モード運転開始の操作が行われると、室内電動弁23は、運転開始から所定時間t1が経過するまでは、初期開度に制御され、運転開始から所定時間t1が経過すると、輻射熱交換器温度と目標温度範囲とに基づいて開度が制御される。なお、図9では、室内電動弁23の初期開度は、全開よりも小さい開度となっているが、初期開度は全開であってもよい。
 運転開始時の室内温度が室内目標温度よりも低い場合(室内目標温度と室内温度との温度差ΔTRが0℃より大きい場合)には、室内ファン制御部52は第1風量制御を開始し、室内ファン21は、室内目標温度と室内温度との差ΔTRに応じた回転数に制御される。また、圧縮機制御部54により、圧縮機30の周波数は増加するように制御される。但し、上限周波数付近まで増加すると上限周波数を超えないように制御される。なお、図9では、圧縮機30の周波数は上限周波数に維持されているが、これは、上限周波数付近(上限周波数または上限周波数よりも若干小さい周波数)であることを簡略的に表示したものである。このとき、圧縮機30の周波数が高いため、室内機2から吹き出される空気流の温度(吹出温度)は高温となっている。なお、図9では、圧縮機30の周波数は上限周波数付近に維持されているが、擬似温度に対応する増加ゾーンの増加幅が小さい場合や、運転開始時から温度差ΔTRが-1.0℃になるまで(実際の温度差ΔTRに基づく制御に切り換わるまで)の時間が短い場合には、圧縮機30の周波数は上限周波数付近まで上昇しないことがある。
 室内温度が上昇して、第1風量制御中に室内目標温度と室内温度との温度差ΔTRが0℃まで減少すると、室内ファン制御部52は第1風量制御から第2風量制御に切り換える。これにより、室内ファン21の回転数は回転数c1まで低減される。
 室内温度がさらに上昇して、室内目標温度と室内温度との温度差ΔTRがE2b=-1.5℃まで減少すると、圧縮機30の周波数は上限周波数から減少するように制御される。これにより、吹出温度が低下する。そのため、室内温度を室内目標温度に近付けることができると共に、室内の天井付近に溜まった暖気が攪拌されて、室内の天井付近と床面付近との温度差を低減することができる。また、圧縮機30の周波数が低下することにより、輻射熱交換器温度が一旦低下するが、輻射熱交換器温度が目標温度範囲内の所定の温度(例えば51℃)より低くなると、室内電動弁制御部53によって室内電動弁23の開度が大きくなり、輻射熱交換器温度が上昇するため、輻射熱交換器温度の低下を抑制することができる。
 また、室内温度が低下して、室内目標温度と室内温度との温度差ΔTRがD1=0℃よりも大きくなると、室内ファン制御部52は第2風量制御から第1風量制御に切り換える。D1は0℃よりも大きい数値であってもよい。なお、図9では、室内ファン制御部52は第2風量制御から第1風量制御に切り換わるときを省略して表示している。
(輻射2運転モード運転)
 図10に示すように、リモコン4により輻射2運転モード運転開始の操作が行われると、室内ファン制御部52によって、室内ファン21は一定の回転数c1に制御される。また、室内電動弁23は、運転開始から所定時間t1が経過するまでは、初期開度に制御され、運転開始から所定時間t1が経過すると、輻射熱交換器温度と目標温度範囲とに基づいて開度が制御される。
 運転開始時の室内温度が室内目標温度よりも低い場合(室内目標温度と室内温度との温度差ΔTRが0℃より大きい場合)には、圧縮機制御部54により、圧縮機30の周波数は増加するように制御される。但し、上限周波数付近まで増加すると上限周波数を超えないように制御される。このとき、圧縮機30の周波数が高く、且つ、吹出風量が小さいことから、吹出温度は高温となっている。
 室内温度が上昇して、室内目標温度と室内温度との温度差ΔTRがE2b=-1.5℃まで減少すると、圧縮機制御部54によって、圧縮機30の周波数は上限周波数から減少するように制御される。これにより、吹出温度が低下するため、室内温度を室内目標温度に近付けることができると共に、室内の天井付近と床面付近との温度差を低減することができる。また、圧縮機30の周波数が低下することにより、輻射熱交換器温度が一旦低下するが、輻射熱交換器温度が目標温度範囲内の所定の温度(例えば51℃)より低くなると、室内電動弁制御部53によって室内電動弁23の開度が大きくなり、輻射熱交換器温度が上昇するため、輻射熱交換器温度の低下を抑制することができる。なお、図10では、運転開始から温度差ΔTRがE2bになるまでの間を一部省略している。
(デフロスト運転)
 また、空気調和機1では、暖房運転モード運転時に室外熱交換器32に付着した霜を取り除くために、四路切換弁31を図1および図2中破線で表示した状態に切り換えて、暖房運転から除霜運転(デフロスト運転)に切り換える。本実施形態の空気調和機1では、除霜運転時に室内電動弁23を閉弁する。これにより、輻射熱交換器22に低温の冷媒が流れないため、輻射熱交換器温度の低下を抑制することができる。そのため、再び暖房運転を開始したときに、輻射熱交換器温度を迅速に目標温度範囲内とすることができる。
 なお、除霜運転時の室内電動弁23の制御はこれに限定されるものではなく、輻射熱交換器温度が所定の温度になるまで、室内電動弁23を所定の開度に維持して、輻射熱交換器温度が上記所定の温度まで下がったときに、室内電動弁23を閉状態に切り換えてもよい。この場合、輻射熱交換器22に低温の冷媒が流れるため、輻射熱交換器温度はある程度低下してしまうが、輻射熱交換器22内の高温の冷媒を室外熱交換器32の除霜に利用することができるため、上述した場合よりも室外熱交換器32に付着した霜を迅速に取り除くことができる。また、除霜運転中に輻射熱交換器22に霜が付着するのを防止できる。
<空気調和機1の特徴>
 本実施形態の空気調和機1では、輻射暖房運転時に圧縮機30の周波数を下げるタイミングを、温風暖房運転時よりも遅くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器22の温度の低下を抑制することができる。
 また、輻射暖房運転時に圧縮機30の周波数を上げるタイミングを、温風暖房運転時よりも早くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器22の温度を早く高温にできる。したがって、輻射熱交換器22の温度を高温に維持できる。
 また、輻射暖房運転時に圧縮機30の周波数を減少させる制御から周波数を維持する制御に切り換えるタイミングを、温風暖房運転時よりも早くすることで、温風暖房運転時と同じにした場合に比べて、輻射熱交換器22の温度を早く高温にできる。したがって、輻射熱交換器22の温度を高温に維持できる。
 本実施形態の空気調和機1では、圧縮機30の周波数が低下したとき、温風暖房の吹出温度が低下するため、室内の天井付近と床面付近との温度差を低減できる。また、圧縮機30の周波数が低下した後で、室内電動弁23の開度が大きくなることで、輻射熱交換器22の温度の低下を抑制できる。したがって、快適性を向上させることができる。
 本実施形態の空気調和機1では、圧縮機30の周波数は室内温度に基づいて制御されるため、室内の天井付近と床面付近との温度差が大きい場合に圧縮機30の周波数を低下させることができる。
 本実施形態の空気調和機1では、室内電動弁23の開度が、輻射熱交換器22の温度に基づいて制御されるため、圧縮機30の周波数が低下して、輻射熱交換器22の温度が低下したときに、室内電動弁23の開度が大きくなることで、輻射熱交換器22の温度の低下を確実に抑制できる。
 本実施形態の空気調和機1は、輻射熱交換器22および室内電動弁23が、室内熱交換器20と並列に設けられているため、室内電動弁23の開度を制御することで、輻射熱交換器22と室内熱交換器20に流れる冷媒量の比率を調整できる。また、輻射熱交換器22に冷媒を流さずに温風暖房のみ行う温風暖房運転と、輻射熱交換器22に冷媒を流す輻射暖房運転とを、室内電動弁23を開閉するだけで切り換えることができる。
 本実施形態の空気調和機1では、ケーシングの上端部から温風を吹き出すため、室内の天井付近に暖気が溜まって、天井付近と床面付近とで温度差が生じやすい。そのため、室内の天井付近と床面付近との温度差を低減できる構成が特に有効である。
 本実施形態の空気調和機1では、輻射暖房運転時、室内目標温度と室内温度との温度差ΔTRがE1bまたはF1bより大きい場合には、擬似温度を用いて圧縮機30の周波数を制御するため、圧縮機30の周波数を迅速に上限周波数付近まで上昇させることができる。そのため、輻射暖房の暖房能力が高く、輻射熱交換器22の温度を高温に維持できる。
 輻射2運転モード運転では吹出風量が低風量であるため、輻射1運転モード運転時の圧縮機30の周波数の増減のタイミングを温風暖房運転時のタイミングと異ならせても、室内温度が室内目標温度よりも高くなり過ぎるのを防止できる。
 また、輻射1運転モード運転の第2風量制御では吹出風量が低風量であり、第2風量制御より吹出風量の大きい第1風量制御は、室内温度が室内目標温度に達するまでの制御であるため、輻射1運転モード運転時の圧縮機30の周波数の増減のタイミングを温風暖房運転時のタイミングと異ならせても、室内温度が室内目標温度よりも高くなり過ぎるのを防止できる。
 本実施形態の空気調和機1では、輻射1運転モード運転の第2風量制御時と輻射2運転モード運転時には、室内ファン21を小さい回転数で回転させることで、ユーザーにドラフト感をほとんど感じさせない温風暖房を行うことができる。また、室内ファン21を停止させないことで室内熱交換器20による熱交換量が大きく、冷媒回路10内の圧力が高くなり過ぎるのを防止できる。したがって、室内ファン21を停止させて輻射暖房のみを行う場合に比べて、室外機の圧縮機30の運転周波数を増大させることができ、暖房能力を向上させることができる。
 本実施形態の空気調和機1では、輻射1運転モード運転時、室内温度が低い場合に第1風量制御を行い、室内温度が高い場合に第2風量制御を行うようになっている。これにより、室内温度が低い場合に迅速に室内温度を上昇させることができるとともに、室内温度が高くなると、ドラフト感のほとんどない暖房に自動的に切り換えることができる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 温風暖房運転時の圧縮機30の制御において増加ゾーンと維持ゾーンとが切り換わる温度差ΔTR(E1a、F1a)は、図6(a)に示す温度に限定されるものではなく、例えば、正の値であってもよい。また、輻射暖房運転時の圧縮機30の制御において増加ゾーンと維持ゾーンとが切り換わる温度差ΔTR(E1b、F1b)は、図6(a)に示す温度に限定されるものではない。但し、E1bおよびF1bは、それぞれ、E1aおよびF1aよりも小さいことが好ましい。
 温風暖房運転時の圧縮機30の制御において維持ゾーンと減少ゾーンとが切り換わる温度差ΔTR(E2a、F2a)は、図6(a)に示す温度に限定されるものではなく、例えば、正の値であってもよい。また、輻射暖房運転時の圧縮機30の制御において維持ゾーンと減少ゾーンとが切り換わる温度差ΔTR(E2b、F2b)は、図6(a)に示す温度に限定されるものではない。但し、E2bおよびF2bは、それぞれ、E2aおよびF2aよりも小さいことが好ましい。
 輻射暖房運転時の圧縮機30の制御において、温度差ΔTR減少時に、実際の温度差ΔTRに基づく制御と、擬似温度に基づく制御とが切り換わる温度差ΔTRは、E1bに限定されるものではなく、維持ゾーンと増加ゾーンとが切り換わる温度差ΔTR(E2b)であってもよい。また、それ以外の温度差ΔTRであってもよい。
 また、輻射暖房運転時の圧縮機30の制御において、温度差ΔTR増加時に、実際の温度差ΔTRに基づく制御と、擬似温度に基づく制御とが切り換わる温度差ΔTRは、F1bに限定されるものではなく、維持ゾーンと増加ゾーンとが切り換わる温度差ΔTR(F2b)であってもよい。また、それ以外の温度差ΔTRであってもよい。
 上記実施形態では、輻射暖房運転時、温度差ΔTRが大きい場合に、圧縮機30の周波数を上限周波数に維持するために、実際の温度差ΔTRではなく擬似温度に基づいてゾーンを選択して、圧縮機30を制御するようになっているが、常に実際の温度差ΔTRに基づいてゾーンを選択して、圧縮機30の周波数を制御するようになっていてもよい。
 この変更形態では、温度差ΔTRによっては、圧縮機30の周波数は上限周波数に達しない場合がある。
 図11は、上記変更形態(輻射暖房運転時の圧縮機30の制御に擬似温度を使用しない)で、圧縮機30の周波数が上限周波数に達しない場合における圧縮機30の周波数(図11に示す実施例)と、圧縮機30の制御に図6(b)の代わりに図6(a)を使用して、その他の制御は上記変更形態と同じ場合における圧縮機30の周波数(図11に示す比較例)を示している。
 図6(b)において温度差ΔTRの減少時に増加ゾーンQ4から維持ゾーンQ3に切り換わる温度差ΔTRであるE1b=-1.0℃は、図6(a)において増加ゾーンP6から維持ゾーンP5に切り換わる温度差ΔTRであるE1a=0℃よりも小さい。
 そのため、温度差ΔTRが同じ条件では、増加ゾーンQ4から維持ゾーンQ3に切り換わるタイミングは、増加ゾーンP6から維持ゾーンP5に切り換わるタイミングよりも遅くなる。
 したがって、図11に示すように、図6(a)に基づいて圧縮機30を制御する上記変更形態の輻射暖房運転では、図6(a)に基づいて温風暖房運転時と同様に圧縮機30を制御する場合よりも、増加制御から維持制御に切り換わるタイミングが遅くなる。これにより、輻射熱交換器温度の低下を遅らせることができるため、輻射熱交換器温度を高温に維持できる。
 上記実施形態では、温風暖房運転時および輻射暖房運転時とも、温度差ΔTRの減少時に、圧縮機30の周波数を増加させる制御から周波数を変更しない制御に切り換えてから、周波数を減少させる制御を行うが、周波数を増加させる制御から周波数を減少させる制御に切り換えるようになっていてもよい。つまり、図6(a)または図6(b)に示す左側(温度差ΔTRの減少時)の維持ゾーンを減少ゾーンまたは増加ゾーンに変更してもよい。例えば維持ゾーンを増加ゾーンにした場合、増加制御をやめるタイミングが遅くなるため、輻射熱交換器22の温度を高温に維持できる。但し、快適性の観点では、吹出温度および輻射熱交換器22の温度を緩やかに低下させることのできる上記実施形態の構成が好ましい。
 上記実施形態では、温風暖房運転時および輻射暖房運転時とも、温度差ΔTRの増加時に、圧縮機30の周波数を減少させる制御から周波数を変更しない制御に切り換えてから、周波数を増加させる制御を行うが、周波数を減少させる制御から周波数を増加させる制御に切り換えるようになっていてもよい。つまり、図6(a)または図6(b)に示す右側(温度差ΔTRの増加時)の維持ゾーンを減少ゾーンまたは増加ゾーンに変更してもよい。例えば維持ゾーンをゾーンにした場合、増加制御を開始するタイミングが早くなるため、輻射熱交換器22の温度を早く高温にできる。但し、快適性の観点では、吹出温度および輻射熱交換器22の温度を緩やかに上昇させることのできる上記実施形態の構成が好ましい。
 上記実施形態では、輻射1運転モードの第2風量制御時および輻射2運転モード運転時の室内ファン21の回転数は、回転数c1で一定であるが、第1風量制御時および温風暖房運転時の室内ファン21の回転数より小さい回転数であれば、変動してもよい。
 上記実施形態の室内機2は、主にケーシング28の下壁に設けられた主吸込口28aから室内空気を吸い込んで、ケーシング28の上端部に設けられた吹出口28dから吹き出すように構成されているが、主吸込口28aおよび吹出口28dの位置は上記実施形態に限定されるものではない。例えば、室内機2の上部から吸い込んで下部から吹き出すように構成されていてもよい。
 上記実施形態では、床面近傍に設置される床置き室内機を有する空気調和機に本発明を適用した例を挙げて説明したが、壁掛け室内機を有する空気調和機に本発明を適用してもよい。
 本発明を利用すれば、温風暖房と輻射暖房の両方を行う暖房運転時に、輻射パネル(輻射熱交換器)の温度を高温に維持することができる。
1 空気調和機
2 室内機
10 冷媒回路
11 主流路
11a 分岐部
11b 合流部
12 第1流路
13 第2流路
20 室内熱交換器
21 室内ファン(ファン)
22 輻射熱交換器
23 室内電動弁(弁機構)
28 ケーシング
28d 吹出口
30 圧縮機
32 室外熱交換器
34 室外電動弁(減圧機構)
54 圧縮機制御部(制御手段)

Claims (11)

  1.  圧縮機、室内熱交換器、輻射熱交換器、減圧機構および室外熱交換器を有する冷媒回路を備えた空気調和機であって、
     前記室内熱交換器は、室内機の内部においてファンに対向するように設けられており、
     前記輻射熱交換器は、前記室内機の表面に設けられており、
     前記圧縮機の周波数を室内目標温度と室内温度との温度差に基づいて増減させる制御手段を有しており、
     前記輻射熱交換器に冷媒を流さないで前記室内熱交換器に冷媒を流して温風暖房を行う温風暖房運転と、
     前記室内熱交換器に冷媒を流して温風暖房を行い且つ前記輻射熱交換器に冷媒を流して輻射暖房を行う輻射暖房運転とが可能であって、
     前記制御手段が、前記輻射暖房運転時と前記温風暖房運転時とにおいて、圧縮機の周波数を互いに異なるタイミングで増加または減少させることを特徴とする空気調和機。
  2.  前記制御手段が、前記温度差が減少する場合において、
     前記温度差が第1切換値まで減少したときに、前記圧縮機の周波数を減少させる減少制御を開始するものであって、
     前記輻射暖房運転時における前記第1切換値が、前記温風暖房運転時における前記第1切換値より小さいことを特徴とする請求項1に記載の空気調和機。
  3.  前記制御手段が、前記温度差が減少する場合において、
     前記温度差が前記第1切換値より大きい第2切換値まで減少したときに、前記圧縮機の周波数を増加させる増加制御から前記圧縮機の周波数を変更しない維持制御に切り換えると共に、
     前記温度差が前記第1切換値まで減少したときに、前記維持制御から前記減少制御に切り換えることを特徴とする請求項2に記載の空気調和機。
  4.  前記輻射暖房運転時における前記第2切換値が、前記温風暖房運転時における前記第2切換値より小さいことを特徴とする請求項3に記載の空気調和機。
  5.  前記制御手段が、前記温度差が減少する場合において、
     前記温度差が前記第1切換値まで減少したときに、前記圧縮機の周波数を増加させる増加制御から前記圧縮機の周波数を減少させる減少制御に切り換えることを特徴とする請求項2に記載の空気調和機。
  6.  前記制御手段が、前記温度差が増加する場合において、
     前記温度差が第3切換値まで増加したときに、前記圧縮機の周波数を増加させる増加制御を開始するものであって、
     前記輻射暖房運転時における前記第3切換値が、前記温風暖房運転時における前記第3切換値より小さいことを特徴とする請求項1~5のいずれかに記載の空気調和機。
  7.  前記制御手段が、前記温度差が増加する場合において、
     前記温度差が前記第3切換値より小さい第4切換値まで増加したときに、前記圧縮機の周波数を減少させる減少制御から前記圧縮機の周波数を変更しない維持制御に切り換えると共に、
     前記温度差が前記第3切換値まで増加したときに、前記維持制御から前記増加制御に切り換えることを特徴とする請求項6に記載の空気調和機。
  8.  前記輻射暖房運転時における前記第4切換値が、前記温風暖房運転時における前記第4切換値より小さいことを特徴とする請求項7に記載の空気調和機。
  9.  前記温度差が前記第3切換値まで増加したとき、前記圧縮機の周波数を減少させる減少制御から前記圧縮機の周波数を増加させる増加制御に切り換えることを特徴とする請求項6に記載の空気調和機。
  10.  前記冷媒回路が、
     前記減圧機構、前記室外熱交換器及び前記圧縮機が順に設けられた主流路と、
     暖房運転時、前記主流路の前記圧縮機の下流側に設けられた分岐部と前記減圧機構の上流側に設けられた合流部とを接続すると共に、前記室内熱交換器が設けられた第1流路と、
     暖房運転時、前記分岐部と前記合流部とを前記第1流路と並列に接続すると共に、前記輻射熱交換器が設けられた第2流路と、
     前記第2流路において前記輻射熱交換器と前記合流部との間に設けられ、前記輻射熱交換器に供給される冷媒量を調整する弁機構とを有していることを特徴とする請求項1~9のいずれかに記載の空気調和機。
  11.  前記室内機が、前記ファン及び前記室内熱交換器を収容するケーシングを有し、
     前記ケーシングの上端部には、空気を吹き出す吹出口が設けられていることを特徴とする請求項1~10のいずれかに記載の空気調和機。
PCT/JP2012/051055 2011-01-19 2012-01-19 空気調和機 WO2012099192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12737161.5T ES2579612T3 (es) 2011-01-19 2012-01-19 Acondicionador de aire
CN201280005575.1A CN103314258B (zh) 2011-01-19 2012-01-19 空调机
EP12737161.5A EP2667103B1 (en) 2011-01-19 2012-01-19 Air conditioner
AU2012207833A AU2012207833B2 (en) 2011-01-19 2012-01-19 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011009264A JP5003829B2 (ja) 2011-01-19 2011-01-19 空気調和機
JP2011-009264 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012099192A1 true WO2012099192A1 (ja) 2012-07-26

Family

ID=46515814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051055 WO2012099192A1 (ja) 2011-01-19 2012-01-19 空気調和機

Country Status (6)

Country Link
EP (1) EP2667103B1 (ja)
JP (1) JP5003829B2 (ja)
CN (1) CN103314258B (ja)
AU (2) AU2012207833B2 (ja)
ES (1) ES2579612T3 (ja)
WO (1) WO2012099192A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876384A1 (en) * 2013-11-21 2015-05-27 Mitsubishi Electric Corporation Air-conditioning apparatus
US20150338108A1 (en) * 2013-07-26 2015-11-26 Eco Factory Co., Ltd. Air conditioning system and operation method for air conditioning system
CN106403010A (zh) * 2016-11-24 2017-02-15 秦皇岛绿新节能环保科技有限公司 一种电采暖计量控制系统
EP3059514A4 (en) * 2013-09-30 2017-07-05 Daikin Industries, Ltd. Air-conditioning system and control method therefor
JP2020517856A (ja) * 2017-12-28 2020-06-18 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. 無風感制御方法、装置及びコンピュータ読み取り可能な記憶媒体
US20230011126A1 (en) * 2021-07-09 2023-01-12 Samsung Electronics Co., Ltd. Air conditioner and control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633840B (zh) * 2013-11-15 2017-05-10 珠海格力电器股份有限公司 空调系统的控制方法及空调系统
CN105928266B (zh) * 2016-05-23 2018-06-05 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
EP3508795B1 (en) * 2016-08-30 2022-05-11 Mitsubishi Electric Corporation Air conditioning device
CN106895484A (zh) * 2017-02-28 2017-06-27 广东美的制冷设备有限公司 一种室内机制冷控制方法、室内机及空调
CN106907830A (zh) * 2017-02-28 2017-06-30 广东美的制冷设备有限公司 一种室内机制冷控制方法、控制装置及空调
JP6531794B2 (ja) * 2017-07-31 2019-06-19 ダイキン工業株式会社 空気調和装置
CN107763732A (zh) * 2017-09-15 2018-03-06 珠海格力电器股份有限公司 辐射空调室内机、空调系统及控制方法
CN109405168B (zh) * 2018-09-10 2021-05-25 青岛海尔空调器有限总公司 空调器及防止其室内机的盘管温度过高的控制方法
CN112797507B (zh) * 2020-12-30 2022-08-23 宁波奥克斯电气股份有限公司 多联机空调启动控制方法、装置及多联机空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448140A (ja) * 1990-06-18 1992-02-18 Toshiba Corp 空気調和機
JPH05280762A (ja) 1992-03-30 1993-10-26 Toshiba Corp 輻射パネル付室内ユニット
JPH06307705A (ja) * 1993-04-20 1994-11-01 Toshiba Corp 空気調和機の湿度制御方法
WO2008004621A1 (fr) * 2006-07-06 2008-01-10 Daikin Industries, Ltd. Système de conditionnement d'air
WO2010106771A1 (ja) * 2009-03-18 2010-09-23 ダイキン工業株式会社 空調機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259348A (ja) * 1988-12-26 1990-10-22 Toshiba Audio Video Eng Corp 空気調和装置
JPH0343693A (ja) * 1989-07-06 1991-02-25 Toshiba Corp ヒートポンプ式暖房装置
EP0431491A1 (en) * 1989-12-06 1991-06-12 Kabushiki Kaisha Toshiba Heat pump type heating apparatus and control method thereof
CN1135341C (zh) * 1994-05-30 2004-01-21 三菱电机株式会社 制冷循环系统
FR2912995B1 (fr) * 2007-02-26 2009-05-22 Alcatel Lucent Sas Dispositif de controle thermique embarque a bord d'un engin spatial
KR101392316B1 (ko) * 2007-12-24 2014-05-08 엘지전자 주식회사 공기조화 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448140A (ja) * 1990-06-18 1992-02-18 Toshiba Corp 空気調和機
JPH05280762A (ja) 1992-03-30 1993-10-26 Toshiba Corp 輻射パネル付室内ユニット
JPH06307705A (ja) * 1993-04-20 1994-11-01 Toshiba Corp 空気調和機の湿度制御方法
WO2008004621A1 (fr) * 2006-07-06 2008-01-10 Daikin Industries, Ltd. Système de conditionnement d'air
WO2010106771A1 (ja) * 2009-03-18 2010-09-23 ダイキン工業株式会社 空調機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667103A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150338108A1 (en) * 2013-07-26 2015-11-26 Eco Factory Co., Ltd. Air conditioning system and operation method for air conditioning system
EP3059514A4 (en) * 2013-09-30 2017-07-05 Daikin Industries, Ltd. Air-conditioning system and control method therefor
EP2876384A1 (en) * 2013-11-21 2015-05-27 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106403010A (zh) * 2016-11-24 2017-02-15 秦皇岛绿新节能环保科技有限公司 一种电采暖计量控制系统
JP2020517856A (ja) * 2017-12-28 2020-06-18 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. 無風感制御方法、装置及びコンピュータ読み取り可能な記憶媒体
US20230011126A1 (en) * 2021-07-09 2023-01-12 Samsung Electronics Co., Ltd. Air conditioner and control method thereof

Also Published As

Publication number Publication date
AU2015210422A1 (en) 2015-09-03
AU2012207833A1 (en) 2013-09-05
EP2667103A4 (en) 2014-10-15
AU2015210422B2 (en) 2016-06-23
AU2012207833B2 (en) 2015-05-07
CN103314258A (zh) 2013-09-18
ES2579612T3 (es) 2016-08-12
CN103314258B (zh) 2016-02-17
EP2667103B1 (en) 2016-04-13
JP5003829B2 (ja) 2012-08-15
EP2667103A1 (en) 2013-11-27
JP2012149836A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5003829B2 (ja) 空気調和機
JP5131359B2 (ja) 空気調和機
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
CN103154621B (zh) 空调机
JP5507231B2 (ja) 空気調和機
JP5187373B2 (ja) 空気調和機
JP5403078B2 (ja) 空気調和機
WO2019087632A1 (ja) 空気調和機
JP2012237482A (ja) 空気調和機
JP2005016884A (ja) 空気調和機
JP2013076565A (ja) 空気調和機
JP6918221B2 (ja) 空気調和機
JP2011127800A (ja) 空気調和機
JP2006336923A (ja) 空気調和機
JPH10332186A (ja) 空気調和機
JP2000234788A (ja) 空気調和機
KR20160050298A (ko) 공기조화기 및 그의 제어방법
JP2004163099A (ja) 空気調和機
JP2000240999A (ja) 空気調和機
JPH10141740A (ja) 空気調和装置
JP2009186178A (ja) 空気調和機
JPH11248225A (ja) 躯体蓄熱式空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280005575.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012737161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012207833

Country of ref document: AU

Date of ref document: 20120119

Kind code of ref document: A