WO2009128434A1 - AlN結晶の成長方法およびAlN積層体 - Google Patents

AlN結晶の成長方法およびAlN積層体 Download PDF

Info

Publication number
WO2009128434A1
WO2009128434A1 PCT/JP2009/057472 JP2009057472W WO2009128434A1 WO 2009128434 A1 WO2009128434 A1 WO 2009128434A1 JP 2009057472 W JP2009057472 W JP 2009057472W WO 2009128434 A1 WO2009128434 A1 WO 2009128434A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
aln
raw material
grown
growing
Prior art date
Application number
PCT/JP2009/057472
Other languages
English (en)
French (fr)
Inventor
圭祐 谷崎
奈保 水原
宮永 倫正
一成 佐藤
英章 中幡
喜之 山本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP09732518A priority Critical patent/EP2267196A4/en
Priority to US12/988,324 priority patent/US20110042684A1/en
Publication of WO2009128434A1 publication Critical patent/WO2009128434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Definitions

  • the present invention relates to an AlN crystal growth method and an AlN laminate.
  • Aluminum nitride (AlN) crystal has a wide energy band gap of 6.2 eV, a high thermal conductivity of about 3.3 WK ⁇ 1 cm ⁇ 1 , and a high electrical resistance, so that it is a semiconductor such as an optical device or an electronic device. It is attracting attention as a substrate material for devices.
  • FIG. 6 is a cross-sectional view schematically showing a state when an AlN crystal is grown according to Non-Patent Document 1.
  • the growth of the AlN crystal according to Non-Patent Document 1 is performed, for example, by the following steps. That is, an AlN polycrystalline material is installed in the lower part of the growth chamber, and a SiC (silicon carbide) substrate is installed on the pedestal in the upper part of the growth chamber so as to face the AlN polycrystalline material.
  • a layer in which the AlN polycrystalline raw material is sublimated at a temperature of less than 1900 ° C., and AlN grains (crystal grains) are fused on the surface of the seed substrate 211 at a growth rate of 10 to 30 ⁇ m / h. 212 is grown. After the fused layer 212 is sufficiently formed, the temperature is slowly raised to 100 to 200 ° C. Then, as a second stage of growth, an AlN crystal 213 is grown on the surface of the layer 212 fused at a growth rate of 70 ⁇ m / h.
  • the full width at half maximum (FWHM) of the rocking curve in X-ray diffraction on the (002) plane of the AlN crystal 213 grown by the above method is 456 to 1440 arcsec. It is disclosed.
  • This FWHM has a high numerical value, and there is a problem that the crystallinity of the AlN crystal 213 is poor.
  • the reason is considered as follows.
  • the fused layer 212 grown in the first stage of growth is fused in grains. Since the recess 212a is formed at the interface where the crystal grains are fused, a defect occurs in the recess 212a. For this reason, it is considered that the crystallinity of the AlN crystal 213 on this defect is deteriorated.
  • the present invention is to provide an AlN crystal growth method and an AlN laminate for growing AlN having good crystallinity.
  • the method for growing an AlN crystal of the present invention includes the following steps. First, a raw material containing AlN is prepared. A heterogeneous substrate having a main surface is prepared. By sublimating the raw material and growing the AlN crystal so as to cover the main surface of the heterogeneous substrate, the first layer having a flat surface is formed. By sublimating the raw material, a second layer made of AlN is formed on the surface of the first layer. The second layer is formed at a higher temperature than the first layer.
  • the surface of the first layer is flat, it is possible to suppress the formation of recesses due to the fusion of crystal grains. For this reason, by growing the second layer on this surface, it is possible to suppress the formation of dislocations due to the recesses of the first layer. Therefore, the second layer made of AlN having good crystallinity can be grown.
  • the surface is flat means a continuous state in which the surface of the first layer covers the entire main surface of the dissimilar substrate.
  • the non-continuous state means a portion where AlN crystals are not continuously grown on the main surface of a different substrate (for example, another crystal grain in FIG. 6), such as a fused portion as disclosed in Patent Document 1. In this state, there is a portion 212b) in which a film in which is fused is formed.
  • the first layer containing Group 4B impurities is formed.
  • the present inventor has found that when the first layer is grown so as to contain the Group 4B impurities, the first layer grows at a faster rate in the lateral direction than in the vertical direction. Thereby, the first layer having a flat surface can be grown. Since the second layer with good crystallinity can be grown on the flat surface, the second layer made of AlN with good crystallinity can be grown.
  • the first layer is formed so that the impurity concentration is 10 18 atoms ⁇ cm ⁇ 3 or more.
  • the second layer containing a Group 4B impurity is formed.
  • the second layer may also substantially include a Group 4B impurity in this way.
  • the second layer in the step of forming the second layer, is formed so that the impurity concentration is less than 10 18 atoms ⁇ cm ⁇ 3 .
  • the second layer with better crystallinity can be grown.
  • the shape of the impurity is at least one of a sphere and a polyhedron.
  • the surface area of the impurity can be reduced, so that the first layer can be grown so as to take in the impurity little by little. For this reason, even when the first layer contains impurities, it is possible to suppress a decrease in crystallinity of the first layer.
  • a raw material having an AlN relative density of 0.20 to 0.55 is prepared.
  • the relative density of AlN is 0.20 or more
  • the AlN particles are not too small and the surface area is not too large. For this reason, since the area where the particles of AlN come into contact with oxygen does not become too large, the amount of adsorption of oxygen does not increase. For this reason, it can reduce that the aluminum oxide which oxygen as an impurity adsorb
  • the relative density of AlN is 0.55 or less, it is possible to suppress the space between the AlN particles in the raw material from becoming narrow. For this reason, it becomes easy to secure a path for the sublimation gas generated by sublimating the raw material AlN to move toward the dissimilar substrate. For this reason, the growth rate can be improved.
  • the “relative density” means (the density of AlN in the raw material to be prepared / theoretical value of the density of AlN).
  • the first layer having a thickness of 300 ⁇ m or more is formed.
  • the thickness of the first layer is 300 ⁇ m or more, the surface of the first layer can be made flatter. For this reason, a second layer with better crystallinity can be grown.
  • the temperature is preferably raised so that the temperature gradient from the step of forming the first layer to the step of forming the second layer is 1 ° C./min or less.
  • the “temperature gradient” means (the temperature at which the second layer is formed ⁇ the temperature at which the first layer is formed) / (the step of forming the second layer after completion of the step of forming the first layer). Time to start).
  • An AlN laminate of the present invention is an AlN laminate that is grown by any of the AlN crystal growth methods described above, and includes a heterogeneous substrate, a first layer formed on the heterogeneous substrate, and a first layer And a second layer formed on the layer.
  • the AlN laminate of the present invention since the surface of the first layer is flat, dislocations due to the recesses of the first layer are formed in the second layer formed on the surface. Can be suppressed. For this reason, the AlN laminated body provided with the 2nd layer which consists of AlN with favorable crystallinity is realizable.
  • the second layer has a diameter of 25 mm or more. More preferably, the second layer has a diameter of 50 mm or more. Even more preferably, the second layer has a diameter of 100 mm or more.
  • the “Group 4B” in this specification means the Group IVB of the former IUPAC (The International Union of Pure and Applied Chemistry) method. That is, the 4B group means C (carbon), Si (silicon), Ge (germanium), Sn (tin) and Pb (lead).
  • the second layer on the surface is grown as AlN having good crystallinity. Can do.
  • Example 2 It is sectional drawing which shows roughly the AlN laminated body in embodiment of this invention. It is a flowchart which shows the growth method of the AlN crystal in embodiment of this invention. It is a figure which shows the relationship between time and temperature about the growth of the AlN crystal in embodiment of this invention.
  • 1 is a schematic view showing a crystal growth apparatus used in Example 1.
  • FIG. It is a principal part enlarged view of the crystal growth apparatus in FIG.
  • Example 2 it is a figure which shows the relationship between the impurity concentration of a 2nd layer, and FWHM.
  • FIG. 1 is a cross-sectional view schematically showing an AlN laminated body in the present embodiment. With reference to FIG. 1, the AlN laminated body 10 in this Embodiment is demonstrated.
  • the AlN laminate 10 includes a heterogeneous substrate 11, a first layer 12, and a second layer 13.
  • the heterogeneous substrate 11 has a main surface 11a.
  • the first layer 12 is formed on the main surface 11a and has a first surface 12a.
  • the second layer 13 is formed on the first surface 12a.
  • the heterogeneous substrate 11 is made of a material other than AlN, such as SiC (silicon carbide).
  • the heterogeneous substrate 11 has a diameter of, for example, 25 mm or more, preferably 50 mm or more, more preferably 100 mm or more.
  • the first surface 12a of the first layer 12 is flat. That is, it is a continuous state covering the entire main surface 11 a of the different substrate 11. Such a flat first surface 12a is hardly formed with a dent generated due to, for example, incomplete grain fusion.
  • the first layer 12 contains AlN as a main component and Group 4B impurities.
  • the impurity concentration is, for example, 1.0 ⁇ 10 18 atoms ⁇ cm ⁇ 3 or more, and preferably 1.5 ⁇ 10 20 atoms ⁇ cm ⁇ 3 or more.
  • the upper limit of the concentration of impurities contained in the first layer 12 is, for example, 3.5 ⁇ 10 20 atoms ⁇ cm ⁇ 3 or less from the viewpoint of not deteriorating the crystallinity of the first layer 12.
  • the thickness of the first layer 12 is, for example, 300 ⁇ m or more.
  • the upper limit is, for example, 500 ⁇ m from the viewpoint of increasing the manufacturing efficiency of the AlN laminate 10.
  • the second layer 13 is made of AlN.
  • the second layer 13 preferably contains no impurities, but may contain inevitable impurities such as Group 4B impurities.
  • the group 4B impurity concentration contained in the second layer 13 is preferably lower than the group 4B impurity concentration contained in the first layer 12. Further, the amount of 4B group impurities contained in the second layer 13 is preferably as small as possible, for example, less than 1.0 ⁇ 10 18 atoms ⁇ cm ⁇ 3 , preferably 1.0 ⁇ 10 16 atoms ⁇ cm ⁇ 3 or less. is there.
  • the thickness of the second layer 13 is, for example, 1 mm or more, and preferably 2 mm or more.
  • the diameter of the second layer 13 is, for example, 25 mm or more, preferably 50 mm or more, and more preferably 100 mm or more.
  • the concentration of Group 4B impurities contained in the first and second layers 12 and 13 is a value measured by, for example, SIMS (secondary ion mass spectrometry).
  • FIG. 2 is a flowchart showing an AlN crystal growth method in the present embodiment. Subsequently, the AlN crystal growth method in the present embodiment will be described with reference to FIG.
  • a heterogeneous substrate 11 having a main surface 11a is prepared (step S1).
  • This heterogeneous substrate 11 is a seed substrate for growing an AlN crystal on its main surface 11a.
  • the heterogeneous substrate 11 to be prepared is not particularly limited as long as it is a material different from AlN, but it is preferable to use a SiC substrate or the like from the viewpoint of growing an AlN crystal having good crystallinity.
  • a heterogeneous substrate 11 having a diameter of 25 mm or more, preferably 50 mm or more, more preferably 100 mm or more is prepared.
  • the second layer 13 having a large area can be grown in step S5 for forming the second layer 13 described later.
  • a raw material containing AlN is prepared (step S2).
  • the AlN contained in this raw material is, for example, AlN polycrystal.
  • AlN polycrystal for example, AlN powder, an AlN compact, an AlN fired body, or the like is used.
  • the relative density of AlN of this raw material is preferably 0.20 or more and 0.55 or less, more preferably 0.30 or more and 0.55 or less.
  • the relative density is 0.20 or more, since the AlN particles are not too small, the surface area is not too large. For this reason, since the area where the particles of AlN come into contact with oxygen does not increase, the amount of oxygen adsorbed on AlN does not increase. For this reason, it can reduce that the aluminum oxide which oxygen as an impurity adsorb
  • the crystallinity of the second layer 13 can be improved.
  • the relative density is 0.30 or more, the crystallinity of the second layer 13 can be further improved.
  • a relative density is 0.55 or less, it can suppress that the space between several AlN particle
  • the relative density means a value obtained by (density of AlN in raw material to be prepared) ⁇ (theoretical value of density of AlN).
  • the density of AlN in the raw material to be prepared is a value measured by, for example, the Archimedes method.
  • a raw material containing AlN and 4B group impurities is prepared.
  • the group 4B impurity is, for example, at least one substance of C, Si, Ge, Sn, and Pb. This impurity may be two or more kinds of substances or one kind of substance.
  • the group 4B impurity is preferably C.
  • the C material preferably includes at least a graphite structure and is pure carbon such as carbon black or graphite.
  • this impurity is preferably at least one of a sphere and a polyhedron, and more preferably a rectangular parallelepiped.
  • this impurity can be taken into the first layer 12 little by little without lowering the crystallinity when the first layer 12 described later is grown. it can.
  • the shape of the impurities is more preferably a rectangular parallelepiped.
  • a bead-like powder having a diameter of 101 ⁇ m or more is preferably used rather than a fine particle powder having a diameter of 100 ⁇ m or less.
  • the first layer 12 having a flat surface 12a is formed by growing the AlN crystal so as to cover the main surface 11a of the heterogeneous substrate 11 by sublimating the raw material (step S3).
  • the growth method of the AlN crystal is not particularly limited as long as it is a vapor phase growth method.
  • the sublimation method HVPE (Hydride Vapor Phase Epitaxy) method, MBE (Molecular Beam Epitaxy) method, MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method can be employed.
  • the first layer 12 is formed by, for example, a sublimation method.
  • FIG. 3 is a diagram showing the relationship between time and temperature for the growth of the AlN crystal in the present embodiment.
  • the raw material is heated at a temperature T1 ° C. for a time (t2-t1).
  • the raw material is sublimated to generate a sublimation gas, and this sublimation gas is sent to the main surface 11a of the dissimilar substrate 11 installed at a lower temperature than the raw material.
  • the sublimation gas is recrystallized on the main surface 11a of the heterogeneous substrate 11, whereby the first layer 12 is grown.
  • the temperature T1 for growing the first layer 12 is a temperature at which AlN contained in the raw material is sublimated, and is, for example, 1800 ° C. or higher and 2100 ° C. or lower.
  • the temperature T1 for forming the first layer 12 is set to a temperature at which sublimation of the heterogeneous substrate 11 is suppressed.
  • the first layer 12 having an area equivalent to the area of the main surface 11a of the heterogeneous substrate 11 can be grown on the main surface 11a of the heterogeneous substrate 11. . Therefore, the first layer 12 having a large area can be grown.
  • step S3 of forming the first layer 12 it is preferable that the growth is performed until all the 4B group impurities in the prepared raw material are sublimated.
  • the impurities may be mixed with AlN, may be arranged separately from AlN, or some impurities may be mixed with AlN and the remaining impurities may be arranged separately from AlN.
  • the first layer 12 is grown so that the concentration of this impurity is, for example, 1.0 ⁇ 10 18 atoms ⁇ cm ⁇ 3 or more, preferably 1.5 ⁇ 10 20 atoms ⁇ cm ⁇ 3 or more.
  • the upper limit of the concentration of impurities contained in the first layer 12 is, for example, 3.5 ⁇ 10 20 atoms ⁇ cm ⁇ 3 or less from the viewpoint of not deteriorating the crystallinity of the first layer 12.
  • the first layer 12 is grown to have a thickness of, for example, 300 ⁇ m or more.
  • the upper limit of the thickness of the first layer 12 is, for example, 500 ⁇ m from the viewpoint of increasing manufacturing efficiency as the AlN laminate 10.
  • the first layer 12 grows so as to cover the entire main surface 11a of the heterogeneous substrate 11, so that the surface 12a becomes flat.
  • the first layer 12 is grown so as to include a Group 4B impurity, the first layer 12 grows at a faster rate in the lateral direction than in the vertical direction. Therefore, the first layer 12 having the flat surface 12a can be grown.
  • the temperature is raised from the temperature T1 to a temperature T2 at which the second layer 13 is grown (step S4).
  • the temperature gradient ((T2-T1) / (t3-t2)) is preferably set to 1 ° C./min or less. In this case, it is possible to effectively suppress the occurrence of cracks in the first layer 12 due to the difference between the thermal expansion coefficient of the heterogeneous substrate 11 and the thermal expansion coefficient of the first layer 12.
  • the raw material is sublimated to form the second layer 13 made of AlN on the surface 12 a of the first layer 12.
  • the second layer 13 is formed at a temperature T2 that is higher than the temperature T1 at which the first layer 12 is formed.
  • the surface 12a of the first layer 12 is flat, and there are almost no recesses in which crystal grains are fused. Since the second layer 13 grows on the flat surface 12a, the formation of dislocations due to the recesses in the surface 12a of the first layer 12 is suppressed. In addition, the second layer 13 is grown at a higher temperature than the first layer 12, so that the growth rate is fast. That is, the second layer 13 has a high growth rate and good crystallinity.
  • the raw material is heated at a temperature of T2 ° C. for a time (t4-t3).
  • the raw material is sublimated to generate sublimation gas, and an AlN crystal grows on the surface 12a of the first layer 12 formed on the heterogeneous substrate 11 placed at a lower temperature than the raw material.
  • the second layer 13 is formed.
  • the temperature T2 for growing the second layer 13 is a temperature at which the growth rate of the second layer 13 is increased, and is, for example, 1900 ° C. or higher and 2300 ° C. or lower.
  • the second layer 13 it is preferable to grow the second layer 13 so as not to contain impurities.
  • the second layer 13 to be grown may contain inevitable impurities.
  • the impurities taken in the first layer 12 and prepared in step S ⁇ b> 5 for forming the second layer 13 are not taken into the second layer 13. That is, it is preferable that the impurities taken into the second layer 13 are less than the impurities taken into the first layer 12.
  • the group 4B impurity contained in the second layer 13 is, for example, less than 1.0 ⁇ 10 18 atoms ⁇ cm ⁇ 3 , preferably 1.0 ⁇
  • the second layer 13 is grown so as to be 10 16 atoms ⁇ cm ⁇ 3 or less.
  • step S3 By increasing the growth time (t2-t1) of step S3 for forming the first layer having a flat surface, impurities contained in the raw material are consumed when the first layer 12 is formed.
  • the impurity concentration of the layer 13 can be reduced as described above.
  • the second layer 13 is grown so as to have a thickness of, for example, 1 mm or more, preferably 2 mm or more. Further, the second layer 13 is grown so as to have a diameter of, for example, 25 mm or more, preferably 50 mm or more, more preferably 100 mm or more.
  • the AlN laminate 10 shown in FIG. 1 can be manufactured.
  • the AlN stack including the first and second layers 12 and 13 is manufactured by raising the growth temperature in two stages. It is not limited to.
  • an AlN stack including one or more other layers on the second layer 13 may be manufactured by raising the growth temperature in three or more stages. For example, when the third layer made of AlN is formed on the surface of the second layer 13, for example, the following steps are performed.
  • step S4 the temperature is raised from the temperature T2 to a temperature T3 at which the third layer is grown.
  • a third layer is grown on the surface of the second layer 13 at the temperature T3.
  • step S3 for forming the first layer 12 having the flat surface 12a and AlN on the surface 12a of the first layer 12 are formed.
  • the second layer 13 is formed at a temperature higher than that of the first layer 12. Since the surface 12a of the first layer 12 is flat, the formation of recesses due to the fusion of crystal grains is suppressed. For this reason, by growing the second layer 13 on the surface 12a, it is possible to suppress the formation of dislocations due to the recesses of the first layer 12 (for example, the recesses 212a in FIG. 6). Therefore, the second layer 13 made of AlN having good crystallinity can be grown.
  • the first layer 12 can be grown at a low temperature, sublimation of the heterogeneous substrate 11 can be suppressed, and an AlN film can be formed on the main surface 11 a of the heterogeneous substrate 11. Since the AlN film protects the foreign substrate 11, damage to the foreign substrate 11 can be suppressed. For this reason, since the first layer 12 can be grown on the main surface 11a of the heterogeneous substrate 11, the first layer 12 having a large area can be grown. As a result, the area of the second layer 13 grown on the surface 12a of the first layer 12 can be increased. Furthermore, since the crystallinity of the second layer 13 is good as described above, it is possible to grow the second layer 13 made of an AlN single crystal having high uniform crystallinity in the plane.
  • the second layer 13 can be grown at a higher temperature than the first layer 12. For this reason, the growth rate of the second layer 13 can be improved.
  • the first layer 12 containing a Group 4B impurity it is preferable to form the first layer 12 containing a Group 4B impurity.
  • the first layer 12 having a flat surface 12a can be grown.
  • the obtained second layer 13 has good crystallinity, for example, a light emitting element such as a light emitting diode or a laser diode, a rectifier, a bipolar transistor, a field effect transistor, an electronic element such as a HEMT, a temperature sensor, It can be suitably used for a pressure sensor, a radiation sensor, a semiconductor sensor such as a visible-ultraviolet light detector, and a SAW device.
  • a light emitting element such as a light emitting diode or a laser diode
  • a rectifier a bipolar transistor
  • a field effect transistor an electronic element such as a HEMT
  • a temperature sensor It can be suitably used for a pressure sensor, a radiation sensor, a semiconductor sensor such as a visible-ultraviolet light detector, and a SAW device.
  • the second layer is provided with step S3 for forming a first layer having a flat surface and step S5 for forming a second layer made of AlN on the surface of the first layer. Examined the effect of forming at a higher temperature than the first layer.
  • step S2 a raw material containing AlN and Group 4B impurities was prepared (step S2).
  • graphite powder having a particle size of 5 ⁇ m is uniformly mixed so as to be 3% by mass with respect to AlN, and AlN is then mixed by HIP (Hot Isostatic Pressing) method. It was hardened until the relative density was 0.80. The relative density was determined by the Archimedes method. Thereafter, the solidified graphite / AlN mixture was fired at 2100 ° C. for 15 hours. The relative density of AlN after firing did not change. Thereby, an AlN fired body having a C concentration of 0.7% by mass was prepared.
  • the relative density was a value obtained by (density of AlN in raw material to be prepared) / (theoretical value of density of AlN).
  • the density of AlN in the prepared raw material was a value measured by, for example, the Archimedes method.
  • the theoretical density of AlN was 3.28 g / cm 3 .
  • FIG. 4 is a schematic view showing a crystal growth apparatus used in this example.
  • FIG. 5 is an enlarged view of a main part of the crystal growth apparatus in FIG.
  • the prepared heterogeneous substrate 11 was placed on the upper part of the crucible 115 in the reaction vessel 122, and the raw material (AlN fired body) 17 was accommodated on the lower part of the crucible 115.
  • the crystal growth apparatus shown in FIG. 4 includes a heat insulating material 119 and radiation thermometers 121a and 121b.
  • Step S3 an AlN crystal is grown on the main surface 11a of the heterogeneous substrate 11 by the sublimation method using the crystal growth apparatus shown in FIGS. 4 and 5, thereby forming the first layer 12 having a flat surface.
  • the temperature in the crucible 115 is increased using the high-frequency heating coil 123 so that the temperature of the heterogeneous substrate 11 is 1800 ° C. and the temperature of the raw material 17 is 2000 ° C.
  • the raw material 17 is sublimated and recrystallized on the main surface 11a of the heterogeneous substrate 11 so that the growth time is 30 hours, and the first layer 12 made of AlN crystal on the heterogeneous substrate 11 has a thickness of 300 ⁇ m. To grow.
  • step S4 the temperature was ramped up to 2100 ° C. at 1 ° C./min (step S4).
  • step S5 the second layer 13 made of AlN was formed on the surface 12a of the first layer 12 by a sublimation method (step S5).
  • the temperature in the crucible 115 is increased using the high-frequency heating coil 123 so that the temperature of the heterogeneous substrate 11 is 1900 ° C. and the temperature of the raw material 17 is 2100 ° C.
  • the raw material 17 is sublimated and recrystallized on the surface 12a of the first layer 12.
  • the growth time is 100 hours, and the second layer 13 as AlN crystal is 1 mm on the surface 12a of the first layer 12. Grown to a thickness of.
  • the growth rate of the second layer 13 was 10 ⁇ m / hour.
  • the nitrogen gas is continuously flowed into the reaction vessel 122, and the exhaust amount of nitrogen gas is set so that the gas partial pressure in the reaction vessel 122 becomes about 10 kPa to 100 kPa. Controlled.
  • the AlN crystal growth method of Invention Example 2 basically had the same configuration as that of the AlN crystal growth method of Invention Example 1, but the step S2 and the second layer 13 for preparing the raw material were formed. In step S5.
  • Step S2 for preparing the raw material first, graphite powder having a particle size of 5 ⁇ m was uniformly mixed so as to be 3% by mass with respect to AlN. The mixture was then fired at 2100 ° C. for 10 hours. Thus, an AlN fired body having a C concentration of 0.5 mass% and a relative density of 0.30 was prepared.
  • step S5 for forming the second layer 13 an AlN crystal having a thickness of 4.7 mm was grown.
  • the growth rate of the second layer 13 was 50 ⁇ m / hour.
  • the AlN crystal growth method of Invention Example 3 had basically the same configuration as the AlN crystal growth method of Invention Example 1, but differed in Step S2 in which the raw material was prepared.
  • step S2 for preparing the raw material first, graphite having a rectangular parallelepiped shape having a length of 1 mm, a width of 1 mm, and a height of 5 mm was prepared. This graphite was uniformly mixed so as to be 3% by mass with respect to AlN. The mixture was then fired at 2100 ° C. for 10 hours. Thus, an AlN fired body having a C concentration of 0.7% by mass and a relative density of 0.30 was prepared.
  • step S5 for forming the second layer 13 an AlN crystal was grown in the same manner as in Example 2 of the present invention.
  • the growth rate of the second layer 13 was 50 ⁇ m / hour.
  • the AlN crystal growth method of Inventive Example 4 had basically the same configuration as the AlN crystal growth method of Inventive Example 1, except that Step S2 for preparing the raw material and the second layer 13 were formed. In step S5.
  • step S2 for preparing the raw material first, only AlN was baked at 2100 ° C. for 10 hours.
  • the relative density of this AlN fired body was 0.30.
  • 0.7% by mass of graphite having a rectangular parallelepiped shape similar to the graphite prepared in Invention Example 3 was prepared with respect to the AlN fired body.
  • the AlN fired body and graphite were separated and accommodated in the lower part of the crucible 115, respectively.
  • step S5 for forming the second layer 13 an AlN crystal was grown in the same manner as in Example 2 of the present invention.
  • the growth rate of the second layer 13 was 50 ⁇ m / hour.
  • the AlN crystal growth method of Invention Example 5 had basically the same configuration as the AlN crystal growth method of Invention Example 1, but differed in Step S2 in which the raw material was prepared.
  • graphite powder having a particle size of 5 ⁇ m was mixed so as to be 3% by mass with respect to AlN, and was hardened by the HIP method until the relative density became 0.56. Thereafter, the solidified graphite / AlN mixture was fired at 2100 ° C. for 15 hours. Thereby, an AlN fired body having a C concentration of 0.7% by mass was prepared.
  • step S5 which forms the 2nd layer of this invention example 5
  • the growth rate of the 2nd layer 13 was 10 micrometers / hour.
  • Step S3 for forming the first layer 12 and Step S4 for raising the temperature were not performed.
  • step S1 a heterogeneous substrate 11 similar to that of Example 1 of the present invention was prepared (step S2).
  • step S2 of preparing the raw material first, bead-shaped graphite having a diameter of 1 mm was prepared. This graphite was uniformly mixed so as to be 3% by mass with respect to AlN. The mixture was then fired at 2100 ° C. for 10 hours. Thus, an AlN fired body having a C concentration of 0.5 mass% and a relative density of 0.30 was prepared.
  • an AlN crystal was grown on the main surface of the heterogeneous substrate 11 by the sublimation method using the crystal growth apparatus shown in FIGS. Specifically, the temperature of the heterogeneous substrate 11 was 1900 ° C., the temperature of the raw material 17 was 2100 ° C., and the raw material 17 was sublimated for 100 hours. Thereby, the AlN laminated body in the comparative example 1 provided with the heterogeneous substrate and the AlN crystal formed on the heterogeneous substrate was obtained.
  • the surface 12a of the first layer 12 was flat.
  • the first and second layers 12 and 13 are formed on the entire main surface 11 a of the heterogeneous substrate 11.
  • the FWHM of the second layer of the AlN laminates of Examples 1 to 5 of the present invention was 300 arcsec or less, and the crystallinity was significantly improved over the FWHM of the AlN crystal of Non-Patent Document 1.
  • the inventive examples 3 and 4 in which the shape of the graphite was a rectangular parallelepiped showed very good crystallinity with an FWHM of 100 arcsec or less.
  • the method includes the step of forming the first layer having a flat surface, and the step of forming the second layer of AlN on the surface of the first layer. It was confirmed that by forming the second layer at a temperature higher than that of the first layer, a second layer having a large area and good crystallinity can be grown.
  • the effect of forming the second layer 13 so that the impurity concentration of the second layer 13 is less than 10 18 atoms ⁇ cm ⁇ 3 was examined.
  • a 6H—SiC substrate having a diameter of 1 inch was prepared as a heterogeneous substrate (step S1).
  • step S2 a raw material containing AlN and Group 4B impurities was prepared (step S2).
  • graphite powder having a particle size of 2.5 ⁇ m or less is uniformly mixed so as to be 2% by mass with respect to AlN, and AlN is obtained by a CIP (cold isostatic pressing) method.
  • the relative density of was hardened to 0.40.
  • the relative density was determined by the Archimedes method in the same manner as in Example 1.
  • the prepared heterogeneous substrate 11 was placed on the upper part of the crucible 115 in the reaction vessel 122, and the raw material was stored in the lower part of the crucible 115.
  • step S3 an AlN crystal was grown on the main surface 11a of the heterogeneous substrate 11 by a sublimation method, thereby forming the first layer 12 having a flat surface (step S3).
  • step S3 the temperature in the crucible 115 is increased using the high-frequency heating coil 123 while flowing 100 sccm of nitrogen gas in the reaction vessel 122, the temperature of the heterogeneous substrate 11 is 1800 ° C., and the temperature of the raw material 17 The raw material 17 was sublimated at 2100 ° C., and the first layer 12 made of AlN was recrystallized on the main surface of the heterogeneous substrate 11.
  • step S3 (t2-t1) was changed every 30 hours from 30 hours to 100 hours.
  • step S4 the temperature gradient was raised to 1 ° C./min, the temperature of the heterogeneous substrate 11 was raised to 2200 ° C., and the temperature of the raw material 17 was raised to 2300 ° C. (step S4).
  • step S5 the second layer 13 made of AlN was formed on the surface 12a of the first layer 12 by a sublimation method.
  • the growth time was 100 hours.
  • step S3 and step S5 the exhaust amount was controlled so that the nitrogen gas partial pressure in the reaction vessel 122 was 40 to 90 kPa.
  • FIG. 7 is a diagram showing the relationship between the impurity concentration of the second layer and FWHM in this example.
  • the time of step S3 is 100, 90, 80, 70, 60, 50, 40, 30 hours from the left point.
  • step S3 it was found that by increasing the time of step S3, the impurities in the second layer can be reduced and the crystallinity can be improved. Further, by forming the second layer 13 so that the impurity concentration of the second layer 13 is less than 10 18 atoms ⁇ cm ⁇ 3 , the FWHM can be set to 100 arcsec to 300 arcsec. It was found that the crystallinity can be improved significantly compared to the crystalline FWHM.
  • the crystallinity can be improved by forming the second layer 13 so that the impurity concentration of the second layer 13 is less than 10 18 atoms ⁇ cm ⁇ 3. did it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

結晶性の良好なAlNを成長させるAlN結晶の成長方法およびAlN積層体を提供する。 AlN結晶の成長方法は、以下の工程を備えている。まず、AlNを含む原料17が準備される。主表面11aを有する異種基板11が準備される。原料17を昇華させて、異種基板11の主表面11aを覆うように、AlN結晶を成長させることにより、表面12aが平坦な第1の層12が形成される。原料17を昇華させて、第1の層12の表面12a上に、AlNよりなる第2の層13が形成される。第2の層13は、第1の層12よりも高い温度で形成される。

Description

AlN結晶の成長方法およびAlN積層体
  本発明はAlN結晶の成長方法およびAlN積層体に関する。
  窒化アルミニウム(AlN)結晶は、6.2eVの広いエネルギバンドギャップ、約3.3WK-1cm-1の高い熱伝導率および高い電気抵抗を有しているため、光デバイスや電子デバイスなどの半導体デバイス用の基板材料として注目されている。
  このようなAlN結晶の成長方法として、昇華法によりAlN結晶を成長させる方法が知られている(たとえば非特許文献1)。図6は、非特許文献1によりAlN結晶を成長させたときの状態を概略的に示す断面図である。図6を参照して、この非特許文献1によるAlN結晶の成長は、たとえば以下の工程によって実施される。すなわち、成長室の下部にAlN多結晶原料が設置され、成長室の上部の台座に種基板211としてSiC(炭化珪素)基板がAlN多結晶原料と互いに向かい合うよう設置される。その後、成長の第1段階として、1900℃未満の温度でAlN多結晶原料が昇華され、10~30μm/hの成長速度で種基板211の表面にAlNのグレイン(結晶粒)が融合された層212が成長される。この融合された層212を十分に形成した後、ゆっくりと100~200℃昇温する。そして、成長の第2段階として、70μm/hの成長速度で融合された層212の表面にAlN結晶213が成長される。
R.Dalmau et al., "AlN bulk crystals grown on SiC seeds", Journal of Crystal Growth 281(2005), pp.68-74
  非特許文献1には、上記の方法で成長させたAlN結晶213の(002)面でのX線回折におけるロッキングカーブの半値幅(FWHM:Full Width at Half Maximum)が456~1440arcsecであることが開示されている。このFWHMの数値は高く、AlN結晶213の結晶性が悪いという問題があった。この理由は、以下のように考えられる。成長の第1の段階で成長される融合された層212は、結晶粒が融合されている。
この結晶粒が融合する界面には凹部212aが形成されるので、この凹部212aには欠陥が発生する。このため、この欠陥上のAlN結晶213の結晶性が悪くなると考えられる。
  したがって、本発明は、結晶性の良好なAlNを成長させるAlN結晶の成長方法およびAlN積層体を提供することである。
  本発明のAlN結晶の成長方法は、以下の工程を備えている。まず、AlNを含む原料が準備される。主表面を有する異種基板が準備される。原料を昇華させて、異種基板の主表面を覆うようにAlN結晶を成長させることにより、表面が平坦な第1の層が形成される。原料を昇華させて、第1の層の表面上に、AlNよりなる第2の層が形成される。第2の層は、第1の層よりも高い温度で形成される。
  本発明のAlN結晶の成長方法によれば、第1の層の表面は平坦であるので、結晶粒の融合による凹部が形成されることを抑制できる。このため、この表面上に第2の層を成長することによって、第1の層の凹部に起因した転位が形成されることを抑制することができる。したがって、結晶性の良好なAlNよりなる第2の層を成長することができる。
  なお、上記「表面が平坦」とは、第1の層の表面が異種基板の主表面全体を覆っている連続した状態を意味する。連続していない状態とは、特許文献1に開示のような融合された部分のように、異種基板の主表面においてAlN結晶が連続して成長していない部分(たとえば図6において別の結晶粒が融合された膜が形成されている部分212b)が存在する状態である。
  上記AlN結晶の成長方法において好ましくは、第1の層を形成する工程では、4B族の不純物を含む第1の層を形成する。
  本発明者は、4B族の不純物を含むように第1の層を成長させると、横方向への成長が縦方向の成長よりも速い速度で第1の層が成長することを見出した。これにより、平坦な表面の第1の層を成長することができる。平坦な表面上には結晶性が良好な第2の層を成長することができるので、結晶性の良好なAlNよりなる第2の層を成長することができる。
  上記AlN結晶の成長方法において好ましくは、第1の層を形成する工程では、不純物の濃度が1018原子・cm-3以上になるように第1の層を形成する。
  これにより、より平坦な表面の第1の層を成長することができる。このため、結晶性がより良好な第2の層を成長することができる。
  上記AlN結晶の成長方法において好ましくは、第2の層を形成する工程では、4B族の不純物を含む第2の層を形成する。
  第1の層を形成する際に4B族の不純物を含むように形成しているので、このように第2の層にも実質的に4B族の不純物が含まれる場合がある。
  上記AlN結晶の成長方法において好ましくは、第2の層を形成する工程では、不純物の濃度が1018原子・cm-3未満になるように第2の層を形成する。これにより、結晶性がより良好な第2の層を成長することができる。
  上記AlN結晶の成長方法において好ましくは、不純物の形状が、球体および多面体の少なくともいずれかである。
  これにより、不純物の表面積を小さくすることができるので、不純物を少しずつ取り込むように第1の層を成長することができる。このため、第1の層が不純物を含む場合であっても、第1の層の結晶性の低下を抑制することができる。
  上記AlN結晶の成長方法において好ましくは、原料を準備する工程では、AlNの相対密度が0.20以上0.55以下である原料を準備する。
  AlNの相対密度が0.20以上の場合、AlNの粒子が小さくなりすぎず、表面積が大きくなりすぎない。このため、AlNの粒子が酸素と接触する面積が大きくなりすぎないので、酸素の吸着量が大きくならない。このため、準備する原料中に、不純物としての酸素が吸着した酸化アルミニウムが含まれることを低減できる。したがって、成長させる第1および第2の層に、不純物としての酸素が取り込まれることを抑制することができる。その結果、第2の層の結晶性をより向上することができる。一方、AlNの相対密度が0.55以下の場合、原料においてAlN粒子間の空間が狭くなることを抑制できる。このため、原料のAlNが昇華されることにより生成された昇華ガスが、異種基板に向けて移動するための経路を確保しやすくなる。このため、成長速度を向上することができる。
  なお、上記「相対密度」とは、(準備する原料中のAlNの密度/AlNの密度の理論値)を意味する。
  上記AlN結晶の成長方法において好ましくは、第1の層を形成する工程では、300μm以上の厚みを有する第1の層を形成する。
  第1の層の厚みを300μm以上にすることによって、第1の層の表面をより平坦にすることができる。このため、結晶性がより良好な第2の層を成長することができる。
  上記AlN結晶の成長方法において好ましくは、第1の層を形成する工程から第2の層を形成する工程までの温度傾斜が1℃/分以下になるように昇温させる。
  これにより、異種基板の熱膨張率と第1の層の熱膨張率との差によるクラックの発生を抑制することができる。
  なお、上記「温度傾斜」とは、(第2の層を形成する温度-第1の層を形成する温度)/(第1の層を形成する工程終了後から第2の層を形成する工程開始までの時間)を意味する。
  本発明のAlN積層体は、上記いずれかに記載のAlN結晶の成長方法により成長されるAlN積層体であって、異種基板と、異種基板上に形成された第1の層と、第1の層上に形成された第2の層とを備えている。
  本発明のAlN積層体によれば、第1の層の表面は平坦であるので、その表面上に形成された第2の層は、第1の層の凹部に起因した転位が形成されることを抑制することができる。このため、結晶性の良好なAlNよりなる第2の層を備えたAlN積層体を実現できる。
  上記AlN積層体において好ましくは、第2の層は、25mm以上の直径を有する。より好ましくは、第2の層は、50mm以上の直径を有する。より一層好ましくは、第2の層は、100mm以上の直径を有する。
  このため、大口径で有用性の高いAlN積層体が実現できる。
  なお、本明細書における「4B族」とは、旧IUPAC(The International Union of Pure and Applied Chemistry)方式のIVB族を意味する。すなわち、4B族とは、C(炭素)、Si(ケイ素)、Ge(ゲルマニウム)、Sn(スズ)およびPb(鉛)を意味する。
  本発明のAlN結晶の成長方法およびAlN積層体によれば、平坦な表面を有する第1の層を形成することによって、その表面上の第2の層を結晶性の良好なAlNとして成長させることができる。
本発明の実施の形態におけるAlN積層体を概略的に示す断面図である。 本発明の実施の形態におけるAlN結晶の成長方法を示すフローチャートである。 本発明の実施の形態におけるAlN結晶の成長について時間と温度との関係を示す図である。 実施例1に用いる結晶成長装置を示す概略図である。 図4における結晶成長装置の要部拡大図である。 非特許文献1によりAlN結晶を成長させたときの状態を概略的に示す断面図である。 実施例2において、第2の層の不純物濃度とFWHMとの関係を示す図である。
  以下、図面に基づいて本発明の実施の形態および実施例を説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付してその説明は繰り返さない。
  図1は、本実施の形態におけるAlN積層体を概略的に示す断面図である。図1を参照して、本実施の形態におけるAlN積層体10を説明する。
  AlN積層体10は、異種基板11と、第1の層12と、第2の層13とを備えている。異種基板11は、主表面11aを有している。第1の層12は、この主表面11a上に形成され、第1の表面12aを有している。第2の層13は、この第1の表面12a上に形成されている。
  異種基板11は、たとえばSiC(炭化珪素)などのAlN以外の材料で構成されている。異種基板11は、たとえば25mm以上の直径を有し、好ましくは50mm以上、より好ましくは100mm以上の直径を有している。
  第1の層12の第1の表面12aは、平坦である。すなわち、異種基板11の主表面11a全体を覆っている連続した状態である。このような平坦な第1の表面12aには、たとえばグレインの融合が不完全のために発生する凹みがほとんど形成されていない。
  第1の層12は、主成分としてのAlNと、4B族の不純物とを含んでいる。第1の層12において、この不純物の濃度はたとえば1.0×1018原子・cm-3以上であり、好ましくは1.5×1020原子・cm-3以上である。なお、第1の層12に含まれる不純物濃度の上限値は、第1の層12の結晶性を悪化させない観点から、たとえば3.5×1020原子・cm-3以下である。
  また第1の層12の厚みは、たとえば300μm以上である。上限は、AlN積層体10の製造効率を高める観点から、たとえば500μmである。
  第2の層13は、AlNよりなっている。第2の層13は、不純物を含んでいないことが好ましいが、4B族の不純物などの不可避的不純物を含んでいてもよい。第2の層13に含まれる4B族不純物濃度は、第1の層12に含まれる4B族不純物濃度よりも低いことが好ましい。また、第2の層13に含まれる4B族不純物は、少ない程好ましく、たとえば1.0×1018原子・cm-3未満であり、好ましくは1.0×1016原子・cm-3以下である。
  第2の層13の厚みは、たとえば1mm以上であり、2mm以上が好ましい。第2の層13の直径は、たとえば25mm以上であり、50mm以上が好ましく、100mm以上がより好ましい。
  なお、第1および第2の層12、13に含まれる4B族の不純物濃度は、たとえばSIMS(2次イオン質量分析)法により測定される値である。
  図2は、本実施の形態におけるAlN結晶の成長方法を示すフローチャートである。続いて、図2を参照して、本実施の形態におけるAlN結晶の成長方法について説明する。
  まず、主表面11aを有する異種基板11を準備する(ステップS1)。この異種基板11は、その主表面11aにAlN結晶を成長するための種基板である。準備する異種基板11は、AlNと異なる材料であれば特に限定されないが、結晶性の良好なAlN結晶を成長させる観点から、SiC基板などを用いることが好ましい。
  また、このステップS1では、たとえば25mm以上の直径を有し、好ましくは50mm以上、より好ましくは100mm以上の直径を有している異種基板11を準備する。この場合、後述する第2の層13を形成するステップS5で、大面積の第2の層13を成長させることができる。
  次に、AlNを含む原料を準備する(ステップS2)。この原料に含まれるAlNは、たとえばAlN多結晶である。このAlN多結晶として、たとえばAlN粉末、AlNの成形体、AlNの焼成体などが用いられる。
  この原料がAlN成形体またはAlN焼成体である場合には、この原料のAlNの相対密度は、好ましくは0.20以上0.55以下、より好ましくは0.30以上0.55以下である。相対密度が0.20以上の場合、AlN粒子が小さくなりすぎないので、表面積が大きくなりすぎない。このため、AlNの粒子が酸素と接触する面積が大きくならないので、AlNに対する酸素の吸着量が大きくならない。このため、不純物としての酸素が吸着した酸化アルミニウムが、準備する原料中に含まれることを低減できる。したがって、後述する第1および第2の層12、13を成長させる工程で、酸素が第1および第2の層12、13に取り込まれることを抑制することができる。その結果、第2の層13の結晶性を向上することができる。相対密度が0.30以上の場合、第2の層13の結晶性をより向上することができる。一方、相対密度が0.55以下の場合、原料において複数のAlN粒子間の空間が狭くなることを抑制できる。このため、原料のAlNが昇華されることにより生成された昇華ガスが、異種基板11に向けて移動するための経路を確保しやすくなる。このため、後述する第1および第2の層12、13の成長速度を向上することができる。
  ここで、上記相対密度は、(準備する原料中のAlNの密度)÷(AlNの密度の理論値)で求められる値をいう。この準備する原料中のAlNの密度は、たとえばアルキメデス法により測定される値である。
  本実施の形態における原料を準備する工程では、AlNと4B族の不純物とを含む原料を準備する。4B族の不純物は、たとえばC、Si、Ge、SnおよびPbの少なくとも1種の物質である。この不純物は2種類以上の物質であってもよく、1種類の物質であってもよい。特に、4B族の不純物は、Cであることが好ましい。4B族の不純物がCである場合には、C材料は、少なくとも黒鉛構造を含み、カーボンブラック、グラファイトなどの純炭素であることが好ましい。
  この不純物の形状は、球体および多面体の少なくともいずれかであることが好ましく、直方体であることがより好ましい。この場合、不純物の表面積を小さくすることができるので、後述する第1の層12を成長させる際に、結晶性を低下させずにこの不純物を第1の層12に少しずつ取り込せることができる。また、他の多面体および球体よりも表面積を小さくすることができるので、不純物の形状は直方体であることがより好ましい。配置される不純物の質量が決まっている場合には、たとえば、直径100μm以下の微粒子の粉末よりも直径101μm以上のビーズ状の粉末が好適に用いられる。
  次に、原料を昇華させて、異種基板11の主表面11aを覆うようにAlN結晶を成長させることにより、表面12aが平坦な第1の層12を形成する(ステップS3)。AlN結晶の成長方法は、気相成長法であれば特に限定されず、たとえば昇華法、HVPE(Hydride Vapor Phase Epitaxy:ハイドライド気相成長)法、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相堆積)法などを採用できる。特に、AlN結晶の成長に適しているため、昇華法によりAlN結晶を成長することが好ましい。本実施の形態では、たとえば昇華法により第1の層12を形成する。
  図3は、本実施の形態におけるAlN結晶の成長について時間と温度との関係を示す図である。図3に示すように、たとえば温度T1℃で、時間(t2-t1)分間、原料を加熱する。この加熱により、原料が昇華して昇華ガスが生成され、原料よりも低温に設置されている異種基板11の主表面11aにこの昇華ガスが送られる。この昇華ガスが異種基板11の主表面11a上に再結晶化することで、第1の層12が成長される。
  第1の層12を成長させる温度T1は、原料に含まれるAlNが昇華する温度であり、たとえば1800℃以上2100℃以下である。
  また、この第1の層12を形成するための温度T1は、異種基板11の昇華が抑制される温度にすることが好ましい。この場合、異種基板11の昇華が抑制されるので、異種基板11の主表面11a上に、異種基板11の主表面11aの面積と同等の面積を有する第1の層12を成長することができる。このため、面積の大きな第1の層12を成長することができる。
  AlNと4B族の不純物とを含む原料を準備した場合には、AlNおよびこの不純物を加熱して昇華する。第1の層12を形成するステップS3では、準備した原料中の4B族不純物がすべて昇華するまで成長をさせることが好ましい。この不純物は、AlNと混合されていてもよく、AlNと別に配置されていてもよく、一部の不純物がAlNと混合され残部の不純物がAlNと別に配置されていてもよい。
  この不純物の濃度はたとえば1.0×1018原子・cm-3以上であり、好ましくは1.5×1020原子・cm-3以上含まれるように第1の層12を成長する。なお、第1の層12に含まれる不純物濃度の上限値は、第1の層12の結晶性を悪化させない観点から、たとえば3.5×1020原子・cm-3以下である。
  また、たとえば300μm以上の厚みを有するように第1の層12を成長する。第1の層12の厚みの上限は、AlN積層体10としての製造効率を高める観点から、たとえば500μmである。
  このステップS3を実施することにより、第1の層12は、異種基板11の主表面11aの全面を覆って成長するので、表面12aは平坦になる。特に4B族の不純物を含むように第1の層12を成長させると、横方向への成長が縦方向の成長よりも速い速度で第1の層12が成長する。このため、平坦な表面12aを有する第1の層12を成長することができる。
  次に、図3に示すように、温度T1から、第2の層13を成長させる温度T2まで昇温する(ステップS4)。このステップS4では、温度傾斜((T2-T1)/(t3-t2))を1℃/分以下にすることが好ましい。この場合、異種基板11の熱膨張率と第1の層12の熱膨張率との差によるクラックが第1の層12に生じることを効果的に抑制できる。
  次に、原料を昇華させて、第1の層12の表面12a上に、AlNよりなる第2の層13を形成する。第2の層13は、第1の層12が形成される温度T1よりも高い温度T2で形成される。
  第1の層12の表面12aは平坦であり、結晶粒が融合した凹部がほとんど形成されていない。第2の層13はこの平坦な表面12a上に成長するので、第1の層12の表面12aの凹部に起因した転位が形成されることが抑制される。また、第2の層13は、第1の層12よりも高い温度で成長させるので、成長速度が速い。つまり、第2の層13は、成長速度が速く、かつ結晶性が良好である。
  具体的には、たとえば温度T2℃で、時間(t4-t3)分間、原料を加熱する。この加熱することにより、原料が昇華して昇華ガスが生成され、原料よりも低温に設置されている異種基板11上に形成された第1の層12の表面12aにAlN結晶が成長する。これにより、第2の層13が形成される。
  第2の層13を成長させる温度T2は、第2の層13の成長速度が高くなるような温度であり、たとえば1900℃以上2300℃以下である。
  このステップS5では、不純物を含まないように第2の層13を成長させることが好ましい。なお、成長させる第2の層13は、不可避的不純物を含んでいてもよい。第1の層12を形成するステップS3で4B族の不純物を含むように第1の層12を成長させた場合には、第1の層12を形成するステップS3で準備した不純物のほとんどすべてが第1の層12に取り込まれ、第2の層13を形成するステップS5で準備した不純物が第2の層13に取り込まれないように制御することが好ましい。つまり、第2の層13に取り込まれる不純物は、第1の層12に取り込まれる不純物よりも少ないことが好ましい。第2の層13にこの不純物が取り込まれる場合には、第2の層13に含まれる4B族の不純物がたとえば1.0×1018原子・cm-3未満であり、好ましくは1.0×1016原子・cm-3以下になるように第2の層13を成長させる。
  表面が平坦な第1の層を形成するステップS3の成長時間(t2-t1)を増加させることで、第1の層12を形成するときに原料中に含まれる不純物を消費し、第2の層13の不純物の濃度を上記のように減少させることができる。
  また、たとえば1mm以上、好ましくは2mm以上の厚みを有するように第2の層13を成長する。また、たとえば25mm以上、好ましくは50mm以上、より好ましくは100mm以上の直径を有するように第2の層13を成長する。
  以上のステップS1~S5を実施することにより、図1に示すAlN積層体10を製造することができる。
  なお、本実施の形態のAlN結晶の成長方法では、2段階で成長温度を上昇させることにより、第1および第2の層12、13を備えたAlN積層体を製造しているが、特にこれに限定されない。本発明のAlN結晶の成長方法は、成長温度を3段階以上の段階的に上昇させて、第2の層13上に他の層を1層以上備えたAlN積層体を製造してもよい。
たとえば第2の層13の表面上に、AlNよりなる第3の層を形成する場合には、たとえば以下の工程を実施する。
  具体的には、図3に示すように、ステップS4と同様に、温度T2から、第3の層を成長させる温度T3まで昇温する。次に、温度T3で、第2の層13の表面上に第3の層を成長する。
  第2の層13上に複数の層を形成する場合には、たとえば上述した工程を繰り返す。加熱する温度が高いほど成長速度が速くなるので、AlN積層体を製造するための効率は向上する。
  以上説明したように、本実施の形態におけるAlN結晶の成長方法によれば、表面12aが平坦な第1の層12を形成するステップS3と、この第1の層12の表面12a上にAlNよりなる第2の層13を形成するステップS5とを備え、第2の層13は第1の層12よりも高い温度で形成される。第1の層12の表面12aが平坦であるので、結晶粒の融合による凹部が形成されることが抑制されている。このため、この表面12a上に第2の層13を成長することによって、第1の層12の凹部(たとえば図6における凹部212a)に起因した転位が形成されることを抑制することができる。したがって、結晶性の良好なAlNよりなる第2の層13を成長することができる。
  また、低い温度で第1の層12を成長することができるので、異種基板11の昇華を抑制して、異種基板11の主表面11aにAlNの膜を形成することができる。このAlNの膜は異種基板11を保護するので、異種基板11に与えられるダメージを抑制することができる。このため、異種基板11の主表面11a上に第1の層12を成長することができるので、大きな面積の第1の層12を成長することができる。その結果、この第1の層12の表面12a上に成長させた第2の層13の面積を大きくすることができる。さらに、上述したように第2の層13の結晶性は良好であるので、面内で均一な結晶性の高いAlN単結晶よりなる第2の層13を成長することができる。
  さらには、第1の層12よりも第2の層13を高い温度で成長することができる。このため、第2の層13の成長速度を向上することができる。
  上記AlN結晶の成長方法において、4B族の不純物を含む第1の層12を形成することが好ましい。この場合、平坦な表面12aを有する第1の層12を成長することができる。
  このように、得られる第2の層13は、結晶性が良好であるので、たとえば発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMTなどの電子素子、温度センサ、圧力センサ、放射線センサ、可視-紫外光検出器などの半導体センサ、SAWデバイスなどに好適に用いることができる。
  本実施例では、表面が平坦な第1の層を形成するステップS3と、この第1の層の表面上に、AlNよりなる第2の層を形成するステップS5とを備え、第2の層は、第1の層よりも高い温度で形成することの効果について調べた。
  (本発明例1)
  まず、異種基板として、2インチの直径を有する6H-SiC基板を準備した(ステップS1)。
  次に、AlNと、4B族の不純物とを含む原料を準備した(ステップS2)。このステップS2では、まず、5μmの粒径を有するグラファイト粉末をAlNに対して3質量%になるように均一に混合し、HIP(Hot Isostatic Pressing:熱間等方圧加圧)法でAlNの相対密度が0.80となるまで固めた。なお、相対密度は、アルキメデス法により求めた。その後、この固めたグラファイトとAlNとの混合体を2100℃で15時間焼成した。焼成後のAlNの相対密度は変化しなかった。これにより、C濃度が0.7質量%のAlN焼成体を準備した。
  なお、上記相対密度は、(準備する原料中のAlNの密度)÷(AlNの密度の理論値)で求められる値とした。この準備する原料中のAlNの密度は、たとえばアルキメデス法により測定される値とした。また、AlNの理論密度は、3.28g/cm3とした。
  図4は、本実施例に用いる結晶成長装置を示す概略図である。図5は、図4における結晶成長装置の要部拡大図である。図4および図5に示すように、反応容器122内の坩堝115の上部に準備した異種基板11を載置し、坩堝115の下部に原料(AlN焼成体)17を収容した。なお、図4に示す結晶成長装置は、断熱材119と放射温度計121a、121bとを含んでいる。
  次に、図4および図5に示す結晶成長装置を用いて、昇華法により、異種基板11の主表面11a上に、AlN結晶を成長させることにより、表面が平坦な第1の層12を形成した(ステップS3)。
  具体的には、反応容器122内に窒素ガスを流しながら、高周波加熱コイル123を用いて坩堝115内の温度を上昇させ、異種基板11の温度を1800℃、原料17の温度を2000℃にして原料17を昇華させ、異種基板11の主表面11a上で再結晶化させて、成長時間を30時間として、異種基板11上にAlN結晶である第1の層12を300μmの厚さになるように成長させた。
  次に、昇温傾斜を1℃/minで、2100℃まで昇温した(ステップS4)。次に、昇華法により、第1の層12の表面12a上に、AlNよりなる第2の層13を形成した(ステップS5)。
  具体的には、反応容器122内に窒素ガスを流しながら、高周波加熱コイル123を用いて坩堝115内の温度を上昇させ、異種基板11の温度を1900℃、原料17の温度を2100℃にして原料17を昇華させ、第1の層12の表面12a上で再結晶化させて、成長時間を100時間として、第1の層12の表面12a上にAlN結晶としての第2の層13を1mmの厚さになるように成長させた。この第2の層13の成長速度は、10μm/時であった。
  なお、ステップS3およびS5のAlN結晶の成長中においては、反応容器122内に窒素ガスを流し続け、反応容器122内のガス分圧が10kPa~100kPa程度になるように、窒素ガスの排気量を制御した。
  以上のステップS1~S5を実施することにより、図1に示すように、異種基板11と、異種基板11の主表面11a上に形成された第1の層12と、第1の層12の表面12a上に形成された第2の層13とを備えた本発明例1のAlN積層体10が得られた。
  (本発明例2)
  本発明例2のAlN結晶の成長方法は、本発明例1のAlN結晶の成長方法と基本的には同様の構成を備えていたが、原料を準備するステップS2および第2の層13を形成するステップS5において異なっていた。
  具体的には、原料を準備するステップS2では、まず、5μmの粒径を有するグラファイト粉末をAlNに対して3質量%になるように均一に混合した。その後、この混合物を2100℃で10時間焼成した。これにより、C濃度が0.5質量%で、相対密度が0.30のAlN焼成体を準備した。
  また、第2の層13を形成するステップS5では、4.7mmの膜厚を有するAlN結晶を成長した。この第2の層13の成長速度は、50μm/時であった。
  (本発明例3)
  本発明例3のAlN結晶の成長方法は、本発明例1のAlN結晶の成長方法と基本的には同様の構成を備えていたが、原料を準備するステップS2において異なっていた。
  具体的には、原料を準備するステップS2では、まず、縦が1mm、横が1mm、高さが5mmの直方体の形状を有するグラファイトを準備した。このグラファイトをAlNに対して3質量%になるように均一に混合した。その後、この混合物を2100℃で10時間焼成した。これにより、C濃度が0.7質量%で、相対密度が0.30のAlN焼成体を準備した。
  また、第2の層13を形成するステップS5では、本発明例2と同様にしてAlN結晶を成長した。この第2の層13の成長速度は、50μm/時であった。
  (本発明例4)
  本発明例4のAlN結晶の成長方法は、本発明例1のAlN結晶の成長方法と基本的には同様の構成を備えていたが、原料を準備するステップS2および第2の層13を形成するステップS5において異なっていた。
  具体的には、原料を準備するステップS2では、まず、AlNのみを2100℃で10時間焼成した。このAlN焼成体の相対密度は0.30であった。また、本発明例3で準備したグラファイトと同様の直方体の形状のグラファイトを、AlN焼成体に対して0.7質量%準備した。このAlN焼成体とグラファイトとを分離して坩堝115の下部にそれぞれ収容した。
  また、第2の層13を形成するステップS5では、本発明例2と同様にしてAlN結晶を成長した。この第2の層13の成長速度は、50μm/時であった。
  (本発明例5)
  本発明例5のAlN結晶の成長方法は、本発明例1のAlN結晶の成長方法と基本的には同様の構成を備えていたが、原料を準備するステップS2において異なっていた。
  具体的には、まず、5μmの粒径を有するグラファイト粉末をAlNに対して3質量%になるように混合し、HIP法で相対密度が0.56となるまで固めた。その後、この固めたグラファイトとAlNとの混合体を2100℃で15時間焼成した。これにより、C濃度が0.7質量%のAlN焼成体を準備した。
  なお、本発明例5の第2の層を形成するステップS5において、第2の層13の成長速度は、10μm/時であった。
  (比較例1)
  比較例1のAlN結晶の成長方法は、第1の層12を形成するステップS3および昇温するステップS4を実施しなかった。
  具体的には、本発明例1と同様の異種基板11を準備した(ステップS1)。次に、原料を準備するステップS2では、まず、1mmの直径を有するビーズ状のグラファイトを準備した。このグラファイトをAlNに対して3質量%になるように均一に混合した。その後、この混合物を2100℃で10時間焼成した。これにより、C濃度が0.5質量%で、相対密度が0.30のAlN焼成体を準備した。
  次に、図4および図5に示す結晶成長装置を用いて、昇華法により、異種基板11の主表面上に、AlN結晶を成長させた。具体的には、異種基板11の温度を1900℃、原料17の温度を2100℃にして、100時間、原料17を昇華させた。これにより、異種基板と、異種基板上に形成されたAlN結晶とを備えた比較例1におけるAlN積層体が得られた。
  (測定方法)
  本発明例1~5および比較例1のAlN積層体を、結晶成長装置の内部が室温まで冷却された後に、結晶成長装置から取り出した。このAlN積層体の各々について、外観を観察し、FWHMを測定した。外観については、目視で異種基板の全面を覆うように第1および第2の層が形成されていたかを観察した。FWHMについては、第2の層の(002)面を、XRD(X-ray diffraction:X線回折法)のロッキングカーブ測定により測定した。
  また、本発明例1~5のAlN積層体については、第1および第2の層の不純物としてのC濃度を測定した。C濃度は、SIMSにより測定した。これらの結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
  (測定結果)
  本発明例1~5のAlN積層体については、第1の層12の表面12aは平坦であった。また、異種基板11の主表面11aの全面に第1および第2の層12、13が形成されていた。
  さらに、本発明例1~5のAlN積層体の第2の層のFWHMは300arcsec以下であり、非特許文献1のAlN結晶のFWHMよりも大幅に結晶性を向上していた。特に、グラファイトの形状が直方体であった本発明例3および4は、FWHMが100arcsec以下と非常に良好な結晶性を示した。
  また、AlNの相対密度が0.30の原料を準備した本発明例2~4は、AlNの相対密度が0.56以上の本発明例1および5よりも第2の層の成長速度が速かった。このことから、準備する原料のAlNの相対密度が0.55以下の場合、成長速度を高めることができることがわかった。
  一方、比較例1のAlN積層体は、高温で結晶成長を行なったため、異種基板の外周部が昇華してしまった。このため、準備した異種基板の全面にAlN結晶が成長せず、異種基板の中央部に直径が約15mmの領域にAlN結晶が成長した。
  以上より、本実施例によれば、表面が平坦な第1の層を形成する工程と、この第1の層の表面上に、AlNよりなる第2の層を形成する工程とを備え、第2の層は、第1の層よりも高い温度で形成することにより、面積が大きく、かつ結晶性が良好な第2の層を成長することができることが確認できた。
  本実施例では、第2の層13の不純物の濃度が1018原子・cm-3未満になるように第2の層13を形成することの効果について調べた。
  まず、異種基板として、1インチの直径を有する6H-SiC基板を準備した(ステップS1)。
  次にAlNと、4B族の不純物とを含む原料を準備した(ステップS2)。このステップS2では、2.5μm以下の粒径を有するグラファイト粉末をAlNに対して2質量%になるように均一に混合し、CIP(cold isostatic pressing:冷間等方圧加圧)法でAlNの相対密度が0.40となるように固めた。なお、相対密度は実施例1と同様にアルキメデス法により求めた。
  次に、図4および図5に示すように、反応容器122内の坩堝115の上部に準備した異種基板11を載置し、坩堝115の下部に上記原料を収容した。
  次に、昇華法により、異種基板11の主表面11a上に、AlN結晶を成長させることにより、表面が平坦な第1の層12を形成した(ステップS3)。
  具体的には、ステップS3では、反応容器122内に窒素ガスを100sccm流しながら、高周波加熱コイル123を用いて坩堝115内の温度を上昇させ、異種基板11の温度を1800℃、原料17の温度を2100℃にして原料17を昇華させ、異種基板11の主面にAlNよりなる第1の層12を再結晶化させた。
  本実施例では、ステップS3の時間(t2-t1)を30時間から100時間まで、10時間毎に変化させた実験を8回実施した。
  次に、昇温傾斜を1℃/minで、異種基板11の温度を2200℃、原料17の温度を2300℃まで昇温した(ステップS4)。
  次に、昇華法により、第1の層12の表面12a上に、AlNよりなる第2の層13を形成した(ステップS5)。このステップS5では、成長時間を100時間とした。
  なお、ステップS3およびステップS5のAlN結晶の成長中においては、反応容器122内の窒素ガス分圧を40~90kPaになるように排気量を制御した。
  以上のステップS1~S5を実施することにより、8通りのAlN積層体10を製造した。
  この8通りに成長させたAlN積層体について、第2の層13の不純物としてのC濃度をSIMSにより測定した。また、8通りに成長させたAlN積層体の第2の層の(002)面を、XRDで測定した。その結果を図7に示す。
  図7は、本実施例において、第2の層の不純物濃度とFWHMとの関係を示す図である。図7中、データ点は8点あり、左側の点からステップS3の時間が100、90、80、70、60、50、40、30時間となっている。
  図7に示すように、ステップS3の時間を長くすることで、第2の層の不純物を低下させ、かつ結晶性を向上させることができることがわかった。また、第2の層13の不純物の濃度が1018原子・cm-3未満になるように第2の層13を形成することにより、FWHMが100arcsec以上300arcsec以下にでき、非特許文献1のAlN結晶のFWHMよりも大幅に結晶性を向上できることがわかった。
  以上より、本実施例によれば、第2の層13の不純物の濃度が1018原子・cm-3未満になるように第2の層13を形成することにより、結晶性を向上できることが確認できた。
  今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  10  AlN積層体、11  異種基板、11a  主表面、12  第1の層、12a  表面、13  第2の層、17  原料、115  坩堝、119  断熱材、121a,121b  放射温度計、122  反応容器、123  高周波加熱コイル。

Claims (13)

  1.   AlNを含む原料を準備する工程と、
      主表面を有する異種基板を準備する工程と、
      前記原料を昇華させて、前記異種基板の前記主表面を覆うようにAlN結晶を成長させることにより、表面が平坦な第1の層を形成する工程と、
      前記原料を昇華させて、前記第1の層の前記表面上に、AlNよりなる第2の層を形成する工程とを備え、
      前記第2の層は、前記第1の層よりも高い温度で形成される、AlN結晶の成長方法。
  2.   前記第1の層を形成する工程では、4B族の不純物を含む前記第1の層を形成する、請求項1に記載のAlN結晶の成長方法。
  3.   前記第1の層を形成する工程では、前記不純物の濃度が1018原子・cm-3以上になるように前記第1の層を形成する、請求項2に記載のAlN結晶の成長方法。
  4.   前記第2の層を形成する工程では、4B族の不純物を含む前記第2の層を形成する、請求項2または3に記載のAlN結晶の成長方法。
  5.   前記第2の層を形成する工程では、前記不純物の濃度が1018原子・cm-3未満になるように前記第2の層を形成する、請求項4に記載のAlN結晶の成長方法。
  6.   前記不純物の形状が、球体および多面体の少なくともいずれかである、請求項2~5に記載のAlN結晶の成長方法。
  7.   前記原料を準備する工程では、AlNの相対密度が0.20以上0.55以下である前記原料を準備する、請求項2~6のいずれかに記載のAlN結晶の成長方法。
  8.   前記第1の層を形成する工程では、300μm以上の厚みを有する前記第1の層を形成する、請求項1~7のいずれかに記載のAlN結晶の成長方法。
  9.   前記第1の層を形成する工程から前記第2の層を形成する工程までの温度傾斜が1℃/分以下になるように昇温させる、請求項1~8のいずれかに記載のAlN結晶の成長方法。
  10.   請求項1~9のいずれかに記載のAlN結晶の成長方法により成長されるAlN積層体であって、
      前記異種基板と、
      前記異種基板上に形成された前記第1の層と、
      前記第1の層上に形成された前記第2の層とを備えた、AlN積層体。
  11.   前記第2の層は、25mm以上の直径を有する、請求項10に記載のAlN積層体。
  12.   前記第2の層は、50mm以上の直径を有する、請求項11に記載のAlN積層体。
  13.   前記第2の層は、100mm以上の直径を有する、請求項12に記載のAlN積層体。
PCT/JP2009/057472 2008-04-17 2009-04-14 AlN結晶の成長方法およびAlN積層体 WO2009128434A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09732518A EP2267196A4 (en) 2008-04-17 2009-04-14 ALN CRYSTAL GROWTH METHOD AND ALN LAMINATE
US12/988,324 US20110042684A1 (en) 2008-04-17 2009-04-14 Method of Growing AlN Crystals, and AlN Laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008108161 2008-04-17
JP2008-108161 2008-04-17
JP2009-082422 2009-03-30
JP2009082422A JP2009274945A (ja) 2008-04-17 2009-03-30 AlN結晶の成長方法およびAlN積層体

Publications (1)

Publication Number Publication Date
WO2009128434A1 true WO2009128434A1 (ja) 2009-10-22

Family

ID=41199125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057472 WO2009128434A1 (ja) 2008-04-17 2009-04-14 AlN結晶の成長方法およびAlN積層体

Country Status (4)

Country Link
US (1) US20110042684A1 (ja)
EP (1) EP2267196A4 (ja)
JP (1) JP2009274945A (ja)
WO (1) WO2009128434A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483386B2 (en) * 2014-01-17 2019-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, transistor having doped seed layer and method of manufacturing the same
KR102680861B1 (ko) * 2016-12-15 2024-07-03 삼성전자주식회사 질화 갈륨 기판의 제조 방법
JP7065490B2 (ja) * 2017-07-21 2022-05-12 学校法人関西学院 単結晶AlNの製造方法、及び、単結晶AlN

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015618A1 (ja) * 2003-08-12 2005-02-17 Nippon Telegraph And Telephone Corporation 窒化物半導体成長用基板
JP2007214547A (ja) * 2006-01-12 2007-08-23 Sumitomo Electric Ind Ltd 窒化アルミニウム結晶の製造方法、窒化アルミニウム結晶、窒化アルミニウム結晶基板および半導体デバイス
WO2007111219A1 (ja) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Iii族窒化物単結晶の成長方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801073A (en) * 1995-05-25 1998-09-01 Charles Stark Draper Laboratory Net-shape ceramic processing for electronic devices and packages
JP5186733B2 (ja) * 2005-07-29 2013-04-24 住友電気工業株式会社 AlN結晶の成長方法
CA2650612C (en) * 2006-05-12 2012-08-07 Nokia Corporation An adaptive user interface
JP2008013390A (ja) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd AlN結晶基板の製造方法、AlN結晶の成長方法およびAlN結晶基板
JP5303941B2 (ja) * 2008-01-31 2013-10-02 住友電気工業株式会社 AlxGa1−xN単結晶の成長方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015618A1 (ja) * 2003-08-12 2005-02-17 Nippon Telegraph And Telephone Corporation 窒化物半導体成長用基板
JP2007214547A (ja) * 2006-01-12 2007-08-23 Sumitomo Electric Ind Ltd 窒化アルミニウム結晶の製造方法、窒化アルミニウム結晶、窒化アルミニウム結晶基板および半導体デバイス
WO2007111219A1 (ja) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Iii族窒化物単結晶の成長方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R. DALMAU ET AL.: "AIN Bulk Crystals Grown on SiC Seeds", JOURNAL OF CRYSTAL GROWTH, vol. 281, 2005, pages 68 - 74
R. DALMAU ET AL.: "AlN bulk crystals grown on SiC seeds", JOURNAL OF CRYSTAL GROWTH, vol. 281, 12 April 2005 (2005-04-12), pages 68 - 74 *
See also references of EP2267196A4 *

Also Published As

Publication number Publication date
EP2267196A1 (en) 2010-12-29
EP2267196A4 (en) 2011-06-22
JP2009274945A (ja) 2009-11-26
US20110042684A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
JP6584428B2 (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
CN105951177B (zh) 使用热梯度控制的大块氮化铝单晶的生长
US20170137962A1 (en) Fabrication Method for Growing Single Crystal of Multi-Type Compound
JP5374381B2 (ja) 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法
JP2010515661A (ja) 多層成長ガイドを用いた誘導直径SiC昇華成長
JP7400451B2 (ja) SiC単結晶の製造方法
WO2007013286A1 (ja) AlN結晶およびその成長方法ならびにAlN結晶基板
TWI750630B (zh) 碳化矽錠之製備方法、碳化矽晶圓之製備方法以及其系統
CA3212482A1 (en) Method of growing high-quality single crystal silicon carbide
WO2009128434A1 (ja) AlN結晶の成長方法およびAlN積層体
JP5303941B2 (ja) AlxGa1−xN単結晶の成長方法
JP2010077023A (ja) 炭化珪素単結晶及びその製造方法
JP2006232669A (ja) 低窒素濃度黒鉛材料、低窒素濃度炭素繊維強化炭素複合材料、低窒素濃度膨張黒鉛シート
TWI542741B (zh) A method for preparing a single crystal crystal for growing a multi-type compound
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP5689661B2 (ja) 種結晶保持体及びこれを用いた単結晶の製造方法
JP5252495B2 (ja) 窒化アルミニウム単結晶の製造方法
JP2006240968A (ja) 単結晶成長方法、その方法により得られるIII族窒化物単結晶およびSiC単結晶
EP4006213A1 (en) Group iii compound substrate production method and substrate produced by this production method
JP2004284869A (ja) 窒化物単結晶の製造方法およびその製造装置
JP2013006740A (ja) 結晶の製造方法および結晶
JP6207014B2 (ja) 化合物半導体結晶の製造方法
JP2009132569A (ja) 窒化アルミニウム結晶の成長方法、窒化アルミニウム結晶の製造方法および窒化アルミニウム結晶
JP6019777B2 (ja) AlN結晶基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732518

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009732518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009732518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12988324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE