WO2007119748A1 - 磁気ランダムアクセスメモリ及びその製造方法 - Google Patents

磁気ランダムアクセスメモリ及びその製造方法 Download PDF

Info

Publication number
WO2007119748A1
WO2007119748A1 PCT/JP2007/057976 JP2007057976W WO2007119748A1 WO 2007119748 A1 WO2007119748 A1 WO 2007119748A1 JP 2007057976 W JP2007057976 W JP 2007057976W WO 2007119748 A1 WO2007119748 A1 WO 2007119748A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferromagnetic
magnetic
composite
region
spin
Prior art date
Application number
PCT/JP2007/057976
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Fukumoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008510966A priority Critical patent/JP5104753B2/ja
Publication of WO2007119748A1 publication Critical patent/WO2007119748A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films

Definitions

  • the present invention relates to an MRAM (Magnetic Random Access Memory), and more particularly to an MRAM that writes data by inverting a magnetic field using a spin-polarized current.
  • MRAM Magnetic Random Access Memory
  • spin-injection magnetism that reverses the magnetic field of the magnetic recording layer by injecting spin-polarized current into the magnetic recording layer This is a spin momentum transfer.
  • Magnetization reversal by a current magnetic field reduces the size of the memory cell and increases the required current
  • the spin injection magnetic reversal method reduces the size of the memory cell and reduces the required current. . Therefore, the spin transfer magnetization reversal method is considered to be an effective method for realizing a large-capacity MRAM.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-191032
  • Patent Document 2 JP-A-2005-123617
  • Patent Document 3 US Patent No. 6, 781, 871
  • one requirement of the MRAM is a reduction in the write current value.
  • An object of the present invention is to provide a magnetic random access memory that can further reduce the magnitude of the spin-polarized current that flows in the in-plane direction of the magnetic recording layer during the write operation of the MRAM. is there.
  • a magnetic random access memory according to the present invention has the following configuration.
  • the reference numerals of the drawings are attached, but these are merely for clarifying the correspondence between the description of the claims and the embodiments, and the technical scope of the present invention. It goes without saying that the present invention is not limited to the embodiments disclosed in the above.
  • the magnetic random access memory includes a magnetization reversal region (8) having reversible magnetization and a spin that injects a spin-polarized current into the magnetization reversal region (8) in an in-plane direction.
  • a first composite ferromagnetic material that is compounded with a non-magnetic, non-magnetic acid oxide
  • a second composite ferromagnet formed by combining the above-mentioned nonmagnetic material nitride Materials, and
  • the region through which the spin-polarized current flows is localized by using a composite ferromagnetic material in the magnetization reversal region (8).
  • the current density of the current increases locally. Since the magnetization reversal is likely to occur in the portion where the current density is large, the magnetization reversal can be generated in a part of the magnetic domain reversal region (8) by locally increasing the current density of the spin-polarized current.
  • magnetization reversal occurs in a part of the magnetization reversal region (8), magnetization reversal of the entire magnetization reversal region (8) is induced.
  • the magnetization of the magnetic domain inversion region (8) can be inverted with a small spin-polarized current.
  • a ferromagnetic material of iron (Fe), cobalt (Co), nickel (Ni), gadolinium (Gd), or an alloy of at least two of these elements is used.
  • Magnetic materials include magnesium (Mg), aluminum (A1), silicon (Si), germanium (G e), lithium (Li), beryllium (Be), barium (Ba), calcium (Ca), titanium (Ti) , Vanadium (V), chromium (Cr), manganese (Mn), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), chromium (Cr), molybdenum (Mo), cerium ( Ce), yttrium (Y), lanthanum (La) force It is preferable to use materials of selected elements or materials composed of two or more of these elements.
  • the magnetization reversal region (8) is adjacent to the spin-polarized current injection region (9, 10) in the in-plane direction and includes a composite ferromagnetic portion (8a) formed of a composite ferromagnetic material.
  • the composite ferromagnetic portion (8a) is joined in a direction perpendicular to the in-plane direction, and is formed of a metal ferromagnetic material provided between the composite ferromagnetic portion and the tunnel barrier layer (2).
  • the magnetization reversal region (8) includes a composite ferromagnetic portion (8c) formed of a composite ferromagnetic material, and a metal ferromagnetic layer joined to the composite ferromagnetic portion in the in-plane direction.
  • the composite ferromagnet (8c) is composed of a metal ferromagnet (8d) and a spin-polarized electric field. It is preferred to be provided between the infusion areas (9, 10).
  • the tunnel barrier layer (2) is directly joined to the metal ferromagnetic part (8d).
  • the magnetization switching region (8) is joined to the metal ferromagnetic part (8d) in a direction perpendicular to the in-plane direction, and the metal ferromagnetic part (8d) and the tunnel barrier layer are joined.
  • the magnetic random access memory includes a magnetization switching region (8) having a reversible magnetic field, a spin-polarized current injection region (9, 10), a magnetization switching region ( 8) and a magnetic recording layer (1) having a composite material region (17 to 20) provided between the spin-polarized current injection region (9, 10), and a magnetization fixed layer having a fixed magnetization ( 3) and a tunnel barrier layer (2) provided between the magnetization switching region (8) and the magnetic pinned layer (3).
  • the spin-polarized current injection region (9, 10) is used to inject a spin-polarized current in the in-plane direction into the magnetization reversal region (8) through the composite material region (17-20).
  • the first material is a ferromagnetic material
  • the second material is a non-magnetic material.
  • a ferromagnetic material of iron (Fe), conoleto (Co), nickel (Ni), gadolinium (Gd), or an alloy of at least two of these elements is used as the first material.
  • Materials include magnesium (Mg), aluminum (A1), silicon (Si), germanium (Ge), lithium (Li), beryllium (Be), barium (Ba), calcium (Ca), titanium (Ti) , Vanadium (V), chromium (Cr), manganese (Mn), zirconium (Zr), hafnium (H f), Tantalum (Ta), Niobium (Nb), Chromium (Cr), Molybdenum (Mo), Cerium (Ce), Yttrium (Y), Lanthanum (La) Forces of selected element materials, or these It is preferable to use a material composed of two or more of these elements.
  • both the first material and the second material are non-magnetic materials.
  • the first material is copper (Cu), silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), tantalum (Ta), aluminum (A1), osmium.
  • the second material is magnesium (Mg), Aluminum (A1), Silicon (Si), Germanium (Ge), Lithium (Li), Beryllium (Be), Barium (Ba), Calcium (Ca), Titanium (Ti), Vanadium (V), Chromium (Cr ), Manganese (Mn), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), chromium (Cr), molybdenum (Mo) It is preferable to use a material of an element selected from cerium (Ce), yttrium (Y), and lanthanum
  • a method for manufacturing a magnetic random access memory of the present invention includes:
  • the first and second spin-polarized current injection regions (9, Forming a mask (39) located between 10);
  • the first ferromagnetic film (34), the insulating film (35), and the second ferromagnetic film (36) are separated from the insulating film (35) and the second ferromagnetic film (36) by the mask. And the portion between the first and second spin-polarized current injection regions (9, 10) of the first ferromagnetic film (34) remains. Etching.
  • the composite ferromagnetic portion (8c) is formed at both ends of the magnetization switching region (8), or the magnetization switching region (8)
  • a memory cell having a composite material region (17-20, 27-30) between the current injection region (9, 10) can be formed.
  • the magnitude of the spin-polarized current that flows in the in-plane direction of the magnetic recording layer during the write operation of the MRAM can be significantly reduced.
  • FIG. 1A is a cross-sectional view showing the configuration of the MRAM according to the first exemplary embodiment of the present invention.
  • FIG. 1B is a plan view showing the configuration of the MRAM in FIG. 1A.
  • FIG. 2A is a cross-sectional view showing the fine structure of a magnetization switching region formed of a composite ferromagnetic material.
  • FIG. 2B is a cross-sectional view showing a fine structure of a magnetization switching region formed of a composite ferromagnetic material.
  • FIG. 2C is a cross-sectional view showing the microstructure of the magnetization reversal region formed of a composite ferromagnetic material.
  • FIG. 3 is a cross-sectional view showing a path through which a current flows in a magnetization switching region formed of a composite ferromagnetic material.
  • FIG. 4A is a graph showing the electrical characteristics of a (Co 2 Fe 2) Ta 2 O film.
  • FIG. 4B is a graph showing the magnetic characteristics of the (Co 2 Fe 2) Ta 2 O film.
  • FIG. 4C is a graph showing the state of acid in the (Co Fe) Ta O film.
  • FIG. 5A is a cross-sectional view showing another configuration of the MRAM according to the first exemplary embodiment of the present invention.
  • FIG. 5B is a plan view showing the configuration of the MRAM in FIG. 5A.
  • FIG. 6 is a cross-sectional view showing a configuration of an MRAM according to a second embodiment of the present invention.
  • FIG. 7A is a cross-sectional view showing another configuration of the MRAM according to the second exemplary embodiment of the present invention.
  • FIG. 7B is a plan view showing the configuration of the MRAM in FIG. 7A.
  • FIG. 7C is a cross-sectional view showing another configuration of the MRAM according to the second exemplary embodiment of the present invention.
  • FIG. 7D is a cross-sectional view showing still another configuration of the MRAM according to the second exemplary embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing still another configuration of the MRAM according to the second exemplary embodiment of the present invention.
  • FIG. 9A is a cross-sectional view showing a configuration of an MRAM according to a third exemplary embodiment of the present invention.
  • FIG. 9B is a cross-sectional view showing another configuration of the MRAM according to the third exemplary embodiment of the present invention.
  • FIG. 10A is a cross-sectional view showing still another configuration of the MRAM according to the third exemplary embodiment of the present invention.
  • FIG. 10B is a cross-sectional view showing still another configuration of the MRAM according to the third exemplary embodiment of the present invention.
  • FIG. 11A is a cross-sectional view showing a manufacturing step of the MRAM of FIG. 10A.
  • FIG. 1 IB is a cross-sectional view showing a manufacturing process of the MRAM in FIG. 10A.
  • FIG. 11C is a cross-sectional view showing a manufacturing step of the MRAM of FIG. 10A.
  • FIG. 11D is a cross-sectional view showing a manufacturing step of the MRAM of FIG. 10A.
  • FIG. 11E is a cross-sectional view showing a manufacturing step of the MRAM of FIG. 10A.
  • FIG. 12A is a plan view showing a preferred arrangement of the magnetization switching region and the spin-polarized current injection region.
  • FIG. 12B is a plan view showing another preferred arrangement of the magnetization switching region and the spin-polarized current injection region.
  • FIG. 12C is a cross-sectional view showing a preferred MRAM configuration in the case where the magnetization reversal region and the spin-polarized current injection region are arranged as shown in FIG. Description
  • FIG. 1A is a cross-sectional view showing the configuration of the memory cell 100 of the MRAM according to the first embodiment of the present invention
  • FIG. 1B is a plan view showing the configuration of the memory cell 100.
  • the memory cell 100 includes a magnetic recording layer 1, a tunnel barrier layer 2, a magnetic pinned layer 3, an antiferromagnetic layer 4, and a contact layer 5 that are sequentially stacked. And.
  • the magnetic recording layer 1 includes a magnetization reversal region 8 and spin-polarized current injection regions 9 and 10.
  • the magnetization switching area 8 is an area for storing 1-bit data as the direction of the magnetic field. As shown in FIG.1B, the magnetization switching region 8 has a long shape in the X-axis direction, The magnetic field in the magnetic field inversion region 8 is directed parallel to the X-axis direction.
  • the magnetization switching region 8 is made of a magnetically soft ferromagnet, and the magnetization of the magnetization switching region 8 can be switched.
  • the state where the magnetization direction of the magnetization switching region 8 is the + x direction is associated with the data “1”, and the state where the magnetization direction of the magnetization switching region 8 is the X direction is the data “0”. Is associated with.
  • the spin-polarized current injection regions 9 and 10 are regions used for injecting the spin-polarized current into the magnetization switching region 8 in the in-plane direction. ! The spin-polarized current injection regions 9 and 10 are joined to both ends of the magnetic field inversion region 8. The spin-polarized current injection regions 9 and 10 are adjacent to the magnetic field inversion region 8 in the X-axis direction, and have a long shape in the X-axis direction, as shown in FIG. 1B. The direction of the magnetic field of the spin-polarized current injection regions 9 and 10 is fixed to the magnetic field inversion region 8 in the direction of the direction of the key.
  • the magnetic field of the spin-polarized current injection region 9 is fixed toward the + x direction, and the magnetic field of the spin-polarized current injection region 10 is fixed toward the ⁇ X direction.
  • the direction of the magnetic field in the spin-polarized current injection regions 9 and 10 may be fixed toward the direction away from the magnetization switching region 8.
  • the magnetic field in the spin-polarized current injection region 9 is fixed in the X direction, and the magnetic field in the spin-polarized current injection region 10 is fixed in the + x direction.
  • the spin-polarized current injection region 9 is connected to the wiring 12 through the via 11, and the spin-polarized current injection region 10 is connected to the wiring 14 through the via 13.
  • tunnel barrier layer 2 is a thin insulating layer for allowing a tunnel current to flow between magnetic domain inversion region 8 and magnetic domain pinned layer 3.
  • the tunnel barrier layer 2 is typically formed of aluminum oxide (AIO) or magnesium oxide (MgO).
  • the magnetic layer pinned layer 3 is a ferromagnetic layer in which the magnetic layer is fixed.
  • the magnetic pinned layer 3 is a magnetically hard ferromagnetic material, and is made of, for example, CoFe.
  • the magnetic pinned layer 3 has a shape that is long in the X-axis direction, and the magnetic pin of the magnetic pinned layer 3 is directed in the X direction.
  • the magnetization reversal region 8, the tunnel barrier layer 2, and the magnetic pinned layer 3 constitute a magnetic tunnel junction (MTJ), and the resistance of the magnetic tunnel junction is the resistance between the magnetization reversal region 8 and the magnetization fixed layer 3. Depending on the relative direction of magnetization.
  • MTJ magnetic tunnel junction
  • the antiferromagnetic layer 4 is formed of an antiferromagnetic material such as IrMn, and exerts an exchange interaction on the magnetic pinned layer 3 to cause magnetic Fix the magnetic layer 3 of the fixed layer 3.
  • the contact layer 5 provides an electrical connection to the magnetic pinned layer 3 and the antiferromagnetic layer 4, and has a role of protecting the magnetic pinned layer 3 and the antiferromagnetic layer 4 in the manufacturing process. is doing.
  • the contact layer 5 is typically made of tantalum.
  • the contact layer 5 is connected to the wiring 7 through the via 6.
  • Data is written into the magnetic domain inversion region 8 by injecting a spin polarization current from the spin polarization current injection region 9 or 10 into the magnetization reversal region 8.
  • a voltage is applied between the wiring 12 and the wiring 14 so that a current flows from the wiring 12 to the wiring 14, that is, a current flows in the magnetic recording layer 1 in the + x direction.
  • a spin-polarized current is injected from the spin-polarized current injection region 9 to the magnetization reversal region 8 (the magnetic flux is fixed in the + x direction).
  • the domain wall of the magnetization switching region 8 is pushed in the + x direction by the injected spin-polarized current, or a torque is applied to the magnetization, and the magnetization of the magnetization switching region 8 is directed in the + x direction.
  • data “1” is written to the magnetic recording layer.
  • a spin-polarized current is injected from the spin-polarized current injection region 10 (the magnetic field is fixed in the X direction) into the magnetic field inversion region 8.
  • the magnetic field in the magnetic field reversal region 8 is directed in the X direction.
  • the TMR effect is used to read data stored in the magnetic field inversion region 8.
  • the resistance of the magnetic tunnel junction composed of the magnetization switching region 8, the tunnel barrier layer 2, and the magnetization fixed layer 3 depends on the relative direction of the magnetic layer of the magnetic recording layer 1 and the magnetic pinned layer 3 due to the TMR effect. /!
  • the magnetic tunnel junction exhibits a relatively high resistance
  • the magnetization switching region 8 and the magnetic pinned layer 3 have a magnetic resistance.
  • is parallel
  • the magnetic tunnel junction exhibits a relatively low resistance.
  • the data stored in the magnetic recording layer 1 is identified by detecting the change in resistance of the magnetic tunnel junction.
  • the change in the resistance of the magnetic tunnel junction is generated in the magnetic tunnel junction by applying a predetermined voltage to the magnetic tunnel junction and measuring a current flowing in the magnetic tunnel junction, or by flowing a predetermined current in the magnetic tunnel junction. It can be identified by measuring the voltage.
  • the magnetization reversal region 8 of the magnetic recording layer 1 is made of a metal ferromagnetic material such as NiFe and CoFe, and an oxide than the metal ferromagnetic material.
  • the metal ferromagnetic material exists in the magnetization reversal region 8 in a state in which at least a part thereof is not oxidized, carbonized, or nitrided. If the entire metal ferromagnetic material is oxidized, carbonized, or nitrided, the magnetic domain inversion region 8 loses ferromagnetism and loses conductivity, which is not preferable.
  • the non-magnetic materials can be selectively (or preferentially) oxidized, nitrided, or carbonized. it can.
  • the magnetization switching region 8 has a composition formula represented by FMO, FMN, or FMC.
  • F means a metal ferromagnetic material.
  • M means a metal ferromagnetic material.
  • F MN is a nitride-forming energy rather than metal ferromagnet F.
  • GMC means a material with low elemental force.
  • the metal ferromagnetic material F includes iron (Fe), cobalt (Co), nickel (Ni), gadolinium (
  • Gd or alloys of these at least two elements (eg CoFe, NiFe) can be used
  • the nonmagnetic material M magnesium (Mg), aluminum (A1), silicon (Si), germanium (Ge), lithium (Li), beryllium (Be), barium (Ba), calcium (Ca ), Titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), chromium (Cr), molybdenum ( Mo), cerium (Ce), yttrium (Y), lanthanum (La) force Materials of selected elements or materials composed of two or more of these elements can be used.
  • FIG. 2A to FIG. 2C are conceptual diagrams showing the fine structure that the magnetization switching region 8 formed of the composite ferromagnetic material can take.
  • the magnetization reversal region 8 includes the ferromagnetic crystal grains 21 that are columnar crystals formed of the metal ferromagnet F, and
  • the magnetization switching region 8 has a structure corresponding to the atomic radius of the elements constituting the material M.
  • the atomic radius of the elements composing the nonmagnetic material M is equal to the atomic radius of the elements composing the metal ferromagnet F.
  • the magnetization reversal region 8 includes the ferromagnetic crystal grains 23, which are granular crystals formed of the metal ferromagnet F, and the MO present at the grain boundaries. , M
  • the atomic radius of the elements composing the material M is the source of the elements composing the metal ferromagnet F.
  • the radius is larger than the core radius, it is a strong column that is a columnar crystal formed only of the metal ferromagnet F.
  • the magnetization switching region 8 has crystal grains formed of the metal ferromagnet F.
  • the use of a composite ferromagnetic material for the magnetization switching region 8 localizes the region where the spin-polarized current flows, and the spin-polarized material is used. The current density of the current increases locally. This makes it possible to reverse the magnetization of the magnetization switching region 8 with a small current.
  • the magnetization reversal region 8 includes a ferromagnetic crystal grain 23 formed of a metal ferromagnet F and an M at the grain boundary.
  • nonmagnetic grain boundary portions 24 formed of O, MN, or MC selectively flows only in the part where the ferromagnetic crystal grains 23 are in contact.
  • the nonmagnetic grain boundary portion 24 formed of an oxide, nitride, or carbide is an insulator and thus has a large electric resistance. Therefore, by using a composite ferromagnetic material for the magnetic domain inversion region 8, the region where the spin-polarized current flows is localized, and the current density of the spin-polarized current increases locally. The current density is large. By locally increasing the degree, magnetization reversal can be generated in a part of the magnetization reversal region 8.
  • magnetization reversal occurs in a part of the magnetization reversal region 8
  • magnetization reversal of the entire magnetization reversal region 8 is induced, and as a result, the magnetic reversal region 8 formed of the composite ferromagnetic material has a small spin polarization.
  • the magnetic current can be reversed by the pole current.
  • the use of the composite ferromagnetic material for the magnetization switching region 8 has the effect of reducing the switching magnetic field He itself necessary for switching the magnetization of the magnetization switching region 8 and reducing the current required for writing. Play.
  • the magnetic recording layer formed of the composite ferromagnetic material it is formed of the metal ferromagnetic material F due to the presence of the oxide, nitride, or carbide of the nonmagnetic material M.
  • the crystal grains are divided, and the grain size of the crystal grains is reduced.
  • the crystal grains of the metal ferromagnet F in the range where the magnetization reversal region 8 exhibits ferromagnetism as a whole
  • the reversal magnetic field He When the particle size force of the particle becomes smaller, the reversal magnetic field He also becomes smaller. As the reversal magnetic field He becomes smaller, the magnetization of the magnetization reversal region 8 is easily reversed, and the current required for writing is also reduced.
  • the magnetization switching region 8 includes CoFe, a nonmagnetic material, as the metal ferromagnet F.
  • 90 10 85 15 x 90 10 85 15 x can be suitably used as a composite ferromagnetic material constituting the magnetic domain inversion region 8.
  • the inventor made a (Co Fe) Ta O film and measured its electrical and magnetic properties.
  • (Co Fe) Ta O film is made of sputtered phosphorus mixed with argon gas and oxygen gas.
  • the electrical and magnetic properties of the 90 10 85 15 ⁇ 90 10 85 a O film were measured.
  • the partial pressure of oxygen gas is
  • the flow ratio of oxygen gas to be adjusted was rO ZAr. Where oxygen gas flow ratio rO / Ar
  • FIGS. 4A to 4C show the measured electrical and magnetic characteristics of the (Co Fe) Ta O film.
  • Figure 4C is a graph showing the Co2p spectral results obtained by XPS. Produced under the condition that the flow ratio rO ZAr of oxygen gas is 0.13.
  • (Co Fe) Ta O film has a binding energy corresponding to metallic cobalt Co.
  • the (Co Fe) Ta O film prepared under the condition that 2 is 0.54 has a crystal structure corresponding to acid-cone-CoO.
  • a peak of photoelectron intensity was observed at the combined energy. This is because when the oxygen gas flow ratio rO ZAr is less than 0.2, only Ta is selectively oxidized and Co is oxidized.
  • the 90 10 85 15 x film can be used as a composite ferromagnetic material constituting the magnetic domain inversion region 8.
  • the tunnel barrier layer 2, the magnetization fixed layer 3, and the antiferromagnetic layer 4 are formed on the magnetic recording layer 1, but are illustrated in FIG. 5A.
  • the magnetic recording layer 1 can be formed on the laminated body of the antiferromagnetic layer 4, the magnetization fixed layer 3, and the tunnel barrier layer 2.
  • the antiferromagnetic layer 4, the magnetization fixed layer 3, and the tunnel barrier layer 2 are sequentially formed on the lower electrode 15, and the magnetic domain inversion region 8 is tunneled.
  • a magnetic recording layer 1 is formed on the tunnel barrier layer 2 so as to be joined to the barrier layer 2.
  • the upper electrode 16 is bonded on the magnetization switching region 8.
  • the magnetization switching region 8 The data stored in is read by identifying the resistance of the magnetic tunnel junction by applying a predetermined voltage between the lower electrode 15 and the upper electrode 16 and detecting the current flowing through the magnetic tunnel junction. Is done by.
  • the resistance of the magnetic tunnel junction may be identified by detecting a voltage generated at the magnetic tunnel junction by passing a predetermined current between the lower electrode 15 and the upper electrode 16.
  • the composite ferromagnetic material is inherently inferior in crystallinity, so that the magnetic reversal region 8 and the tunnel barrier layer 2 and the magnetic reversal region 8
  • the MR ratio of the magnetic tunnel junction composed of the fixed layer 3 is reduced. This is undesirable because it reduces the signal-to-noise ratio during the read operation.
  • a technique for improving the MR ratio of the magnetic tunnel junction is provided.
  • FIG. 6 is a cross-sectional view showing a configuration of an MRAM memory cell 100B according to the second embodiment of the present invention.
  • the magnetization switching region 8 of the magnetic recording layer 1 is composed of a composite ferromagnetic portion 8a and a high MR ratio ferromagnetic portion 8b formed on the composite ferromagnetic portion 8a.
  • the composite ferromagnetic portion 8a is formed of the composite ferromagnetic material described in the first embodiment.
  • the high MR ratio ferromagnetic layer 8b is formed of a metal ferromagnetic material exhibiting a high MR ratio, preferably CoFe or CoFeB.
  • the tunnel noria layer 2 is formed on the high MR ratio ferromagnetic portion 8b.
  • the tunnel barrier layer 2 is formed of a magnesium oxide film (MgO)
  • MgO magnesium oxide film
  • the high MR ratio ferromagnetic layer 8b is formed of amorphous CoFeB.
  • the magnitude of the spin-polarized current necessary for reversing the magnetization switching region 8 is largely governed by the composite ferromagnetic portion 8a, and the MR ratio of the magnetic tunnel junction is generally high MR. It is dominated by the specific ferromagnet 8b; when the magnetic field of the composite ferromagnet 8a is reversed, it is noted that the magnetization of the high MR ratio ferromagnet 8b that is directly joined to it is also reversed. I want. Therefore, the memory cell 100B shown in FIG. 6 can simultaneously realize the reduction of the spin-polarized current necessary for writing and the improvement of the MR ratio of the magnetic tunnel junction. [0048] As shown in FIGS.
  • the magnetization switching region 8 is composed of a composite ferromagnetic portion 8c and a metal ferromagnetic portion 8d.
  • the composite ferromagnet portion 8c is formed of the above-described composite ferromagnetic material
  • the metal ferromagnet portion 8d is a metal ferromagnet (expressing a higher MR ratio than the composite ferromagnetic material), for example, NiFe, CoFe, It is made of CoFeB.
  • the composite ferromagnetic part 8 c is provided at both ends of the magnetic field inversion region 8. In other words, the composite ferromagnetic part 8c is joined to both ends of the metal ferromagnetic part 8d.
  • the tunnel barrier layer 2 is formed on the metal ferromagnetic portion 8d.
  • the position where the composite ferromagnetic part 8c is provided is not limited to both ends of the magnetic domain inversion region 8. As shown in FIG. 7C, as long as at least a part of the tunnel barrier layer 2 is joined to the metal ferromagnetic portion 8d, the composite ferromagnetic portion 8c is positioned at the intermediate position of the magnetization switching region 8. It is also possible to be provided. Further, as shown in FIG. 7D, it is also possible to provide the combined ferromagnet portion 8c only at one end of the magnetization switching region 8.
  • the configuration in which the composite ferromagnetic part 8c is provided at both ends of the magnetic field inversion region 8 is preferable in the following points.
  • the composite ferromagnet portion 8c is provided at both ends of the magnetic domain inversion region 8
  • the domain wall can be moved first at both ends of the magnetization switching region 8 at the time of magnetization reversal. This effectively suppresses the occurrence of a plurality of domains in the magnetization switching region 8.
  • the configuration in which the composite ferromagnetic part 8c is provided at both ends of the magnetization switching region 8 allows the domain wall to be pinned at both ends of the magnetic switching region 8 to stabilize the domain wall.
  • the domain wall movement force at the time of writing does not affect the spin-polarized current injection regions 9 and 10 where the magnetic field should be fixed. It is The configuration in which the composite ferromagnet portion 8c is provided at both ends of the magnetic domain inversion region 8 weakens the magnetic coupling between the magnetization inversion region 8 and the spin-polarized current injection regions 9 and 10, thereby reducing the magnetization reversal. The domain wall is pinned at both ends of the rolling region 8. This prevents the domain wall movement from spreading to the spin-polarized current injection regions 9 and 10 and makes the operation of the MRAM more stable.
  • the magnetization switching region 8 may include a high MR ratio ferromagnetic portion 8b in addition to the composite ferromagnetic portion 8c and the metal ferromagnetic portion 8d. Is preferred.
  • the high MR ratio ferromagnetic portion 8b is formed on the metal ferromagnetic portion 8d, and the tunnel barrier layer 2 is formed on the high MR ratio ferromagnetic portion 8b.
  • the high MR ratio ferromagnetic layer 8b is made of a metal ferromagnetic material that exhibits a high MR ratio, preferably CoFe or CoFeB. Such a configuration is suitable for further improving the MR ratio of the magnetic tunnel junction.
  • FIG. 9A is a cross-sectional view showing the configuration of the memory cell 100D according to the third embodiment of the present invention.
  • the magnetization switching region 8 is formed of a metal ferromagnet such as NiFe, while the composite ferromagnet region 1 is interposed between the magnetization switching region 8 and the spin-polarized current injection regions 9 and 10. 7, 18 are provided.
  • the composite ferromagnetic material regions 17 and 18 are the composite material described in the first embodiment.
  • the composite ferromagnet regions 17 and 18 are formed so as not to cause inversion of their own magnetic field. .
  • the magnetic field of the composite ferromagnetic region 17 is fixed in the same direction as the magnetic field of the spin-polarized current injection region 9, and the magnetization of the composite ferromagnetic region 18 is Fixed in the same direction as the magnetization.
  • the memory cell 100D having such a configuration does not facilitate the reversal of the magnetic domain reversal region 8 by the easy reversal of the magnetization of the composite ferromagnetic regions 17 and 18.
  • the composite ferromagnet regions 17 and 18 localize the spin-polarized current injected into the magnetization switching region 8, thereby localizing the current density of the spin-polarized current injected into the magnetization switching region 8. Increase it. Therefore, by providing the composite ferromagnetic regions 17 and 18, the magnitude of the spin-polarized current required for reversing the magnetic field in the magnetic field inversion region 8 can be reduced. Can do.
  • the magnetization reversal region 8 is composed of a metal ferromagnetic layer, a high MR ratio can be realized.
  • composite nonmagnetic regions 19 and 20 may be provided in place of the composite ferromagnetic regions 17 and 18, composite nonmagnetic regions 19 and 20 may be provided.
  • the composite non-magnetic regions 19 and 20 include a first non-magnetic material and an oxide of a second non-magnetic material having lower oxide generation energy, nitride, and carbide formation energy than the first non-magnetic material, respectively. It is formed of a composite non-magnetic material composed of carbide or nitride.
  • the first non-magnetic material is present in the composite ferromagnetic regions 17 and 18 in a state where at least a part of the first non-magnetic material is not oxidized, carbonized or nitrided.
  • the second nonmagnetic material is selectively (or preferentially) oxidized by mixing the second nonmagnetic material into the composite nonmagnetic material, which is more easily oxidized, nitrided, and carbonized than the first nonmagnetic material. It can be nitrided or carbonized.
  • the composite non-magnetic regions 19, 20 have a composition formula of N MO, N MN, or N M
  • N means the first non-magnetic material
  • M is the oxide generation energy for NMO than for the first nonmagnetic material N.
  • the first non-magnetic material means a second non-magnetic material with low elemental force.
  • the first non-magnetic material is a second non-magnetic material with low elemental force.
  • N MC means a material with lower elemental energy than N, and N MC
  • the elemental force is lower than that of the first nonmagnetic material N.
  • the first non-magnetic material NM includes copper (Cu), silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), tantalum (Ta), aluminum (A1), osmium (Os), titanium (Ti), manganese (Mn), rhodium (Rh), iridium (Ir), silicon (Si), germanium (Ge), lead (Pb), gallium (Ga), A material of an element selected from bismuth (Bi), zinc (Zn), and antimony (Sb), or a material composed of two or more of these elements may be used.
  • the second nonmagnetic material M includes magnesium (Mg), aluminum (A1), silicon (Si), germanium (Ge), lithium (Li), beryllium (Be), barium (Ba), calcium (Ca ), Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Zirconium (Zr), Hafnium (Hf), Tantanole (Ta), Niobium (Nb), Molybdenum (Mo), Cerium A material of an element selected from among Ce (Ce), Yttrium (Y), and Lanthanum (La), or a material composed of two or more of these elements may be used. These materials are particularly prone to oxidation, nitridation, and carbonization among nonmagnetic elements.
  • the spin-polarized current injected into the magnetization switching region 8 is localized, thereby The current density of the spin-polarized current injected into the inversion region 8 can be locally increased. Therefore, by providing the composite non-magnetic regions 19 and 20, the magnitude of the spin-polarized current necessary for reversing the magnetic field of the magnetization switching region 8 can be reduced. In fact, a high MR ratio can be achieved by the magnetization reversal region 8 being composed of a metal ferromagnetic layer.
  • FIG. 10A is a cross-sectional view showing a more realistic structure of the memory cell 100D in which the composite ferromagnetic regions 17 and 18 are provided.
  • the magnetization switching region 8 of the spin polarization current injection region 9 is provided in addition to the composite ferromagnetic region 17 provided between the magnetization switching region 8 and the spin polarization current injection region 9.
  • a composite ferromagnet region 27 is provided at the end on the opposite side.
  • the spin-polarized current injection region 10 is provided at the end opposite to the magnetization switching region 8.
  • a composite ferromagnetic region 28 is provided.
  • FIG. 11A to FIG. 11E are cross-sectional views showing a preferred manufacturing process for forming the memory cell 100D of FIG. 10A.
  • wirings 12 and 14 and vias 11 and 13 are formed in an insulating layer 32 covering the substrate 31, and a spin-polarized current injection region is further formed on the insulating layer 32.
  • 9, 10 are formed.
  • the spin-polarized current injection regions 9 and 10 are formed by patterning the formed ferromagnetic film by photolithography after forming a ferromagnetic film over the entire surface of the insulating layer 32.
  • a composite ferromagnetic film 33 formed of the above-described composite ferromagnetic material is formed on the entire surface of the insulating layer 32.
  • the width of the composite ferromagnetic material regions 17 and 18 to be finally formed can be easily and precisely controlled in nanometer units. This is a practical advantage of this forming method.
  • the entire surface is etched back. By the entire surface etch back, the composite ferromagnetic film 33 is selectively left only on the side surfaces of the spin-polarized current injection regions 9 and 10, and the composite ferromagnetic regions 17, 18, 27, and 28 are formed.
  • a ferromagnetic film 34, an insulating film 35, a ferromagnetic film 36, an antiferromagnetic film 37, and a metal conductive film 38 are sequentially formed.
  • the ferromagnetic film 34, the insulating film 35, the ferromagnetic film 36, the antiferromagnetic film 37, and the metal conductive film 38 are formed in the magnetization inversion region 8, the tunnel barrier layer 2, It is a film covered by the fixed layer 3, the antiferromagnetic layer 4, and the contact layer 5.
  • the insulating film 35, the ferromagnetic film 36, the antiferromagnetic film 37, and the metal conductive film 38 As shown in FIG. A mask 39 covering the portions corresponding to the fixed layer 3, the antiferromagnetic layer 4, and the contact layer 5 is formed by photolithography. Subsequently, the insulating film 35, the ferromagnetic film 36, the antiferromagnetic film 37, and the metal conductive film 38 are patterned by performing etching using the mask 39, and the magnetization fixed layer 3, the antiferromagnetic layer 4, Then, the contact layer 5 is formed.
  • the magnetization switching region 8 is formed by etching the ferromagnetic film 34 so that only the portion of the ferromagnetic film 34 between the composite ferromagnetic material regions 17 and 18 remains selectively.
  • the memory cell 100D shown in FIG. 10A is formed.
  • the whole may be flattened by CPM (Chemical Mechanical Polishing) or the like. In this case, the amount of the remaining film to be etched is more uniform throughout the device, which is preferable because the bonding portion can be formed with higher accuracy.
  • the composite nonmagnetic regions 19 and 20 are formed by the same manufacturing process.
  • the provided memory cell 100D can be formed.
  • a composite non-polarization is formed at the end of the spin-polarized current injection region 9 opposite to the magnetization switching region 8.
  • a composite non-magnetic region 30 is provided at the end of the spin-polarized current injection region 10 opposite to the magnetization switching region 8.
  • the present invention is not limited to the arrangement in which the magnetization switching region 8 and the spin-polarized current injection regions 9 and 10 are aligned on a straight line.
  • the magnetization reversal region 8 can be formed long in the X-axis direction, while the spin-polarized current injection regions 9 and 10 can be formed long in the y-axis direction. It is. In this case, the magnetic fields of the spin-polarized current injection regions 9 and 10 are both fixed in the + y direction.
  • the magnetizations of the spin-polarized current injection regions 9 and 10 can both be fixed in the y direction.
  • the direction of the magnetic field of the spin-polarized current injection regions 9 and 10 is the same, so that the magnetic field of the spin-polarized current injection region 9 and 10 is directed in a desired direction during the manufacturing process. Is easy. Note that in the configuration of FIG. 1B, the directions of the magnetic fields of the spin-polarized current injection regions 9 and 10 are reversed.
  • both of the spin-polarized current injection regions 9 and 10 can be connected to one end of the magnetization switching region 8.
  • the spin-polarized current injection region 9 is formed long in the + S direction, which forms an angle of 120 ° counterclockwise with respect to the + x direction
  • the spin-polarized current injection region 10 is + x Formed long in the + T direction at an angle of 120 ° clockwise with respect to the direction.
  • the magnetic field M1 of the spin-polarized current injection region 9 is directed in one S direction (ie, the direction away from the magnetization switching region 8), and the magnetization M2 of the spin-polarized current injection region 10 is in the + T direction (ie, (Direction away from the magnetization reversal region 8).
  • the magnetization Ml of the spin-polarized current injection region 9 is directed in the + S direction (ie, the direction toward the magnetization reversal region 8), and the magnetization M2 of the spin-polarized current injection region 10 is in the ⁇ T direction (ie, the magnetic It may be directed toward the inversion area 8 (in the direction toward the reversal area 8).
  • a wiring 42 is connected to the other end of the magnetic domain inversion region 8 through a via 41.
  • the advantage of the configuration shown in FIG. 12B is that the magnetic field of the spin-polarized current injection regions 9 and 10 is directed in a desired direction by applying a magnetic field in the y-direction or + y-direction. It is in the point that can be done. This is preferable because it makes it easy to direct the magnetic field of the spin-polarized current injection regions 9 and 10 in a desired direction in the manufacturing process.
  • the composite ferromagnetic region 17 (or composite non- The magnetic body region 19) need only be provided at one end of the magnetic domain inversion region 8.
  • the present invention is effective in reducing spin-polarized current in an MRAM (Magnetic Random Access Memory) that writes data by inverting the magnetic field using spin-polarized current.
  • MRAM Magnetic Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

磁気ランダムアクセスメモリは、反転可能な磁化を有する磁化反転領域及び磁化反転領域に面内方向にスピン偏極電流を注入するスピン偏極電流注入領域を備える磁気記録層と、固定された磁化を有する磁化固定層と、磁化反転領域と磁化固定層との間に設けられたトンネルバリア層とを具備する。磁化反転領域の少なくとも一部は、(a)酸化されていない金属強磁性材料と、前記金属強磁性材料よりも酸化物生成エネルギーが低い非磁性材料の酸化物とが複合化された第1複合強磁性材料、(b)窒化されていない金属強磁性材料と、前記金属強磁性材料よりも窒化物生成エネルギーが低い非磁性材料の窒化物とが前記複合化されて構成された第2複合強磁性材料、及び(c)炭化されていない金属強磁性材料と、前記金属強磁性材料よりも、炭化物生成エネルギーが低い非磁性材料の炭化物とが複合化されて構成された第3複合強磁性材料のいずれかで形成されている。

Description

明 細 書
磁気ランダムアクセスメモリ及びその製造方法
技術分野
[0001] 本発明は、 MRAM (磁気ランダムアクセスメモリ)に関し、特に、スピン偏極電流を 用 ヽて磁ィ匕を反転させてデータを書き込む MRAMに関する。
背景技術
[0002] 近時、提案されて!、る有力な MRAMの書き込み方式の一つ力 スピン偏極電流を 磁気記録層に注入することによって磁気記録層の磁ィ匕を反転させるスピン注入磁ィ匕 反転方法(spin momentum transfer)である。電流磁界による磁化反転では、メモリセ ルのサイズが小さくなると共に、必要な電流が増大するのに対し、スピン注入磁ィ匕反 転方法では、メモリセルのサイズが小さくなると共に必要な電流が減少する。従って、 スピン注入磁化反転方法は、大容量の MRAMを実現する有力な方法であると考え られている。
[0003] しかしながら、スピン注入磁化反転方法を磁気トンネル接合素子(magnetic tunnel j unction device)に適用する場合には、トンネルバリア層の破壊の問題を克服する必 要がある。スピン注入磁ィヒ反転方法によって磁ィヒを反転させようとすると、現状では、 数 mA以上のスピン偏極電流を磁気記録層に注入する必要がある。しかし、このよう な大きな電流を磁気トンネル接合に流すことは、トンネルバリア層の破壊を招く恐れ がある。
[0004] このような問題を克服するためのアプローチの一つ力 磁気記録層の面内方向に スピン偏極電流を流すことによって磁ィ匕反転を起こす技術である。このような技術は、 例えば、特許文献 1、特許文献 2、及び特許文献 3に開示されている。磁気記録層の 面内方向にスピン偏極電流を流すことにより、磁気記録層の磁壁を移動させ、及び Z又は磁気記録層の磁ィ匕にトルクを作用され、磁気記録層の磁化を反転させること ができる。磁気記録層の面内方向にスピン偏極電流を流す技術は、トンネルバリア層 に書き込み電流を流すことを不要化し、トンネルバリア層の破壊の問題を有効に回避 することができる。 [0005] 特許文献 1 :特開 2005— 191032号公報
特許文献 2:特開 2005— 123617号公報
特許文献 3 :米国特許第 6, 781, 871号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、 MRAMの一つの要求は書き込み電流値の低減であり、このために はデータの書き込み、即ち、磁ィ匕反転に必要な電流を更に低減することが望ましい。 このため、書き込み動作時に磁気記録層の面内方向に流されるスピン偏極電流を低 減する技術の開発が望まれている。
[0007] 本発明の目的は、 MRAMの書き込み動作時に磁気記録層の面内方向に流される スピン偏極電流の大きさを、更に一層低減させることができる磁気ランダムアクセスメ モリを提供することにある。
課題を解決するための手段
[0008] 本発明に係る磁気ランダムアクセスメモリは、以下に示す構成を有する。なお、以下 の記載において、図面の参照符号を付すが、これは、単に、特許請求の範囲の記載 と実施形態との対応を明らかにするためのものであり、本発明の技術的範囲力 図面 に開示された実施形態に限定されるものではな 、ことは勿論である。
[0009] 本願第 1の観点に係る磁気ランダムアクセスメモリは、反転可能な磁化を有する磁 化反転領域 (8)と、磁化反転領域 (8)に面内方向にスピン偏極電流を注入するスピ ン偏極電流注入領域 (9、 10)とを備える磁気記録層(1)と、固定された磁化を有する 磁化固定層 (3)と、前記磁化反転領域 (8)と前記磁化固定層 (3)との間に設けられ たトンネルバリア層(2)とを具備する。磁ィ匕反転領域 (8)の少なくとも一部は、
(a)酸化されて! ヽな!ヽ金属強磁性材料と、前記金属強磁性材料よりも酸化物生成ェ ネノレ
ギ一が低い非磁性材料の酸ィ匕物とが複合化された第 1複合強磁性材料、
(b)窒化されて 1ゝな ゝ金属強磁性材料と、前記金属強磁性材料よりも窒化物生成ェ ネノレ
ギ一が低い非磁性材料の窒化物とが前記複合化されて構成された第 2複合強磁性 材料、及び
(c)炭化されていない金属強磁性材料と、前記金属強磁性材料よりも、炭化物生成 エネルギーが低い非磁性材料の炭化物とが複合化されて構成された第 3複合強磁 性材料の 、ずれかで形成されて!、る。
[0010] このような構成の磁気ランダムアクセスメモリは、磁化反転領域 (8)に複合強磁性材 料が使用されていることにより、スピン偏極電流が流れる領域が局在化され、スピン偏 極電流の電流密度が局所的に増大する。電流密度が大きい部分では磁化反転が起 こりやすいから、スピン偏極電流の電流密度を局所的に増大させることによって磁ィ匕 反転領域 (8)の一部分で磁化反転を発生させることができる。磁化反転領域 (8)の 一部分で磁化反転が発生すると、磁化反転領域 (8)全体の磁化反転が誘起される から、結果として、複合強磁性材料で磁化反転領域 (8)を形成することにより、磁ィ匕 反転領域 (8)の磁化を小さなスピン偏極電流で反転することができる。
[0011] 前記金属強磁性材料として、鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、ガドリゥム (G d)、又はこれらの少なくとも 2の元素の合金の強磁性材料が使用され、前記非磁性 材料としては、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲルマニウム(G e)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタン (Ti)、バ ナジゥム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(Hf)、タ ンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、イットリウム (Y)、ランタン (La)力 選択された元素の材料、又は、これらのうちの 2以上の元素で 構成された材料が使用されることが好適である。
[0012] 磁化反転領域 (8)は、スピン偏極電流注入領域(9、 10)に前記面内方向において 隣接し、且つ、複合強磁性材料で形成されている複合強磁性部 (8a)と、複合強磁性 部(8a)と前記面内方向に垂直な方向で接合され、前記複合強磁性部と前記トンネ ルバリア層(2)との間に設けられた、金属の強磁性体で形成された高 MR比強磁性 部(8b)とを備えることが好適である。
[0013] 磁化反転領域 (8)は、複合強磁性材料で形成されて ヽる複合強磁性部(8c)と、前 記複合強磁性部と前記面内方向に接合された、金属の強磁性体で形成された金属 強磁性部(8d)とを備え、複合強磁性部(8c)は、金属強磁性部(8d)とスピン偏極電 流注入領域(9、 10)の間に設けられて 、ることが好ま 、。
[0014] この場合、トンネルバリア層(2)の少なくとも一部が、金属強磁性部(8d)に直接に 接合されることが好ましい。高い MR比を実現するためには、磁化反転領域 (8)は、 金属強磁性部 (8d)と前記面内方向に垂直な方向で接合され、金属強磁性部 (8d) と前記トンネルバリア層(2)との間に、金属の強磁性体で形成された高 MR比強磁性 部(
8b)が設けられることが一層に好適である。
[0015] 他の観点において、本発明による磁気ランダムアクセスメモリは、反転可能な磁ィ匕 を有する磁化反転領域 (8)と、スピン偏極電流注入領域 (9、 10)と、磁化反転領域( 8)とスピン偏極電流注入領域 (9、 10)との間に設けられた複合材料領域(17〜20) とを備える磁気記録層 (1)と、固定された磁化を有する磁化固定層 (3)と、磁化反転 領域 (8)と磁ィ匕固定層 (3)との間に設けられたトンネルバリア層(2)とを具備する。ス ピン偏極電流注入領域 (9、 10)は、複合材料領域(17〜20)を介して前記磁化反転 領域 (8)に面内方向にスピン偏極電流を注入するために使用される。複合材料領域 (17〜20)は、
(a)酸化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の酸化物とが複合化された第 1複合材料、
(b)窒化されていない第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低い 第 2材料の窒化物とが複合化された第 2複合材料、及び
(c)炭化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の炭化物とが複合化された第 3複合材料
の!、ずれかで形成されて 、る。
[0016] 本発明の一態様では、前記第 1材料は、強磁性材料であり、前記第 2材料は、非磁 性材料である。この場合、前記第 1材料として、鉄 (Fe)、コノ レト(Co)、ニッケル (Ni )、ガドリゥム (Gd)、又はこれらの少なくとも 2の元素の合金の強磁性材料が使用され 、前記第 2材料として、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲルマ -ゥム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタン( Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(H f)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、イット リウム (Y)、ランタン (La)力も選択された元素の材料、又は、これらのうちの 2以上の 元素で構成された材料が使用されることが好ましい。
[0017] 本発明の他の態様では、前記第 1材料、前記第 2材料の両方が非磁性材料である 。この場合、前記第 1材料として、銅 (Cu)、銀 (Ag)、金 (Au)、白金 (Pt)、パラジウム (Pd)、ルテニウム(Ru)、タンタル (Ta)、アルミニウム(A1)、オスミウム(Os)、チタン( Ti)、マンガン(Mn)、ロジウム(Rh)、イリジウム(Ir)、シリコン(Si)、ゲルマニウム(Ge )、鉛(Pb)、ガリウム(Ga)、ビスマス(Bi)、亜鉛 (Zn)、アンチモン(Sb)のうち力も選 択された元素の材料、又は、これらのうちの 2以上の元素で構成された材料が使用さ れ、前記第 2材料として、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲル マニウム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタ ン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム (Hf)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、ィ ットリウム (Y)、ランタン (La)力も選択された元素の材料、又は、これらのうちの 2以上 の元素で構成された材料が使用されることが好ましい。
[0018] 本発明の更に他の観点において、本発明の磁気ランダムアクセスメモリの製造方法 は、
基板 (31)の上方に第 1及び第 2スピン偏極電流注入領域 (9、 10)を形成する工程 と、
前記第 1及び第 2スピン偏極電流注入領域 (9、 10)を被覆する複合材料膜 (33)を 形成する工程と、
前記複合材料膜 (33)をエッチバックして、前記第 1及び第 2スピン偏極電流注入 領域(9、 10)の側面に複合材料領域(17〜20、 27〜30)を形成する工程と、 前記第 1及び第 2スピン偏極電流注入領域 (9、 10)及び前記複合材料領域( 17〜 20、 27-30)を被覆する第 1強磁性膜 (34)を形成する工程と、
前記第 1強磁性膜 (34)を被覆する絶縁膜 (35)を形成する工程と、
前記絶縁膜 (35)を被覆する第 2強磁性膜 (36)を形成する工程と、
前記第 2強磁性膜 (36)の上方に、前記第 1及び第 2スピン偏極電流注入領域 (9、 10)の間に位置するマスク(39)を形成する工程と、
前記第 1強磁性膜 (34)、前記絶縁膜 (35)及び前記第 2強磁性膜 (36)を、前記絶 縁膜 (35)及び前記第 2強磁性膜 (36)のうち前記マスクによって被覆されて 、な!/ヽ 部分と、前記第 1強磁性膜 (34)のうち前記第 1及び第 2スピン偏極電流注入領域 (9 、 10)の間にある部分が残存されるようにエッチングする工程とを具備する。
[0019] 前記複合材料膜 (33)は、
(a)酸化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の酸化物とが複合化された第 1複合材料、
(b)窒化されていない第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低い 第 2材料の窒化物とが複合化された第 2複合材料、及び
(c)炭化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の炭化物とが複合化された第 3複合材料
の!、ずれかで形成されて 、る。
[0020] このような磁気ランダムアクセスメモリの製造方法によれば、磁化反転領域 (8)の両 端に複合強磁性部(8c)を形成し、又は、磁化反転領域 (8)とスピン偏極電流注入領 域(9、 10)との間に複合材料領域(17〜20、 27〜30)を備えたメモリセルを形成す ることがでさる。
発明の効果
[0021] 本発明によれば、 MRAMの書き込み動作時に磁気記録層の面内方向に流される スピン偏極電流の大きさを、著しく低減させることができる。
図面の簡単な説明
[0022] [図 1A]図 1Aは、本発明の第 1の実施形態の MRAMの構成を示す断面図である。
[図 1B]図 1Bは、図 1 Aの MRAMの構成を示す平面図である。
[図 2A]図 2Aは、複合強磁性材料で形成された磁化反転領域の微細構造を示す断 面図である。
[図 2B]図 2Bは、複合強磁性材料で形成された磁化反転領域の微細構造を示す断 面図である。
[図 2C]図 2Cは、複合強磁性材料で形成された磁化反転領域の微細構造を示す断 面図である。
[図 3]図 3は、複合強磁性材料で形成された磁化反転領域において電流が流れる経 路を示す断面図である。
[図 4A]図 4Aは、(Co Fe ) Ta O膜の電気的特性を示すグラフである。
90 10 85 15
[図 4B]図 4Bは、(Co Fe ) Ta O膜の磁気的特性を示すグラフである。
90 10 85 15
[図 4C]図 4Cは、 (Co Fe ) Ta O膜におけるコノ レトの酸ィ匕状態を示すグラフ
90 10 85 15
である。
[図 5A]図 5Aは、本発明の第 1の実施形態の MRAMの他の構成を示す断面図であ る。
[図 5B]図 5Bは、図 5Aの MRAMの構成を示す平面図である。
[図 6]図 6は、本発明の第 2の実施形態の MRAMの構成を示す断面図である。
[図 7A]図 7Aは、本発明の第 2の実施形態の MRAMの他の構成を示す断面図であ る。
[図 7B]図 7Bは、図 7Aの MRAMの構成を示す平面図である。
[図 7C]図 7Cは、本発明の第 2の実施形態の MRAMの他の構成を示す断面図であ る。
[図 7D]図 7Dは、本発明の第 2の実施形態の MRAMの更に他の構成を示す断面図 である。
[図 8]図 8は、本発明の第 2の実施形態の MRAMの更に他の構成を示す断面図であ る。
[図 9A]図 9Aは、本発明の第 3の実施形態の MRAMの構成を示す断面図である。
[図 9B]図 9Bは、本発明の第 3の実施形態の MRAMの他の構成を示す断面図であ る。
[図 10A]図 10Aは、本発明の第 3の実施形態の MRAMの更に他の構成を示す断面 図である。
[図 10B]図 10Bは、本発明の第 3の実施形態の MRAMの更に他の構成を示す断面 図である。
[図 11A]図 11 Aは、図 10Aの MRAMの製造工程を示す断面図である。 [図 1 IB]図 1 IBは、図 10Aの MRAMの製造工程を示す断面図である。
[図 11C]図 11Cは、図 10Aの MRAMの製造工程を示す断面図である。
[図 11D]図 11Dは、図 10Aの MRAMの製造工程を示す断面図である。
[図 11E]図 11Eは、図 10Aの MRAMの製造工程を示す断面図である。
[図 12A]図 12Aは、磁化反転領域とスピン偏極電流注入領域の好適な配置を示す平 面図である。
[図 12B]図 12Bは、磁化反転領域とスピン偏極電流注入領域の他の好適な配置を示 す平面図である。
[図 12C]図 12Cは、磁化反転領域とスピン偏極電流注入領域が図 12Bに図示されて V、るように配置されて 、る場合における、好適な MRAMの構成を示す断面図である 符号の説明
1:磁気記録層
2:トンネルバリア層
3:磁化固定層
4:反強磁性層
5:コンタクト層
6:ビア
7:配線
8:磁化反転領域
9、 10:スピン偏極電流注入領域
11、 13:ビア
12、 14:配線
15:下部電極
16:上部電極
17、 18、 27、 28:複合強磁性体領域
19、 20、 29、 30:複合非磁性体領域
21:強磁性結晶粒 22:非磁性粒界部
23:強磁性結晶粒
24:非磁性粒界部
25:強磁性結晶粒
26:強磁性 非磁性複合結晶粒
31:基板
32:絶縁層
33:複合強磁性体膜
34:強磁性膜
35:絶縁膜
36:強磁性膜
37:反強磁性膜
38:金属導電膜
39:マスク
41:ビア
42:配線
発明を実施するための最良の形態
[0024] 以下、添付の図面を参照して、本発明の好適実施形態について説明する。図にお いて、同一又は類似する構成要素は、同一の符号を付してその詳細な説明は省略 する。
[0025] (第 1の実施形態)
図 1Aは、本発明の第 1の実施形態の MRAMのメモリセル 100の構成を示す断面 図であり、図 1Bは、メモリセル 100の構成を示す平面図である。図 1Aに示されている ように、メモリセル 100は、順次に積層された磁気記録層 1と、トンネルバリア層 2と、 磁ィ匕固定層 3と、反強磁性層 4と、コンタクト層 5とを備えている。
[0026] 磁気記録層 1は、磁化反転領域 8と、スピン偏極電流注入領域 9、 10とを備えてい る。磁化反転領域 8は、その磁ィ匕の方向として 1ビットのデータを記憶する領域である 。図 1Bに示されているように、磁化反転領域 8は、 X軸方向に長い形状を有しており、 磁ィ匕反転領域 8の磁ィ匕は、 X軸方向に平行に向けられている。磁化反転領域 8は、磁 気的にソフトな強磁性体で形成されており磁化反転領域 8の磁化は反転可能である 。本実施形態では、磁化反転領域 8の磁化の方向が +x方向である状態がデータ「1 」に対応付けられ、磁化反転領域 8の磁化の方向が X方向である状態が、データ「0 」に対応付けられている。
[0027] スピン偏極電流注入領域 9、 10は、スピン偏極電流を磁化反転領域 8に面内方向 に注入するために使用される領域であり、 Vヽずれも強磁性体で形成されて!ヽる。スピ ン偏極電流注入領域 9、 10は、磁ィ匕反転領域 8の両端に接合されている。スピン偏 極電流注入領域 9、 10は、磁ィ匕反転領域 8に X軸方向において隣接しており、図 1B に示されているように、 X軸方向に長い形状を有している。スピン偏極電流注入領域 9 、 10の磁ィ匕の方向は、いずれも、磁ィ匕反転領域 8に向カゝぅ方向に向けて固定されて いる。具体的には、スピン偏極電流注入領域 9の磁ィ匕は、 +x方向に向けて固定され ており、スピン偏極電流注入領域 10の磁ィ匕は、—X方向に向けて固定されている。そ の代わりに、スピン偏極電流注入領域 9、 10の磁ィ匕の方向は、いずれも、磁化反転 領域 8から離れる方向に向けて固定されてもよい。この場合、スピン偏極電流注入領 域 9の磁ィ匕は、 X方向に向けて固定され、スピン偏極電流注入領域 10の磁ィ匕は、 +x方向に向けて固定される。スピン偏極電流注入領域 9は、ビア 11を介して配線 1 2に接続され、スピン偏極電流注入領域 10は、ビア 13を介して配線 14に接続されて いる。
[0028] 図 1Aを参照して、トンネルバリア層 2は、磁ィ匕反転領域 8と磁ィ匕固定層 3との間でト ンネル電流を流すための薄い絶縁層である。トンネルバリア層 2は、典型的には、酸 化アルミニウム (AIO )、酸化マグネシウム (MgO)で形成される。
[0029] 磁ィ匕固定層 3は、磁ィ匕が固定されている強磁性層である。磁ィ匕固定層 3は、磁気的 にハードな強磁性体で、例えば、 CoFeで形成されている。図 1Bに示されているよう に、磁ィ匕固定層 3は、 X軸方向に長い形状を有しており、磁ィ匕固定層 3の磁ィ匕は、 X 方向に向けられている。磁化反転領域 8、トンネルバリア層 2、及び磁ィ匕固定層 3は、 磁気トンネル接合 (MTJ)を構成しており、その磁気トンネル接合の抵抗は、磁化反 転領域 8と磁化固定層 3の磁化の相対方向に依存して 、る。 [0030] 図 1Aを再度に参照して、反強磁性層 4は、 IrMn等の反強磁性体で形成されてお り、磁ィ匕固定層 3に交換相互作用を及ぼすことによって磁ィ匕固定層 3の磁ィ匕を固定 する。コンタクト層 5は、磁ィ匕固定層 3と、反強磁性層 4に電気的接続を提供すると共 に、製造工程において磁ィ匕固定層 3と、反強磁性層 4を保護する役割を有している。 コンタクト層 5は、典型的には、タンタルで形成される。コンタクト層 5は、ビア 6を介し て配線 7に接続されている。
[0031] 磁ィ匕反転領域 8へのデータの書き込みは、スピン偏極電流注入領域 9又は 10から 磁化反転領域 8にスピン偏極電流を注入することによって行われる。データ「 1」を書 き込む場合、配線 12から配線 14に電流が流れるように、即ち、磁気記録層 1を +x方 向に電流が流れるように、配線 12と配線 14の間に電圧が印加される。これにより、( 磁ィ匕が +x方向に固定されて 、る)スピン偏極電流注入領域 9から磁化反転領域 8に スピン偏極電流が注入される。注入されたスピン偏極電流によって磁化反転領域 8の 磁壁が +x方向に押され、又は、磁化にトルクが作用され、磁化反転領域 8の磁化が +x方向に向けられる。これにより、データ「1」が磁気記録層に書き込まれる。一方、 データ「0」を書き込む場合、(磁ィ匕が X方向に固定されて 、る)スピン偏極電流注 入領域 10から磁ィ匕反転領域 8にスピン偏極電流が注入される。これにより、磁ィ匕反 転領域 8にの磁ィ匕が一 X方向に向けられる。
[0032] 磁ィ匕反転領域 8に記憶されているデータの読み出しには、 TMR効果が利用される 。磁化反転領域 8、トンネルバリア層 2、及び磁化固定層 3で構成される磁気トンネル 接合の抵抗は、 TMR効果により磁気記録層 1と磁ィ匕固定層 3の磁ィ匕の相対方向に 依存して!/、る。磁化反転領域 8と磁化固定層 3の磁化が反平行 (anti-parallel)である 場合は、当該磁気トンネル接合は相対的に高い抵抗を示し、磁化反転領域 8と磁ィ匕 固定層 3の磁ィ匕が平行である場合は、当該磁気トンネル接合は相対的に低!ヽ抵抗を 示す。磁気トンネル接合の抵抗の変化を検出することにより、磁気記録層 1に記憶さ れているデータが識別される。磁気トンネル接合の抵抗の変化は、磁気トンネル接合 に所定の電圧を印加して磁気トンネル接合に流れる電流を測定することにより、又は 、磁気トンネル接合に所定の電流を流して磁気トンネル接合に発生する電圧を測定 することにより識別可能である。 [0033] 第 1の実施形態のメモリセル 100の一つの特徴は、磁気記録層 1の磁化反転領域 8 力 NiFe、 CoFeのような金属強磁性材料と、当該金属強磁性材料よりもそれぞれ酸 化物、窒化物、炭化物生成エネルギーが低い非磁性材料の酸化物、炭化物、又は 窒化物とが複合されて構成された複合強磁性材料で形成されている点にある。金属 強磁性材料は、その少なくとも一部が酸化、炭化、窒化されていない状態で磁化反 転領域 8に存在している。金属強磁性材料の全部が酸化、炭化、又は窒化されると、 磁ィ匕反転領域 8は強磁性を失うとともに、導電性を失ってしまうため好ましくない。金 属強磁性材料よりも酸化、窒化、炭化されやすい非磁性材料を複合強磁性材料に 混ぜることにより、非磁性材料を選択的に (又は、優先的に)酸化、窒化、又は炭化 することができる。
[0034] 詳細には、磁化反転領域 8は、組成式が F MO、 F MN、又は F MCで表され
M M M
る材料で構成されている。ここで、 F は金属強磁性体材料を意味している。一方、 M
M
は、 F MOについては金属強磁性体 F よりも酸ィ匕物生成エネルギーが低い元素か
M M
らなる材料を意味し、 F MNについては金属強磁性体 F よりも窒化物生成エネル
M M
ギ一が低い元素力もなる材料を意味し、 F MCについては金属強磁性体 F よりも
M M
炭化物生成エネルギーが低 、元素力もなる材料を意味して 、る。
[0035] 金属強磁性体材料 F としては、鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、ガドリゥム(
M
Gd)又はこれらの少なくとも 2の元素の合金(例えば、 CoFe、 NiFe)が使用され得る
[0036] 一方、非磁性材料 Mとしては、マグネシウム(Mg)、アルミニウム(A1)、シリコン(Si) 、ゲルマニウム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca) 、チタン (Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフ ニゥム(Hf)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム( Ce)、イットリウム (Y)、ランタン (La)力 選択された元素の材料、又は、これらのうち の 2以上の元素で構成された材料を使用できる。材料 Mとしては、タンタル、ジルコ- ゥム、ハフニウム、ァノレミ-ゥム、マグネシウム、チタン、リチウム、シリコン、ニオブなど は、強磁性元素と比較して、より酸化、窒化、炭化されやすく安定であり、特に、酸ィ匕 物は絶縁性も高いので、特に好適である。 [0037] 図 2A乃至図 2Cは、複合強磁性材料で形成された磁化反転領域 8がとり得る微細 構造を示す概念図である。非磁性材料 Mの組成が比較的に少ないとき、磁化反転 領域 8は、金属強磁性体 F で形成された柱状結晶である強磁性結晶粒 21と、その
M
粒界に存在する MO、 MN、又は MCで形成された非磁性粒界部 22とで構成され た微細構造を有している。一方、非磁性材料 Mの組成が比較的に多い場合には、磁 化反転領域 8は、材料 Mを構成する元素の原子半径に応じた構造をとる。非磁性材 料 Mを構成する元素の原子半径が、金属強磁性体 F を構成する元素の原子半径よ
M
りも小さい場合には、図 2Bに示されているように、磁化反転領域 8は、金属強磁性体 F で形成された粒状結晶である強磁性結晶粒 23と、その粒界に存在する MO、 M
M
N、又は MCで形成された非磁性粒界部 24とで構成された微細構造を有している。 一方、材料 Mを構成する元素の原子半径が、金属強磁性体 F を構成する元素の原
M
子半径よりも大きい場合には、金属強磁性体 F のみで形成された柱状結晶である強
M
磁性結晶粒 25と、金属強磁性体 F と材料 Mとの酸化物、窒化物、又は炭化物で形
M
成された強磁性 非磁性複合結晶粒 26とで構成される。これらの何れの微細構造 をとる場合でも、磁化反転領域 8は、金属強磁性体 F で形成された結晶粒を有して
M
いる。
[0038] 図 2A乃至図 2Cのいずれの微細構造をとる場合でも、磁化反転領域 8に複合強磁 性材料を使用することにより、スピン偏極電流が流れる領域が局在化され、スピン偏 極電流の電流密度が局所的に増大する。これは、少ない電流で磁化反転領域 8の 磁ィ匕を反転させることを可能にする。例えば、磁化反転領域 8が、図 2Bに示されてい るように、金属強磁性体 F で形成された強磁性結晶粒 23と、その粒界に存在する M
M
O、 MN、又は MCで形成された非磁性粒界部 24とで構成された微細構造を有し ている場合には、図 3に示されているように、スピン偏極電流は、隣接した強磁性結 晶粒 23が接触している部分のみを選択的に流れる。これは、酸化物、窒化物、又は 炭化物で形成された非磁性粒界部 24は、絶縁体であるため電気抵抗が大き!/ヽから である。従って、磁ィ匕反転領域 8に複合強磁性材料を使用することにより、スピン偏極 電流が流れる領域が局在化され、スピン偏極電流の電流密度が局所的に増大する。 電流密度が大き ヽ部分では磁化反転が起こりやす ヽから、スピン偏極電流の電流密 度を局所的に増大させることによって磁化反転領域 8の一部分で磁化反転を発生さ せることができる。磁化反転領域 8の一部分で磁化反転が発生すると、磁化反転領 域 8全体の磁化反転が誘起されるから、結果として、複合強磁性材料で形成された 磁ィ匕反転領域 8は、小さなスピン偏極電流で磁ィ匕を反転させることができる。
[0039] 加えて、磁化反転領域 8への複合強磁性材料の使用は、磁化反転領域 8の磁化の 反転に必要な反転磁場 Heそのものも小さくし、書き込みに必要な電流を減少させる という効果も奏する。複合強磁性材料で形成された磁気記録層では、非磁性材料 M の酸化物、窒化物、又は炭化物が存在することにより、金属強磁性体 F で形成され
M
た結晶粒が分断され、結晶粒の粒径が小さくなる。当業者に知られているように、(磁 化反転領域 8が全体として強磁性を発現する範囲では)金属強磁性体 F の結晶粒
M
の粒径力 、さくなると、反転磁場 Heも小さくなる。反転磁場 Heが小さくなることにより 、磁化反転領域 8の磁化が反転しやすくなり、よって書き込みに必要な電流も小さく なる。
[0040] 一実施形態では、磁化反転領域 8は、金属強磁性体 F として CoFe、非磁性材料
M
Mとして Taが使用されている複合強磁性材料である(Co Fe ) Ta O膜で構成
90 10 85 15 x され得る。作製条件を最適化することにより、 Taのみが選択的に酸化されている(Co Fe ) Ta O膜を形成することが可能であり、そのような (Co Fe ) Ta O膜
90 10 85 15 x 90 10 85 15 x は、磁ィ匕反転領域 8を構成する複合強磁性材料として好適に使用可能である。
[0041] 発明者は、 (Co Fe ) Ta O膜を作成し、その電気的、磁気的特性の測定を行
90 10 85 15
つた。(Co Fe ) Ta O膜は、アルゴンガスと酸素ガスが混合されたスパッタリン
90 10 85 15
グガスを使用する反応性スパッタリングによって形成された。ターゲットの材料として は、(Co Fe ) Ta Oが使用された。スパッタリングガスにおける酸素ガスの分圧
90 10 85 15
を様々に変化させて (Co Fe ) Ta O膜が作製され、作製された (Co Fe ) T
90 10 85 15 χ 90 10 85 a O膜の電気的、磁気的特性が測定された。酸素ガスの分圧は、アルゴンガスに対
15
する酸素ガスの流量比 rO ZArで調節された。ここで、酸素ガスの流量比 rO /Ar
2 2 は、スパッタガスのうちの酸素ガスの流量を [O ] (sccm)、アルゴンガスの流量を [Ar
2
] (sccm)として下記式:
rO /Ar= [0 ],[Ar] , によって定義されるパラメータである。
[0042] 図 4A〜図 4Cは、測定された (Co Fe ) Ta O膜の電気的、磁気的特性を示
90 10 85 15
すグラフである。酸素ガスの流量比 rO ZArが 0. 2以上になると、図 4Aに示されて
2
いるように、(Co Fe ) Ta O膜の比抵抗が急激に増大し、また、図 4Bに示され
90 10 85 15
ているように、飽和磁化が急激に減少する。この結果は、酸素ガスの流量比 rO ZAr
2 が 0. 2未満である場合には、 Taのみが選択的に酸ィ匕され、 Co Fe が酸化されな
90 10
い状態で(Co Fe ) Ta O膜に存在していることを示唆している。このことは、 XP
90 10 85 15
S (X線光電子分析)によって (Co Fe ) Ta O膜に含まれるコバルトの酸化状態
90 10 85 15
を調べることによって裏付けられた。図 4Cは、 XPSによって得られた、 Co2pスぺタト ル結果を示すグラフである。酸素ガスの流量比 rO ZArが 0. 13である条件で作製さ
2
れた (Co Fe ) Ta O膜では、金属コバルト Coに対応する結合エネルギーにお
90 10 85 15
いて、光電子強度のピークが見られた。一方、酸素ガスの流量比 rO ZAr
2 が 0. 54で ある条件で作製された (Co Fe ) Ta O膜では、酸ィ匕コノ レト CoOに対応する結
90 10 85 15
合エネルギーにおいて、光電子強度のピークが見られた。このことは、酸素ガスの流 量比 rO ZArが 0. 2未満である場合には、 Taのみが選択的に酸ィ匕され、 Coが酸ィ匕
2
されていないことを示している。 Taのみが選択的に酸化された(Co Fe ) Ta O
90 10 85 15 x 膜は、磁ィ匕反転領域 8を構成する複合強磁性材料として使用可能である。
[0043] 図 1Aに図示されているメモリセル 100では、磁気記録層 1の上にトンネルバリア層 2 、磁化固定層 3、及び反強磁性層 4が形成されているが、図 5Aに示されているように 、反強磁性層 4、磁化固定層 3、及びトンネルバリア層 2の積層体の上に磁気記録層 1が形成されることも可能である。詳細には、図 5Aのメモリセル 100Aでは、下部電極 15の上に反強磁性層 4、磁化固定層 3、及びトンネルバリア層 2が順次に形成され、 更に、磁ィ匕反転領域 8がトンネルバリア層 2と接合されるようにトンネルバリア層 2の上 に磁気記録層 1が形成される。磁化反転領域 8の上には、上部電極 16が接合される このように構成されたメモリセル 100Aでは、図 1Aのメモリセル 100と同様に、磁化 反転領域 8へのデータの書き込みは、スピン偏極電流注入領域 9又は 10から磁ィ匕反 転領域 8にスピン偏極電流を注入することによって行われる。一方、磁化反転領域 8 に記憶されているデータの読み出しは、下部電極 15と上部電極 16との間に所定の 電圧を印加して磁気トンネル接合に流れる電流を検出することによって、磁気トンネ ル接合の抵抗を識別することによって行われる。磁気トンネル接合の抵抗の識別は、 下部電極 15と上部電極 16との間に所定の電流を流して磁気トンネル接合に発生す る電圧を検出することによって行われてもよ 、。
[0045] (第 2の実施形態)
上述の複合強磁性材料で磁化反転領域 8を構成することの一つの問題は、複合強 磁性材料が本質的に結晶性に劣るため、磁ィ匕反転領域 8とトンネルバリア層 2と磁ィ匕 固定層 3とで構成される磁気トンネル接合の MR比が小さくなることである。これは、 読み出し動作時の SN比を低下させるために好ましくない。第 2の実施形態では、磁 気トンネル接合の MR比を向上させるための技術が提供される。
[0046] 図 6は、本発明の第 2の実施形態の MRAMのメモリセル 100Bの構成を示す断面 図である。図 6のメモリセル 100Bでは、磁気記録層 1の磁化反転領域 8が、複合強磁 性部 8aと、複合強磁性部 8aの上に形成された高 MR比強磁性部 8bとで構成される 。複合強磁性部 8aは、第 1の実施形態で説明された複合強磁性材料で形成される。 一方、高 MR比強磁性層 8bは、高い MR比を発現する金属強磁性材料、好適には、 CoFe、 CoFeBで形成される。トンネルノリア層 2は、高 MR比強磁性部 8bの上に形 成されている。トンネルバリア層 2が酸ィ匕マグネシウム膜 (MgO)で形成される場合に は、高 MR比強磁性層 8bがアモルファスの CoFeBで形成されることは特に好適であ る。高 MR比強磁性層 8bをアモルファスの CoFeBで形成することにより、その上にト ンネルバリア層 2として形成される MgO膜の結晶性を良好にすることができる。
[0047] 図 6のメモリセル 100Bでは、磁化反転領域 8を反転させるために必要なスピン偏極 電流の大きさが概ね複合強磁性部 8aによって支配され、磁気トンネル接合の MR比 が概ね高 MR比強磁性部 8bによって支配される;複合強磁性部 8aの磁ィ匕が反転す れば、それに直接に接合されて ヽる高 MR比強磁性部 8bの磁化も反転することに留 意されたい。したがって、図 6に図示されているメモリセル 100Bは、書き込みに必要 なスピン偏極電流の低減と、磁気トンネル接合の MR比の向上とを、同時に実現する ことができる。 [0048] 図 7A及び図 7Bに示されているように、磁化反転領域 8が、複合強磁性部 8cと、金 属強磁性部 8dとで構成されていることも好適である。複合強磁性体部 8cは、上述の 複合強磁性材料で形成され、金属強磁性部 8dは、(複合強磁性材料よりも高い MR 比を発現する)金属強磁性体、例えば、 NiFe、 CoFe、 CoFeBで形成されている。複 合強磁性体部 8cは、磁ィ匕反転領域 8の両端部に設けられている。言い換えれば、複 合強磁性体部 8cは、金属強磁性部 8dの両端に接合されている。トンネルバリア層 2 は、金属強磁性部 8dの上に形成されている。
[0049] このような構成でも、書き込みに必要なスピン偏極電流の低減と、磁気トンネル接合 の MR比の向上とを、同時に実現することができる。複合強磁性体層 8cの磁化の反 転により、それに直接に接合されている金属強磁性部 8dの磁ィ匕の反転が誘起される から、図 6Bの構成では、磁化反転領域 8を反転させるために必要なスピン偏極電流 の大きさが、概ね複合強磁性体層 8cによって支配される。一方、磁気トンネル接合の MR比は、概ね、複合強磁性材料よりも高い金属強磁性部 8dによって支配される。し たがって、書き込みに必要なスピン偏極電流が有効に低減される一方で、磁気トンネ ル接合の MR比が有効に向上される。
[0050] 複合強磁性体部 8cが設けられる位置は、磁ィ匕反転領域 8の両端部には限られない 。図 7Cに示されているように、トンネルバリア層 2の少なくとも一部が金属強磁性部 8d に接合されて ヽる限りにお ヽて、複合強磁性体部 8cが磁化反転領域 8の中間位置 に設けられることも可能である。また、図 7Dに示されているように、磁化反転領域 8の 一端にのみ合強磁性体部 8cが設けられることも可能である。
[0051] しカゝしながら、複合強磁性体部 8cが磁ィ匕反転領域 8の両端に設けられる構成は、 下記の点で好適である。第 1に、複合強磁性体部 8cが磁ィ匕反転領域 8の両端に設け られていることにより、磁化反転のときに、磁壁を磁化反転領域 8の両端において最 初に動かすことができる。これは、磁化反転領域 8に複数のドメインが発生することを 有効に抑制する。第 2に、複合強磁性体部 8cが磁化反転領域 8の両端に設けられる 構成は、磁壁を磁ィ匕反転領域 8の両端でピン止めし、磁壁を安定化させることを可能 にする。 MRAMを安定的に動作させるためには、書き込み時における磁壁の移動 力 磁ィ匕が固定されているべきスピン偏極電流注入領域 9、 10に波及しないことが求 められる。複合強磁性体部 8cが磁ィ匕反転領域 8の両端に設けられている構成は、磁 化反転領域 8とスピン偏極電流注入領域 9、 10との間の磁気的結合を弱め、磁化反 転領域 8の両端部において磁壁をピン止めする。このため、磁壁の移動がスピン偏 極電流注入領域 9、 10に波及することを防ぎ、 MRAMの動作をより安定にする。
[0052] 図 8に示されているように、磁化反転領域 8が、複合強磁性体部 8cと、金属強磁性 部 8dとに加えて、高 MR比強磁性部 8bを備えていることも好適である。高 MR比強磁 性部 8bは、金属強磁性部 8dの上に形成され、トンネルバリア層 2は、高 MR比強磁 性部 8bの上に形成される。高 MR比強磁性層 8bは、高い MR比を発現する金属強 磁性材料、好適には、 CoFe、 CoFeBで形成される。このような構成は、一層に磁気 トンネル接合の MR比を向上させるために好適である。
[0053] (第 3の実施形態)
図 9Aは、本発明の第 3の実施形態のメモリセル 100Dの構成を示す断面図である 。本実施形態では、磁化反転領域 8が NiFeのような金属強磁性体で形成される一方 、磁化反転領域 8と、スピン偏極電流注入領域 9、 10との間に、複合強磁性体領域 1 7、 18が設けられる。複合強磁性体領域 17、 18は、第 1の実施形態で説明されてい る複合
強磁性材料で形成される。
[0054] 複合強磁性体領域 17、 18は、第 2の実施形態の磁化反転領域 8の複合強磁性体 部 8cとは異なり、それ自身の磁ィ匕の反転は起こさないように形成される。複合強磁性 体領域 17の磁ィ匕は、スピン偏極電流注入領域 9の磁ィ匕と同一の方向に固定され、複 合強磁性体領域 18の磁化は、スピン偏極電流注入領域 10の磁化と同一の方向に 固定される。
[0055] このような構成のメモリセル 100Dは、複合強磁性体領域 17、 18の磁化反転が容 易に起こることによって磁ィ匕反転領域 8の反転を促進するものではな 、。しかしながら 、複合強磁性体領域 17、 18は、磁化反転領域 8に注入されるスピン偏極電流を局在 化させ、これにより、磁化反転領域 8に注入されるスピン偏極電流の電流密度を局所 的に増大させる。したがって、複合強磁性体領域 17、 18を設けることにより、磁ィ匕反 転領域 8の磁ィ匕を反転させるために必要なスピン偏極電流の大きさを低減させること ができる。加えて、磁化反転領域 8が金属強磁性層で構成されていることにより、高い MR比を実現することができる。
[0056] 図 9Bに示されているように、複合強磁性体領域 17、 18の代わりに、複合非磁性体 領域 19、 20が設けられてもよい。複合非磁性体領域 19、 20は、第 1の非磁性材料と 、第 1の非磁性材料よりもそれぞれ酸ィ匕物、窒化物、炭化物生成エネルギーが低い 第 2の非磁性材料の酸化物、炭化物、又は窒化物とが複合されて構成された複合非 磁性材料で形成される。第 1の非磁性材料は、その少なくとも一部が酸化、炭化、窒 化されていない状態で複合強磁性体領域 17、 18に存在している。第 1の非磁性材 料の全部が酸化、炭化、又は窒化されると、複合強磁性体領域 17、 18は、導電性を 失ってしまうため好ましくない。第 1の非磁性材料よりも酸化、窒化、炭化されやすい 第 2の非磁性材料を複合非磁性材料に混ぜることにより、第 2の非磁性材料を選択 的に (又は、優先的に)酸化、窒化、又は炭化することができる。
[0057] 詳細には、複合非磁性体領域 19、 20は、組成式が N MO、 N MN、又は N M
M M M
Cで表される材料で構成されている。ここで、 N は第 1の非磁性材料を意味している
M
。一方、 Mは、 N MOについては第 1の非磁性材料 N よりも酸化物生成エネルギ
M M
一が低い元素力 なる第 2の非磁性材料を意味し、 N MNについては第 1の非磁
M
性材料 N よりも窒化物生成エネルギーが低い元素力もなる材料を意味し、 N MC
M M
については第 1の非磁性材料 N よりも炭化物生成エネルギーが低い元素力 なる
M
材料を意味している。
[0058] 第 1の非磁性材料 NMとしては、銅 (Cu)、銀 (Ag)、金 (Au)、白金 (Pt)、パラジゥ ム(Pd)、ルテニウム(Ru)、タンタル (Ta)、アルミニウム(A1)、オスミウム(Os)、チタ ン(Ti)、マンガン(Mn)、ロジウム(Rh)、イリジウム(Ir)、シリコン(Si)、ゲルマニウム( Ge)、鉛(Pb)、ガリウム(Ga)、ビスマス(Bi)、亜鉛(Zn)、アンチモン(Sb)のうちから 選択された元素の材料、又は、これらのうちの 2以上の元素で構成された材料が使用 され得る。一方、第 2の非磁性材料 Mとしては、マグネシウム(Mg)、アルミニウム (A1 )、シリコン(Si)、ゲルマニウム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、 カルシウム(Ca)、チタン (Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコ ニゥム(Zr)、ハフニウム(Hf)、タンタノレ (Ta)、ニオブ(Nb)、モリブデン(Mo)、セリウ ム(Ce)、イットリウム (Y)、及びランタン (La)のうちから選択された元素の材料、又は 、これらのうちの 2以上の元素で構成された材料が使用され得る。これらの材料は、 非磁性元素の中でも、特に酸化、窒化、炭化されやすい性質を持つ。
[0059] このような複合非磁性材料で形成された複合非磁性体領域 19、 20を使用すること により、磁化反転領域 8に注入されるスピン偏極電流を局在化させ、これにより、磁ィ匕 反転領域 8に注入されるスピン偏極電流の電流密度を局所的に増大させることがで きる。したがって、複合非磁性体領域 19、 20を設けることにより、磁化反転領域 8の 磁ィ匕を反転させるために必要なスピン偏極電流の大きさを低減させることができる。 カロえて、磁化反転領域 8が金属強磁性層で構成されていることにより、高い MR比を 実現することができる。
[0060] 図 10Aは、複合強磁性体領域 17、 18が設けられているメモリセル 100Dの、より現 実的な構造を示す断面図である。図 10Aのメモリセル 100Dは、磁化反転領域 8とス ピン偏極電流注入領域 9の間に複合強磁性体領域 17が設けられるのに加え、スピン 偏極電流注入領域 9の、磁化反転領域 8と反対側の端に複合強磁性体領域 27が設 けられる。更に、磁化反転領域 8とスピン偏極電流注入領域 10の間に複合強磁性体 領域 18が設けられるのに加え、スピン偏極電流注入領域 10の、磁化反転領域 8と反 対側の端に複合強磁性体領域 28が設けられる。
[0061] 図 11A乃至図 11Eは、図 10Aのメモリセル 100Dを形成するための好適な製造ェ 程を示す断面図である。まず、図 11Aに示されているように、基板 31を被覆する絶縁 層 32に、配線 12、 14とビア 11、 13とが形成され、更に、絶縁層 32の上にスピン偏極 電流注入領域 9、 10が形成される。スピン偏極電流注入領域 9、 10は、強磁性体膜 を絶縁層 32の全面に形成した後、形成された強磁性膜をフォトリソグラフィ一によつ てパターンユングすることによって形成される。
[0062] 続、て、図 11Bに示されて 、るように、上述の複合強磁性材料で形成された複合 強磁性体膜 33が、絶縁層 32の全面に形成される。このときに形成する膜厚によって 、最終的に形成されるべき複合強磁性体領域 17、 18の幅をナノメートル単位で容易 に精密に制御することが可能である。これは、本形成方法が有する実用上の利点で ある。 [0063] 複合強磁性体膜 33の形成の後、図 11Cに示されているように、全面エッチバックが 行われる。全面エッチバックにより、スピン偏極電流注入領域 9、 10の側面にのみ選 択的に複合強磁性体膜 33が残され、複合強磁性体領域 17、 18、 27、 28が形成さ れる。
[0064] 続いて、図 11Dに示されているように、強磁性膜 34、絶縁膜 35、強磁性膜 36、反 強磁性膜 37、及び金属導電膜 38が順次に形成される。後述されるように、強磁性膜 34、絶縁膜 35、強磁性膜 36、反強磁性膜 37、及び金属導電膜 38は、それぞれ、 後の工程によって磁化反転領域 8、トンネルバリア層 2、磁化固定層 3、反強磁性層 4 、及びコンタクト層 5にカ卩ェされる膜である。
[0065] 強磁性膜 34、絶縁膜 35、強磁性膜 36、反強磁性膜 37、及び金属導電膜 38の形 成の後、図 11Eに示されているように、トンネルノリア層 2、磁化固定層 3、反強磁性 層 4、及びコンタクト層 5に対応する部分を被覆するマスク 39がフォトリソグラフィ一に よって形成される。続いて、マスク 39を用いてエッチングを行うことにより、絶縁膜 35、 強磁性膜 36、反強磁性膜 37、及び金属導電膜 38がパターユングされ、磁化固定層 3、反強磁性層 4、及びコンタクト層 5が形成される。カロえて、強磁性膜 34のうち複合 強磁性体領域 17、 18の間にある部分のみを選択的に残存させるように強磁性膜 34 をエッチングすることにより、磁化反転領域 8が形成される。このような製造工程により 図 10Aに示されているメモリセル 100Dが形成される。また、マスク 39を形成する前 に、 CPM (Chemical Mechanical Polishing)などによって全体を平坦ィ匕してもよい。そ の場合、エッチングされるべき残膜量がデバイス全体でより均一になり、接合部の 形成をより高精度に行うことができるので好適である。
[0066] 図 7Aに図示されているメモリセル 100Cと、図 9Aに図示されているメモリセル 100 Dは構造としては同一であるから、上記の製造工程が図 7Aに図示されているメモリセ ル 100Cの形成に適用可能であることは、当業者には自明的であろう。
[0067] また、複合強磁性体膜 33の代わりに、上述の複合非磁性材料で形成された複合 非磁性体膜を形成すれば、同一の製造工程によって、複合非磁性体領域 19、 20が 設けられているメモリセル 100Dを形成することができる。この場合、図 10Bに示され ているように、スピン偏極電流注入領域 9の、磁化反転領域 8と反対側の端に複合非 磁性体領域 2
9が設けられ、更に、スピン偏極電流注入領域 10の、磁化反転領域 8と反対側の端 に複合非磁性体領域 30が設けられる。
[0068] なお、第 1〜第 3の実施形態のいずれにおいても、磁気記録層 1における磁化反転 領域 8とスピン偏極電流注入領域 9、 10の幾何学的な配置は、図 1に示されているよ うな、磁化反転領域 8とスピン偏極電流注入領域 9、 10がー直線上に並んでいる配 置に限定されない。例えば、図 12Aに示されているように、磁化反転領域 8が X軸方 向に長く形成される一方で、スピン偏極電流注入領域 9、 10が y軸方向に長く形成さ れることも可能である。この場合、スピン偏極電流注入領域 9、 10の磁ィ匕は、いずれ も、 +y方向に固定される。その代わりに、スピン偏極電流注入領域 9、 10の磁化が、 いずれも y方向に固定されることも可能である。このような構成は、スピン偏極電流 注入領域 9、 10の磁ィ匕の方向が同一であるため、製造工程においてスピン偏極電流 注入領域 9、 10の磁ィ匕を所望の方向に向けることが容易である。図 1Bの構成では、 スピン偏極電流注入領域 9、 10の磁ィ匕の方向が逆であることに留意されたい。
[0069] また、図 12Bに示されているように、スピン偏極電流注入領域 9、 10の両方が磁化 反転領域 8の一方の端に接続されることも可能である。図 12Bの構成では、スピン偏 極電流注入領域 9は、 +x方向に対して反時計回りに 120° の角度をなす +S方向 に長く形成され、スピン偏極電流注入領域 10は、 +x方向に対して時計回りに 120 ° の角度をなす +T方向に長く形成される。スピン偏極電流注入領域 9の磁ィ匕 Mlは 、 一 S方向(即ち、磁化反転領域 8から離れる方向)に向けられ、スピン偏極電流注入 領域 10の磁化 M2は、 +T方向(即ち、磁化反転領域 8から離れる方向)に向けられ る。スピン偏極電流注入領域 9の磁化 Mlが + S方向(即ち、磁化反転領域 8に向か う方向)に向けられ、スピン偏極電流注入領域 10の磁化 M2がー T方向(即ち、磁ィ匕 反転領域 8に向カゝぅ方向)に向けられてもよい。この場合、図 12Cに示されているよう に、磁ィ匕反転領域 8の他方の端には、ビア 41を介して配線 42が接続される。
[0070] 図 12Bに図示された構成の MRAMでは、データ「1」を書き込む場合、書き込み電 流が配線 12から配線 42に流され、スピン偏極電流がスピン偏極電流注入領域 9から 磁化反転領域 8に注入される。これにより、磁化反転領域 8の磁化が +x方向に向け られてデータ「1」が書き込まれる。一方、データ「0」を書き込む場合、書き込み電流 が配線 14から配線 42に流され、スピン偏極電流がスピン偏極電流注入領域 10から 磁化反転領域 8に注入される。これにより、磁化反転領域 8の磁化が X方向に向け られてデータ「1」が書き込まれる。
[0071] 図 12Bに図示されている構成の利点は、 y方向、又は、 +y方向に磁場を印加す ることによってスピン偏極電流注入領域 9、 10の磁ィ匕を所望の方向に向けることがで きる点にある。これは、製造工程においてスピン偏極電流注入領域 9、 10の磁ィ匕を所 望の方向に向けることを容易にするため好適である。
[0072] 図 12Cに図示されているように、スピン偏極電流注入領域 9、 10の両方が磁化反 転領域 8の一方の端に接続される場合、複合強磁性体領域 17 (又は複合非磁性体 領域 19)は、磁ィ匕反転領域 8の一方の端にしか設けられる必要がない。
産業上の利用可能性
[0073] 本発明は、スピン偏極電流を用いて磁ィ匕を反転させてデータを書き込む MRAM ( 磁気ランダムアクセスメモリ)において、スピン偏極電流の低減に有効である。

Claims

請求の範囲
[1] 反転可能な磁化を有する磁化反転領域と、前記磁化反転領域に面内方向にスピ ン偏極電流を注入するスピン偏極電流注入領域とを備える磁気記録層と、
固定された磁ィ匕を有する磁ィ匕固定層と、
前記磁ィヒ反転領域と前記磁ィヒ固定層との間に設けられたトンネルバリア層と、 を具備し、
前記磁ィ匕反転領域の少なくとも一部は、
(a)酸化されて!ヽな!ヽ金属強磁性材料と、前記金属強磁性材料よりも酸化物生成ェ ネルギ一が低い非磁性材料の酸ィ匕物とが複合化された第 1複合強磁性材料、
(b)窒化されて 1ゝな ゝ金属強磁性材料と、前記金属強磁性材料よりも窒化物生成ェ ネルギ一が低い非磁性材料の窒化物とが前記複合化されて構成された第 2複合強 磁性材料、及び
(c)炭化されていない金属強磁性材料と、前記金属強磁性材料よりも、炭化物生成 エネルギーが低い非磁性材料の炭化物とが複合化されて構成された第 3複合強磁 性材料
の!ヽずれかで形成されて ヽることを特徴とする磁気ランダムアクセスメモリ。
[2] 前記金属強磁性材料として、鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、及びガドリウ ム(Gd)からなる群から選択された 1種の金属、又は前記群力も選択された 2以上の 元素の合金からなる強磁性材料が使用され、
前記非磁性材料として、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲル マニウム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタ ン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム (Hf)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、ィ ットリウム (Y)、及びランタン (La)力もなる群力も選択された元素の材料、又は、前記 群力 選択された 2種以上の元素力 なる材料が使用される
ことを特徴とする請求項 1に記載の磁気ランダムアクセスメモリ。
[3] 前記磁化反転領域は、
前記スピン偏極電流注入領域に前記面内方向において隣接し、且つ、前記複合 強磁性材料で形成されて!、る複合強磁性部と、
前記複合強磁性部と前記面内方向に垂直な方向で接合され、前記複合強磁性 部と前記トンネルバリア層との間に設けられた金属の強磁性体で形成された高 MR比 強磁性部と、
を備えたことを特徴とする請求項 1又は 2に記載の磁気ランダムアクセスメモリ。
[4] 前記磁化反転領域は、
前記複合強磁性材料で形成されている複合強磁性部と、
前記複合強磁性部と前記面内方向に接合された、金属の強磁性体で形成された 金属強磁性部と、
を備え、
前記複合強磁性部は、前記金属強磁性部と前記スピン偏極電流注入領域の間に 設けられていることを特徴とする請求項 1又は 2に記載の磁気ランダムアクセスメモリ。
[5] 前記トンネルバリア層の少なくとも一部は、前記金属強磁性部に直接に接合されて いることを特徴とする請求項 4に記載の磁気ランダムアクセスメモリ。
[6] 前記磁化反転領域は、更に、
前記金属強磁性部と前記面内方向に垂直な方向で接合され、前記金属強磁性部 と前記トンネルバリア層との間に設けられた金属の強磁性体で形成された高 MR比強 磁性部を備えている
ことを特徴とする請求項 4に記載の磁気ランダムアクセスメモリ。
[7] 反転可能な磁化を有する磁化反転領域と、スピン偏極電流注入領域と、前記磁ィ匕 反転領域と前記スピン偏極電流注入領域との間に設けられた複合材料領域とを備え る磁気記録層と、
固定された磁ィ匕を有する磁ィ匕固定層と、
前記磁ィヒ反転領域と前記磁ィヒ固定層との間に設けられたトンネルバリア層と、 を具備し、
前記スピン偏極電流注入領域は、前記複合材料領域を介して前記磁化反転領域 に面内方向にスピン偏極電流を注入するために使用され、
前記複合材料領域は、 (a)酸化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の酸化物とが複合化された第 1複合材料、
(b)窒化されていない第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低い 第 2材料の窒化物とが複合化された第 2複合材料、及び
(c)炭化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の炭化物とが複合化された第 3複合材料
の!ヽずれかで形成されて ヽることを特徴とする磁気ランダムアクセスメモリ。
[8] 前記第 1材料は、強磁性材料であり、前記第 2材料は、非磁性材料であることを特徴 とする請求項 7に記載の磁気ランダムアクセスメモリ。
[9] 前記第 1材料として、鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、及びガドリゥム (Gd) 力 なる群力 選択された金属、又は前記群力 選択された 2以上の元素の合金か らなる金属強磁性材料が使用され、
前記第 2材料として、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲルマ -ゥム(Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタン( Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(H f)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、イット リウム (Y)、及びランタン (La)力もなる群力も選択された元素の材料、又は、前記群 力 選択された 2以上の元素力もなる材料が使用される
ことを特徴とする請求項 8に記載の磁気ランダムアクセスメモリ。
[10] 前記第 1材料及び前記第 2材料の両方が、非磁性材料であることを特徴とする請求 項 7に記載の磁気ランダムアクセスメモリ。
[11] 前記第 1材料として、銅 (Cu)、銀 (Ag)、金 (Au)、白金 (Pt)、パラジウム (Pd)、ル テ -ゥム(Ru)、タンタル (Ta)、アルミニウム(A1)、オスミウム(Os)、チタン (Ti)、マン ガン(Mn)、ロジウム(Rh)、イリジウム(Ir)、シリコン(Si)、ゲルマニウム(Ge)、鉛(Pb )、ガリウム(Ga)、ビスマス (Bi)、亜鉛 (Zn)、及びアンチモン(Sb)力もなる群力も選 択された元素の材料、又は前記群力 選択された 2以上の元素力 なる材料が使用 され、
前記第 2材料として、マグネシウム(Mg)、アルミニウム (A1)、シリコン(Si)、ゲルマ ユウム (Ge)、リチウム(Li)、ベリリウム(Be)、バリウム(Ba)、カルシウム(Ca)、チタン( Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(H f)、タンタル (Ta)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、セリウム(Ce)、イット リウム (Y)、ランタン (La)力もなる群力も選択された元素の材料、又は、前記群から選 択された 2以上の元素力もなる材料が使用される
ことを特徴とする請求項 10に記載の磁気ランダムアクセスメモリ。
基板の上方に第 1及び第 2スピン偏極電流注入領域を形成する工程と、
前記第 1及び第 2スピン偏極電流注入領域を被覆する複合材料膜を形成する工程 と、
前記複合材料膜をエッチバックして、前記第 1及び第 2スピン偏極電流注入領域の 側面に複合材料領域を形成する工程と、
前記第 1及び第 2スピン偏極電流注入領域及び前記複合材料領域を被覆する第 1 強磁性膜を形成する工程と、
前記第 1強磁性膜を被覆する絶縁膜を形成する工程と、
前記絶縁膜を被覆する第 2強磁性膜を形成する工程と、
前記第 2強磁性膜の上方に、前記第 1及び第 2スピン偏極電流注入領域の間に位 置するようにマスクを形成する工程と、
前記第 1強磁性膜、前記絶縁膜及び前記第 2強磁性膜を、前記絶縁膜及び前記 第 2強磁性膜のうち前記マスクによって被覆されていない部分と、前記第 1強磁性膜 のうち前記第 1及び第 2スピン偏極電流注入領域の間にある部分が残存されるように エッチングする工程と、
とを具備し、
前記複合材料膜は、
(a)酸化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の酸化物とが複合化された第 1複合材料、
(b)窒化されていない第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低い 第 2材料の窒化物とが複合化された第 2複合材料、及び
(c)炭化されて!、な 、第 1材料と、前記第 1材料よりも酸ィ匕物生成エネルギーが低 ヽ 第 2材料の炭化物とが複合化された第 3複合材料
の!ヽずれかで形成されて ヽることを特徴とする磁気ランダムアクセスメモリの製造方法
PCT/JP2007/057976 2006-04-11 2007-04-11 磁気ランダムアクセスメモリ及びその製造方法 WO2007119748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510966A JP5104753B2 (ja) 2006-04-11 2007-04-11 磁気ランダムアクセスメモリ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006108673 2006-04-11
JP2006-108673 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007119748A1 true WO2007119748A1 (ja) 2007-10-25

Family

ID=38609509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057976 WO2007119748A1 (ja) 2006-04-11 2007-04-11 磁気ランダムアクセスメモリ及びその製造方法

Country Status (2)

Country Link
JP (1) JP5104753B2 (ja)
WO (1) WO2007119748A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060749A1 (ja) * 2007-11-05 2009-05-14 Nec Corporation 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
WO2009110532A1 (ja) * 2008-03-07 2009-09-11 日本電気株式会社 半導体装置
WO2010004881A1 (ja) * 2008-07-10 2010-01-14 日本電気株式会社 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法
WO2010047276A1 (ja) * 2008-10-20 2010-04-29 日本電気株式会社 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
WO2010053039A1 (ja) * 2008-11-07 2010-05-14 日本電気株式会社 磁性記憶素子の初期化方法
JP2010219104A (ja) * 2009-03-13 2010-09-30 Nec Corp 磁気メモリ素子、磁気メモリ、及びその製造方法
WO2011118395A1 (ja) * 2010-03-23 2011-09-29 日本電気株式会社 磁気メモリ素子、磁気メモリ、及びその製造方法
JP2012009535A (ja) * 2010-06-23 2012-01-12 Nec Corp 磁壁移動素子及びその製造方法
JP2014110419A (ja) * 2012-12-04 2014-06-12 Imec スピントランスファートルク磁気メモリデバイス
KR20170131202A (ko) * 2016-05-18 2017-11-29 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
JP2019176099A (ja) * 2018-03-29 2019-10-10 Tdk株式会社 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP2022034728A (ja) * 2020-08-19 2022-03-04 Tdk株式会社 配線層、磁壁移動素子および磁気アレイ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761793B1 (en) 2016-05-18 2017-09-12 Samsung Electronics Co., Ltd. Magnetic memory device and method for manufacturing the same
JP6526860B1 (ja) 2018-03-15 2019-06-05 株式会社東芝 磁気記憶装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103769A (ja) * 2002-09-09 2004-04-02 Fujitsu Ltd Cpp構造磁気抵抗効果素子
JP2005085821A (ja) * 2003-09-04 2005-03-31 Toshiba Corp 磁気抵抗効果素子及び磁気メモリ
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
JP2006269885A (ja) * 2005-03-25 2006-10-05 Sony Corp スピン注入型磁気抵抗効果素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103769A (ja) * 2002-09-09 2004-04-02 Fujitsu Ltd Cpp構造磁気抵抗効果素子
JP2005085821A (ja) * 2003-09-04 2005-03-31 Toshiba Corp 磁気抵抗効果素子及び磁気メモリ
JP2005191032A (ja) * 2003-12-24 2005-07-14 Toshiba Corp 磁気記憶装置及び磁気情報の書込み方法
JP2006269885A (ja) * 2005-03-25 2006-10-05 Sony Corp スピン注入型磁気抵抗効果素子

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382348B2 (ja) * 2007-11-05 2014-01-08 日本電気株式会社 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
WO2009060749A1 (ja) * 2007-11-05 2009-05-14 Nec Corporation 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
US8174086B2 (en) 2007-11-05 2012-05-08 Nec Corporation Magnetoresistive element, and magnetic random access memory
WO2009110532A1 (ja) * 2008-03-07 2009-09-11 日本電気株式会社 半導体装置
JP5435299B2 (ja) * 2008-03-07 2014-03-05 日本電気株式会社 半導体装置
US8120950B2 (en) 2008-03-07 2012-02-21 Nec Corporation Semiconductor device
WO2010004881A1 (ja) * 2008-07-10 2010-01-14 日本電気株式会社 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法
JP5488465B2 (ja) * 2008-07-10 2014-05-14 日本電気株式会社 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法
US8363461B2 (en) 2008-07-10 2013-01-29 Nec Corporation Magnetic random access memory, method of initializing magnetic random access memory and method of writing magnetic random access memory
WO2010047276A1 (ja) * 2008-10-20 2010-04-29 日本電気株式会社 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
JP5472820B2 (ja) * 2008-10-20 2014-04-16 日本電気株式会社 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法
US8537604B2 (en) 2008-10-20 2013-09-17 Nec Corporation Magnetoresistance element, MRAM, and initialization method for magnetoresistance element
WO2010053039A1 (ja) * 2008-11-07 2010-05-14 日本電気株式会社 磁性記憶素子の初期化方法
US8565011B2 (en) 2008-11-07 2013-10-22 Nec Corporation Method of initializing magnetic memory element
JP5397384B2 (ja) * 2008-11-07 2014-01-22 日本電気株式会社 磁性記憶素子の初期化方法
JP2010219104A (ja) * 2009-03-13 2010-09-30 Nec Corp 磁気メモリ素子、磁気メモリ、及びその製造方法
WO2011118395A1 (ja) * 2010-03-23 2011-09-29 日本電気株式会社 磁気メモリ素子、磁気メモリ、及びその製造方法
US8884388B2 (en) 2010-03-23 2014-11-11 Nec Corporation Magnetic memory element, magnetic memory and manufacturing method of magnetic memory
JP5652472B2 (ja) * 2010-03-23 2015-01-14 日本電気株式会社 磁気メモリ素子、磁気メモリ、及びその製造方法
JP2012009535A (ja) * 2010-06-23 2012-01-12 Nec Corp 磁壁移動素子及びその製造方法
JP2014110419A (ja) * 2012-12-04 2014-06-12 Imec スピントランスファートルク磁気メモリデバイス
KR20170131202A (ko) * 2016-05-18 2017-11-29 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
KR102624484B1 (ko) 2016-05-18 2024-01-16 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
JP2019176099A (ja) * 2018-03-29 2019-10-10 Tdk株式会社 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP7056316B2 (ja) 2018-03-29 2022-04-19 Tdk株式会社 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP2022034728A (ja) * 2020-08-19 2022-03-04 Tdk株式会社 配線層、磁壁移動素子および磁気アレイ
JP7470599B2 (ja) 2020-08-19 2024-04-18 Tdk株式会社 配線層、磁壁移動素子および磁気アレイ

Also Published As

Publication number Publication date
JPWO2007119748A1 (ja) 2009-08-27
JP5104753B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2007119748A1 (ja) 磁気ランダムアクセスメモリ及びその製造方法
US10199574B2 (en) Magnetoresistive stack and method of fabricating same
KR100663857B1 (ko) 스핀 주입 디바이스 및 이를 사용한 자기 장치, 그리고이들에 사용되는 자성 박막
JP4873338B2 (ja) スピン注入デバイス及びこれを用いた磁気装置
KR100401777B1 (ko) 자기 저항 효과 소자 및 자기 메모리 장치
WO2013153942A1 (ja) 磁気抵抗効果素子および磁気メモリ
US20190189908A1 (en) Heterostructures for Electric Field Controlled Magnetic Tunnel Junctions
JP6972542B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
JP2009094104A (ja) 磁気抵抗素子
KR20080084590A (ko) 기억 소자 및 메모리
KR20080060143A (ko) 기억 소자 및 메모리
JP3699954B2 (ja) 磁気メモリ
JP2007103471A (ja) 記憶素子及びメモリ
JP2003197920A (ja) 磁気スイッチング素子及び磁気メモリ
KR20140037284A (ko) 전류-유도 스핀-모멘텀 전달에 기초한 고속 저전력 자기 장치
KR20120080532A (ko) 기억 소자 및 기억 장치
JP2004179219A (ja) 磁気デバイスおよびこれを用いた磁気メモリ
KR20070102940A (ko) 기억 소자 및 메모리
US20190189912A1 (en) Structures Enabling Voltage Control of Oxidation Within Magnetic Heterostructures
JP2015088520A (ja) 記憶素子、記憶装置、磁気ヘッド
US11631804B2 (en) Magnetoresistive effect element and magnetic memory
JP2003008105A (ja) 磁気抵抗素子および磁気メモリ
JP4304688B2 (ja) スピンフィルタ効果素子及びそれを用いた磁気デバイス
JP2012074716A (ja) 記憶素子及びメモリ
JP3836779B2 (ja) 磁気抵抗効果素子及び磁気メモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510966

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741412

Country of ref document: EP

Kind code of ref document: A1