WO2007116547A1 - 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体 - Google Patents

遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体 Download PDF

Info

Publication number
WO2007116547A1
WO2007116547A1 PCT/JP2006/320067 JP2006320067W WO2007116547A1 WO 2007116547 A1 WO2007116547 A1 WO 2007116547A1 JP 2006320067 W JP2006320067 W JP 2006320067W WO 2007116547 A1 WO2007116547 A1 WO 2007116547A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier coating
thermal barrier
ceramic layer
heat
Prior art date
Application number
PCT/JP2006/320067
Other languages
English (en)
French (fr)
Inventor
Katsumi Namba
Taiji Torigoe
Ikuo Okada
Kazutaka Mori
Ichiro Nagano
Yutaka Kawata
Koji Takahashi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP06811394A priority Critical patent/EP2009131A4/en
Priority to CA 2647453 priority patent/CA2647453C/en
Priority to US12/225,490 priority patent/US8586169B2/en
Publication of WO2007116547A1 publication Critical patent/WO2007116547A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/974Nozzle- linings; Ablative coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24471Crackled, crazed or slit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas bottle and sintered body
  • the present invention relates to the manufacture of a thermal barrier coating material, a thermal barrier coating member, a gas turbine and a sintered body, and a thermal barrier coating member excellent in durability, and in particular, the top of the thermal barrier coating member.
  • the present invention relates to the structure of a ceramic layer used as a coat.
  • thermal barrier coating material thermal barrier coating, TBC
  • TBC thermal barrier coating
  • Tria stable zirconia is often used among ceramic materials because of its relatively low thermal conductivity, relatively high thermal expansion coefficient.
  • the turbine inlet temperature may be 1500 ° C depending on the type of gas turbine. Force that can be raised to a temperature exceeding C. When operated at such a high temperature, a part of the ceramic layer peels off during the operation of the gas turbine under severe operating conditions, and the heat resistance is reduced. There was a risk of damage. In recent years, it has been considered that the turbine inlet temperature will reach 1700 ° C for further efficiency improvement. The surface temperature of is expected to be as high as 1300 ° C. Therefore, the heat shielding coating material for turbine blades is required to have higher heat resistance.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-160852
  • the present invention is capable of suppressing delamination during use at high temperatures and having a high thermal shielding effect, a thermal barrier coating material, a thermal barrier coating member and a gas turbine, and a thermal barrier having the above characteristics.
  • a method for producing a coating member is provided.
  • the present invention also provides a sintered body having high durability and a heat shielding effect.
  • the present invention has the general formula A Zr O (where A represents any one of La, Nd, Sm, Gd, and Dy).
  • thermo barrier coating material having a pyrochlore crystal structure of at least%.
  • the present invention has the general formulas A, B Zr O (where A and B are La, Nd, Sm, G),
  • thermal barrier coating material comprising an oxide represented by any one of d, Dy, Ce or Yb, and A ′ and B are different elements.
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • a thermal barrier coating material comprising an oxide represented by The oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • the above-described thermal barrier coating material may be a material that is sprayed or deposited on a heat-resistant base material, and the heat-resistant base material may be a base material used for a gas turbine component.
  • the present invention also relates to a thermal barrier coating member comprising a heat resistant substrate, a bond coat layer formed on the heat resistant substrate, and a ceramic layer formed on the bond coat layer.
  • the ceramic layer has the general formula A Zr O (where A is any of La, Nd, Sm, Gd or Dv
  • the present invention also relates to a thermal barrier coating member comprising a heat resistant substrate, a bond coat layer formed on the heat resistant substrate, and a ceramic layer formed on the bond coat layer.
  • the ceramic layer has the general formula A, B Zr O (where A 'and B are La, Nd, Sm, respectively)
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • the present invention also relates to a thermal barrier coating member comprising a heat resistant substrate, a bond coat layer formed on the heat resistant substrate, and a ceramic layer formed on the bond coat layer.
  • the ceramic layer has the general formula A "Ce O (where A” is one of La, Sm or Yb)
  • a thermal barrier coating member comprising an oxide represented by:
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • the ceramic layer has pores having a porosity of 1% or more and 30% or less.
  • the ceramic layer has an interval of 5% or more and 100% or less of the thickness of all layers other than the bond coat layer on the heat-resistant substrate in the thickness direction. It is desirable to have longitudinal cracks.
  • the ceramic layer is a columnar crystal.
  • any one of the thermal barrier coating members, the bond coat layer and the above It is desirable that a zirconia-containing layer is further provided between the ceramic layer and the zirconia-containing layer has pores having a porosity of 1% to 30%.
  • a zirconia-containing layer is further provided between the bond coat layer and the ceramic layer, and the zirconia-containing layer has the heat-resistant group in the thickness direction. It is desirable to have vertical cracks at intervals of 5% to 100% of the thickness of all layers other than the bond coat layer on the material.
  • the present invention also provides a gas turbine including any one of the above-described thermal barrier coating members.
  • the present invention is a compound represented by the general formula A Zr O (where A is any one of La, Nd, Sm, Gd and Dy).
  • the oxide represented by (2) contains an oxide obtained by adding at least one of 5 mol% to 30 mol% of CaO and 5 mol% to 30 mol% of MgO. And a sintered body having a pyrochlore type crystal structure of 10% by volume or more.
  • the present invention provides a general formula A, B Zr O (where A and B are La, Nd, Sm, G
  • a sintered body comprising an oxide represented by any one of d, Dy, Ce, and Yb, and A ′ and B are different elements.
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • a sintered body comprising an acid oxide represented by It is preferable that the oxide has a neurochloric crystal structure in order to reduce thermal conductivity.
  • the present invention also includes a step of forming a bond coat layer on a heat resistant substrate, and a general formula A Zr O (where A is any of La, Nd, Sm, Gd, or Dy) on the bond coat layer. Represents)
  • the oxide represented comprises 5 mol% to 30 mol% of CaO and 5 mol% or more and 30 mol 0/0 following acids I ⁇ obtained by adding at least one of MgO, and 10% by volume or more
  • a method for producing a thermal barrier coating member comprising the step of forming a ceramic layer having a pyrochlore crystal structure is provided.
  • the present invention also includes a step of forming a bond coat layer on a heat-resistant substrate, and a general formula A, B Zr O (where A and B are La, Nd, Sm, respectively) on the bond coat layer. , Gd, Dy, Ce
  • Yb, and A ′ and B are different elements from each other)
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • the present invention also includes a step of forming a bond coat layer on a heat-resistant substrate, and a general formula A "Ce 2 O (where A” represents one of La, Sm, or Yb) on the bond coat layer. Represented
  • a method for producing a thermal barrier coating member is provided.
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • a step of forming a zirconia-containing layer may be provided between the bond coat layer forming step and the ceramic layer forming step.
  • the step of forming a zircoure-containing layer may include a step of introducing pores into the zircoure-containing layer.
  • the step of forming a zircoure-containing layer may include a step of introducing a longitudinal crack in the thickness direction into the zirconia-containing layer.
  • the ceramic layer forming step may include a step of introducing pores into the ceramic layer.
  • the ceramic layer forming step may include a step of introducing a longitudinal crack in the thickness direction into the ceramic layer.
  • the present invention also includes a step of forming a bond coat layer on a heat-resistant substrate, and an electron beam physical vapor deposition method on the bond coat layer. , Nd, S
  • m, Gd, or Dy is added to at least one of 5 mol% to 30 mol% of CaO and 5 mol% to 30 mol% of MgO.
  • the present invention also includes a step of forming a bond coat layer on a heat-resistant substrate, and the bond coat Using electron beam physical vapor deposition on the layer, the general formula A, B Zr O (where A 'and B are
  • Each represents La, Nd, Sm, Gd, Dy, B represents either Ce or Yb, and A ′ and B are different elements).
  • a step of forming a ceramic layer having a columnar crystal The oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • the present invention also includes a step of forming a bond coat layer on a heat-resistant substrate, and using an electron beam physical vapor deposition method on the bond coat layer, and a general formula A "Ce 2 O (where A” is La, Sm
  • the oxide preferably has a pyrochlore crystal structure in order to lower the thermal conductivity.
  • thermal barrier coating material and thermal barrier coating member having excellent thermal shielding properties and thermal cycle durability. If these are used in a gas turbine, a highly reliable gas turbine can be configured. Moreover, according to this invention, the manufacturing method of the thermal-insulation coating member provided with the said characteristic can be provided. Furthermore, the present invention can provide a sintered body having high durability and heat shielding effect and excellent versatility.
  • FIG. 1 is a schematic cross-sectional view of a thermal barrier coating member according to a third embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a thermal barrier coating member according to a fourth embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a thermal barrier coating member according to a fifth embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a thermal barrier coating member according to a sixth embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a thermal barrier coating member according to a seventh embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a thermal barrier coating member according to an eighth embodiment of the present invention.
  • FIG. 7 is a perspective view showing a moving blade which is an example of a turbine member according to the present invention.
  • FIG. 8 is a perspective view showing a stationary blade that is an example of a turbine member according to the present invention.
  • FIG. 9 is a partial cross-sectional view showing an example of a gas turbine provided with the gas turbine member shown in FIGS. 7 and 8.
  • FIG. 10 Thermal conductivity measurement results of sintered bodies of Example 1 to Example 7, Comparative Example 1, and Comparative Example 2. It is a graph which shows a fruit.
  • FIG. 11 is a graph showing the measurement results of surface strain at the time of vertical crack penetration of the topcoat layers of Examples 8 to 14, Comparative Example 3, and Comparative Example 4 by a servo test with SEM.
  • FIG. 12 is a schematic cross-sectional view of a laser thermal cycle testing apparatus used in an example of the present invention.
  • FIG. 13A is a graph showing a temperature history of a sample during a thermal cycle test by the laser thermal cycle test apparatus shown in FIG.
  • FIG. 13B is an explanatory diagram showing measurement points on the sample corresponding to the curves in FIG. 13A.
  • Examples of the heat-resistant substrate used in the present invention include heat-resistant alloys.
  • An example of the heat resistant alloy is CM247L (manufactured by Canon Maskegon) used for gas turbine blades, and IN939 (made of Incone Earth) used for gas turbine stationary blades.
  • the parts using the heat-resistant substrate are preferably gas turbine parts, and include parts used for turbine rotor blades, turbine stationary blades, divider rings, combustors, and the like.
  • the required heat resistance is preferably one that can withstand at least 700 ° C or more, depending on the application.
  • the bond coat layer is formed on the heat-resistant substrate.
  • the bond coat layer has high acid resistance and can relieve thermal stress by reducing the difference in thermal expansion coefficient between the heat-resistant substrate and the ceramic layer or between the heat-resistant substrate and the zirconia-containing layer. Accordingly, long-term durability and excellent thermal cycle durability due to high acid resistance can be obtained, and peeling of the ceramic layer and the zircoa-containing layer from the bond coat layer can be prevented.
  • the bond coat layer can more strongly join the heat-resistant substrate and the ceramic layer, or the heat-resistant substrate and the zircoa-containing layer, and can contribute to the improvement of the strength of the heat-shielding coating material.
  • the bond coat layer has excellent oxidation resistance and corrosion resistance in order to prevent high temperature oxidation and high temperature corrosion of the heat resistant substrate. It is preferable to use a material. It is also preferable to use a material with excellent ductility in order to efficiently relieve the stress generated.
  • an MCrAlY alloy (“M” represents a metal element) excellent in corrosion resistance and oxidation resistance is preferable.
  • M is preferably a single metal element such as Ni, Co, or Fe, or a combination of two or more thereof.
  • the method for forming the bond coat layer is not particularly limited, and a low pressure plasma spraying method, an electron beam physical vapor deposition method, or the like can be used.
  • the thickness of the bond coat layer is not particularly limited, but is preferably 0. Olmm or more and lmm or less. 0. If it is less than Olmm, the acid resistance may be insufficient, and if it exceeds 1 mm, the ductility and toughness of the skin may be insufficient.
  • the top coat has the general formula A Zr O (where A is La
  • the oxide formed by adding at least one of 5 mol% to 30 mol% of MgO is preferably contained in the ceramic layer in an amount of 10 vol% or more.
  • This ceramic layer has a pyrochlore-type crystal structure of 10% by volume or more, thereby realizing low thermal conductivity.
  • the acid oxide represented by the general formula A ′ B Zr O is 10% by volume or more in the ceramic layer.
  • the oxides represented by the general formulas A and B Zr O are ceramics.
  • the acid oxide represented by the general formula A "Ce 2 O is 10% by volume or more in the ceramic layer.
  • the acid compound represented by the general formula A "Ce O is ceramic.
  • the oxide represented by the general formula A Zr 2 O includes at least one of CaO and MgO.
  • the oxide formed by adding a quantity of additive 10 mol% of CaO and MgO are added to Sm Zr O, respectively.
  • the added oxide is another A Zr O with at least one of CaO and MgO
  • the oxide represented by the general formula A ′ B Zr O is La Ce Zr O or Sm Yb Zr O force, which has a low thermal conductivity and has a linear expansion coefficient equivalent to YSZ.
  • the acid oxide represented by the general formula A "Ce O includes La Ce O force, low thermal conductivity
  • Acid represented by the general formula A Zr 2 O, general formula A, B Zr 2 O, or general formula A "Ce 2 O The chemical is used as powder or ingot depending on the construction method.
  • Powder mixing method is A O powder and ZrO powder, or A, O powder, B O powder and Zr
  • water is added to an alkoxide organic solvent of A and Zr, or A ′, B and Zr, or A ′′ and Ce to obtain a hydrate precipitate, followed by heat treatment to cause a reaction.
  • the oxide represented by the general formula A Zr 2 O includes 5 mol% or more and 30 mol% or less of CaO.
  • the raw materials (A O powder and ZrO powder) shown in the powder mixing method must contain at least CaO and MgO.
  • a powder mainly composed of one may be added as a raw material, and the oxide may be synthesized according to the powder mixing method.
  • the oxide represented by the general formula A Zr 2 O is added in an amount of 5 mol% or more.
  • CaOZMgO-doped A Zr O An oxide formed by adding at least one of CaO of mol% or less and MgO of 5 mol% or more and 30 mol% or less is also referred to as “CaOZMgO-doped A Zr O”. Also, CaOZMgO dough
  • the oxide represented by the general formula A ′ B Zr O is also simply referred to as “ ⁇ ′ B Zr ⁇ ”.
  • thermal barrier coating material containing B Zr O is an example
  • the slurry containing 1 is granulated into a sphere using a spray dryer, and the granulated product is heat-treated.
  • the stage of mixing CaO / MgO doped A Zr O or A B Zr O
  • the obtained slurry is spray-dried, formed into a spherical shape, and heat-treated to obtain powder, whereby a thermal barrier coating material containing C aOZMgO-doped A Zr O or A 'B Zr O is obtained.
  • a sintered ingot When spraying is used as the construction method, it is preferably classified to a particle size of 10 m to 200 m and adjusted to a particle size suitable for spraying.
  • a sintered ingot when using an electron beam physical vapor deposition method, a sintered ingot can be used as a target material.
  • Examples of the method include atmospheric pressure plasma spraying and electron beam physical vapor deposition.
  • the powder used in the above-mentioned spraying method is sprayed with a spray current of 600 (A) and sprayed distance of 150 (mm), powder supply rate 60 (g / min), Ar / H amount; 35 / 7.4 (1 / min)
  • an electron beam evaporation apparatus for example, ⁇
  • the above ingot is used as a target material, and the film is formed under typical conditions of an electron beam output of 50 kW, an atmosphere of 10 _4 torr in a reduced pressure environment, and a heat-resistant substrate of 1,000 ° C. Is possible.
  • Columnar crystals are crystals that are nucleated on the surface of the bond coat and grown in a single crystal state in the preferred crystal growth direction, and the crystals are separated from each other even when strain is applied to the heat-resistant substrate. Shows durability.
  • the thickness of the ceramic layer when the zircoure-containing layer is not used is not particularly limited, but is preferably 0.1 mm or more and lmm or less. If it is less than 1 mm, the heat shielding may be insufficient, and if it exceeds 1 mm, the durability of the thermal cycle may be insufficient. When the ceramic layer has pores or vertical cracks, the thickness of the ceramic layer is preferably 0.1 mm or more and 1 mm or less (?).
  • XRD pattern is mainly Sm Ca
  • Mg Zr O is a pyrochlore type, and its thermal conductivity decreases, so the film thickness is reduced.
  • the ceramic layer preferably has a porosity of 1% or more and 30% or less (volume occupation ratio of pores formed in the ceramic layer to the ceramic layer).
  • the presence of pores can improve the thermal insulation properties of the ceramic-containing layer and lower the Young's modulus. Force The thermal stress is relaxed even when high thermal stress is applied to the ceramic layer. Can be summed. Therefore, a thermal barrier coating member having excellent thermal cycle durability can be obtained.
  • the porosity is less than 1%, the Young's modulus is high because it is dense, and peeling tends to occur when the thermal stress is high. On the other hand, if the porosity exceeds 30%, the adhesion with the bond coat or the zirconium-containing layer may be insufficient, and the durability may be lowered.
  • the porosity of the ceramic layer can be easily controlled by adjusting the spraying conditions, A ceramic layer having an appropriate porosity can be formed.
  • Thermal spraying conditions that can be adjusted include thermal spray current, plasma gas flow rate, thermal spray distance, and the like.
  • the thermal spray current can increase the porosity from about 5% to about 8% by reducing the normal 600 (A) force to 400 (A), for example. It can also be achieved by decreasing the porosity by increasing the current.
  • the plasma gas flow is, for example, a normal Ar / H amount of 35/7. 4 (l / min) to 37.3 / 5.
  • the porosity By increasing the hydrogen flow rate to 1 (1 / min), the porosity can be increased to about 5% and the force can be increased to about 8%. Moreover, when the amount of hydrogen is increased, the porosity can be decreased.
  • the porosity can be increased from about 5% to 8%. It is also possible to reduce the porosity by shortening the spraying distance. Furthermore, by combining these, the porosity can be varied from about 1% to a maximum of about 30%.
  • the ceramic layer preferably has a plurality of longitudinal cracks extending in the film thickness direction. This longitudinal crack is intentionally introduced during the formation of the zirconium oxide-containing layer in order to improve the peel resistance of the zirconium oxide-containing layer.
  • the heat-resistant substrate has a smaller thermal expansion coefficient than the bond coat layer, and the ceramic layer has a coefficient of thermal expansion with the heat-resistant substrate and the bond coat layer when a thermal cycle accompanying the start / stop of the turbine is applied.
  • the force acting on the stress due to the difference The stress acting on the ceramic layer is relaxed by increasing or decreasing the width of the vertical crack.
  • the stress due to expansion and contraction accompanying the thermal cycle hardly acts on the ceramic layer itself, and the ceramic layer is hardly peeled off, and the thermal cycle durability is excellent.
  • thermal spraying when thermal spraying is performed using a thermal spray powder, vertical cracks can be introduced into the ceramic layer.
  • Film formation by thermal spraying is performed by spraying powder on a heat-resistant substrate in a molten or semi-molten state and rapidly cooling and solidifying on the surface of the heat-resistant substrate.
  • Longitudinal cracks can be introduced into the ceramic layer by increasing the temperature change during solidification on the surface of the heat-resistant substrate and intentionally causing solidification cracks in the formed ceramic layer.
  • the extending direction of the vertical crack is preferably within ⁇ 40 ° with respect to the normal direction of the film surface. Since cracks in the surface direction of the ceramic layer tend to cause peeling of the ceramic layer, the direction in which the vertical crack extends is preferably as parallel as possible to the normal direction of the film surface of the ceramic layer. However, if the inclination is within ⁇ 40 ° with respect to the normal direction, the effect of preventing the ceramic layer from peeling off can be sufficiently obtained.
  • the range of the longitudinal crack extending direction is a range of ⁇ 20 ° or less with respect to the normal direction of the film surface of the ceramic layer.
  • the interval (pitch) between vertical cracks in the ceramic layer is 5% or more and 100% or less of the total film thickness (excluding the bond coat layer) formed on the heat-resistant substrate. I like it.
  • the interval between the vertical cracks is preferably in the range of 0.025 mm or more and 0.5 mm or less.
  • the pitch is less than 5%, the bond area or bonding area of the underlying bond coat layer or zircoure containing layer It may become difficult to peel off due to insufficient strength and adhesion. If the interval exceeds 100%, the specific stress in the peeling direction at the crack tip may increase and induce peeling.
  • the ceramic layer having vertical cracks can be formed, for example, when the ceramic layer is formed by thermal spraying or electron beam physical vapor deposition.
  • the spraying distance (distance between the spray gun and the heat-resistant substrate) is from about 1Z4 to 2Z3, which is the conventional spraying distance used for the deposition of Zircoyu layers.
  • the vertical crack can be introduced by shrinkage during solidification.
  • the spacing frequency area density of vertical cracks
  • desired characteristics can be obtained.
  • a provided ceramic layer can be formed. Thereby, a thermal barrier coating member having excellent peeling resistance and thermal cycle durability can be easily formed.
  • a ceramic layer with vertical cracks is formed by electron beam physical vapor deposition
  • an electron beam vapor deposition apparatus for example, TUBA150 manufactured by Ardennes is used as the target material and the electron beam output
  • a ceramic layer with vertical cracks can be easily formed under typical conditions of 50 kW, reduced pressure environment of 10 _4 torr, and heat-resistant substrate temperature of 1,000 ° C.
  • the top coat may be a two-layered structure including a zirconia-containing layer and a ceramic layer.
  • a bond coat layer, a zirconia-containing layer, and a ceramic layer are sequentially formed from the surface of the heat resistant substrate to the outside.
  • the zirconium-containing layer is preferably a layer obtained by partially stabilizing zirconium.
  • the partially stabilized zirconia is preferably composed of YbO, YO, DyO and ErO.
  • the stabilizer Yb is preferred.
  • O content is 0.1 mass% or more and 25 mass% or less, and Er O content as a stabilizer is 0.1 mass%.
  • the total content of Yb 2 O and Er 2 O is 10% by mass or more.
  • the thickness of the entire top coat is preferably 0.1 mm or more and 1 mm or less.
  • each layer of the zirconium-containing layer and the ceramic layer be 10% to 90% of the total film thickness (excluding the bond coat layer) provided on the heat-resistant substrate.
  • the V-shift or both of the zirconium-containing layer and the ceramic layer have pores or vertical cracks.
  • the zirconium-containing layer can be formed by a known method. For example, stable with YbO
  • Zirconia containing layer is mixed by mixing Yb O powder and ZrO powder by powder mixing method.
  • a slurry containing powder, water, a dispersant and a binder is granulated using a spray dryer, and then heat-treated to produce a sprayed powder, which can be formed by a spraying method.
  • the Yr 2 O and Er 2 O stabilized zircouore-containing layer consists of Yb 2 O powder, Er 2 O powder and Zr
  • An example of the spraying method is an atmospheric pressure plasma spraying method. Not only spraying but also electron beam physical vapor deposition can be used.
  • a YbSZ layer can be obtained by spraying on the layer.
  • O-(Yb O + Er O) composite powder is prepared, and this composite powder is used for thermal spraying or electron beam
  • Two layers can be formed.
  • the zirconium-containing layer preferably has a porosity (volume occupation ratio of pores formed in the zirconium-containing layer with respect to the zirconium-containing layer) of 1% or more and 30% or less.
  • the presence of pores can improve the thermal barrier properties of the partially stable zirconia-containing layer and also relieve stress when high thermal stress acts on the zirconia-containing layer during thermal cycling. can do. Therefore, a thermal barrier coating member having excellent thermal cycle durability can be obtained.
  • the porosity is less than 1%, the Young's modulus is high because it is dense, and peeling tends to occur when the thermal stress is high. On the other hand, if the porosity exceeds 30%, the adhesion with the bond coat may be insufficient and the durability may be lowered.
  • the porosity of the zirconium-containing layer can be easily controlled by adjusting the spraying current and the spraying distance, and a zirconium-containing layer having an appropriate porosity can be formed. Thereby, the thermal barrier coating member excellent in peeling resistance can be obtained.
  • the thermal spray current can increase the porosity from about 5% to about 8% by reducing the normal 600 (A) force to 400 (A), for example. It can also be achieved by decreasing the porosity by increasing the current.
  • the plasma gas flow is, for example, a normal Ar / H amount of 35/7. 4 (l / min) to 37.3 / 5.
  • the porosity is reduced to 5% and the force is reduced to 8%. Can be increased. Moreover, when the amount of hydrogen is increased, the porosity can be decreased.
  • the porosity can be increased from about 5% to about 8% by increasing the spraying distance from the usual 150mm to 210mm. It is also possible to reduce the porosity by shortening the spraying distance. Furthermore, by combining these, the porosity can be varied by about 1% and the force can be varied up to a maximum of about 30%.
  • the zirconia-containing layer has a plurality of vertical cracks extending in the film thickness direction. This longitudinal crack is intentionally introduced during the formation of the zirconium oxide-containing layer in order to improve the peel resistance of the zirconium oxide-containing layer.
  • the heat-resistant substrate has a smaller coefficient of thermal expansion than the bond coat layer.
  • the heat-resistant substrate is bonded to the heat-resistant substrate with the bond coat layer. Stress due to the difference in thermal expansion coefficient acts, but longitudinal cracks relieve the stress acting on the zirconia-containing layer by expanding or reducing its width.
  • the stress due to expansion and contraction due to the thermal cycle hardly acts on the zirconia-containing layer itself, the separation of the partially stabilized zirconia-containing layer is extremely difficult, and the thermal cycle durability is excellent.
  • longitudinal cracks can be introduced into the zirconia-containing layer.
  • Film formation by thermal spraying is performed by spraying powder onto a heat-resistant substrate in a molten or semi-molten state and rapidly cooling and solidifying on the surface of the heat-resistant substrate.
  • vertical cracks can be introduced into the zirco-urea-containing layer.
  • the cracks generated in the zirconia-containing layer cause the peeling of the zirconia-containing layer according to the present invention in the conventional thermal barrier coating material. Cracks do not cause peeling. This is due to the difference in the crystal structure around the longitudinal crack and the crack in the zirconia-containing layer caused by the thermal cycle. In other words, cracks caused by thermal cycling occur when the crystal phase of ZrO is t 'phase (
  • the extending direction of the vertical crack is preferably within ⁇ 40 ° with respect to the normal direction of the film surface. Since the cracks in the surface direction of the zirconia-containing layer cause peeling of the zirconia-containing layer, the direction in which the longitudinal crack extends should be as parallel as possible to the normal direction of the film surface of the zirconia-containing layer. preferable. However, if the inclination is within ⁇ 40 ° with respect to the normal direction, it is possible to sufficiently obtain the effect of preventing peeling of the zirconia-containing layer.
  • the preferred direction of the extension direction of the vertical crack is! /, And the range is within ⁇ 20 ° with respect to the normal direction of the film surface of the zirconium-containing layer.
  • the interval (pitch) between vertical cracks in the zirconia-containing layer is preferably 5% or more and 100% or less of the total film thickness (excluding the bond coat layer) formed on the heat-resistant substrate. Good. By introducing vertical cracks in the zircoure-containing layer at such intervals, it is possible to obtain a thermal barrier coating material provided with the zircoure-containing layer having excellent peel resistance. If the pitch is less than 5%, the bonding area force with the underlying bond coat layer is reduced, and the adhesive force may be insufficient, and may be easily peeled off. If the interval exceeds 100%, the specific stress in the peeling direction at the crack tip may increase and induce peeling.
  • the zirconium-containing layer having longitudinal cracks can be formed, for example, when the zirconium-containing layer is formed by thermal spraying or electron beam physical vapor deposition.
  • the spraying distance distance between the spray gun and the heat-resistant substrate
  • the spraying distance is conventionally used to form the zircoia-containing layer.
  • Nearly 2Z3, or the spraying distance is about the same as the conventional one, and the power input to the spray gun is used for the conventional one.
  • an electron beam evaporation device for example, TUBA150 manufactured by Ardennes
  • using the above ingot as a target material an electron beam output of 50 kW, an atmosphere of 10 _4 torr, a reduced pressure environment, a heat resistant substrate temperature of 1,000 °
  • a zirconium-containing layer with longitudinal cracks can be easily formed.
  • a bond coat layer and CaO / MgO-doped A Zr O are formed on a heat-resistant substrate.
  • the thickness of the bond coat layer is 0.01 mm to lmm, and the thickness of the ceramic layer is 0.1 mm to lmm.
  • the bond coat layer is made of MCrAlY alloy (“M” represents a metal element, preferably a single metal element such as Ni, Co, or Fe, or a combination of two or more thereof) as a raw material. Or by electron beam physical vapor deposition.
  • M represents a metal element, preferably a single metal element such as Ni, Co, or Fe, or a combination of two or more thereof
  • the ceramic layer containing CaO / MgO-doped A Zr O dissolves CaO / MgO-doped A Zr O powder.
  • the product is preferably Sm Zr O. Because the thermal conductivity is low as shown in the experimental example below
  • Thermal barrier coating members are preferably used for gas turbine components.
  • the thermal conductivity of YSZ sprayed coating is 0.74 WZmK or more and 2.02 WZmK or less (from experimental values).
  • the second embodiment is a ceramic containing a bond coat layer and A, B ZrO on a heat-resistant substrate.
  • a thermal barrier coating member comprising layers sequentially.
  • the thickness of the bond coat layer is not less than 0.1 Olmm and not more than 1 mm, and the thickness of the ceramic layer is not less than 0.1 mm and not more than 1 mm.
  • the bond coat layer is made of MCrAlY alloy (“M” represents a metal element, preferably a single metal element such as Ni, Co, or Fe, or a combination of two or more thereof) as a raw material. It is formed by thermal spraying or electron beam physical vapor deposition. Sera including A 'B Zr O
  • the mix layer consists of a thermal spraying method using A, B Zr O powder as the thermal spray powder material, and A, B Zr O
  • the thermal barrier coating member is preferably used for gas turbine parts.
  • the thermal conductivity of YSZ sprayed coating is 0.774 WZmK or more and 2.02 WZmK or less, but in A and B Zr O, it is usually 0.3 WZmK or more and 1.5 W / mK.
  • the ceramic layer has pores, and a thermal barrier coating member that emphasizes low thermal conductivity is obtained.
  • Figure 1 shows a bond coat layer 22 and a ceramic layer 24 containing CaOZMgO-doped A Zr O or A, B Zr O on a heat-resistant substrate 21.
  • the thermal barrier coating member includes ceramic layers 24 having pores 24P in order.
  • the thickness of the bond coat layer 22 is not less than 0.1 Olmm and not more than lmm, and the thickness of the ceramic layer 24 is not less than 0.1 lmm and not more than lmm.
  • the porosity of the ceramic layer 24 is not less than 1% and not more than 30%. According to the third embodiment, a thermal barrier coating member having a thermal barrier coating film with low thermal conductivity is obtained. Therefore, the reliability of the heat resistant substrate 21 can be improved. Further, regarding the ceramic layer 24, the ductility of the heat-resistant substrate 21 or the followability to bending is equivalent to that of YSZ.
  • the ceramic layer and the zirconium-containing layer have pores, and a thermal barrier coating member having low thermal conductivity and good durability can be obtained.
  • Figure 2 includes a bond coat layer 32, a zirconium-containing layer 33, and a ceramic layer 34 containing CaOZMgO-doped A Zr O or A, B Zr O on the heat-resistant substrate 31,
  • the thickness of the bond coat layer 32 is not less than 0.01 mm and not more than lmm.
  • the total thickness of the zirconia-containing layer 33 and the ceramic layer 34 is 0.1 mm or more and 1 mm or less, and the thickness of the zirconia-containing layer 33 is the total thickness of the zirconia-containing layer 33 and the ceramic layer 34.
  • the thickness of the ceramic layer 34 is not less than 10% and not more than 90% of the total thickness of the zirconia-containing layer 33 and the ceramic layer 34 formed on the heat-resistant substrate 31.
  • the porosity of the zirconia-containing layer 33 and the ceramic layer 34 is 1% or more and 30% or less, respectively.
  • a thermal barrier coating member having a thermal barrier coating film having low thermal conductivity and good durability can be obtained by the zircoa-containing layer having pores and the ceramic layer. Therefore, the reliability of the heat resistant substrate 21 can be improved. In addition, a thermal barrier coating member can be manufactured at low cost.
  • the ceramic layer has pores and the zirconia-containing layer has a vertical split, and a thermal barrier coating material having low thermal conductivity and high durability is obtained. It is done.
  • FIG. 3 shows that a bond coat layer 42, a zirconium oxide containing layer 43, and a ceramic layer 44 containing CaO / MgO doped A Zr O or A, B Zr O are sequentially formed on a heat-resistant substrate 41.
  • the thickness of the bond coat layer 42 is 0.01 mm or more and lmm or less.
  • the total thickness of the zirconia-containing layer 43 and the ceramic layer 44 is not less than 0.1 lmm and not more than lmm.
  • the thickness of the zirconia-containing layer 43 is the total of the zirconia-containing layer 43 and the ceramic layer 44.
  • the thickness of the ceramic layer 44 is 10% to 90% of the total thickness of the zirconia-containing layer 43 formed on the heat-resistant substrate 41 and the ceramic layer 44. % Or less.
  • the interval between vertical cracks (longitudinal crack pitch) in the zirconium-containing layer 43 is 5% or more and 100% or less of the total thickness of the zirconium-containing layer 43 and the ceramic layer 44. Within ⁇ 40 ° with respect to the normal direction of the film surface (vertical direction in the figure).
  • the porosity of the ceramic layer 44 is not less than 1% and not more than 30%.
  • the effect of heat insulation is obtained by the ceramic layer having pores, Thermal cycle durability can be obtained by the structure of longitudinal cracks in the zirconia-containing layer. Therefore, the reliability of the heat resistant substrate 21 can be improved. In addition, a thermal barrier coating member can be manufactured at low cost.
  • the ceramic layer is provided with vertical cracks, and a thermal barrier coating member with an emphasis on durability is obtained.
  • Fig. 4 shows a bond coat layer 52 and a ceramic layer 54 containing CaOZMgO-doped A Zr O or A, B Zr O on a heat-resistant substrate 51.
  • the thermal barrier coating member includes the ceramic layer 54 and includes the longitudinal crack 54C.
  • the thickness of the bond coat layer 52 is not less than 0.01 mm and not more than lmm.
  • the thickness of the ceramic layer 54 is 0.1 mm or more and 1 mm or less, the vertical crack pitch is 5% or more and 100% or less of the thickness of the ceramic layer 54, and the extending direction of the vertical crack is the normal direction of the film surface (Within the vertical direction in the figure) is within ⁇ 40 °.
  • the thermal cycle durability is improved by the longitudinal crack structure of the ceramic layer.
  • FIG. 5 shows a bond coat layer 62, a zirconium-containing layer 63 and a CaO / MgO-doped A ZrO or A on a heat-resistant substrate 61.
  • the ceramic layer 64 containing 2 2 7, B Zr O is included in order,
  • the thermal barrier coating member in which the lucoure-containing layer 63 has a longitudinal crack 63C and the ceramic layer 64 has a longitudinal crack 64C is shown.
  • the thickness of the bond coat layer 62 is not less than 0.01 mm and not more than lmm.
  • the total thickness of the zirconium-containing layer 63 and the ceramic layer 64 is 0.1 mm or more and 1 mm or less, and the thickness of the zirconium-containing layer 63 is the total thickness of the zirconium-containing layer 63 and the ceramic layer 64.
  • the thickness of the ceramic layer 64 is not less than 10% and not more than 90% of the total thickness of the zirconia-containing layer 63 and the ceramic layer 64.
  • the longitudinal crack pitch of the zirconia-containing layer 63 and the ceramic layer 64 is 5% or more and 100% or less of the total thickness of the zircoure-containing layer 63 and the ceramic layer 64, respectively. It is within ⁇ 40 ° with respect to the normal direction (vertical direction in the figure).
  • the thermal cycle durability is improved by the longitudinal crack structure of the zirconia-containing layer and the ceramic layer.
  • the ceramic layer has a columnar structure using EB-PVD (electron beam physical vapor deposition), which is extremely durable and has low thermal conductivity.
  • the rate of thermal barrier coating can be obtained.
  • Figure 6 shows a bond coat layer 72 and Ca O / MgO doped A Zr O or A on a heat resistant substrate 71.
  • the mix layer 74 shows a thermal barrier coating member having a columnar structure 74L.
  • the thickness of the bond coat layer 72 is not less than 0.01 mm and not more than lmm.
  • the thickness of the ceramic layer 74 is not less than 0.1 mm and not more than lmm.
  • the thermal cycle durability can be improved by the presence of the columnar structure of the ceramic layer.
  • thermal conductivity is inferior to thermal spray coating.
  • thermal conductivity can be reduced by 20% or more.
  • the thermal barrier coating member according to the present invention is useful when applied to high temperature parts such as a moving blade and a stationary blade of an industrial gas turbine, or an inner cylinder and a tail cylinder of a combustor. In addition, it can be applied not only to industrial gas turbines but also to thermal barrier coatings for high-temperature parts of engines such as automobiles and jets. By coating these members with the thermal barrier coating film of the present invention, a gas turbine member excellent in thermal cycle durability can constitute a high-temperature component.
  • FIG. 7 and 8 are perspective views showing a configuration example of a turbine blade (turbine member) to which the thermal barrier coating film of the present invention can be applied.
  • a gas turbine rotor blade 140 shown in FIG. 7 includes a tabtil 141, a platform 142, a blade portion 143, and the like that are fixed to the disk side.
  • the gas turbine stationary blade 150 shown in FIG. 8 includes an inner shroud 151, an outer shroud 152, a blade portion 153, and the like.
  • the blade portion 153 is formed with a seal fin cooling hole 154, a slit 155, and the like. ing.
  • FIG. 9 is a diagram schematically showing a partial cross-sectional structure of the gas turbine according to the present invention.
  • the gas turbine 160 includes a compressor 161 and a turbine 162 that are directly connected to each other.
  • the compressor 161 is configured as an axial flow compressor, for example, and sucks air or a predetermined gas as a working fluid into a working fluid to increase the pressure.
  • a combustor 163 is connected to the discharge port of the compressor 161, and the working fluid discharged from the compressor 161 is combusted. Heater 163 heats up to a predetermined turbine inlet temperature.
  • the working fluid heated to a predetermined temperature is supplied to the turbine 162.
  • the above-described gas turbine stationary blade 150 power stages are provided in the casing of the turbine 162 (four stages in FIG. 9).
  • the gas turbine rotor blade 140 described above is attached to the main shaft 164 so as to form a pair of stages with each stationary blade 150.
  • One end of the main shaft 164 is connected to the rotating shaft 165 of the compressor 161, and the other end is connected to a rotating shaft of a generator (not shown).
  • the thermal barrier coating member of the present invention becomes a turbine blade excellent in thermal barrier effect and peeling resistance, and can be used in a higher temperature environment and is durable. It is possible to realize a turbine blade with excellent performance and long life.
  • being applicable in a higher temperature environment means that the temperature of the working fluid can be increased, thereby improving the gas turbine efficiency.
  • the thermal barrier coating member of the present invention is excellent in thermal barrier properties, the cooling air flow rate can be reduced and the performance can be improved.
  • the thermal barrier coating member of the present invention can be applied not only to a gas turbine but also to a piston crown of a diesel engine, a jet engine component, or the like.
  • the acid oxide represented by the general formula A Zr 2 O is 5 mol% or more and 30 mol%
  • a sintered body is manufactured using an acid oxide (CaOZMgO-doped A Zr O) doped with at least one of the following CaO and 5 to 30 mol% MgO.
  • CaOZMgO-doped A Zr O acid oxide
  • the sintered body can be used for spacecraft ceramic styles and the like.
  • This sintered body is lower than YSZ by using CaO / MgO doped A Zr O.
  • a sintered body is produced using an oxide represented by the general formula A'B ZrO.
  • Sm Yb Zr O is preferred as the oxide represented by the general formulas A and B Zr O.
  • the sintered body can be used for spacecraft ceramic styles.
  • this sintered body has lower thermal conductivity than YSZ.
  • a sintered body is produced using an acid oxide represented by the general formula A "CeO.
  • the sintered body can be used for spacecraft ceramic styles.
  • This sintered body has a low thermal conductivity compared to YSZ by using A "CeO.
  • composition example 1 A composition obtained by adding 10 mol% of MgO to Sm Zr O is composition example 1. To get this composition
  • ZrO powder made in Japan yttrium, fine powder TZ-0 ZrO
  • Sm O powder Japanese yttrium
  • Composition 2 is a composition in which 20 mol% of MgO is added to Sm Zr 2 O. To get this composition
  • composition example 3 A composition obtained by adding 10 mol% of CaO to Sm Zr O is composition example 3. To get this composition
  • composition example 4 A composition obtained by adding 20 mol% of CaO to Sm Zr O is composition example 4. To get this composition
  • composition of Sm Zr O with 10 mol% CaO and 10 mol% MgO was added as composition example 5 and
  • composition of Sm Yb Zr O is composition example 6.
  • ZrO powder Japanese Patent Application Laishaw
  • composition of La Ce Zr O is referred to as Composition Example 7.
  • ZrO powder Japan It
  • Ce O powder made in Japan yttrium, 99.9% purity Ce O powder
  • composition of La Ce O is referred to as Composition Example 8. To obtain this composition, La O powder
  • Comparative Composition Example 1 YSZ containing 8% by mass of Y 2 O is referred to as Comparative Composition Example 1. To obtain this composition,
  • Comparative Composition Example 2 Sm Zr O is referred to as Comparative Composition Example 2.
  • ZrO powder Japan yttrium
  • Example 1 to Example 8 The sintered bodies of Example 1 to Example 8, Comparative Example 1 and Comparative Example 2 having the compositions of Composition Example 1 to Composition Example 8, Comparative Composition Example 1 and Comparative Composition Example 2, respectively, were replaced with Composition Example 1 described above.
  • -Production Example 8 Using the raw materials described in Comparative Composition Example 1 and Comparative Composition Example 2, respectively, a sintering temperature of 1700 ° C and a sintering time of 4 hours were produced by atmospheric pressure sintering.
  • the thermal conductivities of the sintered bodies of Example 1 to Example 7, Comparative Example 1 and Comparative Example 2 are shown in FIG.
  • Example 5 For Example 5, Example 6, Example 8, and Comparative Example 1, Table 1 shows the thermal conductivity at 800 ° C.
  • the thermal conductivity was measured by the laser flash method specified in JIS R 1611.
  • a ceramic layer (topcoat layer) having the compositions of Composition Example 1 to Composition Example 8, Comparative Composition Example 1 and Comparative Composition Example 2 was formed by the following method, and Example 9 to Example 16 and Comparative Example were formed. Samples 3 and Comparative Example 4 were prepared.
  • Ni-base heat-resistant alloy As heat-resistant substrate
  • the alloy composition is 0: 16% by mass, 0 by 8.5% by mass, 1. 75% by mass Mo, 2.6% by mass W, 1 75% by weight of Ta, 0.9% by weight of Nb, 3.4% by weight of 8, 1, 3.4% by weight of Ti, and the balance of Ni.
  • the dimensions of the heat-resistant substrate were a rectangular parallelepiped with a thickness of 2 mm, a width of 3 mm, and a length of 26 mm. After the surface of the heat-resistant substrate is grit blasted with Al 2 O 3 grains, 32% by mass of Ni
  • the ceramic layer (top coat layer) of each composition of Composition Example 1 to Composition Example 7, Comparative Composition Example 1 and Comparative Composition Example 2 was porous with a porosity of 10%.
  • a film was formed to a thickness of 0.5 mm by atmospheric plasma spraying so as to form a tissue.
  • the atmospheric pressure plasma spraying method uses a thermal spray gun (F4 gun) manufactured by Sulza Metco Co., Ltd. and mixes powders from the raw materials shown in each of Composition Example 1 to Composition Example 7, Comparative Composition Example 1 and Comparative Composition Example 2.
  • spraying current 600 (A) spraying distance 150 (mm), powder supply 60 (g / min), Ar / H amount; 35/7. 4 (1 / min)
  • the thermal barrier coating material according to the present invention has a smaller surface strain at the time of vertical crack penetration than YSZ, and the ductility of the base material or the followability to bending is equal to or better than YSZ. I understand.
  • Example 13 Example 14, Example 16, and Comparative Example 3
  • the thermal conductivity measurement at 800 ° C and the evaluation of thermal cycle durability were performed by the following methods.
  • the thermal conductivity of each sample obtained as described above was measured.
  • the thermal conductivity was measured by a laser flash method specified in JIS R 1611.
  • FIG. 12 is a schematic cross-sectional view of a laser thermal cycle test apparatus used for evaluating thermal cycle durability.
  • the laser thermal cycle testing device shown in this figure is installed on the main body 133.
  • the sample 131 in which the thermal barrier coating film 131B is formed on the heat-resistant substrate 131A is placed on the sample holder 132 so that the thermal barrier coating film 131B is on the outer side, and the carbon dioxide laser device 130 is attached to the sample 131.
  • the side force of the heat shielding coating film 131B is also heated.
  • the sample passes through the main body 133 and the gas flow F discharged from the tip of the cooling gas nozzle 134 disposed at the position facing the back surface of the sample 131 inside the main body 133. 131 comes to cool its back side force.
  • FIG. 13A is a graph schematically showing a temperature change of a sample subjected to a thermal cycle test by the apparatus shown in FIG. Curves A to C shown in this figure correspond to temperature measurement points A to C in the sample 131 shown in FIG. 13B, respectively. As shown in FIGS. 13A and 13B, according to the apparatus shown in FIG.
  • the surface (A) of the thermal barrier coating film 131B of the sample 131, the interface (B) between the thermal barrier coating film 131B and the heat resistant substrate 131A, Heating can be performed so that the temperature decreases in the order of the back surface side (C) of the heat base 131A.
  • the temperature condition can be the same as that of the gas turbine. It should be noted that the heating temperature and temperature gradient by this test apparatus can be easily set to desired temperature conditions by adjusting the output of the laser apparatus 130 and the gas flow F.
  • the maximum surface temperature (maximum temperature of the surface of the thermal barrier coating film) is set to 1500 ° C, and the maximum interface temperature (thermal barrier coating film and heat resistant group) is set. (The maximum temperature of the interface with the material) was repeatedly heated to 1000 ° C. At that time, the heating time was 3 minutes and the cooling time was 3 minutes (the surface temperature during cooling was set to 100 ° C or less). In this thermal cycle test, the number of cycles at the time when peeling occurred in the thermal barrier coating film was used as an evaluation value for thermal cycle durability.
  • Table 2 shows the thermal conductivity and thermal cycle durability of the test pieces of Example 13, Example 14, Example 16, and Comparative Example 3. [0091] [Table 2]
  • Ceramic layers (top coat layers) having the compositions of Composition Example 5, Composition Example 6 and Composition Example 8 were formed by the following method, and samples of Examples 17 to 19 were produced.
  • a bond coat layer was formed on a heat-resistant substrate by the same method using the same raw materials as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4.
  • a zirconia-containing layer (YSZ) was formed to a thickness of 0.25 mm by atmospheric plasma spraying so as to form a porous structure with a porosity of 10%.
  • the atmospheric pressure plasma spraying method uses a Sulza Metco spray gun (F4 gun), Sulza Metco 204NS-G spray powder, spraying current 600 (A), spraying distance 150 ( mm), powder feed rate 60 (g / min), Ar / H amount; 35/7. 4 (1 / min)
  • a ceramic layer (topcoat layer) of each composition of Composition Example 5, Composition Example 6 and Composition Example 8 on this zircoyu-containing layer was the same as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4. It was formed by the method. However, the thickness of the ceramic layer (top coat layer) was 0.25 mm.
  • Example 19 For each of the test pieces of Example 17 to Example 19, the measurement of thermal conductivity at 800 ° C and the evaluation of thermal cycle durability were conducted in the above-mentioned Example 13, Example 14, Example 16, and Comparative Example. The same method as in 3 was used. Table 3 shows the thermal conductivity and thermal cycle durability of each specimen.
  • Ceramic layers (top coat layers) having the compositions of Composition Example 5, Composition Example 6 and Composition Example 8 were formed by the following method, and samples of Examples 20 to 22 were produced.
  • a bond coat layer was formed on a heat-resistant substrate by the same method using the same raw materials as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4.
  • a zircoure-containing layer was formed to a thickness of 0.25 mm by atmospheric plasma spraying so as to have a longitudinal crack structure (longitudinal crack interval: about 150 m).
  • the atmospheric pressure plasma spraying method uses a Sulza Metco spray gun (F4 gun) and Sulza Metco 204NS-G spray powder (in the case of YSZ, which is an example of zirca-containing laminar force). Using this, longitudinal cracking occurs under the conditions of a powder feed rate of 60 (g / min), Ar / H content; 35/7. 4 (l / min)
  • a ceramic layer (topcoat layer) of each composition of Composition Example 5, Composition Example 6 and Composition Example 8 on this zircoyu-containing layer was the same as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4. It was formed by the method. However, the thickness of the ceramic layer (top coat layer) was 0.25 mm.
  • Example 20 to Example 22 For each test piece of Example 20 to Example 22, the measurement of thermal conductivity at 800 ° C and the evaluation of thermal cycle durability were carried out by the above-mentioned Example 13, Example 14, Example 16 and Comparative Example. The same method as in 3 was used. Table 4 shows the thermal conductivity and thermal cycle durability of each specimen.
  • Example 2 [0098] [Table 4] Example 2 0 Example 2 1 Example 2 2
  • a ceramic layer (topcoat layer) having the compositions of Composition Example 5, Composition Example 6, Composition Example 8 and Comparative Composition Example 1 was formed by the following method, respectively, and Example 23 to Example 25 and Comparative Example 5 A sample was prepared.
  • a bond coat layer was formed on a heat-resistant substrate by the same method using the same raw materials as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4.
  • the ceramic layer (top coat layer) of each composition of Composition Example 5, Composition Example 6, Composition Example 8 and Comparative Composition Example 1 is formed into a longitudinal crack structure (longitudinal crack spacing: about 150 ⁇ m).
  • a film having a thickness of 0.5 mm was formed by atmospheric plasma spraying.
  • the atmospheric pressure plasma spraying method uses a spray gun (F4 gun) manufactured by Sulza Metco Co., Ltd., and is a powder mixing method from the raw materials shown in each of Composition Example 5, Composition Example 6, Composition Example 8, and Comparative Composition Example 1 Using sprayed powder synthesized by the following conditions, the powder supply rate was 60 (g / min), Ar / H amount; 35/7. 4 (1 / min).
  • Ceramic layers (top coat layers) having the compositions of Composition Example 5, Composition Example 6 and Composition Example 8 were formed by the following method, and samples of Example 26 to Example 28 were produced.
  • a bond coat layer was formed on a heat-resistant substrate by the same method using the same raw materials as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4.
  • a zircouore-containing layer having a longitudinal crack structure was formed by the same material and method as in Examples 20 to 22.
  • topcoat layer having a longitudinal crack structure was formed on the zirco-containing layer by the same material and method as in Examples 23 to 25.
  • Example 26 to Example 28 For each of the test pieces of Example 26 to Example 28, the measurement of thermal conductivity at 800 ° C and the evaluation of the thermal cycle durability were conducted in the above-mentioned Example 13, Example 14, Example 16, and Comparative Example. The same method as in 3 was used. Table 6 shows the thermal conductivity and thermal cycle durability of each specimen.
  • Example 29 to Example 31 and Comparative Example 6 A ceramic layer (topcoat layer) having the compositions of Composition Example 5, Composition Example 6, Composition Example 8 and Comparative Composition Example 1 was formed by the following method, respectively, and Example 29 to Example 31 and Comparative Example 6 A sample was prepared.
  • a bond coat layer was formed on a heat-resistant substrate by the same method using the same raw materials as in Examples 9 to 16, Comparative Example 3 and Comparative Example 4.
  • a sintered ingot having the raw material strength described in Composition Example 5, Composition Example 6, Composition Example 8 and Comparative Composition Example 1 was used as a target material, respectively, and an electron beam physical vapor deposition method (EB-PVD) was used.
  • EB-PVD electron beam physical vapor deposition method
  • the electron beam physical vapor deposition method uses an Ardenne electron beam vapor deposition apparatus (for example, TUB A150), uses the sintered ingot as a target material, an electron beam output of 50 kW, an atmosphere of 10 _4 torr in a reduced pressure environment, a heat resistant substrate.
  • the material temperature was 1,000 ° C.
  • composition examples 1 to 5 are used as compositions corresponding to “A, B Zr O” of the present invention.
  • Composition Example 8 was prepared as a composition corresponding to “A” Ce 2 O ”of the present invention.
  • composition employed in the present invention is not limited to these composition examples.
  • the elements corresponding to the element A, A ′, A ′′ or B are replaced with other elements within the scope of the claims of the present application, and are substantially the same as the above examples. Various effects can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 高温下での使用の際の剥離を抑制でき、高い熱遮蔽効果を有する遮熱コート材料、遮熱コーティング部材とその製造方法、遮熱コーティング材により被覆されたタービン部材、及びガスタービンを提供する。耐熱基材21と、その上に形成されたボンドコート層22と、さらにその上に形成されたセラミックス層24とを含んでなる遮熱コーティング部材であって、該セラミックス層24が、一般式A2Zr2O7で表される酸化物にCaOまたはMgOを所定量ドープしてなる酸化物を含み、かつ10体積%以上のパイロクロア型結晶構造を有する。但し、AはLa、Nd、Sm、Gd又はDyのいずれかを表す。

Description

明 細 書
遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタ 一ビン及び焼結体
技術分野
[0001] 本発明は、耐久性に優れた遮熱コート材料、遮熱コーティング部材、ガスタービン 及び焼結体ならびに遮熱コーティング部材の製造に関するものであり、特に、遮熱コ 一ティング部材のトップコートとして用 ヽられるセラミックス層の構成に関するものであ る。
背景技術
[0002] 近年、省エネルギー対策の一つとして、火力発電の熱効率を高めることが検討され ている。発電用ガスタービンの発電効率を向上させるためには、ガス入口温度を上昇 させることが有効であり、その温度は 1500°C程度とされる場合もある。そして、このよ うに発電装置の高温化を実現するためには、ガスタービンを構成する静翼ゃ動翼、 あるいは燃焼器の壁材などを耐熱部材で構成する必要がある。しかし、タービン翼の 材料は耐熱金属である力 それでもこのような高温には耐えられないために、この耐 熱金属の基材上に金属結合層を介して溶射等の成膜方法によって酸化物セラミック ス力 なるセラミックス層を積層した遮熱コーティング材 (サーマルバリアコーティング 、 TBC)を形成して高温力も保護することが行われており、そのセラミックス層としては ZrO系の材料、特に Y Oで部分安定ィ匕又は完全安定ィ匕した ZrOである YSZ (イツ
2 2 3 2
トリア安定ィ匕ジルコニァ)が、セラミックス材料の中では比較的低い熱伝導率と比較的 高 、熱膨張率を有して 、るためによく用いられて 、る。
[0003] し力しながら、上記 YSZからなるセラミックス層を備えた遮熱コーティング材によりガ スタービンの動翼ゃ静翼などを被覆した場合、ガスタービンの種類によってはタービ ンの入口温度が 1500°Cを越える温度に上昇することが考えられる力 このような高 温で運転された場合、過酷な運転条件の下ではガスタービンの運転中に上記セラミ ックス層の一部が剥離し、耐熱性が損なわれるおそれがあった。また、近年、更に効 率向上のため、タービン入口温度が 1700°Cにも達すると考えられており、タービン翼 の表面温度は 1300°Cもの高温になることが予想される。従って、タービン翼の遮熱 コーティング材には、更に高い耐熱性が要求される状況にある。
[0004] 上記 YSZ力もなるセラミックス層の剥離の問題は、高温環境下における YSZの結 晶安定性が十分でなぐ大きな熱応力に対して十分な耐久性を有して 、な 、ことによ るものである。すなわち、耐熱基材ゃボンドコート層に比して熱膨張係数の小さいセ ラミックス層は、タービンの発停等に伴う熱サイクルが印加された際に、耐熱基材ゃボ ンドコート層との熱膨張係数の差による応力等の理由により、剥離することがあった( 以下、このような熱サイクルによる作用に対する耐久性を「熱サイクル耐久性」と 、う) 。特許文献 1は、この問題を解決するため、 Yb Oで安定ィ匕したジルコユア層、 Yb o
2 3 2 と Er Oで安定ィ匕したジルコユア層 ZrOを用いた遮熱コーティング部材を提案して
3 2 3 2
いる。
特許文献 1 :特開 2003— 160852号公報
発明の開示
[0005] 本発明は、高温下での使用の際の剥離を抑制でき、しかも高い熱遮蔽効果を有す る遮熱コート材料、遮熱コーティング部材及びガスタービンならびに前記特性を有す る遮熱コーティング部材の製造方法を提供する。また本発明は、高い耐久性と熱遮 蔽効果を有する焼結体を提供する。
[0006] 本発明は、一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dyのいずれかを表
2 2 7
す)で表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以上 30 モル%以下の MgOの少なくとも一方を添加してなる酸ィ匕物を含んでなり、 10体積% 以上のパイロクロア型結晶構造を有する遮熱コート材料を提供する。
[0007] また、本発明は、一般式 A, B Zr O (但し、 A,及び Bはそれぞれ La、 Nd、 Sm、 G
1 1 2 7
d、 Dy、 Ce又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で 表される酸化物を含んでなる遮熱コート材料を提供する。前記酸化物は、熱伝導率 を下げるためにパイロクロア型結晶構造を有することが好ま 、。
また、本発明は、一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを表す
2 2 7
)で表される酸化物を含んでなる遮熱コート材料を提供する。前記酸化物は、熱伝導 率を下げるためにパイロクロア型結晶構造を有することが好ま 、。 [0008] 上記 、ずれかの遮熱コート材料は耐熱基材上に溶射又は蒸着される材料であり、 かつ前記耐熱基材はガスタービン用部品に用いられる基材であってもよい。
[0009] また、本発明は、耐熱基材と、該耐熱基材上に形成されたボンドコート層と、該ボン ドコート層上に形成されたセラミックス層とを含んでなる遮熱コーティング部材であつ て、該セラミックス層が一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dvのいず
2 2 7
れかを表す)で表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル% 以上 30モル%以下の MgOの少なくとも一方を添カ卩してなる酸ィ匕物を含み、かつ該 セラミックス層が 10体積%以上のパイロクロア型結晶構造を有する遮熱コーティング 部材を提供する。
[0010] また、本発明は、耐熱基材と、該耐熱基材上に形成されたボンドコート層と、該ボン ドコート層上に形成されたセラミックス層とを含んでなる遮熱コーティング部材であつ て、該セラミックス層が一般式 A, B Zr O (但し、 A'及び Bはそれぞれ La、 Nd、 Sm
1 1 2 7
、 Gd、 Dy、 Ce又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である) で表される酸化物を含む遮熱コーティング部材を提供する。前記酸化物は、熱伝導 率を下げるためにパイロクロア型結晶構造を有することが好ま 、。
また、本発明は、耐熱基材と、該耐熱基材上に形成されたボンドコート層と、該ボン ドコート層上に形成されたセラミックス層とを含んでなる遮熱コーティング部材であつ て、該セラミックス層が一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを
2 2 7
表す)で表される酸化物を含む遮熱コーティング部材を提供する。前記酸化物は、熱 伝導率を下げるためにパイロクロア型結晶構造を有することが好ま 、。
[0011] 上記いずれかの遮熱コーティング部材において、前記セラミックス層が気孔率 1% 以上 30%以下の気孔を有することが望まし 、。
あるいは、上記いずれかの遮熱コーティング部材において、前記セラミックス層が、 その厚さ方向に、前記耐熱基材上のボンドコート層以外の全層の厚さの 5%以上 10 0%以下の間隔で縦割れを有することが望ましい。
あるいは、上記いずれかの遮熱コーティング部材において、前記セラミックス層が柱 状晶であったほうが望ましい。
[0012] また、上記いずれかの遮熱コーティング部材において、上記ボンドコート層と上記 セラミックス層との間にジルコユア含有層が更に設けられ、該ジルコ-ァ含有層が気 孔率 1%以上 30%以下の気孔を有したほうが望ましい。
あるいは、上記いずれかの遮熱コーティング部材において、上記ボンドコート層と上 記セラミックス層との間にジルコユア含有層が更に設けられ、該ジルコ-ァ含有層が 、その厚さ方向に、上記耐熱基材上のボンドコート層以外の全層の厚さの 5%以上 1 00%以下の間隔で縦割れを有したほうが望ましい。
[0013] また、本発明は、上記 、ずれかの遮熱コーティング部材を備えたガスタービンを提 供する。
[0014] また、本発明は、一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dyのいずれか
2 2 7
を表す)で表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方を添カ卩してなる酸ィ匕物を含んでなり、 10体積 %以上のパイロクロア型結晶構造を有する焼結体を提供する。
[0015] また、本発明は、一般式 A, B Zr O (但し、 A,及び Bはそれぞれ La、 Nd、 Sm、 G
1 1 2 7
d、 Dy、 Ce又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で 表される酸化物を含んでなる焼結体を提供する。前記酸化物は、熱伝導率を下げる ためにパイロクロア型結晶構造を有することが好ま 、。
また、本発明は、一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを表す
2 2 7
)で表される酸ィ匕物を含んでなる焼結体を提供する。前記酸化物は、熱伝導率を下 げるためにノ ィロクロア型結晶構造を有することが好ま U、。
[0016] また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層上に一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dyのいずれかを表す)で
2 2 7
表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以上 30モル0 /0 以下の MgOの少なくとも一方を添加してなる酸ィ匕物を含み、かつ 10体積%以上の パイロクロア型結晶構造を有するセラミックス層を形成するステップを含む遮熱コーテ イング部材の製造方法を提供する。
[0017] また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層上に一般式 A, B Zr O (但し、 A,及び Bはそれぞれ La、 Nd、 Sm、 Gd、 Dy、 Ce
1 1 2 7
又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で表される酸 化物を含むセラミックス層を形成するステップとを含む遮熱コーティング部材の製造 方法を提供する。前記酸化物は、熱伝導率を下げるためにパイロクロア型結晶構造 を有することが好ましい。
また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層上に一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを表す)で表され
2 2 7
る酸化物を含むセラミックス層を形成するステップとを含む遮熱コーティング部材の製 造方法を提供する。前記酸化物は、熱伝導率を下げるためにパイロクロア型結晶構 造を有することが好ましい。
[0018] 上記いずれかの遮熱コーティング部材の製造方法において、上記ボンドコート層形 成ステップと、上記セラミックス層形成ステップの間に、ジルコユア含有層を形成する ステップを設けてもよい。
[0019] 上記ジルコユア含有層形成ステップは、前記ジルコユア含有層に気孔を導入する 段階を含んでいてもよい。
あるいは、上記ジルコユア含有層形成ステップは、前記ジルコユア含有層に厚さ方 向の縦割れを導入する段階を含んで 、てもよ 、。
[0020] また、上記 、ずれかの遮熱コーティング部材の製造方法にお!、て、上記セラミック ス層形成ステップが、前記セラミックス層に気孔を導入する段階を含んで 、てもよ 、。 あるいは、上記いずれかの遮熱コーティング部材の製造方法において、上記セラミ ックス層形成ステップが、前記セラミックス層に厚さ方向の縦割れを導入する段階を 含んでいてもよい。
[0021] また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層の上に電子ビーム物理蒸着法を用いて、一般式 A Zr O (但し、 Aは La、 Nd、 S
2 2 7
m、 Gd又は Dyのいずれかを表す)で表される酸化物に、 5モル%以上 30モル%以 下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方を添カ卩してなる 酸化物を含み、かつ 10体積%以上のパイロクロア型結晶構造を有する柱状晶を有 するセラミックス層を形成するステップとを含む遮熱コーティング部材の製造方法を提 供する。
[0022] また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層の上に電子ビーム物理蒸着法を用いて、一般式 A, B Zr O (但し、 A'及び Bは
1 1 2 7
それぞれ La、 Nd、 Sm、 Gd、 Dy、のいずれかを表し、 Bは Ce又は Ybのいずれかを 表し、かつ A'と Bとは互いに異なる元素である)で表される酸ィ匕物を含む柱状晶を有 するセラミックス層を形成するステップとを含む遮熱コーティング部材の製造方法を提 供する。前記酸化物は、熱伝導率を下げるためにパイロクロア型結晶構造を有するこ とが好ましい。
また、本発明は、耐熱基材上にボンドコート層を形成するステップと、該ボンドコート 層の上に電子ビーム物理蒸着法を用いて、一般式 A" Ce O (但し、 A"は La、 Sm
2 2 7
又は Ybの ヽずれかを表す)で表される酸化物を含む柱状晶を有するセラミックス層を 形成するステップとを含む遮熱コーティング部材の製造方法を提供する。前記酸ィ匕 物は、熱伝導率を下げるためにパイロクロア型結晶構造を有することが好ましい。
[0023] 本発明によれば、優れた熱遮蔽性と、熱サイクル耐久性を備えた遮熱コート材料、 遮熱コーティング部材を提供できる。これらをガスタービンに用いれば、信頼性の高 いガスタービンを構成することができる。また、本発明によれば、前記特性を備えた遮 熱コーティング部材の製造方法を提供できる。さらに本発明は、高い耐久性と熱遮蔽 効果を有し、汎用性に優れた焼結体を提供できる。
図面の簡単な説明
[0024] [図 1]本発明の第 3の実施形態である遮熱コーティング部材の模式断面図である。
[図 2]本発明の第 4の実施形態である遮熱コーティング部材の模式断面図である。
[図 3]本発明の第 5の実施形態である遮熱コーティング部材の模式断面図である。
[図 4]本発明の第 6の実施形態である遮熱コーティング部材の模式断面図である。
[図 5]本発明の第 7の実施形態である遮熱コーティング部材の模式断面図である。
[図 6]本発明の第 8の実施形態である遮熱コーティング部材の模式断面図である。
[図 7]本発明に係るタービン部材の一例である動翼を示す斜視図である。
[図 8]本発明に係るタービン部材の一例である静翼を示す斜視図である。
[図 9]図 7と図 8に示すガスタービン部材を備えたガスタービンの一例を示す部分断 面図である。
[図 10]実施例 1から実施例 7、比較例 1、及び比較例 2の焼結体の熱伝導率測定結 果を示すグラフである。
[図 11]SEM付きサーボ試験による、実施例 8から実施例 14、比較例 3、及び比較例 4のトップコート層の縦割れ貫通時の表面ひずみの測定結果を示すグラフである。 圆 12]本発明の実施例において用いたレーザ式熱サイクル試験装置の模式断面図 である。
[図 13A]図 12に示すレーザ熱サイクル試験装置による熱サイクル試験時の試料の温 度履歴を示すグラフである。
[図 13B]図 13Aの各曲線に対応する試料上の測定点を示す説明図である。
符号の説明
21 耐熱基材
22 ボンドコート層
24 セラミックス層
24P 気孔
31 耐熱基材
32 ボンドコート層
33 ジルコ-ァ含有層
33P 気孔
34 セラミックス層
34P 気孔
41 耐熱基材
42 ボンドコート層
43 ジルコ-ァ含有層
43C 縦割れ
44 セラミックス層
44P 気孔
51 耐熱基材
52 ボンドコート層
54 セラミックス層 54C 縦割れ
61 耐熱基材
62 ボンドコート層
63 ジルコユア含有層
63C 縦割れ
64 セラミックス層
64C 縦割れ
71 耐熱基材
72 ボンドコート層
74 セラミックス層
74L 柱状晶
140 動翼 (タービン部材)
141 タブティル
142 プラットフォーム
143 翼部
150 静翼 (タービン部材)
151 内シユラウド
152 外シユラウド
153 翼部
154 冷却孔
155 スリット
160 ガスタービン
161 圧縮機
162 タービン
163 燃焼器
164 主軸
165 回転軸
発明を実施するための最良の形態 [0026] 本発明に用いる耐熱基材としては、耐熱合金が挙げられる。耐熱合金としては、例 えば、ガスタービン動翼に用いられる CM247L (キャノンマスケゴン社製)であり、ガ スタービン静翼に用いられる IN939 (インコネ土製)が挙げられる。耐熱基材を用いる 部品としては、好ましくはガスタービン用部品であり、タービン動翼、タービン静翼、分 割環、燃焼器等に用いる部品が挙げられる。求められる耐熱性としては、その用途に より異なる力 少なくとも 700°C以上に耐えるものが好ましい。
[0027] 本発明によれば、耐熱基材上には、ボンドコート層が形成される。
ボンドコート層は、高い耐酸ィ匕性を有するとともに、耐熱基材とセラミックス層、又は 耐熱基材とジルコユア含有層との熱膨張係数差を小さくして熱応力を緩和することが できる。従って、高い耐酸ィ匕性による長時間耐久性と優れた熱サイクル耐久性を得る ことができ、セラミックス層やジルコユア含有層のボンドコート層からの剥離を防止でき る。また、ボンドコート層は、耐熱基材とセラミックス層、又は耐熱基材とジルコユア含 有層をより強固に接合させ、遮熱コ一ティング材の強度の向上にも寄与できる。
[0028] ボンドコート層は、その上に気孔を有する層や縦割れを有する層を設ける場合には 、耐熱基材の高温酸化、高温腐食を防止するために、耐酸化性、耐食性に優れた材 料を用いることが好ましい。また、発生する応力を効率よく緩和するために延性に優 れた材料を用いることが好まし 、。
ボンドコート層としては、耐食性及び耐酸化性に優れた MCrAlY合金 (「M」は金属 元素を表す。)が好ましい。「M」は、好ましくは、 Niや Co、 Fe等の単独の金属元素又 はこれらのうち 2種以上の組み合わせである。
ボンドコート層の形成方法は、特に限定されず、低圧プラズマ溶射法や、電子ビー ム物理蒸着法等を用いることができる。
[0029] ボンドコート層の厚さは、特に限定されないが、好ましくは 0. Olmm以上 lmm以下 である。 0. Olmm未満では耐酸ィ匕性が不充分となる場合があり、 lmmを超えると皮 膜の延性ゃ靱性が不充分となる場合がある。
[0030] 本発明によれば、トップコートとして、一般式 A Zr O (但し、 Aは La
2 2 7 、 Nd、 Sm、 Gd 又は Dyのいずれかを表す)で表される酸化物に、 5モル%以上 30モル%以下の Ca O及び 5モル%以上 30モル%以下の MgOの少なくとも一方を添加してなる酸化物を 含み、かつ 10体積%以上のパイロクロア型結晶構造を有するセラミックス層を形成す る。あるいは、本発明によれば、トップコートとして、一般式 A, B Zr O (但し、 A'及
1 1 2 7
び Bはそれぞれ La、 Nd、 Sm、 Gd、 Dy、 Ce又は Ybのいずれかを表し、 A'と Bとは互 いに異なる元素である)で表される酸ィ匕物を含むセラミックス層を形成する。あるいは 、本発明によれば、トップコートとして、一般式 A" Ce O (但し、 A"は La、 Sm又は Y
2 2 7
bの 、ずれかを表す)で表される酸化物を含むセラミックス層を形成する。
前記一般式 A Zr Oで表される酸化物に、 5モル%以上 30モル%以下の CaO及
2 2 7
び 5モル%以上 30モル%以下の MgOの少なくとも一方を添加してなる酸化物は、前 記セラミックス層に 10体積%以上含まれて 、ることが好ま 、。このセラミックス層は、 10体積%以上のパイロクロア型結晶構造を有することにより、低熱伝導率を実現して いる。
前記一般式 A' B Zr Oで表される酸ィ匕物は、前記セラミックス層に 10体積%以上
1 1 2 7
含まれていることが好ましい。この一般式 A, B Zr Oで表される酸化物は、セラミツ
1 1 2 7
タス層の熱伝導率を下げるために、パイクロア構造をとることが好まし 、。
前記一般式 A" Ce Oで表される酸ィ匕物は、前記セラミックス層に 10体積%以上
2 2 7
含まれていることが好ましい。この一般式 A" Ce Oで表される酸ィ匕物は、セラミック
2 2 7
ス層の熱伝導率を下げるために、パイクロア型結晶構造をとることが好ましい。
[0031] 前記一般式 A Zr Oで表される酸化物に CaO及び MgOの少なくとも一方を所定
2 2 7
量添カ卩してなる酸化物としては、 Sm Zr Oに CaO及び MgOをそれぞれ 10モル%
2 2 7
添加してなる酸化物が他の A Zr Oに CaO及び MgOを少なくとも一方を入れた材
2 2 7
料や一般式 A Zr Oで表される酸化物のみからなる材料よりも熱伝導率が低いので
2 2 7
特に好ましい。
また、前記一般式 A' B Zr Oで表される酸化物としては、 La Ce Zr O又は Sm Yb Zr O力 低熱伝導率であり、かつ YSZと同等の線膨張係数を有するので特に
1 2 7
好ましい。
また、前記一般式 A" Ce Oで表される酸ィ匕物としては、 La Ce O力 低熱伝導
2 2 7 2 2 7
率であり、かつ YSZと同等の線膨張係数を有するので特に好ましい。
[0032] 前記一般式 A Zr O、一般式 A, B Zr O、または一般式 A" Ce Oで表される酸 化物は、施工法に応じて、粉末又はインゴットとして利用される。
前記一般式 A Zr O、一般式 A, B Zr Oまたは一般式 A" Ce Oで表される酸
2 2 7 1 1 2 7 2 2 7 化物を粉として合成する方法としては、粉末混合法、共沈法、アルコキシド法等が知 られている。粉末混合法は、 A O粉及び ZrO粉、または A, O粉、 B O粉及び Zr
2 3 2 2 3 2 3
O粉、または A" O粉及び CeO粉をスラリー状態でボールミル等を使用して混合し
2 2 3 2
、スラリーを乾燥した後、粉を熱処理して固相反応法により一般式 A Zr O、一般式
2 2 7
A, B Zr O、または一般式 A" Ce Oで表される酸化物を合成し、粉砕して A Zr
1 1 2 7 2 2 7 2 2
O粉、 A' B Zr O粉、または一般式 A" Ce O粉を得る方法である。共沈法は、 A
7 1 1 2 7 2 2 7
及び Zrの塩溶液、または A'、 B及び Zrの塩溶液、または A"及び Ceの塩溶液にアン モニァ等の中和剤を添加して水和物沈殿を得た後、熱処理して反応させ、一般式 A
2
Zr O、一般式 A, B Zr O、または一般式 A" Ce Oで表される酸ィ匕物とした後、
2 7 1 1 2 7 2 2 7
粉砕して A Zr O粉、 A, B Zr O粉、または一般式 A" Ce O粉を得る方法である
2 2 7 1 1 2 7 2 2 7
。アルコキシド法は、 A及び Zr、または A'、 B及び Zr、または A"及び Ceのアルコキシ ド有機溶媒に水を添加して水和物沈殿を得た後、熱処理して反応させ一般式 A Zr
2 2
O、一般式 A, B Zr O、または一般式 A" Ce Oで表される酸ィ匕物とした後、粉砕
7 1 1 2 7 2 2 7
して A Zr O粉、 A, B Zr O粉、または一般式 A" Ce O粉を得る方法である。
2 2 7 1 1 2 7 2 2 7
前記一般式 A Zr Oで表される酸化物には、 5モル%以上 30モル%以下の CaO
2 2 7
及び 5モル%以上 30モル%以下の MgOの少なくとも一方が添カ卩される。
A Zr O粉に CaO及び MgOの少なくとも一方を添加する方法としては、例えば、
2 2 7
前記粉末混合法で示した原料 (A O粉及び ZrO粉)に、 CaO及び MgOの少なくと
2 3 2
も一方を主体とする粉末を加えて原料とし、前記粉末混合法に従って酸化物を合成 してちよい。
前記一般式 A Zr Oに 5モル%以上 30モル%以下の CaO及び 5モル%以上 30モ
2 2 7
ル%以下の MgOの少なくとも一方が添加されてなる酸ィ匕物、一般式 A, B Zr Oで
1 1 2 7 表される酸化物、または一般式 A" Ce Oで表される酸ィ匕物をインゴットとして合成す
2 2 7
る場合は、所定の組成を有する原料を焼結又は電融固化してインゴットを得る方法が 採用される。
なお、以下において、前記一般式 A Zr Oで表される酸化物に、 5モル%以上 30
2 2 7 モル%以下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方が添カロ されてなる酸化物を「CaOZMgOドープ A Zr O」ともいう。また、 CaOZMgOドー
2 2 7
プ A Zr Oはィ匕学式では A Ca Mg Zr O (x=0力つ 0. 05≤y≤0. 30、又は 0. 0
2 2 7 2 x y 2 7
5≤x≤0. 30力つ y=0、又は 0. 05≤x≤0. 30力つ 0. 05≤y≤0. 30)となる。前 記一般式 A' B Zr Oで表される酸化物を単に「Α' B Zr Ο」ともいう。
1 1 2 7 1 1 2 7
[0034] CaO/MgOドープ A Zr O又は A
2 2 7 , B Zr Oを含んでなる遮熱コート材料は、例
1 1 2 7
えば、 CaO/MgOドープ A Zr O又は A, B Zr Oの粉、水、分散剤及びバインダ
2 2 7 1 1 2 7
一を含むスラリーをスプレードライヤーを用いて球状に造粒し、造粒物を熱処理して 得られる。また、 CaO/MgOドープ A Zr O又は A B Zr Oの原料混合の段階で
2 2 7 , 1 1 2 7
得られたスラリーをスプレードライして球状に成形し、熱処理して粉を得ることにより C aOZMgOドープ A Zr O又は A' B Zr Oを含んでなる遮熱コート材料とすること
2 2 7 1 1 2 7
もできる。
CaO/MgOドープ A Zr O又は A, B Zr Oを含んでなる遮熱コート材料は、施
2 2 7 1 1 2 7
工法として溶射法を用いる場合には、好ましくは 10 m以上 200 m以下の粒径に 分級し、溶射に適した粒度に調整して用いる。また、電子ビーム物理蒸着法を用いる 場合には、焼結インゴットをターゲット材料に用いることができる。
[0035] CaOZMgOドープ A Zr O層又は A, B Zr O層をボンドコート層の上に形成す
2 2 7 1 1 2 7
る方法としては、大気圧プラズマ溶射法、及び電子ビーム物理蒸着法等が挙げられ る。
大気圧プラズマ溶射法を用いて CaOZMgOドープ A Zr O層又は A' B Zr O
2 2 7 1 1 2 7 層を形成する方法として、例えば、スルザ一メテコ社製溶射ガン (例えば F4ガン)を 用いて、上述の溶射法に用いる粉末を溶射電流 600 (A)、溶射距離 150 (mm)、粉 末供給量 60 (g/min)、 Ar/H量; 35/7. 4 (1/min)の代表的条件により成膜するこ
2
とが可能である。
電子ビーム物理蒸着法を用いて CaOZMgOドープ A Zr O層又は A r O
2 2 7 , B Z
1 1 2 7 層を形成する方法として、例えば、アルデンヌ社製電子ビーム蒸着装置 (例えば、 τ
UBA150)を用いて、上述のインゴットをターゲット材料に用い、電子ビーム出力 50k W、雰囲気 10_4torrの減圧環境、耐熱基材 1, 000°Cの代表的条件で成膜すること が可能である。
柱状晶は、ボンドコート表面上で核生成した結晶が優先結晶成長方向に、単結晶 状態で成長したもので、耐熱基材に歪が作用した場合にも、結晶が互いに分離する ことから、高い耐久性を示す。
[0036] ジルコユア含有層を用いないときのセラミックス層の厚さは、特に限定されないが、 好ましくは 0. 1mm以上 lmm以下である。 0. 1mm未満では遮熱が不充分となる場 合があり、 lmmを超えると熱サイクルの耐久性が不充分となる場合がある。セラミック ス層が気孔や縦割れ亀裂を有する場合は、セラミックス層の厚さは、好ましくは 0. 1 mm以上 lmm以下(?ある。
セラミックス層として Sm Zr Oに CaO及び MgOをそれぞれ 10モル0 /0ずつ添カロし
2 2 7
た CaOZMgOドープ A Zr O層を用いる場合は、 XRDパターンが主に Sm Ca
2 2 7 1. 8 0.
Mg Zr Oであるパイロクロア型となっており、熱伝導率が低下することから膜厚を
1 0. 1 2 7
Fけること力 C "さる。 S. Bose, Journal of Thermal Spray Technology, vol.6(1), Mar. 1 997
pp.99-104には、膜厚が下がると熱サイクル耐久性が向上すると報告されており、同じ 遮熱効果を保持しながら薄膜ィ匕できる該 CaOZMgOドープ A Zr O層の高い熱サ
2 2 7
ィクル耐久性を裏付けるものである。このように、該 CaOZMgOドープ A Zr O層は
2 2 7 低 、熱伝導性だけでなく、高 、熱サイクル耐久性の点からも好まし 、。
[0037] セラミックス層は、好ましくは、 1%以上 30%以下の気孔率 (セラミックス層内に形成 された気孔のセラミックス層に対する体積占有率)を有する。気孔の存在により、セラ ミックス含有層の遮熱特性を向上させることができるとともに、ヤング率が低下すること 力 熱サイクルに伴 、セラミックス層に高 、熱応力が作用した場合にもその応力を緩 和することができる。従って、熱サイクル耐久性に優れた遮熱コーティング部材とする ことができる。
気孔率が 1%未満では、緻密であるためヤング率が高くなり、熱応力が高くなつた 場合に剥離が生じやすくなる。また、気孔率が 30%を超えると、ボンドコート又はジル コ-ァ含有層との密着性が不足し、耐久性が低下する場合がある。
[0038] セラミックス層の気孔率は、溶射条件を調節することで容易に制御することができ、 適切な気孔率を備えたセラミックス層を形成することができる。調節できる溶射条件と しては、溶射電流、プラズマガス流量、溶射距離等が挙げられる。
溶射電流は、例えば、通常の 600 (A)力も 400 (A)に低下することにより気孔率を 5 %程度から 8%程度にまで増加できる。また、電流を増加することにより気孔率を低下 することちでさる。
プラズマガス流は、例えば、通常の Ar/H量である 35/7. 4 (l/min)から 37.3/5.
2
1 (1/min)に水素流量割合を増加することにより、気孔率を 5%程度力も 8%程度にま で増加できる。また、水素量を増加すると、気孔率を低下することができる。
溶射距離は、例えば、通常の 150mmから 210mmに増加させることにより、気孔率 を 5%程度から 8%にまで増加できる。また、溶射距離を短くすることにより、気孔率を 低下させることも可能である。更に、これらの組み合わせにより、気孔率を 1%程度か ら最大 30%程度の気孔率まで可変することができる。
[0039] 本発明によれば、セラミックス層は、その膜厚方向に延在する複数の縦割れ亀裂を 有することが好ましい。この縦割れは、ジルコユア含有層の耐剥離性を向上させるた めにジルコユア含有層の成膜時に意図的に導入される。
耐熱基材ゃボンドコート層に比して熱膨張係数の小さ 、セラミックス層は、タービン の発停等に伴う熱サイクルが印加された際に、耐熱基材ゃボンドコート層との熱膨張 係数の差による応力が作用する力 セラミックス層に作用する応力を、縦割れがその 幅を拡大又は縮小することにより緩和するようになって 、る。
従って、熱サイクルに伴う膨張収縮による応力はセラミックス層自体にはほとんど作 用せず、セラミックス層の剥離が極めて起こり難くなり、熱サイクル耐久性に優れる。
[0040] 本発明によれば、溶射粉末を用いて溶射を行う際に、セラミックス層に縦割れを導 入することができる。溶射法による成膜は、粉末を溶融又半溶融状態として耐熱基材 上に噴射し、耐熱基材表面で急速に冷却凝固させることにより行われる。この耐熱基 材表面で凝固される際の温度変化を大きくし、成膜されるセラミックス層に意図的に 凝固割れを生じさせることで、セラミックス層に縦割れを導入できる。
セラミックス層に生じた亀裂は、従来の構成の遮熱コーティング材においては、セラ ミックス層に剥離を生じさせる原因となって ヽたが、本発明よるセラミックス層に導入さ れた縦割れは、剥離の原因とはならない。これは、縦割れと、熱サイクルにより生じた セラミックス層の亀裂とでは、その周辺の結晶構造が異なることによる。すなわち、熱 サイクルにより生じる亀裂は、高温中で ZrOの結晶相が t'相(準安定正方晶相)から
2
t相(正方晶相)及び C相(立方晶)へ変化し、遮熱コーティング材の温度が低下した 場合に高温相で安定である t相が温度の低下により m相(単斜晶相)及び C相(立方 晶)となり、 m相が生成される際に体積変化が生じる。この体積変化により形成された 亀裂の周辺部には、 m相が観測される。従って、熱サイクルにより m相と t相との相転 移が繰り返されるため、亀裂は徐々に進展し、最終的にはセラミックス層を剥離させる これに対して、本発明によりセラミックス層に導入される縦割れにおいては、その周 辺部に m相がほとんど存在しな 、ため、熱サイクル中にセラミックス層内で相転移に 伴う体積変化がほとんどなぐ熱サイクルに伴う温度変化により縦割れが進展すること はほとんどない。従って、この縦割れの導入によりセラミックス層の寿命が短くなること はないものと考えられる。
[0041] 縦割れの延在方向は、膜面の法線方向に対して ±40° 以内とされることが好まし い。セラミックス層の面方向の亀裂は、セラミックス層の剥離を引き起こしやすくするた め、縦割れの延在する方向は、可能な限りセラミックス層の膜面の法線方向と平行と するのが好ましい。しかし、法線方向に対して ±40° 以内の傾きであれば、セラミック ス層の剥離を防止する効果を十分に得ることができる。
縦割れの延在方向のより好まし 、範囲は、セラミックス層の膜面の法線方向に対し て ± 20° 以下の範囲である。
[0042] セラミックス層における縦割れ同士の間隔 (ピッチ)は、耐熱基材上に形成された合 計の膜の厚さ(但し、ボンドコート層を除く。)の 5%以上 100%以下とすることが好ま しい。例えば、セラミックス層の膜厚を 0. 5mmとするならば、縦割れ同士の間隔は、 0. 025mm以上 0. 5mm以下の範囲とすることが好ましい。このような間隔でセラミツ タス層に縦割れを導入することで、耐剥離性に優れたセラミックス層を備えた遮熱コ 一ティング部材を得ることができる。
ピッチが 5%未満であると、下地のボンドコート層又はジルコユア含有層と接着面積 力 、さくなり、密着力が不足して剥離しやすくなる場合がある。間隔が 100%を超える と、亀裂先端での剥離方向への特異応力が増大して剥離を誘発する場合がある。
[0043] 縦割れを備えたセラミックス層は、例えば、溶射法又は電子ビーム物理蒸着法によ るセラミックス層の成膜時に形成することができる。
溶射法により縦割れを備えたセラミックス層を形成する場合、溶射距離 (溶射ガンと 耐熱基材との距離)を従来ジルコユア層の成膜に用いられていた溶射距離の 1Z4 程度から 2Z3程度にまで近づけるか、あるいは、溶射距離は従来と同程度とし、溶 射ガンに入力する電力を従来用いられていた電力の 2倍程度から 25倍程度にまで 高めることによりセラミックス層に縦割れを導入することができる。すなわち、溶射によ りボンドコート層又はジルコユア含有層を有する耐熱基材に飛来する溶融又は半溶 融状態の粒子の温度を高くすることで、耐熱基材上で急冷凝固される際の温度勾配 を大きくし、凝固時の収縮により縦割れを導入することができる。この方法によれば、 溶射距離及び Z又は溶射ガンへの入力電力を調整することで、容易に縦割れの間 隔ゃ頻度 (縦割れの面積密度)を制御することができ、所望の特性を備えたセラミック ス層を形成することができる。これにより、優れた耐剥離性、熱サイクル耐久性を備え た遮熱コーティング部材を容易に形成することができる。
電子ビーム物理蒸着法により縦割れを備えたセラミックス層を形成する場合、例え ば、アルデンヌ社製電子ビーム蒸着装置(例えば、 TUBA150)を用いて、上述のィ ンゴットをターゲット材料に用い、電子ビーム出力 50kW、雰囲気 10_4torrの減圧環 境、耐熱基材温度 1, 000°Cの代表的条件で、縦割れを備えたセラミック層を容易に 形成することができる。
[0044] 本発明によれば、トップコートをジルコユア含有層とセラミックス層の二層としてもよ い。この場合、耐熱基材の表面から外に向けて、ボンドコート層、ジルコ-ァ含有層、 セラミックス層を順次形成することとなる。ジルコユア含有層は、好ましくはジルコユア を部分安定ィ匕した層である。ジルコユアを部分安定ィ匕することにより、ジルコユアの結 晶安定性が向上し、タービン等の高温部品に用いた場合にも熱サイクル中でジルコ ニァの結晶相が変化し 1 、相変態による亀裂及びその進展を防止することができる 。高強度且つ線膨張係数が高ぐ比較的安価なジルコユア含有層を適用すること〖こ より、トップコートのコストダウンを図ることが可能となる。従って、優れた耐剥離性を備 え、熱サイクル耐久性に優れ、高温部品に好適である。
部分安定化ジルコユアとしては、好ましくは、 Yb Oと Y Oと Dy Oと Er Oからなる
2 3 2 3 2 3 2 3 選ばれる一以上で安定化されたジルコユアである。
Yb Oで安定ィ匕されたジルコユアの場合、安定化剤である Yb Oの含有量は、熱
2 3 2 3
サイクル耐久性の点から、好ましくは 8質量%以上 27質量%以下である。
Yb Oと Er Oとで安定ィ匕されたジルコユアの場合、好ましくは、安定化剤である Yb
2 3 2 3
O含有量は 0. 1質量%以上 25質量%以下、安定化剤である Er O含有量は 0. 1
2 3 2 3
質量%以上 25質量%以下であり、 Yb Oと Er Oの含有量の合計が 10質量%以上
2 3 2 3
30質量%以下である。
[0045] トップコートをジルコ-ァ含有層とセラミックス層の二層とした場合でも、トップコート 全体の膜厚を 0. 1mm以上 lmm以下とすることが好ましい。この場合、ジルコユア含 有層とセラミックス層の各層は、耐熱基材上に設けた合計膜厚 (但し、ボンドコート層 を除く。)の 10%以上 90%とすることが好ましい。ジルコユア含有層とセラミックス層の Vヽずれか又は両方が、気孔又は縦割れを有する場合であっても同様である。
[0046] ジルコユア含有層は、公知の方法で形成することができる。例えば、 Yb Oで安定
2 3 化されたジルコユア含有層は、 Yb O粉末と ZrO粉末を粉末混合法で混合して混合
2 3 2
粉、水、分散剤及びバインダーを含むスラリーをスプレードライヤーを用いて造粒した 後、熱処理をすることで溶射粉末を作製し、溶射法により形成することができる。また 、 Yb Oと Er Oで安定化されたジルコユア含有層は、 Yb O粉末と Er O粉末と Zr
2 3 2 3 2 3 2 3 o粉末とを粉末混合法で混合して混合粉、水、分散剤及びバインダーを含むスラリ
2
一をスプレードライヤーを用いて造粒した後、熱処理をすることで溶射粉末を作製し 、溶射法により形成できる。これにより、結晶安定性に優れ、耐剥離性に優れた部分 安定ィ匕ジルコユア層を容易に歩留まり良く製造することができる。溶射法としては、大 気圧プラズマ溶射法を挙げられる。溶射法に限らず、電子ビーム物理蒸着法により 積層することちできる。
[0047] 大気圧プラズマ溶射を用いる場合は、例えば、 ZrO粉と所定の添加割合の Yb O
2 2 3 粉を用意し、これらの粉を適当なバインダーや分散剤とともにボールミル中で混合し てスラリー状にする。次に、これをスプレードライヤーにより粒状にして乾燥させ、次い で 1200°C以上 1600°C以下に加熱する拡散熱処理により固溶化させて、 Yb Oが
2 3 均一に拡散された ZrO -Yb Oの複合粉を得る。そして、この複合粉をボンドコート
2 2 3
層上に溶射することにより YbSZ層を得ることができる。
また、ジルコユア含有層の成膜法として電子ビーム物理蒸着法を用いる場合には、 所定の組成を有する原料を焼結又は電融固化して得られるインゴットを使用する。 また、 Yb O及び Er Oにより安定ィ匕されたジルコユアを用いる場合には、 ZrO粉
2 3 2 3 2 末と、所定の添加割合の Yb O粉、及び Er O粉を用意し、上記と同様の方法で Zr
2 3 2 3
O - (Yb O +Er O )複合粉を作製し、この複合粉を用いて溶射又は電子ビーム物
2 2 3 2 3
理蒸着を行うことで、ボンドコート層上に Yb O及び Er Oにより安定ィ匕されたジルコ
2 3 2 3
二ァ層を形成することができる。
[0048] ジルコユア含有層は、好ましくは、 1%以上 30%以下の気孔率 (ジルコ-ァ含有層 に対するジルコユア含有層内に形成された気孔の体積占有率)を有する。気孔の存 在により、部分安定ィ匕ジルコユア含有層の遮熱特性を向上させることができるとともに 、熱サイクルに伴 ヽジルコ-ァ含有層に高 、熱応力が作用した場合にもその応力を 緩和することができる。従って、熱サイクル耐久性に優れた遮熱コーティング部材とす ることがでさる。
気孔率が 1%未満では、緻密であるためヤング率が高くなり、熱応力が高くなつた 場合に剥離が生じやすくなる。また、気孔率が 30%を超えると、ボンドコートとの密着 性が不足し、耐久性が低下する場合がある。
[0049] また、ジルコユア含有層の気孔率は、溶射電流や溶射距離を調節することで容易 に制御することができ、適切な気孔率を備えたジルコユア含有層を形成することがで きる。これにより、耐剥離性に優れた遮熱コーティング部材を得ることができる。
溶射電流は、例えば、通常の 600 (A)力も 400 (A)に低下することにより気孔率を 5 %程度から 8%程度にまで増加できる。また、電流を増加することにより気孔率を低下 することちでさる。
プラズマガス流は、例えば、通常の Ar/H量である 35/7. 4 (l/min)から 37.3/5.
2
1 (1/min)に水素流量割合を増加することにより、気孔率を 5%程度力も 8%程度にま で増加できる。また、水素量を増加すると、気孔率を低下することができる。
溶射距離は、例えば、通常の 150mmから 210mmに増加させることにより、気孔率 を 5%程度から 8%程度にまで増加できる。また、溶射距離を短くすることにより、気孔 率を低下させることも可能である。更に、これらの組み合わせにより、気孔率を 1%程 度力も最大 30%程度の気孔率まで可変することができる。
[0050] 本発明によれば、ジルコユア含有層は、その膜厚方向に延在する複数の縦割れを 有することが好ましい。この縦割れは、ジルコユア含有層の耐剥離性を向上させるた めにジルコユア含有層の成膜時に意図的に導入される。
耐熱基材ゃボンドコート層に比して熱膨張係数の小さ ヽジルコ-ァ含有層は、ター ビンの発停等に伴う熱サイクルが印加された際に、耐熱基材ゃボンドコート層との熱 膨張係数の差による応力が作用するが、縦割れがその幅を拡大又は縮小することに よりジルコユア含有層に作用する応力を緩和するようになっている。
従って、熱サイクルに伴う膨張収縮による応力はジルコユア含有層自体にはほとん ど作用せず、部分安定化ジルコユア含有層の剥離が極めて起こり難くなり、熱サイク ル耐久性に優れる。
[0051] 本発明によれば、溶射粉末を用いて溶射を行う際に、ジルコユア含有層に縦割れ を導入することができる。溶射法による成膜は、粉末を溶融又半溶融状態として耐熱 基材上に噴射し、耐熱基材表面で急速に冷却凝固させることにより行われる。この耐 熱基材表面で凝固される際の温度変化を大きくし、成膜されるジルコユア含有層に 意図的に凝固割れを生じさせることで、ジルコユア含有層に縦割れを導入できる。 ジルコユア含有層に生じた亀裂は、従来の構成の遮熱コーティング材にお 、ては、 ジルコユア含有層に剥離を生じさせる原因となって 、たが、本発明によるジルコユア 含有層に導入された縦割れは、剥離の原因とはならない。これは、縦割れと、熱サイ クルにより生じたジルコユア含有層の亀裂とでは、その周辺の結晶組織が異なること による。すなわち、熱サイクルにより生じる亀裂は、高温中で ZrOの結晶相が t'相(
2
準安定正方晶相)から t相(正方晶相)及び C相(立方晶)へ変化し、遮熱コーティング 材の温度が低下した場合に高温相において安定である t相が温度の低下により m相 (単斜晶相)及び C相(立方晶)となり、 m相が生成される際に体積変化が生じる。この 体積変化により形成された亀裂の周辺部には、 m相が観測される。従って、熱サイク ルにより m相と t相との相転移が繰り返されるため、亀裂は徐々に進展し、最終的には ジルコユア含有層を剥離させる。
これに対して、本発明によりジルコユア含有層に導入される縦割れにおいては、そ の周辺部に m相がほとんど存在しな!、ため、熱サイクル中にジルコユア含有層内で 相転移に伴う体積変化がほとんどなぐ熱サイクルに伴う温度変化により縦割れが進 展することはほとんどない。従って、この縦割れの導入によりジルコユア含有層の寿 命が短くなることはな 、ものと考えられる。
[0052] 縦割れの延在方向は、膜面の法線方向に対して ±40° 以内とされることが好まし い。ジルコユア含有層の面方向の亀裂は、ジルコユア含有層の剥離を引き起こしゃ すくするため、縦割れの延在する方向は、可能な限りジルコユア含有層の膜面の法 線方向と平行とするのが好ましい。しかし、法線方向に対して ±40° 以内の傾きであ れば、ジルコユア含有層の剥離を防止する効果を十分に得ることができる。
縦割れの延在方向のより好まし!/、範囲は、ジルコユア含有層の膜面の法線方向に 対して ± 20° 以内の範囲である。
[0053] ジルコユア含有層における縦割れどうしの間隔 (ピッチ)は、耐熱基材上に形成され た合計膜厚 (但し、ボンドコート層を除く。)の 5%以上 100%以下とすることが好まし い。このような間隔でジルコユア含有層に縦割れを導入することで、耐剥離性に優れ たジルコユア含有層を備えた遮熱コーティング材を得ることができる。ピッチが 5%未 満であると、下地のボンドコート層と接着面積力 、さくなり、密着力が不足して剥離し やすくなる場合がある。間隔が 100%を超えると、亀裂先端での剥離方向への特異 応力が増大して剥離を誘発する場合がある。
縦割れを備えたジルコユア含有層は、例えば、溶射法又は電子ビーム物理蒸着法 によるジルコユア含有層の成膜時に形成することができる。
溶射法により縦割れを備えたジルコユア含有層を形成する場合、溶射距離 (溶射ガ ンと耐熱基材との距離)を従来ジルコユア含有層の成膜に用いられて 、た溶射距離 の 1Z4程度から 2Z3程度にまで近づけるか、あるいは、溶射距離は従来と同程度と し、溶射ガンに入力する電力を従来用 、られて 、た電力の 2倍程度から 25倍程度に まで高めることによりジルコユア含有層に縦割れを導入することができる。すなわち、 溶射によりボンドコート層を有する耐熱基材に飛来する溶融又は半溶融状態の粒子 の温度を高くすることで、耐熱基材上で急冷凝固される際の温度勾配を大きくし、凝 固時の収縮により縦割れを導入することができる。この方法によれば、溶射距離及び
Z又は溶射ガンへの入力電力を調整することで、容易に縦割れの間隔や頻度 (縦割 れの面積密度)を制御することができ、所望の特性を備えたジルコユア含有層を形成 することができる。これにより、優れた耐剥離性、熱サイクル耐久性を備えた遮熱コー ティング部材を容易に形成することができる。
電子ビーム物理蒸着法により縦割れを備えたジルコユア含有層を形成する場合は
、例えば、アルデンヌ社製電子ビーム蒸着装置 (例えば、 TUBA150)を用いて、上 述のインゴットをターゲット材料に用い、電子ビーム出力 50kW、雰囲気 10_4torrの 減圧環境、耐熱基材温度 1, 000°Cの代表的条件で、縦割れを備えたジルコユア含 有層を容易に形成することができる。
以下、本発明のいくつかの好ましい実施形態について図面を参照して説明するが 、本発明はこれらに限定されるものではない。
第 1の実施形態は、耐熱基材上にボンドコート層と CaO/MgOドープ A Zr Oを
2 2 7 含むセラミックス層とを順次含む遮熱コーティング部材である。ボンドコート層の厚さ は 0. 01mm以上 lmm以下であり、セラミックス層の厚さは 0. 1mm以上 lmm以下 である。ボンドコート層は、 MCrAlY合金(「M」は金属元素を表し、好ましくは、 Niや Co、 Fe等の単独の金属元素又はこれらのうち 2種以上の組み合わせである)を原料 として、低圧プラズマ溶射法や、電子ビーム物理蒸着法等によって形成される。 CaO /MgOドープ A Zr Oを含むセラミックス層は、 CaO/MgOドープ A Zr O粉を溶
2 2 7 2 2 7 射粉末材料として用いる溶射法や、 CaOZMgOドープ A Zr Oの焼結インゴットを
2 2 7
ターゲット材料に用いる蒸着法によって形成される。一般式 A Zr Oで表される酸化
2 2 7
物としては、 Sm Zr Oが好ましい。後述の実験例に示す様に熱伝導率が低いため
2 2 7
である。遮熱コーティング部材は、好ましくはガスタービン部品に用いられる。
CaOZMgOドープ A Zr Oを用いることにより、 YSZと略同等な線膨張率でありな
2 2 7
がら、 YSZに比べて低熱伝導率となる。例えば、 YSZ溶射被膜の熱伝導率は 0. 74 WZmK以上 2. 02WZmK以下である(実験値より)。
[0055] 第 2の実施形態は、耐熱基材上にボンドコート層と A, B Zr Oを含むセラミックス
1 1 2 7
層とを順次含む遮熱コーティング部材である。ボンドコート層の厚さは 0. Olmm以上 lmm以下であり、セラミックス層の厚さは 0. 1mm以上 lmm以下である。ボンドコート 層は、 MCrAlY合金(「M」は金属元素を表し、好ましくは、 Niや Co、 Fe等の単独の 金属元素又はこれらのうち 2種以上の組み合わせである)を原料として、低圧プラズ マ溶射法や、電子ビーム物理蒸着法等によって形成される。 A' B Zr Oを含むセラ
1 1 2 7 ミックス層は、 A, B Zr O粉を溶射粉末材料として用いる溶射法や、 A, B Zr Oの
1 1 2 7 1 1 2 7 焼結インゴットをターゲット材料に用いる蒸着法によって形成される。一般式 A, B Zr Oで表される酸化物としては、 Sm Yb Zr Oが好ましい。低熱伝導率であり、かつ
2 7 1 1 2 7
YSZと同等の線膨張係数を有するからである。遮熱コーティング部材は、好ましくは ガスタービン部品に用いられる。
A' B Zr Oを用いることにより、 YSZと略同等な線膨張率でありながら、 YSZに比
1 1 2 7
ベて低熱伝導率となる。例えば、 YSZ溶射被膜の熱伝導率は 0. 74WZmK以上 2 . 02WZmK以下であるが、 A, B Zr Oでは、通常 0. 3WZmK以上 1. 5W/mK
1 1 2 7
以下である。
[0056] 第 3の実施形態は、図 1に示すようにセラミックス層が気孔を有するものであり、低熱 伝導率重視の遮熱コーティング部材が得られる。図 1は、耐熱基材 21上にボンドコー ト層 22と CaOZMgOドープ A Zr O又は A, B Zr Oを含むセラミックス層 24とを
2 2 7 1 1 2 7
順次含み、セラミックス層 24が気孔 24Pを有する遮熱コーティング部材を示す。ボン ドコート層 22の厚さは 0. Olmm以上 lmm以下であり、セラミックス層 24の厚さは 0. lmm以上 lmm以下である。セラミックス層 24の気孔率は 1%以上 30%以下である。 第 3の実施形態によれば、低熱伝導の遮熱コーティング膜を備えた遮熱コーティン グ部材が得られる。従って、耐熱基材 21の信頼性を向上することができる。また、セ ラミックス層 24に関して、耐熱基材 21の延性又は曲げに対する追従性は YSZと同等 となる。
[0057] 第 4の実施形態は、図 2に示すように、セラミックス層とジルコユア含有層が気孔を 有するものであり、低熱伝導で耐久性の良好な遮熱コーティング部材が得られる。図 2は、耐熱基材 31上にボンドコート層 32とジルコ-ァ含有層 33と CaOZMgOドープ A Zr O又は A, B Zr Oを含むセラミックス層 34を順次含み、ジルコユア含有層 3
2 2 7 1 1 2 7
3が気孔 33Pを有し、セラミックス層 34が気孔 34Pを有する遮熱コーティング部材を 示す。ボンドコート層 32の厚さは 0. 01mm以上 lmm以下である。ジルコ-ァ含有層 33とセラミックス層 34との合計の厚さは 0. lmm以上 lmm以下であり、ジルコ-ァ含 有層 33の厚さはジルコ-ァ含有層 33とセラミックス層 34の合計厚さの 10%以上 90 %以下であり、セラミックス層 34の厚さは耐熱基材 31上に形成されたジルコユア含有 層 33とセラミックス層 34の合計厚さの 10%以上 90%以下である。ジルコ-ァ含有層 33とセラミックス層 34の気孔率はそれぞれ 1%以上 30%以下である。
第 4の実施形態によれば、気孔を有するジルコユア含有層とセラミックス層により、 低熱伝導でかつ耐久性の良い遮熱コーティング膜を備えた遮熱コーティング部材が 得られる。従って、耐熱基材 21の信頼性を向上することができる。また、低コストで遮 熱コーティング部材を製造できる。
第 5の実施形態は、図 3に示すようにセラミックス層が気孔を有し、ジルコユア含有 層が縦割を有するものであり、低熱伝導であり、かつ高耐久性の遮熱コーティング部 材が得られる。図 3は、耐熱基材 41上にボンドコート層 42とジルコユア含有層 43と C aO/MgOドープ A Zr O又は A, B Zr Oを含むセラミックス層 44を順次含み、ジ
2 2 7 1 1 2 7
ルコユア含有層 43が縦割れ 43Cを有し、セラミックス層 44が気孔 44Pを有する遮熱 コーティング部材を示す。ボンドコート層 42の厚さは 0. 01mm以上 lmm以下である 。ジルコ-ァ含有層 43とセラミックス層 44との合計の厚さは 0. lmm以上 lmm以下 であり、ジルコ-ァ含有層 43の厚さはジルコ-ァ含有層 43とセラミックス層 44との合 計の厚さの 10%以上 90%以下であり、セラミックス層 44の厚さは耐熱基材 41上に 形成されたジルコ-ァ含有層 43とセラミックス層 44との合計の厚さの 10%以上 90% 以下である。ジルコユア含有層 43における縦割れ同士の間隔 (縦割れピッチ)はジル コ-ァ含有層 43とセラミックス層 44との合計の厚さの 5%以上 100%以下であり、縦 割れの延在方向は膜面の法線方向(図示上下方向)に対して ±40° 以内である。セ ラミックス層 44の気孔率は 1%以上 30%以下である。
第 5の実施形態によれば、気孔を有するセラミックス層により遮熱の効果が得られ、 ジルコユア含有層の縦割れ組織により熱サイクル耐久性が得られる。従って、耐熱基 材 21の信頼性を向上することができる。また、低コストで遮熱コーティング部材を製造 できる。
[0059] 第 6の実施形態は、図 4に示すようにセラミックス層に縦割れを設けたものであり、耐 久性を重視した遮熱コーティング部材が得られる。図 4は、耐熱基材 51上にボンドコ ート層 52と CaOZMgOドープ A Zr O又は A, B Zr Oを含むセラミックス層 54を
2 2 7 1 1 2 7
順次含み、セラミックス層 54が縦割れ 54Cを有する遮熱コーティング部材を示す。ボ ンドコート層 52の厚さは 0. 01mm以上 lmm以下である。セラミックス層 54の厚さは 0 . lmm以上 lmm以下であり、縦割れピッチはセラミックス層 54の厚さの 5%以上 10 0%以下であり、縦割れの延在方向は膜面の法線方向(図示上下方向)に対して ±4 0° 以内である。
第 6の実施形態によれば、セラミックス層の縦割れ組織により熱サイクル耐久性が向 上される。
[0060] 第 7の実施形態は、図 5に示すようにセラミックス層とジルコユア含有層に縦割を設 けたものであり、通常の熱伝導で超高耐久を期待できる遮熱コーティング部材を得る ことができる。図 5は、耐熱基材 61上にボンドコート層 62とジルコユア含有層 63と Ca O/MgOドープ A Zr O又は A
2 2 7 , B Zr Oを含むセラミックス層 64を順次含み、ジ
1 1 2 7
ルコユア含有層 63が縦割れ 63Cを有し、セラミックス層 64が縦割れ 64Cを有する遮 熱コーティング部材を示す。ボンドコート層 62の厚さは 0. 01mm以上 lmm以下であ る。ジルコユア含有層 63とセラミックス層 64との合計の厚さは 0. lmm以上 lmm以 下であり、ジルコ-ァ含有層 63の厚さはジルコ-ァ含有層 63とセラミックス層 64との 合計の厚さの 10%以上 90%以下であり、セラミックス層 64の厚さはジルコユア含有 層 63とセラミックス層 64との合計の厚さの 10%以上 90%以下である。ジルコユア含 有層 63とセラミックス層 64の縦割れピッチは、それぞれジルコユア含有層 63とセラミ ックス層 64との合計の厚さの 5%以上 100%以下であり、縦割れの延在方向は膜面 の法線方向(図示上下方向)に対して ±40° 以内である。
第 7の実施形態によれば、ジルコユア含有層とセラミックス層の縦割れ組織により熱 サイクル耐久性が向上される。 [0061] 第 8の実施形態は、図 6に示すように EB— PVD (電子ビーム物理蒸着)を用いてセ ラミックス層を柱状組織としたものであり、非常に高耐久で、かつ低熱伝導率の遮熱 コーティング部材を得ることができる。図 6は、耐熱基材 71上にボンドコート層 72と Ca O/MgOドープ A Zr O又は A
2 2 7 , B Zr Oを含むセラミックス層 74を順次含み、セラ
1 1 2 7
ミックス層 74が柱状組織 74Lを有する遮熱コーティング部材を示す。ボンドコート層 7 2の厚さは 0. 01mm以上 lmm以下である。セラミックス層 74の厚さは 0. 1mm以上 lmm以下である。
第 8の実施形態によれば、セラミックス層の柱状組織の存在により熱サイクル耐久性 を向上できる。この場合、熱伝導率は溶射コーティングに比べ劣る力 EB— PVDに よって得られる YSZに比べると、 20%以上熱伝導率を低減できる。
[0062] 本発明に係る遮熱コーティング部材は、産業用ガスタービンの動翼ゃ静翼、ある 、 は燃焼器の内筒や尾筒などの高温部品に適用して有用である。また、産業用ガスタ 一ビンに限らず、自動車やジェット機などのエンジンの高温部品の遮熱コーティング 膜にも適用することができる。これらの部材に本発明の遮熱コーティング膜を被覆す ることで、熱サイクル耐久性に優れるガスタービン部材ゃ高温部品を構成することが できる。
[0063] 図 7と図 8は、本発明の遮熱コーティング膜を適用可能なタービン翼 (タービン部材 )の構成例を示す斜視図である。図 7に示すガスタービン動翼 140は、ディスク側に 固定されるタブティル 141、プラットフォーム 142、翼部 143等を備えて構成されてい る。また、図 8に示すガスタービン静翼 150は、内シユラウド 151、外シユラウド 152、 翼部 153等を備えて構成されており、翼部 153にはシールフィン冷却孔 154、スリット 155等が形成されている。
[0064] 図 7と図 8に示すタービン翼 140、 150を適用可能なガスタービンについて図 9を参 照して説明する。図 9は、本発明に係るガスタービンの部分断面構造を模式的に示 す図である。このガスタービン 160は、互いに直結された圧縮機 161とタービン 162と を備える。圧縮機 161は、例えば軸流圧縮機として構成されており、大気又は所定の ガスを吸込ロカも作動流体として吸い込んで昇圧させる。この圧縮機 161の吐出口 には、燃焼器 163が接続されており、圧縮機 161から吐出された作動流体は、燃焼 器 163によって所定のタービン入口温度まで加熱される。そして所定温度まで昇温さ れた作動流体がタービン 162に供給されるようになっている。図 9に示すように、ター ビン 162のケーシング内部には、上述したガスタービン静翼 150力 数段(図 9では 4 段)設けられている。また、上述したガスタービン動翼 140が、各静翼 150と一組の段 を形成するように主軸 164に取り付けられている。主軸 164の一端は、圧縮機 161の 回転軸 165に接続されており、その他端には、図示しない発電機の回転軸が接続さ れている。
[0065] このような構成により、燃焼器 163からタービン 162のケーシング内に高温高圧の 作動流体を供給すれば、ケーシング内で作動流体が膨張することにより、主軸 164 が回転し、このガスタービン 160と接続された図示しない発電機が駆動される。すな わち、ケーシングに固定された各静翼 150によって圧力降下させられ、これにより発 生した運動エネルギーは、主軸 164に取り付けられた各動翼 140を介して回転トルク に変換される。そして、発生した回転トルクは、回転軸 165に伝達され、発電機が駆 動される。
[0066] 本発明の遮熱コーティング部材を、これらのタービン翼に用いれば、遮熱効果と、 耐剥離性に優れたタービン翼となるので、より高い温度環境で使用することができ、 また耐久性に優れ、長寿命のタービン翼を実現することができる。また、より高い温度 環境において適用可能であることは、作動流体の温度を高められることを意味し、こ れによりガスタービン効率を向上させることも可能となる。また、本発明の遮熱コーテ イング部材は、遮熱性に優れるため、冷却用空気流量を低減でき、性能向上に寄与 できる。
本発明の遮熱コーティング部材は、ガスタービンに限らず、ディーゼルエンジンのピ ストンクラウンや、ジェットエンジン部品等にも適用可能である。
[0067] 第 9の実施形態は、一般式 A Zr Oで表される酸ィ匕物に、 5モル%以上 30モル%
2 2 7
以下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方がドープされ てなる酸ィ匕物(CaOZMgOドープ A Zr O )を用いて、焼結体を製作するものである
2 2 7
。一般式 A Zr Oで表される酸化物としては、 Sm Zr Oに CaO及び MgOをそれぞ
2 2 7 2 2 7
れ 10モル%ずつ添カ卩した CaO/MgOドープ A Zr Oが好ましい。 XRDパターンが 主に Sm Ca Mg Zr Oとなっており、後述の実験例に示す様に熱伝導率が低
1. 8 0. 1 0. 1 2 7
い為である。焼結体は、宇宙船用セラミックスタイルなどに用いることができる。
この焼結体は、 CaO/MgOドープ A Zr Oを用いることにより、 YSZに比べて低
2 2 7
熱伝導率となる。
[0068] 第 10の実施形態は、一般式 A' B Zr Oで表される酸化物を用いて焼結体を作成
1 1 2 7
するものである。一般式 A, B Zr Oで表される酸化物としては、 Sm Yb Zr Oが好
1 1 2 7 1 1 2 7 ましい。低熱伝導率であり、かつ YSZと同等の線膨張係数を有する力もである。焼結 体は、宇宙船用セラミックスタイルなどに用いることができる。
この焼結体は、 A, B Zr Oを用いることにより、 YSZに比べて低熱伝導率となる。
1 1 2 7
第 11の実施形態は、一般式 A" Ce Oで表される酸ィ匕物を用いて焼結体を作成
2 2 7
するものである。一般式 A" Ce Oで表される酸化物としては、 La Ce Oが好ましい
2 2 7 2 2 7
。低熱伝導率であり、かつ YSZと同等の線膨張係数を有するからである。焼結体は、 宇宙船用セラミックスタイルなどに用いることができる。
この焼結体は、 A" Ce Oを用いることにより、 YSZに比べて低熱伝導率となる。
2 2 7
[0069] (実施例)
以下、本発明の実施例について説明する力 本発明はこれらに限定されるもので はない。
(組成例 1)
Sm Zr Oに MgOを 10mol%添カロした組成を組成例 1とする。この組成を得るため
2 2 7
に、 ZrO粉(日本イットリウム製、微粉 TZ— 0である ZrO )とともに Sm O粉(日本イツ
2 2 2 3 トリウム製、微粉 99. 9%純度 Sm O粉)、 MgO粉 (タテホ化学製、炭酸マグネシウム
2 3
を、 MgOに換算)を原料として用いた。
[0070] (組成例 2)
Sm Zr Oに MgOを 20mol%添カロした組成を組成例 2とする。この組成を得るため
2 2 7
に、 MgOの添加量を変えた以外は組成例 1と同じ原料を用いた。
[0071] (組成例 3)
Sm Zr Oに CaOを 10mol%添カロした組成を組成例 3とする。この組成を得るため
2 2 7
に、 MgOを CaOに変えた以外は組成例 1と同じ原料を用いた。但し、 CaOの原料と しては、和光純薬製、試薬炭酸カルシウムを、 CaOに換算して使用した。
[0072] (組成例 4)
Sm Zr Oに CaOを 20mol%添カロした組成を組成例 4とする。この組成を得るため
2 2 7
に、 CaOの添加量を変えた以外は組成例 3と同じ原料を用いた。
[0073] (組成例 5)
Sm Zr Oに CaOを 10mol%および MgOを 10mol%添カ卩した組成を組成例 5と
2 2 7
する。この組成を得るために、 ZrO粉(日本イットリウム製、微粉 TZ— 0である ZrO )
2 2 とともに Sm O粉(日本イットリウム製、微粉 99. 9%純度 Sm O粉)、 MgO粉 (タテ
2 3 2 3 ホ化学製、高純度マグネシア)及び炭酸カルシウム (和光純薬製、試薬炭酸カルシゥ ム、 CaOに換算)を原料として用いた。
[0074] (組成例 6)
Sm Yb Zr Oの組成を組成例 6とする。この組成を得るために、 ZrO粉(日本イツ
1 1 2 7 2 トリウム製微粉 TZ—0である ZrO )とともに Sm O粉(日本イットリウム製、微粉 99. 9
2 2 3
%純度 Sm O粉)、 Yb O粉(日本イットリウム製、 99. 9%純度 Yb O粉)を原料と
2 3 2 3 2 3
して用いた。
[0075] (組成例 7)
La Ce Zr Oの組成を組成例 7とする。この組成を得るために、 ZrO粉(日本イット
1 1 2 7 2 リウム製微粉 TZ— 0である ZrO )ととも〖こ La O粉(日本イットリウム製、水酸化ランタ
2 2 3
ンを La Oに換算)、 Ce O粉(日本イットリウム製、 99. 9%純度 Ce O粉)を原料と
2 3 2 3 2 3
して用いた。
[0076] (組成例 8)
La Ce Oの組成を組成例 8とする。この組成を得るために、 La O粉(日本イツトリ
2 2 7 2 3 ゥム製、水酸ィ匕ランタンを La Oに換算)及び Ce O粉(日本イットリウム製、 99. 9%
2 3 2 3
純度 Ce O粉)を原料として用いた。
2 3
[0077] (比較組成例 1)
Y Oを 8質量%含有する YSZを比較組成例 1とする。この組成を得るために、スル
2 3
ザ一メテコ社製 204NS— G (8質量0 /0イットリアと 92質量0 /0ジルコユアの配合比)を原 料として用いた。 [0078] (比較組成例 2)
Sm Zr Oを比較組成例 2とする。この組成を得るために、 ZrO粉(日本イットリウム
2 2 7 2
製、微粉 TZ— 0である ZrO )とともに Sm O粉(日本イットリウム製、微粉 99. 9%純
2 2 3
度 Sm O粉)を原料として用いた。
2 3
[0079] (実施例 1〜実施例 7、比較例 1及び比較例 2)
前記組成例 1〜組成例 8、比較組成例 1及び比較組成例 2の組成をそれぞれ有す る実施例 1〜実施例 8、比較例 1及び比較例 2の焼結体を、前記組成例 1〜組成例 8 、比較組成例 1及び比較組成例 2に記載の原料をそれぞれ用いて、常圧焼結法によ り、焼結温度 1700°C、焼結時間を 4時間として製作した。実施例 1〜実施例 7、比較 例 1及び比較例 2の各焼結体の熱伝導率を図 10に示す。
また、実施例 5、実施例 6、実施例 8及び比較例 1については、 800°Cにおける熱伝 導率を表 1に示す。
なお、熱伝導率は、 JIS R 1611に規定されるレーザーフラッシュ法により測定し た。
[0080] [表 1]
Figure imgf000031_0001
[0081] (実施例 9〜実施例 16、比較例 3及び比較例 4)
前記組成例 1〜組成例 8、比較組成例 1及び比較組成例 2の組成をそれぞれ有す るセラミックス層(トップコート層)を以下の方法で形成し、実施例 9〜実施例 16、比較 例 3及び比較例 4の試料を作製した。
耐熱基材として Ni基耐熱合金を用いた力 その合金組成は、 16質量%の0:、 8. 5 質量%のじ0、 1. 75質量%のMo、 2. 6質量%の W、 1. 75質量%の Ta、 0. 9質量 %の Nb、 3. 4質量%の八1、 3. 4質量%の Ti、及び残部 Niであった。耐熱基材の寸 法は、厚さ 2mm、幅 3mm、長さ 26mmの直方体とした。 耐熱基材の表面を Al O粒でグリットブラストした後、その上に 32質量%の Ni
2 3 、 21 質量%の0:、 8質量%の八1、 0. 5質量%の Y、及び残部 Coからなる組成の CoNiCr A1Y合金力もなるボンドコ一ト層を低圧プラズマ溶射法により 0. 1mmの厚さで形成 した。
[0082] この CoNiCrAlYのボンドコート層上に、前記組成例 1〜組成例 7、比較組成例 1及 び比較組成例 2の各組成のセラミックス層(トップコート層)を気孔率が 10%の多孔組 織となるように、大気プラズマ溶射法により 0. 5mmの厚さで成膜した。なお、大気圧 プラズマ溶射法は、スルザ一メテコ社製溶射ガン (F4ガン)を使用し、前記組成例 1 〜組成例 7、比較組成例 1及び比較組成例 2のそれぞれに示す原料から粉末混合 法により合成した溶射粉末を用いて溶射電流 600 (A)、溶射距離 150 (mm)、粉末 供給量 60 (g/min)、 Ar/H量; 35/7. 4 (1/min)の条件により、気孔が含まれた成
2
膜を行った。
[0083] 得られた実施例 9〜実施例 14、実施例 16、比較例 3及び比較例 4の試験片につ 、 て、縦割れ貫通時の表面ひずみを、走査電子顕微鏡 (SEM)部と高温で圧縮変位を ストローク制御できる手段を有する SEM付きサーボ試験機を用いて、特開 2004— 1 2390号公報に記載の SEM付きサーボ試験により測定した。その結果を図 11に示 す。
[0084] 図 11によれば、本発明による遮熱コーティング材は、 YSZに比べて縦割れ貫通時 の表面ひずみが小さぐ基材の延性又は曲げに対する追従性は、 YSZと同等以上 であることがわかる。
[0085] また、実施例 13、実施例 14、実施例 16及び比較例 3については、 800°Cにおける 熱伝導率の測定及び熱サイクル耐久性の評価を以下の方法により行った。
[0086] 熱伝導率の測定
以上により得られた各試料について熱伝導率の測定を行った。熱伝導率は、 JIS R 1611に規定されるレーザーフラッシュ法により測定した。
[0087] 熱サイクル耐久性の評価
図 12は、熱サイクル耐久性の評価に用いたレーザ式熱サイクル試験装置の模式断 面図である。この図に示すレーザ式熱サイクル試験装置は、本体部 133上に配設さ れた試料ホルダ 132に、耐熱基材 131A上に遮熱コーティング膜 131Bが形成され た試料 131を、遮熱コーティング膜 131Bが外側となるように配置し、この試料 131に 対して炭酸ガスレーザ装置 130からレーザ光 Lを照射することで試料 131を、遮熱コ 一ティング膜 131B側力も加熱するようになっている。また、レーザ装置 130による加 熱と同時に本体部 133を貫通して本体部 133の内部の試料 131裏面側と対向する 位置に配設された冷却ガスノズル 134の先端から吐出されるガス流 Fにより試料 131 をその裏面側力 冷却するようになって 、る。
[0088] このレーザ式熱サイクル試験装置によれば、容易に試料 131内部に温度勾配を形 成することができ、ガスタービン部材などの高温部品に適用された場合の使用環境 に即した評価を行うことができる。図 13Aは、図 12に示す装置により熱サイクル試験 に供された試料の温度変化を模式的に示すグラフである。この図に示す曲線 A〜C は、それぞれ図 13Bに示す試料 131における温度測定点 A〜Cに対応している。図 13Aおよび図 13Bに示すように、図 12に示す装置によれば試料 131の遮熱コーティ ング膜 131B表面 (A)、遮熱コーティング膜 131Bと耐熱基材 131Aとの界面 (B)、耐 熱基材 131 Aの裏面側(C)の順に温度が低くなるように加熱することができる。
従って、例えば、遮熱コーティング膜 131Bの表面を 1200°C以上の高温とし、遮熱 コ一ティング膜 131Bと耐熱基材 131 Aとの界面の温度を 800〜 1000°Cとすることで 、実機ガスタービンと同様の温度条件とすることができる。なお、本試験装置による加 熱温度と温度勾配は、レーザ装置 130の出力とガス流 Fとを調整することで、容易に 所望の温度条件とすることができる。
[0089] 本例では、図 12に示すレーザ式熱サイクル試験装置を用い、最高表面温度 (遮熱 コーティング膜表面の最高温度)を 1500°Cとし、最高界面温度 (遮熱コーティング膜 と耐熱基材との界面の最高温度)を 1000°Cとする繰り返しの加熱を行った。その際、 加熱時間 3分、冷却時間 3分の繰り返しとした (冷却時の表面温度は 100°C以下にな るように設定)。この熱サイクル試験にぉ 、て遮熱コーティング膜に剥離が生じた時点 でのサイクル数を熱サイクル耐久性の評価値とした。
[0090] 表 2に実施例 13、実施例 14、実施例 16及び比較例 3の試験片の熱伝導率及び熱 サイクル耐久性を示す。 [0091] [表 2]
Figure imgf000034_0001
[0092] (実施例 17〜実施例 19)
前記組成例 5、組成例 6、及び組成例 8の組成をそれぞれ有するセラミックス層(トツ プコート層)を以下の方法で形成し、実施例 17〜実施例 19の試料を作製した。 実施例 9〜実施例 16、比較例 3及び比較例 4と同様の原材料を用いて同様の方法 により、耐熱基材上にボンドコート層を形成した。
このボンドコート層上にジルコユア含有層 (YSZ)を気孔率が 10%の多孔組織とな るように、大気プラズマ溶射法により 0. 25mmの厚さで成膜した。なお、大気圧ブラ ズマ溶射法は、スルザ一メテコ社製溶射ガン (F4ガン)を使用し、スルザ一メテコ社製 204NS— Gの溶射粉末を用いて溶射電流 600 (A)、溶射距離 150 (mm)、粉末供 給量 60 (g/min)、 Ar/H量; 35/7. 4 (1/min)の条件により、気孔が含まれた成膜を
2
行った。
このジルコユア含有層上に、前記組成例 5、組成例 6及び組成例 8の各組成のセラ ミックス層(トップコート層)を、実施例 9〜実施例 16、比較例 3及び比較例 4と同様の 方法により形成した。但し、セラミックス層(トップコート層)の厚さは 0. 25mmとした。
[0093] 実施例 17〜実施例 19の各試験片について、 800°Cにおける熱伝導率の測定及 び熱サイクル耐久性の評価を、上記実施例 13、実施例 14、実施例 16及び比較例 3 と同様の方法により行った。表 3に各試験片の熱伝導率及び熱サイクル耐久性を示 す。
[0094] [表 3] 実施例 1 7 実施例 1 8 実施例 1 9
800°Cにおける
0. 50〜 . 03 0. 51 - 1 . 05 0. 51〜1 . 06
熱伝導率(W/mK)
熱サイクル耐久性 25- 1 250 20~ 1 20回 20〜1 20回
[0095] (実施例 20〜実施例 22)
前記組成例 5、組成例 6及び組成例 8の組成をそれぞれ有するセラミックス層(トツ プコート層)を以下の方法で形成し、実施例 20〜実施例 22の試料を作製した。 実施例 9〜実施例 16、比較例 3及び比較例 4と同様の原材料を用いて同様の方法 により、耐熱基材上にボンドコート層を形成した。
[0096] このボンドコート層上にジルコユア含有層を縦割れ組織 (縦割れ間隔:約 150 m) となるように、大気プラズマ溶射法により 0. 25mmの厚さで成膜した。なお、大気圧 プラズマ溶射法は、スルザ一メテコ社製溶射ガン (F4ガン)を使用し、スルザ一メテコ 社製 204NS— Gの溶射粉末 (ジルコ-ァ含有層力 その一例である YSZの場合)を 用いて粉末供給量 60 (g/min)、 Ar/H量; 35/7. 4 (l/min)の条件により、縦割れ
2
が形成されるように行った。縦割れの導入は、溶射距離 (溶射ガンと耐熱基材との距 離)を従来ジルコユア含有層の成膜に用いられていた溶射距離の 150mmから 100 mmに近づける力、あるいは、溶射距離は従来と同程度とし、溶射ガン電流を 600A 力も 650Aに高めることにより行った。
このジルコユア含有層上に、前記組成例 5、組成例 6及び組成例 8の各組成のセラ ミックス層(トップコート層)を、実施例 9〜実施例 16、比較例 3及び比較例 4と同様の 方法により形成した。但し、セラミックス層(トップコート層)の厚さは 0. 25mmとした。
[0097] 実施例 20〜実施例 22の各試験片について、 800°Cにおける熱伝導率の測定及 び熱サイクル耐久性の評価を、上記実施例 13、実施例 14、実施例 16及び比較例 3 と同様の方法により行った。表 4に各試験片の熱伝導率及び熱サイクル耐久性を示 す。
[0098] [表 4] 実施例 2 0 実施例 2 1 実施例 2 2
800°Cにおける
1 · 02〜1 · 34 1 · 03〜1 · 36 1 . 03- 1 . 37
熱伝導率(W/mK)
熱サイクル耐久性 45〜155回 40〜150回 40〜150回
[0099] (実施例 23〜実施例 25及び比較例 5)
前記組成例 5、組成例 6、組成例 8及び比較組成例 1の組成をそれぞれ有するセラ ミックス層(トップコート層)を以下の方法で形成し、実施例 23〜実施例 25及び比較 例 5の試料を作製した。
実施例 9〜実施例 16、比較例 3及び比較例 4と同様の原材料を用いて同様の方法 により、耐熱基材上にボンドコート層を形成した。
このボンドコート層上に、前記組成例 5、組成例 6、組成例 8及び比較組成例 1の各 組成のセラミックス層(トップコート層)を縦割れ組織 (縦割れ間隔:約 150 μ m)となる ように、大気プラズマ溶射法により 0. 5mmの厚さで成膜した。なお、大気圧プラズマ 溶射法は、スルザ一メテコ社製溶射ガン (F4ガン)を使用し、前記組成例 5、組成例 6 、組成例 8及び比較組成例 1のそれぞれに示す原料から粉末混合法により合成した 溶射粉末を用いて粉末供給量 60 (g/min)、 Ar/H量; 35/7. 4 (1/min)の条件によ
2
り、縦割れが形成されるように行った。縦割れの導入は、溶射距離 (溶射ガンと耐熱 基材との距離)を従来ジルコユア含有層の成膜に用いられていた溶射距離の 150m mから 100mmに近づける力、あるいは、溶射距離は従来と同程度とし、溶射ガン電 流を 600Aから 650Aに高めることにより行った。
[0100] 実施例 23〜実施例 25及び比較例 5の各試験片について、 800°Cにおける熱伝導 率の測定及び熱サイクル耐久性の評価を、上記実施例 13、実施例 14、実施例 16及 び比較例 3と同様の方法により行った。表 5に各試験片の熱伝導率及び熱サイクル 耐久性を示す。
[0101] [表 5] 比較例 5 実施例 2 3 実施例 2 4 実施例 2 5
800°Cにおける
1 . 78- 2. 02 0. 73〜0. 83 0. 76〜0. 96 0. 78〜0. 96 熱伝導率(W/mK)
熱サイクル耐久性 50〜1 50回 70〜1 80回 70〜1 80回 70〜1 80回
[0102] (実施例 26〜実施例 28)
前記組成例 5、組成例 6及び組成例 8の組成をそれぞれ有するセラミックス層(トツ プコート層)を以下の方法で形成し、実施例 26〜実施例 28の試料を作製した。 実施例 9〜実施例 16、比較例 3及び比較例 4と同様の原材料を用いて同様の方法 により、耐熱基材上にボンドコート層を形成した。
このボンドコート層上に、前記実施例 20〜実施例 22と同様の材料及び方法により 縦割れ組織を有するジルコユア含有層を形成した。
このジルコユア含有層上に、前記実施例 23〜実施例 25と同様の材料及び方法に より、縦割れ組織を有するセラミックス層(トップコート層)を形成した。
[0103] 実施例 26〜実施例 28の各試験片について、 800°Cにおける熱伝導率の測定及 び熱サイクル耐久性の評価を、上記実施例 13、実施例 14、実施例 16及び比較例 3 と同様の方法により行った。表 6に各試験片の熱伝導率及び熱サイクル耐久性を示 す。
[0104] [表 6]
Figure imgf000037_0001
[0105] (実施例 29〜実施例 31及び比較例 6) 前記組成例 5、組成例 6、組成例 8及び比較組成例 1の組成をそれぞれ有するセラ ミックス層(トップコート層)を以下の方法で形成し、実施例 29〜実施例 31及び比較 例 6の試料を作製した。
実施例 9〜実施例 16、比較例 3及び比較例 4と同様の原材料を用いて同様の方法 により、耐熱基材上にボンドコート層を形成した。
このボンドコート層上に、それぞれ前記組成例 5、組成例 6、組成例 8及び比較組成 例 1に記載の原料力もなる焼結インゴットをターゲット材料に用いて、電子ビーム物理 蒸着法(EB— PVD)により 0. 5mmの厚さのセラミックス層(トップコート層)を形成し た。電子ビーム物理蒸着法は、アルデンヌ社製電子ビーム蒸着装置 (例えば、 TUB A150)を用いて、前記焼結インゴットをターゲット材料に用い、電子ビーム出力 50k W、雰囲気 10_4torrの減圧環境、耐熱基材温度 1, 000°Cの条件で行った。
[0106] 実施例 29〜実施例 31及び比較例 6の各試験片について、 800°Cにおける熱伝導 率の測定及び熱サイクル耐久性の評価を、上記実施例 13、実施例 14、実施例 16及 び比較例 3と同様の方法により行った。表 7に各試験片の熱伝導率及び熱サイクル 耐久性を示す。
[0107] [表 7]
Figure imgf000038_0001
[0108] 上記各実施例にお!、て、本発明の「CaOZMgOドープ A Zr O」に対応する組成
2 2 7
として組成例 1〜組成例 5を用い、本発明の「A, B Zr O」に対応する組成として組
1 1 2 7
成例 6及び組成例 7を用い、本発明の「A" Ce O」に対応する組成として組成例 8を
2 2 7
用いたが、本発明で採用される組成はこれら組成例に限定されるものではない。上 記各実施例において、元素 A、 A'、 A "又は Bに相当する元素を本願の各請求項に 記載の範囲内において他の元素に置換したものについても、上記各実施例とほぼ同 様の効果が得られる。

Claims

請求の範囲
[1] 一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dyの!、ずれかを表す)で表され
2 2 7
る酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以上 30モル%以下の
MgOの少なくとも一方を添加してなる酸ィ匕物を含んでなり、 10体積%以上のパイ口 クロァ型結晶構造を有する遮熱コート材料。
[2] 一般式 A, B Zr O (但し、 A,及び Bはそれぞれ La、 Nd、 Sm、 Gd、 Dy、 Ce又は
Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で表される酸化物を 含んでなる遮熱コート材料。
[3] 一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを表す)で表される酸化
2 2 7
物を含んでなる遮熱コート材料。
[4] 耐熱基材上に溶射又は蒸着され、前記耐熱基材がガスタービン用部品に用いられ る基材である、請求項 1から請求項 3のいずれかに記載の遮熱コート材料。
[5] 耐熱基材と、
該耐熱基材上に形成されたボンドコート層と、
該ボンドコ一ト層上に形成されたセラミックス層と
を含んでなる遮熱コーティング部材であって、
該セラミックス層が一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dvのいずれ
2 2 7
かを表す)で表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以 上 30モル%以下の MgOの少なくとも一方を添カ卩してなる酸ィ匕物を含み、かつ該セラ ミックス層が 10体積%以上のパイロクロア型結晶構造を有する遮熱コーティング部材
[6] 耐熱基材と、
該耐熱基材上に形成されたボンドコート層と、
該ボンドコ一ト層上に形成されたセラミックス層と
を含んでなる遮熱コーティング部材であって、
該セラミックス層が一般式 A, B Zr O (但し、 A'及び Bはそれぞれ La
1 1 2 7 、 Nd、 Sm、
Gd、 Dy、 Ce又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で 表される酸化物を含む遮熱コーティング部材。 [7] 耐熱基材と、
該耐熱基材上に形成されたボンドコート層と、
該ボンドコ一ト層上に形成されたセラミックス層と
を含んでなる遮熱コーティング部材であって、
該セラミックス層が一般式 A" Ce O (但し、 A"は La
2 2 7 、 Sm又は Ybのいずれかを表 す)で表される酸化物を含む遮熱コーティング部材。
[8] 前記セラミックス層が気孔率 1%以上 30%以下の気孔を有する、請求項 5から請求 項 7の 、ずれかに記載の遮熱コーティング部材。
[9] 前記セラミックス層が、その厚さ方向に、前記耐熱基材上のボンドコート層以外の全 層の厚さの 5%以上 100%以下の間隔で縦割れを有する、請求項 5から請求項 8の
V、ずれかに記載の遮熱コーティング部材。
[10] 前記セラミックス層が柱状晶である、請求項 5から請求項 7のいずれかに記載の遮 熱コーティング部材。
[11] 上記ボンドコ一ト層と上記セラミックス層との間にジルコユア含有層を更に含んでな る請求項 5から請求項 10のいずれかに記載の遮熱コーティング部材。
[12] 前記ジルコユア含有層が気孔率 1%以上 30%以下の気孔を有する請求項 11に記 載の遮熱コ一ティング部材。
[13] 前記ジルコニァ含有層力 その厚さ方向に、上記耐熱基材上のボンドコート層以外 の全層の厚さの 5%以上 100%以下の間隔で縦割れを有する請求項 11又は請求項
12に記載の遮熱コ一ティング部材。
[14] 請求項 5から請求項 13の 、ずれかに記載の遮熱コーティング部材を備えたガスタ 一ビン。
[15] 一般式 A Zr O (但し、 Aは La、 Nd
2 2 7 、 Sm、 Gd又は Dyのいずれかを表す)で表され る酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方を添加してなる酸ィ匕物を含んでなり、 10体積%以上のパイ口 クロァ型結晶構造を有する焼結体。
[16] 一般式 A, B Zr O (但し、 A,及び Bはそれぞれ La、 Nd、 Sm、 Gd、 Dv、 Ce又は
1 1 2 7
Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である)で表される酸化物を 含んでなる焼結体。
[17] 一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを表す)で表される酸化
2 2 7
物を含んでなる焼結体。
[18] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層上に一般式 A Zr O (但し、 Aは La、 Nd、 Sm、 Gd又は Dyのいず
2 2 7
れかを表す)で表される酸化物に、 5モル%以上 30モル%以下の CaO及び 5モル% 以上 30モル%以下の MgOの少なくとも一方を添加してなる酸化物を含み、かつ 10 体積%以上のパイロクロア型結晶構造を有するセラミックス層を形成するステップと を含む遮熱コーティング部材の製造方法。
[19] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層上に一般式 A, B Zr O (但し、 A'及び Bはそれぞれ La、 Nd、 S
1 1 2 7
m、 Gd、 Dy、 Ce又は Ybのいずれかを表し、かつ A'と Bとは互いに異なる元素である )で表される酸化物を含むセラミックス層を形成するステップと
を含む遮熱コーティング部材の製造方法。
[20] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層上に一般式 A" Ce O (但し、 A"は La、 Sm又は Ybのいずれかを
2 2 7
表す)で表される酸化物を含むセラミックス層を形成するステップとを含む遮熱コーテ イング部材の製造方法。
[21] 上記ボンドコート層形成ステップと上記セラミックス層形成ステップの間に、ジルコ二 ァ含有層を形成するステップを含む請求項 18から請求項 20のいずれかに記載の遮 熱コーティング部材の製造方法。
[22] 上記ジルコユア含有層形成ステップが、前記ジルコユア含有層に気孔を導入する 段階を含む請求項 21に記載の遮熱コーティング部材の製造方法。
[23] 上記ジルコユア含有層形成ステップ力 前記ジルコユア含有層に厚さ方向の縦割 れを導入する段階を含む請求項 21又は請求項 22に記載の遮熱コーティング部材の 製造方法。
[24] 上記セラミックス層形成ステップが、前記セラミックス層に気孔を導入する段階を含 む請求項 18から請求項 23のいずれかに記載の遮熱コーティング部材の製造方法。
[25] 上記セラミックス層形成ステップが、前記セラミックス層に厚さ方向の縦割れを導入 する段階を含む請求項 18から請求項 24のいずれかに記載の遮熱コーティング部材 の製造方法。
[26] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層の上に電子ビーム物理蒸着法を用いて、一般式 A Zr O (但し、
2 2 7
Aは La、 Nd、 Sm、 Gd又は Dyのいずれかを表す)で表される酸化物に、 5モル%以 上 30モル%以下の CaO及び 5モル%以上 30モル%以下の MgOの少なくとも一方 を添加してなる酸ィ匕物を含みかつ 10体積%以上のノ ィロクロア型結晶構造を有する 柱状晶を有するセラミックス層を形成するステップと
を含む遮熱コーティング部材の製造方法。
[27] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層の上に電子ビーム物理蒸着法を用いて、一般式 A, B Zr O (伹
1 1 2 7 し、 A,及び Bはそれぞれ La、 Nd、 Sm、 Gd、 Dy、 Ce又は Ybのいずれかを表し、力 つ A'と Bとは互いに異なる元素である)で表される酸ィ匕物を含む柱状晶を有するセラ ミックス層を形成するステップと
を含む遮熱コーティング部材の製造方法。
[28] 耐熱基材上にボンドコート層を形成するステップと、
該ボンドコート層の上に電子ビーム物理蒸着法を用いて、一般式 A" Ce O (但し
2 2 7
、 A"は La、 Sm又は Ybのいずれかを表す)で表される酸化物を含む柱状晶を有する セラミックス層を形成するステップと
を含む遮熱コーティング部材の製造方法。
PCT/JP2006/320067 2006-03-31 2006-10-06 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体 WO2007116547A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06811394A EP2009131A4 (en) 2006-03-31 2006-10-06 SHIELD COATING ELEMENT, MANUFACTURING METHOD, HEAT SHIELD COATING MATERIAL, GAS TURBINE AND SINTER BODY
CA 2647453 CA2647453C (en) 2006-03-31 2006-10-06 Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body
US12/225,490 US8586169B2 (en) 2006-03-31 2006-10-06 Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-096946 2006-03-31
JP2006096946A JP4959213B2 (ja) 2006-03-31 2006-03-31 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体

Publications (1)

Publication Number Publication Date
WO2007116547A1 true WO2007116547A1 (ja) 2007-10-18

Family

ID=38580850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320067 WO2007116547A1 (ja) 2006-03-31 2006-10-06 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体

Country Status (6)

Country Link
US (1) US8586169B2 (ja)
EP (2) EP2371987B1 (ja)
JP (1) JP4959213B2 (ja)
CN (1) CN101405423A (ja)
CA (1) CA2647453C (ja)
WO (1) WO2007116547A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126194A1 (en) * 2008-04-11 2009-10-15 Siemens Energy, Inc. Segmented thermal barrier coating
JP2009286127A (ja) * 2008-05-29 2009-12-10 Alstom Technology Ltd 多層遮熱コーティング
US20100136349A1 (en) * 2008-11-25 2010-06-03 Rolls-Royce Corporation Multilayer thermal barrier coatings
JP2010241611A (ja) * 2007-05-07 2010-10-28 Siemens Ag パイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655326B2 (en) * 2001-06-15 2010-02-02 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
WO2010039699A2 (en) * 2008-09-30 2010-04-08 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
EP2196559A1 (en) * 2008-12-15 2010-06-16 ALSTOM Technology Ltd Thermal barrier coating system, components coated therewith and method for applying a thermal barrier coating system to components
JP5285486B2 (ja) 2009-03-30 2013-09-11 三菱重工業株式会社 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン
US9822437B2 (en) 2009-12-17 2017-11-21 Mitsubishi Hitachi Power Systems, Ltd. Process for producing thermal barrier coating
JP5622399B2 (ja) * 2010-01-07 2014-11-12 三菱重工業株式会社 遮熱コーティング、これを備えたタービン部材及びガスタービン
JP2013520567A (ja) * 2010-02-26 2013-06-06 シーメンス アクティエンゲゼルシャフト 2層金属ボンドコート
KR101143311B1 (ko) 2010-04-22 2012-05-08 한국세라믹기술원 고온환경 열차폐용 저열전도성 복합산화물 및 그 제조 방법
US8337996B2 (en) * 2010-11-22 2012-12-25 General Electric Company Vanadium resistant coating system
CN102153892B (zh) * 2010-12-03 2013-04-17 西南科技大学 (La,Gd)2Zr2O7-(Zr,Gd)O2-δ复相热障涂层材料及其制备方法
US8807955B2 (en) * 2011-06-30 2014-08-19 United Technologies Corporation Abrasive airfoil tip
EP2753726A1 (en) * 2011-09-07 2014-07-16 Federal-Mogul Corporation Cylinder liner with a thermal barrier coating
MX339254B (es) * 2011-12-19 2016-05-18 Praxair Technology Inc Suspension acuosa para la produccion de recubrimientos de barrera termica y ambiental y procesos para la elaboracion y la aplicacion de los mismos.
US9771811B2 (en) * 2012-01-11 2017-09-26 General Electric Company Continuous fiber reinforced mesh bond coat for environmental barrier coating system
CN102992764A (zh) * 2012-09-12 2013-03-27 河南工程学院 稀土改性Sm2Ce2O7热障涂层陶瓷材料及其制备方法
EP2733236A1 (de) * 2012-11-16 2014-05-21 Siemens Aktiengesellschaft Zweilagiges keramisches Schichtsystem mit äußerer poröser Schicht und Vertiefungen darin
JP6234746B2 (ja) * 2013-09-09 2017-11-22 三菱重工業株式会社 皮膜補修方法
DE102014010665A1 (de) * 2014-07-18 2016-01-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Beschichtung einer Kolbenlauffläche einer Zylinderbohrung einer Brennkraftmaschine eines Kraftfahrzeugs
US10150707B2 (en) 2014-09-05 2018-12-11 Mitsubishi Hitachi Power Systems, Ltd. Method of producing thermal spray powder, manufacture apparatus of thermal spray powder, and thermal spray powder produced by the producing method
US10329205B2 (en) 2014-11-24 2019-06-25 Rolls-Royce Corporation Bond layer for silicon-containing substrates
JP6339118B2 (ja) * 2015-04-08 2018-06-06 アイシン精機株式会社 車両用機械部品およびピストン
DE102015221422A1 (de) * 2015-11-02 2017-05-04 Siemens Aktiengesellschaft Wärmedämmschichtsystem mit Kühlluftlöchern und verschiedener Wärmedämmschicht im Bereich der Kühlluftbohrungen
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
DE102016212874A1 (de) * 2016-07-14 2018-01-18 Oerlikon Surface Solutions Ag, Pfäffikon Schutzbeschichtung für eine thermisch beanspruchte Struktur
JP6607837B2 (ja) 2016-10-06 2019-11-20 三菱重工業株式会社 遮熱コーティング膜、タービン部材及び遮熱コーティング方法
US10174412B2 (en) 2016-12-02 2019-01-08 General Electric Company Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
US11105000B2 (en) 2017-03-20 2021-08-31 General Electric Company Articles for high temperature service
CN110520599A (zh) * 2017-03-28 2019-11-29 三菱重工业株式会社 隔热涂层膜以及涡轮构件
US20210087695A1 (en) * 2017-12-19 2021-03-25 Oerlikon Metco (Us) Inc. Erosion and cmas resistant coating for protecting ebc and cmc layers and thermal spray coating method
JP7169077B2 (ja) 2018-03-26 2022-11-10 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン及び遮熱コーティングの製造方法
US10995620B2 (en) * 2018-06-21 2021-05-04 General Electric Company Turbomachine component with coating-capturing feature for thermal insulation
DE102018215223A1 (de) * 2018-09-07 2020-03-12 Siemens Aktiengesellschaft Keramisches Material auf der Basis von Zirkonoxid mit weiteren Oxiden und Schichtsystem
CN110104680B (zh) * 2019-05-16 2021-06-08 湖南工学院 一种具有核壳结构热障涂层材料及其制备方法
CN112062566B (zh) * 2019-05-22 2022-04-15 北京理工大学 一种铈酸盐复合材料及其制备方法和应用
JP7312626B2 (ja) * 2019-07-02 2023-07-21 三菱重工業株式会社 遮熱コーティング部品および遮熱コーティング部品の製造方法
CN111118438B (zh) * 2020-01-14 2021-12-17 武汉理工大学 高温高发射率散热涂层及其制备方法与应用
CN114560697B (zh) * 2022-03-14 2023-04-07 清华大学 一种双稀土锆酸盐热障涂层材料及其制备方法
CN115124339B (zh) * 2022-07-29 2023-09-26 中钢集团洛阳耐火材料研究院有限公司 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN115925419B (zh) * 2022-12-16 2024-04-12 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505620A (ja) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト 高温ガスに曝される断熱層を備えた製品ならびにその製造方法
JP2002504627A (ja) * 1998-02-20 2002-02-12 ガドウ レイナー 断熱材およびその製造方法
JP2003160852A (ja) 2001-11-26 2003-06-06 Mitsubishi Heavy Ind Ltd 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
JP2003342751A (ja) * 2002-05-23 2003-12-03 Japan Fine Ceramics Center 耐熱構造部材およびその製造方法
JP2004012390A (ja) 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd 高温部品の遮熱コーティング材の品質評価法
JP2004149915A (ja) * 2002-09-06 2004-05-27 Kansai Electric Power Co Inc:The 熱遮蔽セラミックコーティング部品とその製造方法
JP2005501174A (ja) * 2001-04-03 2005-01-13 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング La2Zr2O7をベースとする高温用断熱層
JP2005163185A (ja) * 2004-12-27 2005-06-23 Mitsubishi Heavy Ind Ltd ガスタービン、遮熱コーティング材、その製造方法及びタービン部材
JP2005231951A (ja) * 2004-02-19 2005-09-02 Tosoh Corp 複合酸化物及び排ガス浄化用触媒

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887273A (ja) * 1981-11-18 1983-05-25 Hitachi Ltd セラミツク被覆層を有する部品とその製造方法
JPH0251978A (ja) * 1988-08-15 1990-02-21 Fujitsu Ltd 画像符号化装置
JPH09287065A (ja) * 1996-04-19 1997-11-04 Toshiba Corp 耐熱被覆部材
US6258467B1 (en) 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
US6117560A (en) 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
US6177200B1 (en) 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials
DE10008861A1 (de) 2000-02-25 2001-09-06 Forschungszentrum Juelich Gmbh Kombinierte Wärmedämmschichtsysteme
JP3872632B2 (ja) 2000-06-09 2007-01-24 三菱重工業株式会社 遮熱コーティング材、それを適用したガスタービン部材およびガスタービン
US7147544B2 (en) 2001-08-02 2006-12-12 3M Innovative Properties Company Glass-ceramics
JP4166977B2 (ja) * 2001-12-17 2008-10-15 三菱重工業株式会社 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
PL361760A1 (en) 2002-08-21 2004-02-23 United Technologies Corporation Heat barrier forming coat featuring low thermal conductivity
JP2004179642A (ja) 2002-11-11 2004-06-24 Seiko Epson Corp 圧電体デバイス、液体吐出ヘッド、強誘電体デバイス及び電子機器並びにこれらの製造方法
US7094450B2 (en) 2003-04-30 2006-08-22 General Electric Company Method for applying or repairing thermal barrier coatings
FR2858613B1 (fr) * 2003-08-07 2006-12-08 Snecma Moteurs Composition de barriere thermique, piece mecanique en superalliage munie d'un revetement ayant une telle composition, revetement de ceramique, et procede de fabrication du revetement
US20060177665A1 (en) 2003-08-13 2006-08-10 Siemens Aktiengesellschaft Arrangement of at least one heat-insulation layer on a carrier body
US6960395B2 (en) 2003-12-30 2005-11-01 General Electric Company Ceramic compositions useful for thermal barrier coatings having reduced thermal conductivity
JP4406318B2 (ja) 2004-05-14 2010-01-27 株式会社東芝 遮熱コーティング材料およびそれを用いたガスタービン部材、ガスタービン
US7816303B2 (en) * 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire
CA2529781C (en) * 2004-12-14 2010-10-12 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US7514387B2 (en) * 2005-02-15 2009-04-07 Umicore Ag & Co. Kg Reformer and method of making the same
CN100386391C (zh) 2005-03-25 2008-05-07 清华大学 稀土锆酸盐高温热障涂层材料及其制备方法
EP1925040B1 (en) * 2005-07-29 2015-10-21 American Superconductor Corporation High temperature superconducting wires and coils
CN101312926B (zh) 2005-11-25 2013-03-27 株式会社村田制作所 透光性陶瓷及其制造方法、以及光学零件及光学装置
US7674751B2 (en) * 2006-01-10 2010-03-09 American Superconductor Corporation Fabrication of sealed high temperature superconductor wires
JP2007262447A (ja) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
US8227082B2 (en) * 2007-09-26 2012-07-24 Ut-Battelle, Llc Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505620A (ja) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト 高温ガスに曝される断熱層を備えた製品ならびにその製造方法
JP2002504627A (ja) * 1998-02-20 2002-02-12 ガドウ レイナー 断熱材およびその製造方法
JP2005501174A (ja) * 2001-04-03 2005-01-13 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング La2Zr2O7をベースとする高温用断熱層
JP2003160852A (ja) 2001-11-26 2003-06-06 Mitsubishi Heavy Ind Ltd 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
JP2003342751A (ja) * 2002-05-23 2003-12-03 Japan Fine Ceramics Center 耐熱構造部材およびその製造方法
JP2004012390A (ja) 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd 高温部品の遮熱コーティング材の品質評価法
JP2004149915A (ja) * 2002-09-06 2004-05-27 Kansai Electric Power Co Inc:The 熱遮蔽セラミックコーティング部品とその製造方法
JP2005231951A (ja) * 2004-02-19 2005-09-02 Tosoh Corp 複合酸化物及び排ガス浄化用触媒
JP2005163185A (ja) * 2004-12-27 2005-06-23 Mitsubishi Heavy Ind Ltd ガスタービン、遮熱コーティング材、その製造方法及びタービン部材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. BOSE, JOURNAL OF THERMAL SPRAY TECHNOLOGY, vol. 6, no. 1, March 1997 (1997-03-01), pages 99 - 104
See also references of EP2009131A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357454B2 (en) 2001-08-02 2013-01-22 Siemens Energy, Inc. Segmented thermal barrier coating
JP2010241611A (ja) * 2007-05-07 2010-10-28 Siemens Ag パイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
WO2009126194A1 (en) * 2008-04-11 2009-10-15 Siemens Energy, Inc. Segmented thermal barrier coating
JP2009286127A (ja) * 2008-05-29 2009-12-10 Alstom Technology Ltd 多層遮熱コーティング
US20100136349A1 (en) * 2008-11-25 2010-06-03 Rolls-Royce Corporation Multilayer thermal barrier coatings
US8470460B2 (en) * 2008-11-25 2013-06-25 Rolls-Royce Corporation Multilayer thermal barrier coatings
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating

Also Published As

Publication number Publication date
US8586169B2 (en) 2013-11-19
CA2647453C (en) 2012-03-20
EP2371987A3 (en) 2014-05-14
EP2009131A4 (en) 2011-01-12
JP4959213B2 (ja) 2012-06-20
CA2647453A1 (en) 2007-10-18
EP2009131A1 (en) 2008-12-31
EP2371987B1 (en) 2016-12-21
CN101405423A (zh) 2009-04-08
JP2007270245A (ja) 2007-10-18
US20090176059A1 (en) 2009-07-09
EP2371987A2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2007116547A1 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP4969094B2 (ja) 遮熱コーティング部材及びその製造並びにガスタービン
EP1674663B1 (en) A Member coated with a thermal barrier coating and its method of manufacture.
JP4959789B2 (ja) タービン構成部品及びタングステンブロンズ構造セラミックコーティング材
JP7271429B2 (ja) セラミック化合物を含む層を有する固体基材の表面をコーティングする方法、及び該方法で得られたコーティング基材
US7655326B2 (en) Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
JP3631982B2 (ja) 遮熱コーティング材の製造方法
US7537806B2 (en) Method for producing a thermal barrier coating on a substrate
JP4031631B2 (ja) 遮熱コーティング材及びガスタービン部材並びにガスタービン
JP2003160852A (ja) 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
US20080131608A1 (en) Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
JP4533718B2 (ja) 遮熱コーティング材、遮熱コーティング材を適用したガスタービン部材およびガスタービン
JP2010242223A (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP4388466B2 (ja) ガスタービン、遮熱コーティング材、その製造方法及びタービン部材
Xu et al. Effects of deposition conditions on composition and thermal cycling life of lanthanum zirconate coatings
JP5320352B2 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP4533719B2 (ja) Tbc用溶射原料およびその製造方法、ガスタービン部材並びにガスタービン
CA2586518C (en) Thermal barrier coating material, method of production thereof, and gas turbine member and gas turbine applying the thermal barrier coating material
Matsumoto et al. Microstructure and Sintering Behavior of Hafnia-based Thermal Barrier Coating by EB-PVD Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06811394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12225490

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006811394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2647453

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200680054022.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE