WO2007013286A1 - AlN結晶およびその成長方法ならびにAlN結晶基板 - Google Patents

AlN結晶およびその成長方法ならびにAlN結晶基板 Download PDF

Info

Publication number
WO2007013286A1
WO2007013286A1 PCT/JP2006/313665 JP2006313665W WO2007013286A1 WO 2007013286 A1 WO2007013286 A1 WO 2007013286A1 JP 2006313665 W JP2006313665 W JP 2006313665W WO 2007013286 A1 WO2007013286 A1 WO 2007013286A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
gas
carbon
crystal growth
growth
Prior art date
Application number
PCT/JP2006/313665
Other languages
English (en)
French (fr)
Inventor
Naho Mizuhara
Michimasa Miyanaga
Tomohiro Kawase
Shinsuke Fujiwara
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP06768027A priority Critical patent/EP1925697A4/en
Priority to US11/997,153 priority patent/US8470090B2/en
Priority to CN2006800279367A priority patent/CN101233265B/zh
Publication of WO2007013286A1 publication Critical patent/WO2007013286A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an A1N crystal having a large diameter and good crystallinity applicable to various semiconductor devices, a growth method thereof, and an A1N crystal substrate.
  • An A1N crystal is very useful as a material for forming various semiconductor devices such as a light emitting element, an electronic element and a semiconductor sensor having excellent semiconductor characteristic power. For this reason, it is important to grow A1N crystals with large diameter and good crystallinity.
  • sublimation method HVPE (hydride vapor phase growth) method, MBE (molecular beam epitaxy) method or MOCVD (metal organic chemical vapor deposition) method
  • MBE molecular beam epitaxy
  • MOCVD metal organic chemical vapor deposition
  • the sublimation method is particularly preferably used from the viewpoints of low X-ray diffraction half-width and high crystallinity, obtaining A1N crystals and high growth rate.
  • the sublimation method is a method of growing a crystal by sublimating a crystal raw material and then solidifying it again.
  • a compound semiconductor substrate formed by a compound semiconductor force such as A1N or SiC is used as a seed crystal substrate.
  • the A1N seed crystal and the SiC seed crystal have a lattice constant matching with the A1N crystal to be grown and have excellent heat resistance, so that the AIN crystal is formed on the seed crystal substrate formed by A1N or Si C. Growth is under consideration. (For example, see Non-Patent Document 1 and Non-Patent Document 2).
  • A1N crystal non-growth region there is a region where the A1N crystal does not grow on a compound semiconductor substrate such as an A1N seed crystal substrate or an SiC seed crystal substrate (hereinafter referred to as a crystal non-growth region). It was difficult to obtain A1N crystals with large diameter and good crystallinity.
  • the sublimation temperature of the SiC crystal is about 2300 ° C, so the growth temperature of the A1N crystal cannot be increased and the growth rate of the A1N crystal is reduced. There was also a problem.
  • Non-Patent Document 1 V. Noveski, "Growth of AIN crystals ⁇ / SiC seeds by AIN powder sublimation in nitrogen atmosphere ", MRS Internet J. Nitride Semicond. Res. 9, 2 (2004)
  • Non-Patent Document 2 Lianghong Liu, "Growth Mode and Defects in Aluminum Nitride Subli med on (0001) 6H- SiC Substrates", MRSlnternet J. Nitride Semicond. Res. 6, 7 (20 01)
  • An object of the present invention is to provide a large-diameter, high-crystallinity A1N crystal applicable to various semiconductor devices, a method for growing the same, and an A1N crystal substrate.
  • the present invention is a method for growing an A1N crystal on a seed crystal substrate disposed in a crystal growth chamber in a crystal growth vessel provided in a reaction vessel by a vapor phase growth method.
  • the carbon-containing gas is supplied into the crystal growth chamber.
  • the seed crystal substrate can be an SiC seed crystal substrate or an A1N seed crystal substrate. Further, it is possible to make the partial pressure ratio of carbon-containing gas to the total pressure of the gas in the reaction vessel during the crystal growth 2 X 10- 5 or 0.9 or less.
  • the carbon-containing gas can be generated by the reaction between carbon and A1N raw material.
  • the carbon supply source for forming the carbon-containing gas can be a graphite for forming the crystal growth vessel.
  • the carbon-containing gas can contain CO gas or CO gas. Where CO gas and CO gas are carbon and metal
  • Carbon-containing gas can be supplied from the outside of the reaction vessel. Where carbon-containing gas is CO gas or CO gas
  • the present invention is an A1N crystal obtained by any one of the above growth methods, wherein the carbon atom concentration in the crystal is 1 X 10 15 pieces 'cm 3 or more 1 X 10 2 ° pieces' It is an A1N crystal with a diameter force of 4 mm or more which is 3 cm or less.
  • the diameter of the A1N crystal, which is useful for the present invention, can be 48.8 mm or more.
  • the present invention is an A1N crystal substrate obtained by covering the above A1N crystal.
  • an A1N crystal having a large diameter and good crystallinity, a growth method thereof, and an A1N crystal substrate can be provided.
  • FIG. 1 is a schematic diagram showing an outline of a sublimation furnace used in an A1N crystal growth method according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of the structure of a crystal growth vessel in a sublimation furnace used in an embodiment of an A1N crystal growth method according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of the structure of a crystal growth vessel in a sublimation furnace used in another embodiment of the A1N crystal growth method according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an example of the structure of a crystal growth vessel in a sublimation furnace used in still another embodiment of the A1N crystal growth method according to the present invention.
  • a method of growing A1N crystal according to the present invention is described in the crystal growth chamber 24 in the crystal growth vessel 12 provided in the reaction vessel 11 by vapor phase growth with reference to FIGS.
  • A1N crystal growth method characterized in that a carbon-containing gas is supplied into the crystal growth chamber 24 during crystal growth. .
  • the crystal non-growth region on the seed crystal substrate 2 is eliminated, and the A1N crystal 4 is grown on the entire surface of the seed crystal substrate 2.
  • A1N crystal 4 with large diameter and good crystallinity can be grown.
  • the seed crystal substrate 2 is not particularly limited as long as it is a substrate capable of growing the A1N crystal 4, but from the viewpoint that the lattice constant is highly consistent with the A1N crystal 4 to be grown.
  • a C seed crystal substrate or an A1N seed crystal substrate is preferred.
  • the SiC seed crystal substrate is suitable for growing an A1N crystal having a larger diameter and better crystallinity.
  • the A1N seed crystal substrate has a higher lattice constant matching with the A1N crystal than the SiC seed crystal substrate, so it is suitable for the growth of A1N crystals with better crystallinity.
  • the A1N crystal growth method according to the present invention can be applied to various vapor phase growth methods such as a sublimation method, HV PE method, MBE method, and MOCVD method, as long as the object is not contrary to the purpose.
  • a sublimation method which is the most typical method for growing A1N crystals, will be described as an example.
  • the sublimation method refers to a method in which a crystal raw material is sublimated and then solidified again to grow a crystal.
  • a sublimation furnace 10 is used with reference to FIG.
  • the sublimation furnace 10 is a high-frequency heating type vertical sublimation furnace, and a crystal growth container 12 is provided in the central portion of the reaction vessel 11 to ensure ventilation with the outside, and is opened around the crystal growth vessel 12.
  • a heat insulating material 13 having portions 13a and 13b and ensuring ventilation with the outside is provided.
  • a high-frequency heating coil 14 for heating the crystal growth vessel 12 is provided in the outer central portion of the reaction vessel 11.
  • nitrogen gas is supplied to the outside of the crystal growth vessel 12 at the end of the reaction vessel 11.
  • the crystal growth vessel 12 is formed of a high-temperature-resistant material 21 such as a high melting point metal such as Ta or W or a metal carbide such as TaC or WC.
  • the crystal growth chamber 24 is provided, and the A1N raw material 1 is disposed on one side of the crystal growth chamber 24 and the seed crystal substrate 2 is disposed on the other side.
  • the inside of the crystal growth chamber 24, the inside of the crystal growth vessel 12, and the outside of the crystal growth vessel 12 are secured by the openings 21h, 12h, 13a, 13b. The difference between FIGS. 2 to 4 will be described later.
  • an A1N crystal is grown as follows.
  • the A1N raw material 1 is arranged on one side of the crystal growth chamber 24 in the crystal growth vessel 12 and the seed crystal substrate 2 is arranged on the other side, and the high frequency heating coil 14 is installed while supplying nitrogen gas into the reaction vessel 11.
  • the temperature in the crystal growth chamber 24 is increased and the temperature on the A1N raw material 1 side in the crystal growth chamber 24 is maintained higher than the temperature on the seed crystal substrate 2 side. Solidify again on the crystal substrate 2 to grow A1N crystal.
  • partial pressure ratio of carbon-containing gas to the total pressure of the gas in the reaction chamber 11 during the crystal growth is 0.9 or less 2 X 10- 5 or more It is preferable that it exists. If the ratio of the partial pressure of the carbon-containing gas is more than 2 X 10- 5 or less than 0.9, the A1N crystals grown tend to morphology one is polycrystallized Akui ⁇ .
  • concentration of the carbon-containing gas in the gas in the reaction vessel can be measured using a quadrupole mass spectrometer.
  • the carbon-containing gas used in the A1N crystal growth method that is useful in the present invention is not particularly limited, but the crystal non-growth region on the seed crystal substrate 2 is extinguished to have a large diameter and good crystallinity. From the viewpoint of efficiently growing crystals, it may contain CO gas or CO gas.
  • CO gas or CO gas More preferred is CO gas or CO gas. Of these, as above
  • CO gas is particularly preferable.
  • the carbon-containing gas supply source is preferably a graphite forming the crystal growth vessel 12. Yes.
  • A1N source gas generated from A1N source 1 (Fig. 2) or metal oxide 3 (Fig. 3) A carbon-containing gas can be generated by reacting the generated metal oxide gas with the force of the graphite eye crucible (crystal growth vessel 12).
  • the carbon in the kraft crucible (crystal growth vessel 12) forming the inner wall of the carbon-containing gas generation chamber 23 and the crystal growth chamber 24 are arranged.
  • a carbon-containing gas generated by the reaction with the A1N source gas generated from the A1N source 1 is supplied into the crystal growth chamber 24.
  • a carbon-containing gas generation chamber 23 surrounded by the growth vessel 12 is formed.
  • the crystal growth chamber 24 is ventilated with the carbon-containing gas generation chamber 23 through the opening 21h, and the carbon-containing gas generation chamber 23 is outside the crystal growth vessel 12 through the openings 12h, 13a, and 13b. I am in the air.
  • the A1N raw material 1 is disposed on the side having the opening 21 h in the crystal growth chamber 24, and the seed crystal substrate 2 is disposed on the other side.
  • nitrogen gas as a carrier gas
  • the crystal growth vessel 12, the carbon-containing gas generation chamber 23, and the crystal growth chamber 24 are heated to increase the temperature.
  • A1N source gas is generated from the A1N source 1 placed in the crystal growth chamber 24.
  • the A1N source gas flows into the carbon-containing gas generation chamber 23 through the opening 2 lh, and forms a crystal growth vessel 12 (graphite crucible) that forms the inner wall 12s of the carbon-containing gas generation chamber 23.
  • a crystal growth vessel 12 graphite crucible
  • the powerful carbon-containing gas is combined with N (nitrogen) gas flowing from the outside of the crystal growth vessel 12 through the openings 13a, 13b, and 12h.
  • the crystal growth chamber 24 is supplied to the crystal growth chamber 24 through the opening 21h.
  • Crystal growth by powerful method
  • the amount of the carbon-containing gas in the crystal growth chamber 24 during the growth of the A1N crystal can be made a certain level or more.
  • the amount of carbon-containing gas supplied into the crystal growth chamber 24 can be increased or decreased by changing the diameter of the opening 21h. That is, as the diameter of the opening 21h is increased, the amount of carbon-containing gas supplied into the crystal growth chamber 24 is increased.
  • the A1N raw material 1 is sublimated to generate an A1N raw material gas, and the A1N raw material gas is solidified to grow an A1N crystal 4 on the seed crystal substrate 2.
  • the carbon-containing gas supplied to the crystal growth chamber 24 causes the crystal non-growth region (not shown) on the seed crystal substrate 2 to disappear, and the A1N crystal 4 grows on the entire surface of the seed crystal substrate 2. . In this way, A1N crystals with large diameter and good crystallinity can be obtained.
  • the carbon in the kraft crucible that forms the inner wall of the carbon-containing gas generation chamber 23 as the carbon-containing gas, and the carbon-containing gas generation chamber 23
  • the metal oxide generated from the metal oxide 3 placed in the inside CO gas and Z or CO gas generated by the reaction with the gas is put into the crystal growth chamber 24
  • the crystal growth chamber 24 is ventilated with the carbon-containing gas generation chamber 23 through the opening 21h, and the carbon-containing gas generation chamber 23 is outside the crystal growth vessel 12 through the openings 12h, 13a, and 13b. And are ventilated.
  • the A1N raw material 1 is disposed on the side having the opening 21 h in the crystal growth chamber 24 and the seed crystal substrate 2 is disposed on the other side.
  • the metal oxide 3 is disposed in the carbon-containing gas generation chamber 23.
  • the metal oxide is not particularly limited as long as it is a metal oxide that reacts with carbon to generate CO gas and Z or CO gas. Viewpoint of generating CO gas and Z or CO gas without affecting the crystallinity of N crystal
  • N (nitrogen) gas flowing in through the gas it is supplied to the crystal growth chamber 24 through the opening 21h.
  • the amount of CO gas and Z or CO gas in the crystal growth chamber 24 during the growth of the A1N crystal can be made more than a certain level. Also, change the diameter of the opening 21h
  • the A1N raw material 1 is sublimated to generate an A1N raw material gas, and the A1N raw material gas is solidified to grow an A1N crystal 4 on the seed crystal substrate 2.
  • CO gas and Z or CO gas supplied to the crystal growth chamber 24 are used to form the seed crystal substrate 2
  • the crystal non-growth region disappears, and the A1N crystal 4 grows on the entire surface of the seed crystal substrate 2. In this way, A1N crystals having a large diameter and good crystallinity are obtained.
  • the carbon-containing gas is directly supplied from the outside of the reaction vessel 11 into the crystal growth chamber 24 in the crystal growth vessel 12 provided in the reaction vessel 11.
  • the carbon-containing gas is supplied together with the carrier gas in order to adjust the carbon content in the gas supplied into the crystal growth chamber 4.
  • N (nitrogen) gas as carrier gas N (nitrogen) gas as carrier gas
  • a gas that does not react with the carbon-containing gas such as is used.
  • a carbon-containing gas Although there is no particular limitation, CO gas or CO gas is preferred from the viewpoint of efficiently growing a large-diameter, high-crystallinity A1N crystal by eliminating the crystal non-growth region on the seed crystal substrate 2.
  • a crystal growth chamber 24 surrounded by a high temperature resistant material 13 is formed inside a crystal growth vessel 12 (not necessarily a graphite crucible).
  • the crystal growth chamber 24 is ventilated to the outside of the crystal growth vessel 12 through the openings 21h, 12h, 13a, 13b.
  • the A1N raw material 1 is disposed on the side where the opening 21 h is located in the crystal growth chamber 24, and the seed crystal substrate 2 is disposed on the other side.
  • Supply N gas and CO gas or CO gas into reaction vessel 11 outside of crystal growth vessel 12 in Fig. 3
  • the supplied N gas and CO gas or CO gas pass through openings 13a, 13b, 12h, and 21h.
  • the A1N raw material 1 is sublimated to generate an A1N raw material gas, and the A1N raw material gas is solidified to grow an A1N crystal 4 on the seed crystal substrate 2.
  • the crystal on the seed crystal substrate 2 is generated by CO gas or CO gas supplied to the crystal growth chamber 24.
  • the non-growth region disappears, and the A1N crystal 4 grows on the entire surface of the seed crystal substrate 2.
  • the A1N crystal of the present embodiment is an A1N crystal obtained by the growth method of Embodiments 1 to 3, and the carbon atom concentration in the crystal is 1 ⁇ 10 15 pieces / cm 3 or more, and 1 ⁇ 10 2Q pieces / cm 3
  • the diameter is 25.4 mm or more below.
  • the concentration of carbon atoms in the crystal By setting the concentration of carbon atoms in the crystal to be in the range of 1 X 10 15 pieces 'cm 3 or more and 1 X 10 2Q pieces' cm 3 or less, a large-diameter A1N crystal with different conductivity can be designed. Can be widely applied.
  • the A1N crystal of the present embodiment preferably has a diameter force of 8.8 mm or more.
  • the A1N crystal of the present embodiment preferably has a carbon atom concentration in the crystal of 1 ⁇ 10 17 'cm 3 or more and 1 ⁇ 10 19 cm 3 or less.
  • the concentration of carbon atoms in the crystal is SIMS (Secondary Ion Mass Spectroscopy Secondary ion mass spectrometry).
  • the A1N crystal substrate of this embodiment is obtained by processing the A1N crystal of Embodiment 3.
  • processing refers to cutting out a substrate having a predetermined thickness from the A1N crystal and performing surface treatment on the main surface.
  • Surface treatment means removal of a work-affected layer caused by polishing, in addition to polishing of the main surface.
  • the A1N crystal substrate thus obtained can be widely applied to various semiconductor devices.
  • the present example is an example corresponding to the second embodiment.
  • a graphite crucible as a crystal growth vessel 12 in which a crystal growth chamber 24 having an inner diameter of 60 mm and a height of 70 mm and a carbon-containing gas generation chamber 23 having an inner diameter of 60 mm and a height of 10 mm are provided.
  • A1N crystals were grown.
  • the diameter of the opening 21h between the crystal growth chamber 24 and the carbon-containing gas generation chamber 23 is 8 mm
  • the diameter of the opening 12h of the carbon-containing gas generation chamber 23 (part of the crystal growth vessel 12). was 3 mm
  • the diameters of the openings 13 a and 13 b of the heat insulating material 13 were 5 mm.
  • N gas is introduced into the reaction vessel 11 (outside the crystal growth vessel 12).
  • the crystal growth vessel 12, the carbon-containing gas generation chamber 23, and the crystal growth chamber 24 are heated so that the lower surface temperature of the crystal growth vessel 12 (equivalent to the temperature for sublimating the A1N raw material 1) is 2000 ° C, and the upper surface of the crystal growth vessel 12
  • the A1 N crystal was grown at a temperature (corresponding to the growth temperature of A1N crystal 4) of 1900 ° C.
  • the crystal growth time was 30 hours.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm and a thickness of 3 mm, and a good morphology.
  • the half-width of the diffraction peak of the XRD (X-ray diffraction) opening curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration of the A1N in the crystal was measured by SIMS, 6 X 10 18 atoms • cm (? Rarely.
  • This example is an example corresponding to the first embodiment.
  • an A1N crystal was grown in the same manner as in Example 1 except that no metal oxide (not shown) was placed in the carbon-containing gas generation chamber 23.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm and a thickness of 3 mm, and good morphology.
  • the half-width of the diffraction peak of the XRD rocking force curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration in the A1N crystal was 2 ⁇ 10 18 'cm- 3 '.
  • This example is an example corresponding to the first embodiment.
  • no metal oxide (not shown) is placed in the carbon-containing gas generation chamber 23, and the seed crystal substrate 2 is a 50.8 mm diameter and 0.5 mm thick A1N seed crystal substrate (crystal An A1N crystal was grown in the same manner as in Example 1 except that the (0002) plane was used as the growth plane.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm x 3 mm in thickness and good morphology.
  • the half-width of the diffraction peak of the XRD rocking force curve on the (0002) plane of this A1N single crystal was 50 arcsec, and the crystallinity was very good.
  • the carbon atom concentration in the A1N crystal was 5 ⁇ 10 17 'cm- 3 '.
  • This example is an example corresponding to the third embodiment.
  • an A1N crystal was grown using a graphite crucible as crystal growth vessel 12 in which crystal growth chamber 24 having an inner diameter of 60 mm and a height of 70 mm was provided.
  • the diameter of the opening 21h of the crystal growth chamber 24 was 3 mm
  • the diameter of the opening 12h of the crystal growth vessel 12 was 3 mm
  • the diameter of the openings 13a and 13b of the heat insulating material 13 was 5 mm.
  • 30 g of A1N raw material 1 on the opening 21 side (lower side) in the crystal growth chamber 24 is disposed, and the seed crystal substrate 2 has a diameter of 50.
  • An 8 mm X 0.5 mm thick 6 H-SiC seed crystal substrate (with a crystal growth plane of (0001) plane (Si plane)) was placed.
  • a mixed gas of N gas and CO gas is introduced into the reaction vessel 11.
  • A1 N raw material 1 The A1N crystal was grown at 2000 ° C. (corresponding to the temperature) and the top surface temperature of the crystal growth vessel 12 (corresponding to the growth temperature of A1N crystal 4) at 1900 ° C.
  • the partial pressure ratio of CO gas to the total pressure of the gas in the reaction chamber 11 was 1 X 10- 4.
  • the partial pressure of N gas compared with the partial pressure of N gas
  • the partial pressure ratio of CO gas to the partial pressure is extremely small instrument total pressure of the gas in the resulting crystal growth chamber 24 of A1 gas Te is approximately IX 10- 4.
  • the crystal growth time was 30 hours. After the crystal growth, the crystal was cooled to room temperature (for example, 25 ° C.), and the A1N crystal was taken out from the crystal growth chamber 24.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm and a thickness of 3 mm, and a good morphology.
  • the half-width of the diffraction peak of the XRD (X-ray diffraction) opening curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration in the A1N crystal was 4 ⁇ 10 16 ′ cm 3 .
  • Example 4 The same as Example 4 except that the ratio of the partial pressure of CO gas to the total pressure of the mixed gas was 0.01 and the ratio of the partial pressure of CO gas to the total pressure of the gas in the reaction vessel 11 was 0.01. A1N crystals were grown. In the conditions of this example, A1 gas compared to the partial pressure of N gas.
  • the ratio of the partial pressure of CO gas to the total pressure of the gas in the crystal growth chamber 24 is approximately 0.01.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm and a thickness of 3 mm, and a good morphology.
  • the half-width of the diffraction peak of the XRD (X-ray diffraction) opening curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration in the A1N crystal was 1.5 ⁇ 10 18 ′ cm 3 .
  • Example 6 The same as Example 4 except that the ratio of the partial pressure of CO gas to the total pressure of the mixed gas was 0.85, and the ratio of the partial pressure of CO gas to the total pressure of the gas in the reaction vessel 11 was 0.85. A1N crystals were grown. In the conditions of this example, A1 gas compared to the partial pressure of N gas.
  • the ratio of the partial pressure of CO gas to the total pressure of the gas in the crystal growth chamber 24 is approximately 0.85.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm X thickness of 3 mm and good morphology.
  • the half-width of the diffraction peak of the XRD (X-ray diffraction) opening curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration in the A1N crystal was 7 ⁇ 10 19 'cm- 3 '.
  • Example 4 except that the ratio of the partial pressure of CO gas to the total pressure of the mixed gas was 0.95, and the ratio of the partial pressure of CO gas to the total pressure of the gas in the reaction vessel 11 was 0.95. Then, A1 N crystal was grown. In the conditions of this example, A1 compared to the partial pressure of N gas
  • the partial pressure of the gas is extremely small.
  • the ratio of the partial pressure of CO gas to the total pressure of the gas in the crystal growth chamber 24 is approximately 0.95.
  • the obtained A1N crystal had a large diameter of 48.8 mm in diameter and 3 mm in thickness, the morphology was deteriorated and polycrystallization was observed.
  • the carbon atom concentration in this A1N crystal is 3
  • the pressure in the vessel 11 is set to 931 hPa (700 Torr), the crystal growth vessel 12 and the crystal growth chamber 24 (see Fig. 4) are heated, and the lower surface temperature of the crystal growth vessel 12 (the temperature at which the A1N raw material 1 is sublimated).
  • A1N crystal was grown at 2000 ° C and the top surface temperature of the crystal growth vessel 12 (corresponding to the growth temperature of A1N crystal 4) at 1900 ° C.
  • the ratio of the partial pressure of CO gas to the total pressure of the gas in the reaction vessel 11 (corresponding to the above mixed gas) was set to 0.01.
  • the partial pressure of A1 gas is extremely small compared to the partial pressure of N gas.
  • the ratio of the partial pressure of the CO gas to the total pressure of the gas in the crystal growth chamber 24 is approximately 0.01.
  • the crystal growth time was 30 hours. After crystal growth, cool to room temperature (for example, 25 ° C) The A1N crystal was taken out from the crystal growth chamber 24.
  • the obtained A1N crystal was a single crystal having a large diameter of 48.8 mm and a thickness of 3 mm, and a good morphology.
  • the half-width of the diffraction peak of the XRD (X-ray diffraction) opening curve on the (0002) plane of this A1N single crystal was lOOarcsec, and the crystallinity was also good.
  • the carbon atom concentration in the A1N crystal was 5.5 ⁇ 10 18 'cm ⁇ 3 .
  • the ratio of the partial pressure of CO gas to the total pressure of the mixed gas is 0.95, and the gas in the reaction vessel 11
  • N crystals were grown. Note that, under the conditions of this example, the partial pressure of the A1 gas is extremely small compared to the partial pressure of the N2 gas. As a result, the CO gas with respect to the total pressure of the gas in the crystal growth chamber 24 is reduced.
  • the obtained A1N crystal had a large diameter of 48.8 mm x 3 mm in thickness, but the morphology was deteriorated and polycrystallization was observed.
  • the carbon atom concentration in this A1N crystal is 5.
  • An A1N crystal was grown in the same manner as in Example 7 except that the ratio of the two partial pressures was substantially 0).
  • Example 2 After slicing the A1N crystal obtained in Example 1 in parallel with the main surface of the seed crystal substrate, and polishing this sliced main surface, the cache-affected layer generated by polishing was removed by etching, An A1N crystal substrate having a diameter of 30 mm and a thickness of 1 mm was obtained.
  • RMS within 10 m square of the main surface of this A1N crystal substrate (Root Mean Square: the square root of the average of the squares of the deviation from the average surface to the measurement surface, the same shall apply hereinafter)
  • the surface roughness is 50 nm (500 A) or less Yes, it was applicable to various semiconductor devices.
  • RMS is an AFM (Atomic Force Microscope). Measurement was performed using a force microscope.
  • Example 2 The A1N crystal obtained in Example 2 was sliced, polished and etched in the same manner as in Example 8 to obtain an A1N crystal substrate having a diameter of 30 mm and a thickness of 1 mm.
  • the RMS surface roughness within 10 ⁇ m square of the main surface of this A1N crystal substrate was 50 nm (500 A) or less, which was applicable to various semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 各種の半導体デバイスに適用可能な大口径で結晶性のよいAlN結晶のおよびその成長方法ならびにAlN結晶基板を提供する。  気相成長法により、反応容器内に設けられた結晶成長容器12内の結晶成長室24内に配置した種結晶基板2上にAlN結晶4を成長させる方法であって、結晶成長の際に、結晶成長室24内にカーボン含有ガスを供給することを特徴とするAlN結晶の成長方法。

Description

明 細 書
AIN結晶およびその成長方法ならびに AIN結晶基板
技術分野
[0001] 本発明は、各種の半導体デバイスに適用可能な大口径で結晶性のよい A1N結晶 およびその成長方法ならびに A1N結晶基板に関する。
背景技術
[0002] A1N結晶は、その優れた半導体特性力 発光素子、電子素子および半導体センサ などの各種半導体デバイスを形成するための材料として非常に有用なものである。こ のため、大口径で結晶性のよい A1N結晶を成長させることが重要となる。
[0003] 力かる A1N結晶を成長させるための方法としては、昇華法、 HVPE (ハイドライド気 相成長)法、 MBE (分子線ェピタキシ)法または MOCVD (有機金属化学気相堆積) 法などの各種気相成長法が提案されている。これらの方法の中でも特に昇華法は、 X線回折の半値幅が小さく結晶性のよ!、A1N結晶が得られ、成長速度が高!、と!/、う 観点から、好ましく用いられる。ここで、昇華法とは、結晶原料を昇華させた後、再度 固化させて結晶を成長させる方法を ヽぅ。
[0004] 力かる昇華法にぉ 、ては、種結晶基板として A1N、 SiCなどの化合物半導体力 形 成される化合物半導体基板が用いられる。特に、 A1N種結晶、 SiC種結晶は、成長 させる A1N結晶と格子定数の整合性がよぐ耐熱性に優れる観点から、 A1Nまたは Si Cカゝら形成されている種結晶基板上に AIN結晶を成長させることが検討されている。 (たとえば、非特許文献 1および非特許文献 2を参照)。
[0005] 上記の昇華による A1N結晶の成長において、 A1N種結晶基板または SiC種結晶基 板などの化合物半導体基板上に、 A1N結晶が成長しない領域 (結晶不成長領域と いう、以下同じ)が存在するなど、大口径で結晶性のよい A1N結晶を得ることが困難 であった。また、特に、 SiC種結晶基板上を用いる場合には、 SiC結晶の昇華温度は 2300°C程度であるため、 A1N結晶の成長温度を高くすることができず、 A1N結晶の 成長速度が低くなるという問題もあった。
非特許文献 1: V. Noveski, "Growth of AIN crystals οηΑΙΝ/SiC seeds by AIN powder sublimation in nitrogen atmosphere", MRS Internet J. Nitride Semicond. Res. 9, 2 ( 2004)
非特許文献 2: Lianghong Liu, "Growth Mode and Defects in AluminumNitride Subli med on (0001) 6H- SiC Substrates", MRSlnternet J. Nitride Semicond. Res. 6, 7 (20 01)
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、各種の半導体デバイスに適用可能な大口径で結晶性のよい A1N結晶 のおよびその成長方法ならびに A1N結晶基板を提供することを目的とする。
課題を解決するための手段
[0007] 本発明は、気相成長法により、反応容器内に設けられた結晶成長容器内の結晶成 長室内に配置した種結晶基板上に A1N結晶を成長させる方法であって、結晶成長 の際に、結晶成長室内にカーボン含有ガスを供給することを特徴とする A1N結晶の 成長方法である。
[0008] 本発明に力かる A1N結晶の成長方法にぉ 、て、種結晶基板を SiC種結晶基板また は A1N種結晶基板とすることができる。また、結晶成長の際の反応容器内のガスの全 圧に対するカーボン含有ガスの分圧の比を 2 X 10— 5以上 0. 9以下とすることができる 。また、カーボン含有ガスは、カーボンと A1N原料との反応により生成させることがで きる。また、カーボン含有ガスを形成するためのカーボンの供給源を結晶成長容器を 形成するグラフアイトとすることができる。また、上記のカーボン含有ガスは COガスま たは COガスを含むことができる。ここで、 COガスおよび COガスはカーボンと金属
2 2
酸ィ匕物との反応により生成させることができる。また、カーボン含有ガスを反応容器の 外部から供給することができる。ここで、カーボン含有ガスは COガスまたは COガス
2 を含むことができる。
[0009] また、本発明は、上記のいずれかの成長方法により得られた A1N結晶であって、結 晶中のカーボン原子濃度が 1 X 1015個 'cm 3以上 1 X 102°個 'cm 3以下である直径 力 4mm以上の A1N結晶である。本発明に力かる A1N結晶において、その直径 を 48. 8mm以上とすることができる。 [0010] また、本発明は、上記の A1N結晶をカ卩ェして得られた A1N結晶基板である。
発明の効果
[0011] 本発明によれば、大口径で結晶性のよい A1N結晶およびその成長方法ならびに A1 N結晶基板を提供することができる。
図面の簡単な説明
[0012] [図 1]本発明に力かる A1N結晶の成長方法にぉ 、て用いられる昇華炉の概略を示す 模式図である。
[図 2]本発明にかかる A1N結晶の成長方法の一実施形態において用いられる昇華炉 における結晶成長容器の構造の一例を示す断面模式図である。
[図 3]本発明にかかる A1N結晶の成長方法の他の実施形態において用いられる昇華 炉における結晶成長容器の構造の一例を示す断面模式図である。
[図 4]本発明にかかる A1N結晶の成長方法のさらに他の実施形態において用いられ る昇華炉における結晶成長容器の構造の一例を示す断面模式図である。
符号の説明
[0013] 1 A1N原料
2 種結晶基板
3 金属酸化物
4 A1N結晶
10 昇華炉
11 反応容器
11a ガス導入口
l ib ガス排気口
12 結晶成長容器
12h, 13a, 13b, 21h 開口部
12s 内壁
13 断熱材
14 高周波加熱コイル
15 放射温度計 21 耐高温材料
23 カーボン含有ガス生成室
24 結晶成長室。
発明を実施するための最良の形態
[0014] 本発明に力かる A1N結晶の成長方法は、図 1〜図 4を参照して、気相成長法により 、反応容器 11内に設けられた結晶成長容器 12内の結晶成長室 24内に配置した種 結晶基板 2上に A1N結晶 4を成長させる方法であって、結晶成長の際に、結晶成長 室 24内にカーボン含有ガスを供給することを特徴とする A1N結晶の成長方法である 。結晶成長室 24内にカーボン含有ガスを供給することにより、種結晶基板 2上の結 晶不成長領域を消滅させて A1N結晶 4を種結晶基板 2の表面の全面に結晶成長さ せることにより、大口径で結晶性のよい A1N結晶 4の成長が可能となる。
[0015] ここで、種結晶基板 2としては、 A1N結晶 4を成長させることが可能な基板であれば 特に制限はないが、成長させる A1N結晶 4と格子定数の整合性が高い観点から、 Si C種結晶基板または A1N種結晶基板が好ましい。ここで、 SiC種結晶基板は A1N種 結晶基板よりもさらに口径の大きい種結晶基板の入手が容易であるため、さらに大口 径で結晶性のよい A1N結晶の成長に適している。また、 A1N種結晶基板は、 SiC種 結晶基板よりもさらに A1N結晶との格子定数の整合性が高いため、より結晶性のよい A1N結晶の成長に適している。
[0016] 本発明にかかる A1N結晶の成長方法は、その目的に反しない限り、昇華法、、 HV PE法、 MBE法または MOCVD法などの各種気相成長法に適用することができる。 以下、 A1N結晶の最も代表的な成長方法である昇華法を例にして説明する。
[0017] 昇華法とは、結晶原料を昇華させた後、再度固化させて結晶を成長させる方法を いい、たとえば、図 1を参照して、昇華炉 10が用いられる。昇華炉 10は、高周波加熱 方式の縦型昇華炉であり、反応容器 11内の中央部には外部との通気が確保されて いる結晶成長容器 12が設けられ、結晶成長容器 12の周りに開口部 13a, 13bを有し 外部との通気が確保されている断熱材 13が設けられている。また、反応容器 11の外 側中央部には結晶成長容器 12を加熱するための高周波加熱コイル 14が設けられて いる。さらに、反応容器 11の端部には、結晶成長容器 12の外部に窒素ガスを供給 するためのガス導入口 11aおよびガス排気口 l ibと、結晶成長容器 12の下面および 上面の温度を測定するための放射温度計 15が設けられている。
[0018] また、図 2〜図 4を参照して、上記結晶成長容器 12内には、 Ta、 Wなどの高融点金 属または TaC、WCなどの炭化金属などの耐高温材料 21で形成された結晶成長室 2 4が設けられており、この結晶成長室 24内の一方側に A1N原料 1が、他方側に種結 晶基板 2が配置される。ここで、結晶成長室 24の内部と、結晶成長容器 12の内部と 、結晶成長容器 12の外部とは、開口部 21h, 12h, 13a, 13bによって、通気が確保 されている。なお、図 2〜図 4の間の相違については後で説明する。
[0019] 図 1〜図 4を参照して、上記の昇華炉 10を用いて、たとえば、以下のようにして A1N 結晶を成長させる。結晶成長容器 12内の結晶成長室 24内の一方側に A1N原料 1を 、他方側に種結晶基板 2を配置して、反応容器 11内に窒素ガスを供給しながら高周 波加熱コイル 14を用いて結晶成長室 24内の温度を上昇させて、結晶成長室 24内 の A1N原料 1側の温度を種結晶基板 2側の温度より高く維持することによって、 A1N 原料 1を昇華させて、種結晶基板 2上で再度固化させて A1N結晶を成長させる。
[0020] 本発明に力かる A1N結晶の成長方法において、結晶成長の際の反応容器 11内の ガスの全圧に対するカーボン含有ガスの分圧の比は 2 X 10— 5以上 0. 9以下であるこ とが好ましい。カーボン含有ガスの分圧の比が 2 X 10— 5未満または 0. 9を超える場合 には、成長させる A1N結晶は、モフォロジ一が悪ィ匕し多結晶化する傾向がある。ここ で、反応容器内のガス中のカーボン含有ガスの濃度 (分圧比に等しい)は、四重極質 量分析計を用いて測定することができる。
[0021] 本発明に力かる A1N結晶の成長方法において用いられるカーボン含有ガスは、特 に制限はないが、種結晶基板 2上の結晶不成長領域を消滅させて大口径で結晶性 のよい A1N結晶を効率よく成長させる観点から、 COガスまたは COガスを含むことが
2
好ましぐ COガスまたは COガスであることがより好ましい。これらのうち、上記と同様
2
の観点から、 COガスが特に好ましい。
[0022] また、本発明に力かる A1N結晶の成長方法において、図 1〜図 4を参照して、カー ボン含有ガスの供給源は結晶成長容器 12を形成するグラフアイトであることが好まし い。 結晶成長容器 12として耐高温性および機械的強度が高いグラフアイト坩堝を用いて 、高温雰囲気下、 A1N原料 1 (図 2)から発生した A1N原料ガス、または、金属酸化物 3 (図 3)カゝら発生した金属酸ィ匕物ガスと、グラフアイト坩堝 (結晶成長容器 12)中の力 一ボンとを反応させてカーボン含有ガスを生成させることができる。
[0023] ここで、結晶成長室 24内にカーボン含有ガスを供給する形態について、さらに具体 的に説明する。
[0024] (実施形態 1)
本実施形態は、図 1および図 2を参照して、カーボン含有ガス生成室 23の内壁を形 成するクラファイト坩堝 (結晶成長容器 12)中のカーボンと結晶成長室 24内に配置さ れた A1N原料 1から発生した A1N原料ガスとの反応により生成するカーボン含有ガス を結晶成長室 24内に供給することを特徴とする。
[0025] 本実施形態においては、図 2を参照して、結晶成長容器 12 (グラフアイト坩堝)の内 部に、耐高温材料 21で囲まれた結晶成長室 24と、耐高温材料 21および結晶成長 容器 12で囲まれたカーボン含有ガス生成室 23とが形成されている。ここで、結晶成 長室 24は開口部 21hを介してカーボン含有ガス生成室 23と通気しており、カーボン 含有ガス生成室 23は開口部 12h, 13a, 13bを介して結晶成長容器 12の外部と通 気している。
[0026] 本実施形態においては、図 1および図 2を参照して、結晶成長室 24内の開口部 21 hのある側に A1N原料 1を、他方の側に種結晶基板 2を配置し、反応容器 11内(図 2 においては結晶成長容器 12の外部)にキャリアガスとして窒素ガスを供給しながら、 結晶成長容器 12、カーボン含有ガス生成室 23および結晶成長室 24を加熱すること により、高温 (たとえば 1700°C〜2300°C程度)雰囲気下で、結晶成長室 24内に配 置された A1N原料 1から A1N原料ガスが発生する。かかる A1N原料ガスは、開口部 2 lhを介してカーボン含有ガス生成室 23に流入し、カーボン含有ガス生成室 23の内 壁 12sを形成する結晶成長容器 12 (グラフアイト坩堝)を形成するグラフアイト中の力 一ボンと反応して、カーボン含有ガスを生成する。力かるカーボン含有ガスは、結晶 成長容器 12の外部から開口部 13a, 13b, 12hを介して流入した N (窒素)ガスととも
2
に、開口部 21hを介して結晶成長室 24に供給される。力かる方法により、結晶成長 室 24内にカーボン含有ガスを供給することにより、 A1N結晶の成長の際の結晶成長 室 24内のカーボン含有ガスの量を一定以上にすることができる。また、開口部 21hの 口径を変えることにより、結晶成長室 24内に供給されるカーボン含有ガスの量を増 減させることができる。すなわち、開口部 21hの口径を大きくするほど、結晶成長室 2 4内に供給されるカーボン含有ガスの量が増大する。
[0027] 結晶成長室 24内において、 A1N原料 1が昇華して A1N原料ガスが発生し、この A1 N原料ガスが固化することにより種結晶基板 2上に A1N結晶 4が成長する。この際、 結晶成長室 24に供給されたカーボン含有ガスにより、種結晶基板 2上の結晶不成長 領域(図示せず)が消滅して、種結晶基板 2の表面全体に A1N結晶 4が成長する。こ うして、大口径で結晶性のよい A1N結晶が得られる。
[0028] (実施形態 2)
本実施形態は、図 1および図 3を参照して、カーボン含有ガスとして、カーボン含有 ガス生成室 23の内壁を形成するクラファイト坩堝 (結晶成長容器 12)中のカーボンと カーボン含有ガス生成室 23内に配置された金属酸ィ匕物 3から発生した金属酸ィ匕物 ガスとの反応により生成する COガスおよび Zまたは COガスを結晶成長室 24内に
2
供給することを特徴とする。
[0029] 本実施形態においては、実施形態 1と同様に、図 3を参照して、結晶成長容器 12 ( グラフアイト坩堝)の内部に、耐高温材料 21で囲まれた結晶成長室 24と、耐高温材 料 21および結晶成長容器 12で囲まれたカーボン含有ガス生成室 23とが形成されて いる。
ここで、結晶成長室 24は開口部 21hを介してカーボン含有ガス生成室 23と通気して おり、カーボン含有ガス生成室 23は開口部 12h, 13a, 13bを介して結晶成長容器 1 2の外部と通気している。
[0030] 本実施形態においては、図 1および図 3を参照して、結晶成長室 24内の開口部 21 hのある側に A1N原料 1を、他方の側に種結晶基板 2を配置する点については、実施 形態 1と同様であるが、さらにカーボン含有ガス生成室 23内に金属酸ィ匕物 3を配置 する点で実施形態 1と異なる。ここで、金属酸ィ匕物としては、カーボンと反応して CO ガスおよび Zまたは COガスを生成する金属酸ィ匕物であれば特に制限はないが、 A1 N結晶の結晶性に影響を与えず COガスおよび Zまたは COガスを生成できる観点
2
から、 Al Oなどが好ましく挙げられる。
2 3
[0031] 反応容器 11内(図 3においては結晶成長容器 12の外部)にキャリアガスとして窒素 ガスを供給しながら、結晶成長容器 12、カーボン含有ガス生成室 23および結晶成 長室 24を加熱することにより、高温 (たとえば 1700°C〜2300°C程度)雰囲気下で、 カーボン含有ガス生成室 23内に配置された金属酸化物 3から金属酸化物ガスが発 生する。かかる金属酸化物ガスは、カーボン含有ガス生成室 23の内壁 12sを形成す る結晶成長容器 12 (グラフアイト坩堝)を形成するグラフアイト中のカーボンと反応して 、カーボン含有ガスである COガスおよび Zまたは COガスを生成する。かかる COガ
2
スおよび Zまたは COガスは、結晶成長容器 12の外部から開口部 13a, 13b, 12h
2
を介して流入した N (窒素)ガスとともに、開口部 21hを介して結晶成長室 24に供給
2
される。力かる方法により、結晶成長室 24内に COガスおよび/または COガスを供
2 給することにより、 A1N結晶の成長の際の結晶成長室 24内の COガスおよび Zまた は COガスの量を一定以上にすることができる。また、開口部 21hの口径を変えること
2
により、結晶成長室 24内に供給される COガスおよび Zまたは COガスの量を増減さ
2
せることができる。すなわち、開口部 21hの口径を大きくするほど、結晶成長室 24内 に供給される COガスおよび Zまたは COガスの量が増大する。
2
[0032] 結晶成長室 24内において、 A1N原料 1が昇華して A1N原料ガスが発生し、この A1 N原料ガスが固化することにより種結晶基板 2上に A1N結晶 4が成長する。この際、 結晶成長室 24に供給された COガスおよび Zまたは COガスにより、種結晶基板 2上
2
の結晶不成長領域(図示せず)が消滅して、種結晶基板 2の表面全体に A1N結晶 4 が成長する。こうして、大口径で結晶性のよい A1N結晶が得られる。
[0033] (実施形態 3)
本実施形態は、反応容器 11の外部から反応容器 11内に設けられた結晶成長容器 12内の結晶成長室 24内に直接カーボン含有ガスを供給する実施形態である。ここ で、カーボン含有ガスは、結晶成長室 4内に供給されるガス中のカーボン含有量を調 節するために、キャリアガスとともに供給される。キャリアガスとしては、 N (窒素)ガス
2
などのカーボン含有ガスと反応しないガスが用いられる。また、カーボン含有ガスとし ては、特に制限はないが、種結晶基板 2上の結晶不成長領域を消滅させて大口径で 結晶性のよい A1N結晶を効率よく成長させる観点から、 COガスまたは COガスが好
2 ましく用いられる。本実施形態においては、図 4を参照して、結晶成長容器 12 (グラフ アイト坩堝でなくともよい)の内部に、耐高温材料 13によって囲まれた結晶成長室 24 が形成されている。結晶成長室 24は、開口部 21h, 12h, 13a, 13bを介して結晶成 長容器 12の外部と通気している。
[0034] 本実施形態においては、図 1および図 4を参照して、結晶成長室 24内の開口部 21 hのある側に A1N原料 1を、他方の側に種結晶基板 2を配置し、反応容器 11内(図 3 においては結晶成長容器 12の外部)に Nガスと COガスまたは COガスとを供給す
2 2
る。
供給された Nガスと COガスまたは COガスとは、開口部 13a, 13b, 12h, 21hを介
2 2
して、結晶成長室 24内に供給される。
[0035] 結晶成長室 24内において、 A1N原料 1が昇華して A1N原料ガスが発生し、この A1 N原料ガスが固化することにより種結晶基板 2上に A1N結晶 4が成長する。この際、 結晶成長室 24に供給された COガスまたは COガスにより、種結晶基板 2上の結晶
2
不成長領域(図示せず)が消滅して、種結晶基板 2の表面全体に A1N結晶 4が成長 する。
こうして、大口径で結晶性のよい A1N結晶が得られる。
[0036] (実施形態 4)
本実施形態の A1N結晶は、実施形態 1〜3の成長方法によって得られた A1N結晶 であって、結晶中のカーボン原子濃度が 1 X 1015個 'cm 3以上 1 X 102Q個 'cm 3以下 で直径が 25. 4mm以上である。結晶中のカーボン原子濃度を 1 X 1015個 'cm 3以上 1 X 102Q個 'cm 3以下の範囲とすることにより、導電性の異なる大口径の A1N結晶を 設計できるため、各種半導体デバイスに広く適用することができる。結晶の口径をさら に大きくする観点から、本実施形態の A1N結晶は、その直径力 8. 8mm以上である ことが好ましい。また、結晶性を高める観点から、本実施形態の A1N結晶は、結晶中 のカーボン原子濃度が 1 X 1017個 'cm 3以上 1 X 1019個 cm 3以下であることが好まし い。ここで、結晶中のカーボン原子濃度は SIMS (Secondary Ion Mass Spectroscopy ;二次イオン質量分析)によって測定できる。
[0037] (実施形態 5)
本実施形態の A1N結晶基板は、実施形態 3の A1N結晶を加工して得られたもので ある。ここで、加工するとは、 A1N結晶から所定の厚さの基板を切り出し、その主面の 表面処理を行なうことをいう。表面処理とは、主面の研磨の他、研磨などにより生じた 加工変質層を除去することをいう。このようにして得られた A1N結晶基板は、各種半 導体デバイスに広く適用することができる。 実施例
[0038] (実施例 1)
本実施例は、上記の実施形態 2に対応する例である。図 3を参照して、内径 60mm X高さ 70mmの結晶成長室 24と内径 60mm X高さ 10mmのカーボン含有ガス生成 室 23が内部に設けられた結晶成長容器 12としてのグラフアイト坩堝を用 、て、 A1N 結晶を成長させた。ここで、結晶成長室 24とカーボン含有ガス生成室 23との間の開 口部 21hの直径は 8mmであり、カーボン含有ガス生成室 23 (結晶成長容器 12の一 部)の開口部 12hの直径は 3mmであり、断熱材 13の開口部 13a, 13bの直径は 5m mであった。
[0039] まず、結晶成長室 24内の開口部 21h側(下側)〖こ A1N原料 1を 30g配置し、結晶成 長室 24内の他方側(上側)に種結晶基板 2として直径 50. 8mm X厚さ 0. 5mmの 6 H-SiC種結晶基板 (結晶成長面が(0001)面(Si面))を配置した。また、カーボン含 有ガス発生室 23内に、金属酸ィ匕物 3として、 Al O粉末を 3g配置した。
2 3
[0040] 次に、図 1および図 3を参照して、反応容器 11内(結晶成長容器 12の外部)に Nガ
2 スを流量 200sccm (標準状態(0°C、 1013hPa)におけるガスの体積流量単位(cm3 Zmin)をいう、以下同じ)で供給して、反応容器 11内の圧力を 931hPa (700Torr) として、結晶成長容器 12、カーボン含有ガス生成室 23および結晶成長室 24を加熱 して、結晶成長容器 12の下面温度 (A1N原料 1を昇華させる温度に相当)を 2000°C 、結晶成長容器 12の上面温度 (A1N結晶 4の成長温度に相当)を 1900°Cとして、 A1 N結晶を成長させた。結晶成長時間は 30時間とした。結晶成長後、室温 (たとえば、 25°C)まで冷却して、 A1N結晶を結晶成長室 24から取り出した。 [0041] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRD (X線回折)の口 ッキングカーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また 、この A1N結晶中のカーボン原子濃度は、 SIMSによって測定したところ、 6 X 1018個 •cm (?めった。
[0042] (実施例 2)
本実施例は、上記の実施形態 1に対応する例である。図 2を参照して、カーボン含 有ガス発生室 23内に金属酸化物(図示せず)を配置しな力つた以外は、実施例 1と 同様にして、 A1N結晶を成長させた。
[0043] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRDのロッキング力 ーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また、この A1N 結晶中のカーボン原子濃度は、 2 X 1018個 'cm— 3であった。
[0044] (実施例 3)
本実施例は、上記の実施形態 1に対応する例である。図 2を参照して、カーボン含 有ガス発生室 23内に金属酸化物(図示せず)を配置せず、種結晶基板 2として直径 50. 8mmX厚さ 0. 5mmの A1N種結晶基板(結晶成長面が(0002)面)を用いた以 外は、実施例 1と同様にして、 A1N結晶を成長させた。
[0045] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRDのロッキング力 ーブの回折ピークの半値幅は 50arcsecと、結晶性も極めて良好であった。また、こ の A1N結晶中のカーボン原子濃度は、 5 X 1017個 'cm— 3であった。
[0046] (実施例 4)
本実施例は、上記の実施形態 3に対応する例である。図 4を参照して、内径 60mm X高さ 70mmの結晶成長室 24が内部に設けられた結晶成長容器 12としてのグラフ アイト坩堝を用いて、 A1N結晶を成長させた。ここで、結晶成長室 24の開口部 21hの 直径は 3mm、結晶成長容器 12の開口部 12hの直径は 3mmであり、断熱材 13の開 口部 13a, 13bの直径は 5mmであった。 [0047] まず、結晶成長室 24内の開口部 21側(下側)〖こ A1N原料 1を 30g配置し、結晶成 長室 24内の他方側(上側)に種結晶基板 2として直径 50. 8mm X厚さ 0. 5mmの 6 H-SiC種結晶基板 (結晶成長面が(0001)面(Si面) )を配置した。
[0048] 次に、図 1および図 4を参照して、反応容器 11内に Nガスと COガスとの混合ガスを
2
流量 200sccmで供給して、反応容器 11内の圧力を 931hPa (700Torr)として、結 晶成長容器 12および結晶成長室 24を加熱して、結晶成長容器 12の下面温度 (A1 N原料 1を昇華させる温度に相当)を 2000°C、結晶成長容器 12の上面温度 (A1N結 晶 4の成長温度に相当)を 1900°Cとして、 A1N結晶を成長させた。
ここで、反応容器 11内におけるガス(上記の混合ガスに相当)の全圧に対する COガ スの分圧の比を 1 X 10— 4とした。本実施例の条件においては、 Nガスの分圧に比べ
2
て A1ガスの分圧は極めて小さぐその結果結晶成長室 24内のガスの全圧に対する C Oガスの分圧の比は、ほぼ I X 10— 4となる。結晶成長時間は 30時間とした。結晶成長 後、室温 (たとえば、 25°C)まで冷却して、 A1N結晶を結晶成長室 24から取り出した。
[0049] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRD (X線回折)の口 ッキングカーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また 、この A1N結晶中のカーボン原子濃度は、 4 X 1016個 'cm 3であった。
[0050] (実施例 5)
混合ガスの全圧に対する COガスの分圧の比を 0. 01として反応容器 11内のガスの 全圧に対する COガスの分圧の比を 0. 01とした以外は、実施例 4と同様にして A1N 結晶を成長させた。なお、本実施例の条件においては、 Nガスの分圧に比べて A1ガ
2
スの分圧は極めて小さぐその結果結晶成長室 24内のガスの全圧に対する COガス の分圧の比は、ほぼ 0. 01となる。
[0051] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRD (X線回折)の口 ッキングカーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また 、この A1N結晶中のカーボン原子濃度は、 1. 5 X 1018個 'cm 3であった。
[0052] (実施例 6) 混合ガスの全圧に対する COガスの分圧の比を 0. 85として反応容器 11内のガスの 全圧に対する COガスの分圧の比を 0. 85とした以外は、実施例 4と同様にして A1N 結晶を成長させた。なお、本実施例の条件においては、 Nガスの分圧に比べて A1ガ
2
スの分圧は極めて小さぐその結果結晶成長室 24内のガスの全圧に対する COガス の分圧の比は、ほぼ 0. 85となる。
[0053] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRD (X線回折)の口 ッキングカーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また 、この A1N結晶中のカーボン原子濃度は、 7 X 1019個 'cm— 3であった。
[0054] (実施例 7)
混合ガスの全圧に対する COガスの分圧の比を 0. 95として反応容器 11内のガスの 全圧に対する COガスの分圧の比を 0. 95としたこと以外は、実施例 4と同様にして A1 N結晶を成長させた。なお、本実施例の条件においては、 Nガスの分圧に比べて A1
2
ガスの分圧は極めて小さぐその結果結晶成長室 24内のガスの全圧に対する COガ スの分圧の比は、ほぼ 0. 95となる。
[0055] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であつたが、モフォロジ 一が悪化し、多結晶化が見られた。また、この A1N結晶中のカーボン原子濃度は、 3
. 2 X 1020個 'cm— 3であった。
[0056] (実施例 8)
反応容器 11に Nガスと COガスの混合ガスを流量 200sccmで供給して、反応容
2 2
器 11内の圧力を 931hPa (700Torr)として、結晶成長容器 12および結晶成長室 2 4 (図 4を参照)を加熱して、結晶成長容器 12の下面温度 (A1N原料 1を昇華させる温 度に相当)を 2000°C、結晶成長容器 12の上面温度 (A1N結晶 4の成長温度に相当 )を 1900°Cとして、 A1N結晶を成長させた。ここで、反応容器 11内におけるガス(上 記の混合ガスに相当)の全圧に対する COガスの分圧の比を 0. 01とした。本実施例
2
の条件においては、 Nガスの分圧に比べて A1ガスの分圧は極めて小さぐその結果
2
結晶成長室 24内のガスの全圧に対する COガスの分圧の比は、ほぼ 0. 01となる。
2
結晶成長時間は 30時間とした。結晶成長後、室温 (たとえば、 25°C)まで冷却して、 A1N結晶を結晶成長室 24から取り出した。
[0057] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であり、モフォロジ一が 良好な単結晶であった。この A1N単結晶の(0002)面における XRD (X線回折)の口 ッキングカーブの回折ピークの半値幅は lOOarcsecと、結晶性も良好であった。また 、この A1N結晶中のカーボン原子濃度は 5. 5 X 1018個 'cm— 3であった。
[0058] (実施例 9)
混合ガスの全圧に対する COガスの分圧の比を 0. 95として反応容器 11内のガス
2
の全圧に対する COガスの分圧の比を 0. 95とした以外は、実施例 8と同様にして A1
2
N結晶を成長させた。なお、本実施例の条件においては、 N2ガスの分圧に比べて A1 ガスの分圧は極めて小さぐその結果結晶成長室 24内のガスの全圧に対する COガ
2 スの分圧の比は、ほぼ 0. 95となる。
[0059] 得られた A1N結晶は、直径 48. 8mm X厚さ 3mmと大口径であつたが、モフォロジ 一が悪化し、多結晶化が見られた。また、この A1N結晶中のカーボン原子濃度は 5.
4 X 1020個 'cm— 3であった。
[0060] (比較例 1)
反応容器 11に COガスおよび COガスのいずれのガスをも供給せず Nガスのみを
2 2
供給 (すなわち、反応容器 11内のガスの全圧に対する COガスおよび CCOガスの
2 分圧の比はそれぞれ実質的に 0)したこと以外は、実施例 7と同様にして A1N結晶を 成長させた。
[0061] 種結晶基板 2上に、 A1N結晶が成長しな 、不成長領域が認められ、得られた A1N 結晶は、モフォロジ一が悪ィ匕し、多結晶化が見られた。
[0062] (実施例 10)
実施例 1で得られた A1N結晶を、種結晶基板の主面と平行にスライスし、このスライ スした主面を研磨した後、研磨によって生じたカ卩ェ変質層をエッチングで除去して、 直径 30mm X厚さ lmmの A1N結晶基板を得た。この A1N結晶基板の主面の 10 m角内の RMS (Root Mean Square :平均面から測定曲面までの偏差の二乗を平均し た値の平方根、以下同じ)表面粗さは 50nm (500A)以下であり、各種半導体デバ イスに適用可能なものであった。なお、 RMSは AFM (Atomic Force Microscope ;原 子間力顕微鏡)を用いて測定した。
[0063] (実施例 11)
実施例 2で得られた A1N結晶を、実施例 8と同様にスライス、研磨およびエッチング することにより、直径 30mm X厚さ lmmの A1N結晶基板を得た。この A1N結晶基板 の主面の 10 μ m角内の RMS表面粗さは 50nm (500 A)以下であり、各種半導体デ バイスに適用可能なものであった。
[0064] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許 請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべて の変更が含まれることが意図される。

Claims

請求の範囲
[I] 気相成長法により、反応容器内に設けられた結晶成長容器内の結晶成長室内に 配置した種結晶基板上に A1N結晶を成長させる方法であって、
結晶成長の際に、前記結晶成長室内にカーボン含有ガスを供給することを特徴と する A1N結晶の成長方法。
[2] 前記種結晶基板が、 SiC種結晶基板または A1N種結晶基板であることを特徴とす る請求項 1に記載の A1N結晶の成長方法。
[3] 結晶成長の際の前記反応容器内のガスの全圧に対する前記カーボン含有ガスの 分圧の比が 2 X 10—5以上 0. 9以下であることを特徴とする請求項 1または請求項 2に 記載の A1N結晶の成長方法。
[4] 前記カーボン含有ガスは、カーボンと A1N原料との反応により生成することを特徴と する請求項 1から請求項 3までのいずれかに記載の A1N結晶の成長方法。
[5] 前記カーボン含有ガスを形成するためのカーボンの供給源力 前記結晶成長容器 を形成するグラフアイトである請求項 1から請求項 4までのいずれかに記載の A1N結 晶の成長方法。
[6] 前記カーボン含有ガスは COガスまたは COガスを含む請求項 1から請求項 5まで
2
の!、ずれかに記載の A1N結晶の成長方法。
[7] 前記 COガスおよび前記 COガスは、カーボンと金属酸化物との反応により生成す
2
ることを特徴とする請求項 6に記載の A1N結晶の成長方法。
[8] 前記カーボン含有ガスを前記反応容器の外部力 供給することを特徴とする請求 項 1から請求項 3までのいずれかに記載の A1N結晶の成長方法。
[9] 前記カーボン含有ガスは COガスまたは COガスを含む請求項 8に記載の A1N結晶
2
の成長方法。
[10] 請求項 1から請求項 9までの 、ずれかに記載の成長方法により得られた A1N結晶で あって、
結晶中のカーボン原子濃度が 1 X 1015個 'cm 3以上 1 X 102Q個 'cm 3以下である直 径が 25. 4mm以上の A1N結晶。
[II] 前記直径が 48. 8mm以上の請求項 10に記載の A1N結晶。 [12] 請求項 10または請求項 11に記載の A1N結晶を加工して得られた A1N結晶基板。
PCT/JP2006/313665 2005-07-29 2006-07-10 AlN結晶およびその成長方法ならびにAlN結晶基板 WO2007013286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06768027A EP1925697A4 (en) 2005-07-29 2006-07-10 ALN CRYSTAL AND PRODUCTION METHOD THEREFOR AND ALN CRYSTAL SUBSTRATE
US11/997,153 US8470090B2 (en) 2005-07-29 2006-07-10 AlN crystal and method for growing the same, and AlN crystal substrate
CN2006800279367A CN101233265B (zh) 2005-07-29 2006-07-10 AlN晶体、用于生长AlN晶体的方法以及AlN晶体衬底

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-220864 2005-07-29
JP2005220864 2005-07-29
JP2006148663A JP5186733B2 (ja) 2005-07-29 2006-05-29 AlN結晶の成長方法
JP2006-148663 2006-05-29

Publications (1)

Publication Number Publication Date
WO2007013286A1 true WO2007013286A1 (ja) 2007-02-01

Family

ID=37683187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313665 WO2007013286A1 (ja) 2005-07-29 2006-07-10 AlN結晶およびその成長方法ならびにAlN結晶基板

Country Status (6)

Country Link
US (1) US8470090B2 (ja)
EP (1) EP1925697A4 (ja)
JP (1) JP5186733B2 (ja)
KR (1) KR20080030570A (ja)
CN (1) CN101233265B (ja)
WO (1) WO2007013286A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081549A1 (en) * 2008-03-28 2011-04-07 Jfe Mineral Company, Ltd. Ain bulk single crystal, semiconductor device using the same and method for producing the same
EP2267196A4 (en) * 2008-04-17 2011-06-22 Sumitomo Electric Industries ALN CRYSTAL GROWTH METHOD AND ALN LAMINATE
JP2011219295A (ja) * 2010-04-07 2011-11-04 Nippon Steel Corp 炭化珪素単結晶インゴットの製造装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120112436A (ko) * 2009-11-30 2012-10-11 가부시키가이샤 도쿠야마 질화 알루미늄 단결정의 제조방법
WO2013094058A1 (ja) * 2011-12-22 2013-06-27 国立大学法人東京農工大学 窒化アルミニウム単結晶基板、およびこれらの製造方法
KR20160067930A (ko) * 2013-10-08 2016-06-14 니트라이드 솔루션즈 인크. Iii-질화물 결정의 바람직한 체적 확대
JP6527667B2 (ja) * 2014-04-18 2019-06-05 古河機械金属株式会社 窒化物半導体基板の製造方法
CN107829134B (zh) * 2017-11-22 2020-06-26 北京大学 一种无需籽晶粘接技术的氮化铝单晶生长装置及方法
CN109023513B (zh) * 2018-08-20 2020-12-01 深圳大学 制备氮化铝晶体的坩埚设备及方法
JPWO2021210392A1 (ja) 2020-04-14 2021-10-21
JPWO2021210393A1 (ja) 2020-04-14 2021-10-21

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053495A (ja) * 1996-06-04 1998-02-24 Sumitomo Electric Ind Ltd 窒化物単結晶及びその製造方法
JP2001072491A (ja) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol 単結晶の製造方法およびその装置
US20030176001A1 (en) 2002-03-14 2003-09-18 Hiroyuki Fukuyama Single crystalline aluminum nitride film, method of forming the same, base substrate for group III element nitride film, light emitting device and surface acoustic wave device
JP2004137142A (ja) * 2002-03-14 2004-05-13 Rikogaku Shinkokai 単結晶窒化アルミニウム膜およびその形成方法、iii族窒化物膜用下地基板、発光素子、並びに表面弾性波デバイス
JP2004200362A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 窒化物半導体発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596337B2 (ja) * 1998-03-25 2004-12-02 住友電気工業株式会社 化合物半導体結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053495A (ja) * 1996-06-04 1998-02-24 Sumitomo Electric Ind Ltd 窒化物単結晶及びその製造方法
JP2001072491A (ja) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol 単結晶の製造方法およびその装置
US20030176001A1 (en) 2002-03-14 2003-09-18 Hiroyuki Fukuyama Single crystalline aluminum nitride film, method of forming the same, base substrate for group III element nitride film, light emitting device and surface acoustic wave device
JP2004137142A (ja) * 2002-03-14 2004-05-13 Rikogaku Shinkokai 単結晶窒化アルミニウム膜およびその形成方法、iii族窒化物膜用下地基板、発光素子、並びに表面弾性波デバイス
JP2004200362A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 窒化物半導体発光素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DALMAU R ET AL.: "PHYSICA STATUS SOLIDI (C)", 8 February 2005, WILEY-VCH, article "Polarity and morphology in seeded growth of bulk AIN on SiC", pages: 2036 - 2039
MOKHOV E N ET AL.: "JOURNAL OF CRYSTAL GROWTH", vol. 281, 15 April 2005, ELSEVIER, article "Sublimation growth of AIN bulk crystals in Ta crucibles", pages: 93 - 100
NOVESKI V ET AL.: "JOURNAL OF CRYSTAL GROWTH", vol. 279, 15 May 2005, ELSEVIER, article "Seeded growth of bulk AIN crystals and grain evolution in polycrystalline AIN boules", pages: 13 - 19
NOVESKI V. ET AL.: "Seeded growth of bulk AlN crystals and grain evolution in polycrystalline AlN boules", JOURNAL OF CRYSTAL GROWTH, vol. 279, 15 May 2005 (2005-05-15), pages 13 - 19, XP004874032 *
See also references of EP1925697A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081549A1 (en) * 2008-03-28 2011-04-07 Jfe Mineral Company, Ltd. Ain bulk single crystal, semiconductor device using the same and method for producing the same
EP2267196A4 (en) * 2008-04-17 2011-06-22 Sumitomo Electric Industries ALN CRYSTAL GROWTH METHOD AND ALN LAMINATE
JP2011219295A (ja) * 2010-04-07 2011-11-04 Nippon Steel Corp 炭化珪素単結晶インゴットの製造装置

Also Published As

Publication number Publication date
CN101233265B (zh) 2013-06-26
US8470090B2 (en) 2013-06-25
CN101233265A (zh) 2008-07-30
JP2007055881A (ja) 2007-03-08
EP1925697A1 (en) 2008-05-28
JP5186733B2 (ja) 2013-04-24
US20100221539A1 (en) 2010-09-02
EP1925697A4 (en) 2009-11-11
KR20080030570A (ko) 2008-04-04

Similar Documents

Publication Publication Date Title
WO2007013286A1 (ja) AlN結晶およびその成長方法ならびにAlN結晶基板
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
US7621999B2 (en) Method and apparatus for AlGan vapor phase growth
US7794842B2 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same
JPWO2007111219A1 (ja) Iii族窒化物単結晶の成長方法
KR20130109946A (ko) GaN 결정 자립 기판 및 그 제조 방법
JP2007217227A (ja) GaN結晶の製造方法、GaN結晶基板および半導体デバイス
JP2006117512A (ja) 炭化珪素単結晶の製造方法とその方法によって成長した炭化珪素単結晶、単結晶インゴットおよび炭化珪素単結晶ウエーハ
JP2006016294A (ja) Iii族窒化物結晶の成長方法、iii族窒化物結晶基板および半導体デバイス
WO2007015572A1 (ja) 窒化アルミニウム単結晶膜、窒化アルミニウム単結晶積層基板およびそれらの製造方法
JP4733882B2 (ja) 炭化珪素単結晶及びその製造方法並びに炭化珪素単結晶育成用炭化珪素結晶原料
JP4460236B2 (ja) 炭化珪素単結晶ウェハ
US20130239878A1 (en) Apparatus and method for production of aluminum nitride single crystal
JP3508519B2 (ja) エピタキシャル成長装置およびエピタキシャル成長法
JP5131262B2 (ja) 炭化珪素単結晶及びその製造方法
JP2005343722A (ja) AlN結晶の成長方法、AlN結晶基板および半導体デバイス
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
WO2010082574A1 (ja) 窒化物半導体結晶の製造方法、窒化物半導体結晶および窒化物半導体結晶の製造装置
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP4595592B2 (ja) 単結晶成長方法
JP2007145679A (ja) 窒化アルミニウム単結晶の製造装置及びその製造方法
JP5252495B2 (ja) 窒化アルミニウム単結晶の製造方法
JP2007137714A (ja) 単結晶の製造方法及び単結晶の製造装置
KR100821360B1 (ko) 탄화규소 단결정, 탄화규소 단결정 웨이퍼 및 그것의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027936.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077029896

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006768027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006768027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11997153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE