WO2019064335A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019064335A1
WO2019064335A1 PCT/JP2017/034688 JP2017034688W WO2019064335A1 WO 2019064335 A1 WO2019064335 A1 WO 2019064335A1 JP 2017034688 W JP2017034688 W JP 2017034688W WO 2019064335 A1 WO2019064335 A1 WO 2019064335A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
heat medium
heat
refrigerant
Prior art date
Application number
PCT/JP2017/034688
Other languages
English (en)
French (fr)
Inventor
拓也 松田
進一 内野
馨 林原
暢 岩田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/034688 priority Critical patent/WO2019064335A1/ja
Priority to EP17927210.9A priority patent/EP3690336A4/en
Priority to JP2019545413A priority patent/JP6949130B2/ja
Priority to US16/649,250 priority patent/US11592203B2/en
Publication of WO2019064335A1 publication Critical patent/WO2019064335A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/001Ventilation with exhausting air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus including a refrigerant circuit that circulates a refrigerant, and having a function of performing air supply and exhaust.
  • Patent No. 5455521 gazette
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a refrigeration cycle apparatus capable of realizing further improvement of COP.
  • the refrigeration cycle apparatus includes a casing, a first air passage having a first inlet communicating with the outside and a first outlet communicating with the room, and a second inlet communicating with the room and the outdoor.
  • a second air passage having a second outlet in communication, a first blower for flowing air from the first inlet to the first outlet, and a second air for flowing air from the second inlet to the second outlet.
  • the air-conditioning unit includes a fan, and includes an air handling unit housed in a housing, and a refrigerant circuit through which the refrigerant circulates, the refrigerant circuit performing heat exchange between the refrigerant and the heat medium to condense the refrigerant. And a second heat exchanger disposed in the second air passage, performing heat exchange between the refrigerant and the air flowing in the second air passage, and evaporating the refrigerant.
  • FIG. 1 is a schematic configuration example of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic configuration example of a refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention.
  • It is a schematic block diagram structural example of the refrigerating-cycle apparatus 300 which concerns on Embodiment 3 of this invention.
  • It is a figure which shows having switched the damper 10 of the refrigerating-cycle apparatus 300 shown in FIG. 3 from the 1st state shown in FIG. 3 to a 2nd state.
  • It is a schematic block diagram structural example of the refrigerating-cycle apparatus 400 which concerns on Embodiment 4 of this invention.
  • It is a modification (refrigerating cycle device 401) of Embodiment 4 of the present invention.
  • FIG. 1 is a schematic configuration example of a refrigeration cycle apparatus 100 according to a first embodiment.
  • the air flow AR1 and the air flow AR2 are indicated by arrows.
  • the configuration and the like of the refrigeration cycle apparatus 100 will be described with reference to FIG.
  • the refrigeration cycle apparatus 100 includes an air handling unit 50 (air conditioner), a refrigerant circuit RC, and part of a heat medium circuit HC.
  • the refrigeration cycle apparatus 100 also includes a control device Cnt that controls the compressor 1 and the like.
  • the heat medium circuit HC includes a first heat exchanger 2 described later, a first heat medium pipe P1, a second heat medium pipe P2, a third heat medium pipe P3, and a fourth heat medium pipe P2. And the switch 7 is included.
  • the heat medium circuit HC includes, as shown in FIG. 1, the first heat exchanger 2, the first heat medium pipe P1, a part of the second heat medium pipe P2, and the third heat medium circuit HC. It indicates a part of the heat medium pipe P3.
  • the refrigeration cycle apparatus 100 includes a first housing 101.
  • the first casing 101 is provided with an air handling unit 50, a refrigerant circuit RC, a part of the heat medium circuit HC, and a control device Cnt.
  • a mode in which the air handling unit 50 and the refrigerant circuit RC are accommodated in the first housing 101 will be described as an example.
  • a mode in which a part of the heat medium circuit HC and the control device Cnt are accommodated in the first housing 101 will be described as an example.
  • the entire air handling unit 50 does not have to be accommodated inside the first housing 101. That is, a part of the air handling unit 50 may be exposed from the first housing 101.
  • the entire refrigerant circuit RC does not have to be accommodated inside the first housing 101. That is, part of the refrigerant circuit RC may be exposed from the first housing 101.
  • the entire heat medium circuit HC does not have to be accommodated inside the first housing 101. That is, part of the heat medium circuit HC may be exposed from the first housing 101.
  • the control device Cnt may be provided in the first housing 101 or may be provided outside the first housing 101.
  • the refrigeration cycle apparatus 100 includes a machine room unit 30.
  • the machine room unit 30 is provided with a second case 31.
  • the second housing 31 houses a part of the refrigerant circuit RC and a part of the heat medium circuit HC. Specifically, the second housing 31 houses the compressor 1, the first heat exchanger 2, the expansion valve 3, and the first pump 5A.
  • an air handling unit 50 and a machine room unit 30 are accommodated in a first housing 101.
  • the refrigeration cycle apparatus 100 is a refrigeration cycle apparatus in which an air handling unit 50 and a machine room unit 30 are integrated. For this reason, the refrigeration cycle apparatus 100 is compact.
  • the air handling unit 50 includes a third housing 51 housed in the first housing 101.
  • the air handling unit 50 includes a first air passage 51A having a first inlet 51A1 communicating with the outside and a first outlet 51A2 communicating with the room, and a second inlet 51B1 communicating with the room and the first air passage communicating with the outside
  • a second air passage 51B having two outlets 51B2, a first blower 53A for flowing air (air supply) from the first inlet 51A1 to the first outlet 51A2, and a second outlet from the second inlet 51B1
  • a second fan 53B for flowing air (exhaust) to 51B2.
  • the first air passage 51A is an air supply passage through which air is supplied
  • the second air passage 51B is an exhaust air passage through which exhaust gas flows.
  • the first blower 53A is a blower for supplying air
  • the second blower 53B is a blower for discharging exhaust gas.
  • a sirocco fan can be employed as the first blower 53A and the second blower 53B.
  • the air handling unit 50 also includes a third heat exchanger 52 connected to the first air passage 51A and the second air passage 51B.
  • the third heat exchanger 52 totally exchanges heat between the air flowing through the first air passage 51A and the exhaust air flowing through the second air passage 51B.
  • the air handling unit 50 need not necessarily be provided with the third heat exchanger 52. Further, the third heat exchanger 52 of the air handling unit 50 may not be configured to perform total heat exchange, but may be configured to perform heat exchange.
  • a first air passage 51A and a second air passage 51B are formed in the third housing 51. Further, the first blower 53A and the second blower 53B are mounted on the third housing 51. In the air handling unit 50, the first fan 53A and the second fan 53B may be disposed outside the third housing 51.
  • a first inlet 51A1 is formed at the most upstream position in the air flow direction of the first air passage 51A, and the first air passage 51A is most downstream in the air flow direction of the first air passage 51A.
  • the first outlet 51A2 is formed at the position.
  • the first inlet 51A1 is connected to, for example, a duct communicating with the outside, and the first outlet 51A2 is connected to, for example, a duct communicating to the room.
  • the outside air (air supply) taken into the air handling unit 50 can be supplied into the room.
  • a second inlet 51B1 is formed at the most upstream position in the air flow direction of the second air passage 51B, and the second air passage 51B is most downstream in the air flow direction of the second air passage 51B.
  • the second outlet 51B2 is formed at the position.
  • the second inlet 51B1 is connected to, for example, a duct communicating with the room, and the second outlet 51B2 is connected to, for example, a duct communicating to the outside.
  • the indoor air (exhaust gas) taken into the air handling unit 50 can be discharged to the outside.
  • the third heat exchanger 52 is disposed downstream of the second inlet 51B1 and upstream of the second outlet 51B2.
  • the heat of the indoor air (exhaust gas) taken into the air handling unit 50 can be given to the air flowing through the first air passage 51A, so the heat of the exhaust gas, that is, the waste heat is effectively used.
  • Ru that is, in the refrigeration cycle apparatus 100, since the third heat exchanger 52 is disposed in the second air passage 51B, heat can be collected from the air (exhaust).
  • the second heat exchanger 4 is disposed at a position downstream of the third heat exchanger 52 and upstream of the second outlet 51B2 in the second air passage 51B.
  • the heat of the indoor air (exhaust gas) taken into the air handling unit 50 can be given to the refrigerant flowing through the second heat exchanger 4, and the evaporation of the refrigerant flowing through the second heat exchanger 4 can be performed. It can be promoted. Therefore, in the refrigeration cycle apparatus 100, the improvement of the COP can be realized. Even if the third heat exchanger 52 is not included in the configuration of the refrigeration cycle apparatus 100, the effect of improving the COP can be obtained.
  • a third heat exchanger 52 is disposed in a portion of the first air path 51A between the first inlet 51A1 and the first outlet 51A2.
  • a third heat exchanger 52 is disposed in a portion of the second air path 51B between the second inlet 51B1 and the second outlet 51B2. That is, the third heat exchanger 52 is disposed in the middle of the air passages of the first air passage 51A and the second air passage 51B.
  • refrigerant circuit RC In the refrigerant circuit RC, the refrigerant circulates.
  • a refrigerant of the refrigerant circuit RC for example, an R290 refrigerant is preferably employed, but a carbon dioxide refrigerant or an R410 refrigerant may be employed.
  • the refrigerant circuit RC includes a compressor 1 for compressing a refrigerant, a first heat exchanger 2 functioning as a condenser, an expansion valve 3 as a throttling device, and a second heat exchanger 4 functioning as an evaporator. including.
  • the first heat exchanger 2 exchanges heat between the refrigerant flowing in the refrigerant circuit RC and the heat medium passing therethrough to condense the refrigerant.
  • the first heat exchanger 2 is a heat medium-refrigerant heat exchanger that exchanges heat between the heat medium and the refrigerant, and can be, for example, a plate type heat exchanger.
  • the second heat exchanger 4 is disposed in the second air passage 51B, performs heat exchange between the refrigerant and the air flowing through the second air passage 51B, and evaporates the refrigerant.
  • the second heat exchanger 4 can be, for example, a finned tube heat exchanger.
  • the refrigerant circuit RC includes a refrigerant pipe RP1, a refrigerant pipe RP2, a refrigerant pipe RP3, and a refrigerant pipe RP4.
  • the refrigerant pipe RP1, the refrigerant pipe RP2, the refrigerant pipe RP3, and the refrigerant pipe RP4 are pipes including one end and the other end, respectively.
  • the refrigerant pipe RP1, the refrigerant pipe RP2, the refrigerant pipe RP3 and the refrigerant pipe RP4 are each formed to extend from one end to the other end, and a flow path through which the refrigerant flows is formed.
  • One end of the refrigerant pipe RP ⁇ b> 1 is connected to the discharge side of the compressor 1, and the other end is connected to the refrigerant inflow portion of the first heat exchanger 2.
  • One end of the refrigerant pipe RP ⁇ b> 2 is connected to the refrigerant outflow portion of the first heat exchanger 2, and the other end is connected to the expansion valve 3.
  • One end of the refrigerant pipe RP ⁇ b> 3 is connected to the second heat exchanger 4, and the other end is connected to the suction side of the compressor 1.
  • the heat medium circuit HC circulates the heat medium.
  • Water can be employed as the heat medium.
  • an antifreeze liquid can also be adopted as a heat medium.
  • a mixed solution of water and antifreeze liquid can also be adopted as the heat medium.
  • the heat medium circuit HC includes a first heat exchanger 2 and a first pump 5A for transporting the heat medium.
  • the heat medium circuit HC is connected to a fourth heat exchanger 7 that heats the water in the hot water supply tank 6.
  • the hot water supply tank 6 and the fourth heat exchanger 7 are described as not included in the configuration of the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 may be configured to include the hot water supply tank 6 and the fourth heat exchanger 7.
  • the first pump 5A includes a first outlet from which the heat medium flows out and a first inlet from which the heat medium flows. One end of the first outflow portion is connected to a first heat medium pipe P ⁇ b> 1 described later, and the other end is connected to the first heat exchanger 2.
  • the heat medium circuit HC includes a first heat medium pipe P1 connecting the first outflow portion of the first pump 5A and the first heat exchanger 2, a first heat exchanger 2 and a fourth heat It includes a second heat medium pipe P2 connecting the exchanger 7 and a third heat medium pipe P3 connecting the fourth heat exchanger 7 and the first inflow portion of the first pump 5A.
  • Control device Cnt The control device Cnt controls the compressor 1, the expansion valve 3, the first blower 53A, the second blower 53B, and the first pump 5A.
  • Each functional unit included in the control device Cnt is configured by dedicated hardware or an MPU (Micro Processing Unit) that executes a program stored in a memory.
  • the controller Cnt is a dedicated hardware
  • the controller Cnt may be, for example, a single circuit, a composite circuit, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination thereof.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Each of the functional units realized by the control device Cnt may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control device Cnt is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in memory.
  • the MPU implements each function of the control device Cnt by reading and executing a program stored in the memory.
  • the memory is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM.
  • Embodiment 1 The hot water supply heating operation of the refrigeration cycle apparatus 100 will be described.
  • the high temperature and high pressure refrigerant compressed by the compressor 1 is supplied to the first heat exchanger 2 and exchanges heat with the heat medium flowing through the first heat exchanger 2.
  • the refrigerant supplied to the first heat exchanger 2 is condensed to be a high pressure liquid refrigerant.
  • the liquid refrigerant is depressurized by the expansion valve 3.
  • the refrigerant decompressed by the expansion valve 3 is evaporated by the second heat exchanger 4 disposed in the second air passage 51B of the air handling unit 50, and becomes a low-pressure gas refrigerant.
  • the gas refrigerant is drawn into the compressor 1.
  • the heat medium discharged from the first pump 5A is supplied to the first heat exchanger 2, and exchanges heat with the refrigerant flowing in the first heat exchanger 2.
  • the heat exchange between the refrigerant and the heat medium in the first heat exchanger 2 raises the temperature of the heat medium of the first heat exchanger 2.
  • the heat medium that has passed through the first heat exchanger 2 is supplied to the fourth heat exchanger 7, exchanges heat with the water in the hot water supply tank 6, and the temperature decreases.
  • the heat medium having passed through the fourth heat exchanger 7 is drawn into the first pump 5A.
  • the heat of the exhaust flowing into the third heat exchanger 52 from the second air path 51B is given to the charge air flowing into the third heat exchanger 52 from the first air path 51A.
  • the temperature of the air supplied to the room from the first air path 51A of the refrigeration cycle apparatus 100 can be raised, and the refrigeration cycle apparatus 100 can suppress the room temperature from being lowered by the ventilation operation. it can.
  • the air having passed through the third heat exchanger 52 passes through the second heat exchanger 4 and exchanges heat with the refrigerant flowing through the second heat exchanger 4.
  • the indoor air temperature is rising due to a heater or the like installed in the room.
  • the room air whose temperature is rising is deprived of heat from the third heat exchanger 52 in the process of passing through the third heat exchanger 52 which is a total heat exchanger. As a result, the temperature of the room air whose temperature is rising is lowered. However, even if the temperature drops, the temperature of this air is higher than the outside air temperature and the temperature of the second heat exchanger 4. Therefore, when the air passes through the second heat exchanger 4, the air can promote the evaporation of the refrigerant flowing through the second heat exchanger 4.
  • the refrigeration cycle apparatus 100 can improve the COP at the time of boiling hot water by simultaneously performing the hot water supply boiling operation and the ventilation operation, and can exchange indoor air with outdoor air.
  • the refrigeration cycle apparatus 100 can also perform the ventilation operation when the hot water supply boiling operation is not performed (when the compressor 1 is stopped).
  • the refrigeration cycle apparatus 100 can also perform the hot water heating operation when the ventilation operation is not performed (when the first blower 53A and the second blower 53B are stopped).
  • the refrigeration cycle apparatus 100 can also perform a defrosting operation.
  • the opening degree of the expansion valve 3 is fully opened.
  • the high temperature and high pressure refrigerant is supplied to the second heat exchanger 4 via the first heat exchanger 2 and the expansion valve 3 to melt the frost adhering to the second heat exchanger 4 it can.
  • the second heat exchanger 4 is disposed in the second air passage 51B, and performs heat exchange between the refrigerant and the air flowing through the second air passage 51B. Evaporate the refrigerant. That is, in the refrigeration cycle apparatus 100, the evaporation of the refrigerant flowing through the second heat exchanger 4 is promoted by the waste heat of the indoor air having a temperature higher than that of the outdoor air. Therefore, the refrigeration cycle apparatus 100 can improve the COP of the refrigerant circuit RC.
  • FIG. 2 is a schematic configuration example of a refrigeration cycle apparatus 200 according to a second embodiment.
  • the configuration of the second embodiment is a configuration in which a first flow passage switching valve 9A, a second flow passage switching valve 9B, and a fifth heat exchanger 8 are added to the configuration of the first embodiment.
  • the heat medium circuit HC includes the fifth heat exchanger 8, the first flow path switching valve 9A, the second flow path switching valve 9B, the fourth heat medium pipe P4, and the fifth heat medium pipe. It is equipped with P5.
  • the fifth heat exchanger 8 is disposed in the first air passage 51A.
  • the fifth heat exchanger 8 is disposed downstream of the third heat exchanger 52 in the first air passage 51A. That is, in the first air passage 51A, the third heat exchanger 52 is disposed downstream of the first inlet 51A1 and upstream of the first outlet 51A2, and the third heat exchanger 52
  • the fifth heat exchanger 8 is disposed at a position downstream of and upstream of the first outlet 51A2.
  • the fifth heat exchanger 8 can be, for example, a finned tube heat exchanger.
  • the fifth heat exchanger 8 may be disposed upstream of the third heat exchanger 52 in the first air passage 51A.
  • the fifth heat exchanger 8 is heated when the heat medium flows, and gives heat to the air flowing through the first air passage 51A.
  • the fifth heat exchanger 8 may be configured such that the flow direction of the heat medium is countercurrent to the air flowing through the first air passage 51A. That is, in the fifth heat exchanger 8, the heat transfer pipe is disposed parallel to the extending direction of the air flow path of the first air flow path 51A, and the upstream of the flow path of the heat transfer pipe is the downstream side of the first air flow path 51A. It is preferable that the downstream side of the flow passage of the heat transfer pipe be located upstream of the first air passage 51A.
  • the first flow passage switching valve 9A is provided in the second heat medium pipe P2.
  • the first flow path switching valve 9A is configured to flow the heat medium from the first heat exchanger 2 to the fourth heat exchanger 7 and the first heat exchanger 2 to the fifth heat exchanger 2.
  • a second flow path for flowing the heat medium to the exchanger 8 is formed.
  • the opening and closing of the first flow path and the opening and closing of the second flow path are controlled by the control device Cnt.
  • the controller Cnt and the first flow path switching valve 9A can simultaneously open both the first flow path and the second flow path, and one of the first flow path and the second flow path. It is configured to be able to open one side.
  • the second flow passage switching valve 9B is provided in the second heat medium pipe P2 or the third heat medium pipe P3. Although the second flow passage switching valve 9B is provided in the third heat medium pipe P3 in the second embodiment, the second heat medium pipe P2 may be provided. Even if the second flow passage switching valve 9B is provided in the second heat medium pipe P2, the heated heat medium can be supplied to the fifth heat exchanger 8.
  • the second flow path switching valve 9B is a fourth flow path for flowing the heat medium from the fifth heat exchanger 8 to the first pump 5A and a heat medium from the fourth heat exchanger 7 to the first pump 5A. And a fifth flow path for flowing the The opening and closing of the fourth flow path and the opening and closing of the fifth flow path are controlled by the control device Cnt.
  • the controller Cnt and the second flow path switching valve 9B can simultaneously open both the fourth flow path and the fifth flow path, and one of the fourth flow path and the fifth flow path. It is configured to be able to open one side.
  • the fourth heat medium pipe P4 connects the first flow path switching valve 9A and the fifth heat exchanger 8.
  • the fifth heat medium pipe P5 connects the second flow passage switching valve 9B and the fourth heat exchanger 7.
  • the heating operation includes a first heating operation and a second heating operation.
  • the operation of the refrigerant circuit RC is the same as the hot water supply heating operation described in the first embodiment.
  • the first flow path switching valve 9A opens the first flow path and closes the second flow path.
  • the second flow passage switching valve 9B opens the fourth flow passage and closes the fifth flow passage. That is, the heat medium is the first pump 5A, the first heat medium pipe P1, the first heat exchanger 2, the second heat medium pipe P2, the first flow path switching valve 9A, the fourth heat medium The pipe P4, the fifth heat exchanger 8, the fifth heat medium pipe P5, and the second flow path switching valve 9B circulate in the order, and return to the first pump 5A.
  • the heat medium heated by the first heat exchanger 2 is supplied to the fifth heat exchanger 8, exchanges heat with the air flowing through the first air passage 51A, and flows through the first air passage 51A. Warm up In the first heating operation, since the heat medium is not supplied to the fourth heat exchanger 7, the water in the hot water supply tank 6 is not heated.
  • the operation of the refrigerant circuit RC is the same as the hot water supply heating operation described in the first embodiment.
  • the first flow passage switching valve 9A opens the first flow passage and the second flow passage. Further, the second flow path switching valve 9B opens the fourth flow path and the fifth flow path. That is, the heat medium flows in the order of the first pump 5A, the first heat medium pipe P1, the first heat exchanger 2, the second heat medium pipe P2, and the first flow path switching valve 9A. Then, the heat medium that has flowed into the first flow path switching valve 9A branches into a heat medium directed to the fifth heat exchanger 8 and a heat medium directed to the fourth heat exchanger 7.
  • the heat medium directed to the fifth heat exchanger 8 is referred to as a part of the heat medium
  • the heat medium directed to the fourth heat exchanger 7 is referred to as the remaining heat medium.
  • Some of the heat mediums are in the order of the first flow passage switching valve 9A, the fourth heat medium piping P4, the fifth heat exchanger 8, the fifth heat medium piping P5, and the second flow passage switching valve 9B.
  • Flow to The remaining heat medium flows in the order of the first flow passage switching valve 9A, the fourth heat exchanger 7 and the second flow passage switching valve 9B.
  • a part of the heat medium and the remaining heat medium merge at the second flow path switching valve 9B and return to the first pump 5A.
  • the first heating operation not only heating of the air of the first air passage 51A but also heating of water in the hot water supply tank 6 is performed.
  • the controller Cnt emphasizes the heating of the fifth heat exchanger 8, emphasizes the heating of the water of the hot water supply tank 6, or the fifth It is possible to control whether the balance between the heating of the heat exchanger 8 and the heating of the water of the hot water supply tank 6 is emphasized.
  • the opening degree of the first flow passage switching valve 9A and the second flow passage switching valve 9B is a temperature sensor for detecting the water temperature of the hot water supply tank 6, the first Determined based on the temperature detected by the temperature sensor that detects the temperature of the air blown out from the air passage 51A, the temperature sensor that detects the temperature of the air taken into the first air passage 51A, and the temperature sensor that detects the indoor temperature can do.
  • the controller Cnt determines the opening degree of the first flow path, the opening degree of the second flow path, the opening degree of the fourth flow path, and the fifth flow path.
  • the first flow path switching valve 9A and the second flow path switching valve 9B are controlled.
  • the first blower 53A operates, but the second blower 53B may or may not operate.
  • the air supplied from the second fan 53B to the second heat exchanger 4 is operated by the second fan 53B to operate as the second heat.
  • the evaporation of the refrigerant in the exchanger 4 can be promoted, and the room air can be discharged from the room to the outside.
  • the refrigeration cycle apparatus 200 can also perform the hot water heating operation and the defrosting operation described in the first embodiment.
  • the refrigeration cycle apparatus 200 according to the second embodiment has the following effect in addition to the effects of the refrigeration cycle apparatus 100 according to the first embodiment. That is, the refrigeration cycle apparatus 200 can perform at least one of the first heating operation and the second heating operation, and supply the air heated by the fifth heat exchanger 8 into the room.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a refrigeration cycle apparatus 300 according to the third embodiment.
  • FIG. 4 is a diagram showing that the damper 10 of the refrigeration cycle apparatus 300 shown in FIG. 3 is switched from the first state shown in FIG. 3 to the second state.
  • the configuration of the third embodiment is a configuration in which the damper 10 and the third air passage 51C are added to the configuration of the second embodiment.
  • the air handling unit 50 of the refrigeration cycle apparatus 300 includes the damper 10 disposed in the first air passage 51A, and the third air passage 51C branched from the first air passage 51A.
  • the third air passage 51C has a third inlet 51C1 in communication with the first air passage 51A and a third outlet 51C2 in communication with the room. Further, the damper 10 can be switched between the first state and the second state. When the damper 51 is in the first state, the air flowing through the first air passage 51A flows from the first air passage 51A to the third air passage 51C, and the air flowing through the first air passage 51A is the third. Bypass the heat exchanger 52 of When the damper 10 is in the second state, the third inlet 51C1 is blocked by the damper 10, and the air flowing through the first air passage 51A flows to the third heat exchanger 52.
  • the first state of the damper 10 is shown in FIG. 3 and the second state is shown in FIG.
  • the free cooling operation is an operation performed when it is desired to suppress an increase in indoor temperature while suppressing power consumption.
  • the refrigeration cycle apparatus 300 includes a temperature sensor that detects an outside air temperature, and a temperature sensor that detects an indoor temperature.
  • the control device Cnt switches between the first state and the second state of the damper 10 based on the temperatures detected by these temperature sensors.
  • the controller Cnt determines whether the outside air temperature is lower than the room temperature. If the outside air temperature is lower than the room temperature, the control device Cnt switches the damper 10 to the first state. That is, the air taken into the air handling unit 50 is supplied to the room via the third air passage 51C without flowing to the third heat exchanger 52 which is a total heat exchanger. Thus, it is possible to supply the room with the outside air that is cooler than the room air.
  • the refrigeration cycle apparatus 300 may perform the hot water heating operation or the defrosting operation along with the free cooling operation. Further, the refrigeration cycle apparatus 300 does not perform the first heating operation and the second heating operation while performing the free cooling operation.
  • the refrigeration cycle apparatus 300 according to the third embodiment has the following effect in addition to the effects of the refrigeration cycle apparatus 100 according to the first and second embodiments. That is, the refrigeration cycle apparatus 300 can perform the free cooling operation, and can suppress the rise in the indoor temperature while suppressing the power consumption.
  • Embodiment 3 is the structure which added the damper 10 and the 3rd air path 51C to the structure of Embodiment 2, but it is not limited to it.
  • the damper 10 and the third air passage 51C may be added to the configuration of the first embodiment.
  • FIG. 5 is a schematic configuration example of a refrigeration cycle apparatus 400 according to a fourth embodiment of the present invention.
  • the description of the contents common to the first to third embodiments is omitted, and parts different from the first to third embodiments will be mainly described.
  • the fourth embodiment has a configuration in which a second pump 5B is added to the configuration of the second embodiment.
  • the heat medium circuit HC includes a second pump 5B for transporting the heat medium.
  • the second pump 5B is provided to the third heat medium pipe P3.
  • the second pump 5B includes a second outflow portion from which the heat medium flows out and a second inflow portion into which the heat medium flows.
  • the second outflow portion of the second pump 5B is connected to the second flow path switching valve 9B, and the second inflow portion of the second pump 5B is connected to the fourth heat exchanger 7.
  • the first flow path switching valve 9A is a third flow path for flowing a heat medium from the fifth heat exchanger 8 to the fourth heat exchanger 7 in addition to the first and second flow paths. Can be formed.
  • the second flow passage switching valve 9B is provided in the third heat medium pipe P3.
  • the second flow path switching valve 9B is a sixth flow path for flowing the heat medium from the second pump 5B to the fifth heat exchanger 8 in addition to the fourth flow path and the fifth flow path. Can be formed.
  • the refrigeration cycle apparatus 400 includes the first flow passage switching valve 9A, the second flow passage switching valve 9B, and the second pump 5B, the waste heat recovery heating operation can be performed.
  • the waste heat recovery heating operation is a third heating operation that can be performed when the second heat exchanger 4 has frosted.
  • the waste heat recovery heating operation can be performed instead of the first heating operation and the second heating operation when the heating load required indoors is not so large.
  • the control device Cnt performs the waste heat recovery heating operation, which is the third heating operation, when the difference between the room set temperature and the room temperature is smaller than a preset value.
  • the control device Cnt performs the first heating operation or the second heating operation when the difference between the indoor set temperature and the indoor temperature is equal to or more than a preset value.
  • the control device Cnt opens the third flow path of the first flow path switching valve 9A and closes the first flow path and the second flow path. Further, in the waste heat recovery heating operation, the control device Cnt opens the sixth flow path of the second flow path switching valve 9B and closes the fourth flow path and the fifth flow path. Further, in the waste heat recovery heating operation, the control device Cnt stops the first pump 5A and operates the second pump 5B. Furthermore, in the waste heat recovery heating operation, the control device Cnt operates the first blower 53A.
  • the refrigeration cycle apparatus 400 When performing the third heating operation which is the waste heat recovery heating operation, the refrigeration cycle apparatus 400 does not perform the hot water heating operation, the first heating operation, and the second heating operation. When performing the third heating operation which is a waste heat recovery heating operation, the refrigeration cycle apparatus 400 can simultaneously perform the defrosting operation.
  • the refrigeration cycle apparatus 400 according to the fourth embodiment has the following effect in addition to the same effect as the second embodiment. That is, since the refrigeration cycle apparatus 400 includes the first flow path switching valve 9A, the second flow path switching valve 9B, and the second pump 5B, the waste heat recovery heating operation can be performed. Even when frost is formed on the heat exchanger 4, the heated air can be supplied into the room. In addition, when the heating load required indoors is not so large, the first heating operation and the second heating operation are not performed, and the third heating operation is performed.
  • the compressor 1 need not be operating, and power consumption of the compressor 1 can be reduced accordingly.
  • FIG. 6 shows a modified example (refrigerating cycle device 401) of the fourth embodiment.
  • the refrigeration cycle apparatus 401 is an aspect in which the damper 10 and the third air passage 51C described in the third embodiment are added to the refrigeration cycle apparatus 400. That is, this is an aspect in which the configurations of Embodiment 3 and Embodiment 4 are combined.
  • the refrigeration cycle apparatus 401 can obtain the effects of the refrigeration cycle apparatus 300 according to the third embodiment and the effects of the refrigeration cycle apparatus 400 according to the fourth embodiment.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a refrigeration cycle apparatus 500 according to the fifth embodiment.
  • the configuration of the fifth embodiment is a configuration in which the sixth heat exchanger 11 and the expansion valve 12 are added to the configuration of the second embodiment.
  • the refrigerant circuit RC includes a sixth heat exchanger 11 that evaporates the refrigerant.
  • the sixth heat exchanger 11 functions as an evaporator.
  • the sixth heat exchanger 11 is a heat exchanger for cooling operation and dehumidifying operation.
  • the sixth heat exchanger 11 is disposed in the first air passage 51A.
  • the sixth heat exchanger 11 is disposed downstream of the third heat exchanger 52 and upstream of the fifth heat exchanger 8 in the first air passage 51A.
  • the sixth heat exchanger 11 may be disposed upstream of the third heat exchanger 52.
  • the refrigerant circuit RC includes a refrigerant pipe RP5, a refrigerant pipe RP6, and a refrigerant pipe RP7.
  • One end of the refrigerant pipe RP5 is connected to the refrigerant pipe RP2, and the other end is connected to the expansion valve 12.
  • One end of the refrigerant pipe RP6 is connected to the expansion valve 12, and the other end is connected to the sixth heat exchanger 11.
  • One end of the refrigerant pipe RP7 is connected to the sixth heat exchanger 11, and the other end is connected to the refrigerant pipe RP4.
  • the refrigerant circuit RC includes an expansion valve 12 that depressurizes the refrigerant.
  • the sixth heat exchanger 11 is disposed at a position downstream of the third heat exchanger 52 and upstream of the fifth heat exchanger 8 in the first air passage 51A.
  • the refrigeration cycle apparatus 500 includes the sixth heat exchanger 11 and the expansion valve 12, it can perform the dehumidifying operation and the cooling operation.
  • the high temperature and high pressure refrigerant compressed by the compressor 1 is supplied to the first heat exchanger 2 and exchanges heat with the heat medium flowing through the first heat exchanger 2.
  • the refrigerant supplied to the first heat exchanger 2 is condensed to be a high pressure liquid refrigerant.
  • a portion of the liquid refrigerant is depressurized by the expansion valve 12 and evaporated in the sixth heat exchanger 11 to be a low pressure gas refrigerant.
  • the remainder of the liquid refrigerant is depressurized by the expansion valve 3 and evaporated in the second heat exchanger 4 to be a low pressure gas refrigerant.
  • the gas refrigerant flowing out of the sixth heat exchanger 11 and the gas refrigerant evaporated in the second heat exchanger 4 are drawn into the compressor 1 after being merged.
  • the operation of the heat medium circuit HC in the dehumidifying operation is the same as the operation of the heat medium circuit HC in the first heating operation or the second heating operation. That is, the heat medium heated by the first heat exchanger 2 is supplied to the fifth heat exchanger 8 through the fourth heat medium pipe P4, and as a result, flows through the first air path 51A. Air is warmed by the heat medium supplied to the fifth heat exchanger 8.
  • the air taken into the first air passage 51A by the action of the first blower 53A flows into the third heat exchanger 52, it exchanges heat with the air flowing through the second air passage 51B.
  • the air taken into the first air passage 51A is cooled by the third heat exchanger 52.
  • the air that has passed through the third heat exchanger 52 in the first air passage 51A is cooled in the process of passing through the sixth heat exchanger 11, and as a result, the third thermal air in the first air passage 51A
  • the air passing through the exchanger 52 is dehumidified.
  • the air which passed the 6th heat exchanger 11 is cooled, if it is supplied indoors as it is, the comfort of the person who is indoors may be impaired. Therefore, the air having passed through the sixth heat exchanger 11 is heated by the fifth heat exchanger 8 and then supplied to the room.
  • the refrigeration cycle apparatus 500 according to the fifth embodiment has the following effect in addition to the same effect as the fourth embodiment. That is, since the refrigeration cycle apparatus 500 includes the sixth heat exchanger 11, the refrigeration cycle apparatus 500 can perform the dehumidifying operation and the cooling operation, and supplies dehumidified air and cooled air to the room. be able to.
  • FIG. 8 shows a modified example 1 (refrigerating cycle apparatus 501) of the fifth embodiment.
  • the refrigeration cycle apparatus 501 is an aspect in which the damper 10 and the third air passage 51C described in the third embodiment are added to the refrigeration cycle apparatus 500. That is, this is an aspect in which the configurations of the fifth embodiment and the third embodiment are combined.
  • the refrigeration cycle apparatus 501 can obtain the effects of the refrigeration cycle apparatus 300 according to the third embodiment and the effects of the refrigeration cycle apparatus 400 according to the fifth embodiment.
  • FIG. 9 shows a modified example 2 (refrigerating cycle device 502) of the fifth embodiment.
  • the refrigeration cycle apparatus 502 is an aspect in which the damper 10 and the third air passage 51C described in the third embodiment and the second pump 5B described in the fourth embodiment are added to the refrigeration cycle apparatus 500. That is, this is an aspect in which the configurations of Embodiment 5, Embodiment 4 and Embodiment 3 are combined.
  • the heat medium circuit HC performs the same operation as the first heating operation, the second heating operation, or the third heating operation.
  • the refrigeration cycle apparatus 502 can obtain the effects of the refrigeration cycle apparatus 300 according to the third embodiment, the effects of the refrigeration cycle apparatus 400 according to the fourth embodiment, and the effects of the refrigeration cycle apparatus 400 according to the fifth embodiment.
  • the refrigeration cycle apparatus according to the third modification can also be configured in a mode in which the second pump 5B described in the fourth embodiment is added to the refrigeration cycle apparatus 500.
  • the refrigeration cycle apparatus according to the third modification can obtain the effects of the refrigeration cycle apparatus 400 according to the fourth embodiment and the refrigeration cycle apparatus 400 according to the fifth embodiment.
  • Embodiment 5 is an aspect of the premise that the fifth heat exchanger 8 is provided, but it is not limited thereto.
  • the sixth heat exchanger 11 and the expansion valve 12 may be added to the configuration of the first embodiment. That is, the fifth heat exchanger 8 may not be provided.
  • FIG. 10 is a schematic configuration example of a refrigeration cycle apparatus 600 according to the sixth embodiment.
  • the description of the contents common to the first to fifth embodiments is omitted, and parts different from the first to fifth embodiments will be mainly described.
  • the air handling unit 50, the machine room unit 30, and the hot water supply tank 6 are integrated.
  • the configuration of the refrigerant circuit RC, the control device Cnt, and the first fan 53A and the second fan 53B are not shown.
  • the air handling unit 50 is disposed on the machine room unit 30. Further, the hot water supply tank 6 is disposed adjacent to the side of the machine room unit 30 and the air handling unit 50.
  • the present invention is not limited to this.
  • the configuration of the sixth embodiment can be similarly applied to the second to fifth embodiments, the modification of the fourth embodiment, and the first to third modifications of the fifth embodiment.
  • the refrigeration cycle apparatus 600 according to the sixth embodiment can be made compact because the air handling unit 50, the machine room unit 30, and the hot water supply tank 6 are integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

冷凍サイクル装置は、筐体と、屋外に連通する第1の入口及び室内に連通する第1の出口を有する第1の風路と、室内に連通する第2の入口及び屋外に連通する第2の出口を有する第2の風路と、第1の入口から第1の出口へ空気を流す第1の送風機と、第2の入口から第2の出口へ空気を流す第2の送風機とを含み、筐体に収容されたエアハンドリングユニットと、冷媒が循環する冷媒回路と、を備え、冷媒回路は、冷媒と熱媒体との熱交換を行い、冷媒を凝縮させる第1の熱交換器と、第2の風路に配置され、冷媒と第2の風路を流れる空気との熱交換を行い、冷媒を蒸発させる第2の熱交換器とを含むものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関し、特に、冷媒を循環する冷媒回路を備え、給気及び排気を行う機能を備えている冷凍サイクル装置に関するものである。
 従来、冷凍サイクル装置には、空気温度調節用の冷媒回a路と、給湯用の冷媒回路とが中間熱交換器を介して接続されて構成されたものが提案されている(例えば、特許文献1参照)。
特許第5455521号公報
 建物の高気密化及び高断熱化が進むにつれて、室内の空気を空気調和する内調の負荷よりも、室内空気と室外空気とを入れ換える換気の負荷の方が相対的に高くなる場合がある。このため、冷媒サイクル装置の構成を換気の負荷の増大を踏まえたものにしないと、COP(Coefficient of performance)が低下するという課題がある。
 本発明は、上記のような課題を解決するためになされたもので、更なるCOPの向上を実現することができる冷凍サイクル装置を提供することを目的としている。
 本発明に係る冷凍サイクル装置は、筐体と、屋外に連通する第1の入口及び室内に連通する第1の出口を有する第1の風路と、室内に連通する第2の入口及び屋外に連通する第2の出口を有する第2の風路と、第1の入口から第1の出口へ空気を流す第1の送風機と、第2の入口から第2の出口へ空気を流す第2の送風機とを含み、筐体に収容されたエアハンドリングユニットと、冷媒が循環する冷媒回路と、を備え、冷媒回路は、冷媒と熱媒体との熱交換を行い、冷媒を凝縮させる第1の熱交換器と、第2の風路に配置され、冷媒と第2の風路を流れる空気との熱交換を行い、冷媒を蒸発させる第2の熱交換器とを含むものである。
 本発明に係る冷凍サイクル装置によれば、上記構成を備えているので、更なるCOPの向上を実現することができる。
本発明の実施の形態1に係る冷凍サイクル装置100の概要構成例図である。 本発明の実施の形態2に係る冷凍サイクル装置200の概要構成例図である。 本発明の実施の形態3に係る冷凍サイクル装置300の概要構成例図である。 図3に示す冷凍サイクル装置300のダンパー10を、図3に示す第1の状態から第2の状態へ切り換えたことを示す図である。 本発明の実施の形態4に係る冷凍サイクル装置400の概要構成例図である。 本発明の実施の形態4の変形例(冷凍サイクル装置401)である。 本発明の実施の形態5に係る冷凍サイクル装置500の概要構成例図である。 本発明の実施の形態5の変形例1(冷凍サイクル装置501)である。 本発明の実施の形態5の変形例2(冷凍サイクル装置502)である。 本発明の実施の形態6に係る冷凍サイクル装置600の概要構成例図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本実施の形態1に係る冷凍サイクル装置100の概要構成例図である。図1では、給気の流れAR1及び排気の流れAR2を矢印で示している。図1を参照して冷凍サイクル装置100の構成等について説明する。
[全体構成説明]
 冷凍サイクル装置100は、エアハンドリングユニット50(空気調和装置)と、冷媒回路RCと、熱媒体回路HCの一部とを備えている。また、冷凍サイクル装置100は、圧縮機1等を制御する制御装置Cntを備えている。なお、熱媒体回路HCは、後述する第1の熱交換器2と、第1の熱媒体配管P1と、第2の熱媒体配管P2と、第3の熱媒体配管P3と、第4の熱交換器7とを含んでいる。熱媒体回路HCの一部とは、図1に示すように、第1の熱交換器2と、第1の熱媒体配管P1と、第2の熱媒体配管P2の一部と、第3の熱媒体配管P3の一部とを指している。
 冷凍サイクル装置100は、第1の筐体101を備えている。第1の筐体101には、エアハンドリングユニット50と、冷媒回路RCと、熱媒体回路HCの一部と、制御装置Cntとが設けられている。
 本実施の形態1では、エアハンドリングユニット50及び冷媒回路RCが第1の筐体101内に収容されている形態を一例として説明する。また、本実施の形態1では、熱媒体回路HCの一部と制御装置Cntとが第1の筐体101内に収容されている形態を一例として説明する。
 なお、エアハンドリングユニット50の全体が第1の筐体101の内部に収容されている必要はない。つまり、エアハンドリングユニット50の一部が第1の筐体101から露出していてもよい。
 また、冷媒回路RCの全体が第1の筐体101の内部に収容されている必要はない。つまり、冷媒回路RCの一部が第1の筐体101から露出していてもよい。
 また、熱媒体回路HCの全体が第1の筐体101の内部に収容されている必要はない。つまり、熱媒体回路HCの一部が第1の筐体101から露出していてもよい。
 更に、制御装置Cntは、第1の筐体101内に設けられていてもよいし、第1の筐体101外に設けられていてもよい。
 冷凍サイクル装置100は、機械室ユニット30を備えている。機械室ユニット30は、第2の筐体31を備えている。第2の筐体31には、冷媒回路RCの一部と、熱媒体回路HCの一部とが収容されている。具体的には、第2の筐体31には、圧縮機1と、第1の熱交換器2と、膨張弁3と、第1のポンプ5Aとが収容されている。
 冷凍サイクル装置100は、第1の筐体101内にエアハンドリングユニット50及び機械室ユニット30が収容されている。冷凍サイクル装置100は、エアハンドリングユニット50と機械室ユニット30とが一体型となっている冷凍サイクル装置である。このため、冷凍サイクル装置100は、コンパクトになっている。
[エアハンドリングユニット50]
 エアハンドリングユニット50は、第1の筐体101内に収容された第3の筐体51を備えている。エアハンドリングユニット50は、屋外に連通する第1の入口51A1及び室内に連通する第1の出口51A2を有する第1の風路51Aと、室内に連通する第2の入口51B1及び屋外に連通する第2の出口51B2を有する第2の風路51Bと、第1の入口51A1から第1の出口51A2に空気(給気)を流す第1の送風機53Aと、第2の入口51B1から第2の出口51B2に空気(排気)を流す第2の送風機53Bとを含む。第1の風路51Aは給気が流れる給気風路であり、第2の風路51Bは排気が流れる排気風路である。第1の送風機53Aは給気を流す給気用送風機であり、第2の送風機53Bは排気を流す排気用送風機である。第1の送風機53A及び第2の送風機53Bは、例えば、シロッコファンを採用することができる。
 また、エアハンドリングユニット50は、第1の風路51A及び第2の風路51Bに接続されている第3の熱交換器52を含む。第3の熱交換器52は、第1の風路51Aを流れる給気と第2の風路51Bを流れる排気とを全熱交換する。なお、エアハンドリングユニット50には、必ずしも、第3の熱交換器52が設けられている必要はない。また、エアハンドリングユニット50の第3の熱交換器52は、全熱交換させる構成でなくてもよく、熱交換させる構成であってもよい。
 第3の筐体51には、第1の風路51A及び第2の風路51Bが形成されている。また、第3の筐体51には、第1の送風機53A及び第2の送風機53Bが搭載されている。なお、エアハンドリングユニット50は、第3の筐体51外に第1の送風機53A及び第2の送風機53Bが配置されていてもよい。
 第1の風路51Aには、第1の風路51Aの空気の流れ方向の最上流の位置に第1の入口51A1が形成され、第1の風路51Aの空気の流れ方向の最下流の位置に第1の出口51A2が形成されている。なお、第1の入口51A1は、例えば、屋外に連通するダクトに接続され、第1の出口51A2は、例えば、室内に連通するダクトに接続される。これにより、エアハンドリングユニット50内に取り込んだ外気(給気)を、室内に供給することができる。
 第2の風路51Bには、第2の風路51Bの空気の流れ方向の最上流の位置に第2の入口51B1が形成され、第2の風路51Bの空気の流れ方向の最下流の位置に第2の出口51B2が形成されている。なお、第2の入口51B1は、例えば、室内に連通するダクトに接続され、第2の出口51B2は、例えば、屋外に連通するダクトに接続される。これにより、エアハンドリングユニット50内に取り込んだ室内の空気(排気)を、屋外に排出することができる。
 また、第2の風路51Bには、第2の入口51B1の下流であって第2の出口51B2の上流の位置に第3の熱交換器52が配置されている。これにより、エアハンドリングユニット50内に取り込んだ室内の空気(排気)の熱を第1の風路51Aを流れる空気に与えることができるので、排気が有している熱すなわち廃熱が有効利用される。つまり、冷凍サイクル装置100では、第3の熱交換器52を第2の風路51Bに配置しているので、空気(排気)から採熱することができる。
 更に、第2の風路51Bには、第3の熱交換器52よりも下流であって第2の出口51B2の上流の位置に第2の熱交換器4が配置されている。これにより、エアハンドリングユニット50内に取り込んだ室内の空気(排気)の熱を、第2の熱交換器4を流れる冷媒に与えることができ、第2の熱交換器4を流れる冷媒の蒸発を促進させることができる。したがって、冷凍サイクル装置100では、COPの向上を実現することができる。なお、第3の熱交換器52が冷凍サイクル装置100の構成として含まれていなくても、このCOPの向上の効果を得ることができる。
 第1の風路51Aのうち第1の入口51A1と第1の出口51A2との間の部分には、第3の熱交換器52が配置されている。第2の風路51Bのうち第2の入口51B1と第2の出口51B2との間の部分には、第3の熱交換器52が配置されている。つまり、第1の風路51A及び第2の風路51Bの風路の途中には第3の熱交換器52が配置されている。
[冷媒回路RC]
 冷媒回路RCは、冷媒が循環する。冷媒回路RCの冷媒としては、例えば、R290冷媒を採用することが好ましいが、二酸化炭素冷媒を採用してもR410冷媒を採用してもよい。冷媒回路RCは、冷媒を圧縮する圧縮機1と、凝縮器として機能する第1の熱交換器2と、絞り装置である膨張弁3と、蒸発器として機能する第2の熱交換器4とを含む。
 第1の熱交換器2は、冷媒回路RCを流れる冷媒と通過する熱媒体との熱交換を行い、冷媒を凝縮させる。第1の熱交換器2は、熱媒体と冷媒とを熱交換する熱媒体-冷媒熱交換器であり、例えば、プレート式熱交換器で構成することができる。第2の熱交換器4は、第2の風路51Bに配置され、冷媒と第2の風路51Bを流れる空気との熱交換を行い、冷媒を蒸発させる。第2の熱交換器4は、例えば、フィンチューブ熱交換器で構成することができる。
 冷媒回路RCは、冷媒配管RP1と、冷媒配管RP2と、冷媒配管RP3と、冷媒配管RP4とを含む。冷媒配管RP1、冷媒配管RP2、冷媒配管RP3及び冷媒配管RP4は、それぞれ、一端及び他端を含む配管である。冷媒配管RP1、冷媒配管RP2、冷媒配管RP3及び冷媒配管RP4は、それぞれ、一端から他端にかけて延びるように形成され、冷媒が流れる流路が形成されている。
 冷媒配管RP1は、一端が圧縮機1の吐出側に接続され、他端が第1の熱交換器2の冷媒流入部に接続されている。冷媒配管RP2は、一端が第1の熱交換器2の冷媒流出部に接続され、他端が膨張弁3に接続されている。冷媒配管RP3は、一端が第2の熱交換器4に接続され、他端が圧縮機1の吸入側に接続されている。
[熱媒体回路HC]
 熱媒体回路HCは、熱媒体が循環する。熱媒体には水を採用することができる。また、熱媒体には不凍液を採用することもできる。更に、熱媒体には水と不凍液との混合液を採用することもできる。熱媒体回路HCは、第1の熱交換器2と、熱媒体を搬送する第1のポンプ5Aとを含む。熱媒体回路HCは、給湯タンク6内の水を加温する第4の熱交換器7に接続されている。本実施の形態1では、給湯タンク6及び第4の熱交換器7は、冷凍サイクル装置100の構成として含まれないものとして説明する。なお、図示は省略するが、冷凍サイクル装置100は給湯タンク6及び第4の熱交換器7を含む態様であってもよい。
 第1のポンプ5Aは、熱媒体が流出する第1の流出部及び熱媒体が流入する第1の流入部を含む。第1の流出部は、一端が後述する第1の熱媒体配管P1に接続され、他端が第1の熱交換器2に接続されている。第1のポンプ5Aが運転することで、熱媒体回路HCには熱媒体が循環する。
 熱媒体回路HCは、第1のポンプ5Aの第1の流出部と第1の熱交換器2とを接続する第1の熱媒体配管P1と、第1の熱交換器2と第4の熱交換器7とを接続する第2の熱媒体配管P2と、第4の熱交換器7と第1のポンプ5Aの第1の流入部とを接続する第3の熱媒体配管P3とを含む。
[制御装置Cnt]
 制御装置Cntは、圧縮機1と、膨張弁3と、第1の送風機53Aと、第2の送風機53Bと、第1のポンプ5Aとを制御する。
 制御装置Cntに含まれる各機能部は、専用のハードウェア、又は、メモリに格納されるプログラムを実行するMPU(Micro Processing Unit)で構成される。
 制御装置Cntが専用のハードウェアである場合、制御装置Cntは、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御装置Cntが実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 制御装置CntがMPUの場合、制御装置Cntが実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。MPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置Cntの各機能を実現する。メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。
[実施の形態1の動作説明]
 冷凍サイクル装置100の給湯沸き上げ運転について説明する。
(給湯沸き上げ運転)
 冷媒回路RCにおいて、圧縮機1で圧縮された高温高圧の冷媒が第1の熱交換器2に供給され、第1の熱交換器2を流れる熱媒体と熱交換する。第1の熱交換器2に供給された冷媒は、凝縮し、高圧の液冷媒となる。液冷媒は、膨張弁3で減圧する。膨張弁3で減圧した冷媒は、エアハンドリングユニット50の第2の風路51Bに配置された第2の熱交換器4で蒸発し、低圧のガス冷媒となる。ガス冷媒は、圧縮機1に吸入される。
 熱媒体回路HCにおいて、第1のポンプ5Aから吐出した熱媒体が、第1の熱交換器2に供給され、第1の熱交換器2を流れる冷媒と熱交換する。第1の熱交換器2において冷媒と熱媒体とが熱交換することで、第1の熱交換器2の熱媒体の温度は上昇する。第1の熱交換器2を通過した熱媒体は、第4の熱交換器7に供給され、給湯タンク6内の水と熱交換し、温度が低下する。第4の熱交換器7を通過した熱媒体は、第1のポンプ5Aに吸入される。
(換気運転)
 次に、冷凍サイクル装置100の換気運転について説明する。
 第1の風路51Aには、第1の送風機53Aが運転することで屋外空気(給気)が取り込まれる。また、第2の風路51Bには、第2の送風機53Bが運転することで室内空気(排気)が取り込まれる。
 第1の風路51Aに取り込まれた空気及び第2の風路51Bに取り込まれた空気は、全熱交換器である第3の熱交換器52に流入する。第3の熱交換器52において、第1の風路51Aの空気と第2の風路51Bの空気とは熱交換する。例えば冬期において、第2の風路51Bから第3の熱交換器52へ流入する排気の熱が、第1の風路51Aから第3の熱交換器52へ流入する給気に与えられる。これにより、冷凍サイクル装置100の第1の風路51Aから室内に供給される給気の温度を上昇させることができ、冷凍サイクル装置100は換気運転によって室内温度が低下することを抑制することができる。
 第2の風路51Bにおいて、第3の熱交換器52を通過した空気は、第2の熱交換器4を通過し、第2の熱交換器4を流れる冷媒と熱交換する。例えば冬期において、室内に設置された暖房器具等によって室内空気温度が上昇している。この温度が上昇している室内空気は、全熱交換器である第3の熱交換器52を通過する過程で第3の熱交換器52から熱を奪われる。その結果、この温度が上昇している室内空気は温度が下がる。しかし、温度が下がっても、この空気の温度は、外気温度及び第2の熱交換器4の温度よりも高い。したがって、この空気が第2の熱交換器4を通過することにより、この空気は第2の熱交換器4を流れる冷媒の蒸発を促進することができる。
 冷凍サイクル装置100は、給湯沸き上げ運転及び換気運転を同時に行うことで、お湯を沸かすときにおけるCOPを向上させることができ、また、室内空気と屋外空気とを入れ換えることができる。
 なお、冷凍サイクル装置100は、給湯沸き上げ運転を行っていないときに(圧縮機1を停止しているときに)、換気運転を行うこともできる。また、冷凍サイクル装置100は、換気運転を行っていないときに(第1の送風機53A及び第2の送風機53Bを停止しているときに)、給湯沸き上げ運転を行うこともできる。
(除霜運転)
 冷凍サイクル装置100は、除霜運転を行うこともできる。除霜運転では、膨張弁3の開度を全開とする。これにより、高温高圧の冷媒が、第1の熱交換器2及び膨張弁3を介して、第2の熱交換器4に供給され、第2の熱交換器4に付着した霜を溶かすことができる。
[本実施の形態1に係る冷凍サイクル装置100の効果]
 本実施の形態1に係る冷凍サイクル装置100は、第2の熱交換器4が、第2の風路51Bに配置され、冷媒と第2の風路51Bを流れる空気との熱交換を行い、冷媒を蒸発させる。つまり、冷凍サイクル装置100では、第2の熱交換器4を流れる冷媒の蒸発が、屋外の空気より温度が高い室内空気の廃熱により、促進する。したがって、冷凍サイクル装置100は、冷媒回路RCのCOPを向上させることができる。
実施の形態2.
 図2は、本実施の形態2に係る冷凍サイクル装置200の概要構成例図である。実施の形態2では、実施の形態1と共通する内容の説明は省略し、実施の形態1と相違する部分を中心に説明するものとする。実施の形態2の構成は、実施の形態1の構成に、第1の流路切替弁9A、第2の流路切替弁9B及び第5の熱交換器8が加わっている構成である。
 熱媒体回路HCは、第5の熱交換器8と、第1の流路切替弁9Aと、第2の流路切替弁9Bと、第4の熱媒体配管P4と、第5の熱媒体配管P5とを備えている。
 第5の熱交換器8は、第1の風路51Aに配置されている。第5の熱交換器8は、第1の風路51Aのうち第3の熱交換器52よりも下流に配置されている。すなわち、第1の風路51Aには、第1の入口51A1の下流であって第1の出口51A2の上流の位置に第3の熱交換器52が配置され、第3の熱交換器52よりも下流であって第1の出口51A2の上流の位置に第5の熱交換器8が配置されている。第5の熱交換器8は、例えば、フィンチューブ熱交換器で構成することができる。
 なお、第5の熱交換器8は、第1の風路51Aのうち第3の熱交換器52よりも上流に配置されていてもよい。第5の熱交換器8は、熱媒体が流れることで加温され、第1の風路51Aを流れる空気に熱を与える。これにより、室内に供給される空気の温度を屋外の冷たい外気温度よりも上昇させ、換気運転によって室内温度が低下することを抑制することができる。
 また、第5の熱交換器8は、熱媒体の流れ方向が、第1の風路51Aを流れる空気に対して、対向流となるように構成されているとよい。つまり、第5の熱交換器8は、伝熱管が第1の風路51Aの風路の延出方向に平行に配置され、伝熱管の流路の上流が第1の風路51Aの下流側に位置し、伝熱管の流路の下流が第1の風路51Aの上流側に位置しているとよい。
 第1の流路切替弁9Aは、第2の熱媒体配管P2に設けられている。そして、第1の流路切替弁9Aは、第1の熱交換器2から第4の熱交換器7へ熱媒体を流す第1の流路及び第1の熱交換器2から第5の熱交換器8へ熱媒体を流す第2の流路とを形成する。第1の流路の開閉及び第2の流路の開閉は、制御装置Cntによって制御される。制御装置Cnt及び第1の流路切替弁9Aは、第1の流路及び第2の流路の両方を同時に開くことができ、また、第1の流路及び第2の流路のうちの一方を開くこともできるように構成されている。
 第2の流路切替弁9Bは、第2の熱媒体配管P2又は第3の熱媒体配管P3に設けられている。本実施の形態2では、第3の熱媒体配管P3に第2の流路切替弁9Bが設けられている例を示しているが、第2の熱媒体配管P2に設けられていてもよい。第2の流路切替弁9Bが第2の熱媒体配管P2に設けられていても、第5の熱交換器8に加温された熱媒体を供給することができる。
 第2の流路切替弁9Bは、第5の熱交換器8から第1のポンプ5Aへ熱媒体を流す第4の流路及び第4の熱交換器7から第1のポンプ5Aへ熱媒体を流す第5の流路とを形成する。第4の流路の開閉及び第5の流路の開閉は、制御装置Cntによって制御される。制御装置Cnt及び第2の流路切替弁9Bは、第4の流路及び第5の流路の両方を同時に開くことができ、また、第4の流路及び第5の流路のうちの一方を開くこともできるように構成されている。
 第4の熱媒体配管P4は、第1の流路切替弁9Aと第5の熱交換器8とを接続する。
 第5の熱媒体配管P5は、第2の流路切替弁9Bと第4の熱交換器7とを接続する。
[実施の形態2の動作説明]
 冷凍サイクル装置200は、第5の熱交換器8を備えているため、暖房運転を実施することができる。なお、暖房運転には、第1の暖房運転と、第2の暖房運転とがある。
(第1の暖房運転)
 冷媒回路RCの動作については、実施の形態1で説明した給湯沸き上げ運転と同様である。
 熱媒体回路HCの動作については、第1の流路切替弁9Aが第1の流路を開とし、第2の流路を閉とする。また、第2の流路切替弁9Bが第4の流路を開とし、第5の流路を閉とする。つまり、熱媒体が、第1のポンプ5A、第1の熱媒体配管P1、第1の熱交換器2、第2の熱媒体配管P2、第1の流路切替弁9A、第4の熱媒体配管P4、第5の熱交換器8、第5の熱媒体配管P5及び第2の流路切替弁9Bの順番に循環し、第1のポンプ5Aに戻る。第1の熱交換器2で加温された熱媒体は、第5の熱交換器8に供給され、第1の風路51Aを流れる空気と熱交換し、第1の風路51Aを流れる空気を加温する。
 第1の暖房運転では、第4の熱交換器7に熱媒体を供給しないため、給湯タンク6内の水の加温はしない。
(第2の暖房運転)
 冷媒回路RCの動作については、実施の形態1で説明した給湯沸き上げ運転と同様である。
 熱媒体回路HCの動作については、第1の流路切替弁9Aが第1の流路及び第2の流路を開とする。また、第2の流路切替弁9Bが第4の流路及び第5の流路を開とする。つまり、熱媒体が、第1のポンプ5A、第1の熱媒体配管P1、第1の熱交換器2、第2の熱媒体配管P2及び第1の流路切替弁9Aの順番に流れる。そして、第1の流路切替弁9Aに流入した熱媒体は、第5の熱交換器8へ向かう熱媒体と、第4の熱交換器7へ向かう熱媒体とに分岐する。ここで、第5の熱交換器8へ向かう熱媒体を一部の熱媒体と称し、第4の熱交換器7へ向かう熱媒体を残りの熱媒体と称する。一部の熱媒体は、第1の流路切替弁9A、第4の熱媒体配管P4、第5の熱交換器8、第5の熱媒体配管P5及び第2の流路切替弁9Bの順番に流れる。残りの熱媒体は、第1の流路切替弁9A、第4の熱交換器7及び第2の流路切替弁9Bの順番に流れる。一部の熱媒体及び残りの熱媒体は、第2の流路切替弁9Bで合流し、第1のポンプ5Aに戻る。
 第1の暖房運転では、第1の風路51Aの空気の加温だけでなく、給湯タンク6内の水の加温を行う。
 第2の暖房運転を実行しているときにおいて、制御装置Cntは、第5の熱交換器8の加温を重視するか、給湯タンク6の水の加温を重視するか、又は、第5の熱交換器8の加温と給湯タンク6の水の加温とのバランスを重視するかを制御することができる。例えば、第2の暖房運転を行っている場合において、第1の流路切替弁9A及び第2の流路切替弁9Bの開度は、給湯タンク6の水温を検出する温度センサ、第1の風路51Aから吹き出される空気の温度を検出する温度センサ、第1の風路51Aに取り込まれる空気の温度を検出する温度センサ、及び、室内温度を検出する温度センサの検出温度に基づいて決定することができる。つまり、制御装置Cntは、これらの温度センサの検出温度に基づいて、第1の流路の開度量、第2の流路の開度量、第4の流路の開度量及び第5の流路の開度量を取得し、第1の流路切替弁9A及び第2の流路切替弁9Bを制御する。
 第1の暖房運転及び第2の暖房運転において、第1の送風機53Aは運転をするが、第2の送風機53Bについては運転をしてもよいし、しなくてもよい。なお、第1の暖房運転及び第2の暖房運転において、第2の送風機53Bの運転をすることで、第2の送風機53Bから第2の熱交換器4へ供給された空気が第2の熱交換器4の冷媒の蒸発を促進し、且つ、室内空気を室内から屋外へ排出することができる。
 冷凍サイクル装置200も、実施の形態1で説明した、給湯沸き上げ運転及び除霜運転を行うことができる。
[本実施の形態2に係る冷凍サイクル装置200の効果]
 本実施の形態2に係る冷凍サイクル装置200は、実施の形態1に係る冷凍サイクル装置100の有する効果に加えて次の効果を有する。すなわち、冷凍サイクル装置200は、第1の暖房運転及び第2の暖房運転の少なくとも一方を行い、第5の熱交換器8で加温された空気を室内に供給することができる。
実施の形態3.
 図3は、本実施の形態3に係る冷凍サイクル装置300の概要構成例図である。
 図4は、図3に示す冷凍サイクル装置300のダンパー10を、図3に示す第1の状態から第2の状態へ切り換えたことを示す図である。実施の形態3では、実施の形態1、2と共通する内容の説明は省略し、実施の形態1、2と相違する部分を中心に説明するものとする。実施の形態3の構成は、実施の形態2の構成に、ダンパー10及び第3の風路51Cが加わっている構成である。
 冷凍サイクル装置300のエアハンドリングユニット50は、第1の風路51Aに配置されたダンパー10と、第1の風路51Aから分岐する第3の風路51Cとを含む。
 第3の風路51Cは、第1の風路51Aに連通する第3の入口51C1と、室内に連通する第3の出口51C2と、を有する。また、ダンパー10は第1の状態と第2の状態とが切り換え自在である。ダンパー51が第1の状態であるときにおいて、第1の風路51Aを流れる空気は第1の風路51Aから第3の風路51Cへ流れ、第1の風路51Aを流れる空気は第3の熱交換器52をバイパスする。ダンパー10が第2の状態であるときにおいて、第3の入口51C1はダンパー10によって塞がれ、第1の風路51Aを流れる空気は第3の熱交換器52へ流れる。ダンパー10の第1の状態は図3に示され、第2の状態は、図4に示されている。
[実施の形態3の動作説明]
 冷凍サイクル装置300は、ダンパー10及び第3の風路51Cを備えているため、フリークーリング運転を行うことができる。
(フリークーリング運転)
 フリークーリング運転は、消費電力を抑えながら、室内温度の上昇を抑制したい場合に行う運転である。
 冷凍サイクル装置300は、外気温度を検出する温度センサ、及び、室内温度を検出する温度センサを備えている。制御装置Cntは、これらの温度センサの検出温度に基づいて、ダンパー10の第1の状態と第2の状態とを切り換える。
 制御装置Cntは、外気温度が室内温度より低いか否かを判定する。外気温度が室内温度より低い場合には、制御装置Cntは、ダンパー10を第1の状態に切り換える。つまり、エアハンドリングユニット50に取り込んだ空気を、全熱交換器である第3の熱交換器52には流さずに、第3の風路51Cを介して室内に供給する。これにより、室内空気よりも冷えた外気を室内に供給することができる。
 冷凍サイクル装置300は、フリークーリング運転とともに、給湯沸き上げ運転又は除霜運転を行っていてもよい。また、冷凍サイクル装置300は、フリークーリング運転を行っているときにおいて、第1の暖房運転及び第2の暖房運転を行わない。
[本実施の形態3に係る冷凍サイクル装置300の効果]
 本実施の形態3に係る冷凍サイクル装置300は、実施の形態1、2に係る冷凍サイクル装置100の有する効果に加えて次の効果を有する。すなわち、冷凍サイクル装置300は、フリークーリング運転を行うことができ、消費電力を抑えながら、室内温度の上昇を抑制することができる。
 実施の形態3は、実施の形態2の構成に、ダンパー10及び第3の風路51Cを加えた構成であったがそれに限定されるものではない。実施の形態1の構成に、ダンパー10及び第3の風路51Cを加えた構成であってもよい。
実施の形態4.
 図5は、本発明の実施の形態4に係る冷凍サイクル装置400の概要構成例図である。実施の形態4では、実施の形態1~3と共通する内容の説明は省略し、実施の形態1~3と相違する部分を中心に説明するものとする。実施の形態4は、実施の形態2の構成に、第2のポンプ5Bが加わっている構成である。
 熱媒体回路HCは、熱媒体を搬送する第2のポンプ5Bを含む。第2のポンプ5Bは、第3の熱媒体配管P3に設けられている。第2のポンプ5Bは、熱媒体が流出する第2の流出部及び熱媒体が流入する第2の流入部を含む。第2のポンプ5Bの第2の流出部が第2の流路切替弁9Bに接続され、第2のポンプ5Bの第2の流入部が第4の熱交換器7に接続されている。
 第1の流路切替弁9Aは、第1の流路及び第2の流路に加えて、第5の熱交換器8から第4の熱交換器7へ熱媒体を流す第3の流路を形成することができる。
 第2の流路切替弁9Bは、第3の熱媒体配管P3に設けられている。そして、第2の流路切替弁9Bは、第4の流路及び第5の流路に加えて、第2のポンプ5Bから第5の熱交換器8へ熱媒体を流す第6の流路を形成することができる。
[実施の形態4の動作説明]
 冷凍サイクル装置400は、第1の流路切替弁9A、第2の流路切替弁9B及び第2のポンプ5Bを備えているため、廃熱回収暖房運転を行うことができる。
(廃熱回収暖房運転)
 廃熱回収暖房運転は、第2の熱交換器4に着霜してしまった場合に行うことができる第3の暖房運転である。また、廃熱回収暖房運転は、室内で要求されている暖房負荷がさほど大きくない場合に、第1の暖房運転及び第2の暖房運転の代わりに行うこともできる。
 制御装置Cntは、室内の設定温度と室内温度との差が予め設定された値よりも小さい場合には、第3の暖房運転である廃熱回収暖房運転を行う。また、制御装置Cntは、室内の設定温度と室内温度との差が予め設定された値以上である場合には、第1の暖房運転又は第2の暖房運転を行う。
 廃熱回収暖房運転において、制御装置Cntは第1の流路切替弁9Aの第3の流路を開とし、第1の流路及び第2の流路を閉とする。また、廃熱回収暖房運転において、制御装置Cntは第2の流路切替弁9Bの第6の流路を開とし、第4の流路及び第5の流路を閉とする。また、廃熱回収暖房運転において、制御装置Cntは第1のポンプ5Aを停止とし、第2のポンプ5Bを運転する。更に、廃熱回収暖房運転において、制御装置Cntは第1の送風機53Aを運転する。
 廃熱回収暖房運転である第3の暖房運転を行っているときにおいて、冷凍サイクル装置400は、給湯沸き上げ運転、第1の暖房運転及び第2の暖房運転は行わない。
 廃熱回収暖房運転である第3の暖房運転を行っているときにおいて、冷凍サイクル装置400は、除霜運転を同時に行うことができる。
[本実施の形態4に係る冷凍サイクル装置400の効果]
 本実施の形態4に係る冷凍サイクル装置400は、実施の形態2と同様の効果を有することに加えて、次の効果を有する。すなわち、冷凍サイクル装置400は、第1の流路切替弁9A、第2の流路切替弁9B及び第2のポンプ5Bを備えているため、廃熱回収暖房運転を行うことができ、第2の熱交換器4に着霜した場合でも加温された空気を室内に供給することができる。また、室内で要求されている暖房負荷がさほど大きくない場合には、第1の暖房運転及び第2の暖房運転を行なわず、第3の暖房運転を行う。第3の暖房運転では、第1の暖房運転及び第2の暖房運転よりも、熱媒体回路HCの熱媒体が循環する総流路長が短いため、ポンプの消費電力を抑制することができる。それに加えて、第3の暖房運転では、圧縮機1が運転している必要がなく、その分、圧縮機1の消費電力を削減することができる。
[実施の形態4の変形例]
 図6は、本実施の形態4の変形例(冷凍サイクル装置401)である。
 冷凍サイクル装置401は、冷凍サイクル装置400に、実施の形態3で説明したダンパー10及び第3の風路51Cを追加した態様である。つまり、実施の形態3と実施の形態4の構成を組み合わせた態様である。冷凍サイクル装置401は、実施の形態3に係る冷凍サイクル装置300の効果及び実施の形態4に係る冷凍サイクル装置400の効果を得ることができる。
 実施の形態5.
 図7は、本実施の形態5に係る冷凍サイクル装置500の概要構成例図である。実施の形態5では、実施の形態1~4と共通する内容の説明は省略し、実施の形態1~4と相違する部分を中心に説明するものとする。実施の形態5の構成は、実施の形態2の構成に、第6の熱交換器11及び膨張弁12が加わっている構成である。
 冷媒回路RCは、冷媒を蒸発させる第6の熱交換器11を含む。第6の熱交換器11は、蒸発器として機能する。第6の熱交換器11は、冷房運転用及び除湿運転用の熱交換器である。第6の熱交換器11は、第1の風路51Aに配置されている。第6の熱交換器11は、第1の風路51Aのうち、第3の熱交換器52の下流であって第5の熱交換器8の上流の位置に配置されている。なお、第6の熱交換器11は、第3の熱交換器52の上流に配置されていてもよい。
 また、冷媒回路RCは、冷媒配管RP5と、冷媒配管RP6と、冷媒配管RP7とを含む。冷媒配管RP5は、一端が冷媒配管RP2に接続され、他端が膨張弁12に接続されている。冷媒配管RP6は、一端が膨張弁12に接続され、他端が第6の熱交換器11に接続されている。冷媒配管RP7は、一端が第6の熱交換器11に接続され、他端が冷媒配管RP4に接続されている。
 更に、冷媒回路RCは、冷媒を減圧する膨張弁12を含む。
 第1の風路51Aには、第3の熱交換器52よりも下流であって第5の熱交換器8よりも上流の位置に第6の熱交換器11が配置されている。
[実施の形態5の動作説明]
 冷凍サイクル装置500は、第6の熱交換器11及び膨張弁12を備えているため、除湿運転及び冷房運転を行うことができる。
(除湿運転)
 冷媒回路RCにおいて、圧縮機1で圧縮された高温高圧の冷媒が第1の熱交換器2に供給され、第1の熱交換器2を流れる熱媒体と熱交換する。第1の熱交換器2に供給された冷媒は、凝縮し、高圧の液冷媒となる。液冷媒の一部は、膨張弁12で減圧し、第6の熱交換器11で蒸発し、低圧のガス冷媒となる。液冷媒の残りは、膨張弁3で減圧し、第2の熱交換器4で蒸発し、低圧のガス冷媒となる。第6の熱交換器11から流出したガス冷媒及び第2の熱交換器4で蒸発したガス冷媒は合流した後に、圧縮機1に吸入される。
 除湿運転の熱媒体回路HCの動作は、第1の暖房運転又は第2の暖房運転における熱媒体回路HCの動作と同様である。つまり、第5の熱交換器8には第1の熱交換器2で加温された熱媒体が第4の熱媒体配管P4を介して供給され、その結果、第1の風路51Aを流れる空気が第5の熱交換器8に供給された熱媒体によって加温される。
 除湿運転において、第1の送風機53Aの作用により第1の風路51Aに取り込まれた空気が、第3の熱交換器52に流入した後に、第2の風路51Bを流れる空気と熱交換する。例えば夏期において、室内の冷房が効いている場合には、第1の風路51Aに取り込まれた空気は、第3の熱交換器52で冷却される。
 そして、第1の風路51Aにおける第3の熱交換器52を通過した空気は第6の熱交換器11を通過する過程で冷却され、その結果、第1の風路51Aにおける第3の熱交換器52を通過した空気は除湿される。なお、第6の熱交換器11を通過した空気を冷却されているので、このまま室内に供給されると、室内に在室している者の快適性が損なわれる場合がある。このため、第6の熱交換器11を通過した空気を第5の熱交換器8で加温してから室内に供給する。
(冷房運転)
 冷房運転を行う場合には、加温された熱媒体が第5の熱交換器8を流れないように、第1のポンプ5A及び第2のポンプ5Bを停止する、又は、第1の流路切替弁9A及び第2の流路切替弁9Bを制御する。冷媒回路RCにおける動作は、除湿運転と同様である。
[本実施の形態5に係る冷凍サイクル装置500の効果]
 本実施の形態5に係る冷凍サイクル装置500は、実施の形態4と同様の効果を有することに加えて、次の効果を有する。すなわち、冷凍サイクル装置500は第6の熱交換器11を備えているため、冷凍サイクル装置500は除湿運転及び冷房運転を行うことができ、室内に除湿された空気及び冷却された空気を供給することができる。
[実施の形態5の変形例1]
 図8は、本実施の形態5の変形例1(冷凍サイクル装置501)である。
 冷凍サイクル装置501は、冷凍サイクル装置500に、実施の形態3で説明したダンパー10及び第3の風路51Cを追加した態様である。つまり、実施の形態5と実施の形態3の構成を組み合わせた態様である。
 冷凍サイクル装置501は、実施の形態3に係る冷凍サイクル装置300の効果及び実施の形態5に係る冷凍サイクル装置400の効果を得ることができる。
[実施の形態5の変形例2]
 図9は、本実施の形態5の変形例2(冷凍サイクル装置502)である。
 冷凍サイクル装置502は、冷凍サイクル装置500に、実施の形態3で説明したダンパー10及び第3の風路51Cと、実施の形態4で説明した第2のポンプ5Bとを追加した態様である。つまり、実施の形態5と実施の形態4と実施の形態3の構成を組み合わせた態様である。変形例2の除湿運転時において、熱媒体回路HCでは、第1の暖房運転、第2の暖房運転又は第3の暖房運転と同様の動作を行う。
 冷凍サイクル装置502は、実施の形態3に係る冷凍サイクル装置300の効果、実施の形態4に係る冷凍サイクル装置400の効果及び実施の形態5に係る冷凍サイクル装置400の効果を得ることができる。
[実施の形態5の変形例3]
 なお、変形例3に係る冷凍サイクル装置としては、冷凍サイクル装置500に、実施の形態4で説明した第2のポンプ5Bとを追加した態様で構成することもできる。変形例3に係る冷凍サイクル装置は、実施の形態4に係る冷凍サイクル装置400の効果及び実施の形態5に係る冷凍サイクル装置400の効果を得ることができる。
 実施の形態5は、第5の熱交換器8を備えることが前提の態様であったが、それに限定されるものではない。実施の形態1の構成に、第6の熱交換器11及び膨張弁12を加えた構成であってもよい。つまり、第5の熱交換器8が設けられていなくてもよい。
実施の形態6.
 図10は、本実施の形態6に係る冷凍サイクル装置600の概要構成例図である。
 本実施の形態6では、実施の形態1~5と共通する内容の説明は省略し、実施の形態1~5と相違する部分を中心に説明するものとする。実施の形態6において、エアハンドリングユニット50と、機械室ユニット30と、給湯タンク6とが一体型となっている。図10では、便宜上、冷媒回路RCの構成、制御装置Cnt及び第1の送風機53A及び第2の送風機53Bについては図示を省略している。
 本実施の形態6において、エアハンドリングユニット50は、機械室ユニット30の上に配置されている。また、給湯タンク6は、機械室ユニット30及びエアハンドリングユニット50の側方に隣接して配置されている。
 本実施の形態6では、実施の形態1の冷凍サイクル装置100の構成を前提に説明したが、それに限定されるものではない。実施の形態6の構成は、実施の形態2~5、実施の形態4の変形例、及び実施の形態5の変形例1~3についても同様に適用することができる。
[本実施の形態6に係る冷凍サイクル装置600の効果]
 本実施の形態6に係る冷凍サイクル装置600は、エアハンドリングユニット50と、機械室ユニット30と、給湯タンク6とが一体型となっている分、コンパクトに構成することができる。
 1 圧縮機、2 第1の熱交換器、3 膨張弁、4 第2の熱交換器、5A 第1のポンプ、5B 第2のポンプ、6 給湯タンク、7 第4の熱交換器、8 第5の熱交換器、9A 第1の流路切替弁、9B 第2の流路切替弁、10 ダンパー、11 第6の熱交換器、12 膨張弁、30 機械室ユニット、31 第2の筐体、50 エアハンドリングユニット、51 第3の筐体、51A 第1の風路、51A1 第1の入口、51A2 第1の出口、51B 第2の風路、51B1 第2の入口、51B2 第2の出口、51C 第3の風路、51C1 第3の入口、51C2 第3の出口、52 第3の熱交換器、53A 第1の送風機、53B 第2の送風機、100 冷凍サイクル装置、101 第1の筐体、200 冷凍サイクル装置、300 冷凍サイクル装置、400 冷凍サイクル装置、401 冷凍サイクル装置、500 冷凍サイクル装置、501 冷凍サイクル装置、502 冷凍サイクル装置、600 冷凍サイクル装置、Cnt 制御装置、HC 熱媒体回路、P1 第1の熱媒体配管、P2 第2の熱媒体配管、P3 第3の熱媒体配管、P4 第4の熱媒体配管、P5 第5の熱媒体配管、RC 冷媒回路、RP1 冷媒配管、RP2 冷媒配管、RP3 冷媒配管、RP4 冷媒配管、RP5 冷媒配管、RP6 冷媒配管、RP7 冷媒配管。

Claims (9)

  1.  筐体と、
     屋外に連通する第1の入口及び室内に連通する第1の出口を有する第1の風路と、前記室内に連通する第2の入口及び前記屋外に連通する第2の出口を有する第2の風路と、前記第1の入口から前記第1の出口へ空気を流す第1の送風機と、前記第2の入口から前記第2の出口へ空気を流す第2の送風機とを含み、前記筐体に収容されたエアハンドリングユニットと、
     冷媒が循環する冷媒回路と、
     を備え、
     前記冷媒回路は、
     前記冷媒と熱媒体との熱交換を行い、前記冷媒を凝縮させる第1の熱交換器と、
     前記第2の風路に配置され、前記冷媒と前記第2の風路を流れる空気との熱交換を行い、前記冷媒を蒸発させる第2の熱交換器とを含む
     冷凍サイクル装置。
  2.  前記冷媒回路は、
     前記筐体に収容されている
     請求項1に記載の冷凍サイクル装置。
  3.  前記エアハンドリングユニットは、
     前記第1の風路及び前記第2の風路に接続され、前記第1の風路を流れる空気と前記第2の風路を流れる空気とを全熱交換する第3の熱交換器をさらに含む
     請求項1又は2に記載の冷凍サイクル装置。
  4.  前記第2の風路には、
     前記第2の風路の空気の流れ方向の最上流の位置に前記第2の入口が形成され、
     前記第2の風路の空気の流れ方向の最下流の位置に前記第2の出口が形成され、
     前記第2の入口の下流であって前記第2の出口の上流の位置に前記第3の熱交換器が配置され、
     前記第3の熱交換器よりも下流であって前記第2の出口の上流の位置に前記第2の熱交換器が配置されている
     請求項3に記載の冷凍サイクル装置。
  5.  前記第1の熱交換器と、前記熱媒体を搬送する第1のポンプとを含み、前記熱媒体が循環する熱媒体回路をさらに備え、
     前記熱媒体回路は、給湯タンク内の水を加温する第4の熱交換器に接続され、
     前記第1のポンプは、前記熱媒体が流出する第1の流出部及び前記熱媒体が流入する第1の流入部を含み、
     前記熱媒体回路は、
     前記第1のポンプの前記第1の流出部と前記第1の熱交換器とを接続する第1の熱媒体配管と、
     前記第1の熱交換器と前記第4の熱交換器とを接続する第2の熱媒体配管と、
     前記第4の熱交換器と前記第1のポンプの前記第1の流入部とを接続する第3の熱媒体配管とを含む
     請求項1~4のいずれか一項に記載の冷凍サイクル装置。
  6.  前記熱媒体回路は、
     前記第1の風路に配置された第5の熱交換器と、
     前記第2の熱媒体配管に設けられ、前記第1の熱交換器から前記第4の熱交換器へ前記熱媒体を流す第1の流路及び前記第1の熱交換器から前記第5の熱交換器へ前記熱媒体を流す第2の流路とを形成する第1の流路切替弁と、
     前記第2の熱媒体配管又は前記第3の熱媒体配管に設けられ、前記第5の熱交換器から前記第1のポンプへ前記熱媒体を流す第4の流路及び前記第4の熱交換器から前記第1のポンプへ前記熱媒体を流す第5の流路とを形成する第2の流路切替弁と、
     前記第1の流路切替弁と前記第5の熱交換器とを接続する第4の熱媒体配管と、
     前記第2の流路切替弁と前記第5の熱交換器とを接続する第5の熱媒体配管とをさらに含み、
     前記第1の風路には、
     前記第1の風路の空気の流れ方向の最上流の位置に前記第1の入口が形成され、
     前記第1の風路の空気の流れ方向の最下流の位置に前記第1の出口が形成され、
     前記第1の入口の下流であって前記第1の出口の上流の位置に前記第3の熱交換器が配置され、
     前記第3の熱交換器よりも下流であって前記第1の出口の上流の位置に前記第5の熱交換器が配置されている
     請求項3に従属する請求項5に記載の冷凍サイクル装置。
  7.  前記熱媒体回路は、前記熱媒体を搬送する第2のポンプをさらに含み、
     前記第1の流路切替弁は、
     前記第5の熱交換器から前記第4の熱交換器へ前記熱媒体を流す第3の流路を形成し、
     前記第2の流路切替弁は、
     前記第3の熱媒体配管に設けられ、
     前記第2のポンプから前記第5の熱交換器へ前記熱媒体を流す第6の流路を形成し、
     前記第2のポンプは、
     前記第3の熱媒体配管に設けられ、
     前記熱媒体が流出する第2の流出部及び前記熱媒体が流入する第2の流入部を含み、
     前記第2の流出部が前記第2の流路切替弁に接続され、
     前記第2の流入部が前記第4の熱交換器に接続されている
     請求項6に記載の冷凍サイクル装置。
  8.  前記冷媒回路は、前記冷媒を蒸発させる第6の熱交換器をさらに含み、
     前記第1の風路には、
     前記第3の熱交換器よりも下流であって前記第5の熱交換器よりも上流の位置に前記第6の熱交換器が配置されている
     請求項6又は7に記載の冷凍サイクル装置。
  9.  前記エアハンドリングユニットは、
     前記第1の風路に配置されたダンパーと、
     前記第1の風路から分岐する第3の風路とをさらに含み、
     前記第3の風路は、
     前記第1の風路に連通する第3の入口と、
     前記室内に連通する第3の出口と、を有し、
     前記ダンパーは、
     前記第1の風路を流れる空気が前記第1の風路から前記第3の風路へ流れ、前記第1の風路を流れる空気が前記第3の熱交換器をバイパスする第1の状態と、
     前記第1の風路を流れる空気が前記第3の熱交換器へ流れ、前記第3の入口を塞ぐ第2の状態とが切り換えられる
     請求項3、4と、請求項3、4に従属する請求項5と、請求項6、7とのいずれか一項に記載の冷凍サイクル装置。
PCT/JP2017/034688 2017-09-26 2017-09-26 冷凍サイクル装置 WO2019064335A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/034688 WO2019064335A1 (ja) 2017-09-26 2017-09-26 冷凍サイクル装置
EP17927210.9A EP3690336A4 (en) 2017-09-26 2017-09-26 REFRIGERATION CIRCUIT DEVICE
JP2019545413A JP6949130B2 (ja) 2017-09-26 2017-09-26 冷凍サイクル装置
US16/649,250 US11592203B2 (en) 2017-09-26 2017-09-26 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034688 WO2019064335A1 (ja) 2017-09-26 2017-09-26 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019064335A1 true WO2019064335A1 (ja) 2019-04-04

Family

ID=65902763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034688 WO2019064335A1 (ja) 2017-09-26 2017-09-26 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US11592203B2 (ja)
EP (1) EP3690336A4 (ja)
JP (1) JP6949130B2 (ja)
WO (1) WO2019064335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004681A (zh) * 2019-04-16 2019-07-12 广东技术师范大学 一种内循环干衣机及干燥系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798535A4 (en) * 2018-05-23 2022-03-02 Sanhua Holding Group Co., Ltd. THERMAL MANAGEMENT SYSTEM
CN112797547B (zh) * 2020-12-30 2022-07-29 北京燃气能源发展有限公司 民用住宅新风余热利用系统及方法
CN113175715B (zh) * 2021-04-30 2022-08-30 西藏宁算科技集团有限公司 数据中心蒸发冷却与余热回收机组和其控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238234A (ja) * 1989-03-10 1990-09-20 Matsushita Seiko Co Ltd 換気空調ユニット
JP2002130784A (ja) * 2000-10-31 2002-05-09 Daiwa House Ind Co Ltd 排熱利用換気システム
JP5455521B2 (ja) 2009-09-25 2014-03-26 株式会社日立製作所 空調給湯システム
JP2014152985A (ja) * 2013-02-08 2014-08-25 Denso Corp 暖房システム
WO2015087423A1 (ja) * 2013-12-12 2015-06-18 三菱電機株式会社 外気処理機及び空気調和機
JP2015190627A (ja) * 2014-03-27 2015-11-02 高砂熱学工業株式会社 全熱交換器システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071080A (en) * 1976-01-14 1978-01-31 Bridgers Frank H Air conditioning system
JPH06213478A (ja) 1993-01-14 1994-08-02 Ebara Corp 空気調和機
DE10106975A1 (de) * 2001-02-15 2002-09-26 Musial Bjoern Fabian Luft-Wasser-Wärmepumpe mit Wärmerückgewinnung Zuluftvorerwärmung und Kühlung
WO2004072560A1 (de) 2003-02-14 2004-08-26 Hombuecher Heinz-Dieter Verfahren und vorrichtung zur energierückgewinnung
DE10323287A1 (de) * 2003-02-14 2004-09-02 Hombücher, Heinz-Dieter Verfahren und Vorrichtung zur Energierückgewinnung
JP4799347B2 (ja) 2006-09-28 2011-10-26 三菱電機株式会社 給湯、冷温水空気調和装置
FR2926626B1 (fr) * 2008-01-22 2010-06-25 Aldes Aeraulique Installation de production d'eau chaude sanitaire pour une habitation collective
CN101672512A (zh) 2008-09-11 2010-03-17 同方人工环境有限公司 一种带分布式冷热源的热回收新风机组
FR2950678B1 (fr) * 2009-09-30 2011-10-21 Aldes Aeraulique Installation de ventilation mecanique controlee de type double flux thermodynamique reversible avec production d'eau chaude sanitaire
JP5474483B2 (ja) 2009-10-16 2014-04-16 株式会社日立製作所 中間熱交換器及びそれを用いた空調給湯システム
FI125078B (fi) * 2010-04-27 2015-05-29 Ins Tsto Ejpan Menetelmä ja järjestely matalaenergialähteen käyttämiseksi käyttötilan ilman lämpötilan säätelemiseen
AU2011358038B2 (en) * 2011-01-31 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
FR2979418B1 (fr) * 2011-08-24 2015-10-23 Muller & Cie Soc Installation domestique de regulation thermique et de ventilation
JP5831467B2 (ja) * 2013-01-23 2015-12-09 株式会社デンソー 暖房システム
JP5920251B2 (ja) * 2013-03-08 2016-05-18 株式会社デンソー 暖房給湯装置
SE538309C2 (sv) * 2013-11-26 2016-05-10 Fläkt Woods AB Anordning och förfarande för värmning av luft vid en luftbehandlingsanordning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238234A (ja) * 1989-03-10 1990-09-20 Matsushita Seiko Co Ltd 換気空調ユニット
JP2002130784A (ja) * 2000-10-31 2002-05-09 Daiwa House Ind Co Ltd 排熱利用換気システム
JP5455521B2 (ja) 2009-09-25 2014-03-26 株式会社日立製作所 空調給湯システム
JP2014152985A (ja) * 2013-02-08 2014-08-25 Denso Corp 暖房システム
WO2015087423A1 (ja) * 2013-12-12 2015-06-18 三菱電機株式会社 外気処理機及び空気調和機
JP2015190627A (ja) * 2014-03-27 2015-11-02 高砂熱学工業株式会社 全熱交換器システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690336A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004681A (zh) * 2019-04-16 2019-07-12 广东技术师范大学 一种内循环干衣机及干燥系统

Also Published As

Publication number Publication date
EP3690336A4 (en) 2020-09-23
EP3690336A1 (en) 2020-08-05
US11592203B2 (en) 2023-02-28
US20200300513A1 (en) 2020-09-24
JP6949130B2 (ja) 2021-10-13
JPWO2019064335A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6685409B2 (ja) 空気調和装置
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
JP6332537B2 (ja) 空気調和機
JP6949130B2 (ja) 冷凍サイクル装置
CN104220816B (zh) 空调机
JP3800210B2 (ja) 水熱源ヒートポンプユニット
JP5316668B1 (ja) 空気調和機
KR20070074301A (ko) 공기조화기
JP2017150687A (ja) 空気調和装置および空気調和装置の制御方法
JP4647399B2 (ja) 換気空調装置
KR100954015B1 (ko) 버스용 천정형 공기조화장치
KR20090006334U (ko) 공기조화기
JP6805693B2 (ja) 空気調和装置
JP5346528B2 (ja) 車両用空気調和システム
JP3724011B2 (ja) 空気調和機
CN110207417B (zh) 空调系统
KR100655382B1 (ko) 냉동사이클을 이용한 폐열 회수형 공기조화시스템
KR101137266B1 (ko) 히트 펌프식 공기조화장치
CN114127493B (zh) 空调装置
CN210004512U (zh) 恒温除湿空调器
EP1878985A2 (en) Air conditioning system and method of controlling the same
KR102261131B1 (ko) 제상과 바닥 및 공간의 냉,난방기능을 갖는 히트펌프 공기조화기
JPH11325637A (ja) 空気調和機
WO2024201778A1 (ja) 空気調和装置
WO2014097722A1 (ja) 温調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927210

Country of ref document: EP

Effective date: 20200428