JP2001505620A - 高温ガスに曝される断熱層を備えた製品ならびにその製造方法 - Google Patents

高温ガスに曝される断熱層を備えた製品ならびにその製造方法

Info

Publication number
JP2001505620A
JP2001505620A JP52607598A JP52607598A JP2001505620A JP 2001505620 A JP2001505620 A JP 2001505620A JP 52607598 A JP52607598 A JP 52607598A JP 52607598 A JP52607598 A JP 52607598A JP 2001505620 A JP2001505620 A JP 2001505620A
Authority
JP
Japan
Prior art keywords
oxide
product
layer
heat insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP52607598A
Other languages
English (en)
Other versions
JP3943139B2 (ja
Inventor
ベーレ、ウォルフラム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2001505620A publication Critical patent/JP2001505620A/ja
Application granted granted Critical
Publication of JP3943139B2 publication Critical patent/JP3943139B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Abstract

(57)【要約】 本発明は、ニッケル、コバルトあるいは鉄をベースとする超合金よりなる金属製の基材(1)を有する高温ガスダクト用の構成部品(タービンの翼、熱遮蔽要素等)に関する。接着媒介層(2)が酸化アルミニウム/酸化クロムの形成材の役割を果たす。断熱層(4)は、パイロクロール構造あるいはペロブスカイト構造の三元系あるいは擬似三元系の酸化物よりなる。これらの酸化物は相安定化剤を加えなくとも、室温から融解温度まで相安定である。さらに本発明は、大気圧プラズマスプレー法あるいは電子ビームPVD法による上記の構成部品の製造方法に関する。

Description

【発明の詳細な説明】 高温ガスに曝される断熱層を備えた製品ならびにその製造方法 本発明の対象は、セラミック層を備えた製品、特に、高温ガスダクトの中で、 特に工業用ガスタービンの中で用いられる構成部品である。さらに、本発明は、 断熱層を備えた製品の製造方法に関する。 これらの製品は、ニッケル、コバルトあるいは鉄をベースとする金属合金を備 えた基材を有している。この種の製品は、殊にガスタービンの構成部品、特にガ スタービンの翼や熱遮蔽体として使用されている。これらの構成部品は、腐食性 の燃焼ガスの高温ガス流に曝される。したがって、高い熱負荷に耐えなければな らない。さらに、これらの構成部品は耐酸化性や耐食性を持つ必要がある。殊に ガスタービンの翼のごとき可動の構成部品にも、また静止状態にある構成部品に も、さらに、機械的な必要条件が要求される。高温ガス負荷を受ける構成部品が 使用されるガスタ一ビンの出力ならびに効率は、運転温度が高くなるほど上昇す る。特に高温の負荷を受けるガスタービンの構成要素は、高効率と高出力を得る ためにセラミック材料で被覆される。この被覆層は高温ガス流と金属製基材との 間の断熱層の役割を果たす。 金属製の基材は、被覆層によって腐食性の高温ガス流から保護される。最近の 構成部品は、多くの場合、それぞれ個別の役割を果たす複数の被覆層を備えてい る。したがって、多層被覆系が提示されている。 ガスタービンの出力と効率は運転温度が高くなるに従って向上するので、被覆 系を改良してガスタービンの高出力を達成しようとの試みが繰り返し行われてい る。 改良の最初の手始めは接着層の最適化にある。米国特許第4,321,310号明細書 においては、細かな表面粗さを持つようにMCrAlYの接着層を形成することが提示 されている。この層の上には、引き続いて酸化アルミニウムからなる層が形成さ れる。これによって、断熱層の接着が著しく改良される。 米国特許第4,880,614号明細書では、MCrAlYからなる接着層と金属製基材と の間に高純度のアルミニウム層を形成することが提示されている。このアルミニ ウムは、接着層の上に密度の高いAl2O3層を形成するのに用いられる。この措置 によって、被覆された構成部品の長寿命化が図られる。 米国特許第5,238,752号明細書には、ニッケルアルミナイドあるいはプラチナ アルミナイドからなる接着層が提示されている。この接着層の上に酸化アルミニ ウムからなる層が生成され、その上に断熱層が形成される。 米国特許第5,262,245号明細書には、基材材料からなる酸化層として酸化アル ミニウム層を形成することが記載されている。このため、基材は、高度に酸化し 易い合金成分を有するニッケルベースの合金を有している。 米国特許第4,676,994号明細書には、基材の上に酸化アルミニウムを形成する 層を備えることが提示されている。これらの層の表面には酸化アルミニウムが生 じる。この上に高密度のセラミック層が蒸着される。このセラミック層は高密度 の化学量論比以下のセラミック材料よりなり、酸化物、窒化物、炭化物、硼化物 、珪化物等のいずれでもよくまたその他の耐火物セラミック材料でもよい。この セラミック層の上に断熱層が形成される。 上述の米国特許明細書のほとんどすべてが、断熱層が柱状ミクロ構造を持つこ とを提示している。この際、柱状ミクロ構造の結晶柱は基材の表面に対して垂直 である。セラミック材料として安定化された酸化ジルコニウムが提示されている 。安定化剤には、酸化カルシウム、酸化マグネシウム、酸化セリウム、特に酸化 イットリウムが考えられている。安定化剤は、立方結晶構造から正方結晶構造へ そして最終的に単斜結晶構造へ相転移が生じるのを阻止するために必要である。 主に正方相が約90%となるように安定化される。 米国特許第4,321,311号明細書においては、基材と断熱層とが異なる熱膨張係 数をもつことによって温度変化にともなって生じる断熱層の応力を除去するため に、断熱層の中にかなりの大きい空間的欠除部が予め備えられている。断熱層は 柱状構造を持ち、酸化イットリウムで安定化された酸化ジルコニウムからなる個 々の柱状体の間にギャップが存在することとなる。 米国特許第5,236,787号明細書には、温度変化にともなう応力の問題を解決す る ための別の提案が提示されている。この提案では、基材と断熱層との間に、金属 とセラミックスとの混合物よりなる中間層が装入される。このとき、この中間層 の金属の割合を、基材に近づくにしたがって増大させ、断熱層に近づくにしたが って減少させる。これに対して、セラミックスの割合は、基材に近いほど小さく 、断熱層に近いほど大きくする。断熱層としては、酸化セリウムを有し酸化イッ トリウムで安定化された酸化ジルコニウムが提案されている。この断熱層はプラ ズマスプレー法あるいはPVD法によって基材上に形成される。酸化イットリウ ム安定化剤の割合は8〜20重量%である。 米国特許第4,764,341号明細書には、セラミックスの上へ薄い金属層を結合す ることが記載されている。ニッケル、コバルト、銅ならびにこれらの金属の合金 がこの金属層として使用されている。セラミック基板上に金属層を結合させるた めに、セラミック基板の上に酸化アルミニウム、酸化クロム、酸化チタンあるい は酸化ジルコニウム等の中間酸化物が形成され、この中間酸化物が十分高温で酸 化によって金属被覆層の元素を取り込んで三元系酸化物を形成する。 本発明の課題は、高温ガスに曝される断熱層を備えた製品を提供することにあ る。さらに別の課題は、断熱層を備えた製品の製造方法を提供することにある。 本発明は、従来の断熱層材料が圧倒的に擬似二元系のセラミックスであるとの 認識に基づいている。これより、この種のセラミック材料は、AB2あるいはA2B3 により与えられる一般的な構造式をもつことが判る。このとき酸化ジルコニウム をベースとする材料が最も好適であることが明らかとなっている。しかしながら 、酸化ジルコニウムは900℃以上の領域においてエージング現象を示す。このエ ージング現象は、酸化ジルコニウム断熱層が焼結することにより引き起こされる 。これによって、断熱層内の細孔や空間的欠除部がつぎつぎと除去される。断熱 層材料と基材材料との熱膨張係数の差により引き起こされる応力を削減する能力 がますます低下することとなる。この焼結は材料の汚染によって増大する。この 焼結はさらに断熱層と、高温ガスの成分、基材の材料および接着層の材料との相 互作用によって増大する。特に、安定化剤として添加される酸化イットリウムは エージングを促進する。ガスタービンは全負荷で例えば10、000時間の長い運転 寿命を持つことが望ま しいので、酸化ジルコニウム断熱層を備えた構成部品の許容表面温度は1250℃に 制限される。この最大許容表面温度によって、ガスタービンの出力および効率は 拘束され、限定される。 本発明による製品には、三元系あるいは擬似三元系の酸化物のセラミックスを 有する断熱層が備えられる。この酸化物がパイロクロール構造あるいはペロブス カイト構造を有すると好ましい。断熱層の材料は、室温から融解温度まで相変態 のないものが好適である。この場合、安定化剤の添加は必要でない。融解温度は それぞれの化合物に依存するが、2150℃以上の値が好ましい。 特に、基材と断熱層との間には結合酸化物を備えた結合層が配置される。この 結合層は、例えば酸化物を堆積することによって形成することができる。もちろ ん、結合層は断熱層と基材との間に配置される接着媒介層を酸化させることによ っても形成できる。接着媒介層の酸化は断熱層の堆積の前にあるいは製品の使用 中に酸素含有雰囲気下において生じさせることができる。このとき、接着媒介層 が酸化物を形成する金属元素を有すると好適である。また、結合層を直接金属基 材の合金の酸化によって形成することも同様に可能である。そのために、金属基 材の合金は相応する金属元素を有する。結合酸化物が酸化クロムおよび/あるい は酸化アルミニウムであると好ましい。 本発明による製品は、例えばガスタービンの翼、ガスタービンの燃焼室の熱遮 蔽要素あるいは内燃機関の構成部品のごとき熱機械の構成部品である。タービン の翼や熱遮蔽要素等のガスタービンの構成部品は、特に、ニッケル、クロムある いは鉄をベースとする超合金よりなる基材を備えている。これらの基材には特に MCrAlYよりなる接着媒介層が備えられている。このMCrAlYよりなる接着媒介層は 、空気やその他の実際的な酸素含有雰囲気において(最も遅い場合には製品の使 用時に)アルミニウムおよび/あるいはクロムの一部が酸化物へ移行するので、 酸化防止層の役割も果たす。この接着媒介層の上に断熱層が備えられる。断熱層 は三元系あるいは擬似三元系の酸化物よりなる。これは特にパイロクロール構造 あるいはペロブスカイト構造をもつ。三元系の酸化物とは、三つの異なる化学元 素の原子よりなる物質として理解される。擬似三元系の酸化物とは、四つ以上の 異なる化学元素 の原子を有し、その原子が三つの異なる元素グループに属し、かつ個々の元素の 原子が結晶学的観点において三つの異なる元素グループのそれぞれ一つの中で同 等に作用する物質として理解される。 これらのセラミック物質は、断熱層として要求される低い熱伝導率を持つ。そ の熱伝導率は、特に高温において酸化ジルコニウムの熱伝導率とほぼ同等である 。さらに、断熱層のセラミック物質は基材材料の熱膨張係数に適合する熱膨張係 数を持つている。熱膨張係数はおよそ9×10-6/Kである。断熱層の三元系酸化 物のセラミック物質は特に室温と融解温度との間において相的に安定している。 したがって、エージングを促進する安定化剤は不要である。さらに、断熱層がMC rAlYよりなる接着媒介層の媒介によって基材上へ安定して接着されることが保証 される。さらに、断熱層のセラミック物質の蒸発が極めて少ないことが目立つ。 その割合は、例えば1600℃におけるランタンハフネートの蒸発量において、1000 時間当たり0.4μmである。 本発明によれば、断熱層の形成方法についての課題は、三元系酸化物、特にパ イロクロール、あるいはペロブスカイトのセラミックスを用いた被覆層を、大気 圧プラズマスプレー法、あるいはEB−PVD(電子ビーム物理蒸着)法のごと きPVD法によって生じさせることによって解決される。いずれの方法において も、プロセスパラメーターを適正に選択することにより所望の多孔性を備えた層 を形成することができる。また、柱状ミクロ構造を形成することもできる。この 場合、被覆層に用いられる原料が完成した被覆層の材料と同一の化学的、結晶学 的性質をあらかじめ備えることは必ずしも必要ではない。とりわけランタンハフ ネートの場合、被覆層形成プロセスの原料として二種類の二元系酸化物からなる 粉末混合物を使用することができる。このとき、二種類の粉末の質量割合は、後 工程の被覆層形成プロセスで構成部品上に形成される断熱層の化学量論比の組成 に相応する。例えばランタンハフネートよりなる断熱層は、EB−PVDプロセ スに原料として酸化ハフニウムと酸化ランタンとの混合物を使用することによっ て形成される。この場合、酸化ハフニウムの酸化ランタンに対するモル比は1.29 である。 以下において断熱層用の三元系あるいは擬似三元系の酸化物、特にパイロクロ ー ル構造あるいはペロブスカイト構造をもつセラミック物質について、実施例に基 づいて詳細に説明する。 図1はパイロクロール構造の一平面での平面図、 図2はパイロクロール構造の基本セルの部分図、 図3はペロブスカイト構造の単位セル、 図4は図3に対して1/2,1/2,1/2ずらせたペロブスカイト構造の単位セル、 図5はタービン翼の部分縦断面図を示す。 パイロクロール構造の三元系酸化物のセラミック物質よりなる断熱層において は、結晶構造は基本セル当たり88個の原子を有する。この種の三元系酸化物の一 般化学構造式はA2B2O7と書かれる。このとき“A”と“B”は金属イオン、“O ”は酸素である。 以下においてパイロクロール構造について述べる(図1)。相対的に小さいB −陽イオンは、酸素原子とともに八面体の形に配位される。この八面体は、隣接 する八面体がそれぞれ1個の酸素原子を分担している三次元の網構造を形成する 。相対的に大きいA−陽イオンは、B−陽イオンの配位八面体の酸素イオンより なる六角形状の環の中にある。それらのA−陽イオンの、環の面に対して垂直方 向の上側および下側に酸素原子がある。その結合長は環の酸素原子との結合長に 比べていくらか短い。したがって、A−陽イオンは酸素とともに六面体状をなす 2個のピラミッドの形状に配位される。パイロクロール構造の他の説明(図2) では、この構造が2つの形式の陽イオン配位多面体よりなることを示している。 このとき、相対的に小さなB−陽イオンが、6個の等距離にある酸素原子を逆三 角形のプリズムの形に配位している。より大きなA−陽イオンは、6個の等距離 にある酸素原子中と、これらより若干短い結合長をもつ2個の別の酸素原子とに よって配位されている。これらの8個の酸素原子はA−陽イオンの周りにねじれ た立方体を形成している。 陽イオンと酸素原子との間の結合長が異なる場合、A−陽イオンおよびB−陽 イオンが具体的にどのような化学元素であるかに応じて、配位多面体が歪むので 、構造の説明はとりわけ困難となる。したがって、粉末回折装置での測定により 異なった原子の相互配位を正確に推論することは不可能と思われる。その限りに おいて、 粉末回折装置での測定による2θ値を用いてパイロクロール構造の特性表示を行 うことが必要である。以下の表には、パイロクロールとしての特性強度をもつ2 θ値と、それの属するhkl値が挙げられている。 2θ hkl 29.2 111 33.2 200 47.8 220 56.7 311 594 222 69.8 400 77.2 331 79.6 420 89.0 511/311 試験用粉末が汚染しているので、2θ値は小数点以下第1位の範囲で微少な偏 差を生じている。また、粉末回折装置での測定においてはシステム上の誤差が起 こりうる。この誤差は原則的に2種類の形で2θ値に影響を及ぼす。すなわち、 第一に、測定した2θ値が全体としてより大きな2θ値へあるいはより小さな2 θ値へとずれる可能性がある。しかしながら、この場合には、隣接する二つの2 θ値の間の間隔は同一に保たれる。第二に、強度が2θ目盛り上で全体的に平坦 化され、あるいは圧縮される事態が起こりうる。しかしながら、測定試験での隣 接する2θ値の間隔の割合は、提示した表に示された隣接する2θ値の対応する 間隔の比と同一である。 一般化学構造式でのA−陽イオンおよびB−陽イオンには、特に、希土類金属 とアルミニウム(一般にA3+−陽イオン)、およびハフニウム、ジルコニウム、 セリウム(一般にB4+−陽イオン)が用いられる。 三元系酸化物、特にパイロクロール構造よりなる断熱層用には、以下の物質、 す なわち、ランタンハフネート(La2Hf2O7)、ランタンジルコネート(La2Zr2O7)、 アルミニウムハフネート(Al2Hf2O7)、セリウムハフネート(Ce2Hf2O7)、セリ ウムジルコネート(Ce2Zr2O7)、アルミニウムセレート(Al2Ce2O7)およびラン タンセレート(La2Ce2O7)が特に適している。パイロクロール構造をもつ好適な 被覆層材料には擬似三元系酸化物も含まれる。これらは、例えば構造式La2(HfZr )O7あるいは(CeLa)Hf2O7を持つ。さらに、結合が整数でない指数のもの、例えば La2(Hf1.5Zr0.5)O7も考慮に入れられる。また、A−陽イオンとB−陽イオンが 同時に複数の元素を有することも可能である。 これらの化合物は、それらを構成する元素に対して数モル%の可溶性範囲を示 す点で優れている。したがって、化学量論比以上または以下の組成をもつ堆積物 の形成が回避される。さらに、これらの化合物は広い温度範囲に亘って安定した 相を有する点で優れている。このことは、パイロクロール構造が高温ガスダクト の運転にとって重要な温度領域に維持され続けることを意味する。すなわち、La2 Hf2O2およびLa2zr2O7は1500℃を超えることによって初めてその結晶構造が変化 する。したがって、安定化剤を添加する必要はない。その結果、安定化剤の作用 による材料のエージングの促進はなくなる。したがって、許容運転温度をより高 い値へ高くすることができる。 ペロブスカイト構造をもつ被覆層材料は、一般化学構造式ABO3をもつ。ペロブ スカイト構造をもつ化合物は、A−陽イオンがB−陽イオンに比べて相対的に小 さいことによって、同様に一般化学式ABO3をもつイルメナイト構造の化合物とは 区別されている。ペロブスカイト構造は結晶学的に十分信頼性よく説明すること ができる。ペロブスカイト構造はパイロクロール構造に比べて極めて小さい。ペ ロブスカイト構造は基本セルに4個の原子をもつ。図3にペロブスカイト構造の 基本セルが描かれている。図4は、図3の基本セルに対して1/2,1/2,1 /2ずらせたペロブスカイト構造の基本セルを示している。より小さいA−陽イ オンは塗り潰した円で、より大きいB−陽イオンは細い斜線を施した円で、また O−イオンは中空円で示されている。図3、図4から判るように、ペロブスカイ ト構造は立方構造である。そのうち、より大きいB−陽イオンが基本立方体の角 を占め、より小さ いA−陽イオンが基本立方体の中央に、またO−イオンが基本立方体の面の中央 にある(図4)。また、この構造は、より大きいB−陽イオンとO−イオンとに よって立方最密球状充填が形成され、八面体の隙間の1/4にA−陽イオンが配 されているとも説明することもできる。B−陽イオンは、12個のO−イオンと ともに立方八面体の形に配位され、O−イオンはそれぞれ4個のB−陽イオンと 2個のAー陽イオンとに隣接している。 断熱層用の材料として以下の化合物、すなわち、イッテルビウムジルコネート (YbZrO3)、イッテルビウムハフネート(YbHfO3)、カルシウムジルコネート(CaZrO3 )およびカルシウムハフネート(YbHfO3)が用いられる。このうち、特にイッテル ビウムジルコネートとイッテルビウムハフネートが好適である。 ペロブスカイト構造の断熱層材料の場合にも、Aグループ、Bグループの全て の陽イオンが同一元素に属する必要はない。したがって、例えば構造式Yb(Zr0.5 Hf0.5)O3等の擬似三元系酸化物の化合物とすることもできる。 パイロクロール構造の断熱層材料と同様に、ペロブスカイト構造の材料も、室 温から高温まで、融解温度に達しない限り、相転移を生じることはない。この理 由から、ペロブスカイト構造の材料は、パイロクロール構造の断熱層用材料に類 似して好適である。 図5には、詳細には図示されていないガスタービンの翼、あるいはガスタービ ンの燃焼室の熱遮蔽要素の断面図が図示されている。特にニッケル、コバルトお よび鉄をベースとする超合金よりなる基材1の上に、接着媒介層2が堆積されて いる。接着媒介層2は金属−クロム−アルミニウム−イットリウム合金(MCrAlY 合金)よりなる。接着媒介層2は、断熱層4と基材1との間の接着を保証する役 割を果たす。接着媒介層に含まれるアルミニウムおよび/あるいはクロムは、酸 化アルミニウム/酸化クロムの形成体の役割をし、酸素バリアとして基材1を酸 化から保護する酸化アルミニウムもしくは酸化クロムからなる結合層3、特に高 密度の不活性層が形成される。断熱層4は基材1の上に、特に大気圧プラズマス プレー法により、あるいは例えばEB−PVD法のごときPVD法によって堆積 される。堆積方法として大気圧プラズマスプレー法を用いる場合には、プロセス パラメーターは断熱層 4に所望の多孔性が得られるように選定される。EB−PVD法を用いれば、断 熱層4に柱状構造を生じさせることができる。このとき、結晶柱は基材1の表面 に対して垂直になる。断熱層4は例えばランタンハフネートにより構成される。 断熱層4は比較的目の荒いミクロ構造を呈し、細孔やその他の空間的欠除部を持 つ。また、柱状構造は比較的目の荒い構造を特徴としている。このような目の荒 い構造は高温ガス流中でエロージョンを起こし易い。このエロージョンの発生を 防止するために、図示したように、断熱層4の表面は高密度で目の詰まった保護 層5へ再溶解される。保護層5は例えばレーザによる溶解によって製作される。 断熱層4を基材1の上に直接堆積することも可能である。この場合、基材1の 合金は、結合酸化物、例えば酸化クロムおよび/あるいは酸化アルミニウムを形 成するのに適するように、あらかじめ形成される。これらの結合酸化物により結 合層3が形成される。

Claims (1)

  1. 【特許請求の範囲】 1.三元系あるいは擬似三元系の酸化物で形成されたセラミック断熱層(4)を 結合した金属製基材(1)を備えた高温ガスに曝される製品。 2.基材(1)と断熱層(4)との間に、結合酸化物を有する結合層(3)が形 成されている請求項1に記載の製品。 3.結合酸化物を形成する接着媒介層(2)を基材(1)と断熱層(4)との間 に有する請求項1に記載の製品。 4.結合酸化物が酸化アルミニウムおよび/あるいは酸化クロムである請求項2 または3に記載の製品。 5.酸化物がパイロクロール構造あるいはペロブスカイト構造を有する請求項1 乃至4の一つに記載の製品。 6.酸化物が室温と1250℃を超える最大許容使用温度との間において相転移を経 験しない請求項1乃至5の一つに記載の製品。 7.酸化物が2150℃以上の融解温度を有する請求項1乃至6の一つに記載の製品 。 8.酸化物が金属ハフネート、金属ジルコネートあるいは金属セレートあるいは これらの酸化物の混合形態である請求項1乃至7の一つに記載の製品。 9.酸化物がランタンハフネート、ランタンジルコネート、セリウムハフネート あるいはセリウムジルコネートである請求項8に記載の製品。 10.酸化物がイッテルビウムジルコネートあるいはイッテルビウムハフネート である請求項8に記載の製品。 11.断熱層(4)が細孔あるいは他の空間的欠除部を有する請求項1乃10の 一つに記載の製品。 12.断熱層(4)が柱状ミクロ構造を有し、その結晶の軸方向が基材(1)の 表面に対して垂直である請求項1乃至11の一つに記載の製品。 13.製品が内燃機関、特にガスタービンの高温ガス負荷を受ける構成部品であ る請求項1乃至12の一つに記載の製品。 14.金属製基材(1)を備えた高温ガス負荷を受ける製品の製造方法において 、金属製基材(1)上に、三元系あるいは擬似三元系の酸化物よりなるセラミッ ク断熱層(4)を、プラズマスプレー法、あるいはPVD法、とりわけ電子ビー ムPVD法によって堆積させる製品の製造方法。
JP52607598A 1996-12-10 1997-11-26 高温ガスに曝される製品ならびにその製造方法 Expired - Lifetime JP3943139B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19651273.5 1996-12-10
DE19651273 1996-12-10
PCT/DE1997/002769 WO1998026110A1 (de) 1996-12-10 1997-11-26 Erzeugnis, welches einem heissen gas aussetzbar ist, mit einer wärmedämmschicht sowie verfahren zur herstellung

Publications (2)

Publication Number Publication Date
JP2001505620A true JP2001505620A (ja) 2001-04-24
JP3943139B2 JP3943139B2 (ja) 2007-07-11

Family

ID=7814221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52607598A Expired - Lifetime JP3943139B2 (ja) 1996-12-10 1997-11-26 高温ガスに曝される製品ならびにその製造方法

Country Status (7)

Country Link
US (2) US6319614B1 (ja)
EP (1) EP0944746B1 (ja)
JP (1) JP3943139B2 (ja)
KR (1) KR100611136B1 (ja)
DE (1) DE59703975D1 (ja)
RU (1) RU2218451C2 (ja)
WO (1) WO1998026110A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212108A (ja) * 1996-12-12 1998-08-11 United Technol Corp <Utc> 熱バリヤコーティングシステム、そのための材料、それを用いたガスタービン用部品及び金属基体の断熱方法
JP2006193828A (ja) * 2004-12-14 2006-07-27 Mitsubishi Heavy Ind Ltd 遮熱コート材料、遮熱部材、遮熱コーティング部材及びその製造方法
WO2007116547A1 (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Industries, Ltd. 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP2009514698A (ja) * 2005-11-04 2009-04-09 シーメンス アクチエンゲゼルシヤフト パイロクロア相を有する二層構造耐熱保護組織
JP2009517241A (ja) * 2005-11-24 2009-04-30 シーメンス アクチエンゲゼルシヤフト ガドリニウム混晶パイロクロア相を有する層組織
JP2009522141A (ja) * 2006-01-09 2009-06-11 シーメンス アクチエンゲゼルシヤフト 2つのパイロクロア相を含有する層組織
JP2009149983A (ja) * 2007-12-18 2009-07-09 General Electric Co <Ge> 耐濡れ性材料及びその物品
WO2010004862A1 (ja) * 2008-07-07 2010-01-14 日鉱金属株式会社 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
WO2010004861A1 (ja) * 2008-07-07 2010-01-14 日鉱金属株式会社 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法
US7785671B2 (en) 2003-02-17 2010-08-31 Japan Fine Ceramics Center Thermal barrier coating system and method of manufacturing the same
JP2010241609A (ja) * 2007-05-07 2010-10-28 Siemens Ag 2つのパイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
JP2010242109A (ja) * 2007-05-07 2010-10-28 Siemens Ag パイロクロア相と酸化物とを有する2層層組織
JP2010255119A (ja) * 2010-07-15 2010-11-11 Mitsubishi Heavy Ind Ltd 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
US7859100B2 (en) 2004-12-14 2010-12-28 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
JP4823516B2 (ja) * 2002-06-13 2011-11-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 複合ペロブスカイトよりなる断熱材料層
WO2012029540A1 (ja) * 2010-09-03 2012-03-08 株式会社日立製作所 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材
WO2012133107A1 (ja) * 2011-03-28 2012-10-04 旭硝子株式会社 溶融ガラス保持用耐火物、および、溶融ガラス保持用耐火物を用いたガラス製造装置、ならびに、該ガラス製造装置を用いたガラス製造方法

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
US6835465B2 (en) * 1996-12-10 2004-12-28 Siemens Westinghouse Power Corporation Thermal barrier layer and process for producing the same
US6187453B1 (en) 1998-07-17 2001-02-13 United Technologies Corporation Article having a durable ceramic coating
SG71925A1 (en) * 1998-07-17 2000-04-18 United Technologies Corp Article having a durable ceramic coating and apparatus and method for making the article
DE10008861A1 (de) * 2000-02-25 2001-09-06 Forschungszentrum Juelich Gmbh Kombinierte Wärmedämmschichtsysteme
US6680126B1 (en) * 2000-04-27 2004-01-20 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
DE50212230D1 (de) * 2001-04-03 2008-06-19 Forschungszentrum Juelich Gmbh WÄRMEDÄMMSCHICHT AUF BASIS VON La2 Zr2 O7 FÜR HOHE TEMPERATUREN
EP1247941A1 (de) 2001-04-03 2002-10-09 Siemens Aktiengesellschaft Gasturbinenschaufel
JP2003073794A (ja) * 2001-06-18 2003-03-12 Shin Etsu Chem Co Ltd 耐熱性被覆部材
US7541005B2 (en) * 2001-09-26 2009-06-02 Siemens Energy Inc. Catalytic thermal barrier coatings
DE10200803A1 (de) * 2002-01-11 2003-07-31 Forschungszentrum Juelich Gmbh Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
DE10250037B3 (de) * 2002-10-25 2004-05-13 Forschungszentrum Jülich GmbH Schutzschichtsystem für nichtoxidische, Si-haltige Substrate und dessen Verwendung
US7226668B2 (en) 2002-12-12 2007-06-05 General Electric Company Thermal barrier coating containing reactive protective materials and method for preparing same
US6933061B2 (en) 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
US6933066B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by tantalum oxide and method for preparing same
US6893750B2 (en) * 2002-12-12 2005-05-17 General Electric Company Thermal barrier coating protected by alumina and method for preparing same
US6803135B2 (en) 2003-02-24 2004-10-12 Chromalloy Gas Turbine Corporation Thermal barrier coating having low thermal conductivity
JP3981033B2 (ja) * 2003-03-24 2007-09-26 株式会社東芝 半導体記憶装置
JP3865705B2 (ja) * 2003-03-24 2007-01-10 トーカロ株式会社 耐食性および耐熱性に優れる熱遮蔽皮膜被覆材並びにその製造方法
US20050189346A1 (en) * 2003-08-04 2005-09-01 Eckert C. E. Electric heater assembly
US20050145618A1 (en) * 2003-08-04 2005-07-07 Eckert C. E. Electric heater assembly
EP1536026A1 (de) * 2003-11-27 2005-06-01 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil
US6858334B1 (en) 2003-12-30 2005-02-22 General Electric Company Ceramic compositions for low conductivity thermal barrier coatings
US6887595B1 (en) 2003-12-30 2005-05-03 General Electric Company Thermal barrier coatings having lower layer for improved adherence to bond coat
US6916561B1 (en) 2003-12-30 2005-07-12 General Electric Company Thermal barrier coatings with lower porosity for improved impact and erosion resistance
US6869703B1 (en) 2003-12-30 2005-03-22 General Electric Company Thermal barrier coatings with improved impact and erosion resistance
US6875529B1 (en) 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
US20050142393A1 (en) * 2003-12-30 2005-06-30 Boutwell Brett A. Ceramic compositions for thermal barrier coatings stabilized in the cubic crystalline phase
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
US20050238894A1 (en) * 2004-04-22 2005-10-27 Gorman Mark D Mixed metal oxide ceramic compositions for reduced conductivity thermal barrier coatings
US7255940B2 (en) * 2004-07-26 2007-08-14 General Electric Company Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance
US7666512B2 (en) * 2004-08-09 2010-02-23 United Technologies Corporation Thermal resistant environmental barrier coating
US7166373B2 (en) * 2004-08-19 2007-01-23 General Electric Company Ceramic compositions for thermal barrier coatings with improved mechanical properties
US7429424B2 (en) * 2004-12-06 2008-09-30 General Electric Company Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
US7476453B2 (en) * 2004-12-06 2009-01-13 General Electric Company Low thermal conductivity thermal barrier coating system and method therefor
US7364807B2 (en) * 2004-12-06 2008-04-29 General Electric Company Thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
JP4815797B2 (ja) * 2004-12-14 2011-11-16 船井電機株式会社 受光装置
US20060210800A1 (en) * 2005-03-21 2006-09-21 Irene Spitsberg Environmental barrier layer for silcon-containing substrate and process for preparing same
US20060211241A1 (en) 2005-03-21 2006-09-21 Christine Govern Protective layer for barrier coating for silicon-containing substrate and process for preparing same
EP1707653B1 (de) 2005-04-01 2010-06-16 Siemens Aktiengesellschaft Schichtsystem
US20060280955A1 (en) * 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
US20060280954A1 (en) * 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for outer EBL of silicon-containing substrate and processes for preparing same
US7354651B2 (en) 2005-06-13 2008-04-08 General Electric Company Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same
US7442444B2 (en) * 2005-06-13 2008-10-28 General Electric Company Bond coat for silicon-containing substrate for EBC and processes for preparing same
US20070292624A1 (en) * 2005-06-28 2007-12-20 General Electric Company Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles
US20080166561A1 (en) * 2005-08-16 2008-07-10 Honeywell International, Inc. Multilayered erosion resistant coating for gas turbines
US7579085B2 (en) * 2005-08-19 2009-08-25 General Electric Company Coated silicon comprising material for protection against environmental corrosion
US7700508B1 (en) 2005-08-26 2010-04-20 The United States Of Americas As Represented By The Secretary Of The Army Low conductivity and high toughness tetragonal phase structured ceramic thermal barrier coatings
DE112006003154B4 (de) * 2005-11-25 2014-07-10 Murata Manufacturing Co., Ltd. Durchscheinende Keramik, Verfahren zum Herstellen derselben, optisches Bauelement und optisches Gerät
US7214409B1 (en) * 2005-12-21 2007-05-08 United Technologies Corporation High strength Ni-Pt-Al-Hf bondcoat
US7662489B2 (en) * 2006-01-20 2010-02-16 United Technologies Corporation Durable reactive thermal barrier coatings
CA2573585A1 (en) * 2006-02-16 2007-08-16 Sulzer Metco Coatings B.V. A component, an apparatus and a method for the manufacture of a layer system
DE102006013215A1 (de) * 2006-03-22 2007-10-04 Siemens Ag Wärmedämmschicht-System
US20070231589A1 (en) * 2006-04-04 2007-10-04 United Technologies Corporation Thermal barrier coatings and processes for applying same
US7534086B2 (en) * 2006-05-05 2009-05-19 Siemens Energy, Inc. Multi-layer ring seal
CA2582312C (en) * 2006-05-05 2014-05-13 Sulzer Metco Ag A method for the manufacture of a coating
EP1852519B1 (de) * 2006-05-05 2013-08-28 Sulzer Metco AG (Switzerland) Verfahren zum Herstellen einer Beschichtung
EP1908859A1 (en) 2006-10-02 2008-04-09 Siemens Aktiengesellschaft Pyrochlore materials and a thermal barrier coating with these pyrochlore materials
US20080274336A1 (en) * 2006-12-01 2008-11-06 Siemens Power Generation, Inc. High temperature insulation with enhanced abradability
EP1930476A1 (de) * 2006-12-07 2008-06-11 Siemens Aktiengesellschaft Schichtsystem
US20090188347A1 (en) * 2007-03-07 2009-07-30 General Electric Company Treated refractory material and methods of making
US8105683B2 (en) * 2007-03-07 2012-01-31 General Electric Company Treated refractory material and methods of making
JP2007197320A (ja) * 2007-03-22 2007-08-09 Kyocera Corp 耐食性セラミックス及びその製造方法
DE502007006989D1 (de) * 2007-05-07 2011-06-01 Siemens Ag Keramisches Pulver, keramische Schicht und Schichtsystem mit einer Gadolinium-Mischkristall-Pyrochlorphase und Oxiden
ES2368005T3 (es) 2007-05-07 2011-11-11 Siemens Aktiengesellschaft Polvo cerámico, capa cerámica y sistema de capas con fases pirocloro y óxidos.
US7887934B2 (en) 2007-12-18 2011-02-15 General Electric Company Wetting resistant materials and articles made therewith
US7901798B2 (en) * 2007-12-18 2011-03-08 General Electric Company Wetting resistant materials and articles made therewith
US7897271B2 (en) * 2007-12-18 2011-03-01 General Electric Company Wetting resistant materials and articles made therewith
ES2652031T3 (es) 2008-06-12 2018-01-31 General Electric Company Compresor centrífugo para entornos de gas húmedo y procedimiento de fabricación
EP2230329A1 (de) 2009-03-18 2010-09-22 Siemens Aktiengesellschaft Zweilagiges poröses Schichtsystem mit Pyrochlor-Phase
US20110086163A1 (en) * 2009-10-13 2011-04-14 Walbar Inc. Method for producing a crack-free abradable coating with enhanced adhesion
WO2011142841A2 (en) 2010-01-14 2011-11-17 University Of Virginia Patent Foundation Multifunctional thermal management system and related method
FR2962447B1 (fr) * 2010-07-06 2013-09-20 Snecma Barriere thermique pour aube de turbine, a structure colonnaire avec des colonnes espacees
US8445111B2 (en) * 2010-10-14 2013-05-21 Guardian Industries Corp. Gadolinium oxide-doped zirconium oxide overcoat and/or method of making the same
EP2450465A1 (de) * 2010-11-09 2012-05-09 Siemens Aktiengesellschaft Poröses Schichtsystem mit poröserer Innenschicht
US20130017387A1 (en) * 2011-07-12 2013-01-17 James Iii William H Chemically durable porous glass with enhanced alkaline resistance
WO2013068315A1 (en) 2011-11-10 2013-05-16 Alstom Technology Ltd High temperature thermal barrier coating
EP2644824A1 (de) 2012-03-28 2013-10-02 Siemens Aktiengesellschaft Verfahren zur Herstellung und Wiederherstellung von keramischen Wärmedämmschichten in Gasturbinen sowie dazugehörige Gasturbine
WO2014027162A1 (fr) * 2012-08-14 2014-02-20 Snecma Procédé pour relever la température atteinte par une pièce, notamment de turbomachine
CN103861662B (zh) 2012-12-13 2016-12-21 通用电气公司 带有氧化铝阻隔层的防结焦催化剂涂层
TWI451905B (zh) * 2013-01-25 2014-09-11 Univ Nat Chiao Tung 乙醇重組器觸媒組成物及乙醇重組器觸媒之製備方法
CA2929460C (en) * 2013-11-03 2023-03-28 Oerlikon Surface Solutions Ag, Pfaffikon Oxidation barrier layer
CN106905723A (zh) * 2015-12-23 2017-06-30 通用电气公司 抗结焦的涂层、有抗结焦涂层的制品以及防止制品结焦的方法
SG11202008268RA (en) 2018-03-19 2020-10-29 Applied Materials Inc Methods for depositing coatings on aerospace components
WO2020219332A1 (en) 2019-04-26 2020-10-29 Applied Materials, Inc. Methods of protecting aerospace components against corrosion and oxidation
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
RU2714345C1 (ru) * 2019-06-21 2020-02-14 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Способ получения градиентного нанокомпозитного теплозащитного покрытия
CN112979310B (zh) * 2021-03-18 2022-04-19 中国科学院兰州化学物理研究所 一种低热导率、高断裂韧性航空航天热障材料及其制备
WO2024063892A1 (en) * 2022-09-21 2024-03-28 Lam Research Corporation Pyrochlore component for plasma processing chamber

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4321310A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
IT1190399B (it) * 1985-10-04 1988-02-16 Zambon Spa Processo per la preparazione di composti carbonilici otticamente attivi
DE3539029A1 (de) * 1985-11-02 1987-05-07 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
US4764341A (en) * 1987-04-27 1988-08-16 International Business Machines Corporation Bonding of pure metal films to ceramics
US5223045A (en) * 1987-08-17 1993-06-29 Barson Corporation Refractory metal composite coated article
US5262245A (en) * 1988-08-12 1993-11-16 United Technologies Corporation Advanced thermal barrier coated superalloy components
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5805973A (en) * 1991-03-25 1998-09-08 General Electric Company Coated articles and method for the prevention of fuel thermal degradation deposits
JP3475258B2 (ja) * 1994-05-23 2003-12-08 株式会社海水化学研究所 セラミック被膜形成剤およびその製造方法
DE19680223B3 (de) * 1995-04-03 2013-01-17 General Electric Co. Verfahren zum Schutz eines Wärmesperren-Überzuges und entsprechendes Bauteil
WO1996034128A1 (en) * 1995-04-25 1996-10-31 Siemens Aktiengesellschaft Metal substrate with an oxide layer and an anchoring layer
WO1997001436A1 (en) * 1995-06-26 1997-01-16 General Electric Company Protected thermal barrier coating composite with multiple coatings
US5683825A (en) * 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212108A (ja) * 1996-12-12 1998-08-11 United Technol Corp <Utc> 熱バリヤコーティングシステム、そのための材料、それを用いたガスタービン用部品及び金属基体の断熱方法
JP4578584B2 (ja) * 1996-12-12 2010-11-10 ユナイテッド テクノロジーズ コーポレイション 熱バリヤコーティングシステム、そのための材料、それを用いたガスタービン用部品及び金属基体の断熱方法
JP4823516B2 (ja) * 2002-06-13 2011-11-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 複合ペロブスカイトよりなる断熱材料層
US7785671B2 (en) 2003-02-17 2010-08-31 Japan Fine Ceramics Center Thermal barrier coating system and method of manufacturing the same
US7859100B2 (en) 2004-12-14 2010-12-28 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
JP2006193828A (ja) * 2004-12-14 2006-07-27 Mitsubishi Heavy Ind Ltd 遮熱コート材料、遮熱部材、遮熱コーティング部材及びその製造方法
JP2009514698A (ja) * 2005-11-04 2009-04-09 シーメンス アクチエンゲゼルシヤフト パイロクロア相を有する二層構造耐熱保護組織
JP2009517241A (ja) * 2005-11-24 2009-04-30 シーメンス アクチエンゲゼルシヤフト ガドリニウム混晶パイロクロア相を有する層組織
JP2009522141A (ja) * 2006-01-09 2009-06-11 シーメンス アクチエンゲゼルシヤフト 2つのパイロクロア相を含有する層組織
JP2007270245A (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
WO2007116547A1 (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Industries, Ltd. 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
US8586169B2 (en) 2006-03-31 2013-11-19 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body
JP2010241609A (ja) * 2007-05-07 2010-10-28 Siemens Ag 2つのパイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
JP2010242109A (ja) * 2007-05-07 2010-10-28 Siemens Ag パイロクロア相と酸化物とを有する2層層組織
JP2009149983A (ja) * 2007-12-18 2009-07-09 General Electric Co <Ge> 耐濡れ性材料及びその物品
WO2010004861A1 (ja) * 2008-07-07 2010-01-14 日鉱金属株式会社 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法
WO2010004862A1 (ja) * 2008-07-07 2010-01-14 日鉱金属株式会社 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
CN102089258A (zh) * 2008-07-07 2011-06-08 Jx日矿日石金属株式会社 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法
JP2010255119A (ja) * 2010-07-15 2010-11-11 Mitsubishi Heavy Ind Ltd 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
WO2012029540A1 (ja) * 2010-09-03 2012-03-08 株式会社日立製作所 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材
JP2012052206A (ja) * 2010-09-03 2012-03-15 Hitachi Ltd 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材
WO2012133107A1 (ja) * 2011-03-28 2012-10-04 旭硝子株式会社 溶融ガラス保持用耐火物、および、溶融ガラス保持用耐火物を用いたガラス製造装置、ならびに、該ガラス製造装置を用いたガラス製造方法

Also Published As

Publication number Publication date
RU2218451C2 (ru) 2003-12-10
US6387526B1 (en) 2002-05-14
WO1998026110A1 (de) 1998-06-18
EP0944746A1 (de) 1999-09-29
US20020028344A1 (en) 2002-03-07
KR100611136B1 (ko) 2006-08-10
DE59703975D1 (de) 2001-08-09
KR20000057498A (ko) 2000-09-15
EP0944746B1 (de) 2001-07-04
US6319614B1 (en) 2001-11-20
JP3943139B2 (ja) 2007-07-11

Similar Documents

Publication Publication Date Title
JP3943139B2 (ja) 高温ガスに曝される製品ならびにその製造方法
CA2428363C (en) Thermal barrier layer and process for producing the same
US6602553B2 (en) Process for producing a ceramic thermal barrier layer for gas turbine engine component
KR20210070983A (ko) 차열 코팅(tbc) 톱 코트용 고엔트로피 산화물
US6764771B1 (en) Product, especially a gas turbine component, with a ceramic heat insulating layer
US6177200B1 (en) Thermal barrier coating systems and materials
US8420238B2 (en) Use of a tungsten bronze structured material and turbine component with a thermal barrier coating
JP4133324B2 (ja) 熱負荷基体用材料
EP2767525B1 (en) Ceramic powders and methods therefor
US7041383B2 (en) Durable thermal barrier coating having low thermal conductivity
EP2778250A2 (en) Coating systems and methods therefor
CN102187013A (zh) 隔热涂层用材料、隔热涂层、涡轮部材及燃气轮机
CA2549091C (en) Durable thermal barrier coating having low thermal conductivity
US9803484B2 (en) Articles for high temperature service and method for making
JP4492855B2 (ja) 遮熱コーティング部材およびその製造方法
KR100270226B1 (ko) 새로운 구조의 열차폐 코팅 및 그의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term