WO2007111219A1 - Iii族窒化物単結晶の成長方法 - Google Patents

Iii族窒化物単結晶の成長方法 Download PDF

Info

Publication number
WO2007111219A1
WO2007111219A1 PCT/JP2007/055868 JP2007055868W WO2007111219A1 WO 2007111219 A1 WO2007111219 A1 WO 2007111219A1 JP 2007055868 W JP2007055868 W JP 2007055868W WO 2007111219 A1 WO2007111219 A1 WO 2007111219A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
raw material
impurity element
group
algan
Prior art date
Application number
PCT/JP2007/055868
Other languages
English (en)
French (fr)
Inventor
Michimasa Miyanaga
Naho Mizuhara
Shinsuke Fujiwara
Hideaki Nakahata
Tomohiro Kawase
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to KR1020087006047A priority Critical patent/KR101346501B1/ko
Priority to US12/067,936 priority patent/US8361226B2/en
Priority to JP2007531498A priority patent/JP5374872B2/ja
Priority to CN2007800010637A priority patent/CN101351579B/zh
Priority to EP07739311.4A priority patent/EP2000567B1/en
Publication of WO2007111219A1 publication Critical patent/WO2007111219A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Definitions

  • the present invention relates to a method for growing a group m nitride single crystal used for a substrate of a semiconductor device such as a light emitting element, an electronic element, or a semiconductor sensor. More particularly, the present invention relates to a method for growing a group m nitride single crystal having a low dislocation density and good crystallinity.
  • Group III nitride crystals such as Al Ga ⁇ (0 ⁇ 1, the same shall apply hereinafter) single crystals
  • Patent Document 1 US Patent No. 5858086
  • Patent Document 2 US Patent No. 6296956
  • Patent Document 3 US Patent No. 6001748
  • An object of the present invention is to provide a method for stably growing a large group III nitride single crystal having low dislocation density and good crystallinity. Means for solving the problem
  • the present invention includes a step of placing a raw material in a crucible, and sublimating the raw material to place Al Ga in the crucible.
  • the raw material is Al Ga N (0 ⁇ y ⁇ l) raw material y l-y
  • This is a method for growing a group III nitride single crystal, which includes at least one selected from the group power of group IVb and group Ila elements.
  • a first raw material chamber, a second raw material chamber, and a crystal growth chamber are provided in the crucible, and the first raw material chamber, There is an air vent between the second source chamber and at least one of the first and second source chambers and the crystal growth chamber, and Al Ga N source is placed in the first source chamber. And impurity y ly in the second raw material chamber
  • the raw material is Al Ga y l-y
  • N raw material and an impurity element may be mixed.
  • the impurity element can be any one of Si, C, and Ge.
  • the ratio of the number of moles of impurity element atoms to the number of moles n of the child n / n is 0 ⁇ 01 or more 0.5
  • the ratio n of the number of moles of pure element atoms n Zn can be 2 or more and 1 ⁇ 10 4 or less.
  • the crucible can be formed of metal carbide.
  • a base substrate can be further placed in the crucible, and an AlGaN single crystal can be grown on the base substrate.
  • the diameter of the Al Ga N single x ⁇ - ⁇ ⁇ 1- ⁇ crystal can be made 2 inches or more.
  • Al Ga N single crystal Al G
  • the step of growing the A1 Ga N (0 ⁇ s ⁇ l) single crystal at a low concentration can further include s 1— s Effect of the Invention
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a method for growing a group IV nitride single crystal according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the main part of another embodiment of the method for growing a group m nitride single crystal according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the main part of still another embodiment of the method for growing a group m nitride single crystal according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing the main part of still another embodiment of the method for growing a group m nitride single crystal according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the main part of still another embodiment of the method for growing a group m nitride single crystal according to the present invention.
  • FIG. 6 is a schematic cross-sectional view showing the main part of still another embodiment of the method for growing a group m nitride single crystal according to the present invention.
  • One embodiment of the method for growing a group III nitride single crystal according to the present invention includes a step of placing raw material 1 in crucible 12 with reference to FIG. 1, and sublimating raw material 1 to make Al Ga in crucible 12 N (0 x 1-x
  • raw material 1 is made of Al Ga N (0 ⁇ y y l-y
  • impurity element 3 is characterized in that it is at least one selected from the group forces of group IVb and group IIa elements.
  • A is a direct raw material for forming an AlGaN single crystal 4
  • At least y l-y selected from the group consisting of the group IVb element and group Ila element together with 1 Ga N raw material 2
  • the powerful impurity element E reacts with A1 to become Al E (g) (where p and q are positive numbers). As the Al Ga N single crystal 4 grows, it acts as an Al transport material to increase the crystal growth rate.
  • the raw material 1 is an Al Ga N raw material 2 and a group consisting of an IVb group element and an Ila group element.
  • At least one impurity element 3 to be selected is included, and the inclusion form thereof is not limited. Therefore, as shown in FIG.
  • N raw material 2 and impurity element 3 may be mixed and arranged in crucible 12.
  • a first raw material chamber 12p and a second raw material chamber 12q are provided in the crucible 12 through which the gas can be exchanged through the vent 12a, and the first raw material chamber 12p is provided in the first raw material chamber 12p.
  • Impurity element 3 is arranged in the raw material chamber 12q of 2.
  • Al Ga N raw material 2 and impurity element 3 is Al Ga N raw material 2 and impure.
  • the solid is not particularly limited, and may be in the form of a lump, a granule, or a powder. If the crucible 12 and the raw material chambers 12p, 12q and the crystal growth chamber 12r, which will be described later, are formed of the impurity element 3, the concentration of the impurity element 3 cannot be controlled during the growth of the AlGaN single crystal. Impure
  • Al Ga N raw material 2 and Al Ga obtained from it are difficult to obtain effects due to physical elements.
  • the Al Ga N raw material 2 to obtain Al Ga N single crystal 4 with a predetermined chemical composition.
  • the chemical composition is determined.
  • the sublimation method used in the present embodiment refers to the Al Ga N raw material with reference to FIG.
  • a high-frequency heating type vertical sublimation furnace 10 as shown in FIG. 1 is used.
  • a WC crucible 12 having a vent 12e is provided in the central part of the reaction vessel 11 in the vertical sublimation furnace 10.
  • a heating element 13 is provided in the central part of the reaction vessel 11.
  • a high-frequency heating coil 14 for heating the heating element 13 is provided in the outer central portion of the reaction vessel 11. It is Furthermore, the end of the reaction vessel 11 is connected to the outside of the crucible 12 of the reaction vessel 11 with N
  • thermometer 15 for measuring the temperature of the upper surface.
  • AlGaN single crystal 4 can be produced using the vertical sublimation furnace 10 as follows.
  • a raw material 1 containing AlGaN raw material 2 and ⁇ 1 and impurity element 3 is stored in the lower part of the crucible 12, and N gas is allowed to flow into the reaction vessel 11 while
  • GaN is solidified again to grow AlGaN single crystal 4.
  • the temperature of the raw material 1 side of the crucible 12 is 1600 ° C to 23 ° C.
  • the temperature at the top of the crucible 12 (the part where the AlGaN single crystal 4 is grown) is the raw material.
  • Crystal 4 is obtained. Also, during the crystal growth, N gas is supplied to the outside of the crucible 12 in the reaction vessel 11
  • impurities in the crucible 12 may be removed through the vent 12e by raising the temperature of the other portion than the temperature on the raw material 1 side of the crucible 12. In addition, the contamination of impurities into the AlGaN single crystal 4 can be further reduced.
  • the impurity element is at least one selected from the group consisting of group IVb elements and group Ila elements. Both the IVb group element and the Ila group element are considered to have an effect as a transport material for A1, and increase the growth rate of the AlGaN single crystal to improve the crystallinity.
  • the group IVb element is an element classified as group IVb in the long-period table of elements, and corresponds to C (carbon), Si (caine), Ge (germanium), and the like.
  • An Ila group element is an element classified as an Ila group in the long periodic table of elements, and is also called an alkaline earth metal, such as Mg (magnesium) and Ca (calcium). It is also possible to use a plurality of impurity elements selected from the group IVb element and Ila group elemental forces.
  • the impurity element is preferably any one of Si, C, and Ge.
  • one element arbitrarily specified from the IVb group element, among them, Si, C or Ge, is from the viewpoint of increasing the growth rate of Al Ga N single crystal and improving the crystallinity.
  • the ratio n of the number of moles of atoms of impurity element 3 to the number of moles ny 1-y A of Al atoms in Al Ga N raw material 2 in raw material 1 n Zn (hereinafter simply referred to as molar ratio n / n
  • n Zn force is less than 0.01, the effect of Al as a transport material is small.
  • the number of moles of oxygen atoms contained in the raw material 1 is n.
  • the number of moles n of the impurity element 3 n n Zn (hereinafter simply referred to as the molar ratio n / n) is 2
  • the above is preferably IX 10 4 or less.
  • Molar ratio n Zn force Impurity element less than 2
  • the molar ratio n / n is more preferably 3 or more and 1 X 10 4 or less. 10 or more and 1 X 10 4 or less
  • the number of moles of oxygen atoms contained in the raw material 1 is calculated from the amount of carbon monoxide produced by reacting a predetermined amount of raw material 1 with an excess amount of carbon.
  • the oxygen atoms contained in the raw material 1 reduce the above-mentioned effect of the impurity element 3 intended by the present application, and the oxygen atoms themselves directly inhibit the growth of the AlGaN single crystal 4.
  • the oxygen mole content ⁇ of the raw material 1 is preferably 1 mol% or less, more preferably 0.1 mol% or less.
  • Number of moles n of pure element 3 atom is small (for example, molar ratio n Zn is smaller than 0.01)
  • the impurity element 3 can be used in the form of various compounds in addition to a simple substance.
  • an oxide is not preferable because it inhibits crystal growth such as increasing the oxygen content of the raw material 1 as a whole, and obtaining the above-described effects of the impurity element 3 intended by the present application.
  • the raw material in which the impurity element 3 is added to the AlGaN raw material 2 is added to the AlGaN raw material 2
  • the heat treatment of the previous raw material 1 is performed by the group IVb group element force arbitrarily specified and the group power consisting of the Ila group element.
  • the viewpoint of reducing impurity elements other than the impurity element 3 and the above impurity elements in the raw material 1 From the viewpoint of activity 3 and improvement of dispersibility, it is preferable.
  • the ratio of the number of moles n (that is, the mole ratio n Zn) is preferably within the above range.
  • the crucible 12 is not particularly limited, but the Al Ga N single crystal 4 is not limited.
  • the material is formed of a material with little deterioration during the growth of the metal, and it is particularly preferable that the material is formed of a metal carbide.
  • Preferred examples of the metal carbide forming the crucible 12 include TiC, Zr C, NbC, TaC, MoC, and WC.
  • FIGS. 1 and 2 Other embodiments of the method for growing a group IV nitride single crystal according to the present invention are described with reference to FIGS. 1 and 2 in which a raw material 1 is disposed in the crucible 12, and the raw material 1 is sublimated.
  • a raw material 1 comprising an Al Ga N single crystal 4 and a step of growing an Al Ga N single crystal 4 therein,
  • the impurity element 3 is common to the first embodiment in that the impurity element 3 is at least one selected from the group power consisting of the IVb group element and the Ila group element.
  • the raw material 1 is an Al Ga N raw material.
  • Embodiment 1 differs from Embodiment 1 in which the N raw material 2 and the impurity element 3 are arranged in the crucible 12 in a state where they are gathered together.
  • the raw material 1 arranged in the crucible 12 is a mixture of the AlGaN raw material 2 and the impurity element 3, the raw material 1 in the crucible 12 when the raw material 1 is sublimated.
  • Ga gas distribution and impurity element gas distribution is more uniform and sooner and more stable Al Ga N
  • the impurity element is any one of Si, C, and Ge.
  • the molar ratio n Zn is not less than 0.01 and not more than 0.5.
  • n Zn 3 or more and 1 X 10 4 or less.
  • FIGS. 1 and 3 Still another embodiment of the method for growing a group III nitride single crystal according to the present invention is described with reference to FIGS. 1 and 3 in which the raw material 1 is disposed in the crucible 12 and the raw material 1 is sublimated. And a step of growing Al Ga N single crystal 4 in crucible 1 2, and raw material 1 includes Al Ga N raw material 2 and
  • the impurity element 3 is common to the first embodiment in that the impurity element 3 is at least one selected from the group consisting of an IVb group element and an Ila group element.
  • a first raw material chamber 12p, a second raw material chamber 12q, and a crystal growth chamber 12r are provided in the crucible 12. Vents 12a, 12b, 12c between the first raw material chamber 12p and the second raw material chamber 12q and between at least one of the first and second raw material chambers 12p, 12q and the crystal growth chamber 12r
  • the first raw material chamber is provided AlGaN raw material 2 is arranged in 12p, impurity element 3 is arranged in the second raw material chamber 12q, and l
  • the Al Ga N raw material 2 and the impurity element 3 are collected together in the crucible 12.
  • 3 differs from the second embodiment in which 3 is arranged in a mixed state.
  • the first raw material chamber 12p and the second raw material chamber 12q each of which can exchange gas through the vent 12a, have an AlGaN raw material 2 and an impurity element 3 respectively. Since the Al Ga N raw material 2 and the impurity element 3 are in direct contact with each other,
  • the AlGaN single crystal 4 can be grown more stably.
  • FIG. 3 shows that between the first source chamber 12p and the second source chamber 12q, between the first source chamber 12p and the crystal growth chamber 12r, and the second source chamber 12q.
  • at least one vent is provided for the vents 12b and 12c.
  • the vents 12a, 12b, and 12c are provided between the vents 12b and 12c. It is sufficient that a mouth is provided.
  • the impurity element is any one of Si, C, and Ge.
  • the molar ratio n Zn is not less than 0.01. 5 or less
  • Molar ratio n Zn is preferably 2 or more and 1 X 10 4 or less.
  • Still another embodiment of the method for growing a group III nitride single crystal according to the present invention includes a step of disposing the raw material 1 in the crucible 12 with reference to FIG. 1 and FIG. And the step of growing the Al Ga N single crystal 4 in the crucible 12, the raw material 1 is an Al Ga N raw material 2,
  • the impurity element 3 is common to the first embodiment in that the impurity element 3 is at least one selected from the group consisting of an IVb group element and an Ila group element.
  • the base substrate 9 is further disposed in the crucible 12, and the Al Ga N single crystal 4 is grown on the base substrate 9.
  • the base substrate 9 is further disposed in the crucible 12, and the Al Ga N single crystal 4 is grown on the base substrate 9.
  • the Al Ga N single crystal 4 is grown on the base substrate 9.
  • Al Ga N single crystal 4 is grown on the opposite side of the raw material 1 side in the crucible 12 without placing a ground substrate.
  • Embodiments 1 to 3 are different.
  • raw material 1 is impure with Al Ga N raw material 2.
  • the Al Ga N single crystal 4 is grown on the base substrate 9, so that
  • the base substrate 9 is made of Al Ga
  • Ga Single crystal Al Ga N single crystal is not particularly limited as long as it can grow 4
  • 1 may be the same type of substrate having the same chemical composition as that of 1 or a different type of substrate having a different chemical composition. From the standpoint of improving crystallinity, the difference in lattice constant from the same type substrate or Al Ga N single crystal is
  • a large and large substrate is preferable. From this viewpoint, a SiC substrate, an Al 2 O substrate, a GaN substrate, or the like is preferably used as the base substrate.
  • a large AlGaN single crystal having a diameter of 2 inches or more can be grown by using a base substrate having a diameter of 2 inches or more.
  • a wafer having a predetermined diameter such as a 1 inch diameter, a 2 inch diameter, or a 4 inch diameter is manufactured.
  • 1 inch is 2.54 cm
  • the 2 inch diameter here is one of the sizes indicating the straight diameter of a wafer such as a substrate or crystal, and the diameter is strictly 5.08 cm. It includes, but is not limited to, errors in manufacturing.
  • the impurity element is any one of Si, C, and Ge.
  • the molar ratio n Zn is 0.01. More than 0.5
  • n Zn 3 or more and 1 X 10 4 or less.
  • Still another embodiment of the Group III nitride single crystal growth method according to the present invention is grown by any one of Embodiments 1 to 4 with reference to FIG. 1, FIG. 5, and FIG. Al Ga N (0 ⁇ t ⁇ 1) raw material 7 is sublimated on Al Ga N single crystal 4 to obtain Al Ga N single crystal.
  • the Al Ga N single crystal 4 having good crystallinity is stably crystallized.
  • Al Ga N single crystal 4 and Al Ga N single crystal 5 contain
  • the type and concentration of impurity elements can be measured by SIMS (secondary ion mass spectrometry).
  • Al Ga N (0 ⁇ t ⁇ 1) raw material 7 is increased on Al Ga N single crystal 4.
  • the concentration of impurity element 3 is lower than that of Al Ga N single crystal 4, and A1 Ga N (
  • the process for growing the 0 ⁇ s ⁇ l) single crystal (5) is not particularly limited. Referring to FIGS. 5 and 6, Al Ga without any impurity element as a raw material is placed in the crucible 12. N raw material
  • an AlGaN single crystal can be further grown on AlGaN single crystal 4 grown on base substrate 9.
  • the AlGaN single crystal 4 is processed.
  • AlGaN single crystal 5 can be further grown on crystal 4 substrate.
  • Al Ga N single crystal grown on an Al Ga N single crystal has a chemical composition of Al G N
  • the chemical composition is close to the chemical composition of the 1 Ga N single crystal.
  • the chemical yarn between the Al Ga N raw material 7 and the Al Ga N single crystal 5 obtained therefrom is s t t 1-t 1
  • the chemical composition of the AlGaN raw material 7 for obtaining the N single crystal 5 is determined.
  • GaN raw material 2 GaN raw material 2
  • Si powder impurity element 3
  • the molar ratio n Si of Si atom (impurity element 3 atom) of the Si powder to the child is 0.05.
  • a mixed mixture was placed.
  • a SiC substrate having a diameter of 2 inches (5.08 cm) was disposed as an underlying substrate 9 on the top of the crucible 12.
  • oxygen in A1N powder and Si powder (raw material 1)
  • Molar content a is 0.1 mol%, and is also contained in A1N powder and Si powder (raw material 1)
  • Molar ratio of Si atom (impurity element 3 atom) in Si powder to oxygen atom n Zn is 20.
  • the WC material as the base substrate protective material 16 was adhered to the back surface of the SiC substrate (base substrate 9).
  • the temperature in 2 was raised. While the temperature inside the crucible 12 is rising, the temperature of the SiC substrate (underlying substrate 9) side of the crucible 12 is set higher than the temperature of the raw material 1 side, and the surface of the SiC substrate (underlying substrate 9) is etched by the temperature rising. While cleaning, impurities released from the SiC substrate (underlying substrate 9) and the inside of the crucible 12 during the temperature rise were removed through the vent 12e.
  • the temperature on the raw material 1 side of the crucible 12 is 2100 ° C
  • the temperature on the SiC substrate (underlying substrate 9) side is 20000 ° C
  • A1N and C are sublimated from the raw material 1
  • the crucible 12 A1N single crystal (AlGaN single crystal 4) by solidifying A1N again on the Si C substrate (base substrate 9) placed on top of
  • the amount of N gas introduced and the amount of N gas discharged were controlled so as to be about hPa to 1013 hPa.
  • A1N single crystal was obtained by cooling to 25 ° C.
  • the obtained A1N single crystal (AlGaN single crystal 4) has a diameter of 2 inches (5.08 cm) and a thickness of 4 m.
  • This A1N single crystal had good crystallinity with a small half-value width of 70 arcsec in the X-ray diffraction peak on the (0002) plane.
  • the dislocation density of this A1N single crystal was calculated by the EPD (Etch-Pit Density) method (a method of calculating the density of pits formed on the main surface by etching as the dislocation density). 10 5 cm 2 and low strength. The results are summarized in Table 1.
  • the single crystal (Al Ga N single crystal 4) has a non-uniform thickness of 2 inches (5.08 cm) in diameter.
  • the average thickness was 0.4 mm, and the crystal growth rate was 13 mZhr.
  • A1N single crystal grew on the SiC substrate (underlying substrate 9), and a portion was observed.
  • the A1 N single crystal had a bad crystallinity with a large half-value width of 500 arcsec at the X-ray diffraction peak on the (0002) plane.
  • polycrystals were mixed in some areas.
  • the dislocation density of this A1N single crystal was 1. OX 10 9 cm 2 . The results are summarized in Table 1.
  • A1N powder AlGaN raw material 2 and Si powder (impurity element 3) as raw material 1, A1N powder
  • the molar ratio of Si atom to Si powder n Zn was the same as in Example 1 except that 4) was used.
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al Ga N
  • A1N powder AlGaN raw material 2 and Si powder (impurity element 3) as raw material 1, A1N powder
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (AlGaN single crystal 4) was grown.
  • A1N powder AlGaN raw material 2 and Si powder (impurity element 3) as raw material 1, A1N powder
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al Ga N
  • A1N powder AlGaN raw material 2
  • (carbon) powder impurity element 3
  • the molar ratio of the C atom to the C powder n Zn was the same as in Example 1 except that 4) was used.
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al Ga N
  • A1N powder AlGaN raw material 2
  • C powder impurity element 3
  • the molar ratio of C atoms in the C powder n Zn was used in the same manner as in Example 1 except that 20) was used.
  • AlGaN single crystal 4 AlGaN single crystal 4 was grown. The resulting A1N single crystal (Al Ga N single crystal 4) was grown. The resulting A1N single crystal (Al Ga N single crystal 4) was grown. The resulting A1N single crystal (Al Ga N single crystal 4) was grown. The resulting A1N single crystal (Al Ga N single crystal 4) was grown. The resulting A1N single crystal (Al Ga N single crystal
  • A1N powder AlGaN raw material 2 and C powder (impurity element 3) as raw material 1 in A1N powder
  • the molar ratio of C atom of C powder to Al atom of n n is mixed so that Zn is 0.3
  • the oxygen mole content ⁇ of the raw material 1 is 0.1 mol% with respect to the oxygen atoms contained in the raw material 1.
  • a single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al Ga N single crystal
  • A1N powder AlGaN raw material 2
  • C powder impurity element 3
  • the oxygen mole content ⁇ of the raw material 1 is 0.1 mol% with respect to the oxygen atoms contained in the raw material 1.
  • a single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al Ga N single crystal
  • A1N powder AlGaN raw material 2 and Ge powder (impurity element 3) as raw material 1, A1N powder
  • Example 1 except that the molar ratio of Ge atoms in Ge powder to n / n is 20)
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al GaN single crystal 4) was grown.
  • the N single crystal 4) was large, uniform in thickness with a diameter of 2 inches (5.08 cm) and a thickness of 6 mm, and the crystal growth rate was 200 ⁇ mZhr.
  • the half width of the X-ray diffraction peak on the (0002) plane of this A1N single crystal was as small as 50 arcsec, and the crystallinity was good.
  • the dislocation density of this A1N single crystal was as low as 8. OX 10 4 cm 2 .
  • Table 2 The results are summarized in Table 2.
  • A1N powder AlGaN raw material 2 and Ca powder (impurity element 3) as raw material 1, A1N powder
  • A1N single crystal (AlGaN single crystal 4) was grown.
  • the obtained A1N single crystal (Al GaN single crystal 4) was grown.
  • the N single crystal 4) was large, uniform in thickness with a diameter of 2 inches (5.08 cm) x thickness of 3 mm, and the crystal growth rate was 100 ⁇ mZhr.
  • the half-width of the X-ray diffraction peak on the (0002) plane of this A1N single crystal was as small as 120 arcsec, and the crystallinity was good.
  • the dislocation density of this A1N single crystal was as low as 6. OX 10 5 cm 2 .
  • Table 2 The results are summarized in Table 2.
  • A1N powder AlGaN raw material 2 and Mg powder (impurity element 3) as raw material 1, A1N powder
  • the molar ratio of Mg atoms in Mg powder to n is the same as in Example 1 except that Zn is 20).
  • A1N single crystal AlGaN single crystal 4
  • Ga N single crystal 4 is 2 inches in diameter (5.08 cm) x 2 mm thick and is large and uniform in thickness.
  • the crystal growth rate was 67 mZhr.
  • the half-width of the X-ray diffraction peak on the (0002) plane of this A1N single crystal was as small as 150 arcsec, and the crystallinity was good. Also this A1N
  • the dislocation density of the single crystal was as low as 7. OX 10 5 cm 2 .
  • Table 2 The results are summarized in Table 2.
  • A1N powder AlGaN raw material 2
  • Si powder Si powder
  • Ca powder impurity element 3
  • n Zn of Si atom of Si powder and Ca atom of Ca powder to Al atom in A1N powder is 0.025 and 0.025, respectively.
  • Mole content ⁇ is 0.1 mol%, Si powder Si with respect to oxygen atoms contained in raw material 1
  • the molar ratio n / n of Ca atom in the atom and Ca powder is 10 and 10), respectively.
  • A1N single crystal AlGaN single crystal 4 was grown in the same manner as in Example 1. Obtained
  • A1N single crystal (AlGaN single crystal 4) is 2 inches in diameter (5.08 cm) x 4.5 mm thick.
  • the mold was uniform in thickness and the crystal growth rate was 150 mZhr.
  • the half width of the X-ray diffraction peak on the (0002) plane of this A1N single crystal was as small as 70 arcsec, and the crystallinity was good.
  • the dislocation density of this A1N single crystal was as low as 5. OX 10 5 cm 2 .
  • Table 2 The results are summarized in Table 2.
  • A1N powder AlGaN raw material 2
  • C powder As raw material 1, A1N powder (AlGaN raw material 2), C powder and Ca powder (impurity element 3)
  • n Zn of C atom of C powder and Ca atom of Ca powder to Al atom in A1N powder is 0.025 and 0.025, respectively.
  • the content of ⁇ is 0.1 mol%, C atoms in the C powder with respect to oxygen atoms contained in the raw material 1
  • Ca powder molar ratio ⁇ / ⁇ is 10 and 10), respectively.
  • Al Ga N single crystal (Al Ga N single crystal 4) is 2 inches in diameter (5.08 cm) x 6 mm thick and large and thick.
  • the thickness was uniform at 6 mm, and the crystal growth rate was 200 mZhr.
  • the half width of the X-ray diffraction peak on the (0002) plane of this A1N single crystal was as small as 45 arcsec, and the crystallinity was good.
  • the dislocation density of this A1N single crystal was as low as 8. OX 10 4 cm 2 .
  • Table 2 The results are summarized in Table 2.
  • Al Ga N powder Al Ga N raw material 2 and C powder as raw material 1 and Al raw material in A1N powder
  • Ga N single crystal 4 Ga N single crystal 4) was grown.
  • the chemical composition of the obtained single crystal is XPS (X-ray Photo l
  • the obtained Al Ga N single crystal 4 has a larger amount than the Al Ga N raw material 2.
  • Al Ga N single crystal (Al Ga N single crystal 4) has a diameter of 2 inches (5.08 cm).
  • X was 8mm in size and large in thickness, and the crystal growth rate was 266 mZhr.
  • the half width of the X-ray diffraction peak on the (0002) plane of this AlGaN single crystal is 50 arcsec.
  • the Al Ga N single crystal has a dislocation density of 1.0 X 1
  • an element specified arbitrarily from an AlGaN raw material and an IVb group element and a group force of an Ila group elemental force include at least one impurity element selected to increase the crystal growth rate.
  • An AlGaN single crystal having a low dislocation density and good crystallinity was obtained.
  • Molar ratio n of impurity element n Zn should be 0.01 or more and 0.5 or less, and Z or
  • Example 5 In the same manner as in Example 5, an A1N single crystal (A1 GaN single crystal 4) having a diameter of 2 inches (5.08 cm) and a thickness of 4.8 mm was grown.
  • This A1N single crystal (AlGaN single crystal 4) has a dislocation density as low as 9. OX 10 4 cm 2
  • the impurity concentration measured by SIMS is about 1 X 10 18 cm 3 in carbon atom concentration, oxygen The atomic concentration was less than l X 10 17 cm 3 .
  • the A1N powder (AlGaN raw material 7) is further added onto the A1N single crystal (AlGaN single crystal 4).
  • A1N single crystal (AlGaN single crystal 5) was grown by sublimation. Crystal growth line at this time
  • the condition is that the temperature of the AlGaN raw material 7 side of the crucible 12 is 2200 ° C, the AlGaN single crystal 4 side
  • the temperature was the same as that of Example 5 except that the temperature of the base substrate 9 side) was 2050 ° C.
  • the obtained A1N single crystal (AlGaN single crystal 5) is 2 inches in diameter (5.08 cm) x 1 mm in thickness.
  • This A1N single crystal (AlGaN single crystal 5) has a dislocation density of 2.0 X 1
  • the Al Ga N single crystal 4 grown by sublimating the raw material 1 containing at least one impurity element 3 selected from the group force consisting of the Vb group element and the Ila group element.
  • AlGaN single crystal 5 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本III族窒化物単結晶の成長方法は、昇華法によるAlxGa1-xN単結晶(4)の成長方法であって、坩堝(12)内に原料(1)を配置する工程と、原料(1)を昇華させて坩堝(12)内にAlxGa1-xN(0<x≦1)単結晶(4)を成長させる工程とを備え、原料(1)はAlyGa1-yN原料(2)と不純物元素(3)とを含み、不純物元素(3)はIVb族元素およびIIa族元素からなる群から選ばれる少なくとも1つである。かかる成長方法によれば、大型で転位密度が低く結晶性のよいIII族窒化物単結晶を安定して成長させることができる。

Description

明 細 書
III族窒化物単結晶の成長方法
技術分野
[0001] 本発明は、発光素子、電子素子、半導体センサなどの半導体デバイスの基板など に用いられる m族窒化物単結晶の成長方法に関する。さらに詳しくは、転位密度が 低く結晶性のよい m族窒化物単結晶の成長方法に関する。
背景技術
[0002] Al Ga Ν (0<χ≤1、以下同じ)単結晶などの III族窒化物結晶は、発光素子、電
1
子素子、半導体センサなどの半導体デバイスを形成するための材料として非常に有 用なものである。
[0003] 力かる III族窒化物単結晶を作製するための方法としては、気相法、中でも昇華法 力 X線回折ピークの半値幅が小さい結晶性のよい単結晶を得る観点から、提案さ れている(たとえば、米国特許第 5858086号明細書 (特許文献 1)、米国特許第 629 6956号明細書 (特許文献 2)および米国特許第 6001748号明細書 (特許文献 3)を 参照)。
[0004] しかし、昇華法で大型(たとえば、直径 2インチ (約 5. 08cm) X厚さ 2mm以上、以 下同じ)の III族窒化物単結晶を作製しょうとすると、下地基板に好適な高品質の結 晶が存在しないことなどから、結晶成長が不均一となり、転位密度の増大、結晶性の 低下、多結晶の発生などの問題があり、実用的な大きさで転位密度が低く結晶性の ょ ヽ Al Ga N単結晶を安定して成長させる方法が、未だ提案されて!、な!/ヽ。
1
特許文献 1:米国特許第 5858086号明細書
特許文献 2:米国特許第 6296956号明細書
特許文献 3:米国特許第 6001748号明細書
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、大型で転位密度が低く結晶性のよい III族窒化物単結晶を安定して成 長させる方法を提供することを目的とする。 課題を解決するための手段
[0006] 本発明は、坩堝内に原料を配置する工程と、原料を昇華させて坩堝内に Al Ga
X 1-x
Ν (0<χ≤1)単結晶を成長させる工程とを備え、原料は Al Ga N (0<y≤l)原料 y l-y
と不純物元素とを含み、不純物元素は IVb族元素および Ila族元素力 なる群力 選 ばれる少なくとも 1つである III族窒化物単結晶の成長方法である。
[0007] 本発明にかかる III族窒化物単結晶の成長方法において、坩堝内に、第 1の原料 室と、第 2の原料室と、結晶成長室とが設けられ、第 1の原料室と第 2の原料室との間 ならびに第 1および第 2の原料室の少なくとも 1つの原料室と結晶成長室との間に通 気口が設けられ、第 1の原料室に Al Ga N原料を配置し、第 2の原料室に不純物 y l-y
元素を配置することができる。
[0008] さらに、本発明に力かる ΙΠ族窒化物単結晶の成長方法において、原料は Al Ga y l-y
N原料と不純物元素とが混合されていてもよい。また、不純物元素を Si、 Cおよび Ge のいずれ力 1つとすることができる。また、原料中における Al Ga N原料中の Al原 y l-y
子のモル数 nに対する不純物元素の原子のモル数 nの比 n /nを 0· 01以上 0. 5
A E E A
以下とすることができる。また、原料中に含有される酸素原子のモル数 nに対する不
O
純物元素の原子のモル数 nの比 n Znを 2以上 1 X 104以下とすることができる。ま
E E O
た、坩堝を金属炭化物で形成することができる。また、坩堝内にさらに下地基板を配 置し、下地基板上に Al Ga N単結晶を成長させることができる。また、 Al Ga N単 x ι-χ χ 1-χ 結晶の直径を 2インチ径以上とすることができる。また、 Al Ga N単結晶上に、 Al G
X 1-x t a N (0<t≤l)原料を昇華させて、 Al Ga N単結晶に比べて不純物元素の含有
1-t X 1-x
濃度が低 、A1 Ga N (0< s≤l)単結晶を成長させる工程をさらに含むことができる s 1— s 発明の効果
[0009] 本発明によれば、大型で転位密度が低く結晶性のよい III族窒化物単結晶を安定 に成長させる方法を提供することができる。
図面の簡単な説明
[0010] [図 1]本発明にかかる ΠΙ族窒化物単結晶の成長方法の一実施形態を示す模式断面 図である。 [図 2]本発明にかかる m族窒化物単結晶の成長方法の他の実施形態の要部を示す 模式断面図である。
[図 3]本発明にかかる m族窒化物単結晶の成長方法のさらに他の実施形態の要部 を示す模式断面図である。
[図 4]本発明にかかる m族窒化物単結晶の成長方法のさらに他の実施形態の要部 を示す模式断面図である。
[図 5]本発明にかかる m族窒化物単結晶の成長方法のさらに他の実施形態の要部 を示す模式断面図である。
[図 6]本発明にかかる m族窒化物単結晶の成長方法のさらに他の実施形態の要部 を示す模式断面図である。
符号の説明
[0011] 1 原料、 2 Al Ga N原料、 3 不純物元素、 4 Al Ga N単結晶、 5 Al Ga N y 1 y x l-χ s i s 単結晶、 7 Al Ga N原料、 9 下地基板、 10 昇華炉、 11 反応容器、 11a Nガ
t 1-t 2 ス導入口、 l ib Nガス排出口、 12 坩堝、 12a, 12b, 12c, 12e 通気口、 12p
2
第 1の原料室、 12q 第 2の原料室、 12r 結晶成長室、 13 加熱体、 14 高周波カロ 熱コイル、 15 放射温度計、 16 下地基板保護材。
発明を実施するための最良の形態
[0012] (実施形態 1)
本発明にかかる III族窒化物単結晶の成長方法の一実施形態は、図 1を参照して、 坩堝 12内に原料 1を配置する工程と、原料 1を昇華させて坩堝 12内に Al Ga N (0 x 1-x
<χ≤1、以下同じ)単結晶 4を成長させる工程とを備え、原料 1は、 Al Ga N (0<y y l-y
≤1、以下同じ)原料 2と不純物元素 3とを含み、不純物元素 3は IVb族元素および II a族元素力 なる群力 選ばれる少なくとも 1つであることを特徴とする。
[0013] 昇華させる原料 1として、 Al Ga N単結晶 4を形成するための直接の原料である A
X 1-x
1 Ga N原料 2とともに、 IVb族元素および Ila族元素カゝらなる群カゝら選ばれる少なくと y l-y
も 1つの不純物元素 3を含むことにより、 Al Ga N単結晶 4の成長速度が高くなり、
X 1-x
大型で転位密度が低く結晶性がよい Al Ga N単結晶 4を安定して成長させることが
X 1-x
できる。力かる不純物元素 Eは、 A1と反応し Al E (g) (ここで、 pおよび qは正の数)とな り、 Al Ga N単結晶 4の成長の際に Alの輸送材として作用して、結晶成長速度を高
X 1-x
めるとともに転位密度を低減し結晶性を向上させるものと考えられる。
[0014] ここで、原料 1は、 Al Ga N原料 2と、 IVb族元素および Ila族元素からなる群から
y l-y
選ばれる少なくとも 1つの不純物元素 3とが含まれていれば足り、それらの含有形態 は問わない。したがって、図 1に示すように、 Al Ga N原料 2と不純物元素 3とがそ
y i-y
れぞれ纏まって坩堝 12内に配置されていてもよい。また、図 2に示すように、 Al Ga
y l-y
N原料 2と不純物元素 3とが混合されて坩堝 12内に配置されていてもよい。また、図 3 に示すように、坩堝 12中に通気口 12aを介して各室のガス交換が可能な第 1の原料 室 12pおよび第 2の原料室 12qを設け、第 1の原料室 12pに Al Ga N原料 2が、第
y l-y
2の原料室 12qに不純物元素 3が配置されて 、てもよ 、。
[0015] また、 Al Ga N原料 2および不純物元素 3の形態は、 Al Ga N原料 2および不純
y l-y y i-y 物元素 3の糸且成比が制御できる形態であれば特に制限はなぐ固形物であれば、塊 状であっても、粒状であっても、粉末状であってもよい。なお、坩堝 12ならびに後に 説明する原料室 12p, 12qおよび結晶成長室 12rが不純物元素 3で形成されている と、 Al Ga N単結晶の成長の際、不純物元素 3の濃度を制御できず、上記の不純
X 1-x
物元素による効果が得られにくい。また、 Al Ga N原料 2とそれから得られる Al Ga
y l-y χ i
N単結晶 4との化学組成は、 x=y= lの場合は同一である力 それ以外の場合で
は一般に Al Ga N原料 2の昇華条件および Al Ga N単結晶 4の成長条件などに
y l-y x 1-χ
よって異なる。 Al Ga N原料 2の昇華条件および Al Ga N単結晶 4の成長条件な
y l-y x 1-χ
どが決まると、所定の化学組成の Al Ga N単結晶 4を得るための Al Ga N原料 2
x l-χ y i-y
の化学組成が決まる。
[0016] ここで、本実施形態において用いられる昇華法とは、図 1を参照して、 Al Ga N原
y i-y 料 2を含む原料 1を昇華させた後、再度固化させて Al Ga N単結晶 4を得る方法を
X 1-x
いう。昇華法による結晶成長においては、たとえば、図 1に示すような高周波加熱方 式の縦型の昇華炉 10を用いる。この縦型の昇華炉 10における反応容器 11の中央 部には、通気口 12eを有する WC製の坩堝 12が設けられ、坩堝 12の周りに坩堝 12 の内部力 外部への通気を確保するように加熱体 13が設けられている。また、反応 容器 11の外側中央部には、加熱体 13を加熱するための高周波加熱コイル 14が設 けられている。さらに、反応容器 11の端部には、反応容器 11の坩堝 12の外部に N
2 ガスを流すための Nガス導入口 11aおよび Nガス排出口 11cと、坩堝 12の下面およ
2 2
び上面の温度を測定するための放射温度計 15が設けられている。
[0017] 図 1を参照して、上記縦型の昇華炉 10を用いて、以下のようにして本発明にかかる Al Ga N単結晶 4を作製することができる。坩堝 12の下部に Al Ga N原料 2およ ι 1 び不純物元素 3を含む原料 1を収納し、反応容器 11内に Nガスを流しながら、高周
2
波加熱コイル 14を用いて加熱体 13を加熱することにより坩堝 12内の温度を上昇さ せて、坩堝 12の原料 1側の温度を、それ以外の部分の温度よりも高く保持することに よって、原料 1から Al Ga Nおよび不純物元素を昇華させて、坩堝 12の上部で A1
1
Ga Nを再度固化させて Al Ga N単結晶 4を成長させる。
1— 1—
[0018] ここで、 Al Ga N単結晶 4の成長中は、坩堝 12の原料 1側の温度は 1600°C〜23
1
00°C程度とし、坩堝 12の上部 (Al Ga N単結晶 4を成長させる部分)の温度を原料
1
1側の温度より 10°C〜200°C程度低くすることにより、結晶性のよい Al Ga N単結
1
晶 4が得られる。また、結晶成長中も反応容器 11内の坩堝 12の外側に Nガスを、ガ
2
ス分圧が 101. 3hPa〜1013hPa程度になるように流し続けることにより、 Al Ga N
1 単結晶 4への不純物の混入を低減することができる。
[0019] なお、坩堝 12内部の昇温中は、坩堝 12の原料 1側の温度よりもそれ以外の部分の 温度を高くすることにより、坩堝 12内部の不純物を通気口 12eを通じて除去すること ができ、 Al Ga N単結晶 4への不純物の混入をより低減することができる。
1
[0020] 本実施形態において、不純物元素は、 IVb族元素および Ila族元素力 なる群から 選ばれる少なくとも 1つである。 IVb族元素および Ila族元素は、いずれも A1の輸送材 としての作用を有すると考えられ、 Al Ga N単結晶の成長速度を高め結晶性を向
1
上させる。ここで、 IVb族元素とは、元素の長周期表において IVb族に分類される元 素をいい、 C (炭素)、 Si (ケィ素)、 Ge (ゲルマニウム)などが該当する。また、 Ila族元 素とは、元素の長周期表において Ila族に分類される元素をいい、アルカリ土類金属 とも呼ばれ、 Mg (マグネシウム)、 Ca (カルシウム)などが該当する。上記の IVb族元 素および Ila族元素力も選ばれる複数の不純物元素を併用することもできる。しかし、 IVb族元素から複数の元素(たとえば Siおよび C)を選ぶと、選ばれた複数の元素(Si とじと)が反応して、安定な化合物(SiC)を形成するため、 A1の輸送材としての作用 効果が失われ、 Al Ga N単結晶の成長速度を高め結晶性を向上させるのに十分な
1
効果が得られなくなる場合があるので、好ましくな 、。
[0021] ここで、不純物元素は、 Si、 Cおよび Geのいずれ力 1つであることが好ましい。上記 の不純物元素において、 IVb族元素から任意に特定される 1つの元素、その中でも S i、 Cまたは Geは、 Al Ga N単結晶の成長速度を高め結晶性を向上させる観点から
1
、好ましい。
[0022] 本実施形態において、原料 1中における Al Ga N原料 2中の Al原子のモル数 n y 1-y A に対する不純物元素 3の原子のモル数 nの比 n Zn (以下、単にモル比 n /nとい
E E A E A
う)は、 0. 01以上 0. 5以下であることが好ましぐ 0. 05以上 0. 5以下であることがよ り好ましい。モル比 n Zn力 0. 01より小さいと Alの輸送材としての作用効果が小さ
E A
ぐ 0. 5より大きいと Al Ga N単結晶 4の成長が阻害される。
1
[0023] また、本実施形態にぉ 、て、原料 1中に含有される酸素原子のモル数 nに対する
O
不純物元素 3の原子のモル数 nの比 n Zn (以下、単にモル比 n /nという)は、 2
E E O E O
以上 I X 104以下であることが好ましい。モル比 n Zn力 2より小さいと不純物元素
E O
3の原子の相対的なモル数が小さく不純物元素 3による A1の輸送効果が得られに《 なるため、 1 X 104より大きいと不純物元素 3の原子の相対的なモル数が大きくなりす ぎるため、いずれの場合も Al Ga N単結晶 4の成長が阻害される。かかる観点から
1
、モル比 n /nは 3以上 1 X 104以下であることがより好ましぐ 10以上 1 X 104以下
E O
であることがさらに好ましい。ここで、原料 1中に含有される酸素原子のモル数は、所 定量の原料 1と過剰量の炭素を反応させて得られる一酸化炭素の生成量から算出さ れる。
[0024] また、原料 1中に含有される酸素原子は、本願が意図する不純物元素 3の上記作 用効果を低減するとともに、酸素原子自体が Al Ga N単結晶 4の成長を直接阻害
1
する場合がある。このため、原料 1中に含まれる Al Ga N原料 2のモル数 nと原料 1 y 1-y
中に含有される酸素原子のモル数 nを用いて、 a = 100 X n /nで定義される
O MO O
原料 1の酸素モル含有率 α は、 1モル%以下が好ましぐ 0. 1モル%以下がより好
Ο
ましい。 [0025] 本実施形態において、特に、 Al Ga N原料 2中の A1原子のモル数 nに対する不
y 1-y A
純物元素 3の原子のモル数 nが少ない(たとえば、モル比 n Znが 0. 01より小さい)
E E A
場合、 Al Ga N原料 2中に含有される酸素原子のモル数 nに対する不純物元素 3
y 1-y O
の原子のモル数 nが少ない場合 (たとえば、モル比 n Zn力 3より小さい)場合、い
E E O
ずれの場合も、安定な結晶成長を行なうことが困難となり、結晶成長速度が低下し、 結晶性が悪くなる。
[0026] ここで、不純物元素 3は、単体の他、各種ィ匕合物の形態で用いることができる。しか し、酸ィ匕物は、原料 1全体の酸素含有量を高め、また本願が意図する不純物元素 3 の上記作用効果が得られに《なるなど、結晶成長を阻害するため、好ましくない。
[0027] なお、本実施形態においては、 Al Ga N原料 2に不純物元素 3が添加された原料
y l-y
1を、 Al Ga N単結晶 4の成長前に、熱処理を行なうことができる。かかる結晶成長
1
前の原料 1の熱処理は、 IVb族元素力 任意に特定される 1つの元素および Ila族元 素からなる群力 選ばれる不純物元素 3以外の不純物元素を低減する観点ならびに 原料 1中における上記不純物元素 3の活性ィ匕および分散性の向上の観点から、好ま しい。力かる結晶成長前の原料 1の熱処理を行なう場合は、熱処理後結晶成長前の 原料 1中において、 Al Ga N原料 2中の Al原子のモル数 nに対する不純物元素 3
y 1-y A
の原子のモル数 nの比(すなわち、モル比 n Zn )、原料 1の酸素モル含有率 α
E E A O
および原料 1中に含有される酸素原子のモル数 nに対する不純物元素 3の原子の
O
モル数 nの比(すなわち、モル比 n Zn )が上記の範囲内となることが好ましい。
E E O
[0028] また、本実施形態において、坩堝 12は、特に制限はないが、 Al Ga N単結晶 4を
1
安定して成長させる観点から、 Al Ga N原料 2または不純物元素 3と反応を起こさ
y l-y
ず、また、不純物元素 3を結晶成長雰囲気中に放出することなく Al Ga N単結晶 4
1
の成長の際の劣化が少ない材料で形成されていることが好ましぐ特に金属炭化物 で形成されていることが好ましい。坩堝 12を形成する金属炭化物としては、 TiC、 Zr C、 NbC、 TaC、 MoC、 WCなどが好ましく挙げられる。特に、不純物元素 3が結晶 成長雰囲気中に放出されなど不純物元素 3が意図せずに成長中の結晶に供給され 得る場合には、結晶成長の際に雰囲気中の不純物元素 3の含有量が変動 (たとえば 、次第に過剰になる)して、結晶成長が阻害され得る。 [0029] (実施形態 2)
本発明にかかる ΠΙ族窒化物単結晶の成長方法の他の実施形態は、図 1および図 2 を参照して、坩堝 12内に原料 1を配置する工程と、原料 1を昇華させて坩堝 12内に Al Ga N単結晶 4を成長させる工程とを備え、原料 1は、 Al Ga N原料 2と、不純 ι i
物元素 3とを含み、不純物元素 3は、 IVb族元素および Ila族元素からなる群力 選ば れる少なくとも 1つである点では、実施形態 1と共通する。
[0030] しかし、本実施形態は、図 2を参照して、上記において、原料 1は、 Al Ga N原料
2と不純物元素 3とが混合されている状態で坩堝 12内に配置されている点で、 Al Ga
N原料 2と不純物元素 3とがおのおの纏まった状態で坩堝 12内に配置されている 実施形態 1と異なる。
[0031] 本実施形態においては、坩堝 12内に配置されている原料 1は、 Al Ga N原料 2と 不純物元素 3とが混合されているため、原料 1が昇華された際の坩堝 12内の Al Ga
N原料ガスと不純物元素ガスとの分布がより均一になりやすぐより安定に Al Ga N
ι 単結晶 4が成長する。
[0032] なお、本実施形態においても、実施形態 1と同様に、不純物元素は Si、 Cおよび Ge のいずれ力 1つであることが好ましぐモル比 n Znは 0. 01以上 0. 5以下であること
E A
が好ましぐモル比 n Znは 3以上 1 X 104以下であることが好ましぐ坩堝 12は金属
E O
炭化物で形成されて ヽることが好ま 、。
[0033] (実施形態 3)
本発明にかかる III族窒化物単結晶の成長方法のさらに他の実施形態は、図 1およ び図 3を参照して、坩堝 12内に原料 1を配置する工程と、原料 1を昇華させて坩堝 1 2内に Al Ga N単結晶 4を成長させる工程とを備え、原料 1は、 Al Ga N原料 2と、
1— l
不純物元素 3とを含み、不純物元素 3は、 IVb族元素および Ila族元素からなる群から 選ばれる少なくとも 1つである点では、実施形態 1と共通する。
[0034] しかし、本実施形態は、図 3を参照して、上記において、坩堝 12内に、第 1の原料 室 12pと、第 2の原料室 12qと、結晶成長室 12rとが設けられ、第 1の原料室 12pと第 2の原料室 12qとの間ならびに第 1および第 2の原料室 12p, 12qの少なくとも 1つの 原料室と結晶成長室 12rとの間に通気口 12a, 12b, 12cが設けられ、第 1の原料室 12pに Al Ga N原料 2が配置され、第 2の原料室 12qに不純物元素 3が配置されて l
いる点で、坩堝 12内に Al Ga N原料 2と不純物元素 3とがおのおの纏まった状態
l
で配置されている実施形態 1、ならびに、坩堝 12内に Al Ga N原料 2と不純物元素
l
3とが混合された状態で配置されている実施形態 2と異なる。
[0035] 本実施形態においては、通気口 12aを介して各室のガス交換が可能な第 1の原料 室 12pおよび第 2の原料室 12qに、それぞれ、 Al Ga N原料 2と不純物元素 3とが 配置されているため、 Al Ga N原料 2と不純物元素 3とが直接接触することなぐ原
l
料 1が昇華された坩堝 12内において Al Ga N原料ガスと不純物元素ガスとの分布
l
をより均一にすることができ、より安定した Al Ga N単結晶 4の成長が可能となる。
1
[0036] ここで、図 3には、第 1の原料室 12pと第 2の原料室 12qとの間、第 1の原料室 12pと 結晶成長室 12rとの間、および第 2の原料室 12qと結晶成長室 12rとの間に、それぞ れ通気口 12a, 12b, 12cが設けられている例が示されている力 本実施形態は、通 気口 12bおよび 12cについては、少なくとも 1つの通気口が設けられていればよい。
[0037] なお、本実施形態においても、実施形態 1および 2と同様に、不純物元素は Si、 C および Geのいずれ力 1つであることが好ましぐモル比 n Znは 0. 01以上 0. 5以下
E A
であることが好ましぐモル比 n Znは 2以上 1 X 104以下であることが好ましぐ坩堝
E O
12は金属炭化物で形成されて 、ることが好まし 、。
[0038] (実施形態 4)
本発明にかかる III族窒化物単結晶の成長方法のさらに他の実施形態は、図 1およ び図 4を参照して、坩堝 12内に原料 1を配置する工程と、料 1を昇華させて坩堝 12 内に Al Ga N単結晶 4を成長させる工程とを備え、原料 1は、 Al Ga N原料 2と、
ι l
不純物元素 3とを含み、不純物元素 3は、 IVb族元素および Ila族元素からなる群から 選ばれる少なくとも 1つである点では、実施形態 1と共通する。
[0039] しかし、本実施形態は、図 4を参照して、上記において、坩堝 12内にさらに下地基 板 9を配置し、下地基板 9上に Al Ga N単結晶 4を成長させる点で、坩堝 12内に下
1
地基板を配置せず、坩堝 12内の原料 1側と反対側に Al Ga N単結晶 4を成長させ
1
る実施形態 1〜3と異なる。なお、図 4においては、原料 1は、 Al Ga N原料 2と不純
l
物元素 3とが混合されている状態で坩堝 12内に配置されている (実施形態と 2と同様 の原料 1の配置)が、原料 1の配置に関しては、実施形態 1および 3の形態も可能で ある。
[0040] 本実施形態においては、下地基板 9上に Al Ga N単結晶 4を成長させるため、よ
1
り安定した Al Ga N単結晶 4の成長が可能となる。ここで、下地基板 9は、 Al Ga
1 1
Ν単結晶 4を成長させることができるものであれば特に制限はなぐ Al Ga N単結晶
1 と化学組成が同じ同種基板であっても、化学組成が異なる異種基板であってもよい。 結晶性をよくする観点から、同種基板または Al Ga N単結晶との格子定数の差が
1
小さい異種基板が好ましい。また、大型の Al Ga N単結晶を得る観点から、口径の
1
大きい大型の基板であることが好ましい。かかる観点から、下地基板として、 SiC基板 、 Al O基板、 GaN基板などが好ましく用いられる。
2 3
[0041] 本実施形態において、 2インチ径以上の直径の下地基板を用いることにより、 2イン チ径以上の直径を有する大型の Al Ga N単結晶を成長させることができる。なお、
1
一般に、結晶、基板などのウェハの製造においては、 1インチ径、 2インチ径、 4イン チ径などの所定のサイズの直径のウェハが製造される。すなわち、単位換算では、 1 インチは 2. 54cmであるが、ここでいう 2インチ径とは、基板、結晶などのウェハの直 径を示すサイズの 1種であり、直径は厳密に 5. 08cmに限定されず、製造の際の誤 差が含まれる。
[0042] なお、本実施形態においても、実施形態 1〜3と同様に、不純物元素は Si、 Cおよ び Geのいずれ力 1つであることが好ましぐモル比 n Znは 0. 01以上 0. 5以下であ
E A
ることが好ましぐモル比 n Znは 3以上 1 X 104以下であることが好ましぐ坩堝 12は
E O
金属炭化物で形成されて 、ることが好ま 、。
[0043] (実施形態 5)
本発明にかかる III族窒化物単結晶の成長方法のさらに他の実施形態は、図 1およ び図 5および図 6を参照して、実施形態 1〜4のいずれかの成長方法により成長させ た Al Ga N単結晶 4上に、 Al Ga N (0<t≤ 1)原料 7を昇華させて、 Al Ga N単
1 t 1-t 1 結晶 4に比べて不純物元素 3の含有濃度が低 ヽ Al Ga N (0< s≤ 1)単結晶(5)を 成長させる工程をさらに含む。
[0044] 本実施形態においては、結晶性のよい Al Ga N単結晶 4上に安定して結晶性の
1 よがよく不純物元素 3の含有濃度が低い汎用性の高い Al Ga N単結晶 5を成長さ
χ2 1-χ2
せることができる。ここで、 Al Ga N単結晶 4および Al Ga N単結晶 5に含有される
1— 1—
不純物元素の種類および濃度は、 SIMS (2次イオン質量分析法)などによって測定 できる。
[0045] 本実施形態において、 Al Ga N単結晶 4上に、 Al Ga N (0<t≤ 1)原料 7を昇
1 t 1-t
華させて、 Al Ga N単結晶 4に比べて不純物元素 3の含有濃度が低 、A1 Ga N (
l 1
0< s≤l)単結晶(5)を成長させる工程には、特に制限はなぐ図 5および図 6を参照 して、坩堝 12中に、原料として上記の不純物元素を配置することなく Al Ga N原料
t 1-t
7を配置して行なうことができる。ここで、図 5を参照して、下地基板 9上に成長させた Al Ga N単結晶 4上に Al Ga N単結晶をさらに成長させることができる。また、図 6 ι l
を参照して、成長させた Al Ga N単結晶 4を基板に加工した後、この Al Ga N単
1— 1 結晶 4の基板上に Al Ga N単結晶 5をさらに成長させることができる。
1—
[0046] また、 Al Ga N単結晶上に成長させる Al Ga N単結晶は、その化学組成が Al G
l 1
a N単結晶と同じ (s = x)であっても異なって(s≠x)いてもよい。ただし、結晶性の
1
高 ヽ Al Ga N単結晶を成長させる観点からは、 Al Ga N単結晶の化学組成は、 A
1 1
1 Ga N単結晶の化学組成に近いことが好ましぐ同じであることがより好ましい。な
1
お、 Al Ga N原料 7とそれから得られる Al Ga N単結晶 5との化学糸且成は、 s t t 1-t 1
1の場合は同一である力 それ以外の場合では一般に Al Ga N原料 7の昇華条件
t 1-t
および Al Ga N単結晶 5の成長条件などによって異なる。 Al Ga N原料 7の昇華
1 t 1-t
条件および Al Ga N単結晶 5の成長条件などが決まると、所定の化学組成の Al Ga
i
N単結晶 5得るための Al Ga N原料 7の化学組成が決まる。
1 t 1-t
実施例
[0047] (実施例 1)
図 1および図 4を参照して、 WC製の坩堝 12の下部に、原料 1として A1N粉末 (A1
y
Ga N原料 2)と Si粉末(不純物元素 3)とを A1N粉末 (Al Ga N原料 2)中の A1原
1-y y 1 y
子に対する Si粉末の Si原子(不純物元素 3の原子)のモル比 n Znが 0. 05となるよ
E A
うに混合したものを配置した。また、坩堝 12の上部に下地基板 9として直径 2インチ( 5. 08cm)の SiC基板を配置した。ここで、 A1N粉末および Si粉末 (原料 1)中の酸素 モル含有率 a は 0. 1モル%、また、 A1N粉末および Si粉末 (原料 1)に含有される
O
酸素原子に対する Si粉末の Si原子(不純物元素 3の原子)のモル比 n Znは 20で
E O
あった。なお、 SiC基板 (下地基板 9)の裏面には、下地基板保護材 16である WC材 を密着させた。
[0048] 次に、反応容器 11内に Nガスを流しながら、高周波加熱コイル 14を用いて坩堝 1
2
2内の温度を上昇させた。坩堝 12内の昇温中は、坩堝 12の SiC基板 (下地基板 9) 側の温度を原料 1側の温度よりも高くして、昇温中に SiC基板 (下地基板 9)の表面を エッチングにより清浄するとともに、昇温中に SiC基板 (下地基板 9)および坩堝 12内 部から放出された不純物を、通気口 12eを通じて除去した。
[0049] 次に、坩堝 12の原料 1側の温度を 2100°C、 SiC基板(下地基板 9)側の温度を 20 00°Cにして、原料 1から A1Nおよび Cを昇華させて、坩堝 12の上部に配置された Si C基板(下地基板 9)上で、 A1Nを再度固化させて A1N単結晶 (Al Ga N単結晶 4)
1
を成長させた。 A1N単結晶 (Al Ga N単結晶 4)成長中も、反応容器 11内の坩堝 1
1
2の外側に Nガスを流し続け、反応容器 11内の坩堝 12の外側のガス分圧が 101. 3
2
hPa〜1013hPa程度になるように、 Nガス導入量と Nガス排出量とを制御した。上
2 2
記の結晶成長条件で 30時間 A1N結晶 (Al Ga N単結晶 4)を成長させた後、室温(
1
25°C)まで冷却して、 A1N単結晶を得た。
[0050] 得られた A1N単結晶(Al Ga N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 4m
1
mと大型で厚さが均一であり、結晶成長速度は 133 mZhrであった。この A1N単 結晶の(0002)面における X線回折ピークの半値幅は 70arcsecと小さぐ結晶性が 良好であった。また、この A1N単結晶の転位密度は、 EPD (Etch-Pit Density)法(ェ ツチングにより主面に形成されたピットの密度を転位密度として算出する方法をいう) により算出したところ、 5. O X 105cm 2と低力つた。結果を表 1にまとめた。
[0051] (比較例 1)
原料 1を不純物元素 3を含まな 、A1N粉末 (Al Ga N原料 2)のみとした以外は、
l
実施例 1と同様にして A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N
1
単結晶(Al Ga N単結晶 4)は、直径が 2インチ(5. 08cm)であった力 厚さが不均
1
一であり、平均厚さは 0. 4mmであり、結晶成長速度は 13 mZhrであった。なお、 SiC基板(下地基板 9)上に A1N単結晶が成長して 、な 、部分が認められた。この A1 N単結晶の(0002)面における X線回折ピークの半値幅は 500arcsecと大きぐ結晶 性が悪力つた。また、一部の領域には多結晶が混在していた。また、この A1N単結晶 の転位密度は、 1. O X 109cm 2と高力つた。結果を表 1にまとめた。
[0052] (実施例 2)
原料 1として A1N粉末 (Al Ga N原料 2)と Si粉末 (不純物元素 3)とを、 A1N粉末
y i-y
中の Al原子に対する Si粉末の Si原子のモル比 n /nが 0. 01となるように混合した
E A
もの(原料 1の酸素モル含有率 oc は 0. 1モル%、原料 1に含有される酸素原子に
O
対する Si粉末の Si原子のモル比 n Znは 4)を用いた以外は、実施例 1と同様にし
E O
て A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N
1 1 単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 3mmと大型で厚さが均一であり、結晶 成長速度は 100 μ mZhrであった。この A1N単結晶の(0002)面における X線回折 ピークの半値幅は 120arcsecと小さぐ結晶性が良好であった。また、この A1N単結 晶の転位密度は 6. O X 105cm 2と低力つた。結果を表 1にまとめた。
[0053] (実施例 3)
原料 1として A1N粉末 (Al Ga N原料 2)と Si粉末 (不純物元素 3)とを、 A1N粉末
y i-y
中の Al原子に対する Si粉末の Si原子のモル比 n /nが 0. 3となるように混合したも
E A
の(原料 1の酸素モル含有率 a は 0. 1モル%、原料 1に含有される酸素原子に対
O
する Si粉末の Si原子のモル比 n Znは 60)を用いた以外は、実施例 1と同様にして
E O
A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N単
1— 1 結晶 4)は、直径 2インチ(5. 08cm) X厚さ 4. 5mmと大型で厚さが均一であり、結晶 成長速度は 150 μ mZhrであった。この A1N単結晶の(0002)面における X線回折 ピークの半値幅は: L00arcsecと小さぐ結晶性が良好であった。また、この A1N単結 晶の転位密度は 7. O X 105cm 2と低力つた。結果を表 1にまとめた。
[0054] (実施例 4)
原料 1として A1N粉末 (Al Ga N原料 2)と Si粉末 (不純物元素 3)とを、 A1N粉末
y i-y
中の Al原子に対する Si粉末の Si原子のモル比 n /nが 0. 5となるように混合したも
E A
の(原料 1の酸素モル含有率 は 0. 1モル%、原料 1に含有される酸素原子に対 する Si粉末の Si原子のモル比 n /nは 200)を用いた以外は、実施例 1と同様にし
E O
て A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N
1 1 単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 5mmと大型で厚さが均一であり、結晶 成長速度は 166 μ mZhrであった。この A1N単結晶の(0002)面における X線回折 ピークの半値幅は 120arcsecと小さぐ結晶性が良好であった。また、この A1N単結 晶の転位密度は 8. O X 105cm 2と低力つた。結果を表 1にまとめた。
[0055] (実施例 5)
原料 1として A1N粉末 (Al Ga N原料 2)とじ (炭素)粉末 (不純物元素 3)とを、 A1N
y i-y
粉末中の Al原子に対する C粉末の C原子のモル比 n Znが 0. 01となるように混合
E A
したもの (原料 1の酸素モル含有率 a は 0. 1モル%、原料 1に含有される酸素原子
O
に対する C粉末の C原子のモル比 n Znは 4)を用いた以外は、実施例 1と同様にし
E O
て A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N
1 1 単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 4. 8mmと大型で厚さが均一であり、結 晶成長速度は 150 μ mZhrであった。この A1N単結晶の(0002)面における X線回 折ピークの半値幅は 45arcsecと小さぐ結晶性が良好であった。また、この A1N単結 晶の転位密度は 9. O X 104cm 2と低力つた。結果を表 1にまとめた。
[0056] (実施例 6)
原料 1として A1N粉末 (Al Ga N原料 2)と C粉末 (不純物元素 3)とを、 A1N粉末中
y i-y
の Al原子に対する C粉末の C原子のモル比 n /nが 0. 05となるように混合したもの
E A
(原料 1の酸素モル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対す
Ο
る C粉末の C原子のモル比 n Znは 20)を用いた以外は、実施例 1と同様にして A1
E O
N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N単結
1— 1— 晶 4)は、直径 2インチ(5. 08cm) X厚さ 9mmと大型で厚さが均一であり、結晶成長 速度は 300 μ mZhrであった。この A1N単結晶の(0002)面における X線回折ピー クの半値幅は 30arcsecと小さぐ結晶性が良好であった。また、この A1N単結晶の転 位密度は 5. O X 104cm 2と低かった。結果を表 1にまとめた。
[0057] (実施例 7)
原料 1として A1N粉末 (Al Ga N原料 2)と C粉末 (不純物元素 3)とを、 A1N粉末中 の Al原子に対する C粉末の C原子のモル比 n Znが 0. 3となるように混合したもの(
E A
原料 1の酸素モル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対する
Ο
C粉末の C原子のモル比 n Znは 60)を用いた以外は、実施例 1と同様にして A1N
E O
単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N単結晶
1 1
4)は、直径 2インチ(5. 08cm) X厚さ 10. 5mmと大型で厚さが均一であり、結晶成 長速度は 350 μ mZhrであった。この A1N単結晶の(0002)面における X線回折ピ ークの半値幅は 30arcsecと小さぐ結晶性が良好であった。また、この A1N単結晶の 転位密度は 6. O X 104cm 2と低かった。結果を表 1にまとめた。
[0058] (実施例 8)
原料 1として A1N粉末 (Al Ga N原料 2)と C粉末 (不純物元素 3)とを、 A1N粉末中
y i-y
の Al原子に対する C粉末の C原子のモル比 n Znが 0. 5となるように混合したもの(
E A
原料 1の酸素モル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対する
Ο
C粉末の C原子のモル比 n Znは 200)を用いた以外は、実施例 1と同様にして A1N
E O
単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga N単結晶
1 1
4)は、直径 2インチ(5. 08cm) X厚さ 12mmと大型で厚さが均一であり、結晶成長 速度は 400 μ mZhrであった。この A1N単結晶の(0002)面における X線回折ピー クの半値幅は 45arcsecと小さぐ結晶性が良好であった。また、この A1N単結晶の転 位密度は 1. O X 105cm 2と低かった。
結果を表 1にまとめた。
[0059] [表 1]
Figure imgf000018_0001
Figure imgf000018_0002
原料 1として A1N粉末 (Al Ga N原料 2)と Ge粉末 (不純物元素 3)とを、 A1N粉末
i
中の Al原子に対する Ge粉末の Ge原子のモル比 n /nが 0· 05となるように混合し
E A
たもの (原料 1の酸素モル含有率 a は 0. 1モル%、原料 1に含有される酸素原子
O
に対する Ge粉末の Ge原子のモル比 n /nは 20)を用いた以外は、実施例 1と同様
E O
にして A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga
1 1
N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 6mmと大型で厚さが均一であり、結 晶成長速度は 200 μ mZhrであった。この A1N単結晶の(0002)面における X線回 折ピークの半値幅は 50arcsecと小さぐ結晶性が良好であった。また、この A1N単結 晶の転位密度は 8. O X 104cm 2と低力つた。結果を表 2にまとめた。
[0061] (実施例 10)
原料 1として A1N粉末 (Al Ga N原料 2)と Ca粉末 (不純物元素 3)とを、 A1N粉末
i
中の Al原子に対する Ca粉末の Ca原子のモル比 n /nが 0· 05となるように混合し
E A
たもの (原料 1の酸素モル含有率 a は 0. 1モル%、
O 原料 1に含有される酸素原子 に対する Ca粉末の Ca原子のモル比 n /nは 20)を用いた以外は、実施例 1と同様
E O
にして A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(Al Ga
1 1
N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 3mmと大型で厚さが均一であり、結 晶成長速度は 100 μ mZhrであった。この A1N単結晶の(0002)面における X線回 折ピークの半値幅は 120arcsecと小さぐ結晶性が良好であった。また、この A1N単 結晶の転位密度は 6. O X 105cm 2と低カゝつた。結果を表 2にまとめた。
[0062] (実施例 11)
原料 1として A1N粉末 (Al Ga N原料 2)と Mg粉末 (不純物元素 3)とを、 A1N粉末
i
中の Al原子に対する Mg粉末の Mg原子のモル比 n Znが 0· 05となるように混合し
E A
たもの (原料 1の酸素モル含有率 a は 0. 1モル%、原料 1に含有される酸素原子
O
に対する Mg粉末の Mg原子のモル比 n Znは 20)を用いた以外は、実施例 1と同
E O
様にして A1N単結晶(Al Ga N単結晶 4)を成長させた。得られた A1N単結晶(A1
1
Ga N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 2mmと大型で厚さが均一であり
1
、結晶成長速度は 67 mZhrであった。この A1N単結晶の(0002)面における X線 回折ピークの半値幅は 150arcsecと小さぐ結晶性が良好であった。また、この A1N 単結晶の転位密度は 7. O X 105cm 2と低カゝつた。結果を表 2にまとめた。
[0063] (実施例 12)
原料 1として A1N粉末 (Al Ga N原料 2)と Si粉末および Ca粉末 (不純物元素 3)と
y i-y
を、 A1N粉末中の Al原子に対する Si粉末の Si原子および Ca粉末の Ca原子のモル 比 n Znがそれぞれ 0. 025および 0. 025となるように混合したもの(原料 1の酸素
E A
モル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対する Si粉末の Si
MO
原子および Ca粉末の Ca原子のモル比 n /nはそれぞれ 10および 10)を用いた以
E O
外は、実施例 1と同様にして A1N単結晶 (Al Ga N単結晶 4)を成長させた。得られ
1
た A1N単結晶(Al Ga N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 4. 5mmと大
1
型で厚さが均一であり、結晶成長速度は 150 mZhrであった。この A1N単結晶の( 0002)面における X線回折ピークの半値幅は 70arcsecと小さぐ結晶性が良好であ つた。また、この A1N単結晶の転位密度は 5. O X 105cm 2と低かった。結果を表 2に まとめた。
[0064] (実施例 13)
原料 1として A1N粉末 (Al Ga N原料 2)と C粉末および Ca粉末 (不純物元素 3)と
y i-y
を、 A1N粉末中の Al原子に対する C粉末の C原子および Ca粉末の Ca原子のモル比 n Znがそれぞれ 0. 025および 0. 025となるように混合したもの(原料 1の酸素モ
E A
ル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対する C粉末の C原子
Ο
および Ca粉末の Ca原子のモル比 η /ηはそれぞれ 10および 10)を用いた以外は
Ε Ο
、実施例 1と同様にして A1N単結晶 (Al Ga N単結晶 4)を成長させた。得られた A1
1
N単結晶(Al Ga N単結晶 4)は、直径 2インチ(5. 08cm) X厚さ 6mmと大型で厚
1
さが均一であり、厚さが 6mmで均一であり、結晶成長速度は 200 mZhrであった。 この A1N単結晶の(0002)面における X線回折ピークの半値幅は 45arcsecと小さく 、結晶性が良好であった。また、この A1N単結晶の転位密度は 8. O X 104cm 2と低か つた。結果を表 2にまとめた。
[0065] (実施例 14)
原料 1として Al Ga N粉末 (Al Ga N原料 2)と C粉末とを、 A1N粉末中の Al原
0.65 0.35 y 1-y
子に対する C粉末の C原子のモル比 n Znが 0. 05となるように混合したもの (原料 1 の酸素モル含有率 α は 0. 1モル%、原料 1に含有される酸素原子に対する C粉末 Ο
の C原子のモル比 η Ζηは 20)を用いた以外は、実施例 1と同様にして単結晶 (A1
Ε Ο
Ga N単結晶 4)を成長させた。得られた単結晶の化学組成は、 XPS (X-ray Photo l
electron Spectroscopy ;X線光電子分光)法により測定したところ、 Al Ga Nであつ
0.8 0.2 た。すなわち、得られた Al Ga N単結晶 4は、 Al Ga N原料 2に比べてより多くの
l 1
割合で Al原子を含んでいた。これは、 C原子により A1の輸送が促進されたためと考え られる。得られた Al Ga N単結晶(Al Ga N単結晶 4)は、直径 2インチ(5. 08cm
0.8 0.2 l
) X厚さ 8mmと大型で厚さが均一であり、結晶成長速度は 266 mZhrであった。こ の Al Ga N単結晶の(0002)面における X線回折ピークの半値幅は 50arcsecと
0.8 0.2
小さぐ結晶性が良好であった。また、この Al Ga N単結晶の転位密度は 1. 0 X 1
0.8 0.2
05cm 2と低カゝつた。結果を表 2にまとめた。
[表 2]
Figure imgf000022_0001
表 1および表 2から明らかなように、昇華法による Al Ga N単結晶の成長において
、昇華させる原料として Al Ga N原料と IVb族元素から任意に特定される元素およ び Ila族元素力 なる群力 選ばれる少なくとも 1つの不純物元素とを含めることにより 、結晶成長速度が高くなるとともに、転位密度が低く結晶性のよい Al Ga N単結晶 が得られた。また、昇華させる原料中における Al Ga N原料中の Al原子に対する 不純物元素の原子のモル比 n Znを 0. 01以上 0. 5以下とすること、および Zまた
E A
は、昇華させる原料中に含有される酸素原子対する不純物元素の原子のモル比 n
E
Znを 3以上 I X 104以下とすることにより、結晶成長速度が高く維持されるとともに、
O
さらに転位密度が低く結晶性のよい Al Ga N単結晶が得られた。
1
[0068] (実施例 15)
実施例 5と同様にして、直径 2インチ(5. 08cm) X厚さ 4. 8mmの A1N単結晶(A1 Ga N単結晶 4)を成長させた。この A1N単結晶(Al Ga N単結晶 4)は、転位密度 が 9. O X 104cm 2と低ぐ SIMSで測定された不純物濃度は、炭素原子濃度が 1 X 1 018cm 3程度、酸素原子濃度が l X 1017cm 3以下であった。図 5を参照して、引き続き 、この A1N単結晶(Al Ga N単結晶 4)上に、さらに A1N粉末 (Al Ga N原料 7)を
1 t 1-t
昇華させて、 A1N単結晶(Al Ga N単結晶 5)を成長させた。このときの結晶成長条
1—
件は、坩堝 12の Al Ga N原料 7側の温度を 2200°C、 Al Ga N単結晶 4側(すな
t 1-t 1
わち下地基板 9側)の温度を 2050°Cとした以外は、実施例 5と同様とした。得られた A1N単結晶(Al Ga N単結晶 5)は、直径 2インチ(5. 08cm) X厚さ lmmと大型で
1—
厚さが均一であった。この A1N単結晶(Al Ga N単結晶 5)は、転位密度が 2. 0 X 1
1—
05cm 2と低ぐ SIMSで測定された不純物濃度は、炭素原子濃度および酸素原子濃 度のいずれもが 1 X 1017cm— 3以下と極めて低かった。このように、 Al Ga N原料 2と I
Vb族元素および Ila族元素からなる群力 選ばれる少なくとも 1つの不純物元素 3と を含む原料 1を昇華させて成長させた Al Ga N単結晶 4上に、さらに Al Ga N原
1 t 1-t 料 7を昇華させて、 Al Ga N単結晶 4に比べて不純物元素 3の含有濃度が低 、A1
l
Ga N単結晶 5を成長させることにより、転位密度および不純物濃度がいずれも低い
1
Al Ga N単結晶 5が得られた。
1—
[0069] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が 含まれることが意図される。

Claims

請求の範囲
[1] 坩堝( 12)内に原料( 1 )を配置する工程と、前記原料( 1 )を昇華させて前記坩堝 ( 1 2)内で Al Ga N (0<x≤ 1)単結晶(4)を成長させる工程とを備え、
1
前記原料(1)は、 Al Ga N (0<y≤l)原料(2)と、不純物元素(3)とを含み、
y l-y
前記不純物元素(3)は、 IVb族元素および Ila族元素からなる群力 選ばれる少な くとも 1つである ΠΙ族窒化物単結晶の成長方法。
[2] 前記坩堝(12)内に、第 1の原料室(12p)と、第 2の原料室(12q)と、結晶成長室( 12)とが設けられ、
前記第 1の原料室(12p)と前記第 2の原料室(12q)との間、ならびに前記第 1およ び前記第 2の原料室( 12p, 12q)の少なくとも 1つの原料室と前記結晶成長室( 12r) との間に、通気口(12a, 12b, 12c)が設けられ、
前記第 1の原料室(12p)に前記 Al Ga N原料(2)を配置し、前記第 2の原料室(
y l-y
12q)に前記不純物元素(3)を配置する請求の範囲第 1項に記載の III族窒化物単 結晶の成長方法。
[3] 前記原料(1)は、前記 Al Ga N原料(2)と前記不純物元素(3)とが混合されて 、
y l-y
る請求の範囲第 1項に記載の in族窒化物単結晶の成長方法。
[4] 前記不純物元素(3) 1S Si、 Cおよび Geのいずれか 1つであることを特徴とする請 求の範囲第 1項に記載の ΠΙ族窒化物単結晶の成長方法。
[5] 前記原料(1)中における前記 Al Ga N原料(2)中の A1原子のモル数 nに対する
y l-y A
前記不純物元素(3)の原子のモル数 nの比 η Ζη ί 0. 01以上 0. 5以下である
E E A
請求の範囲第 1項に記載の ΠΙ族窒化物単結晶の成長方法。
[6] 前記原料(1)中に含有される酸素原子のモル数 nに対する前記不純物元素(3)
O
の原子のモル数 nの比 n Zn力 2以上 1 X 104以下である請求の範囲第 1項に記
E E O
載の ΠΙ族窒化物単結晶の成長方法。
[7] 前記坩堝(12)が金属炭化物で形成されている請求の範囲第 1項に記載の III族窒 化物単結晶の成長方法。
[8] 前記坩堝(12)内にさらに下地基板 (9)を配置し、前記下地基板 (9)上に Al Ga
1
N単結晶(4)を成長させる請求の範囲第 1項に記載の ΠΙ族窒化物単結晶の成長方 法。
[9] 前記 Al Ga N単結晶(4)が 2インチ径以上の直径を有する請求の範囲第 1項に
1
記載の ΠΙ族窒化物単結晶の成長方法。
[10] 請求の範囲第 1項の成長方法により成長させた前記 Al Ga N単結晶(4)上に、 A1
1
Ga N (0<t≤l)原料(7)を昇華させて、前記 Al Ga N単結晶(4)に比べて前記 t 1-t 1
不純物元素(3)の含有濃度が低!、A1 Ga N (0< s≤l)単結晶(5)を成長させるェ
1—
程をさらに含む III族窒化物単結晶の成長方法。
PCT/JP2007/055868 2006-03-29 2007-03-22 Iii族窒化物単結晶の成長方法 WO2007111219A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087006047A KR101346501B1 (ko) 2006-03-29 2007-03-22 Ⅲ족 질화물 단결정의 성장 방법
US12/067,936 US8361226B2 (en) 2006-03-29 2007-03-22 III-nitride single-crystal growth method
JP2007531498A JP5374872B2 (ja) 2006-03-29 2007-03-22 Iii族窒化物単結晶の成長方法
CN2007800010637A CN101351579B (zh) 2006-03-29 2007-03-22 Ⅲ族氮化物单晶生长方法
EP07739311.4A EP2000567B1 (en) 2006-03-29 2007-03-22 Method for growing iii nitride single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006091389 2006-03-29
JP2006-091389 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007111219A1 true WO2007111219A1 (ja) 2007-10-04

Family

ID=38541139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055868 WO2007111219A1 (ja) 2006-03-29 2007-03-22 Iii族窒化物単結晶の成長方法

Country Status (6)

Country Link
US (1) US8361226B2 (ja)
EP (1) EP2000567B1 (ja)
JP (1) JP5374872B2 (ja)
KR (1) KR101346501B1 (ja)
CN (1) CN101351579B (ja)
WO (1) WO2007111219A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132569A (ja) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd 窒化アルミニウム結晶の成長方法、窒化アルミニウム結晶の製造方法および窒化アルミニウム結晶
EP2075356A1 (en) * 2007-12-25 2009-07-01 Sumitomo Electric Industries, Ltd. Method for growing group III nitride semiconductor crystal and growing device for group III nitride semiconductor crystal
WO2009128434A1 (ja) * 2008-04-17 2009-10-22 住友電気工業株式会社 AlN結晶の成長方法およびAlN積層体
JP2010001209A (ja) * 2008-05-22 2010-01-07 Toyoda Gosei Co Ltd n型III族窒化物系化合物半導体及びその製造方法
JP2010006685A (ja) * 2008-05-28 2010-01-14 Sumitomo Electric Ind Ltd AlxGa1−xN単結晶および電磁波透過体
WO2010122801A1 (ja) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 窒化アルミニウム単結晶の製造装置、窒化アルミニウム単結晶の製造方法および窒化アルミニウム単結晶
CN102084039A (zh) * 2008-07-01 2011-06-01 住友电气工业株式会社 制造AlxGa(1-x)N单晶的方法、AlxGa(1-x)N单晶和光学部件
JP2011148655A (ja) * 2010-01-21 2011-08-04 Hitachi Cable Ltd 導電性iii族窒化物結晶の製造方法、導電性iii族窒化物基板の製造方法及び導電性iii族窒化物基板
JP2012140325A (ja) * 2012-03-21 2012-07-26 Sumitomo Electric Ind Ltd Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶の成長装置
WO2015056714A1 (ja) * 2013-10-15 2015-04-23 株式会社トクヤマ n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス
JP2016532619A (ja) * 2013-10-08 2016-10-20 ナイトライド ソリューションズ インコーポレイテッド Iii族窒化物結晶の好適な体積増大
KR20170038801A (ko) 2014-08-01 2017-04-07 가부시키가이샤 도쿠야마 n형 질화 알루미늄 단결정 기판
WO2021210392A1 (ja) * 2020-04-14 2021-10-21 学校法人関西学院 半導体基板の製造方法、半導体基板、及び、成長層を形成する方法
WO2021210393A1 (ja) * 2020-04-14 2021-10-21 学校法人関西学院 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034103B2 (en) * 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
KR20090053827A (ko) * 2006-09-20 2009-05-27 닛코킨조쿠 가부시키가이샤 GaN 박막 템플레이트 기판의 제조 방법, GaN 박막 템플레이트 기판, 및 GaN 후막 단결정
JP5303941B2 (ja) * 2008-01-31 2013-10-02 住友電気工業株式会社 AlxGa1−xN単結晶の成長方法
JP5701754B2 (ja) * 2009-06-11 2015-04-15 日本碍子株式会社 Iii族金属窒化物単結晶の育成方法およびこれに用いる反応容器
CN102443842A (zh) * 2011-05-05 2012-05-09 中国科学院福建物质结构研究所 一种AlGaN单晶制备方法
US20180127890A1 (en) * 2013-09-04 2018-05-10 Nitride Solutions, Inc. Bulk diffusion crystal growth of nitride crystal
TWI684680B (zh) * 2013-09-04 2020-02-11 奈瑞德解決方案公司 體擴散長晶法
CN104357912B (zh) * 2014-12-07 2016-09-21 中国电子科技集团公司第四十六研究所 一种感应加热炉内的钨坩埚保护方法
CN109023513B (zh) * 2018-08-20 2020-12-01 深圳大学 制备氮化铝晶体的坩埚设备及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US6001748A (en) 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
WO2000022204A2 (en) 1998-10-09 2000-04-20 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride:silicon carbide alloys
JP2004307333A (ja) * 2003-03-26 2004-11-04 Matsushita Electric Ind Co Ltd Iii族元素窒化物単結晶の製造方法、それに用いる装置および前記製造方法により得られたiii族元素窒化物単結晶
JP2005343722A (ja) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd AlN結晶の成長方法、AlN結晶基板および半導体デバイス
JP2006027988A (ja) 2004-07-21 2006-02-02 Univ Waseda 窒化物単結晶の製造方法
JP2006052123A (ja) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd n型AlN結晶、n型AlGaN固溶体及びそれらの製造方法
WO2006110512A1 (en) 2005-04-07 2006-10-19 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035992A1 (de) * 1980-09-24 1982-05-19 The University of Delaware, Newark, Del. Verfahren und vorrichtung zum auftragen von materialien durch aufdampfen
DE102004050806A1 (de) * 2004-10-16 2006-11-16 Azzurro Semiconductors Ag Verfahren zur Herstellung von (AI,Ga)N Einkristallen
JP4197178B2 (ja) 2005-04-11 2008-12-17 株式会社豊田中央研究所 単結晶の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001748A (en) 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US6296956B1 (en) 1996-10-17 2001-10-02 Cree, Inc. Bulk single crystals of aluminum nitride
WO2000022204A2 (en) 1998-10-09 2000-04-20 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride:silicon carbide alloys
JP2004307333A (ja) * 2003-03-26 2004-11-04 Matsushita Electric Ind Co Ltd Iii族元素窒化物単結晶の製造方法、それに用いる装置および前記製造方法により得られたiii族元素窒化物単結晶
JP2005343722A (ja) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd AlN結晶の成長方法、AlN結晶基板および半導体デバイス
JP2006052123A (ja) * 2004-07-12 2006-02-23 Sumitomo Electric Ind Ltd n型AlN結晶、n型AlGaN固溶体及びそれらの製造方法
JP2006027988A (ja) 2004-07-21 2006-02-02 Univ Waseda 窒化物単結晶の製造方法
WO2006110512A1 (en) 2005-04-07 2006-10-19 North Carolina State University Seeded growth process for preparing aluminum nitride single crystals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2000567A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132569A (ja) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd 窒化アルミニウム結晶の成長方法、窒化アルミニウム結晶の製造方法および窒化アルミニウム結晶
US8293011B2 (en) 2007-12-25 2012-10-23 Sumitomo Electric Industries, Ltd. Method for growing group III nitride semiconductor crystal and growing device for group III nitride semiconductor crystal
EP2075356A1 (en) * 2007-12-25 2009-07-01 Sumitomo Electric Industries, Ltd. Method for growing group III nitride semiconductor crystal and growing device for group III nitride semiconductor crystal
JP2009155125A (ja) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶の成長装置
KR101507169B1 (ko) * 2007-12-25 2015-03-30 스미토모덴키고교가부시키가이샤 Ⅰⅰⅰ족 질화물 반도체 결정의 성장 방법 및 ⅰⅰⅰ족 질화물 반도체 결정의 성장 장치
EP2177649A1 (en) * 2007-12-25 2010-04-21 Sumitomo Electric Industries, Ltd. Method for growing group III nitride semiconductor crystal and growing device for group III nitride semiconductor crystal
WO2009128434A1 (ja) * 2008-04-17 2009-10-22 住友電気工業株式会社 AlN結晶の成長方法およびAlN積層体
JP2009274945A (ja) * 2008-04-17 2009-11-26 Sumitomo Electric Ind Ltd AlN結晶の成長方法およびAlN積層体
JP2010001209A (ja) * 2008-05-22 2010-01-07 Toyoda Gosei Co Ltd n型III族窒化物系化合物半導体及びその製造方法
EP2287370A4 (en) * 2008-05-28 2012-11-28 Sumitomo Electric Industries MONOCRYSTAL OF AL <SB> X </ SB> GA <SB> 1-X </ SB> N AND BODY FOR TRANSMITTING ELECTROMAGNETIC WAVES
EP2287370A1 (en) * 2008-05-28 2011-02-23 Sumitomo Electric Industries, Ltd. A l X G a 1-X N SINGLE CRYSTAL AND ELECTROMAGNETIC WAVE TRANSMISSION BODY
JP2010006685A (ja) * 2008-05-28 2010-01-14 Sumitomo Electric Ind Ltd AlxGa1−xN単結晶および電磁波透過体
CN102084039A (zh) * 2008-07-01 2011-06-01 住友电气工业株式会社 制造AlxGa(1-x)N单晶的方法、AlxGa(1-x)N单晶和光学部件
WO2010122801A1 (ja) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 窒化アルミニウム単結晶の製造装置、窒化アルミニウム単結晶の製造方法および窒化アルミニウム単結晶
RU2485219C1 (ru) * 2009-04-24 2013-06-20 Нэшнл Инститьют Оф Эдванст Индастриал Сайенс Энд Текнолоджи Устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия
JP5257959B2 (ja) * 2009-04-24 2013-08-07 独立行政法人産業技術総合研究所 窒化アルミニウム単結晶の製造装置、窒化アルミニウム単結晶の製造方法
US8641821B2 (en) 2009-04-24 2014-02-04 National Institute Of Advanced Industrial Science And Technology Apparatus for manufacturing aluminum nitride single crystal, method for manufacturing aluminum nitride single crystal, and aluminum nitride single crystal
JP2011148655A (ja) * 2010-01-21 2011-08-04 Hitachi Cable Ltd 導電性iii族窒化物結晶の製造方法、導電性iii族窒化物基板の製造方法及び導電性iii族窒化物基板
JP2012140325A (ja) * 2012-03-21 2012-07-26 Sumitomo Electric Ind Ltd Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶の成長装置
JP2016532619A (ja) * 2013-10-08 2016-10-20 ナイトライド ソリューションズ インコーポレイテッド Iii族窒化物結晶の好適な体積増大
JP2015078076A (ja) * 2013-10-15 2015-04-23 株式会社トクヤマ n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス
WO2015056714A1 (ja) * 2013-10-15 2015-04-23 株式会社トクヤマ n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス
US9748410B2 (en) 2013-10-15 2017-08-29 Tokuyama Corporation N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
KR20170038801A (ko) 2014-08-01 2017-04-07 가부시키가이샤 도쿠야마 n형 질화 알루미늄 단결정 기판
US9806205B2 (en) 2014-08-01 2017-10-31 Tokuyama Corporation N-type aluminum nitride monocrystalline substrate
DE112015003542B4 (de) 2014-08-01 2022-09-15 Tokuyama Corporation n-Aluminiumnitrid-Einkristallsubstrat und dessen Verwendung für vertikale Nitrid-Halbleiterbauelemente
WO2021210392A1 (ja) * 2020-04-14 2021-10-21 学校法人関西学院 半導体基板の製造方法、半導体基板、及び、成長層を形成する方法
WO2021210393A1 (ja) * 2020-04-14 2021-10-21 学校法人関西学院 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法

Also Published As

Publication number Publication date
JP5374872B2 (ja) 2013-12-25
EP2000567A4 (en) 2009-09-16
EP2000567B1 (en) 2014-12-31
KR101346501B1 (ko) 2013-12-31
CN101351579B (zh) 2011-11-02
US20100147211A1 (en) 2010-06-17
CN101351579A (zh) 2009-01-21
JPWO2007111219A1 (ja) 2009-08-13
EP2000567A2 (en) 2008-12-10
US8361226B2 (en) 2013-01-29
KR20080103955A (ko) 2008-11-28
EP2000567A9 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
WO2007111219A1 (ja) Iii族窒化物単結晶の成長方法
US8491719B2 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same
JP5779171B2 (ja) SiC単結晶の昇華成長方法及び装置
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
JP5170571B2 (ja) n型III族窒化物系化合物半導体の製造方法
JP6031733B2 (ja) GaN結晶の製造方法
EP2075356B1 (en) Method for growing group III nitride semiconductor crystal
CN101233265B (zh) AlN晶体、用于生长AlN晶体的方法以及AlN晶体衬底
JP2007217227A (ja) GaN結晶の製造方法、GaN結晶基板および半導体デバイス
JP2006016294A (ja) Iii族窒化物結晶の成長方法、iii族窒化物結晶基板および半導体デバイス
JP2014196242A (ja) AlxGa1−xN結晶基板
JP5045232B2 (ja) AlxGa1−xN結晶の成長方法
JP5303941B2 (ja) AlxGa1−xN単結晶の成長方法
US11225730B2 (en) Method for producing ingot, raw material for ingot growth, and method for preparing the raw material
CN110714190B (zh) Iii族氮化物基板和iii族氮化物结晶的制造方法
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
Miyanaga et al. Nitride Single-Crystal Growth Method
JP2006103998A (ja) Iii族窒化物多結晶およびその製造方法ならびにiii族窒化物単結晶およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001063.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007531498

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087006047

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007739311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12067936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE