JP7056316B2 - 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ - Google Patents

磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
JP7056316B2
JP7056316B2 JP2018065527A JP2018065527A JP7056316B2 JP 7056316 B2 JP7056316 B2 JP 7056316B2 JP 2018065527 A JP2018065527 A JP 2018065527A JP 2018065527 A JP2018065527 A JP 2018065527A JP 7056316 B2 JP7056316 B2 JP 7056316B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
ferromagnetic
domain wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018065527A
Other languages
English (en)
Other versions
JP2019176099A (ja
Inventor
実 大田
智生 佐々木
宏和 高橋
秀和 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018065527A priority Critical patent/JP7056316B2/ja
Publication of JP2019176099A publication Critical patent/JP2019176099A/ja
Application granted granted Critical
Publication of JP7056316B2 publication Critical patent/JP7056316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリに関する。
微細化に限界が見えてきたフラッシュメモリ等に代わる次世代の不揮発性メモリとして、抵抗変化型素子を利用してデータを記憶する抵抗変化型の磁気記録装置に注目が集まっている。磁気記録装置の一例としては、MRAM(Magnetoresistive Random Access Memory)、ReRAM(Resistance Random Access Memory)、PCRAM(Phase Change Random Access Memory)等がある。
メモリの高密度化(大容量化)の方法としては、メモリを構成する素子自体を小さくする方法のほかに、メモリを構成する素子一つあたりの記録ビットを多値化する方法がある。
特許文献1には、磁気記録層内における磁壁を移動させることで、多値のデータを記録することができる磁壁移動型磁気記録素子が記載されている。特許文献1には、磁気記録層内にトラップサイトを設けることで、多値のデータ記録が安定化することが記載されている。
磁気記録層(磁壁移動層)に印加されるパルス電流で磁壁位置を安定的に制御することと、その磁壁位置変化による磁化状態の変化をTMR抵抗値から正確に読み取ることが求められている。
国際公開第2009/101827号
しかし、図6において模式的に示すように、磁壁移動層の磁性結晶粒サイズのばらつきが大きい場合、磁壁位置や磁壁幅の安定性をばらつかせ、TMR抵抗値の安定した読み取りを阻害する。ここで、図6Aは、磁壁移動層中の磁性結晶粒及び磁壁を模式的に示した図であり、図6Bは、磁壁の位置と磁壁移動型磁気記録素子の抵抗値との関係を模式的に示すグラフである。図6Aにおいて、符号DWは磁壁を示すものであり、符号P1は磁性結晶粒を示すものである。また、図6Bにおいて、横軸の入力負荷は磁壁の位置に相当するものであり、実線は理想的な抵抗変化を示すものであり、点線は磁性結晶粒サイズのばらつきが大きい場合の抵抗変化を示すものである。
例えば、磁壁移動層がCoPt合金からなる場合、磁性結晶粒のサイズは通常、1~30nm程度であり、そのサイズに対して、一般的なサイズのばらつき(最大サイズ-最小サイズ)の目安を言えば、1~5nm程度である。
本発明は上記問題に鑑みてなされたものであり、磁化領域比率を安定的に制御できる磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリを提供することを目的とする。
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の第1の態様に係る磁壁移動型磁気記録素子は、強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層と、前記磁気記録層に磁気的に結合した第1強磁性層と、前記磁気記録層上に、平面視して前記第1強磁性層を挟むように離間して配設され、前記磁気記録層に電流を印加する2つの電極と、を備えている。
(2)上記態様において、前記磁気記録層に接合されたスピン軌道トルク配線層を備えてもよい。
(3)本発明の第2の態様に係る磁壁移動型磁気記録素子は、強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層と、前記磁気記録層に磁気的に結合した第1強磁性層と、前記磁気記録層と電気的に絶縁され、前記磁気記録層に対して交差する方向に延在する磁場印加配線と、を備えている。
(4)上記態様のいずれかにおいて、前記磁気記録層の強磁性結晶粒の材料は、Co、Ni、Feのいずれかの単体、又は、Co、Ni、Feの少なくともいずれか1つを含む合金であってもよい。
(5)上記態様のいずれかにおいて、前記磁気記録層の粒界相の材料は、O、N、Fの少なくともいずれか1つを含む非磁性材料であってもよい。
(6)上記態様のいずれかにおいて、前記磁気記録層を構成する、前記強磁性結晶粒の材料αと前記粒界相の材料βのモル比がx:100-x(10<x<90)であってもよい。
(7)上記態様のいずれかにおいて、前記磁気記録層と前記第1強磁性層との間に磁気結合層を備えてもよい。
(8)本発明の第3の態様に係る磁壁移動型磁気抵抗効果素子は、第1の態様に係る上記磁壁移動型磁気記録素子と、前記第1強磁性層上に配設された非磁性層と、前記非磁性層上に配設された第2強磁性層と、を備えている。
(9)本発明の第4の態様に係る磁気メモリは、第2の態様に係る磁壁移動型磁気抵抗効果素子を複数備えている。
本発明の磁壁移動型磁気記録素子によれば、磁化領域比率を安定的に制御できる磁壁移動型磁気記録素子を提供することを目的とする。
本発明の第1実施形態にかかる磁壁移動型磁気記録素子を模式的に示した斜視図である。 本発明の磁壁移動型磁気記録素子における磁気記録層中の強磁性結晶粒及び結晶粒分布境界を模式的に示した図である。 結晶粒分布境界の位置と、磁壁移動型磁気抵抗効果素子を作製した場合の抵抗値との関係を模式的に示すグラフである。 磁気記録層と第1強磁性層との間に磁気結合層を備えた態様を模式的に示した斜視図である。 本発明の第2実施形態にかかる磁壁移動型磁気記録素子を模式的に示した斜視図である。 本発明の一実施形態にかかる磁壁移動型磁気抵抗効果素子を模式的に示した斜視図である。 従来の磁壁移動型磁気抵抗効果素子の磁壁移動層中の磁性結晶粒及び磁壁を模式的に示した図である。 磁壁の位置と、磁壁移動型磁気記録素子の抵抗値との関係を模式的に示すグラフである。
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
(磁壁移動型磁気記録素子)
「第1実施形態」
図1は、本発明の第1実施形態にかかる磁壁移動型磁気記録素子100を模式的に示した斜視図である。
磁壁移動型磁気記録素子100は、強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層1と、磁気記録層1に磁気的に結合した第1強磁性層2と、磁気記録層1上に、平面視して第1強磁性層2を挟むように離間して配設され、磁気記録層1に電流を印加する2つの電極(第1電極3、第2電極4)と、を備えている。
強磁性結晶粒は柱状であることが好ましく、本明細書において、柱状の強磁性結晶粒を特に強磁性結晶粒カラムということがある。
<磁気記録層>
磁気記録層1は、強磁性結晶粒と粒界相とからなるグラニュラ構造を有するものである。磁気記録層1の材料としては、磁気記録媒体において磁気記録層の材料として用いられているものを用いてもよい。強磁性結晶粒は柱状であることが望ましい。
グラニュラ構造としては、粒界相が非磁性でかつ絶縁性の材料からなるものを用いることもできるし、また、非磁性金属(例えば、Cu、Ag、Au等の単体や、それらのうちの一つを含む合金)からなるものを用いることもできる。以下、粒界相が非磁性でかつ絶縁性の材料である場合を強磁性金属-絶縁体系グラニュラ材料、粒界相が非磁性金属である場合を強磁性金属-非磁性金属グラニュラ材料ということがある。
強磁性金属-絶縁体系グラニュラ材料の場合、例えば、CoPt合金(強磁性金属)-SiO(酸化物)系グラニュラ材料などでは、10μm以下の微細な強磁性結晶粒とすることができ、酸化物とCoPt合金との相分離を持ち、高い垂直磁気異方性を示すものとできる。
強磁性金属-非磁性金属グラニュラ材料を用いる場合、後述するスピン軌道トルク配線層と同様に、第1強磁性層2にスピン流を供給して磁化を回転あるいは反転させる機能を発揮し得る。
強磁性金属-非磁性金属グラニュラ材料は、ナノメータースケールの強磁性金属の微粒子を非磁性金属のマトリックス中に分散させたものであり、主として互いに固溶しない金属の組み合わせ、例えば、Fe/Ag、Fe/Cu、Co/Cu、Co/Au、Fe/Auなどを例示することができる。
グラニュラ構造は、磁気記録媒体の磁気記録層の形成に用いられている方法と同様に、真空スパッタによって形成することができる。強磁性結晶粒のサイズ(あるいは粒径)は、スパッタ条件によって制御できる。また、グラニュラ構造を形成するために用いる下地層(例えば、Ru層)の厚みによっても強磁性結晶粒のサイズを制御できる。
従って、従来の磁壁移動型磁気抵抗効果素子の磁壁移動層に比べて、強磁性結晶粒のサイズ(あるいは粒径)及びそのばらつきを抑制して、書き込み、読み出しを安定的に行うことが可能となる。
磁気記録層1は、従来の強磁性体の連続膜とは異なり、磁化を担う強磁性結晶粒が層中に離散して配置する構造である。そのため、磁気記録層1は、互いに逆向きの磁化を有する2つの磁区の境界という定義の磁壁は有さないが、互いに逆向きの磁化を有する強磁性結晶粒のそれぞれ多い2つの領域の境界(以下、「結晶粒分布境界」ということがある)を有する構成をとることができる。図2Aは、z方向から平面視したときの結晶粒分布境界の近傍を模式的に示す平面模式図である。図2Aにおいて、符号Bは結晶粒分布境界を示すものであり、符号P0は磁性結晶粒を示すものである。
図2Bは、互いに逆向きの磁化を有する強磁性結晶粒がそれぞれ多い2つの領域の境界の位置と、後述する磁壁移動型磁気抵抗効果素子を作製した場合の抵抗値との関係を模式的に示すグラフである。図2Bにおいて、横軸は結晶粒分布境界の位置あるいは磁化領域比率に相当する。
磁気記録層1は、x方向に延在している。磁気記録層1は、内部に結晶粒分布境界Bを有する。結晶粒分布境界Bは、互いに逆向きの磁化を有する強磁性結晶粒のそれぞれ多い2つの領域(第1の結晶粒分布領域1A、第2の結晶粒分布領域1B)の境界である。図1に示す磁壁移動型磁気記録素子100の状態では、第1の結晶粒分布領域1Aが-z方向に配向した磁化(M1)を有する強磁性結晶粒が多く、第2の結晶粒分布領域1Bが+z方向に配向した磁化(M2)を有する強磁性結晶粒が多い。
磁壁移動型磁気記録素子100は、磁気記録層1中の結晶粒分布境界Bの位置によって、データを多値で記録する。結晶粒分布境界Bが移動すると、磁気記録層1における第1の結晶粒分布領域1Aと第2の結晶粒分布領域1Bとの比率が変化する。
結晶粒分布境界Bは、磁気記録層1の延在方向に電流を流す、及び/又は、外部磁場を印加することによって移動する。
例えば、第1電極3から第2電極4にスピン偏極電流の電流パルスを印加すると、第2の結晶粒分布領域1Bは第1の結晶粒分布領域1Aの方向へ広がり、結晶粒分布境界Bが第1の結晶粒分布領域1Aの方向へ移動する。一方、第2電極4から第1電極3にスピン偏極電流の電流パルスを印加すると、第1の結晶粒分布領域1Aは第2の結晶粒分布領域1Bの方向へ広がり、結晶粒分布境界Bが第2の結晶粒分布領域1Bの方向へ移動する。
つまり、第1電極3及び第2電極4に流すスピン偏極電流の方向、強度を設定することで、結晶粒分布境界Bの位置を制御することできる。
外部磁場を印加することによって結晶粒分布境界Bを移動するために、磁気記録層1と電気的に絶縁されていると共に、磁気記録層1に対して交差する方向に延在する磁場印加配線を設けてもよい。磁場印加配線に電流を流すことによりアンペールの法則により磁場が発生する。磁場印加配線に流す電流の向きによって、発生する磁場の向きを逆向きにすることができる。そこで、磁気記録層1の両端のそれぞれの近傍に磁場印加配線を配設し、磁場印加配線に電流を流して作った磁場によって磁気記録層1の結晶粒分布境界Bを移動させることができる。
磁気記録層の強磁性結晶粒の材料は、Co、Ni、Feのいずれかの単体、又は、Co、Ni、Feの少なくともいずれか1つを含む合金とすることができる。
例えば、CoPt、CoCrPt、FePt等はグラニュラ構造を作る際によく用いられる材料であり、これらの材料を用いれば、グラニュラ構造を容易に作ることができる。
磁気記録層の粒界相の材料は、O、N、Fの少なくともいずれか1つを含む非磁性材料とすることができる。具体的には、ZrO、Cr、Y、Al、MnO、TiO、WO、WO、SiO、Mn、Co、MoO、B、TaN、TaO、MgO、MgFなどを用いることができる。
磁気記録層を構成する、強磁性結晶粒の材料αと粒界相の材料βの体積比をx:100-x(10<x<90)とすることが好ましい。
上記例示した酸化物の粒界相とCoPt合金粒子との組み合わせのグラニュラ構造において、Co80Pt20-30vol%酸化物の場合、保磁力が大きくなるのは大きい順に並べると、B、WO、MoO、TiO、SiO、となる。
図3に示すように、磁気記録層1と第1強磁性層2との間に磁気結合層5を備えてもよい。
磁気結合層5は、 磁気記録層1と第1強磁性層2との間に大きな反強磁性的交換結合を生じさせて、磁気記録層1と第1強磁性層2との間の磁気的な結合を強める機能を有する。
かかる磁気結合層5の材料としては、Ru、Ir、Rhのいずれかの単体や、Ru、Ir、Rhの少なくともいずれか一つを含む合金が好ましい。
<第1強磁性層>
第1強磁性層2は、強磁性体からなる。第1強磁性層2を構成する強磁性材料としては、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Fe、CoHo、SmFe12等が挙げられる。
第1強磁性層2を構成する材料は、ホイスラー合金でもよい。ホイスラー合金はハーフメタルであり、高いスピン分極率を有する。ホイスラー合金は、XYZの化学組成をもつ金属間化合物であり、Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金として例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等が挙げられる。
第1強磁性層2は、xy面内方向に磁化容易軸を有する面内磁化膜でも、z方向に磁化容易軸を有する垂直磁化膜でもよい。図1では、第1強磁性層2が面内磁化膜であるとした。
第1強磁性層2の膜厚は、第1強磁性層2の磁化容易軸をz方向とする(垂直磁化膜にする)場合は、2.5nm以下とすることが好ましく、2.0nm以下とすることがより好ましい。また十分な磁化量を確保するために、第1強磁性層2の膜厚は、1.0nm以上であることが好ましい。第1強磁性層2の膜厚を薄くすると、第1強磁性層2と他の層との界面で、第1強磁性層2に垂直磁気異方性(界面垂直磁気異方性)を付加できる。
第1強磁性層2は、磁気記録層1と磁気的に結合している。そのため、第1強磁性層2は、磁気記録層1の磁気状態を反映する。第1強磁性層2と磁気記録層1とが強磁性カップリングする場合は第1強磁性層2の磁気状態は磁気記録層1の磁気状態と同一になり、第1強磁性層2と磁気記録層1とが反強磁性カップリングする場合は第1強磁性層2の磁気状態は磁気記録層1の磁気状態と反対になる。
<第1電極、第2電極>
第1電極3と第2電極4とは、z方向から平面視して第1強磁性層2をx方向に挟む位置に配設されている。
本実施形態にかかる磁壁移動型磁気記録素子100は公知の成膜手段を用いて作製できる。後述する実施形態にかかる磁壁移動型磁気記録素子についても同様である。
例えば、グラニュラ構造の磁気記録層も、公知のグラニュラ構造の形成方法を用いて形成できる。グラニュラ構造を形成する際には、例えば、Ruの下地層を用いてその上にグラニュラ構造を形成することが多い。この下地層の膜厚を制御することによってグラニュラ構造の強磁性結晶粒カラムの径を制御できる。この下地層が本発明の効果を奏するのに妨げになる場合には、層形成の順番等を工夫して、グラニュラ構造を形成後に下地層を研磨等して除去してもよい。この下地層の除去の際にはさらに、グラニュラ構造の成長端側あるいは成長元側の一部を除去して、グラニュラ構造の各柱状形状の径をより一様にしてもよい。
強磁性結晶粒カラムは、パーマロイなどの磁気異方性が弱い材料の場合、径が40nm以下で単磁区化され、CoPtなどの磁気異方性が強い材料では径が300nm程度でも単磁区化できる。径が数100nm以上のように大きい強磁性結晶粒カラムの場合には、1つの強磁性結晶粒カラムの一端だけが磁化反転し、その後、磁壁が移動するというダイナミクスを考慮する必要がでてくる。そのため、強磁性結晶粒カラムでほぼ同時に磁化反転を起こさせるサイズという観点では、径は100nm以下であり、より好ましくは80nm以下であり、さらに好ましくは60nm以下である。
「第2実施形態」
図4は、本発明の第2実施形態にかかる磁壁移動型磁気記録素子200を模式的に示した斜視図である。図1、図3に示した磁壁移動型磁気記録素子100において同等な部材については同じ符号を用いて説明を省略する。また、第1実施形態で説明した内容は本実施形態においても適用される。
磁壁移動型磁気記録素子200は、第1実施形態にかかる磁壁移動型磁気記録素子100の構成にさらに、磁気記録層1に接合されたスピン軌道トルク配線層11を備えた構成である。
図4に示した構成では、スピン軌道トルク配線層11は、磁気記録層1の第1強磁性層2の反対側の面に配設する構成であるが、これに限定されない。
本実施形態にかかる磁壁移動型磁気記録素子においては、第1電極3及び第2電極4の一方から供給した電流は磁気記録層1とスピン軌道トルク配線層11とに流れる。
スピン軌道トルク配線層に電流が流れるとスピン流が生成し、このスピン流がグラニュラ構造を構成する強磁性結晶粒の磁化反転に寄与する点が特徴である。すなわち、本実施形態にかかる磁壁移動型磁気記録素子においては、第1実施形態の磁壁移動型磁気記録素子における強磁性結晶粒の磁化反転と同様に磁気記録層1に流れた電流による磁化反転に加えて、スピン軌道トルク配線層から拡散していったスピン流による磁化反転が磁化反転に寄与する。
磁気記録層が強磁性金属-絶縁体系グラニュラ材料からなる場合、絶縁性粒界相の厚みに依存するが、通常は磁気記録層の抵抗がスピン軌道トルク配線層の抵抗よりも大きいため、スピン流による磁化反転の寄与が大きくなる。
本実施形態にかかる磁壁移動型磁気記録素子において、スピン流による磁化反転の寄与とスピン偏極電流による磁化反転の寄与は、いずれが大きくてもよい。
<スピン軌道トルク配線層>
スピン軌道トルク配線層11は、X方向に延在する。スピン軌道トルク配線層11は、磁気記録層1のZ方向の一面に接続されている。スピン軌道トルク配線層11は、磁気記録層1に直接接続されていてもよいし、他の層を介して接続されていてもよい。
スピン軌道トルク配線層11と磁気記録層1との間に介在する層は、スピン軌道トルク配線層11から伝搬するスピンを散逸しないことが好ましい。例えば、銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
また、この層の厚みは、層を構成する物質のスピン拡散長以下であることが好ましい。
層の厚みがスピン拡散長以下であれば、スピン軌道トルク配線層11から伝搬するスピンを磁気記録層1に十分に伝えることができる。
スピン軌道トルク配線層11は、電流が流れるとスピンホール効果によってスピン流が生成される材料からなる。かかる材料としては、スピン軌道トルク配線層11中にスピン流が生成される構成のものであれば足りる。従って、単体の元素からなる材料に限らないし、スピン流が生成される材料で構成される部分とスピン流が生成されない材料で構成される部分とからなるものであってよい。
材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に第1スピンS1と第2スピンS2とが逆方向に曲げられ、スピン流が誘起される現象を、スピンホール効果と呼ぶ。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、スピン軌道トルク配線層11の磁気記録層1が配設された面の方向へ向かう第1スピンS1の電子数と、第1スピンS1の電子とは反対の方向へ向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
ここで、第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。図1においては、純スピン流としてJが図中の上方向に流れる。ここで、Jは分極率が100%の電子の流れである。
スピン軌道トルク配線層11は、非磁性の重金属を含んでもよい。ここで、重金属とは、イットリウム以上の比重を有する金属の意味で用いている。スピン軌道トルク配線層11は、非磁性の重金属だけからなってもよい。
この場合、非磁性の重金属は最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。かかる非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きいからである。スピン軌道トルク配線層11は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属だけからなってもよい。
通常、金属に電流を流すとすべての電子はそのスピンの向きに関わりなく、電流とは逆向きに動くのに対して、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きいためにスピンホール効果によって電子の動く方向が電子のスピンの向きに依存し、純スピン流Jが発生しやすい。
また、スピン軌道トルク配線層11は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれるとスピン軌道相互作用が増強され、スピン軌道トルク配線層11に流す電流に対するスピン流生成効率を高くできるからである。スピン軌道トルク配線層11は、反強磁性金属だけからなってもよい。
スピン軌道相互作用はスピン軌道トルク配線材料の物質の固有の内場によって生じるため、非磁性材料でも純スピン流が生じる。スピン軌道トルク配線材料に微量の磁性金属を添加すると、磁性金属自体が流れる電子スピンを散乱するためにスピン流生成効率が向上する。ただし、磁性金属の添加量が増大し過ぎると、発生したスピン流が添加された磁性金属によって散乱されるため、結果としてスピン流が減少する作用が強くなる。したがって、添加される磁性金属のモル比はスピン軌道トルク配線におけるスピン生成部の主成分のモル比よりも十分小さい方が好ましい。目安で言えば、添加される磁性金属のモル比は3%以下であることが好ましい。
また、スピン軌道トルク配線層11は、トポロジカル絶縁体を含んでもよい。スピン軌道トルク配線層11は、トポロジカル絶縁体だけからなってもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。物質にはスピン軌道相互作用という内部磁場のようなものがある。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。これがトポロジカル絶縁体であり、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成することができる。
トポロジカル絶縁体としては例えば、SnTe,Bi1.5Sb0.5Te1.7Se1.3,TlBiSe,BiTe,Bi1-xSb,(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
<磁気記録層への書き込みの原理>
第2実施形態の磁壁移動型磁気記録素子の磁気記録層への書き込みの原理は、第1実施形態の磁壁移動型磁気記録素子とは異なる。
第1実施形態の磁壁移動型磁気記録素子では、磁気記録層に面内方向(X方向)に電流を流すことによって、第1の結晶粒分布領域及び第2の結晶粒分布領域の比率を変えて書き込みを行った。すなわち、磁気記録層に面内方向(X方向)に電流を流すことによって、磁気記録層内における結晶粒分布境界の位置をX方向で移動させることで書き込みを行った。この書き込みの態様は、結晶粒分布境界と磁壁との違いはあるものの、従来の磁壁移動型磁気記録素子と類似する。
これに対して、第2実施形態の磁壁移動型磁気記録素子では、スピン軌道トルク配線層11に電流Iを流すことによって、スピン流を生成し、このスピン流が磁気記録層に注入されることで書き込みが行われる。すなわち、磁気記録層に注入されたスピン流は、スピン軌道トルク(SOT)によって、磁気記録層のグラニュラ構造を構成する強磁性結晶粒の磁化を反転させることができる。これによって、磁気記録層中の第1の向き(例えば、+Z方向)に配向した磁化を有する強磁性結晶粒と、第1の向きの逆向きである第2の向き(例えば、-Z方向)に配向した磁化を有する強磁性結晶粒とのトータルの体積比率(体積割合)が変わる。この体積比は、図2Bの横軸に対応し、この体積比を変えることが書き込みに相当する。また、スピン軌道トルク配線層11に流す電流の向きを逆向きにすることによって、反転させる強磁性結晶粒の磁化の向きを逆向きにすることができる。
第1実施形態の磁壁移動型磁気記録素子も第2実施形態の磁壁移動型磁気記録素子も、同じ向きに配向した強磁性結晶粒のトータルの体積比率(本明細書において、「磁化領域比率」ということがある)を変えることで書き込みを行う点は共通する。
(磁壁移動型磁気抵抗効果素子)
図5は、本発明の一実施形態にかかる磁壁移動型磁気抵抗効果素子300を模式的に示した斜視図である。
磁壁移動型磁気抵抗効果素子300は、強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層1と、磁気記録層1に磁気的に結合した第1強磁性層2と、第1強磁性層2に接合された非磁性層13と、非磁性層13に接合された第2強磁性層14と、平面視して磁気記録層1上に第1強磁性層2を挟むように離間して配設され、磁気記録層1に電流を印加する2つの電極(第1電極3、第2電極4)と、を備えている。
第1強磁性層2と非磁性層13と第2強磁性層14とを合わせた構成20は、通常の磁気抵抗効果素子の構成であり、構成20において通常の磁気抵抗効果素子が備える層構成を適用することができる。
<第2強磁性層>
磁壁移動型磁気抵抗効果素子300は、第2強磁性層14の磁化が一方向に固定され、第1強磁性層2の磁化の向きが相対的に変化することで機能する。保磁力差型(疑似スピンバルブ型;Pseudo spin valve型)のMRAMに適用する場合には、第2強磁性層14の保磁力は第1強磁性層2の保磁力よりも大きいものとする。交換バイアス型(スピンバルブ型;spin valve型)のMRAMに適用する場合には、反強磁性層との交換結合によって第2強磁性層14の磁化方向を固定する。
また、磁壁移動型磁気抵抗効果素子300は、非磁性層13が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層13が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
磁壁移動型磁気抵抗効果素子300の積層構成は、公知の磁壁移動型磁気抵抗効果素子の積層構成を採用できる。例えば、各層は複数の層からなるものでもよいし、第2強磁性層14の磁化方向を固定するための反強磁性層などの他の層を備えてもよい。第2強磁性層14は固定層や参照層、第1強磁性層2は自由層や記憶層などと呼ばれる層に相当する。
第2強磁性層14の材料には、公知の材料を用いることができ、第1強磁性層2と同様の材料を用いることができる。第1強磁性層2が垂直磁化膜であるため、第2強磁性層14も垂直磁化膜であることが好ましい。
また、第2強磁性層14及び第1強磁性層2が面内磁化膜の場合に、第2強磁性層14の第1強磁性層2に対する保磁力をより大きくするために、第2強磁性層14と接する材料としてIrMn、PtMnなどの反強磁性材料を用いてもよい。さらに、第2強磁性層14の漏れ磁場を第1強磁性層102に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
<非磁性層>
非磁性層13には、公知の材料を用いることができる。例えば、非磁性層13が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO2、MgO、及びMgAlO4などを用いることができる。また、これらのほかにも、Al、Si、Mgの一部が、Zn、Beなどに置換された材料なども用いることができる。これらの中でも、MgOやMgAl2O4はコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。また、非磁性層13が金属からなる場合、その材料としてはCu、Au、Agなどを用いることができる。さらに、非磁性層13が半導体からなる場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。
複数の積演算素子を有する積演算部と和演算部とを備える積和演算器において、積演算素子として本発明の磁壁移動型磁気抵抗効果素子を用いることができる。
また、入力層と、隠れ層と、出力層と、積和演算器とを備えるニューロモルフィックデバイスにおいて、積和演算器を構成する積演算素子として本発明の磁壁移動型磁気抵抗効果素子を用いることができる。
(磁気メモリ)
本発明の一実施形態に係る磁気メモリは、本発明の磁壁移動型磁気抵抗効果素子を複数備える。
1 磁気記録層
2 第1強磁性層
3 第1電極
4 第2電極
5 磁気結合層
11 スピン軌道トルク配線層
13 非磁性層
14 第2強磁性層
100、200 磁壁移動型磁気記録素子
300 磁壁移動型磁気抵抗効果素子

Claims (10)

  1. 強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層と、
    前記磁気記録層に磁気的に結合した第1強磁性層と、
    前記磁気記録層上に、平面視して前記第1強磁性層を挟むように離間して配設され、前記磁気記録層に電流を印加する2つの電極と、を備えた、磁壁移動型磁気記録素子。
  2. 前記磁気記録層に接合されたスピン軌道トルク配線層を備えた、請求項1に記載の磁壁移動型磁気記録素子。
  3. 強磁性結晶粒と粒界相とからなるグラニュラ構造を有する磁気記録層と、
    前記磁気記録層に磁気的に結合した第1強磁性層と、
    前記磁気記録層と電気的に絶縁され、前記磁気記録層に対して交差する方向に延在する磁場印加配線と、を備えた、磁壁移動型磁気記録素子。
  4. 前記磁気記録層の強磁性結晶粒の材料は、Co、Ni、Feのいずれかの単体、又は、Co、Ni、Feの少なくともいずれか1つを含む合金である、請求項1~3のいずれか一項に記載の磁壁移動型磁気記録素子。
  5. 前記磁気記録層の粒界相の材料は、O、N、Fの少なくともいずれか1つを含む非磁性材料である、請求項に記載の磁壁移動型磁気記録素子。
  6. 前記磁気記録層の粒界相の材料は、Cu、Ag、Auの少なくともいずれか1つを含む非磁性金属である、請求項4に記載の磁壁移動型磁気記録素子
  7. 前記磁気記録層を構成する、前記強磁性結晶粒の材料αと前記粒界相の材料βの体積比がx:100-x(10<x<90)である、請求項1~のいずれか一項に記載の磁壁移動型磁気記録素子。
  8. 前記磁気記録層と前記第1強磁性層との間に磁気結合層を備える、請求項1~のいずれか一項に記載の磁壁移動型磁気記録素子。
  9. 請求項1~のいずれか一項に記載の磁壁移動型磁気記録素子と、
    前記第1強磁性層上に配設された非磁性層と、
    前記非磁性層上に配設された第2強磁性層と、を備えた、磁壁移動型磁気抵抗効果素子。
  10. 請求項に記載の磁壁移動型磁気抵抗効果素子を複数備えた、磁気メモリ。
JP2018065527A 2018-03-29 2018-03-29 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ Active JP7056316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018065527A JP7056316B2 (ja) 2018-03-29 2018-03-29 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018065527A JP7056316B2 (ja) 2018-03-29 2018-03-29 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ

Publications (2)

Publication Number Publication Date
JP2019176099A JP2019176099A (ja) 2019-10-10
JP7056316B2 true JP7056316B2 (ja) 2022-04-19

Family

ID=68167310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018065527A Active JP7056316B2 (ja) 2018-03-29 2018-03-29 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ

Country Status (1)

Country Link
JP (1) JP7056316B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070378A1 (ja) * 2020-10-01 2022-04-07 Tdk株式会社 磁壁移動素子および磁気アレイ
US20240122075A1 (en) * 2021-03-19 2024-04-11 Institute of Microelectronics, Chinese Academy of Sciences Activation function generator based on magnetic domain wall driven magnetic tunnel junction and manufacturing method
WO2024009417A1 (ja) * 2022-07-06 2024-01-11 Tdk株式会社 磁化回転素子、磁気抵抗効果素子、磁気メモリ及び磁化回転素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119748A1 (ja) 2006-04-11 2007-10-25 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法
JP2014143302A (ja) 2013-01-24 2014-08-07 Nec Corp 磁気メモリセル及び磁気ランダムアクセスメモリ
WO2017213261A1 (ja) 2016-06-10 2017-12-14 Tdk株式会社 交換バイアス利用型磁化反転素子、交換バイアス利用型磁気抵抗効果素子、交換バイアス利用型磁気メモリ、不揮発性ロジック回路および磁気ニューロン素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119748A1 (ja) 2006-04-11 2007-10-25 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法
JP2014143302A (ja) 2013-01-24 2014-08-07 Nec Corp 磁気メモリセル及び磁気ランダムアクセスメモリ
WO2017213261A1 (ja) 2016-06-10 2017-12-14 Tdk株式会社 交換バイアス利用型磁化反転素子、交換バイアス利用型磁気抵抗効果素子、交換バイアス利用型磁気メモリ、不揮発性ロジック回路および磁気ニューロン素子

Also Published As

Publication number Publication date
JP2019176099A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7495463B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリ及び磁化反転方法
JP7003991B2 (ja) 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子
JP6801711B2 (ja) 交換バイアス利用型磁化反転素子、交換バイアス利用型磁気抵抗効果素子、交換バイアス利用型磁気メモリ、不揮発性ロジック回路および磁気ニューロン素子
JP6833810B2 (ja) 磁気メモリ
CN109427964B (zh) 自旋流磁化反转元件及自旋轨道转矩型磁阻效应元件
JP6733822B2 (ja) スピン流磁気抵抗効果素子及び磁気メモリ
WO2019159885A1 (ja) スピン素子及び磁気メモリ
JP6610847B1 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP2020035971A (ja) スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
JP2018026525A (ja) スピン流磁化反転素子、素子集合体及びスピン流磁化反転素子の製造方法
JP6926666B2 (ja) スピン流磁化反転素子
JP7013839B2 (ja) 磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子
JP6428988B1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
JP6462191B1 (ja) データの書き込み方法、検査方法、スピン素子の製造方法及び磁気抵抗効果素子
US20190267540A1 (en) Spin current magnetized rotation element, magnetoresistance effect element and magnetic memory
JP2019057626A (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP2019161176A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び発振器
JP7056316B2 (ja) 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP2019041098A (ja) スピン流磁気抵抗効果素子及び磁気メモリ
JP2018074139A (ja) 電流磁場アシスト型スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリおよび高周波フィルタ
JP7124788B2 (ja) スピン流磁化回転型磁気抵抗効果素子、及び磁気メモリ
JP7183703B2 (ja) スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法
JP7183704B2 (ja) スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150