RU2714345C1 - Способ получения градиентного нанокомпозитного теплозащитного покрытия - Google Patents

Способ получения градиентного нанокомпозитного теплозащитного покрытия Download PDF

Info

Publication number
RU2714345C1
RU2714345C1 RU2019119362A RU2019119362A RU2714345C1 RU 2714345 C1 RU2714345 C1 RU 2714345C1 RU 2019119362 A RU2019119362 A RU 2019119362A RU 2019119362 A RU2019119362 A RU 2019119362A RU 2714345 C1 RU2714345 C1 RU 2714345C1
Authority
RU
Russia
Prior art keywords
powder
coating
stabilized
yttrium
oxide
Prior art date
Application number
RU2019119362A
Other languages
English (en)
Inventor
Светлана Вячеславовна Савушкина
Галина Васильевна Панасова
Original Assignee
Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" filed Critical Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority to RU2019119362A priority Critical patent/RU2714345C1/ru
Application granted granted Critical
Publication of RU2714345C1 publication Critical patent/RU2714345C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к области порошковой металлургии, в частности к способам получения градиентных нанокомпозитных теплозащитных покрытий для деталей, подверженных воздействию высокотемпературных газовых потоков в авиационной, ракетно-космической технике и машиностроении. Способ получения градиентного покрытия включает плазменное нанесение в динамическом вакууме порошка сплава на основе никеля, порошка оксида циркония и порошка оксида гафния на защищаемую поверхность. После нанесения порошка сплава на основе никеля, не прекращая его нанесение, добавляют к нему порошок оксида циркония. Соотношение указанных порошков в образующейся смеси постепенно изменяют до достижения равного их соотношения. Затем наносят порошок оксида циркония и, не прекращая его нанесение, добавляют порошок оксида гафния. Соотношение указанных порошков в образующейся смеси постепенно изменяют аналогично. На заключительном этапе наносят порошок оксида гафния, стабилизированного оксидом иттрия. Техническим результатом заявленного изобретения является увеличение прочности адгезии и термического сопротивления покрытия. 3 ил.

Description

Настоящее изобретение относится к области порошковой металлургии, в частности, к способам получения градиентных нанокомпозитных теплозащитных покрытий для деталей, подверженных воздействию высокотемпературных газовых потоков в авиационной, ракетно-космической технике и машиностроении.
В настоящее время при создании перспективных энергетических установок с повышенными рабочими характеристиками (давление и температура), подверженных воздействию газовой среды и высоких тепловых потоков, рассматриваются возможности применения многослойных теплозащитных покрытий (ТЗП) и градиентных теплозащитных покрытий, включающих такой высокотемпературный материал как оксид гафния. Плавный градиент химического состава и структуры ТЗП по толщине способствует лучшему согласованию теплофизических характеристик (термического коэффициента линейного расширения, модуля Юнга и др.) и структурных составляющих покрытия, что приводит к увеличению коррозионной и термоциклической долговечности деталей, подверженных воздействию высокотемпературных газовых потоков.
Известен способ формирования керамического теплозащитного покрытия, которое может быть использовано для нанесения на изделия из суперсплавов, таких как лопатки или направляющие турбин (патент FR 2838752B1, опубл. 25.02.2005). Согласно известному решению покрытие формируют из композитной мишени в виде стержня, имеющего неоднородный состав в продольном направлении. Внутри каждого слоя стержня состав однороден по всему поперечному сечению и содержит оксид циркония и по крайней мере один из следующих оксидов: оксид никеля, кобальта, железа, иттрия, гафния, церия, лантана, тантала, ниобия, скандия, самария, гадолиния, диспрозия, иттербия или алюминия. В результате получают покрытие с градиентом по толщине в одном цикле нанесения. Улучшению сцепления покрытия с подложкой способствует добавление оксида иттрия, снижению теплопроводности и увеличению термостойкости - добавление оксидов никеля, кобальта, железа, иттрия, гафния, церия, лантана, тантала, ниобия, скандия, самария, гадолиния, диспрозия, иттербия, улучшению стойкости к абразивному износу -добавление оксида алюминия. Покрытие получают путем сканирования электронным пучком поверхности стержня с образованием облака пара в камере с пониженным давлением. Таким образом, формируют покрытие с градиентом состава, имеющего пониженную теплопроводность в наружной части. Однако покрытия, получаемые методом электроннолучевого осаждения, характеризуются наличием вертикальных пор и обладают более высокой теплопроводностью, чем покрытия, получаемые методом плазменного напыления.
Из публикации ЕР 1790754 А1, опубл. 30.05.2007, известно покрытие, содержащее наружный керамический слой из пирохлора Gdv(ZrxHfy)Oz. Покрытие может быть использовано для защиты деталей из жаропрочных сплавов, например, при изготовлении деталей газовой турбины, турбинных лопаток или теплозащитных экранов. Покрытие состоит из системы слоев. На подложке расположен металлический связующий слой, например, сплав на основе никеля (NiCoCrAlY). На этом слое еще до нанесения последующих слоев образуется окисный слой алюминия. Далее наносят внутренний керамический слой, состоящий из частично или полностью стабилизированного оксида циркония. Затем получают наружный керамический слой, содержащий смешанную кристаллическую структуру из гадолиния, гафния и циркония со структурой пирохлора, имеющего более низкую теплопроводность, чем слой оксида циркония. Недостатком данной структуры покрытия можно считать достаточно резкую разницу КТР между слоем пирохлора и слоем диоксида циркония, что может способствовать снижению адгезии на границах слоев и возникновению трещин при термоциклических воздействиях.
Раскрыто эрозионностойкое теплозащитное покрытие, содержащее подслой из нихрома толщиной 70÷90 мкм, на который плазменным напылением наносят слой керметной композиции толщиной 100÷150 мкм (патент РФ №2499078, опубл. 20.11.2013). В качестве керметной композиции используют механическую смесь порошков оксида гафния и плакированного никелем вольфрама с содержанием никеля 6÷10 мас. %. Затем напыляют слой из порошка оксида гафния, стабилизированного оксидом иттрия, толщиной 200÷250 мкм. Покрытие может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива, содержащих, в частности, конденсированную фазу. Недостатком данной структуры ТЗП является окисление вольфрама в плазменной струе, что может приводить к неконтролируемому изменению фазового состава керметного слоя.
Из патента РФ №2120494, опубл. 20.10.1998, известен способ получения градиентного покрытия, которое характеризуется непрерывным (плавным) или прерывистым (слоистым) изменением химического состава и структуры по толщине защитного слоя. Покрытие предназначено для защиты от окисления и газовой коррозии термонагруженных деталей газовых турбин и двигателей внутреннего сгорания. Известные градиентные покрытия получают конденсацией из паровой фазы путем электронно-лучевого испарения многокомпонентных смесей из одного источника, содержащих вещества с различной упругостью пара при температуре испарения. Для осуществления испарения и конденсации используют штабики систем: Al-Al2O3-ZrO2, Al-Si-Y-Al2O3-ZrO2, Al-Cr-Ni-Al2O3-Y-ZrO2, Al-Cr-(Ni,Co)-Al2O3-Y-Pt-ZrO2. В результате на покрываемой детали формируется градиент концентрации компонента по толщине покрытия. Недостатком является высокая теплопроводность получаемого методом электронно-лучевого напыления покрытия, по сравнению с покрытиями, получаемыми плазменным напылением, а также использование в качестве внешнего слоя покрытия оксида циркония, имеющего недостаточно высокую температуру плавления.
Наиболее близким аналогом предлагаемого изобретения является решение, раскрытое в патенте РФ №2675005 С1, опубл. 14.12.2018. Из данного источника известно теплозащитное покрытие для защиты поверхности детали, подверженной воздействию высокотемпературного газового потока, которое состоит из металлического подслоя с нанесенным на него рабочим слоем, содержащим слой оксида циркония, стабилизированного оксидом иттрия. Рабочий слой содержит нанесенный на слой оксида циркония слой оксида гафния, стабилизированного оксидом иттрия, при этом подслой и слои из оксида циркония и оксида гафния выполнены наноструктурированными. В частном случае осуществления изобретения подслой выполнен из никеля или сплава никеля. Известное покрытие обеспечивает эффективную защиту деталей, в том числе выполненных из двухслойных паяных конструкций, от воздействия высокотемпературного газового потока. Однако слоистая структура покрытия, получаемая при раздельном напылении слоев, имеет недостаточную когезионную прочность; из-за разницы КТР материалов слоев покрытия при термоциклических нагрузках может происходить растрескивание покрытия, а отсутствие совместно легированных переходных слоев на границах основных слоев уменьшает термическое сопротивление покрытия в результате большей скорости спекания его частиц при воздействии высоких температур.
Задачей настоящего изобретения является создание градиентного нанокомпозитного теплозащитного покрытия, имеющего целостную структуру, и обеспечивающего эффективную защиту теплонапряженных деталей и узлов (в том числе камер сгорания жидкостных ракетных двигателей), от воздействия высокотемпературного газового потока.
Технический результат, достигаемый изобретением, состоит в увеличении прочности адгезии и термического сопротивления покрытия.
Технический результат предлагаемого изобретения достигается тем, что способ получения градиентного нанокомпозитного теплозащитного покрытия включает плазменное нанесение в динамическом вакууме порошка сплава на основе никеля, порошка оксида циркония, стабилизированного оксидом иттрия, и порошка оксида гафния, стабилизированного оксидом иттрия, на защищаемую поверхность. При этом после нанесения порошка сплава на основе никеля, не прекращая его нанесение, добавляют к нему порошок оксида циркония, стабилизированного оксидом иттрия. Причем соотношение указанных порошков в образующейся смеси постепенно изменяют, уменьшая содержание сплава на основе никеля и увеличивая содержание оксида циркония, стабилизированного оксидом иттрия, до достижения равного их соотношения. Затем наносят порошок оксида циркония, стабилизированного оксидом иттрия, и, не прекращая его нанесение, добавляют порошок оксида гафния, стабилизированного оксидом иттрия. Причем соотношение указанных порошков в образующейся смеси постепенно изменяют, уменьшая содержание оксида циркония, стабилизированного оксидом иттрия, и увеличивая содержание оксида гафния, стабилизированного оксидом иттрия, до достижения равного их соотношения. На заключительном этапе наносят порошок оксида гафния, стабилизированного оксидом иттрия.
Полученное предлагаемым способом покрытие имеет целостную (не слоистую) нанокомпозитную структуру, характеризующуюся плавным переходом (градиентом) химического состава между основными зонами, сформированными при нанесении порошков сплава на основе никеля, оксида циркония, стабилизированного оксидом иттрия, и оксида гафния, стабилизированного оксидом иттрия.
Нанесение на защищаемую поверхность изделия на первом этапе порошка на основе сплава никеля является необходимым для защиты от окисления материала изделия, этот материал служит для компенсации внутренних напряжений, возникающих из-за разницы коэффициентов теплового расширения керамических материалов покрытия и материала защищаемого изделия. Нанесение на заключительном этапе порошка оксида гафния обеспечивает термическое сопротивление покрытия, что связано с его более высокими температурами плавления, фазовых переходов и более низкой теплопроводностью по сравнению с другими материалами в составе покрытия.
Для осуществления способа получения градиентного нанокомпозитного теплозащитного покрытия используют плазмотрон, размещенный в вакуумной камере. Порошки материалов, из которых формируется предлагаемое покрытие подаются через дозатор в плазмотрон, где они вместе с плазмообразующим газом (азотом) проходят через дугу, в которой происходит нагревание, плавление и частичное испарение напыляемого порошка. Общий расход порошков материалов поддерживается на уровне ~0,2 г/с в течение всего процесса. Плазмотрон выполнен с возможностью возвратно-поступательного движения вдоль защищаемой поверхности изделия со скоростью ~5 мм/с, при этом скооость нанесения ~3 мкм за 1 проход.
Струя плазмы, содержащая расплавленные частицы порошка, истекает в область динамического вакуума (~100 Па). В недорасширенной струе плазмы при этом возникает висячий скачок уплотнения, внутри которого реализуется сверхзвуковое течение, совпадающее с истечением струи в вакуум. Это приводит к тому, что внутри висячего скачка газ непрерывно разгоняется до скоростей ~2 км/с, а статическое давление на линиях тока сильно падает, что приводит к конденсации паровой фазы напыляемого материала с образованием наночастиц. При напылении смеси порошков сплава на основе никеля и оксида циркония, стабилизированного оксидом иттрия, а также смеси порошков оксида циркония и оксида гафния, стабилизированных оксидом иттрия, происходит конденсация паровой фазы смеси, что приводит к формированию композитных наночастиц и нанокомпозитных промежуточных зон в покрытии.
Предлагаемое изобретение поясняется рисунками.
На фиг. 1 представлена микрофотография поперечного шлифа градиентного нанокомпозитного теплозащитного покрытия.
На фиг. 2а показан результат скретч-тестирования градиентного нанокомпозитного покрытия, полученного способом согласно изобретению.
На фиг. 2б приведен результат скретч-тестирования трехслойного теплозащитного покрытия, раскрытого в прототипе.
Предлагаемым способом получено градиентное покрытие, толщиной 150±5 мкм. При этом использованы порошки: сплава на основе никеля (Ni-Co-Cr-Al-Y); смесь сплава на основе никеля (Ni-Co-Cr-Al-Y) и оксида циркония (ZrO2), стабилизированного 2÷7% оксида иттрия (Y2O3); оксида циркония (ZrO2), стабилизированного 2÷7% оксида иттрия (Y2O3); смесь порошков оксида циркония, стабилизированного 2÷7% Y2O3 и оксида гафния (HfO2), стабилизированных 2÷9% Y2O3; оксида гафния (HfO2), стабилизированного 2÷9% Y2O3. Покрытие имеет целостную нанокомпозитную структуру, которая способствует улучшению когезии. Наличие наночастиц в покрытии показывает, что в процессе напыления происходило образование паровой фазы напыляемого материала, поскольку средний размер исходных частиц порошка составлял 10±40 мкм.
В процессе проведения сравнительного анализа методом скретч-тестирования предлагаемого градиентного нанокомпозитного теплозащитного покрытия и трехслойного теплозащитного покрытия, раскрытого в прототипе, толщиной 150±5 мкм, было установлено, что градиентная нанокомпозитная структура предлагаемого покрытия улучшила его когезионные характеристики, при этом произошло увеличение прочности адгезии более, чем на 20 Н, по сравнению с трехслойным ТЗП. Для трехслойного покрытия вдоль царапин наблюдались большая площадь разрушений верхних слоев покрытия (фиг.2, б), по сравнению с градиентным покрытием (фиг.2, а).

Claims (1)

  1. Способ получения градиентного нанокомпозитного теплозащитного покрытия, включающий плазменное нанесение в динамическом вакууме слоев порошка сплава на основе никеля, порошка оксида циркония, стабилизированного оксидом иттрия, и порошка оксида гафния, стабилизированного оксидом иттрия, на защищаемую поверхность, отличающийся тем, что после нанесения порошка сплава на основе никеля осуществляют его нанесение с добавлением к нему порошка оксида циркония, стабилизированного оксидом иттрия, причем соотношение указанных порошков в образующейся смеси постепенно изменяют с уменьшением содержания сплава на основе никеля и увеличением содержания оксида циркония, стабилизированного оксидом иттрия, до достижения равного их соотношения, затем наносят порошок оксида циркония, стабилизированного оксидом иттрия, после чего его нанесение осуществляют с добавлением порошка оксида гафния, стабилизированного оксидом иттрия, причем соотношение указанных порошков в образующейся смеси постепенно изменяют с уменьшением содержания оксида циркония, стабилизированного оксидом иттрия, и увеличением содержания оксида гафния, стабилизированного оксидом иттрия, до достижения равного их соотношения, после чего наносят порошок оксида гафния, стабилизированного оксидом иттрия.
RU2019119362A 2019-06-21 2019-06-21 Способ получения градиентного нанокомпозитного теплозащитного покрытия RU2714345C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019119362A RU2714345C1 (ru) 2019-06-21 2019-06-21 Способ получения градиентного нанокомпозитного теплозащитного покрытия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019119362A RU2714345C1 (ru) 2019-06-21 2019-06-21 Способ получения градиентного нанокомпозитного теплозащитного покрытия

Publications (1)

Publication Number Publication Date
RU2714345C1 true RU2714345C1 (ru) 2020-02-14

Family

ID=69626030

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019119362A RU2714345C1 (ru) 2019-06-21 2019-06-21 Способ получения градиентного нанокомпозитного теплозащитного покрытия

Country Status (1)

Country Link
RU (1) RU2714345C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802485C1 (ru) * 2022-11-09 2023-08-29 Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) Способ получения термостойкого покрытия на основе HfO2 для W-Re термопар, устойчивого к агрессивным средам

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2120494C1 (ru) * 1997-06-17 1998-10-20 Международный Центр Электронно-Лучевых Технологий Института Электросварки им.Е.О.Патона НАН Украины Способ получения на подложке защитных покрытий с градиентом химического состава и структуры по толщине с внешним керамическим слоем, его вариант
RU2218451C2 (ru) * 1996-12-10 2003-12-10 Сименс Акциенгезелльшафт Изделие с теплоизолирующим слоем, подвергаемое воздействию горячего газа, а также способ его изготовления
FR2838752B1 (fr) * 2002-04-22 2005-02-25 Snecma Moteurs Procede de formation d'un revetement ceramique sur un substrat par depot physique en phase vapeur sous faisceau d'electrons
EP1790754A1 (de) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Schichtsystem mit Gadolinium-Mischkristall-Pyrochlorphase
RU2499078C1 (ru) * 2012-07-17 2013-11-20 Открытое акционерное общество "Композит" (ОАО "Композит") Способ получения эрозионностойких теплозащитных покрытий
RU2675005C1 (ru) * 2017-10-05 2018-12-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Теплозащитное покрытие

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2218451C2 (ru) * 1996-12-10 2003-12-10 Сименс Акциенгезелльшафт Изделие с теплоизолирующим слоем, подвергаемое воздействию горячего газа, а также способ его изготовления
RU2120494C1 (ru) * 1997-06-17 1998-10-20 Международный Центр Электронно-Лучевых Технологий Института Электросварки им.Е.О.Патона НАН Украины Способ получения на подложке защитных покрытий с градиентом химического состава и структуры по толщине с внешним керамическим слоем, его вариант
FR2838752B1 (fr) * 2002-04-22 2005-02-25 Snecma Moteurs Procede de formation d'un revetement ceramique sur un substrat par depot physique en phase vapeur sous faisceau d'electrons
EP1790754A1 (de) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Schichtsystem mit Gadolinium-Mischkristall-Pyrochlorphase
RU2499078C1 (ru) * 2012-07-17 2013-11-20 Открытое акционерное общество "Композит" (ОАО "Композит") Способ получения эрозионностойких теплозащитных покрытий
RU2675005C1 (ru) * 2017-10-05 2018-12-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Теплозащитное покрытие

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802485C1 (ru) * 2022-11-09 2023-08-29 Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) Способ получения термостойкого покрытия на основе HfO2 для W-Re термопар, устойчивого к агрессивным средам

Similar Documents

Publication Publication Date Title
CA2784395C (en) An improved hybrid methodology for producing composite, multi-layered and graded coatings by plasma spraying utilizing powder and solution precursor feedstock
JP5554488B2 (ja) 遮熱コーティング用アルミナ系保護皮膜
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
US6306515B1 (en) Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers
EP1829984B1 (en) Process for making a high density thermal barrier coating
US6447854B1 (en) Method of forming a thermal barrier coating system
US20080145694A1 (en) Thermal barrier coating system and method for coating a component
Khoddami et al. Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings
US20150233256A1 (en) Novel architectures for ultra low thermal conductivity thermal barrier coatings with improved erosion and impact properties
JP2019065384A (ja) 滑らかな表面上の溶射コーティングの改良された接着
EP1829824A1 (en) Partially-alloyed zirconia powder
WO2012029540A1 (ja) 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材
RU2714345C1 (ru) Способ получения градиентного нанокомпозитного теплозащитного покрытия
US20100203254A1 (en) Dispersion strengthened ceramic thermal barrier coating
US10260141B2 (en) Method of forming a thermal barrier coating with improved adhesion
Lee et al. Improved Deposition Efficiency of Cold-Sprayed CoNiCrAlY with Pure Ni Coatings and Its High-Temperature Oxidation Behavior after Pre-Treatment in Low Oxygen Partial Pressure
Lima et al. Thermal and environmental barrier coatings (TBCs/EBCs) for turbine engines
Panteleenko et al. Multi-Layers Composite Plasma Coatings Based on Oxide Ceramics and M-Croll
Karaoğlanlı Microstructure characteristics of detonation gun sprayed CoNiCrAlY coatings
Azarmi et al. Effect of Spray Parameters on Porosity and Lifetime of Suspension Plasma Sprayed Thermal Barrier Coatings
Taghi-ramezani et al. Investigating of High Temperature Oxidation and Thermal Shock Properties of YSZ/Al2O3 Composite Thermal Barrier Coatings with Alumina Made by Solution Precursor Thermal Spray
EP3705597A1 (en) Thermal barrier coating with improved adhesion
Lince Coatings for Aerospace Applications
Zhang et al. Oxidation Behavior of Atmospheric Plasma Sprayed NiAl Coating at High Pressure Oxygen Atmosphere
US20190203333A1 (en) Thermal barrier coating with improved adhesion