WO2007113955A1 - 移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法 - Google Patents

移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2007113955A1
WO2007113955A1 PCT/JP2007/053723 JP2007053723W WO2007113955A1 WO 2007113955 A1 WO2007113955 A1 WO 2007113955A1 JP 2007053723 W JP2007053723 W JP 2007053723W WO 2007113955 A1 WO2007113955 A1 WO 2007113955A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
mobile device
unit
fine
mobile
Prior art date
Application number
PCT/JP2007/053723
Other languages
English (en)
French (fr)
Inventor
Keiichi Tanaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008508463A priority Critical patent/JP5257845B2/ja
Priority to EP07715038A priority patent/EP2006884A4/en
Priority to KR1020147005802A priority patent/KR101531801B1/ko
Publication of WO2007113955A1 publication Critical patent/WO2007113955A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a moving body device, an exposure apparatus and an exposure method, a fine moving body, and a device manufacturing method, and more specifically, a moving body apparatus including a moving body that moves in at least one axial direction in a horizontal plane, and the movement
  • the present invention relates to an exposure apparatus including a body apparatus, an exposure method using the mobile body apparatus, a fine moving body supported so as to be capable of being micro-driven with respect to the mobile body, and a device manufacturing method using the exposure apparatus or exposure method.
  • Stepwise exposure such as a step-down projection exposure system (Le, so-called stepper) and a step-and-scan type scan-type projection exposure system (Le, so-called scanning stepper (also called a scanner)
  • the device is mainly used
  • a drive device for driving a photosensitive object such as a wafer or a glass plate
  • a wafer such as a wafer or a glass plate
  • it is driven in a two-dimensional surface by a two-axis linear motor or a planar motor.
  • a wafer stage apparatus is used which has a coarse movement stage and a fine movement stage which holds the wafer on the coarse movement stage and is finely driven in a Z-axis direction and an inclination direction by a voice coil motor or the like.
  • driving devices such as a linear motor, a planar motor, and a voice coil motor include an armature unit having a plurality of coils and a magnet unit having a plurality of magnets.
  • the coils When the current is supplied to the coils constituting the armature unit, the coils generate heat. Therefore, in order to suppress the influence of the heat generated by this coil on the exposure accuracy, recently, a pipe (tube) is connected to a part of the wafer stage, and near the heat generating part via the pipe (tube). To supply refrigerant It was. However, since the refrigerant supply pipe (tube) is dragged as the stage moves, this lowers the wafer position controllability, which in turn reduces the exposure accuracy.
  • the present invention has been made under the circumstances described above, and from a first viewpoint, a moving body including a heat radiating portion; a driving device that drives the moving body in a two-dimensional manner within a predetermined plane; A waste heat member that is provided in non-contact with the mobile body and absorbs heat radiated from the mobile body, and one of the waste heat member and the heat radiating portion is uniaxial in the predetermined plane.
  • the first mobile unit is provided over a predetermined range with respect to a direction, and the other is provided over a predetermined range in a direction perpendicular to the uniaxial direction within the predetermined plane.
  • the waste heat member absorbs the heat radiated from the moving body, it is possible to suppress the thermal influence of the moving body.
  • one of the waste heat member and the heat dissipating part included in the moving body is provided over a predetermined range with respect to the uniaxial direction, and the other is provided over a predetermined range with respect to the direction orthogonal to the uniaxial direction within the predetermined plane. Even if the moving body is moved within a two-dimensional plane where at least a part of the waste heat member and at least a part of the heat radiating part face each other in a non-contact manner, the waste heat member radiates the heat radiated from the moving body. Can be absorbed.
  • the present invention provides: a moving body; a power input unit that is provided in the moving body and receives power wirelessly; and is non-contact with the moving body, and the power input unit A power output unit that is provided in a state of being constantly opposed to at least a part of the power output unit and outputs power wirelessly toward the power input unit; and drives the mobile body using the power input to the power input unit.
  • a driving device a driving device that uses the driving signal to the power input unit.
  • the power input unit for wirelessly inputting power to the mobile body is provided, and the power input is performed in a state of being in contact with the mobile body and constantly facing at least a part of the power input unit. Since a power output unit that outputs power wirelessly toward the force unit is provided, it is not necessary to connect a wiring for supplying power to the driving device that drives the moving body. As a result, it is possible to prevent the movement accuracy of the moving body from being lowered due to the tension of the wiring.
  • the present invention provides: a mobile body; a measuring instrument provided in the mobile body; and a transmitter that is provided in the mobile body and that wirelessly transmits a signal output from the measuring instrument.
  • a receiving unit that is provided in a state of being in contact with the moving body and constantly facing at least a part of the transmitting unit and receiving a signal transmitted wirelessly from the transmitting unit. 3 mobile devices.
  • the mobile body is provided with a transmitter that wirelessly transmits the signal output from the measuring instrument, and the receiver that receives the signal from the transmitter is non-contact with the mobile body. Since it is always opposed to at least a part of the transmitter, it is not necessary to connect a wiring for taking out the signal output from the detector to the moving body. Therefore, it is possible to prevent the movement accuracy of the moving body from being lowered due to the tension of the wiring.
  • the present invention is an exposure apparatus that exposes an object and forms a pattern on the object, wherein the object is placed on the moving body.
  • 1 is a first exposure apparatus including one moving body device.
  • the object to be exposed is placed on the moving body in which the movement accuracy is prevented from being lowered, the object can be moved with high accuracy, thereby improving the exposure accuracy.
  • the power of illustration is S.
  • the present invention is an exposure apparatus that exposes an object to form a pattern on the object, and includes the first moving body apparatus of the present invention including a plurality of moving bodies. Then, an object to be exposed next to the object is placed at an exposure position where the object is exposed within the predetermined plane by exchanging with one of the plurality of moving bodies on which the object is placed.
  • This is a second exposure apparatus in which another moving body is arranged.
  • the first moving body device of the present invention including a plurality of moving bodies capable of high-accuracy positioning is provided, and is exchanged for one of the plurality of moving bodies on which an object is placed. Since another moving body on which an object to be exposed next to the object can be placed at an exposure position where the object is exposed in the plane, the exposure of a plurality of objects is continuously performed. But it can. Therefore, high-precision exposure can be performed with high throughput.
  • an exposure method for forming a pattern on an object wherein the object is mounted on the movable body of the first movable body apparatus of the present invention when the object is exposed.
  • the movable body is driven in a placed state.
  • the object to be exposed is placed on the moving body in which the movement accuracy is prevented from being lowered, the object can be moved with high accuracy, and thus the exposure accuracy can be improved.
  • the drawing power S is positive.
  • an exposure method for forming a pattern on an object wherein the object is moved within the predetermined plane by the first moving body device of the present invention comprising a plurality of moving bodies.
  • Another moving body that drives one of the plurality of moving bodies arranged at the exposure position where the exposure is performed and places an object to be exposed next to the object by exchanging with the one moving body Is a second exposure method in which is disposed at the exposure position.
  • the first moving body device of the present invention including a plurality of moving bodies capable of high-accuracy positioning is provided, and is exchanged for one of the plurality of moving bodies on which an object is placed. Since another moving body on which an object to be exposed next to the object can be placed at an exposure position where the object is exposed in the plane, the exposure of a plurality of objects is continuously performed. Is possible. Therefore, high-precision exposure can be performed with high throughput.
  • a moving body a fine moving body supported in a non-contact state with respect to the moving body; four armature coils provided on the moving body; A drive mechanism having a magnet unit that is provided in the fine moving body and generates a driving force in cooperation with the four armature coils.
  • a fine moving body supported so as to be capable of being driven minutely with respect to the moving body, the fine moving body main body being supported in a non-contact state with respect to the moving body; ; Driven in cooperation with four armature coils provided on the movable body and provided on the movable body And a magnet unit that generates force.
  • the present invention is a fifth moving body device comprising: a moving body; and the fine moving body of the present invention supported in a non-contact state with respect to the moving body. According to this, heat generation in one armature coil can be suppressed.
  • an exposure apparatus for forming a pattern on an object comprising the fourth movable body apparatus of the present invention on which the object is placed on the fine moving body.
  • the present invention uses a device manufacturing method including a pattern transfer process onto a substrate using the first exposure method of the present invention, or the first exposure apparatus of the present invention. It can be said that this is a device manufacturing method including a pattern transfer process onto a substrate.
  • FIG. 1 is a schematic view showing an exposure apparatus according to an embodiment.
  • FIG. 2 is a plan view showing the wafer stage device of FIG.
  • FIG. 3 (A) is a longitudinal sectional view of wafer stage WST1
  • FIG. 3 (B) is a view showing a state in which FIG. 3 (A) is disassembled.
  • FIG. 4 is a diagram for explaining the configuration and operation of a planar motor.
  • FIG. 5 is a schematic diagram showing a state in which the base BS is viewed from the + X direction.
  • FIG. 6 (A) is a perspective view showing a mover constituting the fine movement mechanism
  • FIG. 6 (B) is a perspective view showing a stator constituting the fine movement mechanism
  • FIG. 7 (A) to FIG. 7 (C) are diagrams for explaining a method of driving a fine movement stage by a fine movement mechanism.
  • FIG. 8 is a longitudinal sectional view of the self-weight canceling mechanism.
  • FIG. 9 is a diagram for explaining the internal configuration of the power receiving / radiating arm.
  • FIG. 10 is a diagram for explaining the internal configuration of the power transmission / waste heat frame.
  • FIG. 11 is a diagram showing a head provided on a wafer stage and a scale provided on a power transmission / waste heat frame.
  • FIGS. 12A and 12B are views (No. 1) for explaining the parallel processing operation in the exposure apparatus.
  • FIG. 13A and FIG. 13B are views (No. 2) for explaining the parallel processing operation in the exposure apparatus.
  • FIG. 1 schematically shows an overall configuration of an exposure apparatus 10 according to an embodiment.
  • the optical axis direction of the projection optical system P 0 is the Z-axis direction, and the in-plane perpendicular to the Z-axis direction.
  • the left-right direction in the page is the Y-axis direction, and the direction perpendicular to the page is the X-axis direction.
  • the exposure apparatus 10 projects a partial image of the circuit pattern formed on the reticle R onto the wafer W1 (or wafer W2) via the projection optical system PO, while the reticle R and the wafer W1 (or W2) with respect to the projection optical system PO in a one-dimensional direction (here, the Y-axis direction), the entire circuit pattern of the reticle R is made up of a plurality of shot areas on the wafer W1 (or W2). Each is transferred by a step 'and' scan method.
  • the exposure apparatus 10 includes a light source device 112 that emits EUV light (light in the soft X-ray region) as illumination light EL, and reflects the illumination light EL from the light source device 112 to reflect a predetermined incident angle, for example, about
  • An illumination optical system including a bending mirror M that bends so that it enters the pattern surface of the reticle R at 50 [mr ad] (the lower surface in Fig. 1 (one Z-side surface)).
  • the force present in the PO column is actually part of the illumination optics), reticle R
  • the illumination light (E UV light) reflected by the pattern surface of RST and reticle R on the reticle stage RST and reticle R is applied to the exposed surface of wafer W1 (or W2) (upper surface in FIG. 1 (+ Z side surface)).
  • a wafer stage apparatus 100 including a projection optical system PO for projecting vertically, an alignment system ALG, and a wafer stage WST1 for holding the wafer W1 and a wafer stage WST2 for holding the wafer W2.
  • the reticle stage RST, the projection optical system PO, the wafer stages WST1, WST2, and the like are accommodated in a vacuum chamber (not shown).
  • a laser-excited plasma light source for example, a laser-excited plasma light source is used.
  • This laser-excited plasma light source irradiates EUV photogenerator (target) with high-intensity laser light, so that the target is excited into a high-temperature plasma state and emitted when the target cools, It uses ultraviolet light, visible light, and light in other wavelength ranges.
  • EUV light having a wavelength of 5 to 20 nm, for example, a wavelength of l nm is mainly used as the illumination light EL.
  • the illumination optical system includes an illumination mirror, a wavelength selection window and the like (all not shown), a bending mirror M, and the like.
  • Illumination light EL emitted from the light source device 112 and passing through the illumination optical system (EUV light EL reflected by the bending mirror M described above) illuminates the pattern surface of the reticle R as arc-slit illumination light. To do.
  • the reticle stage RST is arranged on a reticle stage base 132 arranged along the XY plane, and generates, for example, a magnetic levitation type two-dimensional linear actuator that constitutes the reticle stage drive system 134. It is levitated and supported on the reticle stage base 132 by levitating force.
  • Reticle stage RST is driven with a predetermined stroke in the Y-axis direction by the driving force generated by reticle stage drive system 134, and is also driven in a small amount in the X-axis direction and ⁇ z direction (rotation direction around the Z axis).
  • the reticle stage drive system 134 adjusts the magnetic levitation force generated at a plurality of locations to tilt in the Z-axis direction and the XY plane (the rotation direction around the X axis is the ⁇ X direction and the Y axis rotation direction). It can be driven by a very small amount (in the ⁇ y direction).
  • An electrostatic chuck (or mechanical chuck) reticle holder (not shown) is provided on the lower surface side of the reticle stage RST, and a reflective reticle R is held by the reticle holder. Is held.
  • This reticle R is made of a thin plate such as a silicon wafer, quartz, or low expansion glass.
  • a reflective film that reflects EUV light is, for example, a film of molybdenum Mo and beryllium Be.
  • a multi-layer film in which about 50 pairs are stacked alternately with a period of about 5.5 nm is formed. This multilayer film has a reflectivity of about 70% for EUV light with a wavelength of l nm.
  • a multilayer film having the same configuration is also formed on the reflecting surfaces of the bending mirror M and other mirrors in the illumination optical system.
  • nickel or aluminum A1 is applied to the surface as an absorption layer, and a pattern pattern is applied to the absorption layer to form a circuit pattern. It has been done.
  • the position of reticle stage RST (reticle R) in the XY plane (including ⁇ z rotation) is a reticle laser interference that projects a laser beam onto a reflective surface provided (or formed) on reticle stage RST.
  • the detector (hereinafter referred to as “reticle interferometer”) 182R always detects with a resolution of, for example, about 0.5 to 1 nm.
  • the position of the reticle R in the Z-axis direction is based on, for example, a multipoint focal position detection system disclosed in Japanese Patent Laid-Open No. 6-283403 (corresponding to US Pat. No. 5,448,332). It is measured by a reticle focus sensor (not shown).
  • the measurement values of reticle interferometer 182R and the reticle focus sensor are supplied to a control device (not shown), and reticle stage RST is driven via reticle stage drive unit 134 based on these measurement values by the control device.
  • the projection optical system PO uses a reflection optical system having a numerical aperture (NA) of 0.1, for example, and composed only of a reflection optical element (mirror).
  • NA numerical aperture
  • the projection magnification is, for example, 1/4 Doubled are used. Accordingly, the EUV light EL that is reflected by the reticle R and includes information on the pattern formed on the reticle R is projected onto the wafer W1 (W2), thereby reducing the pattern on the reticle R to 1/4. Transferred to wafer Wl (W2).
  • the projection optical system PO includes a lens barrel 117 and, for example, six reflecting optical elements (mirrors) disposed inside the lens barrel 117.
  • a rectangular opening 117b penetrating vertically is formed in the upper wall (+ Z side wall) of the lens barrel 117, and an opening 117a is formed in the ⁇ Y side wall.
  • a folding mirror that constitutes the illumination optical system described above. M is also arranged.
  • an offset system ALG is provided at a position a predetermined distance away from the projection optical system PO toward the + Y side.
  • broadband light is applied to the alignment mark (or aerial image measuring instrument FM1 (FM2)) on the wafer Wl (W2), and the reflected light is received to detect the mark by image processing.
  • the FIA (Field Image Alignment) type alignment sensor is used.
  • the lens barrel 117 of the projection optical system P0 is connected to a reticle force sensor similar to the above-described reticle force sensor via a holding device, for example, Japanese Patent Laid-Open No. 6-283403 (corresponding US Pat. No. 5,448, No. 332) and the like, and the wafer focus sensor force disclosed in detail in FIG. With this wafer focus sensor, the position in the Z-axis direction and the amount of tilt of the surface of the wafer W1 or W2 relative to the lens barrel 117 of the projection optical system PO are measured.
  • the wafer stage apparatus 100 includes a base BS, a wafer stage WST1, which is disposed above the base BS and holds the wafer W1 and moves in the XY plane, and a wafer stage which holds the wafer W2 and moves in the XY plane. It includes WST2, a drive system that drives these stages WST1 and WST2, and an interferometer system that measures the positions of stages WST1 and WST2.
  • the base BS includes two power transmission / waste heat frames 24A having a longitudinal direction in the Y-axis direction. 24B is provided with a predetermined interval in the X-axis direction. These power transmission / waste heat frames 24A and 24B have a reverse U-shape when viewed in the X direction from the + X direction, and one end and the other end of the base BS are located on one side and the other side in the Y-axis direction. Each is fixed to the end face.
  • waste heat frame 24A, 24B' Noh The lower surface of the part parallel to the XY plane located above the base BS of these power transmission waste heat frames 24A and 24B is maintained at a predetermined interval with respect to the uppermost surfaces of the wafer stages WST1 and WST2. .
  • these transmissions 'specific configuration of waste heat frame 24A, 24B' Noh will be described in detail later.
  • a magnet unit 30 including a plurality of permanent magnets is provided on the upper surface side of the base BS.
  • This magnet unit 30 constitutes a part of a planar motor to be described later.
  • a rare earth material is sintered and magnetized in the Z-axis direction ( Permanent magnets 28N and 28S (perpendicularly magnetized) are included.
  • the permanent magnet 28N has a + Z side surface as an N magnetic pole surface
  • the permanent magnet 28S has a + Z side surface as an S magnetic pole surface.
  • These permanent magnets 28N, 28S are arranged in a matrix at predetermined intervals alternately along the X-axis direction and the Y-axis direction.
  • the permanent magnets 28N and 28S have a substantially square shape in plan view (viewed from above), and each has the same size.
  • the magnet unit 30 includes a permanent magnet (interpolated magnet) 32 that is magnetized (horizontally magnetized) in the X-axis direction or the Y-axis direction.
  • the interpolating magnet 32 is provided between the permanent magnet 28N and the permanent magnet 28S, and comes into contact with the permanent magnet 28N, as can be seen from FIG. 5 showing the base BS viewed from the + X side.
  • the surface is the N magnetic pole surface, and the surface that contacts the permanent magnet 28S is the S magnetic pole surface.
  • Interpolation magnet 32 has a substantially square shape in plan view (viewed from above), and has the same size as permanent magnets 28N and 28S described above.
  • a magnetic circuit is formed in which the magnetic flux sequentially goes around the permanent magnet 28N, the permanent magnet 28S, and the interpolating magnet 32 (see FIG. 5), and the magnetomotive force can be enhanced by the interpolating magnet 32. It is summer.
  • a protective plate 26 having a nonmagnetic physical force is provided on the upper surface of the base BS so as to cover the magnet unit 30 from above.
  • This protective plate 26 prevents direct white contact between the Ueno stage WST1, WST2 and the permanent magnets 28N, 28S, 32, and prevents damage to the permanent magnets 28N, 28S, 32.
  • wafer stage WST1 includes coarse movement stage WRS1 made of a plate-like member having a substantially rectangular shape in plan view (viewed from above), and coarse movement stage WRS1 on the coarse movement stage WRS1. It is equipped with the fine movement stage WFS1 installed.
  • the lower surface of the coarse movement stage WRS1 (the surface on the _Z side) is a partial cross-sectional view of the wafer stage WST1 as viewed from the + X direction.
  • Wafer stage WS As can be seen from FIG. 3 (B) showing an exploded view of Tl, an armature unit 130 is provided that forms part of a planar motor that drives coarse motion stage WRS1 (wafer stage WST1) in the XY two-dimensional plane. ing.
  • the armature unit 130 includes 16 armature coils 34 to 34.
  • Each of these armature coils 34 to 34 is independently supplied with current.
  • the size of the armature coils 34 to 34 is as shown in FIG.
  • the length is set to be the total length of the side force S and the permanent magnets 28N, 28S, 32.
  • the armature unit 130 and the magnet unit 30 provided in the base BS described above constitute a planar motor. According to this flat motor, when the armature unit 130 is located at the position shown in FIG.
  • a force in the Y-axis direction can be applied to the armature unit 130. Furthermore, by supplying current to the armature coils 34, 34, 34, 34, 34, the armature unit 130 is
  • a force in the z-axis direction can be applied.
  • wafer stage WST1 can be driven in a desired direction.
  • a magnetic member 96 that generates a magnetic attractive force between the permanent magnets 28N and 28S is provided at the lower end of the armature unit 130. Affixed.
  • the coarse motion stage WF is balanced by the balance between the magnetic attractive force between the magnetic member 96 and the permanent magnets 28N and 28S, the weight of the wafer stage WST1 and the flying force of the planar motor.
  • the distance between the SI and the upper surface of the base BS is maintained at about several / im.
  • fine movement stage WFS1 includes a table 92A for supporting wafer W1 from below via a wafer holder (not shown), and a lower surface of table 92A. And a plate-like member 92B supported by suspension via a plurality of (eg, three) suspension support members 92C.
  • FIG. 1 On the upper surface of the table 92A, as shown in Figs. 1 and 2, measurement of the relative positional relationship between the position on the wafer surface where the pattern formed on the reticle R is projected and the alignment system ALG ( An aerial image measuring instrument FM1 is provided to perform so-called baseline measurement.
  • This aerial image measuring instrument FM1 corresponds to the reference mark plate of a conventional DUV exposure apparatus.
  • the reflecting surface is formed on the side surface on the ⁇ Y side and the side surface on the X side of the fine movement table 92A by mirror finishing.
  • fine movement device 140 that finely drives fine movement stage WFS1 in the XY plane, and its own weight A cancel cell mechanism 22A1 to 22A3 is provided.
  • the fine movement device 140 includes a mover 50 suspended from a table 92A of a fine movement stage WFS1 via a plurality of (for example, three) suspension support members 94, and a support member on the upper surface of the coarse movement stage WR S1. And a stator 60 provided via 58.
  • the wafer stage WST1 is assembled (state shown in Fig. 3 (A))
  • the mover 50 and the stator 60 are engaged (the stator 60 enters the mover 50).
  • the support member 58 that supports the stator 60 is inserted into the opening 92Ba (see FIG. 3B) formed in the plate-like member 92B of the fine movement stage WFS1.
  • the movable element 50 has a substantially X-shaped (cross-shaped) shape in plan view (viewed from above).
  • the four magnet units 52A, 52B, 52C, 52D and the magnet units 52A to 52D are held in a predetermined positional relationship in plan view (viewed from above).
  • Each of the four magnet units 52A to 52D takes up the magnet unit 52A in FIG. 6 (A) and, as representatively shown, a pair of magnetic pole portions 4 spaced apart by a predetermined interval in the Z-axis direction. Equipped with OA, 40B.
  • One magnetic pole portion 40A is a flat plate-like member 42A, a perpendicularly magnetized permanent magnet 44N, 44S provided on the lower surface of the plate-like member 42A, and a state sandwiched between the permanent magnets 44N, 44S And a horizontally magnetized permanent magnet (interpolation magnet) 46 provided in FIG.
  • the lower surface (one Z side surface) of the permanent magnet 44N is an N magnetic pole surface
  • the lower surface (one Z side surface) of the permanent magnet 44S is an S magnetic pole surface
  • the surface in contact with the permanent magnet 44N is an N magnetic pole surface
  • the surface in contact with the permanent magnet 44S is an S magnetic pole surface.
  • the operation of the interpolating magnet 46 is the same as that of the interpolating magnet 32 of the magnet unit 30 constituting the planar motor described above.
  • the other magnetic pole part 40B is symmetrical with the magnetic pole part 40A, although it is vertically and horizontally symmetrical. That is, the magnetic pole 40B includes a plate-like metal B material 42B and permanent magnets 44N, 44S, 46.
  • the permanent magnet 44N has an upper surface (the surface on the + Z side) as an N magnetic pole surface, and the permanent magnet 44S
  • the upper surface (+ Z side surface) is the S magnetic pole surface
  • the surface that contacts the permanent magnet 44N of the permanent magnet (interpolation magnet) 46 is the N magnetic pole surface
  • the surface that contacts the permanent magnet 44S is the S magnetic pole surface. I'm going.
  • the other magnet units 52B to 52D have the same configuration.
  • the magnet unit 52B and the magnet unit 52D have the magnetic pole part 40A on the lower side (-Z side) and the magnetic pole part 40B on the upper side (+ Z side). It is different in that it is placed in.
  • the direction in which the magnet units 52A and 52C are arranged and the direction force in which the magnet units 52B and 52D are arranged are inclined by 45 ° with respect to the X axis and the Y axis ( (See Figure 7 (A) to Figure 7 (C)).
  • FIG. 6B which shows the stator 60 in a perspective view
  • the stator 60 has a housing having an X shape (cross shape) in plan view (viewed from above).
  • a body 54 and four armature coils 56A to 56D provided in the casing 54 are included.
  • the armature coils 56A to 56D are inserted between the magnetic pole portions 40A and 40B of the magnet units 52A to 52D, respectively, and the current flowing through the armature coils and the respective magnet units. Due to the electromagnetic interaction between the magnetic field and the direction of 45 ° inclination with respect to the X and Y axes (as indicated by the black arrows) as shown in Fig. 7 (A) to Fig. 7 (C) Direction) can be generated.
  • a current of a predetermined amount clockwise in armature cores 56A, 56D (in Fig. 7 (A), Current direction is indicated by white arrows)
  • a predetermined amount of counterclockwise current to the armature coils 56B and 56C the current flowing through each armature coil Due to the electromagnetic interaction with the magnetic field formed by the magnet unit, a driving force in the direction indicated by the black arrow is generated.
  • the driving force in the direction indicated by the hatched arrow (+ Y direction) is applied to the movable element 50 (fine movement stage WFS1).
  • a driving force in one Y direction can be applied to the mover 50 (fine movement stage WFS1).
  • each armature coil Due to the electromagnetic interaction between the current flowing through and the magnetic field formed by each magnet unit, a driving force in the direction indicated by the black arrow is generated. Then, due to the resultant force of these driving forces, a driving force in the direction indicated by the hatched arrow (one X direction) acts on the mover 50 (fine movement stage WFS1). In addition, by supplying a current in the opposite direction to the above to each coil, a force S can be applied to apply a driving force in the + X direction to the mover 50 (fine movement stage WFS1).
  • each armature coil Due to the electromagnetic interaction between the current flowing through and the magnetic field formed by each magnet unit, a driving force in the direction indicated by the black arrow is generated. Then, due to the resultant force of these driving forces, the driving force in the direction indicated by the hatched arrow (the rotational direction around the Z axis (clockwise)) acts on the mover 50 (fine movement stage WFS1). It is like that.
  • a driving force in the rotation direction (counterclockwise) about the Z axis to the mover 50 fine movement stage WFS1). It has become.
  • the three self-weight canceling mechanisms 22A1 to 22A3 (in Fig. 3 (A), the self-weight canceling mechanism 22A3 is omitted for convenience of illustration).
  • the coarse motion On stage WRS1 fine movement stage WFS1 is supported at three points in a non-contact manner, each of which includes a drive mechanism (voice coil motor) and the like.
  • fine stage WFS1 is finely driven in three degrees of freedom in the Z axis direction, ⁇ direction (rotation direction around X axis), and 6 y direction (rotation direction around axis).
  • These self-weight canceling mechanisms 22A1 to 22A3 are provided in a state of penetrating through an opening 92Bb formed in the plate-like member 92B of fine movement stage WFS1.
  • FIG. 8 shows a longitudinal sectional view of the dead weight canceling mechanism 22A1.
  • the self-weight canceling mechanism 22A1 includes a first member 62 fixed to the upper surface of the coarse movement stage WRS1, a second member 64 provided above the first member 62, and a first member 62. 1 Connects the third member 66 provided inside the member 62 and the second member 64 to the lower end surface (Z side surface) of the third member 66 and the upper surface (+ Z side surface) of the coarse movement stage WRS1. And a bellows 68 provided in a closed state.
  • the first member 62 is formed of a member having a substantially cylindrical shape, and a circular recess 62b having a predetermined depth is formed at the center of the lower end surface thereof, and an inner bottom surface (upper surface) of the circular recess 62b is formed.
  • a circular through hole 62 a that penetrates to the upper surface of the first member 62 is formed in the central portion. That is, a stepped through hole is formed by the circular recess 62b and the through hole 62a.
  • the second member 64 is formed of a member having an approximately cylindrical outer shape, and a recess 64c having a circular cross section having a predetermined depth is formed at the center of the lower end surface thereof. Further, a circular chamber 64a having a substantially the same diameter as the concave portion 64a is formed at a predetermined interval from the concave portion 64c to the + Z side. In addition, the third member 64 is formed with a circular hole 64b that communicates the inner bottom surface (upper surface) of the recess 64c with the inner lower surface of the chamber 64a.
  • a vacuum preload (differential exhaust type) gas hydrostatic bearing 72 is fixed to the upper surface of the second member 64 (that is, the upper surface of the self-weight canceling mechanism 22A1), and the static pressure generated by the vacuum preload gas hydrostatic bearing 72 is generated. Due to the balance between the pressure and the dead weight of fine movement stage WFS1, fine movement stage WFS1 is supported in a non-contact manner by dead weight cancellation mechanism 22A1. In order to maintain a predetermined distance between the second member 64 and the fine movement stage WFS1, a mechanism that generates a magnetic repulsive force is employed instead of the vacuum preload type gas hydrostatic bearing 72. It is also good.
  • the third member 66 includes a disc-shaped tip portion 66a having a shape slightly smaller than the chamber 64a of the second member 64, and a first shaft portion provided at the center of the lower surface of the tip portion 66a. 66b and a second shaft portion 66d having a diameter larger than that of the first shaft portion 66b provided at the lower end of the first shaft portion 66b.
  • the YZ cross section (and the XZ cross section) is T-shaped. It has the shape of
  • a hinge part 66c is formed slightly above the center in the height direction of the first shaft part 66b, and the upper part of the hinge part 66c swings relative to the lower part. It is possible.
  • An air pad mechanism 74 is provided on the upper and lower surfaces of the tip portion 66a.
  • the air pad mechanism 74 is not shown in the figure, but actually, the gas jetting port for jetting gas and the gas jetted from the gas jetting port in a low vacuum (for example, about 10 2 to 10 3 Pa). and includes a low vacuum suction opening for aspirate and a high vacuum suction opening for sucking in a high vacuum (e.g., 10-2 to 10-about 3 Pa).
  • the supply of gas to the air pad mechanism 74 is performed via a pipe line (not shown) formed in the second member 64 and the first member 62 and a gas supply pipe (not shown) connected to the first member 62. This is performed by a gas supply device (not shown).
  • a predetermined clearance for example, about several ⁇ m
  • a predetermined clearance is formed between the distal end portion 66a of the third member 66 and the upper and lower wall surfaces of the chamber 64a of the second member 64.
  • a plurality of air pad mechanisms 174 similar to the above are also provided on the inner wall surface of the first member 62 facing the second shaft portion 66d of the third member 66.
  • a predetermined clearance (for example, about several ⁇ ) is formed between the inner wall surface of the first member 62 and the second shaft portion 66d of the third member 66.
  • a gas supply pipe (not shown) is connected to the bellows 68, and gas is supplied from a gas supply device (not shown) via the gas supply pipe, so that the inside of the bellows 68 is maintained at a predetermined pressure. It is held.
  • a voice coil motor 78 is provided between the first member 62 and the second member 64.
  • the voice coil motor 78 includes a stator 76B including an armature coil fixed to the upper surface of the first member 62, and a mover having a permanent magnet fixed to the inner surface of the side wall of the recess 64c of the second member 64. Including 76A.
  • the voice coil motor 78 makes it possible to change the relative positional relationship between the first member 62 and the second member 64 (and the third member 66) in the Z-axis direction.
  • an encoder 83 is provided between the third member 66 and the first member 62.
  • This encoder 83 is provided with a scale 82B provided at the lower end of the third member 66 and an inner surface of the recess 62b of the first member 62 and an irradiation system for irradiating light to the scale 82B and a scale 82B.
  • a sensor head 82A having a light receiving element for receiving the reflected light. The encoder 83 can detect the relative positional relationship between the first member 62 and the third member 66 in the Z-axis direction.
  • the fine movement stage WFS1 is set at three points via the third member 66, the second member 64, and the air pad mechanism 72 by the bellows 68 constituting each. It can be supported with low rigidity.
  • the voice coil motor 78 can be finely driven so as to cancel the rigidity of the bellows 68 based on the measurement result of the encoder 83.
  • a current for driving in the Z-axis direction is applied to the coil of stator 76B of voice coil motor 78. It can be supplied in a combined state with a current for canceling the rigidity.
  • a power receiving / radiating arm 20A is provided at the + Y side end of the upper surface of coarse movement stage WRS1. As shown in Fig. 2, the power receiving / radiating arm 20A has a length (width) in the X-axis direction that is longer (wider) than the distance between the power transmission / waste heat frames 24A and 24B. Therefore, a part of the upper surface is always facing the lower surface of at least one of the power transmission and waste heat frames 24A and 24B.
  • FIG. 9 is a diagram showing the internal configuration of the power receiving 'heat dissipating arm 20A viewed from the + X side.
  • Fig. 10 shows the XZ section of the power transmitting' waste heat arm 24A, 24B along with the power receiving 'heat dissipating arm 20A FIG. [0089]
  • a liquid temperature control system 86 Inside the power receiving / radiating arm 20A, as shown in FIG. 9, there are a liquid temperature control system 86, a power input system 84, a signal transmission system 88, and a head unit 90 constituting an encoder. It is provided.
  • the liquid temperature control system 86 is a heat source of the coarse movement stage WRS1 (for example, the armature coil of the armature unit 130 constituting the planar motor, the armature coils 56A to 56D constituting the fine movement mechanism 140, A feedback section 86A, a circulation pump 86B, and a circulation pump that are laid in the vicinity of the self-weight cancellation mechanism 22A1 to 22A3, etc.
  • WRS1 for example, the armature coil of the armature unit 130 constituting the planar motor, the armature coils 56A to 56D constituting the fine movement mechanism 140, A feedback section 86A, a circulation pump 86B, and a circulation pump that are laid in the vicinity of the self-weight cancellation mechanism 22A1 to 22A3, etc.
  • a temperature control unit 86C provided on the opposite side to the feedback unit 86A of 86B and connected to the other end of the cooling pipe 202; a Peltier element 86D provided in contact with the temperature control unit 86C; And a heat dissipating part 86E provided in contact with the surface opposite to the temperature control part 86C of the Peltier element 86D.
  • the temperature control unit 86C is a tank capable of storing a predetermined amount of coolant, and the coolant stored in the temperature control unit 86C is cooled to a predetermined temperature by the Peltier element 86D.
  • the heat radiating portion 86E has an upper surface substantially parallel to the XY plane (the wafer stage WST is parallel to the XY plane in a state where the wafer stage WST is disposed on the base BS), and the temperature control portion 86C of the Peltier element 86D. Releases the heat of the opposite surface to the outside by radiation.
  • This heat dissipating section 86E is actually provided over the entire area of the power receiving / heat dissipating arm 20A in the X-axis direction (the direction perpendicular to the paper surface).
  • a waste heat section 186 that absorbs heat from the heat radiating section 86E is provided inside one power transmission / waste heat frame 24A.
  • This waste heat section 186 is provided over the entire Y-axis direction of the power transmission / waste heat frame 24A. Therefore, in a state where the power receiving 'heat radiation arm 20A and the power transmission' waste heat frame 24A are vertically opposed, a part of the waste heat part 186 and a part of the heat radiation part 86E are always opposed to each other.
  • a refrigerant is supplied to the waste heat section 186 so that the heat radiated from the heat radiating section 86E can be efficiently absorbed.
  • a similar waste heat unit 286 force S is also provided in the other waste heat frame 24B.
  • the power input system 84 includes a reception unit 84A, a power conversion unit 84B, an AZD conversion / amplification unit 84C, and a connector 84D.
  • the receiver 84A receives power wirelessly.
  • a coil is provided. This coil is provided over the entire area of the power receiving / radiating arm 20A in the X-axis direction (the direction orthogonal to the paper surface).
  • one power transmission / waste heat frame 24A shown in FIG. 10 includes a transmission unit 184 including a power transmission coil.
  • a transmission unit 184 including a power transmission coil In a state where the power transmission coil in the transmission unit 184 and the power reception coil in the reception unit 84A face each other, power supplied from a power supply device (not shown) is transmitted between the power transmission coil and the power reception coil. It is designed to be transmitted wirelessly between the two.
  • This wireless power transmission method is disclosed in Japanese Patent Publication No. 5-59660, Japanese Patent Laid-Open No. 58-115945, etc., and the description thereof will be omitted.
  • the other power transmission / waste heat frame 24B also includes a transmission unit 284 including a similar power transmission coil.
  • the power transmission coil in the transmission unit 284 and the power reception coil in the reception unit 84A are connected to each other. Wireless power transmission is performed between the power transmission coil and the power reception coil in the state of being vertically opposed.
  • a coil of a drive mechanism (for example, a coil constituting the armature unit 130 of a planar motor) that is A / D converted and amplified by the D conversion / amplification unit 84C and drives the coarse movement stage WRS1 via the connector 84D.
  • the coil is included in the stator of the coil coil motor 78 and the armature coils 56A to 56D included in the fine movement mechanism 140). Further, this current is also supplied to the Peltier element 86D and the pump 86B constituting the liquid temperature control system 86 described above. Further, in the case of a wafer holder force electrostatic adsorption type wafer holder that holds the wafer W1 on the fine movement stage WFS1, this current can be supplied to the wafer holder. In this case, the current supply between coarse movement stage WRS1 and fine movement stage WFS1 can be performed by the above-described wireless power transmission method.
  • the signal transmission system 88 includes a connector 88A, an A / D conversion / amplification unit 88B, a radio signal generation unit 88C, and a transmission unit 88D.
  • one power transmission / waste heat frame 24A is provided with a receiver 188 corresponding to the transmitter 88D, and the other power transmission / waste heat frame 24B has Receiver 2 88 is provided.
  • the measurement result measured by the sensor such as the aerial image measuring instrument FM1 provided in a part of the fine movement stage WFS1 is the signal transmission system 88.
  • the transmitter 88D is configured to wirelessly transmit to the receiver 188 (or 288).
  • infrared rays can be used, and other radio waves or sound waves can also be used.
  • the signal transmission system 88 is configured to be capable of transmitting and receiving, and a control signal from a control device (not shown) for the wafer stage WST1 is transmitted via the signal transmission system 88 and the receiving unit 188 (or 288). It is also possible to do so.
  • the receiver 188 (288) does not need to be installed in the entire Y-axis direction of the power transmission / waste heat frame 24A (24B).
  • the head unit 90 includes a plurality of Y-axis direction measurement heads 90y for measuring position information in the Y-axis direction and position information in the X-axis direction, as shown in FIG.
  • the plurality of Y-axis direction measurement heads 90y are provided at predetermined intervals in the X-axis direction, and the X-axis direction measurement heads 90x are disposed at predetermined intervals at positions that do not interfere with the head 90y. Is provided.
  • a scale 190 is provided on the bottom surface of one power transmission / waste heat frame 24A
  • a scale 290 is provided on the bottom surface of the other power transmission / waste heat frame 24B.
  • These scales 190 and 290 are two-dimensional grids formed at predetermined intervals in the X and Y directions provided near the + Y side end of the power transmission and waste heat frames 24A and 24B and near the center. It is.
  • the position of the wafer stage WST1 in the X-axis direction is determined in the head 90x facing the scale 190 or 290 among the plurality of X-axis direction measuring heads.
  • the wafer stage It is possible to measure the position of WST1 in the Y-axis direction. Note that the interval between the adjacent heads 90 ⁇ and the interval between the adjacent heads 90y are set to such an extent that position measurement can be performed simultaneously using the scale 190 (or 290).
  • wafer stage WST2 has the same configuration as wafer stage WST1 described above. That is, wafer stage WST2 includes coarse movement stage WRS2 similar to coarse movement stage WRS1, and three self-weight canceling mechanisms 22B1, 22B2, and 22B3 provided at three positions on a straight line on coarse movement stage WRS2. A fine movement stage WFS2 similar to the fine movement stage WFS1 is installed. On the upper surface of fine movement stage WFS 2, an aerial image measuring instrument FM2 is provided.
  • a fine movement mechanism similar to the fine movement mechanism 140 described above is provided between the coarse movement stage WRS2 and the fine movement stage WFS2, and the above-mentioned power receiving and radiating arm 20A is provided near the + Y side end of the coarse movement stage WRS2.
  • the same power receiving 'radiating arm 20B is provided.
  • This power receiving 'heat dissipating arm 20B also transfers the heat generated at wafer stage WST2 and wirelessly transmits power to and from power transmission' waste heat frames 24A and 24B in the same manner as power receiving 'heat dissipating arm 20A described above. It is possible to transmit and receive signals detected by the aerial image measuring instrument FM2 on the wafer stage WST2 and to detect the position of the wafer stage WST2 in the XY plane.
  • the interferometer system passes an X-axis interferometer 18A that irradiates a measurement beam parallel to the X axis that passes through the projection center of the projection optical system PO, and the projection center. It includes a Y-axis interferometer 16 that irradiates a measurement beam parallel to the Y-axis, and an X-axis interferometer 18B that irradiates a measurement beam parallel to the X-axis that passes through the detection center of the alignment system ALG.
  • the measurement beam from X-axis interferometer 18A is , Mirror stage of the fine stage WFS 1 that constitutes the wafer stage WST1-the reflecting surface on the X side is irradiated and the measuring beam force from the Y-axis interferometer 16 fine stage WFS1 The mirror-finished one Y-side reflecting surface is irradiated.
  • the length measurement beam from the X-axis interferometer 18B is irradiated onto the mirror-finished one X-side reflecting surface of fine movement stage WFS2 constituting wafer stage WST2. Note that the mirror-processed first reflecting surface of fine movement stage WFS2 is not irradiated with the measurement beam of the interferometer in the state shown in FIG.
  • the length measurement beam of interferometer 18A is irradiated onto the reflecting surface on the -X side of fine movement stage WFS2, —The length measuring beam of interferometer 16 is irradiated on the reflecting surface on the heel side, and the length measuring beam of interferometer 18B is irradiated on the reflecting surface on the —X side of fine movement stage WFS1.
  • the interferometers 18 mm and 18 mm are multi-axis interferometers having a plurality of measurement axes.
  • the interferometer 16 is also a multi-axis interferometer. In addition to measuring the position information of the wafer stages WST1 and WST2 in the Y-axis direction, pitching (rotation around the X axis ( ⁇ X rotation)) and winging ( ⁇ z direction) Rotation) can be measured.
  • a control device (not shown) manages the position of fine movement stage WFS1 (or WFS2) in the XY plane with high accuracy based on the measurement values of interferometers 18A and 16 at the later-described exposure, which will be described later.
  • the measured value of the interferometer 18B and the Y-axis direction measurement head 90y constituting the head 90 described above are used to adjust the XY plane of the fine movement stage WFS2 (or WFS1).
  • the position inside is managed with high accuracy.
  • the force S can be provided by providing the magnetic flux leakage prevention plate 36 as shown in FIG.
  • the magnetic flux leakage prevention plate 36 is a plate that also serves as a non-magnetic member and prevents the magnetic flux generated from the magnet unit 30 from affecting the outside. As shown in FIG. It has a thickness that can cover the magnetic circuit formed by the magnet unit 30.
  • the wafer alignment operation is performed on wafer W2 on wafer stage WST2 in parallel with the exposure operation performed on wafer W1 on wafer stage WST1. The status is shown.
  • wafer wafer WST2 Prior to FIG. 2, when wafer stage WST2 is in a predetermined loading position, wafer wafer WST2 of the exposed wafer that was placed on wafer stage WST2 by a wafer loader (not shown) Unloading and loading of a new wafer W2 onto the wafer stage WST2 (ie, wafer exchange) is performed.
  • the control device (not shown) manages the X position of wafer stage WST2 based on the measurement value of interferometer 18B, and for measuring a plurality of Y-axis direction positions provided on wafer stage WST2. While aligning the Y position of wafer stage WST2 based on the measurement value measured using the head of 90y facing either scale 190 or 290 of wafer 90y, the alignment ALG is used to manage the wafer. Detects position information of alignment marks (sample marks) attached to specific shot areas on W2 (Sampnores yacht area).
  • the control device uses the least square method disclosed in, for example, Japanese Patent Application Laid-Open No. 61-44429 based on the detection result and the design position coordinate of the specific shot area.
  • Execute EGA enhanced 'global' alignment
  • the control device can also perform baseline measurement using the aerial image measuring instrument FM2.
  • the measurement result of the aerial image measuring instrument FM2 is transmitted from the transmitter provided on the power receiving / radiating arm 20B. It is wirelessly transmitted to the receiver 188 or 288 provided in the waste heat frame 24A or 24B.
  • the control device moves the coarse movement stage WRS2 through the planar motor described above based on the detection results of the interferometer 18B and the head 90y (scale 190 or 290).
  • the fine movement stage WFS2 is finely driven through the fine movement mechanism and the self-weight cancellation mechanism 22B1 to 22B3.
  • wafer stage WST1 side exposes each shot area on wafer W1 placed on wafer stage WST1 based on the result of the already performed wafer alignment.
  • Is formed on the reticle R by stepping between shots to move the wafer stage WST1 to the acceleration start position and relative scanning of the reticle R (reticle stage RST) and the wafer W 1 (wafer stage WST1) in the Y-axis direction.
  • a step-and-scan exposure operation is performed, in which a scanning exposure operation is performed in which the pattern is transferred to the shot area on the wafer W1 via the projection optical system P0.
  • the control device drives coarse movement stage W RS 1 with a long stroke via the above-described planar motor and fine movement stage WFS 1 through fine movement mechanism 140.
  • the X, ⁇ , Z, ⁇ , ⁇ , ⁇ directions are slightly driven.
  • the measurement results of the wafer focus sensor described above are taken into account.
  • the wafer alignment operation usually ends first. Therefore, the control device drives wafer stage WST2 in the ⁇ Y direction and the ⁇ X direction via a planar motor after the wafer alignment is completed. Then, wafer stage WST2 is moved to a predetermined standby position (position of wafer stage WST2 shown in FIG. 12 (A)) and waits at that position.
  • FIG. 12 (B) shows a state immediately before the measuring beam from the interferometers 18A, 16 does not hit the reflecting surface on the ⁇ X side and the reflecting surface on the ⁇ Y side of wafer stage WST1.
  • the control unit measures the position of wafer stage WST1 using the interferometer 18 A, 16 forces, and heads 90x, 90y. Switch to.
  • the control device switches the measurement of the position of the wafer stage WST2 in the Y-axis direction to the interferometer 16 at this stage.
  • the control device based on the measurement result in the Y-axis direction by the interferometer 16 and the measurement result in the X-axis direction by the head 90x, Move WST2 directly under the projection optical system P0 via a planar motor.
  • the measurement beam from the interferometer 18A is irradiated onto the X-side reflection surface of the fine movement stage WFS2, so the position measurement in the X-axis direction of the wafer stage WST2 is switched from the head 90x to the interferometer 18A.
  • the exposure apparatus 10 of the present embodiment while exchanging the wafer stages WST1, WST2, the exposure operation for the wafer on one wafer stage, the wafer exchange on the other wafer stage, and Wafer alignment operation and force Performed in parallel processing.
  • wafer stage WST2 similarly to wafer stage WST1, the upper surface of power receiving 'heat release arm 20B and the lower surface of at least one of power transmission' waste heat frames 24A, 24B are opposed to each other. In the opposed portions, it is possible to supply power to wafer stage WST2, transfer heat generated in wafer stage WST2, and transmit / receive signals.
  • the power transmission / waste heat frames 24A, 24B can always absorb the heat radiated from the heat radiation part 86E of the wafer stage WST1 (WST2). It is possible to suppress the influence on the exposure accuracy due to the heat generated in wafer stage WST1 (WST2). In this case, since there is no need to connect a pipe (tube) for supplying a coolant to wafer stage WS Tl (WST2) from the outside as in the conventional case, the movement accuracy of wafer stage WST1 (WST2) is reduced due to the tension of the pipe. This point force can also maintain the exposure accuracy with high accuracy.
  • a power input system 84 for wirelessly inputting power to wafer stages WST1 and WST2 is provided, and the power transmission 'waste heat frames 24A and 24B include a receiving unit for the power input system. Since the transmitters 184 and 284 that output power wirelessly toward the 84A are provided, wiring for supplying current to the wafer stage WST1 and WST2 and the drive mechanism that drives each component is provided to the wafer stages WST1 and WST2. It is not necessary to connect from the outside, and it prevents the movement accuracy of wafer stage WST1 and WST2 from being lowered due to wiring tension. Is possible. From this point as well, it is possible to improve the exposure accuracy.
  • transmitter 88D wirelessly transmits signals output from measuring instruments (for example, aerial image measuring instruments FM1, FM2) provided on wafer stages WST1, WST2.
  • the power transmission / waste heat frames 24A and 24B are equipped with receivers 188 and 288 that receive signals from the transmitter 88D.
  • Wiring for extracting the signals output from the detector is connected to the wafer stages WST1 and WST2. I need to connect from the outside. Therefore, also in this case, it is possible to prevent a decrease in stage movement accuracy due to the tension of the wiring as in the conventional case, and it is possible to improve the exposure accuracy.
  • two wafer stages that can be positioned with high accuracy as described above are provided, and the two wafer stages WST1 and WST2 are aligned directly below the projection optical system PO (exposure position). Because it moves directly under the system ALG (alignment position), wafer exposure and wafer alignment can be performed in parallel. Therefore, highly accurate exposure can be performed with high throughput.
  • wafer stage WST1 (WST2) is coarse movement stage WRS1.
  • each of the voice coil motors constituting fine movement mechanism 140 generates a driving force in a direction intersecting with the X axis and the Y axis by 45 °, and fine driving stage WFS1, WFS2 is driven in the X-axis and Y-axis directions. Therefore, a voice coil motor that simply generates driving force in the X-axis direction or a driving force in the Y-axis direction is generated.
  • the current consumed by one voice coil motor can be suppressed compared to the case of using a voice coil motor that is produced. Accordingly, since heat generation in the motor can be suppressed, it is possible to suppress a decrease in exposure accuracy due to heat generation.
  • the wafer stage is stopped when the current supply to the coils constituting the armature unit 130 of the flat motor is stopped. It is possible to prevent the permanent magnet on the base BS from being damaged when it falls onto the base BS.
  • the heads 90x, 90y and the scaler 190, 290 are provided, and the wafer stage WST1, WST2 is measured at a place where the measurement beam by the interferometer does not hit. Even when the wafer stages WST1 and WST2 move between the projection optical system PO and the alignment system ALG as in the embodiment, the interferometer arrangement shown in Fig. 2 is sufficient. The number can be reduced.
  • wafer stage WST1 (WST2) is provided in heat radiating section 86E provided in liquid temperature control system 86 to which cooling pipe 202 that circulates refrigerant is connected in wafer stage WST1 (WST2).
  • WST2 wafer stage WST1
  • Force Force described for radiating generated heat Not limited to this, heat radiated directly from wafer stage WST1 (WS T2) without transmission line 202, heat dissipation part 86E, etc.
  • Frame 24A, 24B can be absorbed well.
  • the force S using a plate-like member having a narrow width in the X-axis direction, and exposure exposure is not limited to this. If it does not get in the way, the size (width in the X-axis direction) can be increased. In this case, the area of the heat radiating portion 86E can be reduced (localized), and the power transmission / waste heat frame can be made approximately the same area as the upper surface of the base BS.
  • the power transmission waste heat frame is not limited to the ceiling side (above the wafer stage WST), but is also provided on the floor side (below the wafer stage WST), and the heat dissipating part 86E is placed on the lower side of the wafer stage WST. It may be provided. Further, a frame-like power transmission / waste heat frame in which the two power transmission / waste heat frames 24A and 24B in the above embodiment are integrated may be adopted.
  • the waste heat portions 186 and 286 of the power transmission and waste heat frames 24A and 24B are cooled.
  • a cooling mechanism such as a Peltier element may be provided in the waste heat unit.
  • any one of the power transmission and waste heat frames 24A and 24B is always facing (facing) the waste heat portions 186 and 286 has been described. If the heat radiated from the waste heat units 186 and 286 is absorbed by the power transmission and waste heat frames 24A and 24B, there may be a slight deviation from the opposed state. That is, in the above embodiment, the force S described in the case where the power transmission / waste heat frames 24A and 24B are provided over the entire range of the movement range of the wafer stage WST in the Y-axis direction is not limited to this. Power transmission / waste heat frames 24A and 24B may be provided over a range smaller than the moving range in the Y-axis direction.
  • the radiated heat is always absorbed, and for example, there may be a case where the heat is not absorbed for a short time.
  • the discharge heat waste frame 24A (24B) and waste heat The part 186 (286) can be opposed.
  • the power transmission / waste heat frames 24A, 24B extend in the Y-axis direction to receive power.
  • power transmission' Waste heat frames 24A, 24B extend in the X-axis direction and receive power 'Heat dissipation arm 20A, 20B force Y-axis direction It may extend to. Also, not only in the X and Y axis directions, power transmission 'waste heat frames 24A and 24B and power receiving; one of the heat dissipation arms 20A and 20B extends in a predetermined direction in the XY plane, and the other in the predetermined direction It only needs to extend in the direction intersecting in the plane.
  • the case where the armature unit of the planar motor is provided on the wafer stage side has been described.
  • the present invention is not limited to this, and the armature unit is provided on the base BS side, and the magnet is provided on the wafer stage side. It is also good to have a unit.
  • the case where the coil side is provided on the coarse movement stage WRS1 (WRS2) side in all of the voice coil motors constituting the fine movement mechanism 140 and the self-weight cancellation mechanism 22A1 to 22A3 (22B1 to 22B3) has been described.
  • the arrangement is not limited to this, and is arranged between the coarse movement stage and the fine movement stage. If the wire does not affect the movement of the fine movement stage, a coil may be provided on the fine movement stage side.
  • the present invention is not limited to this, and a thin plate is used.
  • the plate may be provided above the base BS so that the height of the upper surface of the plate is equal to the height of the magnetic flux leakage prevention plate 36 shown in FIG.
  • the force used to measure the position of wafer stages WST1 and WST2 using an interferometer system and an encoder is not limited to this.
  • the position of wafer stages WST1 and WST2 can be measured using only the interferometer system.
  • the position of wafer stages WST1 and WST2 can be measured using only the encoder. It ’s fine to go.
  • the direction in which the magnet units 52A and 52C are aligned with the force S and the direction force in which the magnet units 52B and 52D are aligned are X-axis and Forces described in the case where the direction is inclined by 45 ° with respect to the Y axis Not limited to this, the direction in which the magnet units 52A and 52C are aligned, and the direction force in which the magnet units 52B and 52D are aligned X in the XY plane
  • the angle is not limited as long as it intersects the axis and the Y axis.
  • each of the voice coil motors constituting the fine movement device 140 generates a driving force in a direction inclined by 45 ° with respect to the X axis and the Y axis in the XY plane has been described.
  • the angle is not limited.
  • the protective plate 26 that also has non-magnetic physical strength is provided on the upper surface of the base BS so as to cover the magnet unit 30 from above.
  • a protective plate may be provided on the lower surface of the stages WST1 and WST2. This protective plate prevents the direct contact between the wafer stages WST1, WST2 and the permanent magnets 28N, 28S, 32, and prevents the permanent magnets 28N, 28S, 32 from Damage can be prevented.
  • the present invention is not limited to this, and there is only one wafer stage.
  • the present invention can be applied to a wafer stage apparatus having the same, or the present invention can be applied to a wafer stage apparatus having three or more wafer stages.
  • a surface shape detection device may be provided on the body holding the projection optical system PO.
  • this surface shape detection apparatus for example, an irradiation system that obliquely enters a linear beam longer than the diameter of the wafer, for example, and a detector that receives reflected light of the beam irradiated by the irradiation system, such as a one-dimensional A light receiving system having a CCD sensor or a line sensor is included.
  • the wafer Z position at each measurement point (perpendicular to the predetermined plane (XY plane) on which the wafer moves) Position information regarding the Z-axis direction).
  • the measurement value (wafer position) by the interferometer system or the head unit 90 and the detection result by the detection device are used. Based on this, the distribution of the Z position information on the wafer surface can be calculated, and during the exposure operation, the position and orientation of the wafer stage in the Z-axis direction can be controlled based on the calculation result.
  • a planar motor is used as a driving device for driving wafer stages WST1 and WST2 with a long stroke.
  • the present invention is not limited to this, and a linear motor may be used. .
  • wafer stages WST1 and WST2 of the above embodiment are connected to wiring and piping.
  • wiring and piping ports are provided in part of wafer stages WST1 and WST2 so that power can be directly supplied to wafer stages WST1 and WST2. I can leave.
  • fine movement mechanism 140 and self-weight cancellation mechanisms 22A1 to 22A3 and 22B1 to 22B3 are provided on wafer stages WST1 and WST2 .
  • the present invention is not limited to this, and either one may be provided.
  • a voice coil motor that is normally used can be provided in place of the fine movement mechanism or the self-weight cancellation mechanism.
  • a voice coil motor in this case, a force that can employ both a moving magnet type voice coil motor and a moving coil type voice coil motor. From the viewpoint of not dragging the wiring as described in the above embodiment.
  • a moving magnet type voice coil motor can be used.
  • the present invention is not limited to this, and the stage apparatus of the present invention may be employed on the reticle stage RST side. Is possible.
  • the force described in the case where the present invention is applied to the wafer stage that holds the wafer surface parallel to the horizontal plane (XY plane) is not limited to this.
  • the present invention can also be applied to a wafer stage (vertical stage) that is held substantially parallel to a plane orthogonal to the Y plane.
  • the present invention can also be applied to an immersion exposure apparatus disclosed in pamphlet of International Publication No. 2004/53955.
  • the exposure apparatus of the above embodiment may include a measurement stage separately from the wafer stage as disclosed in, for example, pamphlet of International Publication No. 2005/074014.
  • the mobile device of the present invention can be employed in the measurement stage MST together with the wafer stage WST or instead of the wafer stage WST.
  • the present invention is applied to a stray type exposure apparatus such as a step-and-scan method has been described, but the scope of the present invention is not limited to this. Of course. That is, a step-and-repeat projection exposure apparatus, a step-and-stitch exposure apparatus, or a proximity exposure apparatus, The present invention can also be applied to a mirror projection liner.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, and a thin film magnetic head
  • exposure devices for manufacturing image sensors (CCDs, etc.), micromachines, and DNA chips can also be widely applied to exposure devices for manufacturing image sensors (CCDs, etc.), micromachines, and DNA chips.
  • glass substrates, silicon wafers, etc. are used to manufacture reticles or masks used in light exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc. that can be used only with micro devices such as semiconductor devices.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • EUV light having a wavelength of l nm is used as exposure light.
  • the present invention is not limited to this, and EUV light having a wavelength of 13 nm may be used as exposure light.
  • SOR Synchrotron Orbital Radiation
  • the present invention is not limited to this, and laser excitation plasma light source, betatron light source, discharged light source, X-ray laser, etc. Good, even if you use a shift.
  • light having a wavelength of lOOnm or less is used as exposure light.
  • the present invention is not limited to this, and light having a wavelength of lOOnm or more (ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), F laser light (wavelength 157 nm), Ar laser light (wavelength 126 nm), pulsed laser light such as Kr laser light (wavelength 146 nm), and g-rays from ultra-high pressure mercury lamps (Wavelength 436 nm), i-line (wavelength 365 nm, etc.) can also be used.
  • the projection optical system may be not only a reduction system but also an equal magnification and an enlargement system.
  • the projection optical system is not limited to a reflection type projection optical system composed only of a reflection optical element, but also a catadioptric (catadioptric) type projection optical system having a reflection optical element and a refractive optical element, It is also possible to use a refractive projection optical system having only refractive optical elements.
  • the present invention can also be applied to an exposure apparatus that uses charged particle beams such as an electron beam or an ion beam.
  • a light-transmitting mask reticle in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern') is formed on a light-transmitting substrate is used.
  • an electronic mask or a light-transmitting pattern or a reflection pattern, or a light-emitting pattern based on electronic data of a pattern to be exposed (or
  • a variable shaped mask for example, a DMD (Digital Micromirror Device) which is a kind of non-light emitting image display element (also called a spatial light modulator) may be used.
  • the exposure is performed after the shot area exposed at the time of alignment mark detection among a plurality of divided areas on the wafer in consideration of the alignment mark detection result described above.
  • the relative position control between the wafer and the pattern image can be performed by changing the transmission pattern or the reflection pattern to be formed based on the electronic data when exposing at least one other shot area. good.
  • an exposure apparatus (lithography system) that forms line and space patterns on a wafer by forming interference fringes on the wafer. ) Can also be applied to the present invention.
  • two reticle patterns are synthesized on the wafer via the projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on a wafer almost simultaneously by one scan exposure.
  • the apparatus for forming a pattern on an object is not limited to the above-described exposure apparatus (lithography system), and the present invention can also be applied to an apparatus for forming a pattern on an object by, for example, an ink jet method. .
  • the object on which the pattern is to be formed (the object to be exposed to the energy beam) is not limited to the wafer, but may be a glass plate, a ceramic substrate, or a mask blank. It may be an object.
  • the exposure apparatus of the above embodiment assembles various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by. In order to ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted, and mechanical accuracy is adjusted. Adjustments are made to achieve electrical accuracy for various electrical systems.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure system. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustments are performed to ensure various accuracies as the entire exposure apparatus. Exposure equipment should be manufactured in a clean room with controlled temperature and cleanliness.
  • the steps of device function / performance design, steps based on this design step, steps for manufacturing reticles, steps for manufacturing wafers from silicon materials, adjustment described above A lithography step and a device assembly step (including a dicing process, a bonding process, and a packaging process) for transferring the pattern formed on the mask onto the photosensitive object in the exposure apparatus according to the embodiment in which the pattern transfer characteristics are adjusted by the method. It is manufactured through inspection steps and the like. In this case, since the exposure apparatus of the above embodiment in which the pattern transfer characteristics are adjusted in the lithography step is used, the productivity of a highly integrated device can be improved. Industrial applicability
  • the moving body device and the fine moving body of the present invention are suitable for use in an exposure apparatus.
  • the exposure apparatus and exposure method of the present invention are suitable for exposing an object and forming a pattern on the object.
  • the device manufacturing method of the present invention is suitable for manufacturing a microphone port device.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 送電・廃熱フレーム(24A,24B)が、ウエハステージ(WST1、WST2)から輻射した熱を常時吸収することができるので、ウエハステージ(WST1、WST2)において発生する熱による露光精度への影響を抑制することが可能となる。この場合、従来のように、ウエハステージ(WST1、WST2)に冷媒を供給する配管(チューブ)を外部から接続する必要がないため、配管の張力によるウエハステージ(WST1、WST2)の移動精度の低下を防止することができ、この点からも露光精度を高精度に維持することが可能となる。

Description

明 細 書
移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方 法
技術分野
[0001] 本発明は移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方 法に係り、更に詳しくは、水平面内の少なくとも一軸方向に移動する移動体を備える 移動体装置、該移動体装置を備える露光装置及び前記移動体装置を用いる露光方 法、移動体に対して、微小駆動可能に支持される微動体、並びに前記露光装置又 は露光方法を用いるデバイス製造方法に関する。
背景技術
[0002] 近年、半導体素子、液晶表示素子等の製造におけるリソグラフイエ程では、半導体 等の高集積化に伴い、高いスループットで微細パターンを精度良く感光物体上に形 成可能なステップ ·アンド'リピート方式の縮小投影露光装置(レ、わゆるステツパ)や、 ステップ 'アンド'スキャン方式の走查型投影露光装置(レ、わゆるスキャニング ·ステツ パ(スキャナとも呼ばれる) )などの逐次移動型の露光装置が主として用いられてレ、る
[0003] この種の露光装置では、ウェハ又はガラスプレートなどの感光物体(以下、「ウェハ 」と呼ぶ)を駆動する駆動装置として、 2軸リニアモータや平面モータ等によって二次 元面内で駆動される粗動ステージと、該粗動ステージ上でウェハを保持してボイスコ ィルモータなどにより Z軸方向及び傾斜方向などに微小駆動される微動ステージとを 有するウェハステージ装置が用いられてレ、る。
[0004] しかるに、上述のウェハステージ装置における、リニアモータや平面モータ、及びボ イスコイルモータなどの駆動装置は、複数のコイルを有する電機子ユニットと複数の 磁石を有する磁石ユニットを備えているため、電機子ユニットを構成するコイルに電 流が供給されることによりコイルが発熱する。したがって、このコイルの発熱による露 光精度への影響を抑制するために、最近では、ウェハステージの一部に配管(チュ ーブ)を接続し、該配管 (チューブ)を介して発熱部分近傍に冷媒を供給することとし ていた。し力 ながら、この冷媒供給用の配管(チューブ)は、ステージの移動に伴つ て引きずられるため、これがウェハの位置制御性を低下させ、ひいては露光精度を 低下させる要因となる。
[0005] また、従来のウェハステージでは、リニアモータや平面モータ、及びボイスコイルモ ータに用いられる配線等が外部から接続されているため、上記配管(チューブ)と同 様、ステージの駆動に伴って、これらの配線等が引きずられ、これがウェハの位置制 御性を低下させる要因となっていた。
発明の開示
課題を解決するための手段
[0006] 本発明は、上述した事情の下になされたもので、第 1の観点からすると、放熱部を 備えた移動体と;該移動体を所定面内で二次元駆動する駆動装置と;前記移動体と は非接触に設けられ、前記移動体から輻射した熱を吸収する廃熱部材と;を備え、前 記廃熱部材と前記放熱部とはその一方が前記所定面内の一軸方向に関して所定範 囲に渡り、かつ他方が前記所定面内で前記一軸方向に直交する方向に関して所定 範囲に渡って設けられる第 1の移動体装置である。
[0007] これによれば、廃熱部材が、移動体から輻射した熱を吸収するので、移動体の熱的 な影響を抑制することが可能となる。この場合、廃熱部材と移動体が備える放熱部と はその一方が一軸方向に関して所定範囲に渡り、かつ他方が所定面内で一軸方向 に直交する方向に関して所定範囲に渡って設けられているので、廃熱部材の少なく とも一部と放熱部の少なくとも一部とが非接触で対向する二次元面内の範囲で、移 動体を移動しても、移動体から輻射した熱を廃熱部材が吸収することができる。
[0008] 本発明は、第 2の観点からすると、移動体と;前記移動体に設けられ、無線で電力 が入力される電力入力部と;前記移動体とは非接触で、前記電力入力部の少なくとも 一部と常時対向した状態で設けられ、前記電力入力部に向けて無線で電力を出力 する電力出力部と;前記電力入力部に入力された電力を用いて、前記移動体を駆動 する駆動装置と;を備える第 2の移動体装置である。
[0009] これによれば、移動体に無線で電力が入力される電力入力部が設けられるとともに 、移動体とは非接触で、電力入力部の少なくとも一部と常時対向した状態で電力入 力部に向けて無線で電力を出力する電力出力部が設けられているので、移動体を 駆動する駆動装置に電力を供給するための配線を移動体に接続しなくて良い。これ により、配線の張力による移動体の移動精度の低下を防止することが可能となる。
[0010] 本発明は、第 3の観点からすると、移動体と;該移動体に設けられた計測器と;前記 移動体に設けられ、前記計測器から出力された信号を無線で発信する発信部と;前 記移動体とは非接触で、前記発信部の少なくとも一部と常時対向した状態で設けら れ、前記発信部から無線で発信された信号を受信する受信部と;を備える第 3の移動 体装置である。
[0011] これによれば、移動体に、計測器から出力された信号を無線で発信する発信部が 設けられ、該発信部からの信号を受信する受信部が、移動体とは非接触で、発信部 の少なくとも一部と常時対向しているので、検出器から出力された信号を取り出すた めの配線を移動体に接続する必要がない。したがって、配線の張力による移動体の 移動精度の低下を防止することが可能となる。
[0012] 本発明は、第 4の観点からすると、物体を露光して、前記物体にパターンを形成す る露光装置であって、前記物体が前記移動体上に載置される本発明の第 1の移動 体装置を具備する第 1の露光装置である。
[0013] これによれば、露光対象の物体が、移動精度の低下が防止された移動体上に載置 されているので、物体を高精度で移動することができ、ひいては露光精度の向上を図 ること力 S可言 となる。
[0014] 本発明は、第 5の観点からすると、物体を露光して、前記物体にパターンを形成す る露光装置であって、移動体を複数備える本発明の第 1の移動体装置を具備し、前 記物体を載置する前記複数の移動体の 1つとの交換で、前記所定面内で前記物体 の露光が行われる露光位置に、前記物体の次に露光すべき物体を載置する別の移 動体を配置する第 2の露光装置である。
[0015] これによれば、高精度な位置決めが可能な移動体を複数備える本発明の第 1の移 動体装置を具備し、物体を載置する複数の移動体の 1つとの交換で、所定面内で物 体の露光が行われる露光位置に、前記物体の次に露光すべき物体を載置する別の 移動体を配置することができるので、複数の物体に対する露光を連続的に行うことが できる。したがって、高精度な露光を高スループットにて行うことが可能となる。
[0016] 本発明は、第 6の観点からすると、物体にパターンを形成する露光方法であって、 前記物体の露光時に、本発明の第 1の移動体装置の前記移動体に前記物体を載置 した状態で、前記移動体を駆動する第 1の露光方法である。
[0017] これによれば、露光対象の物体が、移動精度の低下が防止された移動体上に載置 されているので、物体を高精度で移動することができ、ひいては露光精度の向上を図 ること力 S可肯 となる。
[0018] 本発明は、第 7の観点からすると、物体にパターンを形成する露光方法であって、 移動体を複数備える本発明の第 1の移動体装置によって、前記所定面内で前記物 体の露光が行われる露光位置に配置される前記複数の移動体の 1つを駆動し、前記 1つの移動体との交換で、前記物体の次に露光すべき物体を載置する別の移動体 を前記露光位置に配置する第 2の露光方法である。
[0019] これによれば、高精度な位置決めが可能な移動体を複数備える本発明の第 1の移 動体装置を具備し、物体を載置する複数の移動体の 1つとの交換で、所定面内で物 体の露光が行われる露光位置に、前記物体の次に露光すべき物体を載置する別の 移動体を配置することができるので、複数の物体に対する露光を連続的に行うことが できる。したがって、高精度な露光を高スループットにて行うことが可能となる。
[0020] 本発明は、第 8の観点からすると、移動体と;前記移動体に対して、非接触状態で 支持された微動体と;前記移動体に設けられた 4つの電機子コイルと、前記微動体に 設けられ、前記 4つの電機子コイルと協働して駆動力を発生する磁石ユニットと、を有 する駆動機構と;を備える第 4の移動体装置である。
[0021] これによれば、 4つの電機子コイルそれぞれとこれに対応する磁石ユニットとが協働 して発生する各駆動力の合力を、微動体に作用させることができるので、電機子コィ ノレ 1つあたりの消費電流を抑制することができる。これにより、電機子コイル 1つあたり の発熱を抑制することができる。
[0022] 本発明は、第 9の観点からすると、移動体に対して、微小駆動可能に支持される微 動体であって、前記移動体に対し、非接触状態で支持される微動体本体と;前記微 動体本体に設けられ、前記移動体に設けられた 4つの電機子コイルと協働して駆動 力を発生する磁石ユニットと;を備える微動体である。
[0023] これによれば、 4つの電機子コイルそれぞれとこれに対応する磁石ユニットとが協働 して発生する各駆動力の合力を、微動体本体に作用させることができるので、電機子 コイル 1つあたりの消費電流を抑制することができる。これにより、電機子コイル 1つあ たりの発熱を抑制することができる。
[0024] 本発明は、第 10の観点からすると、移動体と;前記移動体に対して、非接触状態で 支持された本発明の微動体と;を備える第 5の移動体装置である。これによれば、 1つ の電機子コイルにおける発熱を抑制することができる。
[0025] 本発明は、第 11の観点からすると、物体にパターンを形成する露光装置であって、 前記物体が前記微動体上に載置される本発明の第 4の移動体装置を具備することを 特徴とする第 3の露光装置である。
[0026] これによれば、発熱に起因する露光精度の低下を抑制することが可能となる。
[0027] また、本発明の第 1の露光方法を用いて基板上にパターンを形成することにより、 高集積度のマイクロデバイスの生産性を向上することが可能である。また、本発明の 第 1の露光装置を用いて基板上にパターンを形成することにより、高集積度のマイク 口デバイスの生産性を向上することが可能である。したがって、本発明は、更に別の 観点からすると、本発明の第 1の露光方法を用いた基板上へのパターン転写工程を 含むデバイス製造方法、あるいは、本発明の第 1の露光装置を用いた基板上へのパ ターン転写工程を含むデバイス製造方法であるとも言える。
図面の簡単な説明
[0028] [図 1]一実施形態に係る露光装置を示す概略図である。
[図 2]図 1のウェハステージ装置を示す平面図である。
[図 3]図 3 (A)は、ウェハステージ WST1の縦断面図であり、図 3 (B)は、図 3 (A)を分 解した状態を示す図である。
[図 4]平面モータの構成及び作用を説明するための図である。
[図 5]ベース BSを + X方向から見た状態を示す模式図である。
[図 6]図 6 (A)は、微動機構を構成する可動子を示す斜視図であり、図 6 (B)は、微動 機構を構成する固定子を示す斜視図である。 [図 7]図 7 (A)〜図 7 (C)は、微動機構による微動ステージの駆動方法を説明するた めの図である。
[図 8]自重キャンセル機構の縦断面図である。
[図 9]受電 ·放熱アームの内部構成を説明するための図である。
[図 10]送電 ·廃熱フレームの内部構成を説明するための図である。
[図 11]ウェハステージ上に設けられたヘッドと送電.廃熱フレームに設けられたスケー ルとを示す図である。
[図 12]図 12 (A) ,図 12 (B)は、露光装置における並行処理動作を説明するための 図(その 1)である。
[図 13]図 13 (A) ,図 13 (B)は、露光装置における並行処理動作を説明するための 図(その 2)である。
発明を実施するための最良の形態
[0029] 以下、本発明の一実施形態を図 1〜図 13 (B)に基づいて説明する。
[0030] 図 1には、一実施形態に係る露光装置 10の全体構成が概略的に示されている。こ の露光装置 10では、後述するように、投影光学系 POが使用されているので、以下に おいては、この投影光学系 P〇の光学軸方向を Z軸方向、これに直交する面内で図 1 における紙面内左右方向を Y軸方向、紙面に直交する方向を X軸方向として説明す る。
[0031] 前記露光装置 10は、レチクル Rに形成された回路パターンの一部の像を投影光学 系 POを介してウェハ W1 (又はウェハ W2)上に投影しつつ、レチクル Rとウェハ W1 ( 又は W2)とを投影光学系 POに対して一次元方向(ここでは Y軸方向)に相対走査す ることによって、レチクル Rの回路パターンの全体をウェハ W1 (又は W2)上の複数の ショット領域の各々にステップ'アンド'スキャン方式で転写するものである。
[0032] 露光装置 10は、 EUV光(軟 X線領域の光)を照明光 ELとして射出する光源装置 1 12、この光源装置 112からの照明光 ELを反射して所定の入射角、例えば約 50〔mr ad]でレチクル Rのパターン面(図 1における下面(一 Z側の面) )に入射するように折 り曲げる折り曲げミラー Mを含む照明光学系(なお、折り曲げミラー Mは、投影光学系 POの鏡筒内部に存在している力 実際には照明光学系の一部である)、レチクル R を保持するレチクルステージ RST、レチクル Rのパターン面で反射された照明光(E UV光) ELをウェハ W1 (又は W2)の被露光面(図 1における上面(+ Z側の面) )に 対して垂直に投射する投影光学系 PO、ァライメント系 ALG、及びウェハ W1を保持 するウェハステージ WST1とウェハ W2を保持するウェハステージ WST2とを含むゥ ェハステージ装置 100等を備えている。本実施形態では、図示は省略されているが 、実際には、レチクルステージ RST、投影光学系 PO、及びウェハステージ WST1、 WST2等は不図示の真空チャンバ内に収容されてレ、る。
[0033] 前記光源装置 112としては、一例として、レーザ励起プラズマ光源が用いられてい る。このレーザ励起プラズマ光源は、 EUV光発生物質 (ターゲット)に高輝度のレー ザ光を照射することにより、そのターゲットが高温のプラズマ状態に励起され、該ター ゲットが冷える際に放出する EUV光、紫外光、可視光、及び他の波長域の光を利用 するものである。なお、本実施形態では、主に波長 5〜20nm、例えば波長 l lnmの EUV光が照明光 ELとして用いられるものとする。
[0034] 前記照明光学系は、照明ミラー、波長選択窓等(いずれも図示省略)及び折り曲げ ミラー M等を含む。光源装置 112で射出され、照明光学系を介した照明光 EL (前述 の折り曲げミラー Mで反射された EUV光 EL)は、レチクル Rのパターン面を円弧スリ ット状の照明光となって照明する。
[0035] 前記レチクルステージ RSTは、 XY平面に沿って配置されたレチクルステージベー ス 132上に配置され、レチクルステージ駆動系 134を構成する例えば磁気浮上型二 次元リニアァクチユエータが発生する磁気浮上力によって前記レチクルステージベー ス 132上に浮上支持されている。レチクルステージ RSTは、レチクルステージ駆動系 134が発生する駆動力によって Y軸方向に所定ストロークで駆動されるとともに、 X軸 方向及び Θ z方向(Z軸回りの回転方向)にも微小量駆動され、更に、レチクルステー ジ駆動系 134が複数箇所で発生する磁気浮上力の調整によって Z軸方向及び XY 面に対する傾斜方向(X軸回りの回転方向である θ X方向及び Y軸回りの回転方向 である Θ y方向)にも微小量だけ駆動可能である。
[0036] レチクルステージ RSTの下面側に不図示の静電チャック方式(又はメカチャック方 式)のレチクルホルダが設けられ、該レチクルホルダによって反射型のレチクル Rが保 持されている。このレチクル Rは、シリコンウェハ、石英、低膨張ガラスなどの薄い板か ら成り、その Z側の表面 (パターン面)には、 EUV光を反射する反射膜が、例えば モリブデン Moとベリリウム Beの膜が交互に約 5. 5nmの周期で、約 50ペア積層され た多層膜が形成されている。この多層膜は波長 l lnmの EUV光に対して約 70%の 反射率を有する。なお、前記折り曲げミラー M、その他の照明光学系内の各ミラーの 反射面にも同様の構成の多層膜が形成されている。
[0037] レチクル Rのパターン面に形成された多層膜の上には、吸収層として例えばニッケ ル Ni又はアルミニウム A1がー面に塗布され、その吸収層にパターンユングが施され て回路パターンが形成されてレ、る。
[0038] レチクルステージ RST (レチクル R)の XY面内の位置 ( θ z回転も含む)は、レチク ノレステージ RSTに設けられた(又は形成された)反射面にレーザビームを投射するレ チタルレーザ干渉計(以下、「レチクル干渉計」という) 182Rによって、例えば 0. 5〜 lnm程度の分解能で常時検出される。
[0039] なお、レチクル Rの Z軸方向の位置は、例えば特開平 6— 283403号公報(対応米 国特許第 5, 448, 332号明細書)等に開示される多点焦点位置検出系からなる不 図示のレチクルフォーカスセンサによって計測されている。
[0040] レチクル干渉計 182R及びレチクルフォーカスセンサの計測値は、不図示の制御装 置に供給され、該制御装置によってそれら計測値に基づいてレチクルステージ駆動 部 134を介してレチクルステージ RSTが駆動される。
[0041] 前記投影光学系 POは、開口数 (N. A. )が例えば 0. 1で、反射光学素子(ミラー) のみから成る反射光学系が使用されており、ここでは、投影倍率が例えば 1/4倍の ものが使用されている。従って、レチクル Rによって反射され、レチクル Rに形成され たパターンの情報を含む EUV光 ELは、ウェハ W1 (W2)上に投射され、これによりレ チクル R上のパターンは 1/4に縮小されてウェハ Wl (W2)に転写される。
[0042] この投影光学系 POは、鏡筒 117と、該鏡筒 117内部に配置された、例えば 6枚の 反射光学素子 (ミラー)とを含んで構成されてレ、る。鏡筒 117の上壁( + Z側の壁)に 上下に貫通する矩形の開口 117bが形成され、—Y側の側壁には、開口 117aが形 成されている。鏡筒 117の内部には、前述した照明光学系を構成する折り曲げミラー Mも配置されている。
[0043] 図 1に示されるように、投影光学系 POから +Y側に所定距離離れた位置には、ォ ファタシス方式のァライメント系 ALGが設けられてレ、る。このァライメント系 ALGとして は、ここではブロードバンド光をウェハ Wl (W2)上のァライメントマーク(または空間 像計測器 FM1 (FM2) )に照射し、その反射光を受光して画像処理によりマーク検出 を行う FIA (Field Image Alignment)方式のァライメントセンサが用いられている。この ほ力、、ァライメント系 ALGとして LIA(Laser Interferometric Alignment)方式のァライメ ントセンサ、 LSA (Laser Step Alignment)方式のァライメントセンサや AFM (原子間 力顕微鏡)のような走查型プローブ顕微鏡等種々のものを用いることができる。
[0044] また、投影光学系 P〇の鏡筒 117には、保持装置を介して前述のレチクルフォー力 スセンサと同様の、例えば特開平 6— 283403号公報(対応する米国特許第 5, 448 , 332号明細書)等に詳細に開示されているウェハフォーカスセンサ力 一体的に取 り付けられている(いずれも不図示)。このウェハフォーカスセンサによって、投影光 学系 POの鏡筒 117を基準とするウェハ W1又は W2の表面の Z軸方向の位置及び 傾斜量が計測されている。
[0045] 前記ウェハステージ装置 100は、ベース BS、該ベース BS上方に配置されウェハ W1を保持して XY面内を移動するウェハステージ WST1、ウェハ W2を保持して XY 面内を移動するウェハステージ WST2、これらステージ WST1 , WST2を駆動する 駆動系、及びステージ WST1、 WST2の位置を計測する干渉計システム等を含んで いる。
[0046] 前記ベース BSには、図 1及びウェハステージ装置 100を上方から見た状態を示す 図 2を総合するとわかるように、 Y軸方向を長手方向とする 2つの送電 ·廃熱フレーム 24A, 24Bが X軸方向に所定間隔をあけた状態で設けられている。これら送電'廃熱 フレーム 24A, 24Bは、 +X方向から一 X方向に見て、逆 U字状の形状を有し、その 一端と他端はベース BSの Y軸方向一側と他側の端面にそれぞれ固定されている。こ れら送電'廃熱フレーム 24A、 24Bのベース BS上方に位置する XY面と平行な部分 の下面は、ウェハステージ WST1 , WST2の最上面に対して所定間隔をあけた状態 に維持されている。なお、これら送電'廃熱フレーム 24A, 24Bの具体的な構成 '機 能等については後に更に詳述する。
[0047] ベース BSの上面側には、図 1に示されるように、複数の永久磁石を含む磁石ュニッ ト 30が坦め込まれた状態で設けられている。この磁石ユニット 30は、後述する平面モ ータの一部を構成しており、図 4の平面図からわかるように、例えば希土類物が焼結 されて製造され、 Z軸方向に磁化された(垂直磁化された)永久磁石 28N, 28Sを含 んでいる。永久磁石 28Nは、 +Z側の面が N磁極面とされ、永久磁石 28Sは、 +Z側 の面が S磁極面とされている。これら永久磁石 28N, 28Sは、 X軸方向及び Y軸方向 に沿って交互に所定間隔をあけてマトリックス状に配列されている。永久磁石 28N、 28Sとしては、平面視(上方から見て)略正方形の形状を有し、それぞれが同一の大 ささを有している。
[0048] 更に、磁石ユニット 30は、 X軸方向又は Y軸方向に磁化された(水平磁化された) 永久磁石(補間磁石) 32を含んでいる。この補間磁石 32は、永久磁石 28Nと永久磁 石 28Sとの間に設けられており、ベース BSを + X側から見た状態を示す図 5から分か るように、永久磁石 28Nに接触する面が N磁極面とされ、永久磁石 28Sに接触する 面が S磁極面とされている。補間磁石 32としては、平面視(上方から見て)略正方形 の形状を有し、前述した永久磁石 28N, 28Sと同一の大きさを有しているものとする。 この磁石ユニット 30によると、永久磁石 28N、永久磁石 28S、補間磁石 32を磁束が 順次巡る磁気回路が形成され(図 5参照)、補間磁石 32により、起磁力を強化するこ とができるようになつている。
[0049] ベース BSの上面には、図 5 (及び図 1)に示されるように、磁石ユニット 30を上方か ら覆う状態で、非磁性体力 成る保護プレート 26が設けられている。この保護プレー ト 26は、ウエノヽステージ WST1、 WST2と、永久磁石 28N, 28S, 32との直接白勺な 接触を防止し、永久磁石 28N, 28S, 32の損傷を防止する。
[0050] 前記ウェハステージ WST1は、図 2に示されるように、平面視(上方から見て)略矩 形の形状を有する板状部材から成る粗動ステージ WRS1と、該粗動ステージ WRS1 上に搭載された微動ステージ WFS1とを備えてレ、る。
[0051] 前記粗動ステージ WRS1の下面(_Z側の面)には、ウェハステージ WST1を + X 方向から見た状態を一部断面して示す図 3 (A)、及び図 3 (A)のウェハステージ WS Tlを分解して示す図 3 (B)から分かるように、粗動ステージ WRS1 (ウェハステージ WST1)を XY二次元面内で駆動する平面モータの一部を構成する電機子ユニット 1 30が設けられている。
[0052] 前記電機子ユニット 130は、図 4に示されるように、 16個の電機子コイル 34 〜34
11 44 を含んでいる。これら電機子コイル 34 〜34 のそれぞれには、独立に電流を供給
11 44
することが可能となっている。電機子コイル 34 〜34 の大きさは、図 4に示されるよう
11 44
に、一辺の長さ力 S、永久磁石 28N, 28S, 32を合計した長さとなるように設定されて いる。
[0053] 本実施形態では、この電機子ユニット 130と前述したベース BS内部に設けられた 磁石ユニット 30とにより平面モータが構成されている。この平面モータによると、図 4 に示されるような位置に電機子ユニット 130があるときには、電機子コイル 34 、 34
11 13
、 34 、 34 に電流を供給することにより、電機子ユニット 130に X軸方向の駆動力を
31 33
作用させることができる。また、電機子コイル 34 、 34 、 34 、 34 に電流を供給す
22 24 42 44
ることにより、電機子ユニット 130に Y軸方向の力を作用させることができる。更に、電 機子コイル 34 、 34 、 34 、 34 に電流を供給することにより、電機子ユニット 130に
12 14 32 34
z軸方向の力を作用させることができる。
[0054] 本実施形態では、図 4に示される位置に電機子ユニット 130がある場合以外であつ ても、ウェハステージ WST1の位置に応じて各コイルに供給すべき電流の大きさ'方 向を算出し、該算出結果に応じて電流を変更することにより、ウェハステージ WST1 の位置にかかわらず所望の方向への駆動力を作用させることが可能である。
[0055] したがって、不図示の制御装置では、ウェハステージ WST1の位置を検出する干 渉計ユニット(これについては後述する)等の検出結果と、ウェハステージ WST1の 移動方向及び速度とに基づいて、各コイルへの供給電流を制御することにより、所望 の方向にウェハステージ WST1を駆動可能となっている。
[0056] また、本実施形態では、図 3 (A)に示されるように、電機子ユニット 130の下端には 、永久磁石 28N, 28Sとの間に磁気吸引力を発生させる磁性体部材 96が貼付され ている。この磁性体部材 96と永久磁石 28N, 28Sとの間の磁気吸引力とウェハステ ージ WST1の自重と、平面モータによる浮上力とのバランスにより、粗動ステージ WF SIとベース BS上面との間の間隔が数/ i m程度に維持されるようになっている。
[0057] 前記微動ステージ WFS1は、図 3 (A)、図 3 (B)に示されるように、ウェハ W1を不 図示のウェハホルダを介して下側から支持するテーブル 92Aと、該テーブル 92Aの 下面側で、複数 (例えば 3本)の吊り下げ支持部材 92Cを介して吊り下げ支持された 板状部材 92Bとを含んでいる。
[0058] 前記テーブル 92Aの上面には、図 1、図 2に示されるように、レチクル Rに形成され たパターンが投影されるウェハ面上の位置とァライメント系 ALGとの相対位置関係の 計測(いわゆるベースライン計測)等を行うための空間像計測器 FM1が設けられてい る。この空間像計測器 FM1は、従来の DUV露光装置の基準マーク板に相当するも のである。また、微動テーブル 92Aの—Y側の側面と— X側の側面は鏡面加工によ つて反射面がそれぞれ形成されてレ、る。
[0059] 微動ステージ WFS1と粗動ステージ WRS1の間には、図 3 (A)及び図 3 (B)に示さ れるように、微動ステージ WFS1を XY面内で微小駆動する微動装置 140と、 自重キ ヤンセル機構 22A1〜22A3とが設けられている。
[0060] 前記微動装置 140は、微動ステージ WFS1のテーブル 92Aから複数(例えば 3本) の吊り下げ支持部材 94を介して吊り下げ支持された可動子 50と、粗動ステージ WR S1上面に支持部材 58を介して設けられた固定子 60と、を含んでいる。ウェハステー ジ WST1が組みあがった状態(図 3 (A)の状態)では、可動子 50と固定子 60とが係 合した状態(可動子 50内部に固定子 60が入り込んだ状態)となっており、固定子 60 を支持する支持部材 58は、微動ステージ WFS1の板状部材 92Bに形成された開口 92Ba (図 3 (B)参照)に挿入された状態となってレ、る。
[0061] 前記可動子 50は、該可動子 50を斜視図にて示す図 6 (A)に示されるように、平面 視(上方から見て)概略 X字状(十字状)の形状を有しており、 4つの磁石ユニット 52A 、 52B, 52C, 52Dと、これら磁石ユニット 52A〜52Dを所定の位置関係で保持する 平面視(上方から見て) L字状の 4つの保持部材 48A, 48B, 48C, 48Dと、を含ん でいる。
[0062] 前記 4つの磁石ユニット 52A〜52Dのそれぞれは、図 6 (A)に磁石ユニット 52Aを 採り上げて、代表的に示されるように、 Z軸方向に所定間隔を隔てた一対の磁極部 4 OA, 40Bを備えている。一方の磁極部 40Aは、平板状の板状部材 42Aと、該板状 部材 42Aの下面に設けられた垂直磁化された永久磁石 44N, 44Sと、該永久磁石 4 4N, 44Sに挟まれた状態で設けられた水平磁化された永久磁石(補間磁石) 46とを 含んでいる。永久磁石 44Nは、その下面(一 Z側面)が N磁極面とされ、永久磁石 44 Sは、その下面(一 Z側面)が S磁極面とされている。また、永久磁石(補間磁石) 46は 、永久磁石 44Nに接触する面が N磁極面とされ、永久磁石 44Sに接触する面が S磁 極面とされている。補間磁石 46の作用は、前述した平面モータを構成する磁石ュニ ット 30の補間磁石 32と同様である。
[0063] 他方の磁極部 40Bも磁極部 40Aと上下及び左右対称ではあるが同様の構成とな つてレヽる。すなわち、磁極き 40Bは、板状咅 B材 42Bと、永久磁石 44N, 44S, 46とを 含み、永久磁石 44Nはその上面(+ Z側の面)が N磁極面とされ、永久磁石 44Sはそ の上面(+ Z側の面)が S磁極面とされ、永久磁石(補間磁石) 46の永久磁石 44Nに 接触する面が N磁極面、永久磁石 44Sに接触する面が S磁極面とされてレ、る。
[0064] 磁石ユニット 52Aが上記のように構成されていることにより、図 6 (A)に矢印にて示 されるような磁気回路が形成される。
[0065] その他の磁石ユニット 52B〜52Dも同様の構成とされている力 磁石ユニット 52Bと 磁石ユニット 52Dは、磁極部 40Aが下側(-Z側)で磁極部 40Bが上側(+ Z側)に 配置されている点が異なっている。
[0066] なお、可動子 50においては、磁石ユニット 52Aと 52Cとが並ぶ方向、及び磁石ュ ニット 52Bと 52Dとが並ぶ方向力 X軸及び Y軸に対し 45° 傾斜する方向となってい る(図 7 (A)〜図 7 (C)参照)。
[0067] 前記固定子 60は、該固定子 60を斜視図にて示す図 6 (B)に示されるように、平面 視 (上方から見て) X字状 (十字状)の形状を有する筐体 54と、該筐体 54内に設けら れた 4つの電機子コイル 56A〜56Dと、を含んでいる。
[0068] 前記電機子コイル 56A〜56Dは、それぞれが磁石ユニット 52A〜52Dそれぞれの 磁極部 40A, 40B間に挿入されており、それぞれの電機子コイルを流れる電流と、そ れぞれの磁石ユニットが発生する磁界との間の電磁相互作用により、図 7 (A)〜図 7 (C)に示されるように X軸及び Y軸に対して 45° 傾斜した方向(黒矢印で示される方 向)の力を発生することが可能となっている。
[0069] このように構成される微動装置 140によると、図 7 (A)に示されるように、電機子コィ ノレ 56A、 56Dに右回りの所定の大きさの電流(図 7 (A)では電流の方向が白抜き矢 印にて示されている)を供給し、電機子コイル 56B, 56Cに左回りの所定の大きさの 電流を供給することによって、各電機子コイルを流れる電流と各磁石ユニットの形成 する磁界との間の電磁相互作用により、黒矢印にて示される方向の駆動力が生じる。 そして、これらの駆動力の合力により、可動子 50 (微動ステージ WFS1)には、ハッチ ングが付された矢印で示される方向(+ Y方向)の駆動力が作用するようになってい る。また、上記とは逆方向の電流をそれぞれのコイルに供給することにより、可動子 5 0 (微動ステージ WFS1)に一Y方向の駆動力を作用させることができる。
[0070] また、図 7 (B)に示されるように、電機子コイル 56A、 56Bに右回りの電流を供給し、 電機子コイル 56C, 56Dに左回りの電流を供給すると、各電機子コイルを流れる電 流と各磁石ユニットの形成する磁界との間の電磁相互作用により、黒矢印にて示され る方向の駆動力が生じる。そして、これらの駆動力の合力により、可動子 50 (微動ス テージ WFS1)には、ハッチングが付された矢印で示される方向(一 X方向)の駆動 力が作用するようになっている。また、上記とは逆方向の電流をそれぞれのコイルに 供給することにより、可動子 50 (微動ステージ WFS1)に + X方向の駆動力を作用さ せること力 Sできる。
[0071] 更に、図 7 (C)に示されるように、電機子コイル 56A、 56Cに左回りの電流を供給し 、電機子コイル 56B, 56Dに右回りの電流を供給すると、各電機子コイルを流れる電 流と各磁石ユニットの形成する磁界との間の電磁相互作用により、黒矢印にて示され る方向の駆動力が生じる。そして、これら駆動力の合力により、可動子 50 (微動ステ ージ WFS1)には、ハッチングが付された矢印で示される方向(Z軸回りの回転方向( 右回り))の駆動力が作用するようになっている。また、上記とは逆方向の電流をそれ ぞれのコイルに供給することにより可動子 50 (微動ステージ WFS1)に Z軸回りの回 転方向(左回り)の駆動力を作用させることが可能となっている。
[0072] 図 3 (A)、図 3 (B)に戻り、前記 3つの自重キャンセル機構 22A1〜22A3 (図 3 (A) では、図示の便宜上、自重キャンセル機構 22A3の図示を省略している)は、粗動ス テージ WRS1上で微動ステージ WFS1を 3点で非接触にて支持し、それぞれが駆動 機構 (ボイスコイルモータ)等を含んで構成されている。これら各駆動機構により、微 動ステージ WFS1が Z軸方向、 θ χ方向(X軸回りの回転方向)、 6 y方向(Υ軸回りの 回転方向)の 3自由度方向に微小駆動される。これら自重キャンセル機構 22A1〜2 2A3は、微動ステージ WFS1の板状部材 92Bに形成された開口 92Bbを貫通した状 態で設けられている。
[0073] ここで、 自重キャンセル機構 22A1〜22A3のうちの 1つの自重キャンセル機構 22 A1を代表的に採り上げて、その構成等について、図 8に基づいて説明する。この図 8 には、 自重キャンセル機構 22A1の縦断面図が示されている。
[0074] この図 8力も分かるように、 自重キャンセル機構 22A1は、粗動ステージ WRS1上面 に固定された第 1部材 62と、該第 1部材 62の上方に設けられた第 2部材 64と、第 1 部材 62及び第 2部材 64の内部に設けられた第 3部材 66と、第 3部材 66の下端面( Z側の面)と粗動ステージ WRS1の上面(+ Z側の面)とを連結した状態で設けられ たべローズ 68と、を含んでいる。
[0075] 前記第 1部材 62は、外形が概略円柱状の部材から成り、その下端面の中央には所 定深さの円形凹部 62bが形成され、該円形凹部 62bの内部底面(上面)の中央部に は、第 1部材 62の上面まで貫通した円形の貫通孔 62aが形成されている。すなわち 、円形凹部 62bと貫通孔 62aとにより、段付きの貫通孔が形成されている。
[0076] 前記第 2部材 64は、外形が概略円柱状の部材から成り、その下端面の中央には所 定深さの断面円形の凹部 64cが形成されている。また、凹部 64cから + Z側に所定間 隔をあけて凹部 64aとほぼ同径の断面円形の室 64aが形成されている。また第 3部 材 64には、凹部 64cの内部底面(上面)と室 64aの内部下面とを連通する円形孔 64 bが形成されている。この第 2部材 64の上面(すなわち、自重キャンセル機構 22A1 の上面)には、真空予圧型 (差動排気型)気体静圧軸受 72が固定され、真空予圧型 気体静圧軸受 72が発生する静圧と、微動ステージ WFS1の自重との間のバランスに より、微動ステージ WFS1が自重キャンセル機構 22A1により非接触で支持されてい る。なお、第 2部材 64と微動ステージ WFS1との間に所定間隔を維持するために、真 空予圧型気体静圧軸受 72に代えて、磁気的な斥力を発生する機構を採用すること としても良い。
[0077] 前記第 3部材 66は、第 2部材 64の室 64aよりも一回り小さい形状を有する円板状の 先端部 66aと、該先端部 66aの下面中央部に設けられた第 1軸部 66bと、該第 1軸部 66bの下端に設けられた第 1軸部 66bよりも径が大きい第 2軸部 66dとを有し、全体と して、 YZ断面(及び XZ断面) T字状の形状を有している。
[0078] この第 3部材 66では、第 1軸部 66bの高さ方向中央よりやや上側に、ヒンジ部 66c が形成されており、ヒンジ部 66cよりも上側部分が下側部分に対して揺動可能とされ ている。
[0079] 前記先端部 66aの上面及び下面には、エアパッド機構 74が設けられている。この エアパッド機構 74は、図示は省略されているが、実際には、気体を噴出する気体噴 出口と、該気体噴出口から噴出された気体を低真空(例えば 102〜103Pa程度)で吸 引する低真空吸引口と、高真空 (例えば 10— 2〜10— 3Pa程度)で吸引する高真空吸引 口とを含んでいる。また、このエアパッド機構 74に対する気体の供給等は、第 2部材 64及び第 1部材 62に形成された不図示の管路、及び第 1部材 62に接続された不図 示の気体供給管を介して、不図示の気体供給装置により行われる。このエアパッド機 構 74により、第 3部材 66の先端部 66aと第 2部材 64の室 64aの上下壁面との間に所 定のクリアランス (例えば数 μ m程度)が形成される。
[0080] なお、第 3部材 66の第 2軸部 66dと対向する、第 1部材 62の内壁面にも上記と同様 のエアパッド機構 174が複数設けられている。これにより、第 1部材 62の内壁面と第 3 部材 66の第 2軸部 66dとの間に所定のクリアランス(例えば数 μ ΐη程度)が形成され る。
[0081] 前記べローズ 68には、不図示の気体供給管が接続されており、該気体供給管を介 して不図示の気体供給装置から気体が供給され、ベローズ 68内部が所定圧力に維 持されている。
[0082] 更に、第 1部材 62と第 2部材 64との間には、ボイスコイルモータ 78が設けられてい る。このボイスコイルモータ 78は、第 1部材 62の上面に固定された電機子コイルを含 む固定子 76Bと、第 2部材 64の凹部 64cの側壁内面に固定された永久磁石を有す る可動子 76Aとを含んでレ、る。 [0083] このボイスコイルモータ 78により、第 1部材 62と第 2部材 64 (及び第 3部材 66)との 間の Z軸方向に関する相対的な位置関係を変更することが可能となっている。
[0084] また、第 3部材 66と第 1部材 62との間には、エンコーダ 83が設けられている。この エンコーダ 83は、第 3部材 66の下端部に設けられたスケール 82Bと、第 1部材 62の 凹部 62b側壁内面に設けられ、スケール 82Bに対して光を照射する照射系とスケー ル 82Bにて反射した光を受光する受光素子とを有するセンサヘッド 82Aと、を含んで いる。このエンコーダ 83により、第 1部材 62と第 3部材 66との Z軸方向に関する相対 的な位置関係を検出可能である。
[0085] その他の自重キャンセル機構 22A2、 22A3、上記自重キャンセル機構 22A1と同 様の構成となっている。
[0086] このように構成される自重キャンセル機構 22A1〜22A3では、それぞれを構成す るべローズ 68により第 3部材 66、第 2部材 64及びエアパッド機構 72を介して微動ス テージ WFS1を 3点で低剛性にて支持することができる。ここで、ベローズ 68の剛性 は完全には 0ではないため、エンコーダ 83の計測結果に基づいて、ベローズ 68の剛 性を打ち消すように、ボイスコイルモータ 78を微小駆動することができる。また、不図 示の制御装置では、微動ステージ WFS1に Z軸方向に関する駆動力を作用させるた めに、ボイスコイルモータ 78の固定子 76Bのコイルに対して、 Z軸方向駆動用の電流 を、上記剛性を打ち消すための電流と合成した状態で供給することができる。
[0087] 図 2に戻り、粗動ステージ WRS1上面の +Y側端部には、受電.放熱アーム 20Aが 設けられている。この受電 ·放熱アーム 20Aは、図 2からわ力るように、その X軸方向 の長さ(幅)が、前述した送電 ·廃熱フレーム 24A、 24B相互間の間隔よりも長く(広く )設定されているため、その上面の一部が常に、送電'廃熱フレーム 24A, 24Bの少 なくとも一方の下面と対峙した状態となっている。
[0088] ここで、受電.放熱アーム 20A内部の構成について、送電.廃熱フレーム 24A, 24 Bの構成とあわせて、図 9、図 10及びその他の図面を参照して説明する。図 9は、受 電'放熱アーム 20Aを + X側から見た状態を内部構成とともに示す図であり、図 10は 、送電'廃熱アーム 24A, 24Bの XZ断面を、受電 '放熱アーム 20Aとともに示す図で ある。 [0089] 前記受電 ·放熱アーム 20Aの内部には、図 9に示されるように、液体温調系 86と、 電力入力系 84と、信号送信系 88と、エンコーダを構成するヘッド部 90とが設けられ ている。
[0090] 前記液体温調系 86は、粗動ステージ WRS1の熱源 (例えば、平面モータを構成す る電機子ユニット 130の電機子コイルや、微動機構 140を構成する電機子コイル 56 A〜56D、自重キャンセル機構 22A1〜22A3に含まれるボイスコイルモータなど)の 近傍に敷設され、その内部を冷却液が通過する冷却管路 202の一端が接続された 帰還部 86Aと、循環ポンプ 86Bと、循環ポンプ 86Bの帰還部 86Aとは反対側に設け られるとともに前記冷却管路 202の他端が接続された温調部 86Cと、該温調部 86C に接触した状態で設けられたペルチェ素子 86Dと、該ペルチェ素子 86Dの温調部 8 6Cとは反対側の面に接触した状態で設けられた放熱部 86Eと、を含んでレ、る。
[0091] 前記温調部 86Cは、所定量の冷却液を収容可能なタンクであり、該温調部 86C内 に収容された冷却液がペルチェ素子 86Dによって所定温度に冷却されるようになつ ている。前記放熱部 86Eは、 XY面に実質的に平行な(ウェハステージ WSTがべ一 ス BS上に配置された状態で XY面に平行な)上面を有し、ペルチヱ素子 86Dの温調 部 86Cとは反対側の面の熱を外部に輻射により放出する。この放熱部 86Eは、実際 には、受電 ·放熱アーム 20Aの X軸方向(紙面直交方向)の全域にわたって設けられ ている。
[0092] これに対し、図 10に示されるように、一方の送電'廃熱フレーム 24Aの内部には、 前記放熱部 86Eからの熱を吸収する廃熱部 186が設けられている。この廃熱部 186 は、送電'廃熱フレーム 24Aの Y軸方向全域にわたって設けられている。したがって 、受電 '放熱アーム 20Aと送電'廃熱フレーム 24Aとが上下対向している状態では、 廃熱部 186の一部と放熱部 86Eの一部とが常に対向した状態となる。この廃熱部 18 6には例えば冷媒が供給されており、放熱部 86Eから輻射された熱を効率よく吸収す ることができるようになつている。また、他方の廃熱フレーム 24B内にも同様の廃熱部 286力 S設けられてレヽる。
[0093] 図 9に戻り、前記電力入力系 84は、受信部 84Aと、電力変換部 84Bと、 AZD変換 •増幅部 84Cと、コネクタ 84Dとを含む。前記受信部 84Aには無線で電力を受信する ためのコイルが設けられている。このコイルは、受電 '放熱アーム 20Aの X軸方向(紙 面直交方向)の全域にわたって設けられている。
[0094] これに対し、図 10に示される一方の送電.廃熱フレーム 24Aには、送電用のコイル を含む送信部 184が内蔵されてレ、る。この送信部 184内の送電用のコイルと受信部 84A内の受電用のコイルとが上下対向した状態では、不図示の電力供給装置から 供給される電力が送電用コイルと受電用のコイルとの間で無線により伝送されるよう になっている。なお、この無線による電力伝送方式については、特公平 5— 59660 号公報や、特開昭 58— 115945号公報などに開示されているので、その説明は省 略する。また、他方の送電 ·廃熱フレーム 24B内にも同様の送電用のコイルを含む送 信部 284が内蔵され、この送信部 284内の送電用コイルと受信部 84A内の受電用の コイルとが上下対向した状態で、送電用コイルと受電用のコイルとの間で無線による 電力伝送が行われるようになつている。
[0095] このように、送電 ·廃熱フレーム 24A又は 24B力 供給され、図 9の電力入力系 84 の受信部 84Aで受電した電力は、電力変換部 84Bで電流に変換された後、 A/D 変換 ·増幅部 84Cにて、 A/D変換及び増幅され、コネクタ 84Dを介して、粗動ステ ージ WRS1を駆動する駆動機構のコイル(例えば、平面モータの電機子ユニット 130 を構成するコイル 34 〜34 や、 自重キャンセル機構 22A1〜22A3を構成するボイ
11 44
スコイルモータ 78の固定子に含まれるコイルや、微動機構 140に含まれる電機子コ ィル 56A〜56Dなど)に供給されるようになっている。また、前述した液体温調系 86 を構成するペルチヱ素子 86Dやポンプ 86Bにもこの電流が供給されるようになって いる。更に、ウェハ W1を微動ステージ WFS1上で保持するウェハホルダ力 静電吸 着タイプのウェハホルダである場合には、該ウェハホルダにこの電流を供給すること ができる。なお、この場合には、粗動ステージ WRS1と微動ステージ WFS1との間の 電流の供給を、前述した無線での電力伝送方式で行うこととすることができる。
[0096] 前記信号送信系 88は、コネクタ 88Aと、 A/D変換 ·増幅部 88Bと、無線信号発生 部 88Cと、発信部 88Dとを含んでいる。
[0097] これに対し、図 10に示されるように、一方の送電 ·廃熱フレーム 24Aには、発信部 8 8Dに対応した受信部 188が設けられ、他方の送電 ·廃熱フレーム 24Bには受信部 2 88が設けられている。
[0098] これら信号送信系 88及び受信部 188 (又は 288)によると、微動ステージ WFS1の 一部に設けられた空間像計測器 FM1などのセンサにおいて計測された計測結果が 、信号送信系 88の発信部 88Dから受信部 188 (又は 288)に無線で発信されるよう になっている。この場合、発信部 88Dと受信部 188 (又は 288)との間の信号のやり 取りは、例えば赤外線を用いることもできるし、その他電波や音波などを用いることも 可能である。
[0099] なお、信号送信系 88を送受信可能な構成とし、ウェハステージ WST1に対する不 図示の制御装置からの制御信号を、信号送信系 88と受信部 188 (又は 288)とを介 して送信するようにすることも可能である。
[0100] なお、受信部 188 (288)は、送電.廃熱フレーム 24A (24B)の Y軸方向全域に設 けなくても良ぐウェハステージ WST1において空間像計測などを行う際に送信部 8
8Dが位置する範囲に設けておけば良い。
[0101] 前記ヘッド部 90は、実際には、図 11に示されるように、 Y軸方向に関する位置情報 を計測するための複数の Y軸方向計測用のヘッド 90yと、 X軸方向に関する位置情 報を検出するための複数の X軸方向計測用のヘッド 90xとを含んでいる。
[0102] 前記複数の Y軸方向計測用のヘッド 90yは、 X軸方向に所定間隔で設けられてお り、前記 X軸方向計測用のヘッド 90xは、ヘッド 90yと干渉しない位置に所定間隔で 設けられている。
[0103] これに対し、一方の送電.廃熱フレーム 24Aの底面には、スケール 190が設けられ 、他方の送電'廃熱フレーム 24Bの底面には、スケール 290が設けられている。これ らスケ一ノレ 190、 290は、送電'廃熱フレーム 24A、 24Bそれぞれの + Y側端部近傍 力 中央部近傍にかけて設けられた、 X方向及び Y方向に所定周期で形成された二 次元格子である。
[0104] これら、ヘッド部 90及びスケール 190, 290によると、複数の X軸方向計測用ヘッド のうちで、スケール 190又は 290と対向しているヘッド 90xにおいて、ウェハステージ WST1の X軸方向位置を計測することが可能であり、複数の Y軸方向計測用ヘッド のうちで、スケール 190又は 290と対向しているヘッド 90vにおいて、ウェハステージ WST1の Y軸方向位置を計測することが可能である。なお、隣り合うヘッド 90χ同士 の間隔、及び隣り合うヘッド 90y同士の間隔は、同時にスケール 190 (又は 290)を用 いて位置計測を行える程度の間隔に設定されている。なお、上記ではヘッド部 90を 構成するヘッドを複数設ける場合について説明したが、計測範囲がカバーできるの であれば、ヘッドを 1つのみ設けることとしても良い。
[0105] 図 2に戻り、他方のウェハステージ WST2は、上述したウェハステージ WST1と同 様の構成となっている。すなわち、ウェハステージ WST2は、粗動ステージ WRS1と 同様の粗動ステージ WRS2と、該粗動ステージ WRS2上の一直線上になレ、 3箇所に 設けられた 3つの自重キャンセル機構 22B1 , 22B2, 22B3を介して搭載された、微 動ステージ WFS1と同様の微動ステージ WFS2とを備えている。微動ステージ WFS 2上面には、空間像計測器 FM2が設けられている。また、粗動ステージ WRS2と微 動ステージ WFS2と間には前述した微動機構 140と同様の微動機構が設けられ、粗 動ステージ WRS2の +Y側端部近傍には、前述した受電 '放熱アーム 20Aと同様の 受電 '放熱アーム 20Bが設けられている。この受電 '放熱アーム 20Bにおいても、前 述した受電 '放熱アーム 20Aと同様にして、送電'廃熱フレーム 24A, 24Bとの間で、 ウェハステージ WST2において発生した熱の受け渡し、無線による電力の伝送、ゥ ェハステージ WST2上の空間像計測器 FM2で検出された信号の送受信、及びゥェ ハステージ WST2の XY面内の位置検出を行うことができる。
[0106] 次に、ウェハステージ WST1、 WST2の XY面内の位置を検出するための干渉計 システムにつレ、て説明する。
[0107] 干渉計システムは、図 2に示されるように、投影光学系 POの投影中心を通過する X 軸に平行な測長ビームを照射する X軸干渉計 18Aと、前記投影中心を通過する Y軸 に平行な測長ビームを照射する Y軸干渉計 16と、ァライメント系 ALGの検出中心を 通過する X軸に平行な測長ビームを照射する X軸干渉計 18Bとを含んでいる。
[0108] このように構成される干渉計システムによると、ウェハステージ WST1とウェハステ ージ WST2とが図 2に示される位置にある場合には、 X軸干渉計 18Aからの測長ビ ームが、ウェハステージ WST1を構成する微動ステージ WFS 1の鏡面加工された― X側の反射面に照射され、 Y軸干渉計 16からの測長ビーム力 微動ステージ WFS1 の鏡面加工された一 Y側の反射面に照射される。また、 X軸干渉計 18Bからの測長 ビームがウェハステージ WST2を構成する微動ステージ WFS2の鏡面加工された一 X側の反射面に照射される。なお、微動ステージ WFS2の鏡面加工された一 Υ側の 反射面には、図 2の状態では干渉計の測長ビームは照射されない。
[0109] また、ウェハステージ WST1とウェハステージ WST2との位置関係が図 2とは逆の 場合には、微動ステージ WFS2の—X側の反射面に干渉計 18Aの測長ビームが照 射され、—Υ側の反射面に干渉計 16の測長ビームが照射され、微動ステージ WFS1 の—X側の反射面に干渉計 18Bの測長ビームが照射される。ここで、干渉計 18Α, 1 8Βは、測長軸を複数有する多軸干渉計であり、ウェハステージ WST1、 WST2の X 軸方向の位置情報の計測以外に、ローリング (Y軸回りの回転( 0 y回転))及びョー イング( Θ z方向の回転)の計測が可能となっている。また、干渉計 16も多軸干渉計 であり、ウェハステージ WST1、 WST2の Y軸方向の位置情報の計測以外に、ピッチ ング (X軸回りの回転( θ X回転))及びョーイング( Θ z方向の回転)の計測が可能とな つている。
[0110] 不図示の制御装置では、後述する露光時には、干渉計 18A, 16の計測値に基づ いて、微動ステージ WFS1 (又は WFS2)の XY面内の位置を高精度に管理し、後述 するァライメント時 (及びウェハ交換時)には、干渉計 18Bの計測値及び前述したへ ッド部 90を構成する Y軸方向計測用のヘッド 90yを用いて微動ステージ WFS2 (又 は WFS1)の XY面内の位置を高精度に管理するようになっている。
[0111] ところで、本実施形態では、粗動ステージ WRS1、 WRS2を駆動する平面モータを 使用しないとき(ベース BSの搬送時、露光装置の組立て時、メンテナンス時など)に、 ベース BS上面を覆う状態で、図 5に示されるような磁束漏洩防止プレート 36を設ける こと力 Sできる。
[0112] この磁束漏洩防止プレート 36は、非磁性体部材カも成り、磁石ユニット 30から発生 する磁束が外部に影響を与えないようにするためのプレートであり、図 5に示されるよ うに、磁石ユニット 30が形成する磁気回路を覆うことが可能な程度の厚さを有してい る。
[0113] このように磁束漏洩防止プレート 36を設けることにより、平面モータを使用しないと きに、作業者の使用する工具等が磁石ユニット 30に急激に吸い寄せられる事態の発 生を防止することができ、また、ペースメーカー等の医療機器などへの磁束による影 響や、ベースを搬送する際における露光装置に用いられる他の装置への磁束による 影響を回避することが可能となる。
[0114] 次に、本実施形態の露光装置 10で行われる、一方のウェハステージ上のウェハに 対する露光動作と、他方のウェハステージ上のウェハに対するァライメント動作等と の並行処理動作を含む、一連の動作について、図 2及び図 12 (A)〜図 13 (B)に基 づいて説明する。
[0115] 図 2には、ウェハステージ WST1上のウェハ W1に対して露光動作が行われるのと 並行して、ウェハステージ WST2上のウェハ W2に対してウェハァライメント動作が行 われてレ、る状態が示されてレ、る。
[0116] この図 2に先立って、所定のローデイングポジションにウェハステージ WST2がある ときに、不図示のウェハローダによって、ウェハステージ WST2上に載置されていた 露光済みのウェハのウェハステージ WST2上からのアンロード及び新たなウェハ W 2のウェハステージ WST2上へのロード(すなわちウェハ交換)が行なわれてレ、る。
[0117] そして、不図示の制御装置は、干渉計 18Bの計測値に基づいてウェハステージ W ST2の X位置を管理するとともに、ウェハステージ WST2上に設けられた複数の Y軸 方向位置計測用のヘッド 90yのうち、スケール 190又は 290のいずれかに対向して レ、るヘッドを用いて計測される計測値に基づいてウェハステージ WST2の Y位置を 管理しつつ、ァライメント系 ALGを用いて、ウェハ W2上の特定の複数のショット領域 (サンプノレシヨット領域)に付設されたァライメントマーク(サンプルマーク)の位置情報 を検出する。
[0118] 次いで、制御装置は、その検出結果とその特定のショット領域の設計上の位置座 標とに基づいて、例えば特開昭 61— 44429号公報などに開示される最小二乗法を 用いた統計演算によりウェハ W2上の全てのショット領域の配列座標を求める EGA ( ェンハンスト 'グローバル'ァライメント)を実行する。なお、この EGA以前に、制御装 置は、空間像計測器 FM2を用いたベースライン計測を行うこともできる。ここで、空間 像計測器 FM2の計測結果は、受電 ·放熱アーム 20Bに設けられた送信部から送電- 廃熱フレーム 24A又は 24Bに設けられた受信部 188又は 288に無線で送信される。
[0119] なお、上記のウェハ交換、ァライメント動作の際、制御装置は、干渉計 18B,ヘッド 90y (スケール 190又は 290)による検出結果に基づいて、粗動ステージ WRS2を、 前述した平面モータを介して長ストロークで駆動するとともに、微動ステージ WFS2を 微動機構及び自重キャンセル機構 22B1〜22B3を介して微小駆動する。
[0120] このウェハ交換、ァライメントと並行して、ウェハステージ WST1側では、既に行わ れたウェハァライメント結果に基づいてウェハステージ WST1上に載置されたウェハ W1上の各ショット領域の露光のための加速開始位置にウェハステージ WST1を移 動させるショット間ステッピング動作と、レチクル R (レチクルステージ RST)とウェハ W 1 (ウェハステージ WST1)とを Y軸方向に相対走査してレチクル Rに形成されたパタ ーンをウェハ W1上のショット領域に投影光学系 P〇を介して転写する走查露光動作 と、を繰り返す、ステップ ·アンド 'スキャン方式の露光動作が行なわれる。
[0121] 上記のステップ ·アンド 'スキャン方式の露光動作中、制御装置は、粗動ステージ W RS 1を、前述した平面モータを介して長ストロークで駆動するとともに、微動ステージ WFS 1を微動機構 140及び自重キャンセル機構 22A1〜22A3を介して粗動ステー ジ WRS 1に対して相対的に X, Υ, Z, θ χ, θ γ, θ ζ方向に関して微小駆動する。勿 論、 Ζ, θ X, Θ y方向の駆動に際しては、前述のウェハフォーカスセンサの計測結果 が考慮される。
[0122] なお、この露光動作そのものの手順などは、通常のスキャニング'ステツパと同様な ので、これ以上の詳細な説明は省略する。
[0123] 上述したウェハステージ WST2上のウェハ W2に対するウェハァライメント動作と、 ウェハステージ WST1上のウェハ W1に対する露光動作とでは、通常は、ウェハァラ ィメント動作の方が先に終了する。そこで、制御装置は、ウェハァライメントの終了後 、平面モータを介してウェハステージ WST2を—Y方向及び— X方向に駆動する。そ して、ウェハステージ WST2を所定の待機位置(図 12 (A)に示されるウェハステージ WST2の位置)に移動させ、その位置で待機させる。
[0124] その後、ウェハステージ WST1上のウェハ W1に対する露光動作が終了すると、制 御装置は、平面モータを介してウェハステージ WST1を + X方向及び + Y方向に移 動させる。図 12 (B)には、ウェハステージ WST1の—X側の反射面、—Y側の反射 面に干渉計 18A, 16からの測長ビームが当たらなくなる直前の状態が示されている 。この状態で、ヘッド 90xのいずれか及びヘッド 90yのいずれかがスケール 290に対 向した状態となるので、制御装置は、ウェハステージ WST1の位置計測を干渉計 18 A, 16力らヘッド 90x、 90yに切り換えておく。そして、ウエノ、ステージ WST1の一 Y 側の反射面に対して干渉計 16からの測長ビームが当たらなくなった段階で、ウェハ ステージ WST2の一Y側の反射面に干渉計 16からの測長ビームが当たるようになる ので、制御装置は、この段階でウェハステージ WST2の Y軸方向位置の計測を干渉 計 16に切り換えておく。
[0125] 次いで、制御装置は、図 13 (A)に示されるように、干渉計 16による Y軸方向に関す る計測結果とヘッド 90xによる X軸方向に関する計測結果とに基づいて、ウェハステ ージ WST2を平面モータを介して投影光学系 P〇の直下に移動させる。この移動の 間に、微動ステージ WFS2の X側の反射面に干渉計 18Aからの測長ビームが照 射されるので、ウェハステージ WST2の X軸方向に関する位置計測をヘッド 90xから 干渉計 18Aに切り替える。
[0126] 一方、ウェハステージ WST1側では、図 12 (B)に示される位置で、干渉計 18A, 1 6から、 X軸方向計測用のヘッド 90xと Y軸方向計測用のヘッド 90yによる計測に切り 替えているので、スケーノレ 290に対向するヘッド 90xとスケーノレ 290とを用レヽてゥェ ハステージ WST1の X軸方向の位置を計測するとともに、スケール 290に対向するへ ッド 90yとスケール 290とを用いてウェハステージ WST1の Y軸方向の位置を計測し つつ、ウェハステージ WST1を +Y方向に移動させる。
[0127] そして、図 13 (A)に示されるように、微動ステージ WFS1の一X側の反射面に干渉 計 18Bの測長ビームが照射された段階で、 Y軸方向に関する計測を干渉計 18Bに 切り替え、図 13 (B)に示される位置(ウェハ交換位置)までウェハステージ WST1を 移動する。
[0128] そして、その後は、ウェハステージ WST2側では、前述したウェハ W1と同様にして 、ウェハ W2に対するステップ'アンド'スキャン方式の露光動作が行われ、ウェハステ ージ WST1側では、前述したのと同様に、ウェハ交換及びウェハァライメント動作が 実行される。
[0129] このようにして、本実施形態の露光装置 10では、ウェハステージ WST1 , WST2の 交換を行いつつ、一方のウェハステージ上のウェハに対する露光動作と、他方のゥ ェハステージ上でのウェハ交換及びウェハァライメント動作と力 同時並行処理にて 行われる。
[0130] 本実施形態においては、上記並行処理中において、ウェハステージ WST1の受電
'放熱アーム 20Aの上面と、送電'廃熱フレーム 24A, 24Bの少なくとも一方の下面と 力 対向した状態が維持されているので、該対向した部分において、ウェハステージ WST1への電力の供給や、ウェハステージ WST1で発生した熱の受け渡しや、信号 の送受信を行うことが可能となってレ、る。
[0131] また、ウェハステージ WST2においても、ウェハステージ WST1と同様に、受電 '放 熱アーム 20Bの上面と、送電'廃熱フレーム 24A, 24Bの少なくとも一方の下面とが、 対向しているので、該対向した部分において、ウェハステージ WST2への電力の供 給や、ウェハステージ WST2で発生した熱の受け渡しや、信号の送受信を行うことが 可能となっている。
[0132] 以上詳細に説明したように、本実施形態によると、送電 ·廃熱フレーム 24A, 24Bが 、ウェハステージ WST1 (WST2)の放熱部 86Eから輻射した熱を常時吸収すること ができるので、ウェハステージ WST1 (WST2)において発生する熱による露光精度 への影響を抑制することが可能となる。この場合、従来のように、ウェハステージ WS Tl (WST2)に冷媒を供給する配管(チューブ)を外部から接続する必要がないため 、配管の張力によるウェハステージ WST1 (WST2)の移動精度の低下を防止するこ とができ、この点力もも露光精度を高精度に維持することが可能となる。
[0133] また、本実施形態では、ウェハステージ WST1、 WST2に無線で電力が入力され る電力入力系 84が設けられるとともに、送電'廃熱フレーム 24A, 24Bには、電力入 力系の受信部 84Aに向けて無線で電力を出力する送信部 184、 284が設けられて いるので、ウェハステージ WST1、 WST2及び構成各部を駆動する駆動機構に電流 を供給するための配線をウェハステージ WST1、WST2に外部から接続しなくて良く 、配線の張力によるウェハステージ WST1、 WST2の移動精度の低下を防止するこ とが可能となる。この点からも露光精度の向上を図ることが可能となる。
[0134] また、本実施形態では、ウェハステージ WST1、 WST2に、該ステージに設けられ た計測器 (例えば、空間像計測器 FM1、 FM2)から出力された信号を無線で発信す る発信部 88D、送電 ·廃熱フレーム 24A, 24Bに発信部 88Dからの信号を受信する 受信部 188、 288が設けられているので、検出器から出力された信号を取り出すため の配線をウェハステージ WST1、 WST2の外部から接続する必要がなレ、。したがつ て、この場合にも、従来のような配線の張力によるステージの移動精度の低下を防止 することが可能となり、ひいては露光精度の向上を図ることが可能となる。
[0135] また、本実施形態によると、上記のように高精度な位置決めが可能なウェハステー ジを 2つ備えており、 2つのウェハステージ WST1、 WST2が投影光学系 PO直下( 露光位置)とァライメント系 ALG直下(ァライメント位置)との間を移動するので、ゥェ ハの露光動作とウェハのァライメント動作とを並行して行うことができる。したがって、 高精度な露光を高スループットにて行うことが可能となる。
[0136] また、本実施形態によると、ウェハステージ WST1 (WST2)が粗動ステージ WRS1
(WRS2)と微動ステージ WFS1 (WFS2)とを備えており、平面モータ、微動機機構 1 40、 自重キャンセル機構 22A1〜22A3 (22B1〜22B3)を構成するボイスコイルモ ータの全てにおいてコイル側が粗動ステージ WRS1 (WRS2)側に設けられているこ とから、微動ステージ WFS1 (WFS2)に対して駆動用の電流を供給するための配線 を接続する必要がない。したがって、高精度な位置決め精度が要求される微動ステ 一ジに粗動ステージから配線が接続されないので、より高精度なウェハの位置決め を実現することが可能である。また、コイルが粗動ステージ側にのみ設けられているこ とにより、冷媒の供給を粗動ステージ側にのみ行えば良いため、粗動ステージと微動 ステージとの間に冷媒供給用の配管を設ける必要がなぐこの点からも高精度なゥェ ハの位置決めを実現することが可能である。
[0137] また、本実施形態では、微動機構 140を構成するボイスコイルモータそれぞれが X 軸及び Y軸に 45° 交差する方向の駆動力を発生し、それら駆動力の合力により微 動ステージ WFS1、 WFS2が X軸、 Y軸方向に駆動されるようになっている。したがつ て、単に X軸方向の駆動力を発生するボイスコイルモータや Y軸方向の駆動力を発 生するボイスコイルモータを用いる場合に比べ、一つのボイスコイルモータで消費さ れる電流を抑制することができる。したがって、モータにおける発熱を抑制することが できるので、発熱に起因する露光精度の低下を抑制することが可能である。
[0138] また、本実施形態では、ベース BS上に保護プレート 26が設けられているので、平 面モータの電機子ユニット 130を構成するコイルへの電流供給を停止した際に、ゥェ ハステージがベース BS上に落下した場合におけるベース BS上の永久磁石の損傷 を防止すること力できる。
[0139] また、上記実施形態では、ヘッド 90x、 90yとスケーノレ 190, 290を設け、干渉計に よる測長ビームが当たらないところでのウェハステージ WST1、WST2の計測を実行 することとしているので、上記実施形態のようにウェハステージ WST1、 WST2が投 影光学系 PO直下とァライメント系 ALG直下との間で移動するような場合であっても、 図 2のような干渉計配置で足り、干渉計の数を軽減することが可能となる。
[0140] なお、上記実施形態では、ウェハステージ WST1 (WST2)内に冷媒を循環する冷 却管路 202が接続される液体温調系 86に設けられた放熱部 86Eにおいて、ウェハ ステージ WST1 (WST2)力 発生した熱を輻射する場合について説明した力 これ に限らず、冷却管路 202や放熱部 86Eなどを設けずに、ウェハステージ WST1 (WS T2)から直接輻射する熱を、送電 ·廃熱フレーム 24A, 24Bが吸収することとしても良 レ、。
[0141] なお、上記実施形態では、送電 ·廃熱フレーム 24A, 24Bとして、 X軸方向に関して 幅の狭い板状の部材を用いた力 S、これに限られるものではなぐ露光ゃァライメントの 際に邪魔にならなければ、その大きさ (X軸方向に関する幅)を大きくすることも可能 である。この場合、放熱部 86Eの面積を小さくし (局所的にし)、送電 ·廃熱フレームを ベース BS上面とほぼ同一面積にすることもできる。また、送電'廃熱フレームは、天 井側(ウェハステージ WSTの上方)に設ける場合に限らず、床面側(ウェハステージ WSTの下方)に設け、放熱部 86Eをウェハステージ WSTの下面側に設けることとし ても良い。また、上記実施形態における 2つの送電'廃熱フレーム 24A, 24Bを一体 化した枠状の送電 ·廃熱フレームを採用することとしても良い。
[0142] また、上記実施形態では、送電.廃熱フレーム 24A, 24Bの廃熱部 186、 286に冷 媒を供給して廃熱部 186, 286を冷却する場合について説明したが、これに限らず、 例えば廃熱部にペルチェ素子などの冷却機構を設けることとしても良い。また、送電' 廃熱フレーム 24A, 24Bの廃熱部 186、 286力 S、放熱部から輻射する熱を吸収する ということにのみ着目すれば、冷媒を供給しなくても良い。
[0143] なお、上記実施形態では、送電.廃熱フレーム 24A, 24Bのいずれかが廃熱部 18 6、 286と常時対峙 (対向)している場合について、説明したが、これに限らず、廃熱 部 186、 286から輻射した熱が送電.廃熱フレーム 24A, 24Bに吸収されるのであれ ば、多少対向した状態からずれるようなことがあっても良い。すなわち、上記実施形 態では、ウェハステージ WSTの Y軸方向の移動範囲の全範囲にわたって、送電-廃 熱フレーム 24A, 24Bが設けられる場合について説明した力 S、これに限らず、ウェハ ステージ WSTの Y軸方向の移動範囲よりも小さい範囲にわたって、送電'廃熱フレ ーム 24A, 24Bが設けられていても良い。この場合、輻射した熱を常時吸収する場 合に限らず、例えば、短時間の間、熱を吸収しないときが存在しても良レ、。具体的に は、例えば少なくとも、ウェハステージ WST1 (WST2)上のウェハに対して露光を行 う際にウェハステージ WST1 (WST2)が移動する範囲で、放電.廃熱フレーム 24A ( 24B)と廃熱部 186 (286)とが対向するようにすることができる。
[0144] なお、上記実施形態では、送電 ·廃熱フレーム 24A, 24Bが Y軸方向に延び、受電
'放熱アーム 20A, 20B力 X軸方向に延びている場合について説明した力 これに 限らず、送電'廃熱フレーム 24A, 24Bが X軸方向に延び、受電 '放熱アーム 20A, 20B力 Y軸方向に延びていても良い。また、 X, Y軸方向に限らず、送電'廃熱フレ ーム 24A, 24Bと受電.放熱アーム 20A, 20Bの一方が、 XY面内の所定方向に延 び、他方が該所定方向に XY面内で交差する方向に延びていれば良い。
[0145] なお、上記実施形態では、平面モータの電機子ユニットをウェハステージ側に設け る場合について説明したが、これに限らずベース BS側に電機子ユニットを設け、ゥェ ハステージ側に磁石ユニットを設けることとしても良レ、。また、上記実施形態では、微 動機構 140、自重キャンセル機構 22A1〜22A3 (22B1〜22B3)を構成するボイス コイルモータの全てにおいてコイル側が粗動ステージ WRS1 (WRS2)側に設けられ る場合について説明したが、これに限らず、粗動ステージと微動ステージとの間に配 線を設けても、微動ステージの移動に影響を与えない場合には、微動ステージ側に コイルを設けることとしても良い。
[0146] なお、上記実施形態では、送電 ·廃熱フレーム 24A, 24Bと受電.放熱アーム 20A
, 20Bとの間で、電力の無線伝送、熱の受け渡し、検出器からの検出信号の送受信 、及び干渉計からの測長ビームが照射されないときの位置計測、を行う場合につい て説明したが、これに限らず、上記のうちの少なくとも 1つのみを行うようにしても良い
[0147] なお、上記実施形態では、磁束漏洩防止プレート 36として、図 5に示されるような肉 厚なプレートを用いる場合について説明したが、これに限らず、薄板状のプレートを 採用し、該プレートをスぺーサ部材を介してその上面の高さが図 5の磁束漏洩防止 プレート 36の上面の高さと同一高さとなるようにベース BS上方に設けることとしても良 レ、。
[0148] なお、上記実施形態では、干渉計システムとエンコーダ(ヘッド部 90とスケール 190 , 290)とを併用してウェハステージ WST1、 WST2の位置計測を行うこととした力 こ れに限らず、干渉計システムを構成する干渉計を増やすことにより、干渉計システム のみでウェハステージ WST1、 WST2の位置計測を行っても良いし、逆に、ェンコ一 ダのみでウェハステージ WST1、 WST2の位置計測を行っても良レ、。
[0149] なお、上記実施形態では、微動装置 140を構成する可動子 50において、磁石ュニ ット 52Aと 52Cと力 S並ぶ方向、及び磁石ユニット 52Bと 52Dとが並ぶ方向力 X軸及 び Y軸に対し 45° 傾斜する方向となっている場合について説明した力 これに限ら ず、磁石ユニット 52Aと 52Cとが並ぶ方向、及び磁石ユニット 52Bと 52Dとが並ぶ方 向力 XY面内で X軸及び Y軸に交差する方向であれば、その角度は問わない。また 、上記実施形態では、微動装置 140を構成するボイスコイルモータそれぞれが、 XY 面内で X軸及び Y軸に対して 45° 傾斜する方向の駆動力を発生する場合について 説明したが、これに限られるものではなぐそれぞれの駆動力が XY面内で X軸及び Y軸に対して交差する方向に発生するのであれば、その角度は問わない。
[0150] なお、上記実施形態では、ベース BSの上面に、磁石ユニット 30を上方から覆う状 態で、非磁性体力も成る保護プレート 26を設けることとしたが、これに限らず、ウェハ ステージ WST1 , WST2の下面に保護プレートを設けることとしても良い。この保護 プレートにより、上記実施形態の保護プレート 26と同様、ウェハステージ WST1、 W ST2と、永久磁石 28N, 28S, 32との直接的な接角虫を防止し、永久磁石 28N, 28S , 32の損傷を防止することが可能となる。
[0151] なお、上記実施形態では、ウェハステージを 2つ有するウェハステージ装置に本発 明を適用した場合について説明したが、本発明がこれに限られるものではなぐゥェ ハステージを 1つのみ有するウェハステージ装置に本発明を適用することも可能であ るし、ウェハステージを 3つ以上有するウェハステージ装置に本発明を適用すること も可能である。
[0152] また、上記実施形態では、ァライメント系 ALGを 1つのみ備える場合について説明 したが、これに限らず、ァライメント系 ALGをウェハステージ WST1、 WST2に対応し て 2つ備える構成を採用することも可能である。
[0153] なお、上記実施形態のウェハフォーカスセンサに代えて、投影光学系 POを保持す るボディに面形状検出装置を設けることとしても良い。この面形状検出装置としては、 ウェハに対し、例えばウェハの直径より長いライン状のビームを斜入射させる照射系 と、該照射系により照射されたビームの反射光を受光する検出器、例えば一次元 CC Dセンサ又はラインセンサなどを有する受光系を含んで構成されている。したがって、 公知の多点 AF系の検出原理と同じ原理で、複数の点状の照射領域を計測点として 、各計測点でのウェハの Z位置(ウェハが移動する所定面 (XY平面)と垂直な Z軸方 向に関する位置情報)を検出することができる。この場合、露光開始前に、この面形 状検出装置の照射領域をウェハが通過するときに、干渉計システム又はヘッド部 90 による計測値 (ウェハの位置)と、該検出装置による検出結果とに基づいてウェハ表 面の Z位置情報の分布を算出し、露光動作の際には、該算出結果に基づいて、ゥェ ハステージの Z軸方向に関する位置 ·姿勢を制御するとすることができる。
[0154] なお、上記実施形態では、ウェハステージ WST1、 WST2を長ストロークで駆動す る駆動装置として平面モータを用いることとしたが、これに限らず、リニアモータを用 レ、ることとしても良い。
[0155] なお、上記実施形態のウェハステージ WST1、 WST2は、配線及び配管が接続さ れていないが、故障などの非常時において、ウェハステージ WST1、 WST2への直 接的な電力供給等を行うことができるように、ウェハステージ WST1、 WST2の一部 に配線 ·配管ポートを設けておくことができる。
[0156] なお、上記実施形態ではウェハステージ WST1、 WST2に微動機構 140、及び自 重キャンセル機構 22A1〜22A3、 22B1〜22B3を設ける場合について説明したが 、これに限らず、いずれか一方を設けたり、あるいはこれらの微動機構や自重キャン セル機構に代えて、通常用いられるボイスコイルモータを設けることとしても良レ、。こ の場合のボイスコイルモータとしては、ムービングマグネット型のボイスコイルモータ 及びムービングコイル型のボイスコイルモータのいずれも採用可能である力 上記実 施形態で説明したように配線を引きずらないという観点からはムービングマグネット型 のボイスコイルモータを採用することができる。
[0157] なお、上記実施形態ではウェハステージ装置に本発明の移動体装置が採用され た場合について説明したが、これに限らず、レチクルステージ RST側に本発明のス テージ装置を採用することも可能である。
[0158] また、上記実施形態では、ウェハ表面を水平面 (XY面)と平行に保持するウェハス テージに本発明を採用した場合について説明した力 これに限らず、ウェハ表面を X
Y面と直交する面にほぼ平行に保持するウェハステージ (縦型ステージ)に本発明を 採用することも可能である。
[0159] なお、国際公開第 2004/53955号パンフレットに開示される液浸露光装置に本 発明を適用することも可能である。また、上記実施形態の露光装置は、例えば国際 公開第 2005/074014号パンフレットなどに開示されているように、ウェハステージ とは別に計測ステージを備えるものでも良い。この場合、本発明の移動体装置を、ゥ ェハステージ WSTとともに、又はウェハステージ WSTと代えて、計測ステージ MST に採用することも可能である。
[0160] また、上記実施形態では、ステップ ·アンド'スキャン方式等の走查型露光装置に本 発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されな レ、ことは勿論である。すなわちステップ ·アンド'リピート方式の投影露光装置、さらに 、ステップ ·アンド 'スティツチ方式の露光装置、又はプロキシミティ方式の露光装置、 ミラープロジェクシヨン'ァライナーなどにも、本発明は適用できる。
[0161] 露光装置の用途としては半導体製造用の露光装置に限定されることなぐ例えば、 角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有 機 EL、薄膜磁気ヘッド、撮像素子 (CCD等)、マイクロマシン及び DNAチップなどを 製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバ イスだけでなぐ光露光装置、 EUV露光装置、 X線露光装置、及び電子線露光装置 などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンゥェ ハなどに回路パターンを転写する露光装置にも本発明を適用できる。
[0162] なお、上記実施形態では、露光光として波長 l lnmの EUV光を用いる場合につい て説明したが、これに限らず、露光光として波長 13nmの EUV光を用いても良レ、。こ の場合には、波長 13nmの EUV光に対して約 70%の反射率を確保するため、各ミラ 一の反射膜としてモリブデン Moとケィ素 Siを交互に積層した多層膜を用いる必要が ある。
[0163] また、上記実施形態では、露光光源として SOR (Synchrotron Orbital Radiation)を 用いることとしたが、これに限らず、レーザ励起プラズマ光源、ベータトロン光源、ディ スチャージド光源、 X線レーザなどのレ、ずれを用いても良レ、。
[0164] なお、上記実施形態の露光装置では、露光光として波長 lOOnm以下の光を用い ることとしたが、これに限らず、波長 lOOnm以上の光 (ArFエキシマレーザ光(波長 1 93nm)、 KrFエキシマレーザ光(波長 248nm)、 Fレーザ光(波長 157nm)、 Arレ 一ザ光(波長 126nm)、 Krレーザ光(波長 146nm)などのパルスレーザ光や、超高 圧水銀ランプからの g線(波長 436nm)、 i線(波長 365nm)などの輝線など)を用い ることも可能である。また、投影光学系は縮小系のみならず等倍および拡大系のいず れでも良い。更に投影光学系としては、反射光学素子のみからなる反射型の投影光 学系に限らず、反射光学素子と屈折光学素子を有する反射屈折型 (カタディオプトリ ック系)の投影光学系や、屈折光学素子のみを有する屈折型の投影光学系を用いる ことも可能である。
[0165] また、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、本発明は 適用できる。 [0166] また、上記実施形態においては、光透過性の基板上に所定の遮光パターン (又は 位相パターン '減光パターン)を形成した光透過型マスク(レチクル)を用いたが、この レチクルに代えて、例えば米国特許第 6, 778, 257号明細書に開示されているよう に、露光すべきパターンの電子データに基づいて、透過パターンまたは反射パター ン、あるいは発光パターンを形成する電子マスク(又は可変成形マスク、例えば非発 光型画像表示素子(空間光変調器とも呼ばれる)の一種である DMD (Digital Micro- mirror Device)などを含む)を用いても良い。力かる可変成形マスクを用いる場合に は、前述のァライメントマークの検出結果を考慮して、ウェハ上の複数の区画領域の うち、ァライメントマーク検出時に露光していたショット領域より後に露光が行われる少 なくとも一つの別のショット領域の露光の際に、電子データに基づいて形成すべき、 透過パターン又は反射パターンを変化させることで、ウェハとパターン像との相対位 置制御を行っても良い。
[0167] また、国際公開第 2001/035168号パンフレットに開示されているように、干渉縞 をウェハ上に形成することによって、ウェハ上にライン'アンド'スペースパターンを形 成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
[0168] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号明 細書)に開示されているように、 2つのレチクルパターンを投影光学系を介してウェハ 上で合成し、 1回のスキャン露光によってウェハ上の 1つのショット領域をほぼ同時に 二重露光する露光装置にも本発明を適用することができる。
[0169] なお、本国際出願で指定した指定国(又は選択した選択国)の国内法令が許す限 りにおいて、上述した各種の公報、国際公開パンフレット、及び米国特許明細書にお ける開示を援用して、本明細書の記載の一部とする。
[0170] また、物体上にパターンを形成する装置は、前述の露光装置(リソグラフィシステム) に限られず、例えばインクジェット方式にて物体上にパターンを形成する装置にも本 発明を適用することができる。
[0171] なお、上記実施形態でパターンを形成すべき物体 (エネルギビームが照射される露 光対象の物体)はウェハに限られるものではなぐガラスプレート、セラミック基板、あ るいはマスクブランクスなど、他の物体でも良い。 [0172] また、上記実施形態の露光装置は、本願請求の範囲に挙げられた各構成要素を 含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つよう に、組み立てることで製造される。これら各種精度を確保するために、この組み立て の前後には、各種光学系については光学的精度を達成するための調整、各種機械 系につレ、ては機械的精度を達成するための調整、各種電気系につレ、ては電気的精 度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て 工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の 配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前 に、各サブシステム個々の組み立て工程があることはいうまでもなレ、。各種サブシス テムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全 体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等 が管理されたクリーンルームで行うことが望ましレ、。
[0173] なお、半導体デバイスは、デバイスの機能 ·性能設計を行うステップ、この設計ステ ップに基づレ、たレチクルを製作するステップ、シリコン材料からウェハを製作するステ ップ、前述した調整方法によりパターンの転写特性が調整される上記実施形態の露 光装置で、マスクに形成されたパターンを感光物体上に転写するリソグラフィステップ 、デバイス組み立てステップ (ダイシング工程、ボンディング工程、パッケージ工程を 含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、パター ンの転写特性が調整される上記実施形態の露光装置が用いられるので、高集積度 のデバイスの生産性を向上することが可能である。 産業上の利用可能性
[0174] 以上説明したように、本発明の移動体装置及び微動体は、露光装置で用いるのに 適している。また、本発明の露光装置及び露光方法は、物体を露光して、前記物体 にパターンを形成するのに適している。また、本発明のデバイス製造方法は、マイク 口デバイスの製造に適してレ、る。

Claims

請求の範囲
[1] 放熱部を有する移動体と;
該移動体を所定面内で二次元駆動する駆動装置と;
前記移動体とは非接触に設けられ、前記移動体力 輻射した熱を吸収する廃熱部 材と;を備え、
前記廃熱部材と前記放熱部とはその一方が前記所定面内の一軸方向に関して所 定範囲に渡り、かつ他方が前記所定面内で前記一軸方向に直交する方向に関して 所定範囲に渡つて設けられる移動体装置。
[2] 請求項 1に記載の移動体装置において、
前記放熱部は、前記一軸方向及びこれに直交する方向の一方に延設され、 前記廃熱部材は、前記一軸方向及びこれに直交する方向の他方に延設され、か つ前記一方の方向に関して離れて複数設けられる移動体装置。
[3] 請求項 2に記載の移動体装置において、
前記放熱部は、前記所定面と実質的に平行な前記移動体の一面に設けられる移 動体装置。
[4] 請求項 3に記載の移動体装置において、
前記移動体は、前記放熱部を含み、前記移動体を冷却することによって生じる熱を 放出する放熱機構を有する移動体装置。
[5] 請求項 4に記載の移動体装置において、
前記放熱機構は、冷媒を循環する循環系と、前記冷媒を温調する温調部とを有し、 前記廃熱部材は、前記温調部の少なくとも一部と常時対向した状態で設けられ、前 記温調部から輻射した熱を吸収する移動体装置。
[6] 請求項 5に記載の移動体装置において、
前記循環系は、冷媒を通す配管とポンプとを有し、
前記温調部は、前記冷媒から吸熱して外部に熱を放熱する冷却機構を有する移動 体装置。
[7] 請求項 1に記載の移動体装置において、
前記廃熱部材は、無線で電力を出力する電力出力部を有し、 前記移動体は、前記電力出力部から無線で出力される電力が入力される電力入力 部を有する移動体装置。
[8] 請求項 7に記載の移動体装置において、
前記移動体は、前記放熱部を含み、前記廃熱部材に吸収される熱を放熱する放熱 機構を有し、
前記放熱機構は、前記入力された電力を用いる移動体装置。
[9] 請求項 7に記載の移動体装置において、
前記入力された電力は、前記移動体の冷却に用レ、られる移動体装置。
[10] 請求項 7に記載の移動体装置において、
前記駆動装置は、前記電力入力部に入力された電力を用いて前記移動体を駆動 する移動体装置。
[11] 請求項 1に記載の移動体装置において、
前記移動体は、該移動体に設けられた計測器から出力された信号を無線で発信 する発信部を有し、
前記廃熱部材は、前記発信部から無線で発信された信号を受信する受信部を有 する移動体装置。
[12] 請求項 11に記載の移動体装置において、
前記移動体は、
前記所定面内の一軸方向に移動する粗動ステージと、
該粗動ステージに対して微小移動する微動ステージと、を有する移動体装置。
[13] 請求項 12に記載の移動体装置において、
前記駆動装置は、前記微動ステージに設けられた複数の磁石を含む可動子と前記 粗動ステージに設けられた複数のコイルを含む固定子とを有するムービングマグネッ ト型の微動機構を含み、
該微動機構により、前記微動ステージが前記粗動ステージに対して微小駆動され る移動体装置。
[14] 請求項 13に記載の移動体装置において、
前記微動機構は、前記所定面内で直交する第 1軸及び第 2軸方向に交差する第 1 方向の駆動力を発生する第 1の微動ユニットと、前記所定面内で前記第 1軸及び第 2 軸方向と前記第 1方向とに交差する第 2方向の駆動力を発生する第 2の微動ユニット と、を含み、
前記第 1、第 2の微動ユニットの発生する駆動力の合力により、前記微動ステージを 前記第 1軸方向、前記第 2軸方向及び前記所定面内の回転方向の少なくとも一方向 に駆動する移動体装置。
[15] 請求項 13に記載の移動体装置において、
前記移動体は重力方向と直交する水平面内で駆動され、
前記駆動装置は、前記微動ステージの自重をキャンセルする自重キャンセル機構 と、前記微動ステージに対して前記重力方向の駆動力を作用させるムービングマグ ネット型のボイスコイルモータと、を含む移動体装置。
[16] 請求項 15に記載の移動体装置において、
前記移動体は、前記廃熱部材に対向する放熱部を含む少なくとも一部が前記粗動 ステージに設けられる放熱機構を有する移動体装置。
[17] 請求項 1に記載の移動体装置において、
前記移動体が配置される移動面がほぼ水平に設定されるベースを更に備え、 前記駆動装置は、
前記ベースに設けられ、複数の永久磁石が二次元方向に配列された磁石ユニット と、
前記移動体に設けられ、前記磁石ユニットと対向した状態で二次元方向に配置さ れた複数の電機子コイルを有する電機子ユニットとを有し、
前記磁石ユニットと前記電機子ユニットとの間の電磁相互作用により、前記移動体 が駆動される移動体装置。
[18] 請求項 17に記載の移動体装置において、
前記磁石ユニットは、隣り合う磁石面の極性が互いに異なるように配列され、矩形の 磁石面を有する複数の推力発生磁石と、前記隣り合う推力発生磁石の間に形成され る磁束経路中に配設され、起磁力を強化する複数の補間磁石とを含む移動体装置。
[19] 請求項 18に記載の移動体装置において、 前記駆動装置は、前記磁石ユニットと前記電機子ユニットとによる電磁相互作用に より、前記移動体に重力方向の浮上力を発生させる移動体装置。
[20] 請求項 19に記載の移動体装置において、
前記移動体に設けられ、前記磁石ユニットとの間に磁気吸引力を発生させ、該吸 引力と前記浮上力とのバランスにより前記移動体と前記ベースとの間を所定間隔に 維持する磁性体部材を更に備える移動体装置。
[21] 請求項 20に記載の移動体装置において、
前記磁石ユニットと前記移動体との接触を防止する非磁性体の保護部材を更に備 える移動体装置。
[22] 請求項 21に記載の移動体装置において、
前記ベースの移動面に設置可能で、前記移動体の非使用時における前記磁石ュ ニットからの磁束の漏洩を抑制又は防止するカバー部材を更に備える移動体装置。
[23] 請求項 1に記載の移動体装置において、
前記廃熱部材と前記移動体との一方に設けられたスケールと、前記廃熱部材と前 記移動体との他方に設けられ、前記スケールに光ビームを照射するヘッドと、を有す るエンコーダ装置を更に備える移動体装置。
[24] 請求項 23に記載の移動体装置において、
前記移動体の位置情報を検出する干渉計を更に備え、
少なくとも前記干渉計を用いた前記移動体の位置情報の検出を行えないときに、 前記エンコーダ装置を用いた前記移動体の位置情報の検出を実行する移動体装置
[25] 請求項 1に記載の移動体装置において、
前記廃熱部材を温調する温調装置を更に備える移動体装置。
[26] 請求項 25に記載の移動体装置において、
前記移動体は複数設けられ、前記廃熱部材は、前記各移動体から輻射する熱を吸 収する移動体装置。
[27] 請求項 26に記載の移動体装置において、
前記複数の移動体は、所定方向に関して相互に位置を交換することが可能である 移動体装置。
[28] 請求項 27に記載の移動体装置において、
前記廃熱部材は、前記所定方向を長手方向とし、かつ前記所定面内で前記所定 方向と直交する方向に関して前記移動体の幅と同程度以下の間隔で複数設けられ る移動体装置。
[29] 請求項 28に記載の移動体装置において、
前記所定面の第 1領域で前記駆動装置により駆動される前記移動体の位置情報を 計測する計測装置を更に備え、
前記移動体は、前記駆動装置による少なくとも前記第 1領域内での駆動中、前記 計測装置により計測される位置情報を用いて位置制御が行われるとともに、前記廃 熱部材によって前記輻射した熱が吸収される移動体装置。
[30] 請求項 29に記載の移動体装置において、
前記駆動装置は、前記第 1領域と少なくとも一部が異なる第 2領域に配置される前 記移動体を駆動し、
前記廃熱部材は、前記第 2領域内での駆動中に前記移動体から輻射する熱を吸 収する移動体装置。
[31] 請求項 30に記載の移動体装置において、
前記複数の移動体のうち前記第 1領域に配置される第 1移動体との交換で、前記 第 2領域に配置される第 2移動体が前記第 1領域に配置される移動体装置。
[32] 請求項 31に記載の移動体装置において、
前記第 1及び第 2領域では、それぞれ前記移動体に載置される物体に対して異な る動作が実行され、
前記駆動装置は、前記異なる動作の少なくとも一部が並行して行われるように前記 第 1及び第 2領域内でそれぞれ前記移動体を駆動する移動体装置。
[33] 請求項 32に記載の移動体装置において、
前記複数の移動体は、それぞれ二次元駆動され、かつ前記所定面内の第 1軸方 向に放熱部が延設される放熱機構を有し、
前記廃熱部材は、前記所定面内で前記第 1軸方向と交差して設けられる移動体装 置。
[34] 請求項 33に記載の移動体装置において、
前記廃熱部材は、前記所定面内で前記第 1軸方向と直交する第 2軸方向に延び、 力、つ前記第 1軸方向に関して離れて複数設けられ、
前記放熱部は、前記第 1軸方向に関して前記複数の廃熱部材の間隔と同程度以 上の所定範囲に渡って設けられる移動体装置。
[35] 請求項 33に記載の移動体装置において、
前記廃熱部材は、前記所定面内で前記第 1軸方向と直交する第 2軸方向に延び、 力、つ前記第 1軸方向に関して前記放熱部の幅と同程度以下の間隔で複数設けられ る移動体装置。
[36] 移動体と;
前記移動体に設けられ、無線で電力が入力される電力入力部と;
前記移動体とは非接触で、前記電力入力部の少なくとも一部と常時対向した状態 で設けられ、前記電力入力部に向けて無線で電力を出力する電力出力部と; 前記電力入力部に入力された電力を用いて、前記移動体を駆動する駆動装置と; を備える移動体装置。
[37] 請求項 36に記載の移動体装置において、
前記移動体とは非接触で、前記移動体の少なくとも一部と常時対向した状態で設 けられ、前記移動体から輻射した熱を吸収する廃熱部材を更に備える移動体装置。
[38] 移動体と;
該移動体に設けられた計測器と;
前記移動体に設けられ、前記計測器から出力された信号を無線で発信する発信部 と;
前記移動体とは非接触で、前記発信部の少なくとも一部と常時対向した状態で設 けられ、前記発信部から無線で発信された信号を受信する受信部と;を備える移動 体装置。
[39] 請求項 1に記載の移動体装置において、
前記移動体は、真空又は減圧下に配置されてレ、る移動体装置。
[40] 物体を露光して、前記物体にパターンを形成する露光装置であって、 前記物体が前記移動体上に載置される請求項 1に記載の移動体装置を具備する 露光装置。
[41] 物体を露光して、前記物体にパターンを形成する露光装置であって、
請求項 26に記載の移動体装置を具備し、
前記物体が載置された前記複数の移動体の 1つとの交換で、前記所定面内で前 記物体の露光が行われる露光位置に、前記物体の次に露光すべき物体が載置され た別の移動体を配置する露光装置。
[42] 請求項 41に記載の露光装置において、
前記 1つの移動体に載置された物体の露光動作の少なくとも一部と並行して、前記 所定面内で前記露光位置と異なる計測位置にて前記別の移動体に載置された物体 の計測が行われ、
前記別の移動体は、前記計測位置から前記露光位置に移動される露光装置。
[43] 請求項 42に記載の露光装置において、
前記所定面内の前記露光位置を含む第 1領域内での移動体の位置情報と、前記 第 1領域と少なくとも一部が異なり、前記所定面内の前記計測位置を含む第 2領域内 での移動体の位置情報と、を独立に計測する計測装置を更に備える露光装置。
[44] 請求項 43に記載の露光装置において、
前記廃熱部材は、少なくとも前記露光位置に配置される移動体から輻射した熱を 吸収する露光装置。
[45] 請求項 44に記載の露光装置において、
前記廃熱部材は、前記移動体の載置面側に設けられ、
前記移動体は、前記載置面側に前記放熱部が配置される放熱機構を有し、 前記放熱部を介して前記廃熱部材に熱が吸収される露光装置。
[46] 請求項 45に記載の露光装置において、
前記移動体は、真空又は減圧下に配置されてレ、る露光装置。
[47] 物体にパターンを形成する露光方法であって、
前記物体の露光時に、請求項 1に記載の移動体装置の前記移動体に前記物体を 載置した状態で、前記移動体を駆動する露光方法。
[48] 物体にパターンを形成する露光方法であって、
請求項 26に記載の移動体装置によって、前記所定面内で前記物体の露光が行わ れる露光位置に配置される前記複数の移動体の 1つを駆動し、前記 1つの移動体と の交換で、前記物体の次に露光すべき物体を載置する別の移動体を前記露光位置 に配置する露光方法。
[49] リソグラフイエ程を含むデバイス製造方法であって、
前記リソグラフイエ程では、請求項 47に記載の露光方法を用いて基板上にパター ンを形成するデバイス製造方法。
[50] リソグラフイエ程を含むデバイス製造方法であって、
請求項 40に記載の露光装置を用いて基板上にパターンを形成するデバイス製造 方法。
[51] 移動体と;
前記移動体に対して、非接触状態で支持された微動体と;
前記移動体に設けられた 4つの電機子コイルと、前記微動体に設けられ、前記 4つ の電機子コイルと協働して駆動力を発生する磁石ユニットと、を有する駆動機構と;を 備える移動体装置。
[52] 請求項 51に記載の移動体装置において、
前記磁石ユニットは、前記 4つの電機子コイルのレ、ずれかを介して対向する少なく とも一対の磁石を含み、
前記対をなす磁石同士の対向する部分が逆極性である移動体装置。
[53] 請求項 51に記載の移動体装置において、
前記駆動機構は、前記 4つのコイルに選択的に電流を供給することにより、前記微 動体に二次元面内における並進駆動力及び前記二次元面内での回転駆動力の少 なくとも一方を作用させる移動体装置。
[54] 請求項 51に記載の移動体装置において、
前記移動体に設けられ、前記微動体の自重を支持する自重キャンセル機構を更に 備える移動体装置。
[55] 請求項 54に記載の移動体装置において、
前記微動体と前記自重キャンセル機構との間は、非接触状態である移動体装置。
[56] 請求項 54に記載の移動体装置において、
前記自重キャンセル機構は、前記微動体に対して、前記二次元面に垂直な方向に 移動する力、及び前記二次元面に傾斜する方向に移動する力を作用させる移動体 装置。
[57] 請求項 51に記載の移動体装置において、
前記微動体は、前記移動体の鉛直方向上方に配置されている移動体装置。
[58] 請求項 51に記載の移動体装置において、
前記移動体を駆動する平面モータを更に備える移動体装置。
[59] 移動体に対して、微小駆動可能に支持される微動体であって、
前記移動体に対し、非接触状態で支持される微動体本体と;
前記微動体本体に設けられ、前記移動体に設けられた 4つの電機子コイルと協働 して駆動力を発生する磁石ユニットと;を備える微動体。
[60] 請求項 59に記載の微動体において、
前記磁石ユニットは、前記 4つの電機子コイルのレ、ずれかを介して対向する少なく とも一対の磁石を含み、
前記対をなす磁石同士の対向する部分が逆極性である微動体。
[61] 請求項 59に記載の微動体において、
前記微動体本体及び前記磁石ユニットの自重は、前記移動体に設けられた自重キ ヤンセル機構により支持される微動体。
[62] 請求項 61に記載の微動体において、
前記微動体本体と前記自重キャンセル機構との間は、非接触状態である微動体。
[63] 請求項 62に記載の微動体において、
前記自重キャンセル機構は、前記微動体本体に対して、二次元面に垂直な方向に 移動する力、及び前記二次元面に傾斜する方向に移動する力を作用させる微動体
[64] 移動体と; 前記移動体に対して、非接触状態で支持された請求項 59に記載の微動体と;を備 える移動体装置。
物体にパターンを形成する露光装置であって、
前記物体が前記微動体上に載置される請求項 51に記載の移動体装置を具備する 露光装置。
PCT/JP2007/053723 2006-03-30 2007-02-28 移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法 WO2007113955A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508463A JP5257845B2 (ja) 2006-03-30 2007-02-28 移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法
EP07715038A EP2006884A4 (en) 2006-03-30 2007-02-28 MOBILE INJECTION, EXPOSURE DEVICE, EXPOSURE METHOD, MICRO MOTION BODY AND COMPONENT MANUFACTURING METHOD
KR1020147005802A KR101531801B1 (ko) 2006-03-30 2007-02-28 이동체 장치, 미동체 및 노광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-095982 2006-03-30
JP2006095982 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007113955A1 true WO2007113955A1 (ja) 2007-10-11

Family

ID=38563227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053723 WO2007113955A1 (ja) 2006-03-30 2007-02-28 移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法

Country Status (7)

Country Link
US (1) US7696653B2 (ja)
EP (1) EP2006884A4 (ja)
JP (2) JP5257845B2 (ja)
KR (2) KR20090009800A (ja)
CN (1) CN101410949A (ja)
TW (1) TWI454859B (ja)
WO (1) WO2007113955A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147342A (ja) * 2007-12-14 2009-07-02 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置
KR20120042175A (ko) * 2010-10-22 2012-05-03 엘지디스플레이 주식회사 평면모터 구조 및 이를 이용한 대상물 대응방법
JP2012531729A (ja) * 2009-07-03 2012-12-10 アプライド マテリアルズ インコーポレイテッド 基板処理システム
JP2013004898A (ja) * 2011-06-21 2013-01-07 Sinfonia Technology Co Ltd ステージ装置
US8421994B2 (en) 2007-09-27 2013-04-16 Nikon Corporation Exposure apparatus
KR101506054B1 (ko) 2007-10-22 2015-03-25 가부시키가이샤 니콘 노광 장치 및 노광 방법
KR101525342B1 (ko) * 2007-12-28 2015-06-10 가부시키가이샤 니콘 노광 장치, 이동체 구동 시스템, 패턴 형성 장치 및 노광 방법, 그리고 디바이스 제조 방법
JP2016502124A (ja) * 2012-10-15 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. 作動機構、光学装置、リソグラフィ装置及びデバイス製造方法
JP2018159934A (ja) * 2011-05-25 2018-10-11 エーエスエムエル ネザーランズ ビー.ブイ. マルチステージシステムおよびリソグラフィ装置
JP2019197229A (ja) * 2009-08-25 2019-11-14 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
TWI679486B (zh) * 2016-10-31 2019-12-11 日商Thk股份有限公司 透鏡移動機構

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115906B2 (en) * 2007-12-14 2012-02-14 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and measurement device, and device manufacturing method
JP5071894B2 (ja) * 2008-04-30 2012-11-14 株式会社ニコン ステージ装置、パターン形成装置、露光装置、ステージ駆動方法、露光方法、並びにデバイス製造方法
US8817236B2 (en) * 2008-05-13 2014-08-26 Nikon Corporation Movable body system, movable body drive method, pattern formation apparatus, pattern formation method, exposure apparatus, exposure method, and device manufacturing method
US8553204B2 (en) * 2009-05-20 2013-10-08 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
CN101752983B (zh) * 2009-12-24 2012-06-27 哈尔滨工业大学 长行程高精度多自由度平面电机
NL2006714A (en) * 2010-06-07 2011-12-08 Asml Netherlands Bv Displacement device, lithographic apparatus and positioning method.
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
CN102854752B (zh) * 2011-05-27 2014-07-23 恩斯克科技有限公司 接近式曝光装置
WO2013059934A1 (en) 2011-10-27 2013-05-02 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
CN103531502B (zh) * 2012-07-03 2016-12-21 上海微电子装备有限公司 一种工件台装置
CN103576463B (zh) * 2012-07-20 2015-09-30 上海微电子装备有限公司 光刻机工作台及其工作方法
CN104769500B (zh) * 2012-08-21 2018-07-31 Asml荷兰有限公司 光刻设备和器件制造方法
CN103809384B (zh) * 2012-11-12 2016-03-09 上海微电子装备有限公司 工件台与掩模台公用的平衡质量系统及光刻机
JP6373992B2 (ja) 2013-08-06 2018-08-15 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア 変位デバイスおよび方法とそれに関連付けられた運動を検出し推定するための装置
WO2015179962A1 (en) 2014-05-30 2015-12-03 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
WO2015184553A1 (en) 2014-06-07 2015-12-10 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
EP3155712A4 (en) 2014-06-14 2018-02-21 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
KR101598997B1 (ko) * 2014-07-29 2016-03-03 전북대학교산학협력단 자기부상 이중서보 스테이지
US9904178B2 (en) * 2015-04-09 2018-02-27 Nikon Corporation On-board supply system for a stage assembly
WO2017004716A1 (en) 2015-07-06 2017-01-12 The University Of British Columbia Methods and systems for controllably moving one or more moveable stages in a displacement device
CN108028214B (zh) * 2015-12-30 2022-04-08 玛特森技术公司 用于毫秒退火系统的气体流动控制
CN105511234A (zh) * 2016-01-14 2016-04-20 哈尔滨工业大学 基于无线能量传输的动磁钢磁浮双工件台矢量圆弧换台方法及装置
JP6889534B2 (ja) * 2016-09-28 2021-06-18 国立大学法人 東京大学 移動体装置、露光装置、フラットパネルディスプレイの製造方法、およびデバイス製造方法
US10775707B2 (en) 2016-10-07 2020-09-15 Asml Netherlands B.V. Lithographic apparatus and method
CN115085508A (zh) 2017-03-27 2022-09-20 平面电机公司 机器人装置和用于制造、使用和控制其的方法
KR102075686B1 (ko) * 2018-06-11 2020-02-11 세메스 주식회사 카메라 자세 추정 방법 및 기판 처리 장치
US11575337B2 (en) 2018-10-13 2023-02-07 Planar Motor Incorporated. Systems and methods for identifying a magnetic mover
JP7451133B2 (ja) * 2019-10-11 2024-03-18 キヤノン株式会社 無線電力伝送システム及び機械装置

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115945A (ja) 1981-12-29 1983-07-09 Toyoda Gosei Co Ltd ハンドル部への電力伝送と信号送受方法
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
JPH0559660B2 (ja) 1986-02-28 1993-08-31 Toyota Motor Co Ltd
JPH06283403A (ja) 1993-03-26 1994-10-07 Nikon Corp 面位置設定装置
US5448332A (en) 1992-12-25 1995-09-05 Nikon Corporation Exposure method and apparatus
JPH07270122A (ja) * 1994-03-30 1995-10-20 Canon Inc 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
JPH11214482A (ja) * 1998-01-28 1999-08-06 Canon Inc ステージ装置および露光装置ならびにディバイス製造方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2003058258A (ja) * 2001-08-20 2003-02-28 Canon Inc 位置決め装置
JP2003068626A (ja) * 2001-08-29 2003-03-07 Canon Inc 露光装置内ユニットの輻射冷却方法及び輻射冷却装置
JP2003229347A (ja) * 2002-01-31 2003-08-15 Canon Inc 半導体製造装置
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
WO2004053955A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004311780A (ja) * 2003-04-08 2004-11-04 Canon Inc 露光装置
JP2005209997A (ja) * 2004-01-26 2005-08-04 Canon Inc 位置決めステージ装置
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
JP2005277030A (ja) * 2004-03-24 2005-10-06 Canon Inc ステージ装置および露光装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654571A (en) * 1985-09-16 1987-03-31 Hinds Walter E Single plane orthogonally movable drive system
JP2980745B2 (ja) 1991-08-31 1999-11-22 バンドー化学株式会社 広角織布の製造方法とその装置
JP3757430B2 (ja) 1994-02-22 2006-03-22 株式会社ニコン 基板の位置決め装置及び露光装置
JP3726270B2 (ja) * 1996-05-23 2005-12-14 株式会社ニコン 露光装置及び方法
JPH10177942A (ja) 1996-12-17 1998-06-30 Nikon Corp 露光装置および露光装置における感光基板の受け渡し方法
AU2852899A (en) * 1998-03-19 1999-10-11 Nikon Corporation Flat motor, stage, exposure apparatus and method of producing the same, and device and method for manufacturing the same
JP2000349009A (ja) * 1999-06-04 2000-12-15 Nikon Corp 露光方法及び装置
CN1260772C (zh) 1999-10-07 2006-06-21 株式会社尼康 载物台装置、载物台驱动方法和曝光装置及曝光方法
JP2001118773A (ja) * 1999-10-18 2001-04-27 Nikon Corp ステージ装置及び露光装置
JP2001148339A (ja) 1999-11-19 2001-05-29 Nikon Corp ステージ装置及び露光装置
JP2001168008A (ja) 1999-12-09 2001-06-22 Canon Inc 基板ステージ装置および該基板ステージ装置を用いた半導体露光装置
JP2001257252A (ja) 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd 真空処理装置の基板取り外し制御方法及び真空処理装置
JP2001338868A (ja) * 2000-03-24 2001-12-07 Nikon Corp 照度計測装置及び露光装置
US6437463B1 (en) * 2000-04-24 2002-08-20 Nikon Corporation Wafer positioner with planar motor and mag-lev fine stage
JP2001319865A (ja) 2000-05-11 2001-11-16 Canon Inc 基板ステージ装置、露光装置および半導体デバイス製造方法
JP2002184662A (ja) 2000-10-04 2002-06-28 Nikon Corp ステージ装置及び露光装置
JP2002170765A (ja) 2000-12-04 2002-06-14 Nikon Corp ステージ装置及び露光装置
JP2002353118A (ja) 2001-05-28 2002-12-06 Nikon Corp ステージ装置及び露光装置
JP2002359170A (ja) * 2001-05-30 2002-12-13 Nikon Corp ステージ装置及び露光装置
JP2003022960A (ja) * 2001-07-09 2003-01-24 Canon Inc ステージ装置及びその駆動方法
JP4136363B2 (ja) 2001-11-29 2008-08-20 キヤノン株式会社 位置決め装置及びそれを用いた露光装置
JP2003280744A (ja) * 2002-03-19 2003-10-02 Canon Inc 振動制御装置及びその制御方法、並びに、該振動制御装置を有する露光装置及び半導体デバイスの製造方法
JP4006251B2 (ja) * 2002-03-20 2007-11-14 キヤノン株式会社 ミラー装置、ミラーの調整方法、露光装置、露光方法及び半導体デバイスの製造方法
TWI307526B (en) * 2002-08-06 2009-03-11 Nikon Corp Supporting device and the mamufacturing method thereof, stage device and exposure device
US6946761B2 (en) * 2003-04-18 2005-09-20 Asml Holding, N.V. Actuator coil cooling system
JP2004342987A (ja) * 2003-05-19 2004-12-02 Canon Inc ステージ装置
EP1491955A1 (en) * 2003-06-27 2004-12-29 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
JP2005260183A (ja) * 2004-03-15 2005-09-22 Canon Inc 移動装置及び露光装置
JP2005295762A (ja) * 2004-04-05 2005-10-20 Canon Inc ステージ装置および露光装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115945A (ja) 1981-12-29 1983-07-09 Toyoda Gosei Co Ltd ハンドル部への電力伝送と信号送受方法
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
JPH0559660B2 (ja) 1986-02-28 1993-08-31 Toyota Motor Co Ltd
US5448332A (en) 1992-12-25 1995-09-05 Nikon Corporation Exposure method and apparatus
JPH06283403A (ja) 1993-03-26 1994-10-07 Nikon Corp 面位置設定装置
JPH07270122A (ja) * 1994-03-30 1995-10-20 Canon Inc 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
JPH11214482A (ja) * 1998-01-28 1999-08-06 Canon Inc ステージ装置および露光装置ならびにディバイス製造方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2003058258A (ja) * 2001-08-20 2003-02-28 Canon Inc 位置決め装置
JP2003068626A (ja) * 2001-08-29 2003-03-07 Canon Inc 露光装置内ユニットの輻射冷却方法及び輻射冷却装置
JP2003229347A (ja) * 2002-01-31 2003-08-15 Canon Inc 半導体製造装置
WO2004053955A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP2004311780A (ja) * 2003-04-08 2004-11-04 Canon Inc 露光装置
JP2005209997A (ja) * 2004-01-26 2005-08-04 Canon Inc 位置決めステージ装置
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
JP2005277030A (ja) * 2004-03-24 2005-10-06 Canon Inc ステージ装置および露光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006884A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421994B2 (en) 2007-09-27 2013-04-16 Nikon Corporation Exposure apparatus
KR101506054B1 (ko) 2007-10-22 2015-03-25 가부시키가이샤 니콘 노광 장치 및 노광 방법
KR101470682B1 (ko) * 2007-12-14 2014-12-08 가부시키가이샤 니콘 노광 장치, 노광 방법, 및 디바이스 제조 방법
JP2009147342A (ja) * 2007-12-14 2009-07-02 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
KR101525342B1 (ko) * 2007-12-28 2015-06-10 가부시키가이샤 니콘 노광 장치, 이동체 구동 시스템, 패턴 형성 장치 및 노광 방법, 그리고 디바이스 제조 방법
JP2012531729A (ja) * 2009-07-03 2012-12-10 アプライド マテリアルズ インコーポレイテッド 基板処理システム
JP2021012387A (ja) * 2009-08-25 2021-02-04 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
JP2019197229A (ja) * 2009-08-25 2019-11-14 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US8587769B2 (en) 2010-06-03 2013-11-19 Asml Netherlands B.V. Stage apparatus and lithographic apparatus comprising such stage apparatus
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置
KR20120042175A (ko) * 2010-10-22 2012-05-03 엘지디스플레이 주식회사 평면모터 구조 및 이를 이용한 대상물 대응방법
KR101691106B1 (ko) 2010-10-22 2016-12-30 엘지디스플레이 주식회사 평면모터 구조 및 이를 이용한 대상물 대응방법
JP2018159934A (ja) * 2011-05-25 2018-10-11 エーエスエムエル ネザーランズ ビー.ブイ. マルチステージシステムおよびリソグラフィ装置
JP2013004898A (ja) * 2011-06-21 2013-01-07 Sinfonia Technology Co Ltd ステージ装置
US9785051B2 (en) 2012-10-15 2017-10-10 Asml Netherlands B.V. Actuation mechanism, optical apparatus, lithography apparatus and method of manufacturing devices
JP2016502124A (ja) * 2012-10-15 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. 作動機構、光学装置、リソグラフィ装置及びデバイス製造方法
TWI679486B (zh) * 2016-10-31 2019-12-11 日商Thk股份有限公司 透鏡移動機構
US10718927B2 (en) 2016-10-31 2020-07-21 Thk Co., Ltd. Lens moving mechanism

Also Published As

Publication number Publication date
TWI454859B (zh) 2014-10-01
JP2013149996A (ja) 2013-08-01
JP5725059B2 (ja) 2015-05-27
JP5257845B2 (ja) 2013-08-07
JPWO2007113955A1 (ja) 2009-08-13
KR101531801B1 (ko) 2015-06-25
EP2006884A9 (en) 2009-07-15
US20070273860A1 (en) 2007-11-29
EP2006884A2 (en) 2008-12-24
KR20090009800A (ko) 2009-01-23
CN101410949A (zh) 2009-04-15
US7696653B2 (en) 2010-04-13
TW200736859A (en) 2007-10-01
EP2006884A4 (en) 2010-08-18
KR20140041932A (ko) 2014-04-04

Similar Documents

Publication Publication Date Title
JP5257845B2 (ja) 移動体装置、露光装置及び露光方法、微動体、並びにデバイス製造方法
JP6607286B2 (ja) 搬送システム、露光装置、搬送方法、露光方法及びデバイス製造方法
JP2007274881A (ja) 移動体装置、微動体及び露光装置
US9588443B2 (en) Object exchange method, exposure method, carrier system, exposure apparatus, and device manufacturing method
US8325326B2 (en) Stage unit, exposure apparatus, and exposure method
US8792084B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4362862B2 (ja) ステージ装置及び露光装置
JP5348630B2 (ja) 露光装置及びデバイス製造方法
US20110123913A1 (en) Exposure apparatus, exposing method, and device fabricating method
TW201033753A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2001118773A (ja) ステージ装置及び露光装置
JP2013232679A (ja) 移動体装置
JP2013513224A (ja) 露光装置及びデバイス製造方法
JP5348627B2 (ja) 移動体装置、露光装置及びデバイス製造方法
JP2013506268A (ja) 露光装置及びデバイス製造方法
JP5348629B2 (ja) 露光装置及びデバイス製造方法
JP2014204079A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP5182558B2 (ja) パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法
US20110096306A1 (en) Stage apparatus, exposure apparatus, driving method, exposing method, and device fabricating method
JP4962903B2 (ja) 用力供給装置、移動体システム及びパターン形成装置、並びに移動体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07715038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508463

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780011066.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087024702

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007715038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4322/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020147005802

Country of ref document: KR