WO2021210393A1 - 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法 - Google Patents

窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法 Download PDF

Info

Publication number
WO2021210393A1
WO2021210393A1 PCT/JP2021/013746 JP2021013746W WO2021210393A1 WO 2021210393 A1 WO2021210393 A1 WO 2021210393A1 JP 2021013746 W JP2021013746 W JP 2021013746W WO 2021210393 A1 WO2021210393 A1 WO 2021210393A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
aluminum nitride
substrate
silicon carbide
forming
Prior art date
Application number
PCT/JP2021/013746
Other languages
English (en)
French (fr)
Inventor
忠昭 金子
大地 堂島
萌子 松原
西尾 佳高
Original Assignee
学校法人関西学院
東洋アルミニウム株式会社
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 東洋アルミニウム株式会社, 豊田通商株式会社 filed Critical 学校法人関西学院
Priority to JP2022515288A priority Critical patent/JPWO2021210393A1/ja
Priority to EP21789219.9A priority patent/EP4137623A4/en
Priority to US17/996,189 priority patent/US20230304186A1/en
Priority to CN202180028128.7A priority patent/CN115443352A/zh
Publication of WO2021210393A1 publication Critical patent/WO2021210393A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Definitions

  • the present invention relates to a method for manufacturing an aluminum nitride substrate, an aluminum nitride substrate, and a method for forming an aluminum nitride layer.
  • a semiconductor substrate is manufactured by crystal-growth a growth layer on a base substrate.
  • AlN crystals are grown by a sublimation method on a base substrate such as an aluminum nitride (AlN) substrate or a silicon carbide (SiC) substrate.
  • AlN aluminum nitride
  • SiC silicon carbide
  • Patent Document 1 states, “By the vapor phase growth method, an AlN crystal is grown on a seed crystal substrate arranged in a crystal growth chamber in a crystal growth vessel provided in a reaction vessel. Therefore, a technique of "a method for growing an AlN crystal, which is characterized by supplying a carbon-containing gas into the crystal growth chamber during crystal growth” is described.
  • An object to be solved by the present invention is to provide a novel technique capable of manufacturing a large-diameter AlN substrate. Another object of the present invention to be solved is to provide a new technique capable of producing an AlN substrate having a large diameter and good crystallinity.
  • the present invention that solves the above-mentioned problems is a method for manufacturing an aluminum nitride substrate, which comprises a crystal growth step of forming an aluminum nitride layer on a silicon carbide base substrate having through holes.
  • the aluminum nitride layer on the silicon carbide base substrate having through holes By forming the aluminum nitride layer on the silicon carbide base substrate having through holes in this way, it is possible to manufacture an aluminum nitride substrate having a large diameter and good crystallinity. By forming the aluminum nitride layer on the silicon carbide base substrate having through holes in this way, it is possible to manufacture an aluminum nitride substrate having a diameter equivalent to that of the silicon carbide base substrate. Therefore, by adopting a silicon carbide base substrate having a large diameter, an aluminum nitride substrate having a large diameter can be obtained.
  • large diameter in the present specification means that a large area aluminum nitride layer can be obtained as compared with the case where the aluminum nitride layer is formed on the silicon carbide base substrate having no through holes. ..
  • the crystal growth step is a step of heating so that a temperature gradient is formed along the vertical direction of the silicon carbide base substrate.
  • the silicon carbide base substrate and the raw material of the aluminum nitride layer are arranged so as to face each other, and a temperature gradient is formed between the silicon carbide base substrate and the raw material. It is a process of heating so as to.
  • the crystal growth step includes a lateral growth step in which the aluminum nitride layer grows in the horizontal direction of the silicon carbide base substrate and the aluminum nitride layer grows in the vertical direction of the silicon carbide base substrate. It has a vertical growth step to be carried out.
  • a preferred embodiment of the present invention further includes a through hole forming step of forming a through hole in the silicon carbide base substrate and a strain layer removing step of removing the strain layer introduced by the through hole forming step.
  • the through hole forming step is a step of forming a through hole by irradiating the silicon carbide base substrate with a laser.
  • the strain layer removing step is a step of removing the strain layer of the silicon carbide base substrate by heat treatment.
  • the strain layer removing step is a step of etching the silicon carbide base substrate in a silicon atmosphere.
  • the present invention also relates to a method for forming an aluminum nitride layer. That is, the present invention that solves the above-mentioned problems forms an aluminum nitride layer including a through hole forming step of forming a through hole in the silicon carbide base substrate before forming the aluminum nitride layer on the silicon carbide base substrate. How to do it.
  • a preferred embodiment of the present invention includes a strain layer removing step of removing the strain layer introduced by the through hole forming step.
  • the strain layer removing step is a step of etching the silicon carbide base substrate by heat treatment.
  • the disclosed technology it is possible to provide a new technology capable of manufacturing a large-diameter AlN substrate. Further, according to the disclosed technology, it is possible to provide a new technology capable of manufacturing an AlN substrate having a large diameter and good crystallinity.
  • the method for manufacturing an AlN substrate according to the embodiment is a through hole forming step S10 for forming a through hole 11 in the SiC base substrate 10 and a strain layer removing step S20 for removing the strain layer 12 introduced by the through hole forming step S10. And the crystal growth step S30 for forming the AlN layer 20 on the SiC base substrate 10 having the through hole 11.
  • the AlN layer has a large area including a through hole forming step S10 for forming a through hole 11 in the SiC base substrate 10 before forming the AlN layer 20 on the surface of the SiC base substrate 10. It can be grasped as a method of forming. Hereinafter, each step of the embodiment will be described in detail.
  • the through hole forming step S10 is a step of forming the through hole 11 in the SiC base substrate 10. This through hole forming step S10 can be naturally adopted as long as it is a method capable of forming the through hole 11 in the SiC base substrate 10.
  • a method for forming the through hole 11 for example, plasma etching such as laser processing, focused ion beam (FIB), and reactive ion etching (RIE) can be adopted.
  • plasma etching such as laser processing, focused ion beam (FIB), and reactive ion etching (RIE) can be adopted.
  • FIB focused ion beam
  • RIE reactive ion etching
  • SiC base substrate 10 As the SiC base substrate 10, a wafer or substrate processed from bulk crystals may be used, or a substrate having a buffer layer made of the above-mentioned semiconductor material may be used separately.
  • the through hole 11 may be formed in a shape that reduces the strength of the SiC base substrate 10, and may be formed in a single number or a plurality of through holes 11. Further, a through-hole group (pattern) in which a plurality of through-holes 11 are arranged may be adopted.
  • FIG. 3 is an explanatory diagram illustrating the pattern 100 according to the embodiment.
  • the line segment indicated by the pattern 100 is the SiC base substrate 10.
  • the pattern 100 preferably exhibits a regular hexagonal displacement shape that is three-fold symmetric.
  • the "regular hexagonal displacement type" in the description in the present specification will be described in detail below with reference to FIG.
  • the regular hexagonal displacement type is a dodecagon.
  • the regular hexagonal displacement type is composed of 12 line segments having the same length and being linear.
  • the pattern 100 exhibiting a regular hexagonal displacement shape is a regular triangle and includes a reference figure 101 having an area of 101a and including three vertices 104. Each of the three vertices 104 is included in the vertices of the pattern 100.
  • the three vertices 104 may be located on the line segment constituting the pattern 100.
  • the pattern 100 includes a line segment 102 (corresponding to the first line segment) extending from the apex 104 and including the apex 104, and a line segment 103 (second line segment) not extending from the apex 104 and not including the apex 104 and adjacent to the line segment 102. Corresponds to a line segment.) And.
  • the angle ⁇ formed by the two adjacent line segments 102 in the pattern 100 is constant, and is equal to the angle ⁇ formed by the two adjacent line segments 103 in the pattern 100.
  • regular hexagonal displacement type in the description of the present specification means that the regular hexagon is displaced (deformed) while maintaining the area of the regular hexagon based on the angle ⁇ indicating the degree of unevenness. It can be grasped that it is a dodecagon.
  • the angle ⁇ is preferably larger than 60 °, preferably 66 ° or more, preferably 80 ° or more, preferably 83 ° or more, and preferably 120 ° or more, and preferably 120 ° or more. It is 150 ° or more, and preferably 155 ° or more.
  • the angle ⁇ is preferably 180 ° or less, preferably 155 ° or less, preferably 150 ° or less, preferably 120 ° or less, and preferably 83 ° or less. Further, it is preferably 80 ° or less, and preferably 66 ° or less.
  • the pattern 100 may have a configuration of a regular dodecagonal displacement type having 6-fold symmetry instead of the regular hexagonal displacement type having 3-fold symmetry.
  • the regular dodecagonal displacement type is a 24-sided type.
  • the regular dodecagonal displacement type is composed of 24 line segments having the same length and being linear.
  • the pattern 100 exhibiting a regular dodecagonal displacement shape is a regular hexagon, has an area of 101a, and includes a reference figure 101 including six vertices 104. Each of the six vertices 104 is included in the vertices of the pattern 100.
  • the angle ⁇ formed by the two adjacent line segments 102 in the pattern 100 is constant, and is equal to the angle ⁇ formed by the two adjacent line segments 103 in the pattern 100. That is, in the "regular dodecagon displacement type" described in the present specification, the regular dodecagon is displaced (deformed) while maintaining the area of the regular dodecagon based on the angle ⁇ indicating the degree of unevenness. It can be grasped that it is a dodecagon.
  • the pattern 100 is said to exhibit a 2n square displacement shape, which is a 4n square formed by the regular 2n square being displaced (deformed) while maintaining the area of the regular 2n square based on the angle ⁇ indicating the degree of unevenness. It may be a configuration.
  • the 2n polygonal displacement type includes a regular n-sided polygon (corresponding to the reference figure 101).
  • the pattern 100 may have a configuration including a regular 2n square displacement type (including a regular hexagonal displacement type and a regular dodecagonal displacement type). Further, the pattern 100 is a line segment connecting the intersection of two adjacent line segments 103 in the regular 2n square displacement type and the center of gravity of the reference figure 101 in addition to the line segment constituting the regular 2n square displacement type. It may be configured to further include at least one (corresponding to a third line segment). Further, the pattern 100 connects the intersections of two adjacent line segments 103 in the regular 2n square displacement type and the vertices 104 forming the reference figure 101 in addition to the line segments forming the regular 2n square displacement type. The configuration may further include at least one line segment. Further, the pattern 100 may further include at least one line segment constituting the reference figure 101 included in the regular 2n square displacement shape in addition to the line segment constituting the regular 2n square displacement shape.
  • the through hole forming step S10 is preferably a step of removing 50% or more of the effective area of the SiC base substrate 10. Further, more preferably, it is a step of removing 60% or more of the effective area, more preferably 70% or more of the effective area, and further preferably 80% or more of the effective area. ..
  • the effective area in the present specification refers to the surface of the SiC base substrate 10 to which the raw material adheres in the crystal growth step S30. In other words, it refers to a remaining region other than the region removed by the through hole 11 on the growth surface of the SiC base substrate 10.
  • the strain layer removing step S20 is a step of removing the strain layer 12 formed on the SiC base substrate 10 by the through hole forming step S10.
  • a means for etching the SiC base substrate 10 by heat-treating the SiC base substrate 10 can be exemplified. Further, any means capable of removing the strain layer 12 can be naturally adopted.
  • Examples of the method for removing the strain layer 12 include a hydrogen etching method using hydrogen gas as an etching gas, a Si vapor pressure etching (Si-Vapor Etching: SiVE) method for heating in a Si atmosphere, and Example 1 described later.
  • the described etching method can be adopted.
  • the crystal growth step S30 is a step of forming the AlN layer 20 on the SiC base substrate 10 on which the through holes 11 are formed.
  • a physical vapor transport method Physical Vapor Transport: PVT
  • PVT Physical Vapor Transport
  • CVT chemical vapor transport method
  • CVT organic vapor deposition method
  • Adopt a known vapor phase growth method corresponding to the vapor phase epitaxial method
  • MOVPE metal-organic vapor phase epitaxy
  • HVPE hydride vapor phase epitaxy
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • FIGS. 4 and 5 are explanatory views illustrating the crystal growth step S30 according to the embodiment.
  • the SiC base substrate 10 and the semiconductor material 40 as the raw material of the AlN layer 20 are arranged and heated in a crucible 30 having a semi-closed space so as to face each other. It is a process.
  • the term "quasi-closed space” as used herein refers to a space in which the inside of the container can be evacuated, but at least a part of the vapor generated in the container can be confined.
  • the crystal growth step S30 is a step of heating so that a temperature gradient is formed along the vertical direction of the SiC base substrate 10.
  • the raw material is transported from the semiconductor material 40 onto the SiC base substrate 10 via the raw material transport space 31.
  • the above-mentioned temperature gradient and the difference in chemical potential between the SiC base substrate 10 and the semiconductor material 40 can be adopted.
  • the SiC base substrate 10 is set lower than that of the semiconductor material 40. It becomes supersaturated and condenses on top. As a result, the AlN layer 20 is formed on the SiC base substrate 10.
  • the crystal growth step S30 includes a horizontal growth step S31 in which the AlN layer 20 grows in the horizontal direction of the SiC base substrate 10, and a vertical growth step S32 in which the AlN layer 20 grows in the vertical direction of the SiC base substrate 10.
  • the growth component in the horizontal direction may be larger than the growth component in the vertical direction, and the growth component in the vertical direction may be included (growth component: horizontal direction> vertical direction).
  • the vertical growth step S32 the growth component in the vertical direction may be larger than the growth component in the horizontal direction, and the growth component in the horizontal direction may be included (growth component: vertical direction> horizontal direction).
  • an inert gas or a doping gas may be introduced into the raw material transport space 31 to control the doping concentration and the growth environment of the AlN layer 20. Further, in the crystal growth step S30, it is desirable to grow the inside of the raw material transport space 31 as a nitrogen atmosphere by introducing nitrogen gas.
  • a large-diameter AlN substrate can be manufactured by crystal-growth the AlN layer 20 on the SiC base substrate 10 having the through holes 11. That is, the growth driving force acts in the horizontal direction of the SiC base substrate 10 by escaping heat from the region where the through hole 11 is formed. As a result, the bonding of the AlN layer 20 is promoted on the region where the through hole 11 is formed, and the AlN layer 20 having a diameter equivalent to the diameter of the SiC base substrate 10 can be formed. Therefore, by adopting the SiC base substrate 10 having a large diameter, an AlN substrate having a large diameter can be obtained.
  • the crystallinity of the AlN layer 20 can be improved by forming the AlN layer 20 on the region where the through hole 11 is formed. That is, the AlN layer 20 formed on the region where the through hole 11 is formed is not located directly above the SiC base substrate 10. Therefore, the dislocations of the penetrating system existing in the SiC base substrate 10 (for example, penetrating spiral dislocations, penetrating blade-shaped dislocations, micropipes, etc.) are not inherited, and the dislocations of the penetrating system in the AlN layer 20 can be reduced.
  • the dislocations of the penetrating system existing in the SiC base substrate 10 for example, penetrating spiral dislocations, penetrating blade-shaped dislocations, micropipes, etc.
  • Example 1 >> ⁇ Through hole forming process> Under the following conditions, the SiC substrate 10 was irradiated with a laser to form a through hole 11.
  • FIG. 6 is an explanatory diagram for explaining the pattern of the through hole 11 formed in the through hole forming step S10 according to the first embodiment.
  • FIG. 6A is an explanatory view showing how a plurality of through holes 11 are arranged.
  • the region shown in black indicates the portion of the through hole 11, and the region shown in white is left as the SiC base substrate 10.
  • FIG. 6B is an explanatory view showing an enlarged state of the through hole 11 of FIG. 6A.
  • the region shown in white indicates the portion of the through hole 11, and the region shown in black is left as the SiC base substrate 10.
  • 80% or more of the effective area of the SiC base substrate 10 is removed to reduce the strength of the SiC base substrate 10.
  • FIG. 7 is an explanatory diagram illustrating the strain layer removing step S20 according to the first embodiment.
  • the SiC base substrate 10 on which the through hole 11 was formed in the through hole forming step S10 was housed in the SiC container 50, and the SiC container 50 was further housed in the TaC container 60 and heated under the following conditions.
  • Heating temperature 1800 ° C Heating time: 2h Etching amount: 8 ⁇ m
  • SiC container 50 Material: Polycrystalline SiC Container size: diameter 60 mm x height 4 mm Distance between the SiC base substrate 10 and the bottom surface of the SiC container 50: 2 mm
  • the SiC container 50 is a fitting container including an upper container 51 and a lower container 52 that can be fitted to each other.
  • a minute gap 53 is formed in the fitting portion between the upper container 51 and the lower container 52, and is configured so that the inside of the SiC container 50 can be exhausted (evacuated) from the gap 53.
  • the SiC container 50 is formed by facing a part of the SiC container 50 arranged on the low temperature side of the temperature gradient and the SiC base substrate 10 in a state where the SiC base substrate 10 is arranged on the high temperature side of the temperature gradient. It has an etching space 54 to be formed.
  • the etching space 54 is a space for transporting and etching Si atoms and C atoms from the SiC base substrate 10 to the SiC container 50 by using a temperature difference provided between the SiC base substrate 10 and the bottom surface of the SiC container 50 as a driving force. be.
  • the SiC container 50 has a substrate holder 55 that holds the SiC base substrate 10 in a hollow shape to form an etching space 54.
  • the substrate holder 55 may not be provided depending on the direction of the temperature gradient of the heating furnace. For example, when the heating furnace forms a temperature gradient so that the temperature decreases from the lower container 52 toward the upper container 51, the SiC base substrate 10 is arranged on the bottom surface of the lower container 52 without providing the substrate holder 55. You may.
  • TaC container 60 Material: TaC Container size: diameter 160 mm x height 60 mm Si steam source 64 (Si compound): TaSi 2
  • the TaC container 60 is a fitting container including an upper container 61 and a lower container 62 that can be fitted to each other, and is configured to be able to accommodate the SiC container 50.
  • a minute gap 63 is formed in the fitting portion between the upper container 61 and the lower container 62, and is configured so that the TaC container 60 can be exhausted (evacuated) from the gap 63.
  • the TaC container 60 has a Si steam supply source 64 capable of supplying the vapor pressure of a vapor phase species containing a Si element in the TaC container 60.
  • the Si steam supply source 64 may have a configuration in which the vapor pressure of the vapor phase species containing the Si element is generated in the TaC container 60 during the heat treatment.
  • FIG. 8 is an explanatory diagram illustrating the crystal growth step S30 according to the first embodiment.
  • the SiC base substrate 10 from which the strain layer 12 was removed by the strain layer removing step S20 was housed in the crucible 30 so as to face the semiconductor material 40, and heated under the following conditions.
  • Heating temperature 2040 ° C Heating time: 70h Growth thickness: 500 ⁇ m N 2 gas pressure: 10 kPa
  • the crucible 30 has a raw material transport space 31 between the SiC base substrate 10 and the semiconductor material 40. The raw material is transported from the semiconductor material 40 onto the SiC base substrate 10 through the raw material transport space 31.
  • FIG. 8A is an example of the crucible 30 used in the crystal growth step S30.
  • the crucible 30 is a fitting container including an upper container 32 and a lower container 33 that can be fitted to each other.
  • a minute gap 34 is formed in the fitting portion between the upper container 32 and the lower container 33, and is configured to allow exhaust (evacuation) in the crucible 30 from the gap 34.
  • the crucible 30 has a substrate holder 35 that forms a raw material transport space 31.
  • the substrate holder 35 is provided between the SiC base substrate 10 and the semiconductor material 40, and the semiconductor material 40 is arranged on the high temperature side and the SiC base substrate 10 is arranged on the low temperature side to form a raw material transport space 31. ..
  • FIGS. 8 (b) and 8 (c) are other examples of the crucible 30 used in the crystal growth step S30.
  • the temperature gradients of FIGS. 8 (b) and 8 (c) are set to be opposite to those of FIG. 8 (a), and the SiC base substrate 10 is arranged on the upper side. That is, similarly to FIG. 8A, the semiconductor material 40 is arranged on the high temperature side and the SiC base substrate 10 is arranged on the low temperature side to form the raw material transport space 31.
  • FIG. 8B shows an example in which the raw material transport space 31 is formed between the SiC base substrate 10 and the semiconductor material 40 by fixing the SiC base substrate 10 to the upper container 32 side.
  • FIG. 8C shows an example in which a raw material transport space 31 is formed between the upper container 32 and the semiconductor material 40 by forming a through window and arranging the SiC base substrate 10. Further, as shown in FIG. 8C, the raw material transport space 31 may be formed by providing the intermediate member 36 between the upper container 32 and the lower container 33.
  • the AlN sintered body of the semiconductor material 40 was sintered by the following procedure.
  • the AlN powder was placed in the frame of the TaC block and compacted with an appropriate force. Then, the AlN powder and the TaC block compacted in the pyrolytic carbon crucible were stored and heated under the following conditions.
  • Heating temperature 1850 ° C N 2 gas pressure: 10 kPa Heating time: 3h
  • FIG. 9 is a schematic view showing the crystal growth step S30 of Example 1.
  • Comparative Example 1 >> The SiC substrate 10 according to Comparative Example 1 formed a groove 13 instead of the through hole 11 of Example 1.
  • the SiC base substrate 10 was subjected to the crystal growth step S30 under the same conditions as in Example 1. That is, in Comparative Example 1, the through hole forming step S10 was not performed, but the crystal growth step S30 was performed.
  • FIG. 10 is a schematic view showing the crystal growth step S30 of Comparative Example 1.
  • a region in which the AlN layer 20 did not grow was formed on the groove 13.
  • the temperature of the region of the groove 13 does not decrease and the temperature gradient is not formed in the horizontal direction of the SiC base substrate 10. As a result, it is considered that the growth driving force in the lateral direction is not generated and the AlN layer 20 is not formed in the region of the groove 13.
  • Example 1 From the results of Example 1 and Comparative Example 1, it can be understood that a large-diameter AlN substrate can be manufactured by forming the AlN layer 20 on the SiC base substrate 10 having the through hole 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明の解決しようとする課題は、大口径なAlN基板を製造可能な新規の技術を提供することを課題とする。 本発明は、貫通孔11を有するSiC下地基板10にAlN層20を形成する結晶成長工程S30を含む、AlN基板の製造方法である。また、本発明は、SiC下地基板10の表面上にAlN層20を形成する前に、SiC下地基板10に貫通孔11を形成する貫通孔形成工程S10を含む、AlN層20を形成する方法。

Description

窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法
 本発明は、窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法に関する。
 一般に半導体基板は、下地基板上に成長層を結晶成長させることで製造される。しかしながら、結晶成長させる半導体材料の組成によっては、大口径な半導体基板を得ることが難しいという問題が報告されている。
 例えば、窒化アルミニウム(AlN)基板や炭化ケイ素(SiC)基板等の下地基板上に、昇華法によりAlN結晶を成長させる場合が挙げられる。単に昇華法で結晶成長させた場合には、AlN結晶が成長しない領域が存在してしまい、大口径で結晶性のよい半導体基板を得ることが困難であるという問題がある。
 このような問題に対し、特許文献1には、「気相成長法により、反応容器内に設けられた結晶成長容器内の結晶成長室内に配置した種結晶基板上にAlN結晶を成長させる方法であって、結晶成長の際に、前記結晶成長室内にカーボン含有ガスを供給することを特徴とするAlN結晶の成長方法」の技術が記載されている。
特開2007-55881号公報
 本発明の解決しようとする課題は、大口径なAlN基板を製造可能な新規の技術を提供することにある。
 また、本発明の解決しようとする課題は、大口径で結晶性のよいAlN基板を製造可能な新規の技術を提供することにある。
 上述した課題を解決する本発明は、貫通孔を有する炭化ケイ素下地基板に窒化アルミニウム層を形成する結晶成長工程を含む、窒化アルミニウム基板の製造方法である。
 このように、貫通孔を有する炭化ケイ素下地基板に窒化アルミニウム層を形成することで、大口径で結晶性のよい窒化アルミニウム基板を製造することができる。
 このように、貫通孔を有する炭化ケイ素下地基板に窒化アルミニウム層を形成することで、炭化ケイ素下地基板の径と同等の径を有する窒化アルミニウム基板を製造することができる。そのため、大きな径の炭化ケイ素下地基板を採用することで、大口径な窒化アルミニウム基板を得ることができる。
 なお、本明細書における「大口径」の語は、貫通孔を有さない炭化ケイ素下地基板に窒化アルミニウム層を形成した場合と比較して、大面積な窒化アルミニウム層を得られることを意味する。
 本発明の好ましい形態では、前記結晶成長工程は、前記炭化ケイ素下地基板の垂直方向に沿って温度勾配が形成されるよう加熱する工程である。
 本発明の好ましい形態では、前記結晶成長工程は、前記炭化ケイ素下地基板と前記窒化アルミニウム層の原料とを相対させて配置し、前記炭化ケイ素下地基板と前記原料との間に温度勾配が形成されるよう加熱する工程である。
 本発明の好ましい形態では、前記結晶成長工程は、前記炭化ケイ素下地基板の水平方向に前記窒化アルミニウム層が成長する横方向成長工程と、前記炭化ケイ素下地基板の垂直方向に前記窒化アルミニウム層が成長する縦方向成長工程と、を有する。
 本発明の好ましい形態では、前記炭化ケイ素下地基板に貫通孔を形成する貫通孔形成工程と、前記貫通孔形成工程により導入された歪層を除去する歪層除去工程と、をさらに含む。
 本発明の好ましい形態では、前記貫通孔形成工程は、レーザーを前記炭化ケイ素下地基板に照射することにより貫通孔を形成する工程である。
 本発明の好ましい形態では、前記歪層除去工程は、熱処理することにより前記炭化ケイ素下地基板の歪層を除去する工程である。
 本発明の好ましい形態では、前記歪層除去工程は、前記炭化ケイ素下地基板をシリコン雰囲気下でエッチングする工程である。
 また、本発明は窒化アルミニウム層を形成する方法にも関する。すなわち、上述した課題を解決する本発明は、炭化ケイ素下地基板上に窒化アルミニウム層を形成する前に、前記炭化ケイ素下地基板に貫通孔を形成する貫通孔形成工程を含む、窒化アルミニウム層を形成する方法である。
 本発明の好ましい形態では、前記貫通孔形成工程により導入された歪層を除去する歪層除去工程を含む。
 本発明の好ましい形態では、前記歪層除去工程は、熱処理することにより前記炭化ケイ素下地基板をエッチングする工程である。
 開示した技術によれば、大口径なAlN基板を製造可能な新規の技術を提供することができる。
 また、開示した技術によれば、大口径で結晶性のよいAlN基板を製造可能な新規の技術を提供することができる。
 他の課題、特徴および利点は、図面および特許請求の範囲と共に取り上げられる際に、以下に記載される発明を実施するための形態を読むことにより明らかになるであろう。
実施の形態にかかるAlN基板の製造方法の工程を説明する説明図である。 実施の形態にかかる貫通孔形成工程および歪層除去工程を説明する説明図である。 実施の形態にかかる貫通孔形成工程の説明図である 実施の形態にかかる結晶成長工程を説明する説明図である。 実施の形態にかかる結晶成長工程を説明する説明図である。 実施例1にかかる貫通孔形成工程の説明図である。 実施例1にかかる歪層除去工程の説明図である。 実施例1にかかる結晶成長工程の説明図である。 実施例1にかかる結晶成長工程の説明図である。 比較例1にかかる結晶成長工程の説明図である。
 以下に添付図面を参照して、この発明にかかるAlN基板の製造方法の好適な実施の形態を詳細に説明する。本発明の技術的範囲は、添付図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。また、添付の図面は概念図であり、各部材の相対的な寸法等は、本発明を限定するものではない。また、本明細書においては、発明の説明の目的で、図面の上下に基づいて、上または下と指称する場合があるが、本発明のAlN基板の使用態様等との関係で上下を限定するものではない。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
《窒化アルミニウム基板の製造方法》
 図1ないし図4は、本発明の実施の形態にかかるAlN基板の製造方法の工程を説明する説明図である。
 実施の形態にかかるAlN基板の製造方法は、SiC下地基板10に貫通孔11を形成する貫通孔形成工程S10と、貫通孔形成工程S10により導入された歪層12を除去する歪層除去工程S20と、この貫通孔11を有するSiC下地基板10にAlN層20を形成する結晶成長工程S30と、を含み得る。
 また、この実施の形態は、SiC下地基板10の表面上にAlN層20を形成する前に、SiC下地基板10に貫通孔11を形成する貫通孔形成工程S10を含む、AlN層を大面積に形成する方法として把握できる。
 以下、実施の形態の各工程について詳細に説明する。
<貫通孔形成工程>
 貫通孔形成工程S10は、SiC下地基板10に貫通孔11を形成する工程である。この貫通孔形成工程S10は、SiC下地基板10に貫通孔11を形成可能な手法であれば当然に採用することができる。
 貫通孔11の形成手法は、例として、レーザー加工、集束イオンビーム(Focused Ion Beam System:FIB)、反応性イオンエッチング(Reactive Ion Etching:RIE)等のプラズマエッチングを採用することができる。なお、本実施の形態を示した図2においては、レーザーLをSiC下地基板10に照射することにより貫通孔11を形成する手段を例示している。
 なお、SiC下地基板10は、バルク結晶から加工したウェハや基板を用いてもよいし、別途上述した半導体材料からなるバッファ層を有する基板を用いても良い。
 貫通孔11は、SiC下地基板10の強度を低下させる形状を採用すればよく、単数又は複数形成しても良い。また、複数の貫通孔11を配列させた貫通孔群(パターン)を採用しても良い。
 以下、六方晶系の半導体材料を成長させる際のパターンの一例について、詳細に説明する。
 図3は、実施の形態にかかるパターン100を説明する説明図である。パターン100が示す線分は、SiC下地基板10である。パターン100は、好ましくは、3回対称である正6角形変位形を呈する。本明細書中の説明における「正6角形変位形」を、図3を交えて、詳細に以下に説明する。正6角形変位形は、12角形である。また、正6角形変位形は、等しい長さを呈し直線状である12個の線分により構成される。正6角形変位形を呈するパターン100は、正3角形であり面積101aを有し3個の頂点104を含む基準図形101を内包する。当該3個の頂点104のそれぞれは、パターン100の頂点に含まれる。ここで、当該3個の頂点104は、パターン100を構成する線分上に位置する場合がある、と把握することができる。パターン100は、頂点104から延伸し頂点104を含む線分102(第1線分に相当。)と、頂点104から延伸せず頂点104を含まず線分102と隣接する線分103(第2線分に相当。)と、を含む。ここで、パターン100における2つの隣接し合う線分102がなす角度θは、一定であり、パターン100における2つの隣接し合う線分103がなす角度θと等しい。なお、本明細書中の説明における「正6角形変位形」は、正6角形が、凹凸の程度を示す角度θに基づき、当該正6角形の面積を維持しながら変位(変形)されてなる12角形である、と把握することができる。
 角度θは、好ましくは60°より大きく、また好ましくは66°以上であり、また好ましくは80°以上であり、また好ましくは83°以上であり、また好ましくは120°以上であり、また好ましくは150°以上であり、また好ましくは155°以上である。また、角度θは、好ましくは180°以下であり、また好ましくは155°以下であり、また好ましくは150°以下であり、また好ましくは120°以下であり、また好ましくは83°以下であり、また好ましくは80°以下であり、また好ましくは66°以下である。
 実施の形態にかかるパターン100は、3回対称である正6角形変位形に代えて、6回対称である正12角形変位形である構成であってよい。正12角形変位形は、24角形である。また、正12角形変位形は、等しい長さを呈し直線状である24個の線分により構成される。正12角形変位形を呈するパターン100は、正6角形であり面積101aを有し6個の頂点104を含む基準図形101を内包する。当該6個の頂点104のそれぞれは、パターン100の頂点に含まれる。なお、正6角形変位形と同様、パターン100における2つの隣接し合う線分102がなす角度θは、一定であり、パターン100における2つの隣接し合う線分103がなす角度θと等しい。つまり、本明細書中の説明における「正12角形変位形」は、正12角形が、凹凸の程度を示す角度θに基づき、当該正12角形の面積を維持しながら変位(変形)されてなる24角形である、と把握することができる。なお、パターン100は、正2n角形が、凹凸の程度を示す角度θに基づき、当該正2n角形の面積を維持しながら変位(変形)されてなる4n角形である2n角形変位形を呈する、という構成であってよい。このとき、2n角形変位形は正n角形(基準図形101に相当。)を内包する、と把握することができる。
 実施の形態にかかるパターン100は、正2n角形変位形(正6角形変位形、正12角形変位形を含む。)を含む構成であってよい。また、パターン100は、正2n角形変位形を構成する線分に加えて、正2n角形変位形における隣接し合う2つの線分103の交点と、基準図形101の重心と、を結ぶ線分(第3線分に相当。)を少なくとも1つさらに含む構成であってよい。また、パターン100は、正2n角形変位形を構成する線分に加えて、正2n角形変位形における隣接し合う2つの線分103の交点と、基準図形101を構成する頂点104と、を結ぶ線分を少なくとも1つさらに含む構成であってよい。また、パターン100は、正2n角形変位形を構成する線分に加えて、正2n角形変位形に含まれる基準図形101を構成する線分を少なくとも1つさらに含む構成であってよい。
 また、貫通孔形成工程S10は、好ましくはSiC下地基板10の有効面積の50%以上を除去する工程である。また、より好ましくは、有効面積の60%以上を除去する工程であり、さらに好ましくは有効面積の70%以上を除去する工程であり、さらに好ましくは有効面積の80%以上を除去する工程である。
 なお、本明細書における有効面積とは、結晶成長工程S30において、原料が付着するSiC下地基板10の表面のことをいう。言い換えれば、SiC下地基板10の成長面において、貫通孔11により除去された領域以外の残された領域のことをいう。
〈歪層除去工程〉
 歪層除去工程S20は、貫通孔形成工程S10によりSiC下地基板10に形成された歪層12を除去する工程である。この歪層除去工程S20として、SiC下地基板10を熱処理することにより、SiC下地基板10をエッチングする手段を例示することができる。
 また、歪層12を除去可能な手段であれば、当然に採用することができる。
 歪層12を除去する手法は、例として、水素ガスをエッチングガスとして用いる水素エッチング法や、Si雰囲気下で加熱するSi蒸気圧エッチング(Si-Vapor Etching:SiVE)法、後述する実施例1に記載のエッチング手法を採用することができる。
<結晶成長工程>
 結晶成長工程S30は、貫通孔11が形成されたSiC下地基板10上に、AlN層20を形成する工程である。
 結晶成長工程S30は、AlN層20の成長手法として、物理気相輸送法(Physical Vapor Transport:PVT)、昇華再結晶法、改良レイリー法、化学気相輸送法(Chemical Vapor Transport:CVT)、有機金属気相成長法(Molecular-Organic Vapor Phase Epitaxy:MOVPE)、ハイドライド気相成長法(Hydride Vaper Phase Epitaxy:HVPE)等の既知の気相成長法(気相エピタキシャル法に相当。)を採用することができる。なお、結晶成長工程S30は、PVTに代えて、物理気相成長法(Physical Vapor Deposition:PVD)を採用することができる。なお、結晶成長工程S30は、CVTに代えて、化学気相成長法(Chemical Vapor Deposition:CVD)を採用することができる。
 図4および図5は、実施の形態にかかる結晶成長工程S30を説明する説明図である。
 実施の形態にかかる結晶成長工程S30は、SiC下地基板10と、AlN層20の原料となる半導体材料40とを、準閉鎖空間を有した坩堝30内に相対(対峙)させて配置し加熱する工程である。なお、本明細書における「準閉鎖空間」とは、容器内の真空引きは可能であるが、容器内に発生した蒸気の少なくとも一部を閉じ込め可能な空間のことをいう。
 また、結晶成長工程S30は、SiC下地基板10の垂直方向に沿って温度勾配が形成されるよう加熱する工程である。この温度勾配中で坩堝30(SiC下地基板10および半導体材料40)を加熱することにより、半導体材料40からSiC下地基板10上へ、原料輸送空間31を介して原料が輸送される。
 原料を輸送する駆動力としては、上述した温度勾配や、SiC下地基板10と半導体材料40間の化学ポテンシャル差を採用することができる。
 具体的には、準閉鎖空間内で、半導体材料40から昇華した元素からなる蒸気が、原料輸送空間31中を拡散することにより輸送され、半導体材料40より温度が低く設定されたSiC下地基板10上に過飽和となって凝結する。その結果、SiC下地基板10上にAlN層20が形成される。
 また、結晶成長工程S30は、SiC下地基板10の水平方向にAlN層20が成長する横方向成長工程S31と、SiC下地基板10の垂直方向にAlN層20が成長する縦方向成長工程S32と、を有する。
 なお、横方向成長工程S31は、水平方向への成長成分が垂直方向への成長成分より大きければよく、垂直方向への成長成分を含んでいても良い(成長成分:水平方向>垂直方向)。
 また、縦方向成長工程S32は、垂直方向への成長成分が水平方向への成長成分より大きければよく、水平方向への成長成分を含んでいても良い(成長成分:垂直方向>水平方向)。
 すなわち、図4に示すように、横方向成長工程S31は、SiC下地基板10の貫通孔11から熱が逃げることにより、SiC下地基板10の表面上に水平方向の温度勾配が形成されることで、貫通孔11に向かってAlN層20が成長する工程である。
 その後、横方向成長工程S31により貫通孔11上にAlN層20が形成されると、SiC下地基板10の表面上に水平方向の温度勾配が減少・消滅し、自動的に縦方向成長工程S32に移行する。
 なお、この結晶成長工程S30においては、不活性ガスやドーピングガスを原料輸送空間31に導入して、AlN層20のドーピング濃度や成長環境を制御しても良い。また、結晶成長工程S30においては、窒素ガスを導入することで、原料輸送空間31の内部を窒素雰囲気として成長させることが望ましい。
 本発明によれば、貫通孔11を有するSiC下地基板10にAlN層20を結晶成長させることで、大口径なAlN基板を製造することができる。すなわち、貫通孔11を形成した領域から熱が逃げることにより、SiC下地基板10の水平方向に成長駆動力が働く。その結果、貫通孔11を形成した領域上でAlN層20の結合が促進され、SiC下地基板10の径と同等の径を有するAlN層20を形成することができる。そのため、大きな径のSiC下地基板10を採用することで、大口径なAlN基板を得ることができる。
 また、本発明によれば、貫通孔11を形成した領域上にAlN層20を形成することにより、AlN層20の結晶性をよくすることができる。すなわち、貫通孔11を形成した領域上に形成されるAlN層20は、SiC下地基板10の直上に位置しない。そのため、SiC下地基板10に存在する貫通系の転位(例えば、貫通螺旋転位や貫通刃状転位、マイクロパイプ等)を引き継ぐことがなく、AlN層20における貫通系の転位を低減することができる。
 実施例1、比較例1を挙げて本発明をより具体的に説明する。
《実施例1》
〈貫通孔形成工程〉
 以下の条件で、SiC下地基板10にレーザーを照射し貫通孔11を形成した。
(SiC下地基板10)
 半導体材料:4H-SiC
 基板サイズ:横幅11mm×縦幅11mm×厚み524μm
 成長面:Si-face
 オフ角:on-axis
(レーザー加工条件)
 種類:グリーンレーザー
 波長:532nm
 スポット径:40μm
 平均出力:4W(30kHzにて)
(パターンの詳細)
 図6は、実施例1にかかる貫通孔形成工程S10で形成した貫通孔11のパターンを説明する説明図である。図6(a)は、複数の貫通孔11を配列した様子を示す説明図である。この図6(a)においては、黒く示した領域が貫通孔11の部分を示し、白く示した領域がSiC下地基板10として残されている。
 図6(b)は、図6(a)の貫通孔11を拡大した様子を示す説明図である。この図6(b)においては、白く示した領域が貫通孔11の部分を示し、黒く示した領域がSiC下地基板10として残されている。
 なお、図6のパターンにおいては、SiC下地基板10の有効面積の80%以上を除去して、SiC下地基板10の強度を低下させている。
〈歪層除去工程S20〉
 図7は、実施例1にかかる歪層除去工程S20を説明する説明図である。
 貫通孔形成工程S10により貫通孔11を形成したSiC下地基板10をSiC容器50内に収容し、さらにSiC容器50をTaC容器60に収容し、以下の条件で加熱した。
(加熱条件)
 加熱温度:1800℃
 加熱時間:2h
 エッチング量:8μm
(SiC容器50)
 材料:多結晶SiC
 容器サイズ:直径60mm×高さ4mm
 SiC下地基板10とSiC容器50の底面との距離:2mm
(SiC容器50の詳細)
 SiC容器50は、図5に示すように、互いに嵌合可能な上容器51と下容器52とを備える嵌合容器である。上容器51と下容器52の嵌合部には、微小な間隙53が形成されており、この間隙53からSiC容器50内の排気(真空引き)が可能なよう構成されている。
 SiC容器50は、SiC下地基板10が温度勾配の高温側に配置された状態で、温度勾配の低温側に配置されるSiC容器50の一部と、SiC下地基板10とを相対させることで形成されるエッチング空間54を有する。このエッチング空間54は、SiC下地基板10とSiC容器50の底面の間に設けられた温度差を駆動力として、SiC下地基板10からSiC容器50へSi原子およびC原子を輸送しエッチングする空間である。
 また、SiC容器50は、SiC下地基板10を中空に保持してエッチング空間54を形成する基板保持具55を有している。なお、この基板保持具55は、加熱炉の温度勾配の方向によっては設けなくても良い。例えば、加熱炉が下容器52から上容器51に向かって温度が下がるよう温度勾配を形成する場合には、基板保持具55を設けずに、下容器52の底面にSiC下地基板10を配置しても良い。
(TaC容器60)
 材料:TaC
 容器サイズ:直径160mm×高さ60mm
 Si蒸気供給源64(Si化合物):TaSi
(TaC容器60の詳細)
 TaC容器60は、SiC容器50と同様に、互いに嵌合可能な上容器61と下容器62とを備える嵌合容器であり、SiC容器50を収容可能に構成されている。上容器61と下容器62の嵌合部には、微小な間隙63が形成されており、この間隙63からTaC容器60内の排気(真空引き)が可能なよう構成されている。
 TaC容器60は、TaC容器60内にSi元素を含む気相種の蒸気圧を供給可能なSi蒸気供給源64を有している。Si蒸気供給源64は、加熱処理時にSi元素を含む気相種の蒸気圧をTaC容器60内に発生させる構成であれば良い。
〈結晶成長工程S30〉
 図8は、実施例1にかかる結晶成長工程S30を説明する説明図である。
 歪層除去工程S20により歪層12を除去したSiC下地基板10を半導体材料40と相対させて坩堝30内に収容し、以下の条件で加熱した。
(加熱条件)
 加熱温度:2040℃
 加熱時間:70h
 成長厚み:500μm
 Nガス圧力:10kPa
(坩堝30)
 材料:炭化タンタル(TaC)及び/又はタングステン(W)
 容器サイズ:10mm×10mm×1.5mm
 SiC下地基板10-半導体材料40間距離:1mm
(坩堝30の詳細)
 坩堝30は、SiC下地基板10と半導体材料40との間に原料輸送空間31を有している。この原料輸送空間31を介して、半導体材料40からSiC下地基板10上に原料を輸送している。
 図8(a)は、結晶成長工程S30で用いる坩堝30の一例である。この坩堝30は、SiC容器50及びTaC容器60と同様に、互いに嵌合可能な上容器32と下容器33とを備える嵌合容器である。上容器32と下容器33の嵌合部には、微小な間隙34が形成されており、この間隙34から坩堝30内の排気(真空引き)が可能なよう構成されている。
 さらに、坩堝30は、原料輸送空間31を形成する基板保持具35を有している。この基板保持具35は、SiC下地基板10と半導体材料40との間に設けられ、半導体材料40を高温側に、SiC下地基板10を低温側に配置して原料輸送空間31を形成している。
 図8(b)及び図8(c)は、結晶成長工程S30で用いる坩堝30の他の例である。この図8(b)及び図8(c)の温度勾配は、図8(a)の温度勾配と逆に設定されており、SiC下地基板10が上側に配置されている。すなわち、図8(a)と同様に、半導体材料40を高温側に、SiC下地基板10を低温側に配置して原料輸送空間31を形成している。
 図8(b)は、SiC下地基板10を上容器32側に固定することで、半導体材料40との間に原料輸送空間31を形成する例を示している。
 図8(c)は、上容器32に貫通窓を形成しSiC下地基板10を配置することで、半導体材料40との間に原料輸送空間31を形成する例を示している。また、この図8(c)に示すように、上容器32と下容器33との間に中間部材36を設けることで、原料輸送空間31を形成しても良い。
(半導体材料40)
 材料:AlN焼結体
 サイズ:横幅20mm×縦幅20mm×厚み5mm
(半導体材料40の詳細)
 半導体材料40のAlN焼結体は、以下の手順により焼結した。
 AlN粉末をTaCブロックの枠内に入れ、適度な力で押し固めた。その後、熱分解炭素坩堝に押し固めたAlN粉末およびTaCブロックを収納し、以下の条件で加熱した。
 加熱温度:1850℃
 Nガス圧力:10kPa
 加熱時間:3h
 図9は、実施例1の結晶成長工程S30を示す模式図である。貫通孔11を形成したSiC下地基板10に対してAlN層20を結晶成長させることにより、SiC下地基板10の水平方向に温度勾配を形成して、AlN層20の横方向成長の駆動力とすることができる。すなわち、水平方向への結晶成長がなされ難いAlN等の半導体材料であっても、貫通孔11を形成した領域上にAlN層20を形成することができ、大口径なAlN基板を製造することができる。
 なお、実施例1により製造されたAlN基板は、貫通孔11を形成した領域上に形成されたAlN層20においては、貫通系の転位は見受けられなかった。
《比較例1》
 比較例1にかかるSiC下地基板10は、実施例1の貫通孔11に代わりに、溝13を形成した。このSiC下地基板10に対して、実施例1と同様の条件で結晶成長工程S30を施した。すなわち、比較例1は貫通孔形成工程S10を行わず、結晶成長工程S30を行った。
 図10は、比較例1の結晶成長工程S30を示す模式図である。比較例1により製造されたAlN基板は、溝13上においてAlN層20が成長しない領域が形成された。
 すなわち、貫通孔11に代わり溝13を形成した場合には、溝13の領域の温度が低下せずSiC下地基板10の水平方向に温度勾配が形成されない。その結果、横方向の成長駆動力が生じず、溝13の領域にAlN層20が形成されないものと考えられる。
 実施例1および比較例1の結果から、貫通孔11を有するSiC下地基板10にAlN層20を形成することで、大口径なAlN基板を製造できることが把握できる。
 10 SiC下地基板
 11 貫通孔
 12 歪層
 13 溝
 20 AlN層
 30 坩堝
 31 原料輸送空間
 40 半導体材料
 50 SiC容器
 60 TaC容器
 S10 貫通孔形成工程
 S20 歪層除去工程
 S30 結晶成長工程
 S31 横方向成長工程
 S32 縦方向成長工程

Claims (12)

  1.  貫通孔を有する炭化ケイ素下地基板に窒化アルミニウム層を形成する結晶成長工程を含む、窒化アルミニウム基板の製造方法。
  2.  前記結晶成長工程は、前記炭化ケイ素下地基板の垂直方向に沿って温度勾配が形成されるよう加熱する工程である、請求項1に記載の窒化アルミニウム基板の製造方法。
  3.  前記結晶成長工程は、前記炭化ケイ素下地基板と前記窒化アルミニウム層の原料とを相対させて配置し、前記炭化ケイ素下地基板と前記原料との間に温度勾配が形成されるよう加熱する工程である、請求項1又は請求項2に記載の窒化アルミニウム基板の製造方法。
  4.  前記結晶成長工程は、前記炭化ケイ素下地基板の水平方向に前記窒化アルミニウム層が成長する横方向成長工程と、前記炭化ケイ素下地基板の垂直方向に前記窒化アルミニウム層が成長する縦方向成長工程と、を有する、請求項1~3の何れか一項に記載の窒化アルミニウム基板の製造方法。
  5.  前記炭化ケイ素下地基板に貫通孔を形成する貫通孔形成工程と、
     前記貫通孔形成工程により導入された歪層を除去する歪層除去工程と、をさらに含む、請求項1~4の何れか一項に記載の窒化アルミニウム基板の製造方法。
  6.  前記貫通孔形成工程は、レーザーを前記炭化ケイ素下地基板に照射することにより貫通孔を形成する工程である、請求項5に記載の窒化アルミニウム基板の製造方法。
  7.  前記歪層除去工程は、熱処理することにより前記炭化ケイ素下地基板の歪層を除去する工程である、請求項5又は請求項6に記載の窒化アルミニウム基板の製造方法。
  8.  前記歪層除去工程は、前記炭化ケイ素下地基板をシリコン雰囲気下でエッチングする工程である、請求項5~7の何れか一項に記載の窒化アルミニウム基板の製造方法。
  9.  請求項1~8の何れか一項に記載の製造方法により製造された窒化アルミニウム基板。
  10.  炭化ケイ素下地基板の表面上に窒化アルミニウム層を形成する前に、前記炭化ケイ素下地基板に貫通孔を形成する貫通孔形成工程を含む、窒化アルミニウム層を形成する方法。
  11.  前記貫通孔形成工程により導入された歪層を除去する歪層除去工程を含む、請求項10に記載の方法。
  12.  前記歪層除去工程は、熱処理することにより前記炭化ケイ素下地基板をエッチングする工程である、請求項11に記載の方法。

     
PCT/JP2021/013746 2020-04-14 2021-03-30 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法 WO2021210393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022515288A JPWO2021210393A1 (ja) 2020-04-14 2021-03-30
EP21789219.9A EP4137623A4 (en) 2020-04-14 2021-03-30 METHOD FOR PRODUCING AN ALUMINUM NITRIDE SUBSTRATE, ALUMINUM NITRIDE SUBSTRATE AND METHOD FOR PRODUCING AN ALUMINUM NITRIDE LAYER
US17/996,189 US20230304186A1 (en) 2020-04-14 2021-03-30 Method for manufacturing aluminum nitride substrate, aluminum nitride substrate, and method for forming aluminum nitride layer
CN202180028128.7A CN115443352A (zh) 2020-04-14 2021-03-30 氮化铝衬底的制造方法、氮化铝衬底以及形成氮化铝层的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-072550 2020-04-14
JP2020072550 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021210393A1 true WO2021210393A1 (ja) 2021-10-21

Family

ID=78084194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013746 WO2021210393A1 (ja) 2020-04-14 2021-03-30 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法

Country Status (6)

Country Link
US (1) US20230304186A1 (ja)
EP (1) EP4137623A4 (ja)
JP (1) JPWO2021210393A1 (ja)
CN (1) CN115443352A (ja)
TW (1) TW202144630A (ja)
WO (1) WO2021210393A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579359B1 (en) * 1999-06-02 2003-06-17 Technologies And Devices International, Inc. Method of crystal growth and resulted structures
JP2003229623A (ja) * 2002-02-05 2003-08-15 Sumitomo Electric Ind Ltd 窒化物系化合物半導体素子及びその作製方法
JP2007055881A (ja) 2005-07-29 2007-03-08 Sumitomo Electric Ind Ltd AlN結晶およびその成長方法ならびにAlN結晶基板
WO2007111219A1 (ja) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Iii族窒化物単結晶の成長方法
JP2015166293A (ja) * 2014-03-03 2015-09-24 国立大学法人大阪大学 Iii族窒化物結晶の製造方法、iii族窒化物結晶、半導体装置およびiii族窒化物結晶製造装置
JP2016037426A (ja) * 2014-08-08 2016-03-22 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体ウエハ
JP2018024578A (ja) * 2017-09-12 2018-02-15 三菱ケミカル株式会社 第13族金属窒化物基板の製造方法
JP2019026500A (ja) * 2017-07-28 2019-02-21 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241286B2 (ja) * 2014-01-14 2017-12-06 住友電気工業株式会社 炭化珪素単結晶の製造方法
WO2016147786A1 (ja) * 2015-03-18 2016-09-22 住友化学株式会社 窒化物半導体成長用基板及びその製造方法、並びに半導体デバイス及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579359B1 (en) * 1999-06-02 2003-06-17 Technologies And Devices International, Inc. Method of crystal growth and resulted structures
JP2003229623A (ja) * 2002-02-05 2003-08-15 Sumitomo Electric Ind Ltd 窒化物系化合物半導体素子及びその作製方法
JP2007055881A (ja) 2005-07-29 2007-03-08 Sumitomo Electric Ind Ltd AlN結晶およびその成長方法ならびにAlN結晶基板
WO2007111219A1 (ja) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Iii族窒化物単結晶の成長方法
JP2015166293A (ja) * 2014-03-03 2015-09-24 国立大学法人大阪大学 Iii族窒化物結晶の製造方法、iii族窒化物結晶、半導体装置およびiii族窒化物結晶製造装置
JP2016037426A (ja) * 2014-08-08 2016-03-22 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体ウエハ
JP2019026500A (ja) * 2017-07-28 2019-02-21 東洋炭素株式会社 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC
JP2018024578A (ja) * 2017-09-12 2018-02-15 三菱ケミカル株式会社 第13族金属窒化物基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4137623A4

Also Published As

Publication number Publication date
CN115443352A (zh) 2022-12-06
US20230304186A1 (en) 2023-09-28
EP4137623A4 (en) 2024-05-22
JPWO2021210393A1 (ja) 2021-10-21
EP4137623A1 (en) 2023-02-22
TW202144630A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
JP6031733B2 (ja) GaN結晶の製造方法
US20070256630A1 (en) Method and apparatus for aluminum nitride monocrystal boule growth
WO2019022054A1 (ja) 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC
KR100845946B1 (ko) SiC 단결정 성장방법
JP4431647B2 (ja) 単結晶炭化ケイ素基板の表面改良方法及び単結晶炭化ケイ素成長方法
JP4690906B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
US20230197456A1 (en) Silicon carbide substrate manufacturing method, silicon carbide substrate, and method of removing strain layer introduced into silicon carbide substrate by laser processing
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
WO2021210393A1 (ja) 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層を形成する方法
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
WO2021210392A1 (ja) 半導体基板の製造方法、半導体基板、及び、成長層を形成する方法
WO2021210391A1 (ja) 窒化アルミニウム基板の製造方法、窒化アルミニウム基板、及び、窒化アルミニウム層におけるクラックの発生を抑制する方法
WO2021210390A1 (ja) 半導体基板の製造方法、半導体基板、及び、成長層におけるクラックの発生を抑制する方法
WO2021210397A1 (ja) 半導体基板の製造方法、半導体基板及び成長層への転位の導入を抑制する方法
WO2021210398A1 (ja) 窒化アルミニウム基板の製造方法、窒化アルミニウム基板及び窒化アルミニウム成長層への転位の導入を抑制する方法
JP6457442B2 (ja) GaN結晶基板
WO2022092166A1 (ja) 熱処理環境の評価方法及び炭化ケイ素基板
JPH0987086A (ja) 単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021789219

Country of ref document: EP

Effective date: 20221114