WO2007125612A1 - 振動ジャイロ - Google Patents

振動ジャイロ Download PDF

Info

Publication number
WO2007125612A1
WO2007125612A1 PCT/JP2006/316340 JP2006316340W WO2007125612A1 WO 2007125612 A1 WO2007125612 A1 WO 2007125612A1 JP 2006316340 W JP2006316340 W JP 2006316340W WO 2007125612 A1 WO2007125612 A1 WO 2007125612A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
support
vibration
support plate
vibrating gyroscope
Prior art date
Application number
PCT/JP2006/316340
Other languages
English (en)
French (fr)
Inventor
Shinya Oguri
Masato Koike
Haruyoshi Kurakawa
Katsumi Fujimoto
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2006800541561A priority Critical patent/CN101416027B/zh
Priority to JP2007505295A priority patent/JP3969459B1/ja
Priority to EP06796603A priority patent/EP2012087B1/en
Publication of WO2007125612A1 publication Critical patent/WO2007125612A1/ja
Priority to US12/235,721 priority patent/US7805995B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5628Manufacturing; Trimming; Mounting; Housings

Definitions

  • the present invention relates to a vibration gyro, and more particularly to a vibration gyro used for preventing camera shake of a digital still camera or a digital video camera.
  • FIG. 18 is a perspective view showing an example of a conventional vibrating gyroscope.
  • This vibrating gyroscope 1 includes a tuning fork type vibrator 2.
  • the vibrator 2 includes a base portion 2a and two leg portions 2b and 2b formed so as to extend from the base portion 2a.
  • the vibrator 2 includes two laminated tuning-fork type piezoelectric substrates 3a and 3b.
  • the stacked piezoelectric substrates 3a and 3b are polarized in opposite thickness directions.
  • An intermediate metal film 4 is formed between the piezoelectric substrates 3a and 3b.
  • driving electrodes 5a, 5b, and 5c are formed on the main surface of one piezoelectric substrate 3a.
  • the driving electrodes 5a, 5b, 5c are formed by being divided into three in the width direction of the piezoelectric substrate 3a.
  • the driving electrodes 5a, 5b, 5c are divided by the divided portions extending in the longitudinal direction of the legs 2b, 2b.
  • detection electrodes 6a and 6b are formed on the main surface of the other piezoelectric substrate 3b.
  • the detection electrodes 6a and 6b are formed by being divided into two at the center in the width direction of the piezoelectric substrate 3b.
  • the vibrator 2 is attached to the support plate 7.
  • the support plate 7 is formed in, for example, a rectangular plate shape, and the base portion 2a of the vibrator 2 is bonded to the center portion thereof.
  • a support bar 8 is formed on the support plate 7 at portions away from the bonded portion of the base portion 2a on both sides.
  • the support bar 8 is formed so as to extend the end portion force of the support plate 7 along the legs 2b and 2b of the vibrator 2.
  • the vibrator 2 is fixed to a case or the like by supporting the support bar 8.
  • an oscillation circuit is connected between the driving electrode 5b at the center and the driving electrodes 5a and 5c on both sides thereof.
  • the oscillation circuit includes, for example, an amplifier circuit and a phase correction circuit.
  • the detection electrodes 6a and 6b are connected to a detection circuit.
  • the detection circuit includes a differential circuit, a synchronous detection circuit, an integration circuit, a DC amplification circuit, and the like.
  • the output signal of the differential circuit is detected in synchronization with the signal of the oscillation circuit by the synchronous detection circuit, and is converted into a DC signal by the integration circuit. Furthermore, the output signal of the integration circuit is amplified by a DC amplification circuit.
  • the magnitude of the rotational angular velocity can be known from the magnitude of the output signal of the DC amplifier circuit, and the direction of the rotational angular velocity can be known from the polarity of the output signal of the DC amplifier circuit.
  • Patent Document 1 JP 2000-292171 A
  • a main object of the present invention is to provide a small vibration jack that can confine the torsional vibration of the vibrator at the time of detecting the rotational angular velocity and vibrate in the original vibration mode.
  • the present invention includes a vibrator having one main surface and the other main surface, a support substrate that supports the vibrator, and a joining unit that joins the vibrator to the support substrate.
  • a vibrating gyroscope having a first support portion for supporting in a hollow state.
  • the joint is supported by the narrow first support in the gap, and the vibrator is joined to the joint, so that the first support is deformed by the vibration of the vibrator.
  • the vibrator can vibrate close to free vibration within the gap. Therefore, the vibration of the vibrator is confined and the vibrator can resonate in the original vibration mode.
  • the vibrator includes a vibrating body and an electrode formed on one main surface of the vibrating body, and has a base portion and two or more columnar shapes extending in parallel from the base portion. It can be formed into a tuning fork type having a leg portion.
  • the torsional vibration of the vibrator during rotation angular velocity detection is inhibited by connecting the vibrator to the support substrate as described above. Angular velocity can be detected.
  • a first hollow portion is formed in the outer frame portion at a position corresponding to the leg portion of the vibrator, and the first support is formed in the outer frame portion so as to extend in a direction intersecting the first support portion.
  • a second support part for supporting the part may be formed.
  • the first support part In response to the vibration of the vibrator, the first support part is deformed and the second support part is also deformed, and the vibrator becomes easier to vibrate.
  • the penetration effect is increased.
  • a long shape is formed on both outer sides of the air gap and the first hollow portion along the direction in which the leg portion of the vibrator extends.
  • a second space portion may be formed, and a third support portion for supporting the second support portion may be formed in the outer frame portion so as to extend in a direction intersecting with the second support portion.
  • the first support part and the second support part as well as the third support part are deformed, and the vibrator becomes easier to vibrate.
  • the vibration confinement effect is increased.
  • the outer frame portion extends from the second hollow portion to both longitudinal end portions and the center portion of the second space portion.
  • a third hollow part may be formed on the end side of the!
  • the second hollow part force is also directed toward the end of the outer frame part to form the third hollow part, so that the outer frame part is deformed in the opposite phase to the internal second support part and third support part. As the displacement of the support plate decreases, the vibration confinement effect increases.
  • the second support is applied to the third hollow portion at the center in the longitudinal direction of the second hollow portion.
  • a protrusion may be formed on the third support so as to extend from the part.
  • the protrusion formed on the third support portion suppresses deformation of the third support portion while the vibrator vibrates close to free vibration. As a result, the amount of displacement near the connecting portion between the outer frame portion and the third support portion is reduced, and the vibration confinement effect of the vibrator is increased.
  • a conductive adhesive can be used as a joining means.
  • a metal bump as a joining means.
  • a metal plate can be used as the support plate.
  • the multilayer substrate comprised by resin and a metal as a support plate.
  • various materials can be used for the joining means and the support plate.
  • the supporting plate further opposes the main surface to which the vibrator is bonded.
  • a circuit board having a recess having a wiring electrode formed therein disposed on the main surface side and an IC disposed to connect to the wiring electrode in the recess, and a support substrate disposed on the recess forming surface side
  • the electrodes of the vibrator and the IC may be electrically connected by adhering the opposing main surfaces of the circuit board and the support substrate with a conductive adhesive.
  • the vibration gyro having a large vibration confinement effect as described above, by further combining the circuit board and Ic, a vibration gyro capable of performing signal processing relating to drive detection of the vibrator can be obtained.
  • a vibration gyro capable of performing signal processing relating to drive detection of the vibrator can be obtained.
  • the vibration gyro can be lowered in height.
  • the vibration confinement effect of the vibrator can be increased, and a signal accurately corresponding to the rotational angular speed can be output. Therefore, the rotational angular velocity can be accurately detected by using this vibrating gyroscope.
  • the joining portion for joining the vibrator is formed in the gap inside the outer frame portion, a support plate that extends greatly from the vibrator joining portion to the outside is unnecessary. Therefore, the vibration gyro can be reduced in size.
  • a circuit board, IC, support plate and vibrator in an appropriate form, a low-vibration vibration gyro capable of signal processing can be obtained.
  • FIG. 1 is an exploded perspective view showing an example of a vibrating gyroscope according to the present invention.
  • FIG. 2 is a perspective view of a vibrator used in the vibration gyro shown in FIG.
  • FIG. 3 is a perspective view of the vibrator shown in FIG.
  • FIG. 4 is a plan view showing an example of a support plate used in the vibration gyro shown in FIG. 1.
  • FIG. 4 is a plan view showing an example of a support plate used in the vibration gyro shown in FIG. 1.
  • FIG. 5 is a circuit diagram showing a circuit for detecting a rotational angular velocity using the vibration gyro shown in FIG.
  • FIG. 6 (A) is an analysis diagram showing the fundamental vibration of the vibrating gyroscope shown in Fig. 1, and (B) is Coriolis. It is an analysis figure which shows the vibration of a vibration gyro when force acts.
  • FIG. 7 (A) is an analysis diagram showing the fundamental vibration during free vibration of the vibrator, and (B) is an analysis chart showing vibration of the vibrator when Coriolis force is applied.
  • FIG. 8 is a plan view showing another example of a support plate used in the vibration gyro according to the present invention.
  • FIG. 9 (A) is an analysis diagram showing the fundamental vibration of a vibration gyro using the support plate shown in FIG.
  • (B) is an analysis diagram showing the vibration of the vibrating gyroscope when Coriolica is working.
  • FIG. 10 is a plan view showing still another example of the support plate used in the vibration gyro according to the present invention.
  • FIG. 11 (A) is an analysis diagram showing the fundamental vibration of the vibration gyro using the support plate shown in FIG. 10, and (B) is an analysis diagram showing the vibration of the vibration gyro when Coriolica is activated.
  • FIG. 12 is a plan view showing another example of a support plate used in the vibration gyro according to the present invention.
  • FIG. 13 (A) is an analysis diagram showing the basic vibration of the vibration gyro using the support plate shown in FIG. 12, and (B) is an analysis diagram showing the vibration of the vibration gyro when Coriolica is activated.
  • FIG. 14 is a plan view showing still another example of the support plate used in the vibrating gyroscope of the present invention.
  • FIG. 15 (A) is an analysis diagram showing the basic vibration of the vibration gyro using the support plate shown in FIG. 14, and (B) is an analysis diagram showing the vibration of the vibration gyro when Coriolica is activated.
  • FIG. 16 is an exploded perspective view showing an example of a vibration gyro capable of performing signal processing.
  • FIG. 17 is a cross-sectional view of the vibrating gyroscope shown in FIG.
  • FIG. 18 is a perspective view showing an example of a conventional vibrating gyroscope.
  • FIG. 1 is an exploded perspective view showing an example of a vibrating gyroscope according to the present invention.
  • the vibrating gyroscope 10 includes a vibrator 12.
  • FIG. 2 is a perspective view of the vibrator 12 viewed from one side
  • FIG. 3 is a perspective view of the vibrator 12 viewed from the other side.
  • the vibrator 12 includes a base portion 12a, and is formed so that two square pillar-shaped leg portions 12b and 12c extend in parallel from the base portion 12a. Formed into a mold.
  • the vibrator 12 includes a vibrator 14.
  • the vibrating body 14 includes a tuning-fork type first piezoelectric substrate 16a and a second piezoelectric substrate 16b. These piezoelectric substrates 16a and 16b are bonded by epoxy resin or the like with the intermediate metal film 18 interposed therebetween.
  • the piezoelectric substrates 16a and 16b are polarized in opposite thickness directions as indicated by arrows in FIGS. Both of these vibrating bodies 14 A first electrode and a second electrode are formed on the main surface.
  • First electrodes 20a, 20b, and 20c are formed on the surface of the first piezoelectric substrate 16a.
  • the first electrodes 20a, 20b, 20c are divided into three in the width direction of the first piezoelectric substrate 16a and are formed to extend from the base portion 12a to the leg portions 12b, 12c. These first electrodes 20a, 20b, 20c are divided at the center portions in the width direction of the leg portions 12b, 12c.
  • first electrodes 20a, 2Ob, and 20c are divided into three parts, it is not necessary to form grooves in the first piezoelectric substrate 16a, but depending on the manufacturing method, the first electrodes 20a, Grooves may be formed in the first piezoelectric substrate 16a in the divided portions 20b and 20c. In that case, the groove is formed in a range that does not reach the intermediate metal film 18.
  • second electrodes 22a and 22b are formed on the surface of the second piezoelectric substrate 16b.
  • the second electrodes 22a and 22b are divided into two in the width direction of the second piezoelectric substrate 16b, and are formed so as to extend across the legs 12b and 12c from the base portion 12a.
  • the second electrodes 22a and 22bi are divided at the central portion of the base portion 12a.
  • a groove may or may not be formed in the second piezoelectric substrate 16b. When the groove is formed, it is formed within the reach of the intermediate metal film 18
  • FIG. 4 is a plan view showing the support plate 26a.
  • the support plate 26a includes a rectangular plate-shaped outer frame portion 28.
  • a gap portion 30 is provided inside the outer frame portion 28, and a joint portion 32 is formed in the gap portion 30.
  • the joint portion 32 is formed in a rectangular plate shape and is disposed on the same plane as the outer frame portion 28.
  • the joint portion 32 is supported by the first support portion 34 and connected to the outer frame portion 28 by the first support portion 34.
  • the width of the first support portion 34 is formed to be narrower than the width of the joint portion 32.
  • the base portion 12a of the vibrator 12 is joined to the joint portion 32 of the support plate 26a by a conductive adhesive 24 or the like.
  • the first electrodes 20 a, 20 b, and 20 c are joined to the joint portion 32 by three conductive adhesives 24.
  • Such bonding is employed, for example, when a pattern electrode connected to the first electrodes 20a, 20b, and 20c is formed on the support plate 26a.
  • the support plate 26a on which such a pattern electrode is formed include Cu, There are three layers of polyimide resin and Cu. Alternatively, a two-layer structure of Cu and polyimide resin, or a laminate of three layers of Cu, polyimide resin, and stainless steel may be used.
  • the first electrodes 20a, 20b, and 20c of the vibrator 12 are connected to the drive detection circuit via the pattern electrodes formed on the support plate 26a, and are input to the vibrator 12. The output signal is processed.
  • a metal plate such as Cu or stainless steel may be used as the support plate 26a.
  • the first electrodes 20a, 20b, 20c used for driving detection cannot be joined to the support plate 26a
  • the second electrodes 22a, 22b are joined to the joint portion 32 of the support plate 26a.
  • a drive detection circuit can be connected to the first electrodes 20a, 20b, 20c via, for example, lead wires.
  • which surface of the vibrator 12 is bonded to the support plate 26a is selected depending on the material of the support plate 26a, the connection method with the drive detection circuit, and the like. Further, the bonding between the vibrator 12 and the support plate 26a may be performed by, for example, a metal bump.
  • FIG. 5 is a circuit diagram showing a circuit for detecting the rotational angular velocity using the vibrating gyroscope 10.
  • the vibrator 12 is excited by, for example, self-excited driving. Therefore, in this vibrator 12, as shown in FIG. 5, an oscillation circuit 40 is connected between the first electrode 20b at the center of the vibrator 12 and the first electrodes 20a, 20c on both sides thereof. Is done.
  • the oscillation circuit 40 includes, for example, an amplifier circuit and a phase correction circuit.
  • the sum of the output signals of the first electrodes 20a and 20c on both sides is amplified by the amplifier circuit, further phase-corrected by the phase correction circuit, and input to the center first electrode 20b.
  • the first electrodes 20a, 20c on both sides are connected to the detection circuit 42.
  • the detection circuit 42 includes a differential circuit 44, and the differential circuit 44 outputs a difference between output signals of the first electrodes 20a and 20c on both sides.
  • the differential circuit 44 is connected to the synchronous detection circuit 46, and the output signal of the differential circuit 44 is detected.
  • an oscillation circuit 40 is connected to the synchronous detection circuit 46, and the output signal of the differential circuit 44 is detected in synchronization with the signal of the oscillation circuit 40.
  • the synchronous detection circuit 46 is connected to the integration circuit 48, and the output signal of the synchronous detection circuit 46 is converted into a DC signal.
  • the integration circuit 48 is connected to the DC amplification circuit 50, and the output signal of the integration circuit 48 is amplified.
  • the detection circuit 42 has a second electric power connected by the first electrodes 20a and 20c.
  • the poles 22a and 22b may be connected. In this case, since the electrodes on both surfaces of the vibrator 12 are connected to the drive circuit and the detection circuit, it is necessary to connect the electrodes to the drive circuit or the detection circuit using a lead wire or the like.
  • the oscillation circuit 40 causes the vibrator 12 to vibrate basically such that the two legs 12b and 12c are opened and closed. At this time, since the legs 12b and 12c are displaced in the same direction with respect to the polarization direction, the output signals from the first electrodes 20a and 20c are the same. Therefore, no signal is output from the differential circuit 44. In this state, when a rotational angular velocity is applied about the central axis between the leg portions 12b and 12c of the vibrator 12, Coriolis acts on the leg portions 12b and 12c in a direction perpendicular to the fundamental vibration.
  • the basic vibration is a vibration in which the leg portions 12b and 12c open and close each other
  • the Coriolis acting on these leg portions 12b and 12c are reversed. Therefore, the leg portions 12b and 12c are displaced in directions opposite to each other in a direction orthogonal to the direction of the fundamental vibration. Due to the displacement of the legs 12b and 12c, the output signals of the first electrodes 20a and 20c change in opposite phases, and a signal corresponding to the amount of change of these output signals is output from the differential circuit 44.
  • the output signal of the differential circuit 44 is detected by the synchronous detection circuit 46 in synchronization with the signal of the transmission circuit 40, and the positive part or the negative part of the signal is detected.
  • the output signal of the synchronous detection circuit 46 is converted into a DC signal by the integration circuit 48 and further amplified by the DC amplification circuit 50.
  • FIG. 6A is an analysis diagram showing the basic vibration of the vibrating gyroscope 10
  • FIG. 6B is an analysis diagram showing the vibration of the vibrating gyroscope 10 when Coriolica is activated.
  • FIG. Figure 7 (A) shows vibration.
  • FIG. 7 (B) is an analysis diagram showing the vibration of the vibrator 12 when Coriolica is operated.
  • the force that shows the state that the leg 12c penetrates the support plate 26a or the legs 12b, 12c overlap, which is not possible in practice. This is because the movement of each part is shown to be larger than the actual movement in order to make the movement easier. Actually, the vibration region of the vibrator 12 can be sufficiently secured if the conductive adhesive 24 has a small thickness and the movement of each part is small.
  • the vibration gyroscope 10 for example, it is inevitable that the vibration of the force vibrator 12 in which the vicinity of the four corners of the outer frame portion 28 of the support plate 26a is fixed is hindered by the support plate 26a. However, if the vibration is close to free vibration as shown in FIG. 7, the vibration of the vibrator 12 is not hindered so much and good characteristics can be obtained. As can be seen from Fig. 6, the fundamental vibration with no rotational angular velocity is similar to free vibration. Further, when the rotational angular velocity is applied to the vibrator 12, the first support portion 34 is twisted, and the vibrator 12 can vibrate close to free vibration.
  • the outer frame portion 28 is also deformed and the vibration of the vibrator 12 is inhibited by fixing the outer frame portion 28.
  • the vibration confinement effect due to torsion of the first support portion 34 is greater. Therefore, in this vibration gyroscope 10, the vibration of the vibrator 12 is not hindered compared to the conventional vibration gyroscope, and good characteristics can be obtained.
  • FIG. 8 is a plan view showing another support plate 26b used in the vibrating gyroscope 10. As shown in FIG.
  • the joint portion 32 is supported by the first support portion 34 in the gap portion 30, and on the other side in the longitudinal direction of the outer frame portion 28.
  • the support plate 26b in which the first hollow portion 60 having a rectangular shape is formed may be used.
  • the second support portion 62 is formed in a direction orthogonal to the first support portion 34. Both sides of the second support part 62 are connected to the inner side of the outer frame part 28, and the first support part 34 extends in the central force of the second support part 62, so that the joint part 32 is formed in the gap part 30. It is supported.
  • FIG. 9 (A) shows a vibrating gyroscope using a support plate 26b 1
  • FIG. 9B is an analysis diagram showing the vibration of the vibration gyroscope 10 when Coriolica is activated.
  • the second support portion 62 has a shape that is easily deformed, and accordingly, the first support portion 34 is twisted in response to the torsional vibration of the vibrator 12.
  • the second support portion 62 is deformed, and the vibrator 12 can further vibrate close to free vibration. Therefore, by using this support plate 26b, the vibration confinement effect of the vibrator 12 can be increased, and good characteristics can be obtained.
  • FIG. 10 is a plan view showing still another support plate 26 c used in the vibrating gyroscope 10.
  • long second hollow portions 64 are formed on both sides of the gap portion 30 and the first hollow portion 60 along the direction in which the legs 12b and 12c of the vibrator 12 extend.
  • the support plate 26c may be used.
  • the third support portion 66 extending in the longitudinal direction of the outer frame portion 28 from both ends of the second support portion 62 is formed. Both ends of the third support portion 66 are connected to the inside of the outer frame portion 28, and the second support portion 62 is connected to the center portion of the third support portion 66. Therefore, the second support portion 62 and the third support portion 66 are formed in an H shape, and the first support portion 34 extends to support the joint portion 32 in the central force of the second support portion 62. ing.
  • FIG. Fig. 11 (A) is an analysis diagram showing the basic vibration of the vibration gyro 10 using the support plate 26c
  • Fig. 11 (B) is an analysis diagram showing the vibration of the vibration gyro 10 when Coriolica is activated.
  • the first support 34 is twisted in response to the torsional vibration of the vibrator 12, and the H-shaped second support 62 and the third support
  • the part 66 is deformed, and the vibrator 12 can vibrate close to free vibration. Therefore, by using the support plate 26c, the vibration confinement effect of the vibrator 12 can be further increased, and good characteristics can be obtained.
  • the length of the second hollow portion 64 in the longitudinal direction is not particularly limited as long as the vibration confinement effect is obtained.
  • FIG. 12 is a plan view showing another support plate 26d used in the vibrating gyroscope 10. As shown in FIG. In the support plate having the first support portion 34, the second support portion 62, and the third support portion 66, FIG. As shown, the support plate 26d in which the third hollow portion 68 is formed by applying a force from the second hollow portion 64 to the end portion in the width direction of the outer frame portion 28 may be used.
  • the third hollow portion 68 is formed at both ends and the center portion of the second hollow portion 64. At both ends of the second hollow portion 64, the third hollow portion 68 is formed at a position corresponding to the end portion of the gap portion 30 and the end portion of the first hollow portion 60. Further, in the central portion of the second hollow portion 64, the third hollow portion is formed at a position corresponding to the connection portion between the second support portion 62 and the third support portion 66.
  • FIG. Fig. 13 (A) is an analysis diagram showing the basic vibration of the vibration gyro 10 using the support plate 26d
  • Fig. 13 (B) is an analysis diagram showing the vibration of the vibration gyro 10 when Coriolica is activated. is there.
  • each part of the support plate 26d is displaced in the same manner as the vibrating gyroscope 10 using the support plate 26d shown in FIG. 10, but the third hollow portion 68 is formed.
  • the longitudinal direction portion of the outer frame portion 28 can easily move in the opposite phase to the H-shaped second support portion 62 and the third support portion 66.
  • the amount of displacement of the entire support plate 26d can be reduced, and the vibration confinement effect of the vibrator 12 can be increased.
  • FIG. 14 is a plan view showing still another support plate 26e used in the vibrating gyroscope 10.
  • the projecting portion 70 extends from the third support portion 66 to the third hollow portion 68 at the center.
  • the support plate 26e may be formed.
  • the projecting portion 70 is formed so as to project from the second support portion 62 at a position corresponding to the connection portion between the second support portion 62 and the third support portion 66.
  • FIG. Fig. 15 (A) is an analysis diagram showing the basic vibration of the vibration gyro 10 using the support plate 26e
  • Fig. 15 (B) is an analysis diagram showing the vibration of the vibration gyro 10 when Coriolica is activated. is there.
  • the vibration confinement effect of the vibrator 12 can be further increased.
  • the vibration of the vibrator 12 is inhibited ⁇ and the vibration gyro 10 having a large vibration confinement effect can be obtained. Thereby, good characteristics can be obtained even when the rotational angular velocity is detected.
  • FIG. 16 is an exploded perspective view showing a vibrating gyroscope 80 capable of performing signal processing
  • FIG. 17 is a sectional view thereof.
  • a circuit board 82 is used in order to obtain such a vibrating gyroscope 80.
  • the circuit board 82 is formed in a rectangular plate shape, for example, and a rectangular recess 84 is formed on one surface side thereof.
  • a wiring electrode 86 is formed on the bottom surface of the recess 84.
  • a connection electrode 88 connected to the wiring electrode 86 is formed outside the recess 84.
  • An IC 90 is attached in the recess 84 of the circuit board 82.
  • the IC 90 includes an oscillation circuit 40, a detection circuit 42, and the like.
  • the IC 90 is connected to the wiring electrode 86.
  • a support plate 26e is attached on the circuit board 82.
  • a no-turn electrode 92 is formed from the joint portion 32 to the vicinity of the four corners of the outer frame portion 28.
  • the pattern electrode 92 is formed from the first electrodes 20a, 20c on both sides of the vibrator 12 to the corner on the gap 30 side, and the corner on the first hollow portion 60 side from the first electrode 20b in the center.
  • the pattern electrode 92 is formed up to the area.
  • the pattern electrode 92 is formed to wrap around the opposite surface of the support plate 26e.
  • the pattern electrode 92 that wraps around the opposite surface of the support plate 26e is connected to the connection electrode 88 of the circuit board 82 by the conductive adhesive 94.
  • a laminated plate having a three-layer structure of Cu, polyimide resin, and Cu is used as the support plate 26e.
  • the other support plates 26a to 26d described above may be used.
  • the vibrator 12 On the main surface side of the support plate 26e opposite to the main surface on the circuit board 82 side, the vibrator 12 is attached to the joint portion 32 by the conductive adhesive 24. As a result, the first electrode 20a, 20b, 20ci of the vibrator 12 is connected to the non-turn electrode 92 and further to the IC90.
  • the support plate 26e covers the recess 84 to which the IC 90 is attached. Further, a metallic cap 96 is attached so as to cover the resonator 12 and the support plate 26e.
  • the vibrator 12 is excited by the IC90, and the rotational angular velocity is added. It is processed by the signal force IC90 detected.
  • the IC 90 is mounted in the recess 84 of the circuit board 82, and the support plate 26e is mounted so as to cover it. Further, the vibrator 12 is supported by the support plate 26e by the conductive adhesive 24, and the first electrodes 20a, 20b, and 20c are connected to the IC 90.
  • the vibrator of the vibrating gyroscope in the present invention can be applied not only to a tuning fork type but also to other vibrators such as a sound piece type or a morph type.
  • the shape of the support portion or the hollow portion shown in the above embodiments may be another shape such as an ellipse, not limited to a rectangle.
  • the second electrodes 22a and 22b formed on the surface of the piezoelectric substrate 16b of the tuning fork vibrator 12 used in the above embodiment may be partially formed or completely removed. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

 回転角速度検出時における振動子のねじれ振動を閉じ込めて、本来の振動モードで振動させることができる小型の振動ジャイロを得る。  振動ジャイロ10は、基台部12aと脚部12bとからなる音叉型の振動子12を含む。振動子12は、導電性接着剤24で支持板26aに接合される。支持板26aは、外枠部28を含み、外枠部28の長手方向の一方側において、接合部32が形成される。接合部32は、空隙部30内に、第1の支持部34で支持される。第1の支持部34の幅は、接合部32の幅より狭く形成される。支持板26aの接合部32に、振動子12が接合される。

Description

明 細 書
振動ジャイロ
技術分野
[0001] この発明は、振動ジャイロに関し、特にたとえば、デジタルスチルカメラやデジタル ビデオカメラの手振れ防止用などとして用いられる振動ジャイロに関する。
背景技術
[0002] 図 18は、従来の振動ジャイロの一例を示す斜視図である。この振動ジャイロ 1は、 音叉型の振動子 2を含む。この振動子 2は、基台部 2aと、基台部 2aから延びるように 形成される 2つの脚部 2b, 2bとを含む。振動子 2は、積層された音叉型の 2つの圧電 体基板 3a, 3bを含む。積層された圧電体基板 3a, 3bは、互いに逆向きの厚み方向 に分極される。これらの圧電体基板 3a, 3bの間には、中間金属膜 4が形成される。さ らに、一方の圧電体基板 3aの主面上には、駆動用電極 5a, 5b, 5cが形成される。 駆動用電極 5a, 5b, 5cは、圧電体基板 3aの幅方向に 3分割して形成される。ここで 、駆動用電極 5a, 5b, 5cは、脚部 2b, 2bの長手方向に延びる分割部によって分割 される。また、他方の圧電体基板 3bの主面には、検出用電極 6a, 6bが形成される。 検出用電極 6a, 6bは、圧電体基板 3bの幅方向の中央部で 2分割して形成される。
[0003] 振動子 2は、支持板 7に取り付けられる。支持板 7は、たとえば長方形の板状に形成 され、その中央部に振動子 2の基台部 2aが接着される。基台部 2aの接着部分から両 側に離れた部分において、支持板 7には支持棒 8が形成される。支持棒 8は、振動子 2の脚部 2b, 2bに沿って、支持板 7の端部力 延びるように形成される。そして、支持 棒 8が支持されることにより、振動子 2がケースなどに固定される。
[0004] この振動ジャイロ 1では、中央部の駆動用電極 5bとその両側の駆動用電極 5a, 5c との間に発振回路が接続される。発振回路は、たとえば増幅回路と位相補正回路と を含む。また、検出用電極 6a, 6bは、検出回路に接続される。検出回路は、差動回 路、同期検波回路、積分回路、直流増幅回路などを含む。
[0005] 発振回路により、振動子 2には分極方向と直行する向きの電界が印加され、振動子 2の脚部 2b, 2bは、互いに開いたり閉じたりするように振動する。この基本振動のとき 、 2つの脚部 2b, 2bは、分極方向に対して同じ状態で振動するため、検出用電極 6a , 6bからは同じ信号が出力される。そのため、検出回路の差動回路力もは、信号が 出力されない。この状態で、振動ジャイロ 1の中心軸を中心として回転角速度が加わ ると、脚部 2b, 2bには、基本振動と直交する向きにコリオリカが働く。脚部 2b, 2bに 働くコリオリカは互いに逆向きであるため、 2つの脚部 2b, 2bは互いに逆方向に変位 する。この変位によって、検出用電極 6a, 6bからは、逆位相の信号が出力され、差 動回路から大きい信号が出力される。
[0006] 差動回路の出力信号は、同期検波回路で発振回路の信号に同期して検波され、 積分回路で直流信号に変換される。さらに、積分回路の出力信号は、直流増幅回路 で増幅される。そして、直流増幅回路の出力信号の大きさから回転角速度の大きさを 知ることができ、直流増幅回路の出力信号の極性から回転角速度の向きを知ること ができる。
[0007] このような振動ジャイロ 1の場合、回転角速度が加わると、振動子 2の 2つの脚部 2b , 2bには、基本振動と、それに直交するコリオリカによる振動とが組み合わさったねじ れ振動が発生する。このような振動子 2のねじれ振動により、支持板 7には 2つのノー ドラインが発生する。つまり、振動子 2のねじれ振動によって、支持板 7に振動子 2と の接合部をねじれの中心とした屈曲振動が発生する。この支持板 7の屈曲振動の 2 つのノードラインが、振動子 2の外側に現れる。したがって、支持板 7の屈曲振動に対 する 2つのノードライン上に支持棒 8を形成することにより、支持板 7の屈曲振動が阻 害されず、回転角速度が加わったときの振動子 2の振動も阻害されない支持を行なう ことができる。そのため、振動ジャイロ 1から、回転角速度に対応して、正確な信号を 取り出すことができる (特許文献 1参照)。
特許文献 1 :特開 2000— 292171号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、このような振動ジャイロでは、振動子接着部の外側における支持棒で 支持板を支持して ヽるため、支持板の屈曲振動のノードラインで支持板を支持して ヽ るとはいえ、支持板が自由に屈曲できるわけではなぐ回転角速度検出時における 振動子のねじれ振動の阻害を避けることはできない。そのため、振動子の振動周波 数がシフトして、本来の振動モードと異なる共振が支配的となり、正確な回転角速度 の検出が難しくなる。また、屈曲振動の 2つのノードライン付近まで支持板を延長する 必要があり、振動ジャイロ全体としてのサイズが大きくなるという問題もある。
[0009] それゆえに、この発明の主たる目的は、回転角速度検出時における振動子のねじ れ振動を閉じ込めて、本来の振動モードで振動させることができる小型の振動ジャィ 口を提供することである。
課題を解決するための手段
[0010] この発明は、一方主面および他方主面を有する振動子と、振動子を支持する支持 基板と、振動子を支持基板に接合するための接合手段とを含み、支持基板は、接合 手段で振動子が接合される接合部と、接合部と同一平面に形成される外枠部と、接 合部の幅より狭い幅に形成されて外枠部の内側における空隙部内に接合部を中空 に支持するための第 1の支持部とを有する、振動ジャイロである。
外枠部の内側において、空隙部内に幅の狭い第 1の支持部で接合部が支持され、 接合部に振動子が接合されることにより、振動子の振動で第 1の支持部が変形して、 空隙部内で振動子が自由振動に近い振動をすることができる。そのため、振動子の 振動が閉じ込められ、本来の振動モードで振動子を共振させることができる。
このような振動ジャイロにおいて、振動子は、振動体と、振動体の一方主面に形成 される電極とで構成され、かつ基台部と、基台部から平行に延びる 2つ以上の柱状の 脚部とを備えた音叉型に形成することができる。
音叉型の振動子を用いた振動ジャイロにお 、て、上述のような支持基板に振動子 を接合することにより、回転角速度検出時における振動子のねじれ振動が阻害され に《なり、正確に回転角速度の検出を行なうことができる。
[0011] また、振動子の脚部に対応する位置において外枠部に第 1の中空部が形成され、 第 1の支持部と交差する向きに延びるようにして外枠部内において第 1の支持部を支 持するための第 2の支持部が形成されてもよい。
振動子の振動に応じて、第 1の支持部が変形するとともに、第 2の支持部も変形し、 振動子がさらに振動しやすくなつて、自由振動に近い振動をすることができ、振動閉 じ込め効果が大きくなる。
[0012] また、第 2の支持部が形成された支持板を用いた振動ジャイロにおいて、振動子の 脚部が延びる向きに沿って、空隙および第 1の中空部の両外側に長尺状の第 2の中 空部が形成され、第 2の支持部と交差する向きに延びるようにして外枠部内において 第 2の支持部を支持するための第 3の支持部が形成されてもよい。
振動子の振動に応じて、第 1の支持部、第 2の支持部とともに、第 3の支持部も変形 し、振動子がさらに振動しやすくなつて、自由振動に近い振動をすることができ、振動 閉じ込め効果が大きくなる。
[0013] また、第 3の支持部が形成された支持板を用いた振動ジャイロにおいて、第 2の中 空部の長手方向の両端部およびその中央部に、第 2の中空部から外枠部の端部側 に向カゝつて第 3の中空部が形成されてもよ!、。
第 2の中空部力も外枠部の端部側に向力つて第 3の中空部を形成することにより、 外枠部が内部の第 2の支持部や第 3の支持部と逆位相で変形しやすくなり、支持板 の変位量が小さくなつて、振動閉じ込め効果が大きくなる。
[0014] また、第 3の中空部が形成された支持板を用いた振動ジャイロにおいて、第 2の中 空部の長手方向の中央部における第 3の中空部に向力つて、第 2の支持部から延長 するようにして第 3の支持部に突出部が形成されてもょ 、。
第 3の支持部に形成された突出部により、振動子が自由振動に近い振動をしなが ら、第 3の支持部の変形が抑えられる。それにより、外枠部と第 3の支持部との接続部 付近の変位量が小さくなつて、振動子の振動閉じ込め効果が大きくなる。
[0015] これらの振動ジャイロにおいて、接合手段として導電性接着剤を使用することがで きる。
また、接合手段として金属バンプを使用してもよい。
さらに、支持板としては、金属板を使用することができる。
また、支持板として樹脂と金属とで構成された多層基板を使用してもよい。 このように、接合手段および支持板の材料としては、種々のものを用いることができ る。
[0016] これらの振動ジャイロにおいて、さらに、支持板の振動子を接合した主面と対向する 主面側に配置される内部に配線電極が形成された凹部を有する回路基板と、凹部 内の配線電極に接続するように配置される ICとを含み、凹部形成面側に支持基板が 配置され、回路基板と支持基板との対向する主面どうしを導電性接着剤で接着する ことにより、振動子の電極と ICとが電気的に接続されるようにしてもよい。
上述のような振動閉じ込め効果の大きい振動ジャイロにおいて、さらに回路基板と I cとを組み合わせることにより、振動子の駆動検出に関する信号処理を行なうことが できる振動ジャイロとすることができる。ここで、回路基板に凹部を形成し、この凹部内 の配線電極に ICを接続し、その上に振動子を接合した支持板を配置することにより、 振動ジャイロを低背化することができる。 発明の効果
[0017] この発明によれば、振動子の振動閉じ込め効果を大きくすることができ、回転角速 度に正確に対応した信号を出力させることができる。そのため、この振動ジャイロを用 いることにより、正確に回転角速度を検出することができる。また、振動子を接合する 接合部は、外枠部の内側において空隙部内に形成されるため、振動子接合部から 外側に大きく延びる支持板は不要である。そのため、振動ジャイロを小型化すること ができる。また、回路基板、 IC、支持板および振動子を適当な形で組み込むことによ り、信号処理ができる低背化された振動ジャイロを得ることができる。
[0018] この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う 以下の発明を実施するための最良の形態の説明から一層明ら力となろう。
図面の簡単な説明
[0019] [図 1]この発明の振動ジャイロの一例を示す分解斜視図である。
[図 2]図 1に示す振動ジャイロに用いられる振動子を一方面側力 みた斜視図である
[図 3]図 2に示す振動子を他方面側力もみた斜視図である。
[図 4]図 1に示す振動ジャイロに用いられる支持板の一例を示す平面図である。
[図 5]図 1に示す振動ジャイロを用いて回転角速度を検出するための回路を示す回 路図である。
[図 6] (A)は図 1に示す振動ジャイロの基本振動を示す解析図であり、 (B)はコリオリ 力が働いたときの振動ジャイロの振動を示す解析図である。
[図 7] (A)は振動子の自由振動時における基本振動を示す解析図であり、 (B)はコリ オリ力が働いたときの振動子の振動を示す解析図である。
[図 8]この発明の振動ジャイロに用いられる支持板の他の例を示す平面図である。
[図 9] (A)は図 8に示す支持板を用いた振動ジャイロの基本振動を示す解析図であり
、 (B)はコリオリカが働いたときの振動ジャイロの振動を示す解析図である。
[図 10]この発明の振動ジャイロに用いられる支持板のさらに他の例を示す平面図で ある。
[図 11] (A)は図 10に示す支持板を用いた振動ジャイロの基本振動を示す解析図で あり、 (B)はコリオリカが働いたときの振動ジャイロの振動を示す解析図である。
[図 12]この発明の振動ジャイロに用いられる支持板の別の例を示す平面図である。
[図 13] (A)は図 12に示す支持板を用いた振動ジャイロの基本振動を示す解析図で あり、 (B)はコリオリカが働いたときの振動ジャイロの振動を示す解析図である。
[図 14]この発明の振動ジャイロの用いられる支持板のさらに別の例を示す平面図で ある。
[図 15] (A)は図 14に示す支持板を用いた振動ジャイロの基本振動を示す解析図で あり、 (B)はコリオリカが働いたときの振動ジャイロの振動を示す解析図である。
[図 16]信号処理を行なうことができる振動ジャイロの一例を示す分解斜視図である。
[図 17]図 16に示す振動ジャイロの断面図である。
[図 18]従来の振動ジャイロの一例を示す斜視図である。
符号の説明
10, 80 振動ジャイロ
12 振動子
14 振動体
20a, 20b, 20c 第 1の電極
22a, 22b 第 2の電極
24 導電性接着剤
26a〜26e 支持板 30 空隙部
32 接合部
34 第 1の支持部
60 第 1の中空部
62 第 2の支持部
64 第 2の中空部
66 第 3の支持部
68 第 3の中空部
70 突出部
82 回路基板
84 凹部
86 配線電極
88 拔 極
90 IC
92 パターン電極
94 導電性接着剤
96 キャップ
発明を実施するための最良の形態
[0021] 図 1は、この発明の振動ジャイロの一例を示す分解斜視図である。振動ジャイロ 10 は、振動子 12を含む。図 2は振動子 12を一方面側力もみた斜視図であり、図 3は振 動子 12を他方面側からみた斜視図である。振動子 12は、図 2および図 3に示すよう に、基台部 12aを含み、基台部 12aから 2つの四角柱状の脚部 12b, 12cが平行して 延びるように形成され、全体として音叉型に形成される。
[0022] 振動子 12は、振動体 14を含む。振動体 14は、音叉型の第 1の圧電体基板 16aお よび第 2の圧電体基板 16bを含む。これらの圧電体基板 16a, 16bは、中間金属膜 1 8を挟んでエポキシ榭脂等により接合される。圧電体基板 16a, 16bは、図 2および図 3の矢印に示すように、互いに逆向きの厚み方向に分極される。この振動体 14の両 主面に、第 1の電極および第 2の電極が形成される。
[0023] 第 1の圧電体基板 16aの表面には、第 1の電極 20a, 20b, 20cが形成される。第 1 の電極 20a, 20b, 20cは、第 1の圧電体基板 16aの幅方向に 3分割され、基台部 12 aから脚部 12b, 12cに渡って延びるように形成される。これらの第 1の電極 20a, 20b , 20cは、脚部 12b, 12cの幅方向の中央部で分割される。なお、第 1の電極 20a, 2 Ob, 20cが 3分割されていれば、第 1の圧電体基板 16aに溝が形成される必要はな いが、製造方法によっては、第 1の電極 20a, 20b, 20cの分割部において、第 1の圧 電体基板 16aに溝が形成されてもよい。その場合、溝は、中間金属膜 18まで届かな い範囲で形成される。
[0024] また、第 2の圧電体基板 16bの表面には、第 2の電極 22a, 22bが形成される。第 2 の電極 22a, 22bは、第 2の圧電体基板 16bの幅方向に 2分割され、基台部 12aから 脚咅 12b, 12c【こ渡って延びるよう【こ形成される。これらの第 2の電極 22a, 22biま、 基台部 12aの中央部で分割される。この場合においても、第 2の電極 22a, 22b力分 割されていれば、第 2の圧電体基板 16bに溝が形成されていても、形成されていなく てもよい。溝が形成される場合には、中間金属膜 18まで届力ない範囲で形成される
[0025] この振動子 12は、たとえば接合手段としての導電性接着剤 24によって、支持板 26 aに接合される。図 4は、支持板 26aを示す平面図である。支持板 26aは、図 4に示す ように、長方形板状の外枠部 28を含む。外枠部 28の長手方向の一方側において、 外枠部 28の内側に空隙部 30が設けられ、この空隙部 30内に接合部 32が形成され る。接合部 32は、長方形板状に形成され、外枠部 28と同一平面に配置される。接合 部 32は第 1の支持部 34で支持され、第 1の支持部 34によって外枠部 28に接続され る。第 1の支持部 34の幅は、接合部 32の幅より狭く形成される。
[0026] 振動子 12の基台部 12aは、導電性接着剤 24などによって、支持板 26aの接合部 3 2に接合される。図 1においては、 3つの導電性接着剤 24によって、第 1の電極 20a, 20b, 20cが接合部 32に接合されている。このような接合は、たとえば支持板 26aに 第 1の電極 20a, 20b, 20cに接続されるパターン電極が形成されている場合に採用 される。このようなパターン電極が形成された支持板 26aの例としては、たとえば Cu、 ポリイミド榭脂、 Cuの 3層構造の積層板などがある。また、 Cuとポリイミド榭脂の 2層構 造や、 Cu、ポリイミド榭脂、ステンレス鋼の 3層構造の積層板であってもよい。このよう な支持板 26aを用いた場合、支持板 26aに形成されたパターン電極を介して振動子 12の第 1の電極 20a, 20b, 20cが駆動検出回路に接続され、振動子 12への入出力 信号の処理が行なわれる。
[0027] なお、支持板 26aとして、 Cuやステンレス鋼などの金属板を用いてもょ 、。この場合 、駆動検出用として用いられる第 1の電極 20a, 20b, 20cを支持板 26aに接合でき ないので、第 2の電極 22a, 22bが支持板 26aの接合部 32に接合される。そして、第 1の電極 20a, 20b, 20cには、たとえばリード線などを介して駆動検出回路を接続す ることができる。このように、振動子 12のどちらの面を支持板 26aに接合するのかに ついては、支持板 26aの材質や駆動検出回路との接続方法などによって選択される 。また、振動子 12と支持板 26aとの接合は、たとえば金属バンプなどによって行なわ れてもよい。
[0028] 図 5は、振動ジャイロ 10を用いて回転角速度を検出するための回路を示す回路図 である。振動子 12は、たとえば自励振駆動により励振される。そのため、この振動子 1 2においては、図 5に示すように、振動子 12の中央部の第 1の電極 20bとその両側の 第 1の電極 20a, 20cとの間に、発振回路 40が接続される。発振回路 40は、たとえば 増幅回路と位相補正回路とを含む。ここで、両側の第 1の電極 20a, 20cの出力信号 の和が増幅回路で増幅され、さらに位相補正回路で位相補正されて、中央の第 1の 電極 20bに入力される。
[0029] また、両側の第 1の電極 20a, 20cは、検出回路 42に接続される。検出回路 42は 差動回路 44を含み、差動回路 44から両側の第 1の電極 20a, 20cの出力信号の差 が出力される。さらに、差動回路 44は同期検波回路 46に接続され、差動回路 44の 出力信号が検波される。ここで、同期検波回路 46には、発振回路 40が接続され、発 振回路 40の信号に同期して、差動回路 44の出力信号が検波される。また、同期検 波回路 46は積分回路 48に接続され、同期検波回路 46の出力信号が直流信号に変 換される。さらに、積分回路 48は直流増幅回路 50に接続され、積分回路 48の出力 信号が増幅される。なお、検出回路 42には、第 1の電極 20a, 20cでなぐ第 2の電 極 22a, 22bを接続してもよい。この場合、振動子 12の両面の電極が、駆動回路およ び検出回路に接続されるため、リード線などを用いて電極を駆動回路または検出回 路に接続する必要がある。
[0030] 発振回路 40によって、振動子 12は、 2つの脚部 12b, 12cが開いたり閉じたりする ようにして基本振動する。このとき、脚部 12b, 12cは、分極方向に対して同じ向きの 変位となるため、第 1の電極 20a, 20cからの出力信号は同じである。そのため、差動 回路 44からは、信号が出力されない。この状態で、振動子 12の脚部 12b, 12cの間 の中心軸を中心として回転角速度が加わると、脚部 12b, 12cには、基本振動に直 交する向きにコリオリカが働く。基本振動は、脚部 12b, 12cが互いに開閉する振動 であるため、これらの脚部 12b, 12cに働くコリオリカは逆向きとなる。そのため、脚部 12b, 12cは、基本振動の方向と直交する向きで、互いに逆向きに変位する。この脚 部 12b, 12cの変位により、第 1の電極 20a, 20cの出力信号は、逆位相に変化し、 差動回路 44からこれらの出力信号の変化量に対応した信号が出力される。
[0031] 差動回路 44の出力信号は、同期検波回路 46で、発信回路 40の信号に同期して、 信号の正部分または負部分が検波される。同期検波回路 46の出力信号は、積分回 路 48で直流信号に変換され、さらに直流増幅回路 50で増幅される。
[0032] 回転角速度が大きいとき、コリオリカは大きくなつて、脚部 12b, 12cの変位量は大 きくなる。そのため、差動回路 44の出力信号は大きくなり、直流増幅回路 50の出力 信号も大きくなる。したがって、直流増幅回路 50の出力信号の大きさから、回転角速 度の大きさを知ることができる。また、回転角速度の方向が反対になると、コリオリカの 方向も反対となり、差動回路 44の出力信号は逆位相となる。そのため、回転角速度 の方向が反対になれば、直流増幅回路 50の出力信号の極性は逆となる。したがって 、直流増幅回路 50の出力信号の極性から、回転角速度の向きを知ることができる。
[0033] 図 1に示す振動ジャイロ 10において、有限要素法により各部の動きを求め、その結 果を図 6に示した。図 6 (A)は振動ジャイロ 10の基本振動を示す解析図であり、図 6 ( B)はコリオリカが働いたときの振動ジャイロ 10の振動を示す解析図である。また、比 較のため、外枠部がなぐ振動子 12が空中に浮いた状態で自由振動する場合につ いて、有限要素法により各部の動きを求め、その結果を図 7に示した。図 7 (A)は振 動子 12の自由振動時における基本振動を示す解析図であり、図 7 (B)はコリオリカ が働いたときの振動子 12の振動を示す解析図である。なお、これらの解析図におい ては、脚部 12cが支持板 26aを突き抜けていたり、脚部 12b, 12cが重なっていたりし て、実際にはあり得ない状態が示されている力 これは各部の動きをわ力りやすくす るために、各部の動きを実際より大きく示しているためである。実際には、各部の動き は小さぐ導電性接着剤 24の厚みがあれば、十分に振動子 12の振動領域を確保で きるものである。
[0034] 振動ジャイロ 10においては、たとえば支持板 26aの外枠部 28の 4隅部近傍が固定 される力 振動子 12の振動が支持板 26aによって阻害されることは避けられない。し 力しながら、図 7に示すような自由振動に近い振動ができる状態であれば、振動子 1 2の振動はあまり阻害されておらず、良好な特性を得ることができる。図 6からわ力るよ うに、回転角速度が加わっていない基本振動においては、自由振動に近い振動をし ている。また、振動子 12に回転角速度が加わったとき、第 1の支持部 34がねじれて、 振動子 12は自由振動に近い振動をすることができる。
[0035] ここで、外枠部 28も変形し、外枠部 28が固定されることにより振動子 12の振動は阻 害されるものと考えられるが、図 18に示すように、振動子の振動が直接板状の支持 板に伝達される振動ジャイロに比べて、第 1の支持部 34のねじれによる振動閉じ込 め効果が大きい。そのため、この振動ジャイロ 10では、従来の振動ジャイロに比べて 、振動子 12の振動が阻害されず、良好な特性を得ることができる。
[0036] また、図 8は、振動ジャイロ 10に用いられる他の支持板 26bを示す平面図である。
図 8に示すように、外枠部 28の長手方向の一方側において、空隙部 30内に第 1の支 持部 34で接合部 32を支持し、外枠部 28の長手方向の他方側に四角形状の第 1の 中空部 60が形成された支持板 26bを用いてもよい。第 1の中空部 60を形成すること により、第 1の支持部 34と直交する向きに、第 2の支持部 62が形成される。第 2の支 持部 62の両側は、外枠部 28の内側に接続され、第 2の支持部 62の中央部力も第 1 の支持部 34が延びて、空隙部 30内に接合部 32が支持されている。
[0037] このような支持板 26bを用いた振動ジャイロ 10について、有限要素法により各部の 動きを求め、その結果を図 9に示した。図 9 (A)は支持板 26bを用いた振動ジャイロ 1 0の基本振動を示す解析図であり、図 9 (B)はコリオリカが働いたときの振動ジャイロ 1 0の振動を示す解析図である。このような支持板 26bを用いた場合、第 2の支持部 62 が変形しやすい形状となっているため、振動子 12のねじれ振動に対応して、第 1の 支持部 34にねじれが発生するとともに、第 2の支持部 62が変形し振動子 12がさらに 自由振動に近い振動をすることができる。したがって、この支持板 26bを用いることに より、振動子 12の振動閉じ込め効果を大きくすることができ、良好な特性を得ることが できる。
[0038] また、図 10は、振動ジャイロ 10に用いられるさらに他の支持板 26cを示す平面図で ある。図 10に示すように、振動子 12の脚部 12b, 12cの延びる向きに沿って、空隙部 30および第 1の中空部 60の両側に、長尺状の第 2の中空部 64が形成された支持板 26cを用いてもよい。第 2の中空部 64が形成されることにより、第 2の支持部 62の両 端から外枠部 28の長手方向に延びる第 3の支持部 66が形成される。第 3の支持部 6 6の両端は、外枠部 28の内側に接続され、第 3の支持部 66の中央部に第 2の支持 部 62が接続される。したがって、第 2の支持部 62と第 3の支持部 66とで H字状に形 成され、第 2の支持部 62の中央部力も第 1の支持部 34が延びて接合部 32を支持し ている。
[0039] このような支持板 26cを用いた振動ジャイロ 10について、有限要素法により各部の 動きを求め、その結果を図 11に示した。図 11 (A)は支持板 26cを用いた振動ジャィ 口 10の基本振動を示す解析図であり、図 11 (B)はコリオリカが働いたときの振動ジャ イロ 10の振動を示す解析図である。このような支持板 26cを用いた場合、振動子 12 のねじれ振動に対応して、第 1の支持部 34にねじれが発生するとともに、 H字状の第 2の支持部 62および第 3の支持部 66が変形し、振動子 12が自由振動に近い振動を することができる。したがって、この支持板 26cを用いることにより、振動子 12の振動 閉じ込め効果をさらに大きくすることができ、良好な特性を得ることができる。なお、第 2の中空部 64の長手方向の長さは、振動閉じ込め効果が得られる長さであれば、特 に限定されるものではない。
[0040] 図 12は、振動ジャイロ 10に用いられる別の支持板 26dを示す平面図である。第 1の 支持部 34、第 2の支持部 62および第 3の支持部 66を有する支持板において、図 12 に示すように、第 2の中空部 64から外枠部 28の幅方向の端部に向力つて、第 3の中 空部 68が形成された支持板 26dとしてもよい。第 3の中空部 68は、第 2の中空部 64 の両端および中央部に形成される。第 2の中空部 64の両端においては、第 3の中空 部 68は、空隙部 30の端部および第 1の中空部 60の端部に対応した位置に形成され る。また、第 2の中空部 64の中央部においては、第 3の中空部は、第 2の支持部 62と 第 3の支持部 66の接続部に対応した位置に形成される。
[0041] このような支持板 26dを用いた振動ジャイロ 10について、有限要素法により各部の 動きを求め、その結果を図 13に示した。図 13 (A)は支持板 26dを用いた振動ジャィ 口 10の基本振動を示す解析図であり、図 13 (B)はコリオリカが働 、たときの振動ジャ イロ 10の振動を示す解析図である。このような支持板 26dを用いた場合、支持板 26d の各部は、図 10に示す支持板 26dを用いた振動ジャイロ 10と同様に変位するが、第 3の中空部 68が形成されていることにより、外枠部 28の長手方向部分が、 H字状の 第 2の支持部 62および第 3の支持部 66と逆位相で動きやすくなる。それにより、支持 板 26d全体の変位量を少なくすることができ、振動子 12の振動閉じ込め効果を大き くすることがでさる。
[0042] また、図 14は、振動ジャイロ 10に用いられるさらに別の支持板 26eを示す平面図で ある。第 2の中空部 64に第 3の中空部 68を形成した支持板において、図 14に示すよ うに、中央の第 3の中空部 68に向力つて、第 3の支持部 66から突出部 70が形成され た支持板 26eとしてもよい。この突出部 70は、第 2の支持部 62と第 3の支持部 66との 接続部に対応した位置において、第 2の支持部 62から延長して突出するように形成 される。
[0043] このような振動板 26eを用いた振動ジャイロ 10について、有限要素法により各部の 動きを求め、その結果を図 15に示した。図 15 (A)は支持板 26eを用いた振動ジャィ 口 10の基本振動を示す解析図であり、図 15 (B)はコリオリカが働 、たときの振動ジャ イロ 10の振動を示す解析図である。このような支持板 26eを用いた場合、 H字状の第 2の支持部 62および第 3の支持部 66の変位量が抑えられ、第 3の支持部 66と外枠 部 28との接続部分近傍の変位量も小さくなり、振動子 12の振動閉じ込め効果をさら に大きくすることができる。 [0044] このように、これらの支持板 26a〜26eを用いることにより、振動子 12の振動が阻害 されに《なり、振動閉じ込め効果の大きい振動ジャイロ 10を得ることができる。それ により、回転角速度を検出する際にも、良好な特性を得ることができる。
[0045] さらに、図 16および図 17に示すように、振動子 12の駆動検出のための信号処理を 行なう回路を設けた振動ジャイロ 80とすることができる。図 16は信号処理を行うことが できる振動ジャイロ 80を示す分解斜視図であり、図 17はその断面図である。このよう な振動ジャイロ 80を得るために、回路基板 82が用いられる。回路基板 82は、たとえ ば長方形の板状に形成され、その一方面側に四角形の凹部 84が形成される。この 凹部 84の底面に、配線電極 86が形成される。凹部 84の外側には、配線電極 86に 接続される接続電極 88が形成される。
[0046] 回路基板 82の凹部 84内には、 IC90が取り付けられる。 IC90には、発振回路 40や 検出回路 42などが形成されている。この IC90は、配線電極 86に接続される。さらに 、回路基板 82上には、たとえば支持板 26eが取り付けられる。支持板 26eには、接合 部 32から外枠部 28の 4隅の近傍まで、ノターン電極 92が形成される。たとえば、振 動子 12の両側の第 1の電極 20a, 20cから空隙部 30側の隅部までパターン電極 92 が形成され、中央部の第 1の電極 20bから第 1の中空部 60側の隅部までパターン電 極 92が形成される。支持板 26eの 4隅部近傍においては、パターン電極 92は支持 板 26eの反対面に回り込むように形成される。この支持板 26eの反対面に回り込んだ パターン電極 92が、導電性接着剤 94によって、回路基板 82の接続電極 88に接続 される。ここでは、支持板 26eとして、 Cu、ポリイミド榭脂、 Cuの 3層構造の積層板が 用いられている。なお、この振動ジャイロ 80において、上述の他の支持板 26a〜26d を用いてもよいことは言うまでもない。
[0047] 支持板 26eの回路基板 82側の主面と対向する主面側において、接合部 32には、 導電性接着剤 24によって、振動子 12が取り付けられる。それにより、振動子 12の第 1の電極 20a, 20b, 20ciま、ノターン電極 92【こ接続され、さら【こ IC90【こ接続される 。この支持板 26eによって、 IC90が取り付けられた凹部 84が覆われる。さらに、振動 子 12および支持板 26eを覆うようにして、金属性のキャップ 96が取り付けられる。
[0048] この振動ジャイロ 80では、 IC90によって振動子 12が励振され、回転角速度が加わ ることによって検出された信号力 IC90で処理される。ここで、 IC90は、回路基板 82 の凹部 84内に取り付けられ、それを覆うようにして支持板 26eが取り付けられている。 また、導電性接着剤 24によって、振動子 12が支持板 26eに支持されるとともに、第 1 の電極 20a, 20b, 20cが IC90に接続される。このような構成とすることにより、信号 処理を行なうことができ、かつ低背化された振動ジャイロ 80を得ることができる。
[0049] このような振動ジャイロ 80において、支持板 26eが Cuやステンレス鋼などの単板で 形成される場合、その表面にパターン電極を形成することができないため、第 2の電 極 22a, 22b力 S支持板 26eに接合される。そして、第 1の電極 20a, 20b, 20cと回路 基板 82の配線電極 86との接続は、リード線などによって行なわれる。このような構成 とした場合においても、回路基板 82に凹部 84を形成し、この凹部 84内に IC90を取 り付け、 IC90を覆うように支持板 26eを取り付けることにより、振動ジャイロ 80の低背 化が可能である。
[0050] このような低背化された振動ジャイロ 80において、上述のような支持板 26a〜26eを 用いることにより、振動子 12の振動を閉じ込めることができ、振動ジャイロ 80に加わつ た回転角速度を正確に検出することができる。
[0051] なお、本発明における振動ジャイロの振動子としては、音叉型のみならず音片型ゃ ュ-モルフ型等の他の振動子にも適用することができる。また、上記実施例で示した 支持部あるいは中空部の形状は長方形に限ったものではなぐ楕円等の別の形状で も構わない。さらに、上記実施例で使用した音叉型振動子 12の圧電体基板 16bの表 面に形成した第 2の電極 22a, 22bは部分的に形成されていても、完全に除去されて いても構わない。

Claims

請求の範囲
[1] 一方主面および他方主面を有する振動子、
前記振動子を支持する支持基板、および
前記振動子を前記支持基板に接合するための接合手段を含み、
前記支持基板は、前記接合手段で前記振動子が接合される接合部と、前記接合 部と同一平面に形成される外枠部と、前記接合部の幅より狭い幅に形成されて前記 外枠部の内側における空隙部内に前記接合部を中空に支持するための第 1の支持 部とを有する、振動ジャイロ。
[2] 前記振動子は、振動体と、前記振動体の一方主面に形成される電極とで構成され 、かつ基台部と、前記基台部から平行に延びる 2つ以上の柱状の脚部とを備えた音 叉型に形成される、請求項 1に記載の振動ジャイロ。
[3] 前記振動子の前記脚部に対応する位置において前記外枠部に第 1の中空部が形 成され、前記第 1の支持部と交差する向きに延びるようにして前記外枠部内において 前記第 1の支持部を支持するための第 2の支持部が形成された、請求項 2に記載の 振動ジャイロ。
[4] 前記振動子の前記脚部が延びる向きに沿って、前記空隙部および前記第 1の中空 部の両外側に長尺状の第 2の中空部が形成され、前記第 2の支持部と交差する向き に延びるようにして前記外枠部内において前記第 2の支持部を支持するための第 3 の支持部が形成された、請求項 3に記載の振動ジャイロ。
[5] 前記第 2の中空部の長手方向の両端部およびその中央部に、前記第 2の中空部か ら前記外枠部の端部側に向力つて第 3の中空部が形成された、請求項 4に記載の振 動ジャイロ。
[6] 前記第 2の中空部の長手方向の中央部における前記第 3の中空部に向力つて、前 記第 2の支持部から延長するようにして前記第 3の支持部に突出部が形成された、請 求項 5に記載の振動ジャイロ。
[7] 前記接合手段として導電性接着剤を使用した、請求項 1ないし請求項 6のいずれか に記載の振動ジャイロ。
[8] 前記接合手段として金属バンプを使用した、請求項 1な 、し請求項 6の 、ずれかに 記載の振動ジャイロ。
[9] 前記支持板として金属板を使用した、請求項 1な 、し請求項 8の 、ずれかに記載の 振動ジャイロ。
[10] 前記支持板として樹脂と金属とで構成された多層基板を使用した、請求項 1ないし 請求項 8の ヽずれかに記載の振動ジャイロ。
[11] さらに、前記支持板の前記振動子を接合した主面と対向する主面側に配置される 内部に配線電極が形成された凹部を有する回路基板と、前記凹部内において前記 配線電極に接続するように配置される ICとを含み、
前記凹部形成面側に前記支持基板が配置され、前記回路基板と前記支持基板と の対向する主面どうしを導電性接着剤で接着することにより、前記振動子と前記 ICと が電気的に接続された、請求項 1ないし請求項 10のいずれかに記載の振動ジャイロ
PCT/JP2006/316340 2006-04-26 2006-08-21 振動ジャイロ WO2007125612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800541561A CN101416027B (zh) 2006-04-26 2006-08-21 振动陀螺仪
JP2007505295A JP3969459B1 (ja) 2006-04-26 2006-08-21 振動ジャイロ
EP06796603A EP2012087B1 (en) 2006-04-26 2006-08-21 Vibration gyro
US12/235,721 US7805995B2 (en) 2006-04-26 2008-09-23 Vibrating gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006122326 2006-04-26
JP2006-122326 2006-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/235,721 Continuation US7805995B2 (en) 2006-04-26 2008-09-23 Vibrating gyroscope

Publications (1)

Publication Number Publication Date
WO2007125612A1 true WO2007125612A1 (ja) 2007-11-08

Family

ID=38556213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316340 WO2007125612A1 (ja) 2006-04-26 2006-08-21 振動ジャイロ

Country Status (6)

Country Link
US (1) US7805995B2 (ja)
EP (1) EP2012087B1 (ja)
JP (1) JP3969459B1 (ja)
KR (1) KR101042101B1 (ja)
CN (1) CN101416027B (ja)
WO (1) WO2007125612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137649A (ja) * 2009-12-25 2011-07-14 Tdk Corp 圧電振動デバイス
JP2014089049A (ja) * 2012-10-29 2014-05-15 Tdk Corp 角速度センサ
JP2018159674A (ja) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 振動デバイス、角速度センサー、電子機器および移動体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816273B2 (ja) * 2006-06-12 2011-11-16 株式会社デンソー ジャイロセンサ
JP4626858B2 (ja) * 2008-03-31 2011-02-09 Tdk株式会社 角速度センサ素子
CN102132128A (zh) 2008-09-02 2011-07-20 株式会社村田制作所 音叉振荡器和其制造方法以及角速度传感器
WO2012081294A1 (ja) * 2010-12-16 2012-06-21 株式会社村田製作所 音片型圧電振動子及び音叉型圧電振動子
CN103256926B (zh) * 2012-02-21 2016-08-24 北京自动化控制设备研究所 一种石英音叉止挡结构
JP2013178179A (ja) * 2012-02-28 2013-09-09 Seiko Epson Corp センサー素子、センサーデバイスおよび電子機器
JP6003150B2 (ja) * 2012-03-28 2016-10-05 セイコーエプソン株式会社 振動片およびジャイロセンサー並びに電子機器および移動体
US8991250B2 (en) * 2012-09-11 2015-03-31 The United States Of America As Represented By Secretary Of The Navy Tuning fork gyroscope time domain inertial sensor
CN103411596B (zh) * 2013-08-26 2016-01-13 重庆邮电大学 光子自旋角速率传感器及系统
EP3265885A4 (en) * 2015-03-03 2018-08-29 Prenav Inc. Scanning environments and tracking unmanned aerial vehicles
CN110934375A (zh) * 2019-12-17 2020-03-31 浙江工贸职业技术学院 一种规划路线的导航鞋

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119884A (en) * 1976-04-01 1977-10-07 Seiko Instr & Electronics Ltd Support for piezo-vibrator unit
JPS5458395A (en) * 1977-10-19 1979-05-11 Matsushima Kogyo Kk Piezooelectric vibrator
JPH1123285A (ja) * 1997-07-08 1999-01-29 Alps Electric Co Ltd 振動子の支持構造
JP2000292171A (ja) 1999-04-08 2000-10-20 Murata Mfg Co Ltd 振動ジャイロ
JP2001210673A (ja) * 2000-01-28 2001-08-03 Seiko Epson Corp 圧電デバイスの製造方法
JP2004289478A (ja) * 2003-03-20 2004-10-14 Seiko Epson Corp 圧電振動片の接合構造および圧電デバイスとその製造方法ならびに圧電デバイスを利用した携帯電話装置および圧電デバイスを利用した電子機器
JP2005260727A (ja) * 2004-03-12 2005-09-22 Daishinku Corp 圧電振動素子の支持構造および圧電発振器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069434A (en) * 1974-12-27 1978-01-17 Kabushiki Kaisha Suwa Seikosha Quartz crystal oscillator
JPH10197254A (ja) * 1997-01-07 1998-07-31 Alps Electric Co Ltd 振動子の支持装置
JPH1194557A (ja) * 1997-09-12 1999-04-09 Murata Mfg Co Ltd 振動ジャイロ
KR100398364B1 (ko) * 2001-05-24 2003-09-19 삼성전기주식회사 수정진동자의 제조방법 및 그로부터 제조된 수정진동자
JP3698094B2 (ja) * 2001-11-29 2005-09-21 株式会社村田製作所 振動ジャイロおよびそれを用いた電子装置
CA2426515A1 (en) * 2002-04-26 2003-10-26 Ashland Inc. Process for preparing detailed foundry shapes and castings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119884A (en) * 1976-04-01 1977-10-07 Seiko Instr & Electronics Ltd Support for piezo-vibrator unit
JPS5458395A (en) * 1977-10-19 1979-05-11 Matsushima Kogyo Kk Piezooelectric vibrator
JPH1123285A (ja) * 1997-07-08 1999-01-29 Alps Electric Co Ltd 振動子の支持構造
JP2000292171A (ja) 1999-04-08 2000-10-20 Murata Mfg Co Ltd 振動ジャイロ
JP2001210673A (ja) * 2000-01-28 2001-08-03 Seiko Epson Corp 圧電デバイスの製造方法
JP2004289478A (ja) * 2003-03-20 2004-10-14 Seiko Epson Corp 圧電振動片の接合構造および圧電デバイスとその製造方法ならびに圧電デバイスを利用した携帯電話装置および圧電デバイスを利用した電子機器
JP2005260727A (ja) * 2004-03-12 2005-09-22 Daishinku Corp 圧電振動素子の支持構造および圧電発振器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2012087A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137649A (ja) * 2009-12-25 2011-07-14 Tdk Corp 圧電振動デバイス
JP2014089049A (ja) * 2012-10-29 2014-05-15 Tdk Corp 角速度センサ
JP2018159674A (ja) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 振動デバイス、角速度センサー、電子機器および移動体
JP2021152546A (ja) * 2017-03-23 2021-09-30 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
JP7205570B2 (ja) 2017-03-23 2023-01-17 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
JP2023040031A (ja) * 2017-03-23 2023-03-22 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
JP7501607B2 (ja) 2017-03-23 2024-06-18 セイコーエプソン株式会社 振動デバイス、電子機器および移動体

Also Published As

Publication number Publication date
US7805995B2 (en) 2010-10-05
JPWO2007125612A1 (ja) 2009-09-10
EP2012087B1 (en) 2012-02-15
EP2012087A4 (en) 2011-01-12
EP2012087A1 (en) 2009-01-07
KR101042101B1 (ko) 2011-06-16
JP3969459B1 (ja) 2007-09-05
CN101416027B (zh) 2011-07-20
US20090007666A1 (en) 2009-01-08
KR20080109041A (ko) 2008-12-16
CN101416027A (zh) 2009-04-22

Similar Documents

Publication Publication Date Title
JP3969459B1 (ja) 振動ジャイロ
JPWO2007091417A1 (ja) 振動子モジュール
WO1998007005A1 (fr) Detecteur de vitesse angulaire
JP4668739B2 (ja) 振動ジャイロ
JP3953017B2 (ja) 振動ジャイロ用圧電振動子
JP5093405B2 (ja) 振動ジャイロ素子
KR100527351B1 (ko) 진동 자이로스코프 및 각속도 센서
JP4295233B2 (ja) 振動ジャイロ用音叉型振動子
JP5050590B2 (ja) 角速度センサ及び電子機器
JP2009074996A (ja) 圧電振動ジャイロ
JP2010141387A (ja) 圧電振動子、圧電デバイス
JP5144004B2 (ja) 慣性センサ素子
JP2003028648A (ja) 振動ジャイロおよびそれを用いた電子装置
JP4256322B2 (ja) 振動ジャイロの振動子搭載構造
JP2005114631A (ja) 角速度センサ
JP2009128351A (ja) ジャイロセンサ振動体
JP2008076076A (ja) 加速度センサ
JP2013096882A (ja) 物理量検出素子、物理量検出装置、および電子機器
JP3371609B2 (ja) 振動ジャイロ
JPH09250931A (ja) 音片形振動ジャイロ
JP2005114423A (ja) 角速度センサ
JP5282715B2 (ja) 力検出ユニット及び力検出装置
JP3993602B2 (ja) 振動ジャイロの音叉型振動子搭載構造
JPH09304081A (ja) 圧電振動角速度計用振動子
JPH1062179A (ja) 振動ジャイロ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007505295

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006796603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680054156.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE