WO2007116972A1 - ワイヤグリッド型偏光子およびその製造方法 - Google Patents

ワイヤグリッド型偏光子およびその製造方法 Download PDF

Info

Publication number
WO2007116972A1
WO2007116972A1 PCT/JP2007/057773 JP2007057773W WO2007116972A1 WO 2007116972 A1 WO2007116972 A1 WO 2007116972A1 JP 2007057773 W JP2007057773 W JP 2007057773W WO 2007116972 A1 WO2007116972 A1 WO 2007116972A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
wire grid
photocurable composition
grid polarizer
group
Prior art date
Application number
PCT/JP2007/057773
Other languages
English (en)
French (fr)
Inventor
Yuriko Kaida
Hiroshi Sakamoto
Hiromi Sakurai
Yasuhide Kawaguchi
Akihiko Asakawa
Kazuhiko Niwano
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP07741209A priority Critical patent/EP2023169A4/en
Priority to JP2008509888A priority patent/JP5182644B2/ja
Publication of WO2007116972A1 publication Critical patent/WO2007116972A1/ja
Priority to US12/246,524 priority patent/US20090052030A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a wire grid polarizer and a manufacturing method thereof.
  • Absorbing polarizers and reflective polarizers are used as polarizers that exhibit polarization separation in the visible light region and are used in image display devices such as liquid crystal display devices, rear projection televisions, and front projectors. is there.
  • An absorptive polarizer is, for example, a polarizer in which a dichroic dye such as iodine is oriented in a resin film.
  • the absorption polarizer absorbs one polarized light, so that the light use efficiency is low.
  • a reflective polarizer can increase the light utilization efficiency by allowing light reflected without entering the polarizer to re-enter the polarizer. Therefore, there is an increasing need for reflective polarizers for the purpose of increasing the brightness of liquid crystal display devices and the like.
  • Examples of the reflective polarizer include a linear polarizer made of a birefringent resin laminate, a circular polarizer made of cholesteric liquid crystal, and a wire grid polarizer.
  • linear polarizers and circular polarizers have low polarization separation ability. For this reason, wire grid polarizers that exhibit high polarization separation are attracting attention.
  • a wire grid polarizer has a structure in which a plurality of fine metal wires are arranged in parallel on a transparent substrate.
  • the pitch of the fine metal wires is sufficiently shorter than the wavelength of the incident light, the component of the incident light that has an electric field vector orthogonal to the fine metal wires (ie, P-polarized light) is transmitted and has an electric field vector parallel to the fine metal wires (Ie S-polarized light) is reflected.
  • Patent Document 1 A wire grid polarizer in which a plurality of fine metal wires are arranged in parallel on a glass substrate.
  • Patent Document 4 A wire grid polarizer in which fine metal wires are formed in a plurality of grooves formed in the resin layer.
  • the wire grid polarizers (1) and (2) are manufactured by patterning a metal film deposited on a substrate by a lithography method using DUV (deep ultraviolet light) having a wavelength of 193 nm. Therefore, there are problems in productivity and large area due to many manufacturing processes.
  • DUV deep ultraviolet light
  • thermoplastic resin When thermoplastic resin is used as the resin film, there are problems in heat resistance and durability. In rear projection televisions and front projectors, etc., it is assumed that the light source with higher energy will be used with higher energy, so it is assumed that it will be used above the soft spot of the resin. Is required.
  • Patent Document 1 International Publication No. OOZ079317 Pamphlet
  • Patent Document 2 JP 2005-195824
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-316495
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2005-070456
  • the present invention provides a wire grid polarizer exhibiting high polarization separation ability in the visible light region and excellent in heat resistance and durability, and the wire grid polarizer can be produced with high productivity, and has a large area.
  • a manufacturing method that can be used is provided.
  • the method for producing a wire grid polarizer of the present invention includes a step of applying a photocurable composition on a support substrate, and a mold in which a plurality of grooves are formed in parallel with each other at a constant pitch. A step of pressing the photocurable composition so as to come into contact with the photocurable composition, and curing the photocurable composition with the mold pressed against the photocurable composition. Forming a light-transmitting substrate having a plurality of ridges corresponding to the grooves of the mold, separating the mold from the light-transmitting substrate, and forming a metal thin wire on the ridges of the light-transmitting substrate; It is characterized by having.
  • the method for producing a wire grid polarizer of the present invention may further include a step of separating the support substrate from the light transmissive substrate.
  • photocurable composition it is preferable to use a photocurable resin having the following physical properties after curing.
  • photocurable composition it is preferable to use the following photocurable composition as the photocurable composition.
  • fluorine-containing monomer of the photocurable yarn composition it is preferable to use a fluorine-containing monomer represented by the following formula (1) or (2).
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, an alkyl group having 1 to 3 carbon atoms, or a fluoroalkyl group having 1 to 3 carbon atoms
  • Q is an oxygen atom
  • a group represented by NR 3- (wherein R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl carbo ol group or a tosyl group), or a functional group 2 Indicates a valent organic group.
  • n represents an integer of 1 to 4
  • X represents a hydrogen atom, a fluorine atom, a methyl group or a tri Furuoromechiru group
  • R F denotes an n monovalent fluorine-containing organic group having 1 to 30 carbon atoms .
  • An oblique vapor deposition method is used as a process for forming a thin metal wire on the ridge of the light-transmitting substrate. It is preferable.
  • the pitch of the mold grooves is preferably 300 nm or less.
  • the wire grid polarizer of the present invention is manufactured by the method for manufacturing a wire grid polarizer of the present invention.
  • the wire grid polarizer of the present invention is highly visible in the visible light region, exhibits polarization separation ability, and is excellent in heat resistance and durability.
  • a wire grid polarizer that exhibits high polarization separation ability in the visible light region and is excellent in heat resistance and durability can be manufactured with high productivity and is large. You can make an area.
  • FIG. 1 is a perspective view showing an example of a wire grid polarizer of the present invention.
  • FIG. 2 is a cross-sectional view showing each step in the method for producing a wire grid polarizer of the present invention.
  • FIG. 3 is a cross-sectional view showing each step in the method for manufacturing a wire grid polarizer of the present invention.
  • FIG. 4 is a perspective view showing an example of a mold used in the method for producing a wire grid polarizer of the present invention.
  • the monomer represented by the formula (1) is referred to as a monomer (1).
  • FIG. 1 is a perspective view showing an example of a wire grid polarizer of the present invention.
  • the wire grid polarizer 10 includes a light-transmitting substrate 14 made of a photo-curing resin having a plurality of protrusions 12 formed on the surface in parallel with each other at a constant pitch Pp, and the protrusions 12 of the light-transmitting substrate 14. It has a fine metal wire 16 formed on it.
  • the pitch Pp of the ridges 12 is the sum of the width Dp of the ridges 12 and the width of the grooves formed between the ridges 12.
  • the pitch Pp of the ridges 12 is preferably 50 to 200 nm, preferably 300 nm or less.
  • the wire grid polarizer 10 has a sufficiently high reflectance and a high polarization separation ability even in a short wavelength region of about 400 nm.
  • the coloring phenomenon due to diffraction can be suppressed.
  • the ratio (Dp / Pp) between the width Dp of the ridges 12 and the pitch Pp (Dp / Pp) is preferably 0.1 to 0.6 force, more preferably 0.4 to 0.55.
  • the height Hp of the ridges 12 is preferably 50 to 500 nm, more preferably 100 to 300 nm. By making the height Hp 50 nm or more, selective formation of the fine metal wires 16 on the ridges 12 becomes easy. By setting the height Hp to 500 nm or less, the incident angle dependency of the polarization degree of the wire grid polarizer 10 is reduced.
  • the width Dm of the fine metal wire 16 is preferably the same as the width Dp of the ridge 12.
  • the height Hm of the fine metal wire 16 is 30 to 300 nm force, more preferably 100 to 150 nm force. .
  • the wire grid polarizer 10 exhibits a sufficiently high reflectivity and polarization separation ability. Increasing the height Hm to 300nm or less increases the light utilization efficiency.
  • the light transmissive substrate is a substrate made of a photo-curing resin.
  • the light transmissive property means that light is transmitted.
  • the thickness H of the light-transmitting substrate is from 0.5 to: LOOO / zm force S, preferably from 1 to 40 / zm force S.
  • the photocurable resin from the viewpoint of productivity, the photocurable composition A resin formed by photoradical polymerization is preferred.
  • the refractive index (nd) of the photocurable resin is preferably 1.3 to 1.6.
  • the transmittance of P-polarized light in the blue light region is increased, and high polarization separation ability is exhibited over a wide band.
  • the refractive index (nd) is the Abbe refractometer (589 nm,
  • the visible light transmittance of the photocurable resin is preferably 93% or more when the thickness is 200 m.
  • the transmittance of P-polarized light increases and the polarization separation ability increases.
  • Visible light transmittance is 400 ⁇ using an integral light transmittance meter. Calculated by the ratio (T2 X 100ZT1) of total light intensity T1 of sample light up to 780nm and sample transmitted light T2.
  • the water contact angle of the photocurable resin is preferably 90 ° or more. If the contact angle of water is 90 ° or more, when forming the ridges by the optical imprint method described later, the mold releasability is improved, and high-accuracy transfer is possible, and the resulting wire grid is obtained. Type polarizers can fully perform their intended performance.
  • the contact angle of water is measured using a contact angle measuring device.
  • the Vicat softening point temperature of the photocurable resin is preferably 150 ° C or higher. If the Vicat softening point temperature force is 150 ° C or higher, the heat resistance will be high, and it can be fully adapted to applications that require heat resistance.
  • the Vicat soft spot temperature is determined according to JIS K 7206.
  • Examples of the photocured resin satisfying the above properties include those obtained by curing the following photocurable composition by photopolymerization.
  • composition smoothness during coating, releasability during photoimprinting, and shape retention are improved.
  • the viscosity of the photocurable composition is preferably 1 to 200 mPa's, more preferably 1 to 100 mPa's. If the viscosity is within this range, a smooth coating film can be easily formed by a technique such as spin coating.
  • Viscosity is measured at a temperature of 25 ° C using a rotary viscometer.
  • the photocurable composition contains 50 to 98% by mass, preferably 55 to 90% by mass, particularly preferably 55 to 90% by mass, of a fluorine atom-free! / ⁇ monomer (hereinafter referred to as a main component monomer). Contains 60-85% by weight.
  • Examples of the main component monomer include monomers having a polymerizable group, and monomers having an acryloyl group or a methacryloyl group, monomers having a bulu group, monomers having a allyl group, and monomers having an oxyl group are preferable. More preferred are monomers having a taliloyl group or a methacryloyl group.
  • the number of polymerizable groups in the main component monomer is preferably 1 to 4, more preferably 1 or 2, and particularly preferably 1.
  • (meth) acrylic acid, (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, aryl ether, aryl ester, and styrene compounds are preferred (meth) acrylate.
  • (Meth) acrylic acid is a generic name for acrylic acid and methacrylic acid
  • (meth) acrylate is a generic name for acrylate and methacrylate
  • (meth) acrylamide is a generic name for acrylamide and methacrylamide.
  • Specific examples of (meth) acrylate include the following compounds.
  • Tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate.
  • Methods atalylate having 4 or more polymerizable groups such as dipentaerythritol hexa (meth) atalylate.
  • butyl ether examples include alkyl butyl ethers such as ethyl vinyl ether, propyl butyl ethere, isobutino levino eno ethenore, 2-ethino hexeno levino eno ethenore, cyclohexyl vinyl ether, and the like. 4 (Hydroxyalkyl) butyl such as hydroxybutyl beer ether.
  • bur esters include butyl acetate, butyl propionate, and (iso) butyrate.
  • -Bul esters such as val, valerate, cyclohexane carboxylate, and benzoate.
  • allyl ethers include ethyl allyl ether and propyl allyl ether.
  • alkylaryl ethers such as (iso) butylaryl ether and cyclohexyl aryl ether.
  • aryl ester examples include alkyl aryl esters such as ethyl aryl ester, propyl aryl ester, and isobutyl aryl ester.
  • Examples of the monomer having an oxyl group include a monomer having an epoxy group, a monomer having an oxacene group, and a monomer having an oxazoline group.
  • the molecular weight of the main component monomer is preferably 100 to 500 force S, more preferably 200 to 400 force S.
  • the main component monomer one kind may be used alone, or two or more kinds may be used in combination.
  • the main component monomer preferably includes a monomer having a ring structure of the following formula in the molecule, from the viewpoint that the photocurable resin exhibits high visible light transmittance.
  • the main component monomer preferably contains (meth) acrylate having two or more polymerizable groups in order to exhibit high heat resistance.
  • (meth) acrylate having two or more polymerizable groups in order to exhibit high heat resistance.
  • the photocurable composition comprises from 0.1 to 45 mass 0/0 of the fluorine-containing monomers, preferably including 10 to 40 mass%.
  • the photocurable composition contains a fluorine-containing monomer having high compatibility with the main component monomer, the fluorine-containing surfactant, and the fluorine-containing polymer, phase separation is difficult. Further, the composition tends to form a cured product without phase separation. In addition, since it contains a fluorine-containing monomer, the water contact angle of the cured product is 90 ° or more. In addition, since it contains a fluorine-containing monomer, The refractive index is lowered, the transmittance in the short wavelength region is increased, and as a result, the polarization separation ability is improved.
  • the fluorine-containing monomer is a fluorine-containing monomer having a polymerizable group, such as a fluorine-containing monomer having an alitaroyl group or a methacryloyl group, a fluorine-containing monomer having a bur group, a fluorine-containing monomer having a fluorovinyl group, or an aryl group.
  • a fluorine-containing monomer having an alitaroyl group or a methacryloyl group such as a fluorine-containing monomer having an alitaroyl group or a methacryloyl group, a fluorine-containing monomer having a bur group, a fluorine-containing monomer having a fluorovinyl group, or an aryl group.
  • the number of polymerizable groups in the fluorine-containing monomer is preferably 1 to 4, more preferably 1 or 2, and particularly preferably 1.
  • the fluorine content of the fluorine-containing monomer is preferably 40 to 70 mass%, more preferably 45 to 65 mass%.
  • the fluorine content is the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing monomer.
  • the fluorine content of the fluorine-containing monomer is 40% by mass or more, the release property of the cured product is particularly excellent.
  • the molecular weight of the fluorine-containing monomer is 200 to 5,000, more preferably 250 to 1,000,000.
  • the fluorine-containing monomer may be used alone or in combination of two or more.
  • monomer (1) or monomer (2) is particularly preferred.
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, an alkyl group having 1 to 3 carbon atoms, or a fluoroalkyl group having 1 to 3 carbon atoms, and Q is an oxygen atom.
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl carbo group or a tosyl group
  • R 3 represents a functional group Good divalent organic group.
  • n represents an integer of 1 to 4
  • X is a hydrogen atom, a fluorine atom, or a methyl group represents a triflate Ruo Russia methyl
  • R F is n monovalent fluorine-containing organic C1-30 Indicates a group.
  • Q in the monomer (1) is a divalent organic group, methylene, dimethylene, trimethylene, tetramethylene, oxymethylene, oxydimethylene, oxytrimethylene, and dioxymethylene group power is selected.
  • a hydrogen atom in the main chain is a fluorine atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a carbon atom, or a carbon in which an etheric oxygen atom is inserted between carbon atoms.
  • a group in which one or more hydrogen atoms forming a carbon-hydrogen bond is substituted with a fluorine atom is preferred.
  • Specific examples of the monomer (1) include the following compounds.
  • n in the monomer (2) is preferably 1 or 2.
  • X is preferably a hydrogen atom or a methyl group.
  • the carbon number of R F is preferably 4-24.
  • R F is a monovalent fluorine-containing organic group.
  • the monovalent fluorine-containing organic group is preferably a monovalent fluorine-containing organic group having a polyfluoroalkyl group in which an etheric oxygen atom may be inserted between a carbon atom and a carbon atom.
  • the monovalent fluorine-containing organic group is preferably a monovalent fluorine-containing organic group having a polyfluoroalkyl group in which an etheric oxygen atom may be inserted between a carbon atom and a carbon atom.
  • fl represents an integer of 1 to 3
  • R F1 represents a carbon atom having 4 to 16 carbon atoms, a polyfluoroalkyl group in which an etheric oxygen atom may be inserted between carbon atoms
  • R 4 represents A hydrogen atom, a methyl group, or an ethyl group is shown.
  • R F1 a perfluoroalkyl group is preferred, and a linear perfluoroalkyl group is particularly preferred.
  • R F is a divalent fluorine-containing organic group.
  • the divalent fluorine-containing organic group is preferably a carbon atom—a polyfluoroalkylene group in which an etheric oxygen atom may be inserted between carbon atoms—a group represented by (CH 2 ) R F2 (CH 3) —.
  • f2 and f3 each represent an integer of 1 to 3
  • R F2 is a carbon atom having 4 to 16 carbon atoms, a polyfluoroalkylene group in which an etheric oxygen atom may be inserted between carbon atoms Indicates.
  • R F2 is a linear perfluoroalkylene group, preferably a perfluoroalkylene group, or a perfluoroalkyl group having an etheric oxygen atom inserted between carbon atoms and a trifluoromethyl group in the side chain.
  • An oxyalkylene group is particularly preferred.
  • Specific examples of the monomer (2) include the following compounds.
  • CH CHCOOCH CF CF H
  • CH CHCOOCH (CF CF) H
  • the photocurable yarn composition comprises more than 0.1 to 20% by mass of the fluorine-containing surfactant and / or fluorine-containing polymer, preferably 0.5 to: L0% by mass, and particularly preferably 1 to 5%. Including mass%. By setting the amount within this range, it is easy to form a cured product as soon as a photocurable composition is prepared without further phase separation of the composition.
  • the photocurable composition may contain only the fluorine-containing polymer, which may or may not contain the fluorine-containing surfactant and fluorine-containing polymer.
  • the content means the total amount of the fluorine-containing surfactant and the fluorine-containing polymer.
  • fluorine-containing surfactant one kind may be used alone, or two or more kinds may be used in combination.
  • Fluorine-containing polymers may be used alone or in combination of two or more.
  • the cured product of the photocurable composition is excellent in releasability and can be smoothly peeled off from the mold.
  • the fluorine content of the fluorine-containing surfactant is preferably 10 to 70% by mass, more preferably 20 to 40% by mass.
  • the fluorine-containing surfactant may be water-soluble or fat-soluble.
  • fluorine-containing surfactants ionic fluorine-containing surfactants, cationic fluorine-containing surfactants, amphoteric fluorine-containing surfactants and non-ionic fluorine-containing surfactants have preferable dispersibility. From the viewpoint of goodness, a nonionic fluorine-containing surfactant is particularly preferred.
  • fluorinated surfactant containing fluorine polyfluoroalkyl carboxylate, polyfluoroalkyl phosphate, and polyfluoroalkyl sulfonate are preferable.
  • Ronji fluorine-containing surfactants include Surflon S-111 (trade name, manufactured by Seimichemical), Florard FC—143 (trade name, manufactured by 3EM), MegaFuck F—120 (trade name) , Manufactured by Dainippon Ink & Chemicals, Inc.).
  • the cationic fluorine-containing surfactant is preferably a trimethylammonium salt of polyfluoroalkylcarboxylic acid or a trimethylammonium salt of polyfluoroalkylsulfonic acid amide.
  • Specific examples of cationic fluorine-containing surfactants include Surflon S—12 1 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florad FC—134 (trade name, manufactured by 3EM), MegaFac F—450 (trade name, Dainippon Ink & Chemicals, Inc.).
  • the amphoteric fluorine-containing surfactant is preferably polyfluoroalkyl betaine.
  • Specific examples of the amphoteric fluorine-containing surfactant include Surflon S-132 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florard FX-172 (trade name, manufactured by 3EM Co., Ltd.), and the like.
  • non-ionic fluorine-containing surfactants include polyfluoroalkylamine oxides, polyfluoroalkyl-alkyleneoxide-attached products, oligomers or polymers containing monomer units based on monomers having a fluoroalkyl group, and the like. Can be mentioned.
  • the fluoroalkyl group is preferably the polyfluoroalkyl group (R F1 ).
  • an oligomer or polymer containing a monomer unit based on a monomer having a fluoroalkyl group preferably has a mass average molecular weight of 1000 to 8000 force S.
  • the monomer having a fluoroalkyl group is particularly preferably a fluoroalkyl (meth) acrylate, which is preferably a fluoro (meth) acrylate.
  • a fluoroalkyl (meth) acrylate a compound in which n in the monomer (2) is 1 and X is a hydrogen atom or a methyl group is preferable.
  • non-ionic fluorine-containing surfactant examples include Surflon S-145 (trade name, manufactured by Seimi Chemical Co., Ltd.), Surflon S-393 (trade name, manufactured by Seimi Chemical Co., Ltd.), Surflon K H-20 (trade name, manufactured by Seimi Chemical Co., Ltd.), Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florad FC-170 (trade name, manufactured by 3EM), Florad FC-430 (trade name, 3EM) ), Megafuck F-444 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Megafuck F-479 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
  • the cured product of the photocurable composition is excellent in releasability and can be smoothly peeled off from the mold.
  • the monomer is polymerized in the presence of the fluorine-containing polymer when the photocurable composition is cured, a cured product having a small volume shrinkage can be obtained. Therefore, the shape of the ridge formed on the surface of the cured product is highly accurate with respect to the shape of the mold groove.
  • the fluorine-containing polymer means an oligomer or polymer other than a monomer unit based on a monomer having a fluoroalkyl group mentioned as a non-ionic fluorine-containing surfactant.
  • the mass average molecular weight of the fluorine-containing polymer is preferably 500 to 100 000, preferably 1000 to 100,000, and particularly preferably 3000 to 50,000 in terms of compatibility with other components. ! / ⁇ .
  • the fluorine content of the fluoropolymer is preferably 30 to 70% by mass, more preferably 45 to 70% by mass, from the viewpoint of excellent releasability.
  • a fluorine-containing polymer containing a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom which is preferable for a fluorine-containing polymer containing a hetero atom, is more preferable from the viewpoint of compatibility.
  • a fluorine-containing polymer containing a hydroxyl group, an etheric oxygen atom, an ester group, an alkoxycarbonyl group, a sulfol group, a phosphate ester group, an amino group, a nitro group, or a ketone group is particularly preferred.
  • fluorine-containing polymer a fluorine-containing polymer obtained by polymerizing the monomer (1) is preferable.
  • R 1 is a fluorine atom
  • R 2 is a hydrogen atom
  • Q is — CF C (CF) (OH) CH— , — CF C (
  • the amount of the fluorine-containing monomer is preferably 1 to: L00 times mass is preferred and 1 to 20 times mass is more preferred 1 to: LO times mass is particularly preferable.
  • the photocurable composition contains 1 to 10% by mass of a photopolymerization initiator, preferably 2 to 9% by mass, and particularly preferably 3 to 8% by mass. By setting it within this range, the monomer in the photocurable composition can be easily polymerized to form a cured product, and therefore there is no need to perform an operation such as heating.
  • the residue of the photopolymerization initiator is difficult to inhibit the physical properties of the cured product.
  • the photopolymerization initiator is a compound that causes radical reaction or ionic reaction by light.
  • Examples of the photopolymerization initiator include the following photopolymerization initiators.
  • Acetophenone-based photopolymerization initiator Acetophenone, p- (tert-butyl) 1, 1,, 1, trichloroacetophenone, chloroacetophenone, 2 ', 2'-diethoxyacetophenone, hydroxyl Ciacetophenone, 2,2-dimethoxy-2, monophenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, etc.
  • Benzoin-based photopolymerization initiators benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy 2- Methyl-1-phenol 2-methylpropane 1-one, 1- (4-isopropylphenol) 2 hydroxyl 2-methylpropane 1-one, benzyldimethyl ketal, etc.
  • Benzophenone-based photopolymerization initiators benzophenone, benzoylbenzoic acid, benzoylmethyl benzoate, methyl-o-benzoylbenzoate, 4-phenol-penzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4 4, bis (dimethylamino) benzophenone, etc.
  • Thioxanthone-based photopolymerization initiators Thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, jetylthioxanthone, dimethylthioxanthone, and the like.
  • Photopolymerization initiators containing fluorine atoms perfluoro (tert-butyl peroxide), perfluorobenzoyl peroxide, and the like.
  • photopolymerization initiators a-asiloxime ester, benzyl- (o ethoxyca Rubonyl) -a —monooxime, acyl phosphine oxide, glyoxyester, 3-ketocoumarin, 2-ethyl anthraquinone, camphorquinone, tetramethylthiuramsulfide, azobisisobutyoxy-tolyl, benzoylperoxide, Dialkyl peroxide, tert butyl peroxybivalate, etc.
  • the photocurable composition is substantially free of a solvent! / ⁇ . Since the photocurable composition contains a specific main component monomer, a fluorine-containing surfactant, and a fluorine-containing monomer highly compatible with the fluorine-containing polymer, a uniform composition can be formed without containing a solvent. . Since it does not contain a solvent, it can be hardened without using other processes (such as a solvent distillation process). Moreover, the volume shrinkage of the photocurable composition in curing is small. “Substantially free of solvent” means that the solvent is not contained or the solvent used in the preparation of the photocurable composition is removed as much as possible.
  • the photocurable composition contains components other than the main component monomer, fluorine-containing monomer, fluorine-containing surfactant, fluorine-containing polymer, and photopolymerization initiator (hereinafter referred to as other components). Also good. Examples of other components include photosensitizers, inorganic materials, carbon materials, conductive polymers, pigment materials such as phthalocyanines, organometallic complexes such as porphyrins, organic magnetic materials, organic semiconductors, and liquid crystal materials.
  • other components include photosensitizers, inorganic materials, carbon materials, conductive polymers, pigment materials such as phthalocyanines, organometallic complexes such as porphyrins, organic magnetic materials, organic semiconductors, and liquid crystal materials.
  • the photosensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzylisothi-um-p-toluenesulfinate, and triethyla.
  • the inorganic material include a key compound (a key, a silicon carbide, a silicon dioxide, a silicon nitride, a silicon germanium, an iron silicide, etc.), a metal (platinum, gold, rhodium, , Silver, titanium, lanthanoid elements, copper, iron, zinc, etc.), metal oxides (titanium oxide, alumina, zinc oxide, ITO, iron oxide, copper oxide, bismuth oxide, manganese oxide, acid hof -Um, yttrium oxide, tin oxide, cobalt oxide, cerium oxide, silver oxide, etc.), inorganic compound salts (ferroelectric materials such as barium titanate, piezoelectric materials such as lead zirconate titanate, lithium salts Battery materials, etc.), metal alloys (magnetic materials such as ferrite magnets and neodymium magnets, semiconductors such as bismuth-tellurium alloys, gallium-arsenic alloy
  • carbon material examples include fullerene, carbon nanotube, carbon nanohorn, graphite, diamond, activated carbon and the like.
  • the fine metal wires are formed only on the ridges, and are hardly formed in the grooves between the ridges. Since the fine metal wires are formed only on the ridges, the refractive index of the light-transmitting substrate is in the groove between the ridges that is not the refractive index of the photo-curing resin in the ridges hidden behind the fine metal wires. Become a rate. For this reason, the maximum wavelength of Rayleigh resonance is shifted to a short wavelength compared with a conventional wire grid polarizer in which a thin metal wire is formed on a flat substrate, and the polarization separation ability on the short wavelength side is improved.
  • aluminum particularly preferred is silver, aluminum, chromium, magnesium, or platinum because it has a high reflectivity for visible light, little absorption of visible light, and high conductivity. preferable.
  • the cross-sectional shape of the fine metal wire includes a square, rectangle, trapezoid, circle, ellipse, and various other shapes.
  • the thin metal wire is very fine in thickness and width, and the performance of the wire grid type polarizer is deteriorated due to slight scratches. In addition, the conductivity of the fine metal wire is lowered by the wrinkles, and the performance of the wire grid type polarizer is lowered. Therefore, to suppress damage and wrinkles of fine metal wires
  • the fine metal wire may be covered with a protective layer.
  • Examples of the protective layer include resin, metal oxide, and glass.
  • resin when aluminum is used as a metal, it is oxidized in the air to form aluminum oxide on the surface.
  • the metal oxide film functions as a protective layer for the fine metal wires.
  • the refractive index of the protective layer and the refractive index of the light-transmitting substrate are substantially matched.
  • the protective layer those having heat resistance and visible light permeability are preferred, and those having a low refractive index are more preferred from the viewpoint of obtaining high polarization separation ability over a wide band.
  • the protective layer is present on the outermost surface of the wire grid polarizer, it is preferable that a protective layer having a hardness of pencil hardness H or higher is preferable.
  • the protective layer or the light-transmitting substrate may have an antireflection structure on the surface in order to increase the light use efficiency.
  • the wire grid polarizer of the present invention described above includes a light-transmitting substrate in which a plurality of protrusions are formed on the surface in parallel with each other at a constant pitch, and on the protrusions of the light-transmitting substrate. Since it has a thin metal wire formed on the surface, it exhibits high polarization separation ability in the visible light region. Moreover, since the light-transmitting substrate is made of a photo-curing resin, it has excellent heat resistance and durability.
  • the wire grid polarizer of the present invention is manufactured by a manufacturing method having the following steps ( a ) to (f).
  • a photocurable composition 20 is applied onto a support substrate 22.
  • the photocurable composition 20 is preferred.
  • Examples of the material for the support substrate 22 include inorganic materials such as quartz, glass, and metal; and resin materials such as polydimethylsiloxane and transparent fluorine resin.
  • coating methods include potting, spin coating, roll coating, die coating, spray coating, casting, dip coating, screen printing, and transfer.
  • the mold 26 in which the plurality of grooves 24 are formed in parallel with each other at a constant pitch is used, and the photocurable composition 20 is arranged so that the grooves 24 are in contact with the photocurable composition 20. Press It ’s good.
  • the constant pitch in the present invention means a constant pitch within a certain range. For example, the characteristics may be changed depending on the location by changing the central pitch and the peripheral pitch. .
  • FIG. 4 is a perspective view of the mold 26.
  • the pitch Pp of the groove 24 is the sum of the width Dp of the groove 24 and the width of the ridge formed between the grooves 24.
  • the pitch Pp of the grooves 24 is preferably 300 nm or less, and more preferably 50 to 200 nm force S.
  • the wire grid polarizer exhibits a sufficiently high reflectance and a high polarization separation ability even in a short wavelength region of about 400 nm. Moreover, the coloring phenomenon by diffraction is suppressed.
  • the width Dp of the groove 24 and it (Dp / Pp) of the pitch Pp are preferably 0.1 to 0.6 force, more preferably 0.4 to 0.55 force.
  • the depth Hp of the groove 24 is preferably 50 to 500 nm, more preferably 100 to 300 nm. By setting the depth Hp to 50 nm or more, it becomes easy to selectively form fine metal wires on the ridge to be transferred. By making the depth Hp 500 nm or less, the incident angle dependency of the polarization degree of the wire grid polarizer is reduced.
  • the material of the mold 26 is preferably a light-transmitting material such as quartz, glass, polydimethylsiloxane, or transparent fluororesin. If a transparent support substrate is used, an opaque mold such as silicon or nickel may be used.
  • the mold By making the shape of the mold into a roll, the mold can be pressed against the photocurable composition while rotating the roll, the photocurable composition can be cured, and the protrusions corresponding to the grooves can be transferred continuously.
  • a grid-type polarizer can be used in a large area.
  • the press pressure (gauge pressure) when pressing the mold 26 against the photocurable composition 20 is preferably more than 0 and less than lOMPa.
  • the photocurable composition 20 is cured in a state where the mold 26 is pressed against the photocurable composition 20, and a plurality of ridges 12 corresponding to the grooves 24 of the mold 26 are formed.
  • a light-transmitting substrate 14 is formed. Curing is performed by irradiating the photocurable composition 20 with light from the mold 26 side when the mold is made of a translucent material.
  • the photocurable composition 20 may be irradiated with light from the support substrate 22 side. Also use a combination of curing by heating.
  • a high pressure mercury lamp or the like is used as a light source for light irradiation.
  • the mold 26 is separated from the light transmissive substrate 14. Note that a step (f) of separating the support substrate 22 may be performed before the step (d).
  • the fine metal wires 16 are formed on the ridges 12 of the light transmissive substrate. Note that a step (f) of separating the support substrate 22 may be performed before the step (e).
  • Examples of the method for forming the fine metal wires 16 include vapor deposition, sputtering, plating, and the like. From the point of selectively forming the fine metal wires 16 on the ridges 12, a film is formed by flying fine particles in an oblique direction under vacuum. An oblique vapor deposition method (including an oblique sputtering method) is preferable. When there is a narrow pitch and the height of the ridge as in the present invention, a metal layer can be selectively formed on the ridge 12 by performing oblique deposition with a sufficiently low angular force. Further, a thin metal layer can be formed by oblique vapor deposition, and then another metal layer can be superimposed thereon by a plating method to form a thin metal wire having a desired thickness.
  • the support substrate 22 is separated from the light transmissive substrate 14 to obtain the wire grid polarizer 10.
  • a light grid substrate and the support substrate 22 integrated without separating the support substrate 22 may be used as the wire grid polarizer.
  • the method for producing a wire grid polarizer of the present invention described above is a method having the steps (a) to (f), that is, an optical imprint method, and therefore, compared with a conventional lithography method.
  • Wire grid polarizers with fewer manufacturing processes can be manufactured with high productivity and a large area.
  • the photoimprint method uses a photocurable composition, the substrate is heated. Unlike the conventional thermal imprinting method using plastic resin, it is possible to produce a via grid type polarizer excellent in heat resistance and durability.
  • Polarization degree ((Tp- Ts) Z ( Tp + Ts)) ° ⁇ 5
  • Tp is the transmittance of ⁇ -polarized light and Ts is the transmittance of S-polarized light.
  • composition 1 In a vial container (internal volume of 6 mL), 0.30 g of monomer (3-1), 0.40 g of monomer (3-2), 0.25 g of monomer (2-1), and fluorine-containing surfactant (Asahi Glass) Co-oligomer (fluorine content of about 3) 0% by weight, weight average molecular weight about 3000. ;)) Of 0. Olg, and then 0.04 g of photopolymerization initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.) was added and mixed, and the photocurable composition having a viscosity of 12 mPa ⁇ s. (Hereinafter referred to as Composition 1) was prepared.
  • the cured product of composition 1 has a refractive index (nd) of 1.48, a visible light transmittance of 200 m thick, 94.2%, a water contact angle of 95 °, and a Vicat softening point.
  • the temperature was 154 ° C.
  • the yarn composition 1 was applied by spin coating to form a coating film of the composition 1 having a thickness of 1 m.
  • the film was pressed against the coating film of Composition 1 at 0.5 MPa (gauge pressure) at 25 ° C.
  • PET polyethylene terephthalate
  • Example 2 The same transparent mold as in Example 2 was heated to 150 ° C, and then the groove strength was in contact with the SPET film.
  • the degree of polarization was calculated based on the following formula.
  • Polarization degree ((Tp- Ts) Z ( Tp + Ts)) ° ⁇ 5
  • Tp is the transmittance of ⁇ -polarized light and Ts is the transmittance of S-polarized light.
  • a wire grid polarizer was placed in an atmosphere at 200 ° C for 1000 hours to form a heat resistance test sample.
  • the transmittance was measured, and the degree of polarization was calculated.
  • the transmittance change before and after the heat resistance test was evaluated as less than 1% as ⁇ , 1% to less than 5% as ⁇ , and 5% or more as X.
  • the change in the degree of polarization before and after the heat resistance test was evaluated as less than 1% as ⁇ , 1% or more but less than 5% as ⁇ , and 5% or more as X. The results are shown in Table 1.
  • the thermal imprint method of Example 3 can greatly simplify the process compared to the conventional lithography method, but the tact time is longer than that of the optical imprint method of Example 2, and the temperature and pressure are high. Since the conditions are necessary, the equipment becomes heavy and it cannot be said that productivity is excellent.
  • the PET used in Example 3 had poor release properties, and it was necessary to apply a release agent to the transparent mold.
  • the photocured resin of Example 2 showed good releasability without a release agent with low surface free energy.
  • Example 2 and Example 3 showed good results. However, in the evaluation after the heat resistance test, in Example 3, the concavo-convex pattern was disturbed, and the polarization separation ability decreased. In addition, a significant decrease in transmittance was observed due to yellowing (coloring) of PET. On the other hand, Example 2 No deterioration in performance was observed and good heat resistance was exhibited.
  • the wire grid polarizer of the present invention exhibits high polarization separation in the visible light region and is heat resistant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 可視光領域で高い偏光分離能を示し、耐熱性、耐久性に優れたワイヤグリッド型偏光子;および該ワイヤグリッド型偏光子を生産性よく製造でき、大面積化が可能な製造方法を提供する。  光硬化性組成物20を支持基板22上に塗布する工程と、溝24が形成されたモールド26を光硬化性組成物20に押しつける工程と、モールド26を光硬化性組成物20に押しつけた状態で光硬化性組成物20を硬化させて、モールド26の溝24に対応する凸条12を有する光透過性基板14を形成する工程と、光透過性基板14からモールド26を分離する工程と、光透過性基板14の凸条12上に金属細線を形成する工程とを有するワイヤグリッド型偏光子の製造方法。

Description

明 細 書
ワイヤグリッド型偏光子およびその製造方法
技術分野
[0001] 本発明は、ワイヤグリッド型偏光子およびその製造方法に関する。
背景技術
[0002] 液晶表示装置、リアプロジェクシヨンテレビ、フロントプロジェクタ一等の画像表示装 置に用いられる、可視光領域で偏光分離能を示す偏光子としては、吸収型偏光子お よび反射型偏光子がある。
吸収型偏光子は、たとえば、ヨウ素等の二色性色素を榭脂フィルム中に配向させた 偏光子である。しかし、吸収型偏光子は、一方の偏光を吸収するため、光の利用効 率が低い。
[0003] 一方、反射型偏光子は、偏光子に入射せずに反射した光を偏光子に再入射させる ことにより、光の利用効率を上げることができる。そのため、液晶表示装置等の高輝 度化を目的として反射型偏光子のニーズが高まって 、る。
反射型偏光子としては、複屈折樹脂積層体力ゝらなる直線偏光子、コレステリック液 晶からなる円偏光子、ワイヤグリッド型偏光子がある。
しかし、直線偏光子および円偏光子は、偏光分離能が低い。そのため、高い偏光 分離能を示すワイヤグリッド型偏光子が注目されて 、る。
[0004] ワイヤグリッド型偏光子は、透明基板上に複数の金属細線が互いに平行に配列し た構造を有する。金属細線のピッチが入射光の波長よりも充分に短い場合、入射光 のうち、金属細線に直交する電場ベクトルを有する成分 (すなわち P偏光)は透過し、 金属細線と平行な電場ベクトルを有する成分 (すなわち S偏光)は反射される。
[0005] 可視光領域で偏光分離能を示すワイヤグリッド型偏光子としては、以下のものが知 られている。
(1)ガラス基板上に複数の金属細線が互いに平行に配列したワイヤグリッド型偏光 子 (特許文献 1)。
(2)榭脂フィルム上に複数の金属細線が互いに平行に配列したワイヤグリッド型偏 光子 (特許文献 2、 3)。
(3)榭脂層に形成された複数の溝に金属細線を形成したワイヤグリッド型偏光子( 特許文献 4)。
[0006] しかし、(1)、(2)のワイヤグリッド型偏光子は、波長 193nmの DUV (深紫外線光) を用いたリソグラフィ法により、基板上に蒸着した金属膜をパターユングして製造され ているため、製造工程が多ぐ生産性、大面積ィ匕に問題を有する。
[0007] また、 (2)のワイヤグリッド型偏光子にお!、て、榭脂フィルムとして熱可塑性榭脂を 用いた場合、耐熱性、耐久性に問題がある。リアプロジェクシヨンテレビ、フロントプロ ジェクタ一等においては、高輝度化を目指した光源の高エネルギー化に伴い、榭脂 の軟ィ匕点以上での使用が想定されるため、偏光子には耐熱性が要求される。
(3)のワイヤグリッド型偏光子においては、榭脂の凸部上に金属細線が形成されて いる。パターン形成プロセスにおいて熱インプリント法または光インプリント法が使用 されている力 インプリントプロセスに続いてエッチングプロセスを経る必要がある。ま た、榭脂層として熱可塑性榭脂を用いた場合、耐熱性、耐久性に問題を有する。 特許文献 1:国際公開第 OOZ079317号パンフレット
特許文献 2 :特開 2005— 195824号公報
特許文献 3:特開 2005— 316495号公報
特許文献 4:特開 2005— 070456号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、可視光領域で高!ヽ偏光分離能を示し、耐熱性、耐久性に優れたワイヤ グリッド型偏光子、および該ワイヤグリッド型偏光子を生産性よく製造でき、大面積化 が可能な製造方法を提供する。
課題を解決するための手段
[0009] 本発明のワイヤグリッド型偏光子の製造方法は、光硬化性組成物を支持基板上に 塗布する工程と、複数の溝が互いに平行にかつ一定のピッチで形成されたモールド を、溝が光硬化性組成物に接するように、光硬化性組成物に押しつける工程と、モ 一ルドを光硬化性組成物に押しつけた状態で光硬化性組成物を硬化させて、モー ルドの溝に対応する複数の凸条を有する光透過性基板を形成する工程と、光透過 性基板からモールドを分離する工程と、光透過性基板の凸条上に金属細線を形成 する工程とを有することを特徴とする。
本発明のワイヤグリッド型偏光子の製造方法は、さらに、光透過性基板から支持基 板を分離する工程を有して 、てもよ 、。
[0010] 前記光硬化性組成物として、硬化後に以下の物性を有する光硬化榭脂となるもの を用いることが好ましい。
屈折率 (nd)が 1. 3〜1. 6であり、厚さが 200 mのときの可視光線透過率が 93% 以上である光硬化榭脂。さらに、水の接触角が 90° 以上である光硬化榭脂。さらに は、ビカット軟化点温度が 150°C以上である光硬化榭脂。
[0011] 前記光硬化性組成物として、下記光硬化性組成物を用いることが好ま U、。
フッ素原子を含まないモノマーの 50〜98質量0 /0、含フッ素モノマーの 0. 1〜45質 量%、含フッ素界面活性剤および/または含フッ素ポリマーの 0. 1超〜 20質量%、 および光重合開始剤の 1〜10質量%を含み、かつ実質的に溶剤を含まず、 25°Cに おける粘度が l〜200mPa' sである光硬化性組成物。
前記光硬化性糸且成物の含フッ素モノマーとして、下記の式(1)又は(2)で表される 含フッ素モノマーを用いることが好まし 、。
CF =CR1 -Q-CR2 = CH …(1)
2 2
(CH =CXCOO) RF · · · (2)
2 n
ただし、式中の記号は以下の意味を示す。
式(1)中、 R1および R2は、それぞれ独立に、水素原子、フッ素原子、炭素数 1〜3 のアルキル基、または炭素数 1〜3のフルォロアルキル基を示し、 Qは、酸素原子、 NR3- (ただし、 R3は水素原子、炭素数 1〜6のアルキル基、アルキルカルボ-ル基 またはトシル基を示す。)で表される基、または官能基を有していてもよい 2価有機基 を示す。
式(2)中、 nは 1〜4の整数を示し、 Xは水素原子、フッ素原子、メチル基またはトリ フルォロメチル基を示し、 RFは炭素数 1〜30の n価含フッ素有機基を示す。
光透過性基板の凸条上に金属細線を形成する工程としては、斜方蒸着法を用いる ことが好ましい。
[0012] 前記モールドの溝のピッチは、 300nm以下であることが好ましい。
本発明のワイヤグリッド型偏光子は、本発明のワイヤグリッド型偏光子の製造方法で 製造されたものである。
発明の効果
[0013] 本発明のワイヤグリッド型偏光子は、可視光領域で高!、偏光分離能を示し、耐熱性 、耐久性に優れる。
本発明のワイヤグリッド型偏光子の製造方法によれば、可視光領域で高い偏光分 離能を示し、耐熱性、耐久性に優れたワイヤグリッド型偏光子を、生産性よく製造でき 、かつ大面積ィ匕できる。
図面の簡単な説明
[0014] [図 1]本発明のワイヤグリッド型偏光子の一例を示す斜視図である。
[図 2]本発明のワイヤグリッド型偏光子の製造方法における各工程を示す断面図であ る。
[図 3]本発明のワイヤグリッド型偏光子の製造方法における各工程を示す断面図であ る。
[図 4]本発明のワイヤグリッド型偏光子の製造方法に用いられるモールドの一例を示 す斜視図である。
[図 5]入射角 Θ =0° における、本発明のワイヤグリッド型偏光子の P偏光および S偏 光の透過率と入射光波長との関係、および透過光の偏光度と入射光波長との関係を 示すグラフである。
[図 6]入射角 Θ =45° における、本発明のワイヤグリッド型偏光子の P偏光および S 偏光の透過率と入射光波長との関係、および透過光の偏光度と入射光波長との関 係を示すグラフである。
符号の説明
[0015] 10 ワイヤグリッド型偏光子
12 凸条
14 光透過性基板 16 金属細線
20 光硬化性組成物
22 支持基板
24 溝
26 モールド
発明を実施するための最良の形態
[0016] 本明細書においては、式(1)で表されるモノマーをモノマー(1)と記す。他の式で 表されるモノマーも同様に記す。
[0017] <ワイヤグリッド型偏光子 >
図 1は、本発明のワイヤグリッド型偏光子の一例を示す斜視図である。ワイヤグリッド 型偏光子 10は、複数の凸条 12が互いに平行にかつ一定のピッチ Ppで表面に形成 された、光硬化樹脂からなる光透過性基板 14と、光透過性基板 14の凸条 12上に形 成された金属細線 16とを有する。
[0018] 凸条 12のピッチ Ppは、凸条 12の幅 Dpと、凸条 12間に形成される溝の幅との合計 である。凸条 12のピッチ Ppは、 300nm以下が好ましぐ 50〜200nm力 り好ましい 。ピッチ Ppを 300nm以下とすることにより、ワイヤグリッド型偏光子 10が充分に高い 反射率、および、 400nm程度の短波長領域においても高い偏光分離能を示す。ま た、回折による着色現象が抑えられる。
[0019] 凸条 12の幅 Dpとピッチ Ppの比(Dp/Pp)は、 0. 1〜0. 6力好ましく、 0. 4〜0. 5 5がより好ましい。 DpZPpを 0. 1以上とすることにより、ワイヤグリッド型偏光子 10の 偏光分離能が充分に高くなる。 DpZPpを 0. 6以下とすることにより、干渉による透過 光の着色が抑えられる。
[0020] 凸条 12の高さ Hpは、 50〜500nm力 子ましく、 100〜300nm力より好ましい。高さ Hpを 50nm以上とすることにより、凸条 12上への金属細線 16の選択的な形成が容 易となる。高さ Hpを 500nm以下とすることにより、ワイヤグリッド型偏光子 10の偏光 度の入射角度依存性力 、さくなる。
[0021] 金属細線 16の幅 Dmは、凸条 12の幅 Dpと同じであることが好ましい。
金属細線 16の高さ Hmは、 30〜300nm力 子ましく、 100〜150nm力より好ましい 。高さ Hmを 30nm以上とすることにより、ワイヤグリッド型偏光子 10が充分に高い反 射率および偏光分離能を示す。高さ Hmを 300nm以下とすることにより、光の利用効 率が上がる。
[0022] (光透過性基板)
光透過性基板は、光硬化樹脂からなる基板である。光透過性とは、光を透過するこ とを意味する。
光透過性基板の厚さ Hは、 0. 5〜: LOOO /z m力 S好ましく、 l〜40 /z m力 Sより好ましい 光硬化榭脂としては、生産性の点から、光硬化性組成物の光ラジカル重合により形 成される榭脂が好ましい。
[0023] 光硬化樹脂の屈折率 (nd)は、 1. 3〜1. 6が好ましい。屈折率 (nd)を 1. 6以下と することにより、青色光領域における P偏光の透過性が高くなり、高い偏光分離能を 広帯域にわたり示す。
屈折率 (nd)は、厚さ 10 mの光硬化榭脂膜について、アッベ屈折率計(589nm、
25°C)を用いて測定する。
[0024] 光硬化樹脂の可視光線透過率は、厚さが 200 mのとき 93%以上が好ましい。可 視光線透過率を 93%以上とすることにより、 P偏光の透過性が高くなり、偏光分離能 が高くなる。
可視光線透過率は、積分式光線透過率測定器を用い、 400ηπ!〜 780nmの光の 全光量 T1とサンプル透過光 T2との比(T2 X 100ZT1)により求める。
[0025] 光硬化樹脂の水の接触角は、 90° 以上が好ましい。水の接触角が 90° 以上であ れば、後述の光インプリント法により凸条を形成する際、モールドとの離型性がよくな り、精度の高い転写が可能となり、得られるワイヤグリッド型偏光子が目的とする性能 を充分に発揮できる。
水の接触角は、接触角測定装置を用いて測定する。
[0026] 光硬化樹脂のビカット軟化点温度は、 150°C以上が好ましい。ビカット軟化点温度 力 150°C以上であれば、耐熱性が高くなり、耐熱性が要求される用途に充分に適応 できる。 ビカット軟ィ匕点温度は、 JIS K 7206に準拠して求める。
[0027] 前記特性を満たす光硬化榭脂としては、下記光硬化性組成物を光重合により硬化 したものが挙げられる。
フッ素原子を含まないモノマーの 50〜98質量0 /0、含フッ素モノマーの 0. 1〜45質 量%、含フッ素界面活性剤および/または含フッ素ポリマーの 0. 1超〜 20質量%、 および光重合開始剤の 1〜10質量%を含み、かつ実質的に溶剤を含まず、 25°Cに おける粘度が l〜200mPa ' sである光硬化性組成物。
該組成物を用いることにより、塗布時の平滑性、光インプリント時の離型性、形状保 持性が良くなる。
[0028] 光硬化性組成物の粘度は、 l〜200mPa' sが好ましぐ l〜100mPa' sがより好ま しい。粘度がこの範囲にあれば、スピンコート等の手法により平滑な塗膜を容易に製 膜できる。
粘度は、回転式粘度計を用い、温度 25°Cにて測定する。
[0029] 光硬化性組成物は、フッ素原子を含まな!/ヽモノマー(以下、主成分モノマーと記す 。)の 50〜98質量%を含み、好ましくは 55〜90質量%を含み、特に好ましくは 60〜 85質量%を含む。
[0030] 主成分モノマーは、重合性基を有するモノマーが挙げられ、アタリロイル基またはメ タクリロイル基を有するモノマー、ビュル基を有するモノマー、ァリル基を有するモノマ 一、ォキシラ-ル基を有するモノマーが好ましぐアタリロイル基またはメタクリロイル 基を有するモノマーがより好まし 、。
主成分モノマーにおける重合性基の数は、 1〜4個が好ましぐ 1または 2個がより好 ましぐ 1個が特に好ましい。
[0031] 主成分モノマーとしては、(メタ)アクリル酸、(メタ)アタリレート、(メタ)アクリルアミド、 ビニルエーテル、ビニルエステル、ァリルエーテル、ァリルエステル、スチレン系ィ匕合 物が好ましぐ(メタ)アタリレートが特に好ましい。(メタ)アクリル酸は、アクリル酸およ びメタクリル酸の総称であり、(メタ)アタリレートは、アタリレートおよびメタタリレートの 総称であり、(メタ)アクリルアミドは、アクリルアミドおよびメタクリルアミドの総称である (メタ)アタリレートの具体例としては、下記の化合物が挙げられる。
[0032] フエノキシェチル (メタ)アタリレート、ベンジル (メタ)アタリレート、ステアリル (メタ)ァ タリレート、ラウリル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、エトキシ ェチル (メタ)アタリレート、メトキシェチル (メタ)アタリレート、グリシジル (メタ)アタリレ ート、テトラヒドロフルフリール (メタ)アタリレート、ァリル (メタ)アタリレート、 2—ヒドロキ シェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 N, N ジェチ ルアミノエチル (メタ)アタリレート、 N, N ジメチルアミノエチル (メタ)アタリレート、ジ メチルアミノエチル (メタ)アタリレート、メチルァダマンチル (メタ)アタリレート、ェチル ァダマンチル (メタ)アタリレート、ヒドロキシァダマンチル (メタ)アタリレート、ァダマン チル (メタ)アタリレート、イソボル-ル (メタ)アタリレート等のモノ (メタ)アタリレート。
[0033] 1, 3 ブタンジオールジ (メタ)アタリレート、 1, 4 ブタンジオールジ (メタ)アタリレ ート、 1, 6 へキサンジオールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)ァ タリレート、トリエチレングリコールジ (メタ)アタリレート、テトラエチレングリコールジ (メ タ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、ポリオキシエチレングリ コールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート等のジ (メタ) アタリレー卜。
[0034] トリメチロールプロパントリ(メタ)アタリレート、ペンタァエリスリトールトリ(メタ)アタリレ ート等のトリ (メタ)アタリレート。
ジペンタエリスリトールへキサ (メタ)アタリレート等の重合性基を 4個以上有する (メ タ)アタリレート。
[0035] ビュルエーテルの具体例としては、ェチルビ-ルエーテル、プロピルビュルエーテ ノレ、イソブチノレビニノレエーテノレ、 2—ェチノレへキシノレビニノレエーテノレ、シクロへキシ ルビ-ルエーテル等のアルキルビュルエーテル、 4 ヒドロキシブチルビ-ルエーテ ル等の(ヒドロキシアルキル)ビュルが挙げられる。
ビュルエステルの具体例としては、酢酸ビュル、プロピオン酸ビュル、 (イソ)酪酸ビ
-ル、吉草酸ビュル、シクロへキサンカルボン酸ビュル、安息香酸ビュル等のビュル エステルが挙げられる。
[0036] ァリルエーテルの具体例としては、ェチルァリルエーテル、プロピルァリルエーテル 、 (イソ)ブチルァリルエーテル、シクロへキシルァリルエーテル等のアルキルァリルェ 一テルが挙げられる。
ァリルエステルの具体例としては、ェチルァリルエステル、プロピルァリルエステル、 イソブチルァリルエステル等のアルキルァリルエステルが挙げられる。
ォキシラ-ル基を有するモノマーとしては、エポキシ基を有するモノマー、ォキタセ ン基を有するモノマー、ォキサゾリン基を有するモノマーが挙げられる。
[0037] 主成分モノマーの分子量は、 100〜500力 S好ましく、 200〜400力 Sより好ましい。
主成分モノマーは、 1種を単独で用いてもよぐ 2種以上を併用してもよい。 主成分モノマーは、光硬化樹脂が高い可視光透過性を発現する点で、分子内に 下式の環構造を有するモノマーを含むことが好まし 、。
[0038] [化 1]
Figure imgf000011_0001
[0039] 主成分モノマーは、高耐熱性を発現するために、重合性基を 2個以上有する (メタ) アタリレートを含有していることが好ましい。具体的には 1, 3 ブタンジオールジアタリ レート、 1, 4 ブタンジオールジアタリレート、 1, 6 へキサンジオールジアタリレート 、トリメチロールプロパントリアタリレート、ペンタエリスリトールトリアタリレート、ジペンタ エリスリトールへキサアタリレート、ジエチレングリコールジアタリレート、ネオペンチル グリコールジアタリレート、ポリオキシエチレングリコールジアタリレート、トリプロピレン グリコールジアタリレート等が挙げられる。
[0040] 光硬化性組成物は、含フッ素モノマーの 0. 1〜45質量0 /0を含み、好ましくは 10〜 40質量%を含む。
光硬化性組成物は、主成分モノマー、含フッ素界面活性剤および含フッ素ポリマー との相溶性が高い含フッ素モノマーを含むため、相分離しにくい。また該組成物は相 分離することなく硬化物を形成しやすい。また、含フッ素モノマーを含むため、硬化 物の水の接触角が 90° 以上となる。また、含フッ素モノマーを含むため、硬化物の 屈折率が低下し、短波長領域の透過率が高くなり、結果として偏光分離能が向上す る。
[0041] 含フッ素モノマーは、重合性基を有する含フッ素モノマーであり、アタリロイル基また はメタクリロイル基を有する含フッ素モノマー、ビュル基を有する含フッ素モノマー、フ ルォロビニル基を有する含フッ素モノマー、ァリル基を有する含フッ素モノマー、ォキ シラニル基を有する含フッ素モノマーが好まし 、。
含フッ素モノマーにおける重合性基の数は、 1〜4個が好ましぐ 1または 2個がより 好ましぐ 1個が特に好ましい。
[0042] 含フッ素モノマーのフッ素含有量は、 40〜70質量%が好ましぐ 45〜65質量%が より好ましい。フッ素含有量とは、含フッ素モノマーを構成するすべての原子の総質 量に対するフッ素原子の質量の割合である。含フッ素モノマーのフッ素含有量を 40 質量%以上とすることにより、硬化物の離型性が特に優れる。含フッ素モノマーのフッ 素含有量を 70質量%以下とすることにより、光重合開始剤との相溶性がより向上し、 光硬化性組成物を均一に調製しやす!、。
[0043] 含フッ素モノマーの分子量は、 200〜5000力 子ましく、 250〜1000力より好ましい 含フッ素モノマーは、 1種を単独で用いてもよぐ 2種以上を併用してもよい。
[0044] 含フッ素モノマーとしては、モノマー(1)またはモノマー(2)が特に好ましい。
CF =CR1 -Q-CR2 = CH · · · (l) 0
2 2
(CH =CXCOO) RF · ' · (2)。
2 n
[0045] ただし、式中の記号は以下の意味を示す。
モノマー(1)中、 R1および R2は、それぞれ独立に、水素原子、フッ素原子、炭素数 1〜3のアルキル基、または炭素数 1〜3のフルォロアルキル基を示し、 Qは、酸素原 子、— NR3— (ただし、 R3は水素原子、炭素数 1〜6のアルキル基、アルキルカルボ -ル基またはトシル基を示す。)で表される基、または官能基を有していてもよい 2価 有機基を示す。
モノマー(2)中、 nは 1〜4の整数を示し、 Xは水素原子、フッ素原子、メチル基また はトリフルォロメチル基を示し、 RFは炭素数 1〜30の n価含フッ素有機基を示す。 [0046] モノマー(1)における Qが 2価有機基である場合、メチレン、ジメチレン、トリメチレン 、テトラメチレン、ォキシメチレン、ォキシジメチレン、ォキシトリメチレン、およびジォキ シメチレン力 なる群力 選ばれる基を主鎖とし、該主鎖中の水素原子が、フッ素原 子、水酸基、炭素数 1〜6のアルキル基、炭素数 1〜6のヒドロキシアルキル基、炭素 原子 炭素原子間にエーテル性酸素原子が挿入された炭素数 1〜6のアルキル基、 および炭素原子 炭素原子間にエーテル性酸素原子が挿入された炭素数 1〜6の ヒドロキシアルキル基力 なる群力 選ばれる基で置換された基であり、かつ該基中 の炭素原子一水素原子結合を形成する水素原子の 1個以上がフッ素原子で置換さ れた基が好ましぐ -CF C(CF ) (OH)CH―、— CF C(CF ) (OH)―、— CF C
3 2 2 3
(CF ) (OCH OCH )CH CH CH(CH C(CF ) OH)CH一、または C
H CH(CH C(CF ) OH)—が特に好ましい。ただし、基の向きは左側が CF =CR
2 2 3 2 2 に結合することを意味する。
[0047] モノマー(1)の具体例としては、下記の化合物が挙げられる。
CF =CFCH CH(C(CF ) OH)CH CH = CH、
2 2 3 2 2 2
CF =CFCH CH(C(CF ) OH)CH = CH、
2 2 3 2 2
CF =CFCH CH(C(CF ) OH)CH CH CH = CH、
2 2 3 2 2 2 2
CF =CFCH CH(CH C(CF ) OH)CH CH CH = CH、
2 2 2 3 2 2 2 2
CF =CFCH C(CH ) (CH SO F)CH CH = CH、
2 2 3 2 2 2 2
CF =CFCF C(CF ) (OCH OCH )CH CH = CH、
2 2 3 2 3 2 2
CF =CFCF C(CF ) (OH)CH = CH、
2 2 3 2
CF =CFCF C(CF ) (OH)CH CH = CH、
2 2 3 2 2
CF =CFCF C(CF ) (OCH OCH CF )CH CH = CH ,
2 2 3 2 2 3 2 2
CF =CFCF C(CF ) (OCH OCH )CH CH = CH、
2 2 3 2 3 2 2
CF =CFOCF CF(0(CF ) OC H )CH CH = CH、
2 2 2 3 2 5 2 2
CF =CFOCF CF(OCF CF CH NH )CH CH = CH、
2 2 2 2 2 2 2 2
CF =CFOCF CF(0(CF ) CN)CH = CH、
2 2 2 3 2
CF =CFOCF CF(OCF CF SO F)CH CH = CH、
2 2 2
CF CFOCF CF(0(CF ) PO(OC H ) )CH CH = CH CF =CFOCF CF (OCF CF SO F) CH CH = CH。
[0048] モノマー(2)における nは、 1または 2が好まし 、。 Xは、水素原子またはメチル基が 好ましい。 RFの炭素数は、 4〜24が好ましい。
nが 1である場合、 RFは 1価含フッ素有機基である。 1価含フッ素有機基としては、炭 素原子—炭素原子間にエーテル性酸素原子が挿入されていてもよいポリフルォロア ルキル基を有する 1価含フッ素有機基が好ましい。該 1価含フッ素有機基としては、
- (CH ) RF1、 -SO NR4 (CH ) RF1、または—(C = 0) NR4 (CH ) RF1で表さ れる基が好ましい。ただし、 flは、 1〜3の整数を示し、 RF1は、炭素数 4〜16の炭素 原子 炭素原子間にエーテル性酸素原子が挿入されていてもよいポリフルォロアル キル基を示し、 R4は、水素原子、メチル基、またはェチル基を示す。 RF1としては、ぺ ルフルォロアルキル基が好ましく、直鎖状ペルフルォロアルキル基が特に好まし 、。
[0049] nが 2である場合、 RFは 2価含フッ素有機基である。 2価含フッ素有機基としては、炭 素原子—炭素原子間にエーテル性酸素原子が挿入されていてもよいポリフルォロア ルキレン基が好ましぐ - (CH ) RF2 (CH ) —で表される基が特に好ましい。ただ し、 f2および f3は、それぞれ 1〜3の整数を示し、 RF2は、炭素数 4〜16の炭素原子 炭素原子間にエーテル性酸素原子が挿入されていてもよいポリフルォロアルキレ ン基を示す。 RF2としては、ペルフルォロアルキレン基が好ましぐ直鎖状ペルフルォ 口アルキレン基、または炭素原子 炭素原子間にエーテル性酸素原子が挿入され かつトリフルォロメチル基を側鎖に有するペルフルォロォキシアルキレン基が特に好 ましい。
[0050] モノマー(2)の具体例としては、下記の化合物が挙げられる。
CH =CHCOO (CH ) (CF ) F、
CH =CHCOO (CH ) (CF ) F、
CH =C (CH ) COO (CH ) (CF ) F、
CH =C (CH ) COO (CH ) (CF ) F、
CH =CHCOOCH (CF ) F、
CH =C (CH ) COOCH (CF ) F、
CH =CHCOOCH CF CF H、 CH =CHCOOCH (CF CF ) H、
2 2 2 2 4
CH =C(CH )COOCH CF CF H、
2 3 2 2 2
CH =C(CH )COOCH (CF CF ) H、
2 3 2 2 2 4
CH =CHCOOCH CF OCF CF OCF、
2 2 2 2 2 3
CH =CHCOOCH CF 0(CF CF O) CF、
2 2 2 2 2 3 3
CH =C(CH )COOCH CF OCF CF OCF、
2 3 2 2 2 2 3
CH =C(CH )COOCH CF 0(CF CF O) CF、
2 3 2 2 2 2 3 3
CH =CHCOOCH CF(CF )0(CF CF(CF )θ) (CF ) F、
2 2 3 2 3 2 2 3
CH =C(CH )COOCH CF(CF )0(CF CF(CF )θ) (CF ) F、
2 3 2 3 2 3 2 2 3
CH =CHCOOCH CF 0(CF CF O) CF CH OCOCH = CH、
2 2 2 2 2 6 2 2 2
CH =C(CH )COOCH CF 0(CF CF O) CF CH OCOC(CH ) =CH、
2 3 2 2 2 2 6 2 2 3 2
CH =CHCOOCH (CF ) CH OCOCH = CH、
2 2 2 4 2 2
CH =C(CH )COOCH (CF ) CH OCOC(CH ) =CH。
2 3 2 2 4 2 3 2
[0051] 光硬化性糸且成物は、含フッ素界面活性剤および/または含フッ素ポリマーの 0.1 超〜 20質量%を含み、好ましくは 0.5〜: L0質量%を含み、特に好ましくは 1〜5質 量%を含む。該範囲にとすることにより、光硬化性組成物を調製しやすぐさらに該組 成物は相分離することなく硬化物を形成しやす ヽ。
[0052] 光硬化性組成物は、含フッ素界面活性剤および含フッ素ポリマーを含んでいてもよ ぐ含フッ素界面活性剤のみを含んでいてもよぐ含フッ素ポリマーのみを含んでいて もよい。なお、光硬化性組成物が含フッ素界面活性剤および含フッ素ポリマーを含む 場合は、前記含有量は、含フッ素界面活性剤および含フッ素ポリマーの総量を意味 する。
含フッ素界面活性剤は、 1種を単独で用いてもよぐ 2種以上を併用してもよい。含 フッ素ポリマーは、 1種を単独で用いてもよぐ 2種以上を併用してもよい。
[0053] 光硬化性組成物が含フッ素界面活性剤を含む場合、光硬化性組成物の硬化物は 離型性が優れ、モールドから円滑に剥離できる。
含フッ素界面活性剤のフッ素含有量は、 10〜70質量%が好ましぐ 20〜40質量 %がより好ましい。含フッ素界面活性剤は、水溶性であっても脂溶性であってもよい。 含フッ素界面活性剤としては、ァ-オン性含フッ素界面活性剤、カチオン性含フッ 素界面活性剤、両性含フッ素界面活性剤、ノ-オン性含フッ素界面活性剤が好まし ぐ分散性が良好である点から、ノ-オン性含フッ素界面活性剤が特に好ましい。
[0054] ァ-オン性含フッ素界面活性剤としては、ポリフルォロアルキルカルボン酸塩、ポリ フルォロアルキル燐酸エステル、ポリフルォロアルキルスルホン酸塩が好ましい。了二 オン性含フッ素界面活性剤の具体例としては、サーフロン S— 111 (商品名、セイミケ ミカル社製)、フロラード FC— 143 (商品名、スリーェム社製)、メガファック F— 120 ( 商品名、大日本インキ化学工業社製)等が挙げられる。
[0055] カチオン性含フッ素界面活性剤としては、ポリフルォロアルキルカルボン酸のトリメ チルアンモ -ゥム塩、ポリフルォロアルキルスルホン酸アミドのトリメチルアンモ -ゥム 塩が好ましい。カチオン性含フッ素界面活性剤の具体例としては、サーフロン S— 12 1 (商品名、セイミケミカル社製)、フロラード FC— 134 (商品名、スリーェム社製)、メ ガファック F— 450 (商品名、大日本インキ化学工業社製)等が挙げられる。
[0056] 両性含フッ素界面活性剤としては、ポリフルォロアルキルべタインが好ましい。両性 含フッ素界面活性剤の具体例としては、サーフロン S— 132 (商品名、セイミケミカル 社製)、フロラード FX— 172 (商品名、スリーェム社製)等が挙げられる。
[0057] ノ-オン性含フッ素界面活性剤としては、ポリフルォロアルキルアミンォキシド、ポリ フルォロアルキル ·アルキレンォキシド付カ卩物、フルォロアルキル基を有するモノマー に基づくモノマー単位を含むオリゴマーまたはポリマー等が挙げられる。フルォロア ルキル基としては、前記ポリフルォロアルキル基 (RF1)が好ましい。
[0058] ノ-オン性含フッ素界面活性剤としては、フルォロアルキル基を有するモノマーに 基づくモノマー単位を含むオリゴマーまたはポリマーが好ましぐ質量平均分子量は 1000〜8000力 S好ましい。フルォロアルキル基を有するモノマーとしては、フルォロ( メタ)アタリレートが好ましぐフルォロアルキル (メタ)アタリレートが特に好ましい。フル ォロアルキル (メタ)アタリレートとしては、モノマー(2)における nが 1であり、 Xが水素 原子またはメチル基である化合物が好ま 、。
[0059] ノ-オン性含フッ素界面活性剤の具体例としては、サーフロン S— 145 (商品名、セ イミケミカル社製)、サーフロン S— 393 (商品名、セイミケミカル社製)、サーフロン K H— 20 (商品名、セイミケミカル社製)、サーフロン KH— 40 (商品名、セイミケミカル 社製)、フロラード FC— 170 (商品名、スリーェム社製)、フロラード FC— 430 (商品 名、スリーェム社製)、メガファック F— 444 (商品名、大日本インキ化学工業社製)、メ ガファック F— 479 (商品名、大日本インキ化学工業社製)等が挙げられる。
[0060] 光硬化性組成物が含フッ素ポリマーを含む場合、光硬化性組成物の硬化物は、離 型性に優れ、モールドから円滑に剥離できる。また、光硬化性組成物の硬化の際に 、含フッ素ポリマーの存在下にモノマーの重合が行われるため、体積収縮率の小さ い硬化物が得られる。そのため、該硬化物の表面に形成される凸条の形状は、モー ルドの溝の形状に対して高精度である。なお、含フッ素ポリマーは、ノ-オン性含フッ 素界面活性剤として挙げたフルォロアルキル基を有するモノマーに基づくモノマー単 位を含むオリゴマーまたはポリマー以外のものを意味する。
[0061] 含フッ素ポリマーの質量平均分子量は、他の成分との相溶性の点から、 500〜100 000力好まし <、 1000〜100000カ^ょり好まし<、 3000〜50000力特に好まし!/ヽ。 含フッ素ポリマーのフッ素含有量は、離型性に優れる観点から、 30〜70質量%が 好ましぐ 45〜70質量%がより好ましい。
[0062] 含フッ素ポリマーとしては、相溶性の点から、ヘテロ原子を含有する含フッ素ポリマ 一が好ましぐ窒素原子、酸素原子、硫黄原子、またはリン原子を含有する含フッ素 ポリマーがより好ましぐ水酸基、エーテル性酸素原子、エステル基、アルコキシカル ボニル基、スルホ-ル基、燐酸エステル基、アミノ基、ニトロ基、またはケトン基を含有 する含フッ素ポリマーが特に好まし 、。
[0063] 含フッ素ポリマーとしては、モノマー(1)を重合させて得た含フッ素ポリマー、 CF =
2
CFと CH =CHOCOCHとを共重合させて得た含フッ素ポリマーが挙げられる。
2 2 3
含フッ素ポリマーとしては、モノマー(1)を重合させて得た含フッ素ポリマーが好まし く、 R1はフッ素原子、 R2は水素原子、 Qは、— CF C (CF ) (OH) CH―、— CF C (
2 3 2 2
CF ) (OH) 一、 一 CF C (CF ) (OCH OCH ) CH―、 一 CH CH (CH C (CF )
3 2 3 2 3 2 2 2 3 2
OH) CH―、または— CH CH (CH C (CF ) OH)—力 選ばれる基が特に好まし
2 2 2 3 2
い。
[0064] 光硬化性組成物における、含フッ素界面活性剤および含フッ素ポリマーの総量に 対する含フッ素モノマーの量は、 1〜: L00倍質量が好ましぐ 1〜20倍質量がより好ま しぐ 1〜: LO倍質量が特に好ましい。
[0065] 光硬化性組成物は、光重合開始剤を 1〜10質量%含み、好ましくは 2〜9質量% 含み、特に好ましくは 3〜8質量%含む。該範囲とすることによって、光硬化性組成物 におけるモノマーを容易に重合して硬化物を形成できるため、加熱等の操作を行う 必要はない。
また、光重合開始剤の残渣が硬化物の物性を阻害しにく 、。
光重合開始剤は、光によりラジカル反応またはイオン反応を引き起こすィ匕合物であ る。
光重合開始剤としては、下記の光重合開始剤が挙げられる。
[0066] ァセトフエノン系光重合開始剤:ァセトフエノン、 p— (tert—ブチル)一 1,, , 1, トリクロロアセトフエノン、クロロアセトフエノン、 2' , 2'ージエトキシァセトフエノン、ヒ ドロキシァセトフエノン、 2, 2—ジメトキシー 2,一フエニルァセトフエノン、 2—アミノア セトフエノン、ジアルキルアミノアセトフエノン等。
[0067] ベンゾイン系光重合開始剤:ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベ ンゾインェチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルェ 一テル、 1ーヒドロキシシクロへキシルフェニルケトン、 2—ヒドロキシ 2—メチルー 1 —フエ-ルー 2—メチルプロパン一 1—オン、 1— (4—イソプロピルフエ-ル) 2 ヒ ドロキシ 2—メチルプロパン 1 オン、ベンジルジメチルケタール等。
[0068] ベンゾフヱノン系光重合開始剤:ベンゾフヱノン、ベンゾィル安息香酸、ベンゾィル 安息香酸メチル、メチルー o ベンゾィルベンゾエート、 4—フエ-ルペンゾフエノン、 ヒドロキシベンゾフエノン、ヒドロキシプロピルべンゾフエノン、アクリルベンゾフエノン、 4, 4,—ビス(ジメチルァミノ)ベンゾフエノン等。
[0069] チォキサントン系光重合開始剤:チォキサントン、 2 クロ口チォキサントン、 2—メチ ルチオキサントン、ジェチルチオキサントン、ジメチルチオキサントン等。
フッ素原子を含有する光重合開始剤:ペルフルォロ(tert ブチルペルォキシド)、 ペルフルォロベンゾィルペルォキシド等。
[0070] その他の光重合開始剤: aーァシルォキシムエステル、ベンジルー(o エトキシカ ルボニル) - a—モノォキシム、ァシルホスフィンォキシド、グリオキシエステル、 3— ケトクマリン、 2—ェチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフ イド、ァゾビスイソブチ口-トリル、ベンゾィルペルォキシド、ジアルキルペルォキシド、 tert ブチルペルォキシビバレート等。
[0071] 光硬化性組成物は、実質的に溶剤を含まな!/ヽ。光硬化性組成物は、特定の主成 分モノマー、含フッ素界面活性剤、および含フッ素ポリマーに対して相溶性の高い含 フッ素モノマーを含むため、溶媒を含むことなく均一な組成物を形成できる。溶剤を 含まないため、その使用に際しては他工程 (溶剤の留去工程等。)を行うことなぐ硬 化できる。また、硬化における光硬化性組成物の体積収縮が小さい。実質的に溶剤 を含まないとは、溶剤を含まないか、光硬化性組成物の調製において用いた溶剤が 極力除去されて ヽることを ヽぅ。
[0072] 光硬化性組成物は、主成分モノマー、含フッ素モノマー、含フッ素界面活性剤、含 フッ素ポリマー、および光重合開始剤以外の成分 (以下、他の成分と記す。)を含ん でいてもよい。他の成分としては、光増感剤、無機材料、炭素材料、導電性高分子、 フタロシアニン等の色素材料、ポルフィリン等の有機金属錯体、有機磁性体、有機半 導体、液晶材料等が挙げられる。
[0073] 光増感剤の具体例としては、 n—ブチルァミン、ジ—n—ブチルァミン、トリー n—ブ チルホスフィン、ァリルチオ尿素、 s べンジルイソチウ口-ゥム—p—トルエンスルフィ ネート、トリエチルァミン、ジェチルアミノエチルメタタリレート、トリエチレンテトラミン、 4 , 4' ビス(ジアルキルァミノ)ベンゾフエノン等が挙げられる。
[0074] 無機材料の具体例としては、ケィ素化合物 (ケィ素、炭化ケィ素、二酸化ケイ素、窒 化ケィ素、シリコンゲルマニウム、鉄シリサイド等。)、金属(白金、金、ロジウム、 -ッケ ル、銀、チタン、ランタノイド系元素、銅、鉄、亜鉛等。)、金属酸化物 (酸化チタン、ァ ルミナ、酸化亜鉛、 ITO、酸化鉄、酸化銅、酸化ビスマス、酸化マンガン、酸ィ匕ホフ- ゥム、酸化イットリウム、酸化スズ、酸化コバルト、酸化セリウム、酸化銀等。 )、無機化 合物塩 (チタン酸バリウム等の強誘電体材料、チタン酸ジルコン酸鉛等の圧電材料、 リチウム塩等の電池材料等。)、金属合金 (フェライト系磁石、ネオジゥム系磁石等の 磁性体、ビスマス Ζテルル合金、ガリウム Ζ砒素合金等の半導体、窒化ガリウム等の 蛍光材料等。)等が挙げられる。
炭素材料の具体例としては、フラーレン、カーボンナノチューブ、カーボンナノホー ン、グラフアイト、ダイヤモンド、活性炭等が挙げられる。
[0075] (金属細線)
金属細線は、凸条上のみに形成され、凸条間の溝にはほとんど形成されていない 。金属細線が凸条上のみに形成されているため、光透過性基板の屈折率は、金属 細線に隠れた凸条における光硬化樹脂の屈折率ではなぐ凸条間の溝に存在する 空気の屈折率となる。そのため、平坦な基板上に金属細線が形成された従来のワイ ャグリッド型偏光子に比べ、レイリー共鳴の最大波長が短波長にシフトし、短波長側 の偏光分離能が向上する。
[0076] 金属細線の材料としては、可視光に対する反射率が高ぐ可視光の吸収が少なぐ かつ高い導電率を有する点から、銀、アルミニウム、クロム、マグネシウム、白金が好 ましぐアルミニウムが特に好ましい。
金属細線の断面形状としては、正方形、長方形、台形、円形、楕円形、その他様々 な形状が挙げられる。
[0077] 金属細線は、厚さおよび幅が非常に微細であり、わずかな傷つきによりワイヤグリツ ド型偏光子の性能が低下する。また、鲭により金属細線の導電率が低下し、ワイヤグ リツド型偏光子の性能が低下する。よって、金属細線の損傷および鲭を抑えるために
、金属細線を保護層で被覆してもよい。
[0078] 保護層としては、榭脂、金属酸化物、ガラス等が挙げられる。たとえば、金属として アルミニウムを用いた場合、空気中で酸化されて酸化アルミニウムが表面に形成され る。金属酸化膜は、金属細線の保護層として機能する。
基板と保護層との界面での P偏光の反射を低減させるため、保護層の屈折率と光 透過性基板の屈折率とを実質的に一致させることが好ましい。
[0079] 保護層としては、耐熱性、可視光透過性を有するものが好ましぐ広帯域にわたり 高 、偏光分離能が得られる点から、屈折率の低 、ものがより好ま 、。
保護層は、ワイヤグリッド型偏光子の最表面に存在するため、鉛筆硬度 H以上の硬 さを有するものが好ましぐ防汚性も有することが好ましい。 保護層または光透過性基板は、光の利用効率を高めるため、表面に反射防止構 造を有してもよい。
[0080] 以上説明した本発明のワイヤグリッド型偏光子は、複数の凸条が互いに平行にか つ一定のピッチで表面に形成された光透過性基板と、該光透過性基板の凸条上に 形成された金属細線とを有するため、可視光領域で高い偏光分離能を示す。また、 光透過性基板が光硬化樹脂からなるため、耐熱性、耐久性に優れる。
[0081] <ワイヤグリッド型偏光子の製造方法 >
本発明のワイヤグリッド型偏光子は、下記工程 (a)〜 (f)を有する製造方法によって 製造される。
(a)光硬化性組成物を支持基板上に塗布する工程。
(b)複数の溝が互いに平行にかつ一定のピッチで形成されたモールドを、溝が光 硬化性組成物に接するように、光硬化性組成物に押しつける工程。
(c)モールドを光硬化性組成物に押しつけた状態で光硬化性組成物を硬化させて 、モールドの溝に対応する複数の凸条を有する光透過性基板を形成する工程。
(d)光透過性基板力 モールドを分離する工程。
(e)光透過性基板の凸条上に金属細線を形成する工程。
(f)必要に応じて、光透過性基板から支持基板を分離する工程。
[0082] (工程 (a) )
図 2 (a)に示すように、光硬化性組成物 20を支持基板 22上に塗布する。 光硬化性組成物 20としては、前記光硬化性組成物が好ま ヽ。
支持基板 22の材料としては、石英、ガラス、金属等の無機材料;ポリジメチルシロキ サン、透明フッ素榭脂等の榭脂材料等が挙げられる。
塗布法としては、ポッティング法、スピンコート法、ロールコート法、ダイコート法、ス プレイコート法、キャスト法、ディップコート法、スクリーン印刷、転写法等が挙げられる
[0083] (工程 (b) )
図 2 (b)に示すように、複数の溝 24が互いに平行にかつ一定のピッチで形成された モールド 26を、溝 24が光硬化性組成物 20に接するように、光硬化性組成物 20に押 しっける。なお、本発明でいう一定のピッチとはある一定範囲内で一定のピッチという ことであり、たとえば中心部のピッチと周辺部のピッチを変更する等して場所により特 '性を変えてもよい。
[0084] 図 4は、モールド 26の斜視図である。溝 24のピッチ Ppは、溝 24の幅 Dpと、溝 24間 に形成される凸条の幅との合計である。溝 24のピッチ Ppは、 300nm以下が好ましく 、 50〜200nm力 Sより好ましい。ピッチ Ppを 300nm以下とすることにより、ワイヤグリツ ド型偏光子が充分に高い反射率、および、 400nm程度の短波長領域においても高 い偏光分離能を示す。また、回折による着色現象が抑えられる。
[0085] 溝 24の幅 Dpとピッチ Ppの it (Dp/Pp)は、 0. 1〜0. 6力 ^好ましく、 0. 4〜0. 55 力 り好ましい。 DpZPpを 0. 1以上とすることにより、ワイヤグリッド型偏光子の偏光 分離能が充分に高くなる。 DpZPpを 0. 6以下とすることにより、干渉による透過光の 着色が抑えられる。
[0086] 溝 24の深さ Hpは、 50〜500nm力 子ましく、 100〜300nm力より好ましい。深さ H pを 50nm以上とすることにより、転写される凸条上への金属細線の選択的な形成が 容易となる。深さ Hpを 500nm以下とすることにより、ワイヤグリッド型偏光子の偏光度 の入射角度依存性が小さくなる。
[0087] モールド 26の材料としては、石英、ガラス、ポリジメチルシロキサン、透明フッ素榭 脂等の透光材料が好ましい。また、透明な支持基板を用いる場合には、シリコン、二 ッケル等の不透明モールドを用いてもょ 、。
モールドの形状をロール状とすることにより、ロールを回転させながらモールドを光 硬化性組成物に押しつけ、光硬化性組成物を硬化でき、連続的に溝に対応する凸 条を転写できるため、ワイヤグリッド型偏光子を大面積ィ匕できる。
モールド 26を光硬化性組成物 20に押しつける際のプレス圧力(ゲージ圧)は、 0超 lOMPa以下が好ましい。
[0088] (工程 (c) )
図 2 (c)に示すように、モールド 26を光硬化性組成物 20に押しつけた状態で光硬 化性組成物 20を硬化させて、モールド 26の溝 24に対応する複数の凸条 12を有す る光透過性基板 14を形成する。 [0089] 硬化は、モールドが透光材料からなる場合、モールド 26側から光硬化性組成物 20 に光を照射することによって行う。支持基板 22が透光材料からなる場合、支持基板 2 2側から光硬化性組成物 20に光を照射してもよい。また、加熱による硬化を併用して ちょい。
光照射の光源としては、高圧水銀灯等が用いられる。
[0090] (工程 (d) )
図 3 (d)に示すように、光透過性基板 14からモールド 26を分離する。なお、工程 (d )の前に、支持基板 22を分離する工程 (f)を行ってもよい。
[0091] (工程 (e) )
図 3 (e)に示すように、光透過性基板 14の凸条 12上に金属細線 16を形成する。 なお、工程 (e)の前に、支持基板 22を分離する工程 (f)を行ってもよい。
金属細線 16の形成方法としては、蒸着法、スパッタ法、めっき法等が挙げられ、凸 条 12上に金属細線 16を選択的に形成する点から、真空下で斜め方向から微粒子を 飛ばして膜を形成する斜方蒸着法 (斜方スパッタ法を含む)が好ましい。本発明のよ うに狭いピッチかつ凸条の高さがある場合、斜方蒸着を充分低い角度力 行うことに より、凸条 12上に選択的に金属の層を形成することができる。また、薄い金属の層を 斜方蒸着法により形成し、その後めつき法で他の金属の層をその上に重ねて、所望 の厚みの金属細線を形成することもできる。
[0092] (工程 (f) )
図 3 (f)に示すように、光透過性基板 14から支持基板 22を分離し、ワイヤグリッド型 偏光子 10を得る。
なお、支持基板 22が透光材料からなる場合、支持基板 22を分離することなぐ光 透過性基板 14と支持基板 22とを一体化させたものを、ワイヤグリッド型偏光子として 用いてもよい。
[0093] 以上説明した本発明のワイヤグリッド型偏光子の製造方法にあっては、前記工程 (a )〜(f)を有する方法、すなわち光インプリント法であるため、従来のリソグラフィ法に 比べ製造工程が少なぐワイヤグリッド型偏光子を生産性よく製造でき、かつ大面積 化できる。また、光インプリント法では、光硬化性組成物を用いるため、基板として熱 可塑性榭脂を用いる従来の熱インプリント法とは異なり、耐熱性、耐久性に優れたヮ ィャグリッド型偏光子を製造できる。
実施例
[0094] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限 定されない。
[0095] 〔例 1〕
三次元電界シミュレーションソフト、 MW Studio (CST Gmb社)により計算した本 発明のワイヤグリッド型偏光子の P偏光および S偏光の透過率と入射光波長との関係 、および透過光の偏光度と入射光波長との関係を図 5および図 6に示す。
計算は、光が金属細線側力 ワイヤグリッド型偏光子に入射する条件で、入射角 Θ =0° または 45°、ピッチ Pp = 200nm、金属細線の幅 Dm= 100nm、金属細線の 高さ Hm= 100nmとして、光透過性基板の屈折率(nd)が 1. 5のものについて行つ た。
金属細線の材料としては、導電率が高ぐ可視光の反射率が高い、アルミニウムを 選定した。偏光度は、下式に基づいて計算した。
偏光度 = ( (Tp— Ts) Z (Tp + Ts) ) °· 5
ただし、 Tpは Ρ偏光の透過率を示し、 Tsは S偏光の透過率を示す。
[0096] 図 5に示すように、入射角 Θ =0° では、可視光に対する透過光の偏光度は 95% を超え、良好な偏光分解能を有することがわ力つた。
入射角 Θ =45° のときの偏光度を図 6に示す。入射角を大きくすると最大共鳴波 長が長波長シフトすることが知られているが、本発明のワイヤグリッド型偏光子におい ては、屈折率 (nd)が 1. 5であれば可視光領域における偏光分離能は充分高いこと がわかった。
[0097] 〔例 2〕
(光硬化性組成物の調製)
バイャル容器(内容積 6mL)に、モノマー(3— 1)の 0. 30g、モノマー(3— 2)の 0. 40g、モノマー(2—1)の 0. 25g、および含フッ素界面活性剤 (旭硝子社製、フルォ ロアタリレート(CH =CHCOO (CH ) (CF ) F)のコオリゴマー(フッ素含有量約 3 0質量%、重量平均分子量約 3000。;))の 0. Olgを加え、ついで光重合開始剤(チ バスぺシャリティケミカルズ社製、ィルガキュア 907)の 0. 04gをカ卩えて混合し、粘度 が 12mPa · sの光硬化性組成物(以下、組成物 1と記す。 )を調製した。
組成物 1の硬化物は、屈折率 (nd)が 1. 48であり、厚さ 200 mの可視光線透過 率が 94. 2%であり、水の接触角が 95° であり、ビカット軟化点温度が 154°Cであつ た。
[0098] [化 2]
Figure imgf000025_0001
CH2=CHCOO(CH2CH20)4COCH=CH2 ほ- 2)
CH2=CHCOOCH2CH2(CF2)6F (2-1)
[0099] (ワイヤグリッド型偏光子の製造)
厚さ 2. 8mmの石英基板上に、糸且成物 1をスピンコート法により塗布し、厚さ 1 m の組成物 1の塗膜を形成した。
電子線加工により複数の溝が形成された石英製透明モールド (溝のピッチ Pp = 20 0nm、溝の幅 Dp = 100nm、溝の深さ Hp = 150nm)を、溝が組成物 1の塗膜に接 するように、 25°Cにて 0. 5MPa (ゲージ圧)で組成物 1の塗膜に押しつけた。
[0100] 該状態を保持したまま、透明モールド側力も高圧水銀灯 (周波数 = 1. 5kHz〜2.
OkHz、主波長光 = 255nm、 315nmおよび 365nm、 365nmにおける照射エネル ギー = 1000mJ)の光を 15秒間照射し、組成物 1を硬化させて、透明モールドの溝に 対応する複数の凸条(ピッチ Pp = 200nm、幅 Dp = 100nm、高さ Hp = 150nm)を 有する光透過性基板を形成した。
[0101] 光透過性基板力も透明モールドをゆっくり分離した。
光透過性基板の凸条上に、斜方蒸着法にてアルミニウムを蒸着させ、金属細線 (厚 さ Hm= 150nm、幅 Dm= lOOnm)を形成し、光透過性基板と石英基板とが一体化 したワイヤグリッド型偏光子を得た。
[0102] 〔例 3 (比較例)〕
(ワイヤグリッド型偏光子の製造)
厚さ 2. 8mmの石英基板上に、ポリエチレンテレフタレート(PET)溶液をスピンコー ト法により塗布し、乾燥させて、厚さ 1 μ mの PET膜を形成した。
例 2と同じ透明モールドを 150°Cに加熱した後、溝力 SPET膜に接するように、 150
°Cの透明モールドを lOMPa (ゲージ圧)で PET膜に押しつけ、透明モールドの溝に 対応する複数の凸条(ピッチ Pp = 200nm、幅 Dp = 100nm、高さ Hp = 150nm)を 有する光透過性基板を形成した。
[0103] 透明モールドを 30°Cまで冷却した後、透明モールドを光透過性基板力 透明モー ルドをゆっくり分離した。
光透過性基板の凸条上に、斜方蒸着法にてアルミニウムを蒸着させ、金属細線 (厚 さ Hm= 150nm、幅 Dm= lOOnm)を形成し、光透過性基板と石英基板とが一体化 したワイヤグリッド型偏光子を得た。
[0104] 〔評価〕
(生産性)
生産性については、 1枚あたりの生産時間 2分未満を〇と評価し、 1枚あたりの生産 時間 2分以上を Xと評価した。結果を表 1に示す。
(離型性)
離型性については、縦方向あたりの伸び 5%未満を〇と評価し、縦方向あたりの伸 び 5%以上〜 10%未満を△と評価し、縦方向あたりの伸び 10%以上を Xと評価した 。結果を表 1に示す。
[0105] (透過率)
ワイヤグリッド型偏光子の金属細線側力 波長 405nmの固体レーザー光および波 長 635nmの半導体レーザー光を、ワイヤグリッド型偏光子に対して垂直に入射し、 P 偏光および S偏光の透過率を測定した。
透過率が 70%以上を〇と評価し、 70%未満を Xと評価した。結果を表 1に示す。 [0106] (偏光度)
偏光度は、下式に基づいて計算した。
偏光度 = ( (Tp— Ts) Z (Tp + Ts) ) °· 5
ただし、 Tpは Ρ偏光の透過率を示し、 Tsは S偏光の透過率を示す。
偏光度が 90%以上を〇と評価し、 90%未満を Xと評価した。結果を表 1に示す。
[0107] (耐熱性)
ワイヤグリッド型偏光子を 200°Cの雰囲気下に 1000時間置き、耐熱性試験サンプ ルとした。耐熱性試験サンプルについて、前記透過率を測定し、偏光度を計算した。 耐熱性試験前後での透過率変化が 1%未満を〇と評価し、 1%以上〜 5%未満を △と評価し、 5%以上を Xと評価した。また、耐熱性試験前後での偏光度変化が 1% 未満を〇と評価し、 1%以上〜 5%未満を△と評価し、 5%以上を Xと評価した。結果 を表 1に示す。
[0108] [表 1]
Figure imgf000027_0001
[0109] 例 3の熱インプリント法は、従来のリソグラフィ法に比べれば大幅に工程を簡略ィ匕で きるが、例 2の光インプリント法に比べると、タクトタイムは長ぐまた高温、高圧条件が 必要であるため装置も大掛力りなものとなり、生産性に優れるとはいえない。
例 3で用いた PETは離型性が悪く、透明モールドに離型剤を塗布する必要があつ た。
一方、例 2の光硬化榭脂は、表面自由エネルギーが低ぐ離型剤なしに良好な離 型性を示した。
[0110] 偏光度および透過率については、例 2、例 3ともに良好な結果を示した。しかし、耐 熱性試験後の評価では、例 3は凹凸パターンに乱れが生じ、偏光分離能は低下した 。また、 PETの黄変 (着色)により、透過率の著しい低下が見られた。一方、例 2は、 性能低下は見られず、良好な耐熱性を示した。
産業上の利用可能性
本発明のワイヤグリッド型偏光子は、可視光領域で高い偏光分離能を示し、耐熱性
、耐久性に優れているため、液晶表示装置、リアプロジェクシヨンテレビ、フロントプロ ジェクタ一等の画像表示装置の偏光子として有用である。特に、耐熱性に優れること から、リアプロジェクシヨンテレビ、フロントプロジェクターの偏光子として好適である。 なお、 2006年 4月 7日に出願された日本特許出願 2006— 106134号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として取り入れるものである。

Claims

請求の範囲
[1] 光硬化性組成物を支持基板上に塗布する工程と、
複数の溝が互いに平行にかつ一定のピッチで形成されたモールドを、溝が光硬化 性組成物に接するように、光硬化性組成物に押しつける工程と、
モールドを光硬化性組成物に押しつけた状態で光硬化性組成物を硬化させて、モ 一ルドの溝に対応する複数の凸条を有する光透過性基板を形成する工程と、 光透過性基板からモールドを分離する工程と、
光透過性基板の凸条上に金属細線を形成する工程と
を有する、ワイヤグリッド型偏光子の製造方法。
[2] さらに、光透過性基板から支持基板を分離する工程を有する、請求項 1に記載のヮ ィャグリッド型偏光子の製造方法。
[3] 前記光硬化性組成物として、硬化後に以下の物性を有する光硬化榭脂となるもの を用いる、請求項 1または 2に記載のワイヤグリッド型偏光子の製造方法。
屈折率 (nd)が 1. 3〜1. 6であり、かつ、厚さが 200 mのときの可視光線透過率 が 93%以上である光硬化榭脂。
[4] 前記光硬化性組成物として、硬化後に以下の物性を有する光硬化榭脂となるもの を用いる、請求項 1〜3のいずれかに記載のワイヤグリッド型偏光子の製造方法。 水の接触角が 90° 以上である光硬化榭脂。
[5] 前記光硬化性組成物として、硬化後に以下の物性を有する光硬化榭脂となるもの を用いる、請求項 1〜4のいずれかに記載のワイヤグリッド型偏光子の製造方法。 ビカット軟化点温度が 150°C以上である光硬化榭脂。
[6] 前記光硬化性組成物として、下記光硬化性組成物を用いる、請求項 1〜5の ヽず れかに記載のワイヤグリッド型偏光子の製造方法。
フッ素原子を含まないモノマーの 50〜98質量0 /0、含フッ素モノマーの 0. 1〜45質 量0 /0、含フッ素界面活性剤および/または含フッ素ポリマーの 0. 1超〜 20質量%、 および光重合開始剤の 1〜10質量%を含み、かつ実質的に溶剤を含まず、 25°Cに おける粘度が l〜200mPa' sである光硬化性組成物。
[7] 前記光硬化性糸且成物の含フッ素モノマーとして、下記の式(1)または式(2)で表さ れる含フッ素モノマーを用いる、請求項 1〜6のいずれかに記載のワイヤグリッド型偏 光子の製造方法。
CF =CR1 -Q-CR2 = CH …(1)
2 2
(CH =CXCOO) RF · · · (2)
2 n
ただし、式中の記号は以下の意味を示す。
式(1)中、 R1および R2は、それぞれ独立に、水素原子、フッ素原子、炭素数 1〜3 のアルキル基、または炭素数 1〜3のフルォロアルキル基を示し、 Qは、酸素原子、 NR3- (ただし、 R3は水素原子、炭素数 1〜6のアルキル基、アルキルカルボ-ル基 またはトシル基を示す。)で表される基、または官能基を有していてもよい 2価有機基 を示す。
式(2)中、 nは 1〜4の整数を示し、 Xは水素原子、フッ素原子、メチル基またはトリ フルォロメチル基を示し、 RFは炭素数 1〜30の n価含フッ素有機基を示す。
[8] 斜方蒸着法により光透過性基板の凸条上に金属細線を形成する請求項 1〜7のい ずれかに記載のワイヤグリッド型偏光子の製造方法。
[9] 前記モールドの溝のピッチ力 300nm以下である、請求項 1〜8のいずれかに記 載のワイヤグリッド型偏光子の製造方法。
[10] 請求項 1〜9のいずれかに記載の製造方法で製造された、ワイヤグリッド型偏光子
PCT/JP2007/057773 2006-04-07 2007-04-06 ワイヤグリッド型偏光子およびその製造方法 WO2007116972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07741209A EP2023169A4 (en) 2006-04-07 2007-04-06 WIRE GRID POLARIZER AND METHOD FOR PRODUCING THE SAME
JP2008509888A JP5182644B2 (ja) 2006-04-07 2007-04-06 ワイヤグリッド型偏光子およびその製造方法
US12/246,524 US20090052030A1 (en) 2006-04-07 2008-10-07 Wire-grid polarizer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006106134 2006-04-07
JP2006-106134 2006-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/246,524 Continuation US20090052030A1 (en) 2006-04-07 2008-10-07 Wire-grid polarizer and process for producing the same

Publications (1)

Publication Number Publication Date
WO2007116972A1 true WO2007116972A1 (ja) 2007-10-18

Family

ID=38581251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057773 WO2007116972A1 (ja) 2006-04-07 2007-04-06 ワイヤグリッド型偏光子およびその製造方法

Country Status (6)

Country Link
US (1) US20090052030A1 (ja)
EP (1) EP2023169A4 (ja)
JP (1) JP5182644B2 (ja)
KR (1) KR20090006066A (ja)
CN (1) CN101416083A (ja)
WO (1) WO2007116972A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157126A (ja) * 2007-12-27 2009-07-16 Hitachi Displays Ltd 液晶表示装置
WO2009124112A1 (en) * 2008-04-03 2009-10-08 Sol-Grid, Llc Polarized eyewear
WO2009148138A1 (ja) * 2008-06-05 2009-12-10 旭硝子株式会社 ナノインプリント用モールド、その製造方法および表面に微細凹凸構造を有する樹脂成形体ならびにワイヤグリッド型偏光子の製造方法
JP2010211234A (ja) * 2010-05-24 2010-09-24 Asahi Kasei E-Materials Corp ワイヤグリッド偏光板の製造方法
WO2011002042A1 (ja) 2009-07-01 2011-01-06 旭硝子株式会社 微細凹凸構造を表面に有する物品の製造方法およびワイヤグリッド型偏光子の製造方法
JP2011113631A (ja) * 2009-11-30 2011-06-09 Asahi Glass Co Ltd ワイヤグリッド型偏光子および光ヘッド装置
JP2012118438A (ja) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びワイヤグリッド偏光子の製造方法
JP2012142501A (ja) * 2011-01-05 2012-07-26 Sony Corp 固体撮像装置の製造方法、及び、固体撮像装置
WO2013154077A1 (ja) * 2012-04-09 2013-10-17 旭硝子株式会社 微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法
JP2015219319A (ja) * 2014-05-15 2015-12-07 デクセリアルズ株式会社 無機偏光板及びその製造方法
JP2016045466A (ja) * 2014-08-26 2016-04-04 大日本印刷株式会社 調光装置および調光装置の設置方法
KR101610376B1 (ko) 2009-04-10 2016-04-08 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치 및 와이어 그리드 편광자의 제조 방법
US20160327713A1 (en) * 2014-12-30 2016-11-10 Boe Technology Group Co., Ltd. Wire grid polarizer and manufacturing method thereof, and display device
US9897735B2 (en) 2014-10-17 2018-02-20 Boe Technology Group Co., Ltd. Wire grid polarizer and fabrication method thereof, and display device
US10042099B2 (en) 2014-12-30 2018-08-07 Boe Technology Group Co., Ltd. Wire grid polarizer and manufacturing method thereof, and display device
US10401678B2 (en) 2014-08-14 2019-09-03 Applied Materials, Inc. Systems, apparatus, and methods for an electromagnetic interference shielding optical polarizer

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413195B2 (ja) * 2007-09-28 2014-02-12 旭硝子株式会社 微細パターン形成体、微細パターン形成体の製造方法、光学素子および光硬化性組成物
JPWO2009123290A1 (ja) * 2008-04-03 2011-07-28 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
EP2264492B1 (en) * 2008-04-08 2014-07-02 Asahi Glass Company, Limited Manufacturing method for a wire grid polarizer
WO2010005059A1 (ja) * 2008-07-10 2010-01-14 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
JP5594147B2 (ja) * 2008-12-05 2014-09-24 旭硝子株式会社 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
JP2010204626A (ja) 2009-02-05 2010-09-16 Asahi Glass Co Ltd ワイヤグリッド型偏光子およびその製造方法
US8593732B1 (en) 2010-01-23 2013-11-26 Lightsmyth Technologies, Inc. Partially metallized total internal reflection immersion grating
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
EP2539759A1 (en) * 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US20110214082A1 (en) * 2010-02-28 2011-09-01 Osterhout Group, Inc. Projection triggering through an external marker in an augmented reality eyepiece
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
KR101259849B1 (ko) * 2010-12-27 2013-05-03 엘지이노텍 주식회사 와이어그리드편광자 및 그 제조방법
KR20140006840A (ko) * 2011-02-22 2014-01-16 아사히 가라스 가부시키가이샤 미세 구조 성형체 및 그 미세 구조 성형체를 구비한 액정 표시 장치
US8593727B2 (en) * 2011-04-25 2013-11-26 Vladimir G. Kozlov Single-shot laser ablation of a metal film on a polymer membrane
KR20140030382A (ko) 2012-08-27 2014-03-12 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
CN104884978B (zh) * 2012-12-21 2017-10-13 旭硝子株式会社 光学元件的制造方法、光学元件、光学系统及摄像装置
KR20140137734A (ko) * 2013-05-23 2014-12-03 삼성디스플레이 주식회사 반사형 편광판 제조방법 및 인셀 반사형 편광판 제조방법
KR102117600B1 (ko) 2013-05-28 2020-06-02 삼성디스플레이 주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR102116308B1 (ko) 2013-09-04 2020-06-01 삼성디스플레이 주식회사 표시 장치
US9354374B2 (en) * 2013-10-24 2016-05-31 Moxtek, Inc. Polarizer with wire pair over rib
US10802184B2 (en) 2014-04-28 2020-10-13 Ii-Vi Delaware Inc. Reflective diffraction gratings employing efficiency enhancement or etch barrier layers
KR102267126B1 (ko) 2014-12-19 2021-06-21 삼성디스플레이 주식회사 디스플레이 패널 및 이의 제조 방법
TWI645252B (zh) * 2014-12-25 2018-12-21 日商富士軟片股份有限公司 壓印用光硬化性組成物、圖案形成方法及元件製造方法
KR20160085949A (ko) 2015-01-08 2016-07-19 삼성디스플레이 주식회사 마스터 몰드 제조 방법 및 이를 이용한 와이어 그리드 편광자 제조 방법
CN107406769B (zh) * 2015-03-19 2021-01-29 日本瑞翁株式会社 液晶性组合物、相位差层的制造方法和圆偏振片
WO2017091438A1 (en) * 2015-11-23 2017-06-01 Corning Incorporated Wire grid polarizers and methods of making the same
CN108646423B (zh) * 2018-06-25 2020-11-03 福州大学 偏振分光复用薄膜制作方法及应用其的复用型背光源
US20200012146A1 (en) * 2018-07-05 2020-01-09 Innolux Corporation Electronic device
CN110109212A (zh) * 2019-05-17 2019-08-09 深圳市华星光电半导体显示技术有限公司 一种偏光片及液晶显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079317A1 (en) 1999-06-22 2000-12-28 Moxtek Broadband wire grid polarizer for the visible spectrum
JP2005070456A (ja) 2003-08-25 2005-03-17 Enplas Corp ワイヤーグリッド偏光子及びその製造方法
JP2005141840A (ja) * 2003-11-07 2005-06-02 Sanyo Electric Co Ltd 光ピックアップ装置
JP2005181990A (ja) * 2003-11-28 2005-07-07 Nippon Sheet Glass Co Ltd 薄膜構造体およびその製造方法
JP2005195824A (ja) 2004-01-07 2005-07-21 Asahi Kasei Chemicals Corp ワイヤグリッド型偏光子
JP2005316495A (ja) 2004-04-30 2005-11-10 Lg Electron Inc フレキシブルワイヤグリッド偏光子及びその製造方法
WO2006030625A1 (ja) * 2004-09-16 2006-03-23 Asahi Glass Company, Limited 硬化性組成物、微細構造体の製造方法およびパターンの形成方法
JP2006106134A (ja) 2004-09-30 2006-04-20 Canon Inc 画像形成装置
WO2006114958A1 (ja) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited 光硬化性組成物、微細パターン形成体およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661485A (en) * 1970-06-10 1972-05-09 Pennwalt Corp Compression molding system
DE69405451T2 (de) * 1993-03-16 1998-03-12 Koninkl Philips Electronics Nv Verfahren und Vorrichtung zur Herstellung eines strukturierten Reliefbildes aus vernetztem Photoresist auf einer flachen Substratoberfläche
JPH07294730A (ja) * 1994-04-27 1995-11-10 Kyocera Corp 偏光素子の製造方法
EP1003078A3 (en) * 1998-11-17 2001-11-07 Corning Incorporated Replicating a nanoscale pattern
US6534235B1 (en) * 2000-10-31 2003-03-18 Kansai Research Institute, Inc. Photosensitive resin composition and process for forming pattern
GB0106050D0 (en) * 2001-03-12 2001-05-02 Suisse Electronique Microtech Polarisers and mass-production method and apparatus for polarisers
US7420005B2 (en) * 2001-06-28 2008-09-02 Dai Nippon Printing Co., Ltd. Photocurable resin composition, finely embossed pattern-forming sheet, finely embossed transfer sheet, optical article, stamper and method of forming finely embossed pattern
EP1630180B1 (en) * 2003-05-26 2007-02-07 Omron Corporation Curing resin composition, optical component and optical waveguide
US7074463B2 (en) * 2003-09-12 2006-07-11 3M Innovative Properties Company Durable optical element
CN1621866A (zh) * 2003-11-28 2005-06-01 日本板硝子株式会社 薄膜结构与制造该薄膜结构的方法
US20050250052A1 (en) * 2004-05-10 2005-11-10 Nguyen Khe C Maskless lithography using UV absorbing nano particle
WO2006004010A1 (ja) * 2004-06-30 2006-01-12 Zeon Corporation 電磁波遮蔽性グリッド偏光子およびその製造方法、グリッド偏光子の製造方法
CN101080656B (zh) * 2004-12-16 2011-04-20 东丽株式会社 偏振光片、其制造方法和使用该偏振光片的液晶显示装置
KR100656999B1 (ko) * 2005-01-19 2006-12-13 엘지전자 주식회사 선 격자 편광필름 및 선 격자 편광필름의 격자제조용 몰드제작방법
KR101431861B1 (ko) * 2007-06-20 2014-08-25 아사히 가라스 가부시키가이샤 광경화성 조성물 및 표면에 미세 패턴을 갖는 성형체의 제조 방법
JP5037243B2 (ja) * 2007-07-06 2012-09-26 富士フイルム株式会社 界面結合剤、該界面結合剤を含有するレジスト組成物、及び該界面結合剤からなる層を有する磁気記録媒体形成用積層体、並びに該界面結合剤を用いた磁気記録媒体の製造方法、及び該製造方法により製造された磁気記録媒体
US7654715B1 (en) * 2007-08-09 2010-02-02 Kla-Tencor Technologies Corporation System and method for illuminating a specimen with uniform angular and spatial distribution
JP5101343B2 (ja) * 2008-03-03 2012-12-19 株式会社ダイセル 微細構造物の製造方法
CN102027026B (zh) * 2008-05-29 2013-06-19 旭硝子株式会社 光固化性组合物及表面具有精细图案的成形体的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079317A1 (en) 1999-06-22 2000-12-28 Moxtek Broadband wire grid polarizer for the visible spectrum
JP2005070456A (ja) 2003-08-25 2005-03-17 Enplas Corp ワイヤーグリッド偏光子及びその製造方法
JP2005141840A (ja) * 2003-11-07 2005-06-02 Sanyo Electric Co Ltd 光ピックアップ装置
JP2005181990A (ja) * 2003-11-28 2005-07-07 Nippon Sheet Glass Co Ltd 薄膜構造体およびその製造方法
JP2005195824A (ja) 2004-01-07 2005-07-21 Asahi Kasei Chemicals Corp ワイヤグリッド型偏光子
JP2005316495A (ja) 2004-04-30 2005-11-10 Lg Electron Inc フレキシブルワイヤグリッド偏光子及びその製造方法
WO2006030625A1 (ja) * 2004-09-16 2006-03-23 Asahi Glass Company, Limited 硬化性組成物、微細構造体の製造方法およびパターンの形成方法
JP2006106134A (ja) 2004-09-30 2006-04-20 Canon Inc 画像形成装置
WO2006114958A1 (ja) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited 光硬化性組成物、微細パターン形成体およびその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157126A (ja) * 2007-12-27 2009-07-16 Hitachi Displays Ltd 液晶表示装置
WO2009124112A1 (en) * 2008-04-03 2009-10-08 Sol-Grid, Llc Polarized eyewear
US7771045B2 (en) 2008-04-03 2010-08-10 Sol-Grid, Llc Polarized eyewear
US8709317B2 (en) 2008-06-05 2014-04-29 Asahi Glass Company, Limited Mold for nanoimprinting, its production process, and processes for producing molded resin having fine concavo-convex structure on its surface and wire-grid polarizer
WO2009148138A1 (ja) * 2008-06-05 2009-12-10 旭硝子株式会社 ナノインプリント用モールド、その製造方法および表面に微細凹凸構造を有する樹脂成形体ならびにワイヤグリッド型偏光子の製造方法
EP2286980A1 (en) * 2008-06-05 2011-02-23 Asahi Glass Company, Limited Mold for nanoimprinting, process for producing the same, and processes for producing molded resin having fine rugged structure on surface and for producing wire-grid polarizer
CN102046357A (zh) * 2008-06-05 2011-05-04 旭硝子株式会社 纳米压印用模具、其制造方法及表面具有微细凹凸结构的树脂成形体以及线栅型偏振器的制造方法
CN102046357B (zh) * 2008-06-05 2014-06-25 旭硝子株式会社 纳米压印用模具、其制造方法及表面具有微细凹凸结构的树脂成形体以及线栅型偏振器的制造方法
EP2286980A4 (en) * 2008-06-05 2011-07-13 Asahi Glass Co Ltd NANO-PRINTING MOLD, METHOD FOR MANUFACTURING THE SAME, AND PROCESSES FOR PRODUCING A MOLDED RESIN HAVING A FINE ROUGH STRUCTURE ON A SURFACE AND FOR PRODUCING A METAL GRID POLARIZER
JPWO2009148138A1 (ja) * 2008-06-05 2011-11-04 旭硝子株式会社 ナノインプリント用モールド、その製造方法および表面に微細凹凸構造を有する樹脂成形体ならびにワイヤグリッド型偏光子の製造方法
KR101610376B1 (ko) 2009-04-10 2016-04-08 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치 및 와이어 그리드 편광자의 제조 방법
TWI510354B (zh) * 2009-07-01 2015-12-01 Asahi Glass Co Ltd A method of manufacturing an article having a fine concavo-convex structure on its surface, and a method of manufacturing a wire-grid polarizing plate
WO2011002042A1 (ja) 2009-07-01 2011-01-06 旭硝子株式会社 微細凹凸構造を表面に有する物品の製造方法およびワイヤグリッド型偏光子の製造方法
JP5273248B2 (ja) * 2009-07-01 2013-08-28 旭硝子株式会社 微細凹凸構造を表面に有する物品の製造方法およびワイヤグリッド型偏光子の製造方法
US8623161B2 (en) 2009-07-01 2014-01-07 Asahi Glass Company, Limited Process for producing article having fine concavo-convex structure on its surface and process for producing wire-grid polarizer
JP2011113631A (ja) * 2009-11-30 2011-06-09 Asahi Glass Co Ltd ワイヤグリッド型偏光子および光ヘッド装置
JP2010211234A (ja) * 2010-05-24 2010-09-24 Asahi Kasei E-Materials Corp ワイヤグリッド偏光板の製造方法
JP2012118438A (ja) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びワイヤグリッド偏光子の製造方法
JP2012142501A (ja) * 2011-01-05 2012-07-26 Sony Corp 固体撮像装置の製造方法、及び、固体撮像装置
WO2013154077A1 (ja) * 2012-04-09 2013-10-17 旭硝子株式会社 微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法
JP2015219319A (ja) * 2014-05-15 2015-12-07 デクセリアルズ株式会社 無機偏光板及びその製造方法
US10401678B2 (en) 2014-08-14 2019-09-03 Applied Materials, Inc. Systems, apparatus, and methods for an electromagnetic interference shielding optical polarizer
JP2016045466A (ja) * 2014-08-26 2016-04-04 大日本印刷株式会社 調光装置および調光装置の設置方法
US9897735B2 (en) 2014-10-17 2018-02-20 Boe Technology Group Co., Ltd. Wire grid polarizer and fabrication method thereof, and display device
US20160327713A1 (en) * 2014-12-30 2016-11-10 Boe Technology Group Co., Ltd. Wire grid polarizer and manufacturing method thereof, and display device
US9952367B2 (en) 2014-12-30 2018-04-24 Boe Technology Group Co., Ltd. Wire grid polarizer and manufacturing method thereof, and display device
US10042099B2 (en) 2014-12-30 2018-08-07 Boe Technology Group Co., Ltd. Wire grid polarizer and manufacturing method thereof, and display device

Also Published As

Publication number Publication date
US20090052030A1 (en) 2009-02-26
CN101416083A (zh) 2009-04-22
EP2023169A1 (en) 2009-02-11
JP5182644B2 (ja) 2013-04-17
JPWO2007116972A1 (ja) 2009-08-20
KR20090006066A (ko) 2009-01-14
EP2023169A4 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP5182644B2 (ja) ワイヤグリッド型偏光子およびその製造方法
JP5286784B2 (ja) 光硬化性組成物、微細パターン形成体およびその製造方法
JP5617632B2 (ja) 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
TWI469858B (zh) A method for manufacturing a nano-embossed mold, a method for manufacturing the same, a resin molded product having a fine asperity structure on its surface, and a method for manufacturing a wire-grid polarizing plate
JP6038261B2 (ja) 樹脂モールド及びその製造方法
TWI425009B (zh) A photohardenable composition, a method for producing a fine pattern forming body, and an optical element
JP2007001250A (ja) 微細パターン形成体の製造方法
TW201037375A (en) Wire grid polarizer and manufacturing method thereof
JP2006110997A (ja) 転写体の製造方法、光硬化性組成物、および微細構造体の製造方法
WO2006030625A1 (ja) 硬化性組成物、微細構造体の製造方法およびパターンの形成方法
KR101757573B1 (ko) 임프린트용 경화성 조성물
TWI662087B (zh) 光壓印用硬化性組成物、圖案形成方法及圖案
WO2019142528A1 (ja) 凹凸構造体の製造方法、凹凸構造体を製造する方法に用いられる積層体および当該積層体の製造方法
JP2011012163A (ja) 光硬化性材料の製造方法、光硬化性材料および物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087021824

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780011775.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741209

Country of ref document: EP