JP2008076076A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2008076076A
JP2008076076A JP2006252475A JP2006252475A JP2008076076A JP 2008076076 A JP2008076076 A JP 2008076076A JP 2006252475 A JP2006252475 A JP 2006252475A JP 2006252475 A JP2006252475 A JP 2006252475A JP 2008076076 A JP2008076076 A JP 2008076076A
Authority
JP
Japan
Prior art keywords
tuning fork
acceleration sensor
vibration
weight
base end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006252475A
Other languages
English (en)
Inventor
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006252475A priority Critical patent/JP2008076076A/ja
Publication of JP2008076076A publication Critical patent/JP2008076076A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】3軸方向または少なくとも2軸方向の加速度を測定する高精度、高分解能の加速度センサを提供する。
【解決手段】加速度センサ1は、直交する3つの振動取付面21〜23を有するベースと、互いに直交する3つの素子接合面31〜33を有する所定質量の立方体からなるウエイト3と、3つの双音叉圧電振動素子4〜6とを有する。各双音叉圧電振動素子は、それぞれ異なる共振周波数となるように形成し、それぞれ一方の基端部41a、51a、61aをベースの振動取付面に結合し、且つ他方の基端部41b、51b、61bを対応するウエイトの素子接合面に結合し、それぞれ別個の発振器より励振する。
【選択図】図1

Description

本発明は、圧電振動素子を用いて複数の軸方向に即ち2次元または3次元で加速度を検出するための加速度センサに関する。
従来から、対象物の移動や振動、姿勢の変化などを測定しまたは検出するために、加速度センサが広く使用されている。例えば、マス部と静電力の印加により共振振動する平行ビーム振動体とを支持基台に支持した振動型加速度センサが知られている(例えば、特許文献1を参照)。この加速度センサは、マス部に作用する加速度を、それによる平行ビーム振動体のビーム間隔の変化に基づく平行ビーム振動体の共振振動数の変化として直接検出することにより、伝達によるロスの発生を防止して、加速度を高精度且つ信頼性よく検出する。また、平行ビーム振動体と支持基台とを実質的に点接続することにより、熱応力の影響を回避して良好な温度特性を実現している。
また、2層の圧電体の各表面と中間部とに電極を有する梁の基端部をベース部材に固定して片持ち梁とし、且つ先端部に錘を固定した加速度センサが知られている(例えば、特許文献2を参照)。この梁の各電極に交流電圧を印加して横振動を発生させた状態で、梁の軸方向に加速度が加わると、錘の貫性力によって梁に作用する軸力Pが変化するので、梁の共振周波数から軸力が分かり、加速度の大きさを検出することができる。
加速度を2軸方向に検出するために、フレームに直線上に対向配置された1組の振動板を支持体に保持し、且つこの支持体を直線方向に摺動自在に保持し、この1組の振動板と直交するように別の1組の振動板を直線上に対向配置した圧電加速度センサが知られている(例えば、特許文献3を参照)。加速度が、つづら折り状に形成された保持部を介して支持体に伝搬されると、振動板が自在に伸縮してその固有振動周波数が変化するので、その共振周波数の変化率から、温度変化の影響を受けずに加速度を高精度で検出することができる。
他方、2個の音叉型振動素子をその振動腕を突き合わせる向きに接続するように、平行な2本の振動ビームとそれらの両端を結合する基端部とからなる構造の双音叉振動子を用いたセンサが知られている(例えば、特許文献4を参照)。この双音叉振動子は、その両端から圧縮方向又は引張方向の力を作用させると、その周波数は増加または減少するように変化する。
更に、双音叉振動子は、高いQ値及び良好な直線性の周波数特性を有し、しかも印加される力に対する周波数の変化率が大きく、再現性及びヒステリシスに優れ、速い十分な応答速度をもつことが報告されている(例えば、非特許文献1を参照)。特に、双音叉圧電振動子を励振するための駆動電極は、振動ビームの長辺に対する変位の2次微係数が零となる点を境に電極を分割付着し、該分割点において相隣り合う電極に印加する電位が互いに逆になるようにしたものが知られている(例えば、特許文献5を参照)。この駆動電極は、振動ビームへの駆動力の向きと変位の向きとが一致するので、振動ビームの励振が容易になり且つ振動子のQ値がより高くなり、感度が向上する。
特開平9−257830号公報 特開2001−133476公報 特開2005−249446公報 特開2000−74673公報 特開昭60−39911号公報 栗原正雄、外3名、「双音叉振動子を用いた水晶圧力センサ」、東洋通信機技報、東洋通信機株式会社、1990年、No.46、p.1−8
しかしながら、上述した従来の加速度センサは、次のような問題点を有する。上記特許文献1に記載の加速度センサは、シリコン材料で形成されているため、平行ビームを振動させるために、その表面に圧電材料や電気回路からなる別個の励振手段必要がある。しかも、一般にシリコン材料は周波数温度特性が悪く、別個の回路手段などで温度補償しなければならない。また、この加速度センサは加速度を1軸方向しか検出することができず、複数の軸方向例えば3軸方向に検出するためには3個必要であり、装置全体が大型化すると共に、その組み付け構造が複雑になる。
上記特許文献2に記載の加速度センサは、圧電体からなる梁を電気信号で励振させる点において、上記非特許文献1に記載のものより優れているが、同様に加速度を1軸方向しか検出することができない。そのため、複数の軸方向に加速度を検出するためには、振動梁を複数組設ける必要があり、装置全体が大型化すると共に、その組み付け構造が複雑になるという問題がある。
また、上記特許文献3に記載の圧電加速度センサは、1枚のフレームにそれぞれ2個の振動板を直線状に対向配置したものを2組形成し、且つこれらを互いに直交させて配置するので、センサ素子の占有面積が非常に大きく、装置全体を大型化させるという問題がある。また、加速度を3次元で測定するためには、少なくとも2個のセンサ素子が必要であり、センサ全体が極めて大型化する。更に、センサ素子は、複雑な形状の振動板や保持部を含む全ての構成要素が1枚の基板にパターン加工されているので、その製造及び取扱いが難しく、製造コストが増大する。 他方、双音叉圧電振動子は、上述したようにその両端に作用する荷重に対する周波数の変化が良好な直線性を示すので高い分解能が得られ、センサとして使用するのに適している。
本願発明者は先の特願2006−003631において2次元または3次元で加速度を検出する加速度センサを提案した。しかしながら、先願に基づき3次元加速度センサを複数台試作し、その性能を精密に測定したところ、加速度の値に若干の変動、即ち測定精度が設計精度に到らないものがあるという問題があった。
そこで本発明は、上述した問題点に鑑みてなされたものであり、その目的は、複数の軸方向、好ましくは直交する3軸方向の加速度を測定し、それにより少なくとも2次元、好ましくは3次元における加速度の測定を可能にする高精度且つ高分解能の加速度センサを提供することにある。
上記目的を達成するために、本発明の加速度センサは、平行に延長する1対の振動ビーム、振動ビームの両端にそれぞれ結合する基端部、及び振動ビームの表面に形成された駆動電極からなる複数の応力感応素子と、複数の応力感応素子に対応する複数の互いに異なる向きの素子接合面を有する所定質量のウエイトと、複数の応力感応素子に対応する複数の、ウエイトの各素子接合面にそれぞれ対応し、且つ、互いに異なる向きの素子取付面を有するベースとを備え、各応力感応素子が、それぞれ一方の基端部をベースの素子取付面に結合し、且つ、他方の基端部を対応するウエイトの素子接合面に結合すると共に複数の応力感応素子の共振周波数をそれぞれ異ならせるようにした。
このように構成すると各応力感応素子の周波数が異なるため、ウエイトを介して互いに干渉することが大幅に低減され、設計精度にほぼ近い精度が得られるという効果がある。
本発明の加速度センサは、複数の応力感応素子の共振周波数を少なくとも10kHz以上相互に異ならせるようにした。
このように構成すると振動する複数の応力感応素子相互の干渉が大幅に低減され、加速度センサの精度が向上する。
本発明の加速度センサは、複数の応力感応素子の基端部とウエイトの複数の素子接合面との結合を硬度の柔らかい接着剤で接着固定するようにした。
このように構成すると振動する複数の応力感応素子相互の干渉が大幅に低減され、加速度センサの精度が向上する。
本発明の加速度センサは、複数の応力感応素子の基端部とウエイトの複数の素子接合面との結合を接着剤で接着固定し、基端部の上に振動吸収物質を塗布するようにした。
このように構成すると振動する複数の応力感応素子相互の干渉が大幅に低減され、加速度センサの精度が向上する。
以下に、本発明の好適な実施例について、添付図面を用いて詳細に説明する。
図1は、本発明を適用した加速度センサの実施例の基本的構成を概略的に示している。加速度センサ1は、ベース2とウエイト3と3つの双音叉型水晶振動素子(応力感応素子)4〜6とを有する。ベース2は、立方形を作るように3つの正方形の壁部を互いに直交させて形成され、XYZ方向に互いに直交する3つの取付面21〜23を有する。ウエイト3は、所定の質量を有する立方体からなり、互いに直交する3つの接合面31〜33を有する。ベース2及びウエイト3は、例えばアルミニウム合金などの適当な材料を用いて形成される。
双音叉型水晶振動素子4〜6は、それぞれ長手方向の両端に設けられる基端部41a、41b、51a、51b、61a、61bと、それらの間を平行に延長する1対の振動ビーム42、52、62とを有する。前記各双音叉型水晶振動素子は、それぞれ別個の発振回路(図示せず)に接続されている。
各双音叉型水晶振動素子4〜6は、一方の基端部41a、51a、61aをそれぞれベース2の素子取付面21〜23に接着剤で結合して、該ベースの前記各壁部に垂直に支持されている。前記各双音叉型水晶振動素子の他方の基端部41b、51b、61bは、それぞれ前記各素子取付面に対応するウエイト3の素子接合面31〜33に接着剤で結合されている。これにより、ウエイト3が、直交するXYZ3方向から双音叉型水晶振動素子4〜6によって浮遊した状態に支持される。
このような加速度センサ1の構造は、前記双音叉型水晶振動素子がその長手方向には高い強度を有し、且つ直交する3方向からバランス良く支持するので、十分な機械的強度を発揮する。従って、ウエイト3に比較的大きな加速度が作用しても、各双音叉型水晶振動素子が撓んだり容易に壊れることはない。また、各双音叉型水晶振動素子に撓みが生じないことから、その周囲に余分なスペースを設ける必要が無く、全体をコンパクトに構成でき、装置の小型化を図ることができる。
各双音叉型水晶振動素子4〜6の振動ビーム42、52、62には、その上下主面及び両側面に駆動電極が、従来の音叉型振動素子と同様に電極膜を被着し、且つエッチングすることによりパターニングされている。双音叉型水晶振動素子4〜6の駆動電極は、同一のパターンを有するので、図2(A)〜(D)を用いて双音叉型水晶振動素子4についてのみ説明する。
本実施例の駆動電極は、各基端部41a、41b側部分とそれらの間の中央部分とに分割して設けられる。振動ビーム42a、42bの一方の基端部41a側には、図2(B)に示すように、その上下主面に第1主面電極43a、43bが、両側面に第1側面電極44a、44bがそれぞれ形成されている。振動ビーム42a、42bの他方の基端部41b側には、図2(C)に示すように、その上下主面に第2主面電極45a、45bが、両側面に第2側面電極46a、46bがそれぞれ形成されている。振動ビーム42a、42bの中央部分には、図2(D)に示すように、その上下主面に第3主面電極47a、47bが、両側面に第3側面電極48a、48bがそれぞれ形成されている。
一方の振動ビーム42aにおいて、上下各第1主面電極43aは、それぞれ異なる一方の第3側面電極48aに電気的に接続され、更に連続してそれぞれ異なる一方の第2主面電極45aに電気的に接続されている。各第1側面電極44aは、それぞれ異なる一方の第3主面電極47aに電気的に接続され、更に連続してそれぞれ異なる一方の第2側面電極46aに電気的に接続されている。他方の振動ビーム42bにおいて、上下各第1主面電極43bは、それぞれ異なる一方の第3側面電極48bに電気的に接続され、更に連続してそれぞれ異なる一方の第2主面電極45bに電気的に接続されている。各第1側面電極44bは、それぞれ異なる一方の第3主面電極47bに電気的に接続され、更に連続してそれぞれ異なる一方の第2側面電極46bに電気的に接続されている。
一方の基端部41aの上面には、長手方向の端縁側に左右1対の引出電極49a、49bが形成されている。一方の引出電極49bは、振動ビーム42aの上側の第1主面電極43aと振動ビーム42bの一方の第1側面電極44bとに接続されている。他方の引出電極49aは、振動ビーム42bの上側の第1主面電極43bと振動ビーム42aの一方の第1側面電極44aとに接続されている。
他方の基端部41bでは、その上面において振動ビーム42aの一方の第2側面電極46aと振動ビーム42bの上側の第2主面電極45bとが互いに電気的に接続されている。基端部41bの下面では、図示していないが、振動ビーム42bの下側の第2主面電極45bと振動ビーム42aの他方の第2側面電極44aとが互いに電気的に接続されている。
このようにして、引出電極49bから上側の第1主面電極43a、一方の第3側面電極48a、下側の第2主面電極45aに至り、一方の第2側面電極46bから上側の第3主面電極47b、一方の第1側面電極44bに至り、下側の第1主面電極43aから他方の第3側面電極48a、上側の第2主面電極45aに至り、更に他方の第2側面電極46bから下側の第3主面電極47b、他方の第1側面電極44bを経て引出電極49bに戻る第1駆動電極と、引出電極49aから一方の第1側面電極44a、上側の第3主面電極47aから一方の第2側面電極46aに至り、下側の第2主面電極45bから一方の第3側面電極48b、上側の第1主面電極43bに至り、他方の第1側面電極44aから下側の第3主面電極47a、他方の第2側面電極46aに至り、更に上側の第2主面電極45bから他方の第3側面電極48b、下側の第1主面電極44bを経て引出電極49aに戻る第2駆動電極とからなる前記駆動電極が形成される。引出電極49a、49b間に所定の交流電圧を印加すると、隣接する前記第1駆動電極と第2駆動電極間で電界が交互に発生し、両振動ビーム42a、42bは互いに逆向きに即ち近接または離反する向きに所定の周波数で屈曲振動する。
各双音叉型水晶振動素子4〜6を前記発振回路により個別に所定の周波数で振動させた状態で、加速度センサ1に外力が作用してウエイト3に加速度が加わると、その大きさ及び向きに対応して、前記各双音叉型水晶振動素子には、その長手方向に圧縮方向または引張方向の力が作用する。双音叉型水晶振動素子4〜6の周波数は、圧縮方向の力が作用すると減少し、引張方向の力が作用すると増加するように変化する。従って、各双音叉型水晶振動素子4〜6における周波数の変化量を検出して、XYZ方向それぞれに作用する荷重を算出し、それらを綜合してウエイト3に作用した加速度の大きさ及び向きを3次元で決定することができる。
ここで、双音叉型圧電振動素子の特性、即ち外力Fを加えたときの共振周波数について説明しておく。
外力Fを2本の振動ビームに加えたときの共振周波数
Figure 2008076076
を求めると、
Figure 2008076076
但し K:基本波モードによる定数(=0.0458)で表され、断面2次モーメント
Figure 2008076076
より、(1)式は、次式のように変形することができる。

Figure 2008076076
但し
Figure 2008076076

Figure 2008076076
以上から双音叉振動素子に作用する力Fを圧縮方向のとき負、引張り方向を正としたとき、力Fと共振周波数
Figure 2008076076
の関係は力Fが圧縮で共振周波数
Figure 2008076076
が減少し、引張りでは増加する。また応力感度
Figure 2008076076
は振動ビームの
Figure 2008076076
の2乗に比例する。
なお、本実施形態では応力感応素子として双音叉型水晶振動素子を用いるようにしているが、これはあくまでも一例であり、引張・圧縮応力に反応する素子、例えば、他のATカット圧電振動素子、SAW素子、音叉型圧電振動素子等を用いることもできる。
上述したように、双音叉型水晶振動素子4〜6は優れた圧縮−周波数特性を有するので、本発明の加速度センサ1は、高精度且つ高分解能で加速度を検出することが可能である。しかも、水晶振動素子は優れた温度周波数特性を有するので、温度補償のために別個の回路手段などを設ける必要が無く、構成を簡単にし、且つ安価に製造することができる。また、精密な測定が可能なため、例えば3次元水準器など広範な用途に適用することができる。
図1に示した加速度センサを複数台試作し、その性能を精密に測定したところ、加速度の値に若干の変動、即ち測定精度が設計精度に到らないものがあることが分かった。加速度センサ1は双音叉圧電振動素子4、5、6を同一形状に、つまり共振周波数をほぼ同一の周波数で製作すると製作が容易であるし、コスト低減にもなるのでそのように試作した。加速度測定時には、本加速度センサ1の双音叉圧電振動素子4、5、6は電源をオンした発振回路と接続され、発振状態で用いられる。このとき、例えば双音叉圧電振動素子4の振動エネルギーがウエイト3に漏洩し、ウエイト3を介して他の双音叉圧電振動素子5、6に影響を及ぼすことが上記精度劣化の一因である考えられる。
そこで、ウエイト3を介して双音叉圧電振動素子4、5、6が互いに影響されないように双音叉圧電振動素子4、5、6の共振周波数をそれぞれ異ならせたことにした。一般的に圧電振動子は使用する振動モード以外に高調波振動モード、他の振動モードやその高次モード等多くの不要モードが励振される。双音叉圧電振動素子4、5、6の共振周波数を少なくとも互いに10kHz以上異なるように設定すると、当該双音叉圧電振動素子が他の双音叉圧電振動素子から受ける影響は大幅に低減され、加速度センサの測定精度が改善される。
あるいは、双音叉圧電振動素子4、5、6の相互の干渉を避けるためには、双音叉圧電振動素子4、5、6の基端部41b、51b、61bとウエイト3の素子接合面31、32、33との結合を硬度の柔らかい接着剤で固着することにより、該接着剤が緩衝材となり双音叉圧電振動素子4、5、6からウエイト3への振動漏洩が大幅に低減され、加速度センサの測定精度が改善される。
または、図3は加速度センサ1をZ軸方向からみた双音叉圧電振動素子とウエイトとの要部を示す図であって、音叉圧電振動素子4、5、6の基端部41b、51b、61bと、ウエイト3の素子接合面31、32、33とを接着剤で固着した後に、基端部41b、51b、61bに振動吸収物質25を塗布する。基端部41b、51b、61bを形成する水晶材のインピーダンスと、振動吸収物質25のインピーダンスとのミスマッチにより、双音叉圧電振動素子4、5、6の漏洩振動エネルギーはほぼ吸収され、双音叉圧電振動素子4、5、6相互の干渉は大幅に低減され、加速度センサの測定精度が改善される。
本発明の加速度センサは、2次元即ち平面内の加速度を高精度に検出するために用いることができる。図4及び図5は、そのような本発明の変形例の要部を平面で示したものである。図4の変形例は図1の実施例と同様に立方体のウエイト10を有する。ウエイト10は、その上下面中央に設けられた支柱11により上下方向から支持されている。前記ウエイトの直交する2側面には、これらを素子接合面10a、10bとして、それぞれ双音叉型水晶振動素子12、13がその一方の基端部を接着剤で固定することにより結合されている。双音叉型水晶振動素子12、13の他方の基端部は、例えば図1の実施例と同様の構造を有するベースに固定されている。この例においても、双音叉型水晶振動素子12、13の共振周波数を互いに異ならせることにより、ウエイト10を介しての双音叉型水晶振動素子12、13の相互の干渉は大幅に低減される。また、素子接合面10a、10bと、双音叉型水晶振動素子12、13の基端部との接合を硬度の柔らかい接着剤にて接着、固定することにより、双音叉型水晶振動素子12、13の相互の干渉は低減される。
また、素子接合面10a、10bと、双音叉型水晶振動素子12、13の基端部との接合に接着剤を用い、該基端部の上に振動吸収物質を塗布しても同様な効果がある。
ウエイト10にXY方向の加速度が作用すると、双音叉型水晶振動素子12、13の周波数が増加または減少するように変化する。各双音叉型水晶振動素子12、13における周波数の変化量から、XY方向それぞれに作用する荷重を算出し、それらを綜合してウエイト10に作用した加速度の大きさ及び向きを2次元で決定することができる。
図5の変形例は、互いに120°の角度をもって向きが異なる3つの素子接合面14a、14b、14cを有するウエイト14を使用する。ウエイト14は、その上下面中央に設けられた支柱15により上下方向から支持されている。各素子接合面14a、14b、14cには、それぞれ双音叉型水晶振動素子16〜18がその一方の基端部を接着剤で固定することにより結合されている。双音叉型水晶振動素子16〜18の他方の基端部は、素子接合面14a、14b、14cに対応する向きの素子取付面を有する適当なベースに固定されている。この例においても、双音叉型水晶振動素子16、17、18の共振周波数を互いに異ならせることにより、ウエイト14を介しての双音叉型水晶振動素子16、17、18の相互の干渉は大幅に低減される。また、素子接合面14a、14b、14cと、双音叉型水晶振動素子12、13の基端部との接合を硬度の柔らかい接着剤にて接着、固定することにより、双音叉型水晶振動素子16、17、18の相互の干渉は低減される。また、素子接合面14a、14b、14cと、双音叉型水晶振動素子16、17、18の基端部との接合に接着剤を用い、該基端部の上に振動吸収物質を塗布しても同様な効果がある。
同様に、ウエイト14にXY平面内の加速度が作用すると、双音叉型水晶振動素子16〜18の周波数が増加または減少するように変化する。各双音叉型水晶振動素子16〜18における周波数の変化量からXY平面内で3方向それぞれに作用する荷重を算出し、それらを綜合してウエイト14に作用した加速度の大きさ及び向きを2次元で決定することができる。この変形例では、平面内の3方向から加速度を検出するので、図4の変形例よりも精密な測定が可能である。
図4及び図5の実施例では、ウエイト10、14を上下方向の支柱11、15によりXY平面内に支持し、ウエイト10、14への加速度が各双音叉型水晶振動素子12、13、16〜18にその長手方向以外の方向から作用しないようにした。しかしながら、加速度センサに加わる外力及び加速度がそれほど大きくない場合には、上側の支柱11、15を省略しても良い。
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものでなく、その技術的範囲において様々に変形・変更を加えて実施することができる。例えば、双音叉型水晶振動素子4〜6に代えて、水晶以外の従来から公知の様々な圧電材料からなる双音叉型振動素子を使用することができる。また、上記各実施例では、ウエイトの外面に各双音叉型振動素子の基端部を貼り付けたが、ウエイトの外面に複数のスリットを形成し、その中に各双音叉型振動素子の基端部を差し込み、且つ接着剤で固定することもできる。
本発明による加速度センサの基本的構成を示す斜視図。 (A)図は図1の双音叉型水晶振動素子を示す斜視図、(B)〜(D)はそれぞれそのIIB−IIB線、IIC−IIC線、IID−IID線における断面図。 双音叉圧電振動素子とウエイトとの固定部上の振動吸収物質を示した図。 本発明による加速度センサの変形例の要部を示す部分断面図。 本発明による加速度センサの別の変形例の要部を示す部分断面図。
符号の説明
1…加速度センサ、2…ベース、3、10、14…ウエイト、4〜6、12、13、16〜18…双音叉型水晶振動素子、11、15…支柱、10a、10b、14a〜14c、31〜33…素子接合面、21〜23…素子取付面、25…振動吸収物質、41a、41b、51a、51b、61a、61b…基端部、42、42a、42b、52、62…振動ビーム、43a、43b、45a、45b、47a、47b…第1〜第3主面電極、44a、44b、46a、46b、48a、48b…第1〜第3側面電極、49a、49b…引出電極

Claims (4)

  1. 平行に延長する1対の振動ビーム、前記振動ビームの両端にそれぞれ結合する基端部、及び前記振動ビームの表面に形成された駆動電極からなる複数の応力感応素子と、
    前記複数の応力感応素子に対応する複数の互いに異なる向きの素子接合面を有する所定質量のウエイトと、
    前記複数の応力感応素子に対応する複数の、前記ウエイトの各素子接合面にそれぞれ対応し、且つ、互いに異なる向きの素子取付面を有するベースとを備え、
    前記各応力感応素子がそれぞれ一方の前記基端部を前記ベースの前記素子取付面に結合し且つ他方の前記基端部を対応する前記ウエイトの前記素子接合面に結合すると共に、前記複数の応力感応素子の共振周波数をそれぞれ異ならせたことを特徴とする加速度センサ。
  2. 前記複数の応力感応素子の共振周波数を少なくとも10kHz以上相互に異ならせたことを特徴とする請求項1に記載の加速度センサ。
  3. 前記複数の応力感応素子の基端部と前記ウエイトの複数の素子接合面との結合を硬度の柔らかい接着剤で接着固定したことを特徴とする請求項1または2に記載の加速度センサ。
  4. 前記複数の応力感応素子の基端部と前記ウエイトの複数の素子接合面との結合を接着剤で接着固定し、前記基端部の上に振動吸収物質を塗布したことを特徴とする請求項1乃至3のいずれか1項に記載の加速度センサ。
JP2006252475A 2006-09-19 2006-09-19 加速度センサ Withdrawn JP2008076076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252475A JP2008076076A (ja) 2006-09-19 2006-09-19 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252475A JP2008076076A (ja) 2006-09-19 2006-09-19 加速度センサ

Publications (1)

Publication Number Publication Date
JP2008076076A true JP2008076076A (ja) 2008-04-03

Family

ID=39348324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252475A Withdrawn JP2008076076A (ja) 2006-09-19 2006-09-19 加速度センサ

Country Status (1)

Country Link
JP (1) JP2008076076A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289092A (zh) * 2018-12-06 2020-06-16 海南北斗天绘科技有限公司 一种腔体式三轴振动检测装置
KR20220084504A (ko) * 2020-12-14 2022-06-21 한국생산기술연구원 외팔보부를 이용한 가속도계

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289092A (zh) * 2018-12-06 2020-06-16 海南北斗天绘科技有限公司 一种腔体式三轴振动检测装置
KR20220084504A (ko) * 2020-12-14 2022-06-21 한국생산기술연구원 외팔보부를 이용한 가속도계
KR102526932B1 (ko) * 2020-12-14 2023-04-28 한국생산기술연구원 외팔보부를 이용한 가속도계

Similar Documents

Publication Publication Date Title
JP4757026B2 (ja) 加速度センサの特性調整方法
CN102947674B (zh) 用于角速率传感器的mems结构
JP3973742B2 (ja) 振動型ジャイロスコープ
EP2012087B1 (en) Vibration gyro
JP2009042240A (ja) 加速度センサ
JP2010171966A (ja) 屈曲振動片及び電子部品
US8850896B2 (en) Physical quantity detector
JP4668739B2 (ja) 振動ジャイロ
JP2007163244A (ja) 加速度センサ素子、加速度センサ
JP2011117944A (ja) 加速度センサー
JP2010157933A (ja) 屈曲振動片及び電子部品
US20120024060A1 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
WO2010137303A1 (ja) 物理量センサ
JP3446732B2 (ja) 加速度センサ
JP5093405B2 (ja) 振動ジャイロ素子
JP2011191091A (ja) 音叉型振動片、振動子およびセンサー装置
JP2008076076A (ja) 加速度センサ
JP2007187463A (ja) 加速度センサ
JP2005114631A (ja) 角速度センサ
JP2009128351A (ja) ジャイロセンサ振動体
JP2009063369A (ja) 加速度センサ素子及び加速度センサ
JPH1137859A (ja) 圧力センサ用圧電振動子
JP4784436B2 (ja) 加速度センサ
JP5321812B2 (ja) 物理量センサーおよび物理量測定装置
JP2016145762A (ja) ガスセンサ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201