WO2022092166A1 - 熱処理環境の評価方法及び炭化ケイ素基板 - Google Patents
熱処理環境の評価方法及び炭化ケイ素基板 Download PDFInfo
- Publication number
- WO2022092166A1 WO2022092166A1 PCT/JP2021/039699 JP2021039699W WO2022092166A1 WO 2022092166 A1 WO2022092166 A1 WO 2022092166A1 JP 2021039699 W JP2021039699 W JP 2021039699W WO 2022092166 A1 WO2022092166 A1 WO 2022092166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- sic
- environment
- evaluating
- treatment environment
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 146
- 239000000758 substrate Substances 0.000 title claims abstract description 143
- 238000011156 evaluation Methods 0.000 title claims abstract description 63
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 220
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 187
- 238000010894 electron beam technology Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims description 54
- 239000013078 crystal Substances 0.000 claims description 31
- 230000007613 environmental effect Effects 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 description 29
- 238000005530 etching Methods 0.000 description 16
- 230000008018 melting Effects 0.000 description 16
- 238000002844 melting Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 8
- 238000002109 crystal growth method Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/08—Etching
- C30B33/12—Etching in gas atmosphere or plasma
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0095—Semiconductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0475—Changing the shape of the semiconductor body, e.g. forming recesses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2202—Preparing specimens therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/388—Ceramics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention relates to a method for evaluating a heat treatment environment and a silicon carbide substrate.
- Silicon carbide (SiC) semiconductor devices are capable of higher withstand voltage, higher efficiency, and higher temperature operation than silicon (Si) and gallium arsenide (GaAs) semiconductor devices. Therefore, development is underway for industrialization.
- Patent Documents 1 and 2 In order to improve the yield and quality of SiC semiconductor devices, a method for controlling the step-terrace structure of a SiC substrate has been proposed (see Patent Documents 1 and 2).
- Patent Document 1 describes a technique for manufacturing a SiC epitaxial wafer that controls the surface shape of a SiC substrate by using a concentration ratio C / Si of SiH 4 gas and C3 H 8 gas simultaneously supplied to the SiC substrate. Has been done.
- Patent Document 2 describes a SiC substrate that controls the surface shape of the SiC substrate after the etching process by controlling the etching mode determined based on at least the etching rate and the etching depth to etch the SiC substrate. The technique of the surface treatment method of is described.
- the step-terrace structure of the heat-treated SiC substrate is determined by the heat treatment environment (hereinafter referred to as heat treatment environment) experienced by this SiC substrate. Therefore, whether or not the desired step-terrace structure can be reproduced repeatedly depends on whether or not the desired heat treatment environment can be reproduced.
- the problem to be solved by the present invention is to provide a new technique for evaluating the heat treatment environment.
- the present invention which solves the above-mentioned problems, comprises an image acquisition step of incident an electron beam at an incident angle inclined with respect to the normal of the ⁇ 0001 ⁇ plane of the heat-treated silicon carbide substrate to acquire an image. It is an evaluation method of a heat treatment environment including the environment evaluation step which evaluates the heat treatment environment of the silicon carbide substrate based on the contrast information of the image.
- the heat treatment environment experienced by the silicon carbide substrate can be appropriately evaluated.
- "-" means a bar attached to the index immediately after that.
- the environmental evaluation step is a step of evaluating the contrast information appearing on the terrace of the silicon carbide substrate.
- the environmental evaluation step is a step of evaluating contrast information appearing along the ⁇ 1-100> direction.
- the contrast information has a plurality of brightness information reflecting the stacking direction of atoms
- the environmental evaluation step includes a brightness comparison step of comparing the plurality of brightness information
- the contrast information includes a first brightness information that reflects the stacking direction of atoms and a second brightness information that can be compared with the first brightness information, and the environment.
- the evaluation step includes a brightness comparison step of comparing the first brightness information and the second brightness information.
- the image acquisition step is a step of incident an electron beam inclined in the ⁇ 1-100> direction onto the silicon carbide substrate.
- the environmental evaluation step is a step of evaluating whether the heat treatment environment is a SiC-SiC equilibrium vapor pressure environment or a C-SiC equilibrium vapor pressure environment.
- the environmental evaluation step is a step of evaluating whether the heat treatment environment is a Si-rich environment or a C-rich environment.
- the silicon carbide substrate has a hexagonal crystal structure.
- a preferred embodiment of the present invention includes a heat treatment step of forming a step-terrace structure by heat treating a silicon carbide substrate in a heat treatment environment.
- the silicon carbide substrate comprises a step forming portion that is a source of steps during heat treatment, and an environmental evaluation region in which a step-terrace structure resulting from the step forming portion is formed.
- the environmental evaluation step is a step of evaluating the environmental evaluation area.
- the step forming portion is a through dislocation.
- the step forming portion is a machined hole.
- the environmental evaluation area is a processed recess.
- the present invention also relates to a silicon carbide substrate. That is, the present invention that solves the above-mentioned problems includes a step forming portion that is a source of steps during heat treatment, and an environmental evaluation region in which a step-terrace structure is formed due to the step forming portion. It is a board.
- the step forming portion is a through dislocation.
- the step forming portion is a machined hole.
- the environmental evaluation area is a processed recess.
- FIG. 1 is a schematic diagram illustrating a process of an evaluation method of a heat treatment environment according to an embodiment of the present invention.
- the method for evaluating the heat treatment environment according to the embodiment is a heat treatment step S10 for forming a step-terrace structure by heat-treating the hexagonal SiC substrate 10 in the heat treatment environment HE, and ⁇ 0001 of the heat-treated SiC substrate 10.
- the image acquisition step S20 in which the electron beam PE is incident at an incident angle ⁇ inclined with respect to the normal line N of the surface to acquire the image I, and the heat treatment environment HE of the SiC substrate 10 based on the contrast information C of the image I.
- the environmental evaluation step S30 for evaluating the above is included.
- the method for evaluating the heat treatment environment according to the present invention is based on the contrast information C of the image I acquired by using the electron beam PE incident from the direction inclined with respect to the normal line N of the SiC substrate 10, in the heat treatment step S10. It is characterized in that it evaluates the heat treatment environment HE.
- an image I including a plurality of brightness information (contrast information C) reflecting the stacking direction of atoms on the surface of the SiC substrate 10 is acquired by an electron beam PE, and the plurality of brightness information appearing in the image I are compared.
- the heat treatment environment HE experienced by the SiC substrate 10 can be specified.
- the heat treatment environment HE experienced by the SiC substrate 10 is a SiC-SiC equilibrium vapor pressure environment or a C-SiC equilibrium vapor pressure environment. Further, it can be evaluated that the heat treatment environment HE experienced by the SiC substrate 10 is a Si-rich environment or a C-rich environment.
- SiC-Si vapor pressure environment in the present specification refers to the vapor pressure environment when SiC (solid phase) and Si (liquid phase) are in a phase equilibrium state via a gas phase.
- This SiC-Si equilibrium vapor pressure environment is formed, for example, by heat-treating a semi-closed space having an atomic number ratio Si / C of more than 1.
- a SiC substrate satisfying a stoichiometric ratio 1: 1 and a Si steam supply source are arranged in a SiC container satisfying a stoichiometric ratio 1: 1. If so, the atomic number ratio Si / C in the container exceeds 1.
- a SiC-Si vapor pressure environment can be formed in the container.
- SiC-C equilibrium vapor pressure environment in the present specification refers to the vapor pressure environment when SiC (solid phase) and C (solid phase) enter a phase equilibrium state via a gas phase.
- This SiC-C equilibrium vapor pressure environment is formed, for example, by heat-treating a semi-closed space having an atomic number ratio Si / C of 1 or less.
- a SiC substrate satisfying the stoichiometric ratio 1: 1 is placed in a SiC container satisfying the stoichiometric ratio 1: 1, the atomic number ratio Si / C in the container is 1. Will be.
- a C steam supply source C pellet or the like
- C pellet or the like may be arranged to set the atomic number ratio Si / C to 1 or less.
- the SiC-Si equilibrium vapor pressure environment and the SiC-C equilibrium vapor pressure environment in the present specification include a near-thermal equilibrium vapor pressure environment that satisfies the relationship between the growth rate and the growth temperature derived from the theoretical thermal equilibrium environment.
- the "quasi-closed space" in the present specification means a space in which the inside of the container can be evacuated, but at least a part of the steam generated in the container can be confined. This semi-enclosed space can be formed within the container.
- the method for evaluating the heat treatment environment according to the present invention may include at least an image acquisition step S20 and an environment evaluation step S30.
- the steps of the preferred embodiment of the present invention will be described in detail.
- the heat treatment step S10 is a step of heat-treating the SiC substrate 10 in the heat treatment environment HE which is the evaluation target of the present invention. Specifically, it is a step of forming a step-terrace structure reflecting the heat treatment environment HE by heat-treating the hexagonal SiC substrate 10 in the heat treatment environment HE.
- Examples of the method of the heat treatment step S10 include a crystal growth method for forming a growth layer on the SiC substrate 10 and an etching method for etching the SiC substrate 10.
- crystal growth method examples include a chemical vapor deposition method (CVD), a physical vapor transport method (PVT), a semi-stable solvent epitaxy method (Metastable Solvent Epitax), and a quasi-stable solvent epitaxy method described later.
- CVD chemical vapor deposition method
- PVT physical vapor transport method
- CPVT confined physical vapor transport crystal growth method
- etching method examples include a hydrogen etching method using hydrogen gas as an etching gas, a Si vapor pressure etching (Si-Vapor Etching: SiVE) method for heating in a Si atmosphere, and a CPVT etching method (see FIG. 3) described later. Can be adopted.
- the heat treatment step S10 is a step of accommodating the SiC substrate 10 and the SiC material 20 inside the heat treatment vessel 30 and heating the inside of the heat treatment vessel 30 so that a temperature gradient is formed. Further, it is desirable that the heat treatment container 30 is housed in the high melting point container 40.
- This embodiment may include a form in which the SiC substrate 10 is crystal-grown and a form in which the SiC substrate 10 is etched, depending on the positional relationship between the SiC substrate 10 and the SiC material 20 and the direction of the temperature gradient.
- FIG. 2 is an explanatory diagram showing a form in which the SiC substrate 10 is crystal-grown by using the CPVT crystal growth method.
- the SiC substrate 10 and the SiC material 20 are arranged so as to face each other, and the SiC substrate 10 is heated with a temperature gradient so as to be on the low temperature side and the SiC material 20 on the high temperature side.
- the Si element and the C element are transported from the SiC material 20 to the SiC substrate 10 to grow a growth layer on the SiC substrate 10.
- FIG. 3 is an explanatory diagram showing a form in which the SiC substrate 10 is etched by using the CPVT etching method.
- the SiC substrate 10 and the SiC material 20 are arranged so as to face each other, and the SiC substrate 10 is heated with a temperature gradient so as to be on the low temperature side and the SiC substrate 10 on the high temperature side. With this temperature gradient, the Si element and the C element are transported from the SiC substrate 10 to the SiC material 20 to etch the SiC substrate 10.
- the positions of the SiC substrate 10 and the SiC material 20 are interchanged. Further, the transport directions of the Si element and the C element may be reversed by reversing the direction of the temperature gradient without exchanging the positions of the SiC substrate 10 and the SiC material 20.
- FIGS. 2 (a) and 3 (a) show a form in which the SiC substrate 10 and the SiC material 20 are placed in a semi-closed space where the atomic number ratio Si / C exceeds 1, and heat-treated.
- the SiC substrate 10 by heat-treating the SiC substrate 10 in a semi-closed space having an atomic number ratio of Si / C of more than 1, the surface of the SiC substrate 10 is subjected to a step corresponding to the SiC-SiC equilibrium vapor pressure environment (heat treatment environment HE).
- a terrace structure is formed.
- 2 (b) and 3 (b) show a form in which the SiC substrate 10 and the SiC material 20 are placed in a semi-closed space where the atomic number ratio Si / C is 1 or less and heat-treated.
- the surface of the SiC substrate 10 is subjected to a step corresponding to the C-SiC equilibrium vapor pressure environment (heat treatment environment HE). -A terrace structure is formed.
- the SiC substrate 10 the SiC material 20, the heat treatment container 30, and the melting point container 40 in the heat treatment step S10 according to the preferred embodiment will be described in detail.
- the SiC substrate 10 can be exemplified by processing a single crystal SiC into a thin plate. Specifically, a SiC wafer or the like sliced into a disk shape from a SiC ingot manufactured by a sublimation method or the like can be exemplified. As for single crystal SiC, more than 200 types of polytypes have been confirmed, and 4H-SiC and 6H-SiC are known as hexagonal polytypes having a high probability of occurrence and important for application.
- FIG. 4 shows a schematic diagram of the crystal structure of 4H-SiC.
- FIG. 4A is a crystal structure of 4H-SiC seen from the ⁇ 11-20> direction.
- FIG. 4B is a crystal structure of 4H-SiC seen from the [0001] direction.
- the notation of "A, B, C” in the figure means the occupied positions of three types of atoms (corresponding to Si—C pairs) in the hexagonal close-packed structure.
- FIG. 4A showing the crystal structure of 4H-SiC, the stacking of atoms at positions A and C corresponds to the zinc-blend structure, and the stacking of atoms at position B corresponds to wurtzite. ) Corresponds to the structure.
- FIG. 5 shows a schematic diagram of a step-terrace structure formed on the surface of the SiC substrate 10.
- This step-terrace structure is a staircase structure in which step 101, which is a stepped portion having one or more molecular layers, and terrace 102, which is a flat portion where the ⁇ 0001 ⁇ surface is exposed, are alternately arranged.
- step 101 one molecular layer (0.25 nm) is the minimum height (minimum unit), and various step heights are formed by overlapping a plurality of the single molecular layers.
- FIG. 5 shows step 101 composed of a 2 molecular layer (0.5 nm: half unit cell) of 4H-SiC.
- the SiC material 20 is composed of SiC that can receive or transfer Si element and C element to and from the SiC substrate 10 by heating the SiC material 20 relative to the SiC substrate 10.
- the SiC substrate 10 and the SiC material 20 of the SiC substrate are opposed to each other via the holder 34.
- a container made of SiC (heat treatment container 30) or a container in which a part of the container is made of SiC may be adopted as the SiC material 20.
- any polymorphic type can be adopted, and polycrystal SiC may be adopted.
- the heat treatment vessel 30 can adopt such a configuration as long as it has a configuration in which the vapor pressure of the vapor phase species containing Si element and the vapor phase species containing C element is generated in the internal space during the heat treatment.
- a configuration in which SiC is exposed inside the container or a configuration in which a SiC material (such as a substrate made of SiC) is separately arranged in the heat treatment container 30 can be shown.
- a heat treatment container 30 made of a material other than SiC may be used to accommodate the Si element and the material generating the C element inside the container.
- the entire heat treatment container 30 is made of polycrystalline SiC.
- the environment in the heat-treated heat-treated container 30 is a vapor pressure environment of a mixed system of gas phase species containing Si element and gas phase species containing C element.
- gas phase species containing the Si element include Si, Si 2 , Si 3 , Si 2 C, SiC 2 , and SiC.
- the gas phase species containing the C element Si 2 C, SiC 2 , SiC, and C can be exemplified. That is, the SiC gas is present in the heat treatment container 30.
- the heat treatment container 30 is a fitting container provided with an upper container 31 and a lower container 32 that can be fitted to each other.
- a minute gap 33 is formed in the fitting portion between the upper container 31 and the lower container 32, and is configured so that the heat treatment container 30 can be exhausted (evacuated) from the gap 33. That is, the inside of the heat treatment container 30 is a semi-closed space.
- the heat treatment container 30 may have a holder 34 for holding the SiC substrate 10 or the SiC material 20 in the air.
- the holder 34 may be configured so as to be able to hold at least a part of the SiC substrate 10 in the hollow of the heat treatment container 30.
- any conventional support means such as one-point support, three-point support, a configuration for supporting the outer peripheral edge, or a configuration for sandwiching a part thereof can be naturally adopted.
- As the material of the holder 34 a high melting point material can be adopted.
- the holder 34 may not be provided depending on the form of the SiC material 20. That is, when the heat treatment container 30 itself is made of the SiC material 20, the SiC substrate 10 may be arranged on the bottom surface of the lower container 32 (without providing the holder 34).
- the heat treatment container 30 may have a Si steam supply source 35 as shown in FIGS. 2 (a) and 3 (a).
- the Si vapor supply source 35 may be configured to generate Si vapor in the heat treatment vessel 30 at the time of heating, and examples thereof include solid Si (Si pellets such as single crystal Si pieces and Si powder) and Si compounds. Can be done.
- the melting point container 40 accommodates the heat treatment container 30 and generates the vapor pressure (atmosphere containing the Si element) of the vapor phase species containing the Si element in the internal space during the heat treatment, the structure shall be adopted. Can be done.
- the atmosphere containing the Si element in the melting point container 40 according to the embodiment is formed by using the Si steam supply source 44. As long as the method can form an atmosphere containing Si element around the heat treatment container 30, it can be naturally adopted.
- the melting point container 40 is configured to include a melting point material.
- C which is a general-purpose heat-resistant member, W, Re, Os, Ta, Mo which is a refractory metal, Ta 9C 8 , which is a carbide, HfC, TaC, NbC, ZrC, Ta 2C , TiC, WC, MoC, Examples thereof include HfN, TaN, BN, Ta 2N, ZrN, TiN which are nitrides, HfB 2 , TaB 2 , TaB 2 , ZrB 2 , NB 2 , TiB 2 , and polycrystalline SiC which are borides.
- the high melting point container 40 is a fitting container provided with an upper container 41 and a lower container 42 that can be fitted to each other, and is configured to be able to accommodate the heat treatment container 30.
- a minute gap 43 is formed in the fitting portion between the upper container 41 and the lower container 42, and is configured to allow exhaust (evacuation) in the melting point container 40 from this gap 43.
- the high melting point container 40 has a Si steam supply source 44 capable of supplying the vapor pressure of a vapor phase species containing a Si element in the high melting point container 40.
- the Si steam supply source 44 may be configured to generate Si steam in the melting point container 40 at the time of heating.
- Examples of the Si vapor supply source 44 include solid Si (Si pellets such as single crystal Si pieces and Si powder) and Si compounds.
- TaC is adopted as the material of the melting point container 40
- tantalum silicide is adopted as the Si steam supply source 44.
- a tantalum silicide layer is formed inside the melting point container 40.
- the Si vapor pressure environment is formed by supplying Si vapor from the tantalum silicide layer into the container during heating.
- the SiC substrate 10 is formed by incident the electron beam PE on the SiC substrate 10 at an incident angle ⁇ inclined with respect to the normal line N of the ⁇ 0001 ⁇ plane of the SiC substrate 10. This is a step of acquiring an image I including contrast information C of the terrace 102 reflecting the stacking direction of atoms on the surface.
- the image acquisition step S20 includes the installation step S21 in which the SiC substrate 10 is installed on the stage of the scanning electron microscope and the SiC at an incident angle ⁇ in which the electron beam PE is inclined with respect to the normal line N of the ⁇ 0001 ⁇ plane of the SiC substrate 10.
- a tilting step S22 for tilting the stage so that the electron beam PE is incident on the substrate 10 and an electron beam irradiation step S23 for irradiating the SiC substrate 10 with the electron beam PE to obtain an image I are included.
- the tilting step S22 it is preferable to tilt the stage so that the electron beam PE tilts in the ⁇ 1-100> direction with respect to the normal line N of the SiC substrate 10.
- the tilt angle ⁇ of the stage in the tilt step S22 is such that the incident angle ⁇ of the electron beam PE is preferably in the range of 22 ° or more and 42 ° or less, more preferably in the range of 27 ° or more and 37 ° or less, and further preferably in the range of 30 ° or more and 31. Tilt so that it is within the range of ° or less.
- the tilt angle ⁇ of the stage in the tilt step S22 is such that the incident angle ⁇ of the electron beam PE is preferably in the range of 5 ° or more and 10 ° or less, more preferably in the range of 7 ° or more and 9 ° or less, and further preferably in the range of 8 °. Tilt so that
- the electron beam irradiation step S23 it is preferable to irradiate the electron beam PE at an acceleration voltage of 1.0 kV or less. By making the electron beam PE incident on the SiC substrate 10 with such an acceleration voltage, the image I reflecting the contrast information C can be acquired.
- Image I shows electrons emitted after the electron beam PE (primary electrons) irradiated by the electron emitting part of the scanning electron microscope interacts with the electrons bounced off the surface of the SiC substrate 10 and the SiC substrate 10 (backscattered electrons). It is created based on electrons (secondary electrons) generated in the process of interaction.
- PE primary electrons
- SiC substrate 10 backscattered electrons
- the detector arranged in the scanning electron microscope detects backscattered electrons and / and secondary electrons, and the image I is created based on the position information of the SiC substrate 10 and the detection result of each electron.
- FIG. 6 is an explanatory diagram illustrating the image I obtained in the image acquisition step S20 with respect to the SiC substrate 10 heat-treated in the SiC-SiC equilibrium vapor pressure environment (heat treatment environment HE) in the heat treatment step S10.
- FIG. 6A is an image I of the SiC substrate 10 heat-treated in a SiC-SiC equilibrium vapor pressure environment.
- FIG. 6B is a schematic diagram of the crystal structure of the SiC substrate 10 heat-treated in a SiC-SiC equilibrium vapor pressure environment.
- FIG. 7 is an explanatory diagram illustrating the image I obtained in the image acquisition step S20 with respect to the SiC substrate 10 heat-treated in the C-SiC equilibrium vapor pressure environment (heat treatment environment HE) in the heat treatment step S10.
- FIG. 7A is an image I of the SiC substrate 10 heat-treated in a C-SiC equilibrium vapor pressure environment.
- FIG. 7B is a schematic diagram of the crystal structure of the SiC substrate 10 heat-treated in a C—SiC equilibrium vapor pressure environment.
- the environment evaluation step S30 is a step of evaluating the heat treatment environment HE of the SiC substrate 10 based on the contrast information C of the image I.
- This environmental evaluation step S30 is a step of evaluating the contrast information C appearing on the terrace 102 of the SiC substrate 10.
- the environmental evaluation step S30 is a step of evaluating the contrast information C appearing along the ⁇ 1-100> direction.
- Contrast information C has a plurality of brightness information reflecting the stacking direction of atoms on the surface of the SiC substrate 10. Specifically, it has a first lightness information C1 that appears along the ⁇ 1-100> direction, and a second lightness information C2 that can be compared with the first lightness information C1.
- the environment evaluation step S30 includes a brightness comparison step S31 for comparing a plurality of brightness information, and a crystal structure specifying step S32 for specifying the crystal structure of the outermost surface (terrace 102) of the SiC substrate 10 based on the plurality of brightness information. including.
- the brightness comparison step S31 is a step of comparing a plurality of brightness information. Specifically, by comparing the lightness of the first lightness information C1 and the lightness of the second lightness information C2, the first lightness information C1 appearing along the ⁇ 1-100> direction is white or black. It is a process to evaluate whether or not. That is, it is a step of evaluating whether the terrace 102 region used for evaluation is relatively black or white by comparing a plurality of brightness information.
- the crystal structure specifying step S32 is based on the relationship between the first brightness information C1 obtained in the brightness comparison step S31 and the inclination direction of the incident angle ⁇ of the electron beam PE with respect to the SiC substrate 10 (incident direction of the electron beam PE). , Is a step of obtaining information on the crystal structure of the outermost surface (terrace 102) of the SiC substrate 10.
- the stacking direction of the atoms of the terrace 102 is the first stacking direction D1 or the second stacking direction D2. It is possible to identify whether or not there is.
- FIG. 6 is an image I obtained by irradiating a SiC substrate 10 heat-treated in a SiC-SiC equilibrium vapor pressure environment with an electron beam PE from the [-1100] direction (left side direction in FIG. 6).
- the first brightness information C1 appearing on the terrace 102 in the [1-100] direction of the image I is black by comparing with the second brightness information C2 (brightness comparison step S31).
- the second lightness information C2 to be compared with the first lightness information C1 appears white, for example, in the region between the [10-10] direction and the [2-1-10] direction.
- the crystal structure on the outermost surface of the SiC substrate 10 is the first stacking direction D1. (Crystal structure specifying step S32).
- the stacking direction of the atoms of the terrace 102 in the [1-100] direction. can be evaluated as the first stacking direction D1.
- the terrace 102 of the SiC substrate 10 heat-treated in the SiC-SiC equilibrium vapor pressure environment has two dangling bonds at the end of step 101 in the ⁇ 1-100> direction. It can be evaluated as forming a surface on which the element is present.
- the SiC substrate 10 when the SiC substrate 10 has a surface on which the C element having two dangling bonds is present at the end of the step 101 in the ⁇ 1-100> direction, this SiC substrate is present.
- the heat treatment environment experienced by 10 can be evaluated as a SiC-SiC equilibrium vapor pressure environment.
- the contrast information C is inverted. That is, the first brightness information C1 reflecting the crystal structure in the first stacking direction D1 is white, and the second brightness information C2 reflecting the crystal structure in the second stacking direction D2 is black.
- the contrast information C (first brightness information C1 and second brightness information C2) is determined by the relationship between the irradiation direction of the electron beam PE and the stacking direction of the SiC substrate 10. Therefore, in the crystal structure specifying step S32, it is necessary to evaluate the stacking direction of the region of the first brightness information C1 from the crystal structure of the SiC substrate 10 and the direction in which the electron beam PE is irradiated.
- FIG. 7 is an image I obtained by irradiating a SiC substrate 10 heat-treated in a C-SiC equilibrium vapor pressure environment with an electron beam PE from the [-1100] direction (left side direction in the figure).
- the first brightness information C1 appearing on the terrace 102 in the [1-100] direction of the image I is white by comparing with the second brightness information C2 (brightness comparison step S31).
- the second lightness information C2 to be compared with the first lightness information C1 appears black, for example, in the region between the [10-10] direction and the [2-1-10] direction.
- the stacking direction of the atoms of the terrace 102 in the [1-100] direction. can be evaluated to be the second stacking direction D2.
- the terrace 102 of the SiC substrate 10 heat-treated in the C-SiC equilibrium vapor pressure environment has one dangling bond at the end of step 101 in the ⁇ 1-100> direction. It can be evaluated as forming a surface on which the element is present.
- the SiC substrate 10 when the SiC substrate 10 has a surface on which the C element having one dangling bond is present at the end of the step 101 in the ⁇ 1-100> direction, this SiC substrate is present.
- the heat treatment environment experienced by 10 can be evaluated as a C—SiC equilibrium vapor pressure environment.
- the method for evaluating the heat treatment environment according to the present invention is an image acquisition step of incident an electron beam PE at an incident angle ⁇ inclined with respect to the normal line N of the ⁇ 0001 ⁇ plane of the heat-treated SiC substrate 10 to acquire an image I. It includes S20 and an environment evaluation step S30 for evaluating the heat treatment environment HE of the SiC substrate 10 based on the contrast information C of the image I.
- the method for evaluating the heat treatment environment according to the present invention evaluates the stacking direction of the atoms of the terrace 102 reflecting the heat treatment environment HE. Therefore, the heat treatment environment HE can be evaluated without being locally affected by crystal defects of the SiC substrate 10, a processed alteration layer, or the like.
- the heat treatment environment HE can be easily evaluated only by acquiring the image I of the SiC substrate 10 using a scanning electron microscope. That is, as shown in FIGS. 6 and 7, it is evaluated whether the heat treatment environment HE is a SiC-SiC equilibrium vapor pressure environment or a C-SiC equilibrium vapor pressure environment based on the contrast information C of the image I. Can be done.
- SiC board >> Next, a preferred embodiment of the SiC substrate used in the above-mentioned method for evaluating the heat treatment environment will be described.
- the SiC substrate 50 has an evaluation pattern 60 for evaluating the heat treatment environment HE.
- the evaluation pattern 60 has a step forming portion 61 that is a source of the step 101 during the heat treatment, and an environment evaluation region 62 in which the step-terrace structure resulting from the step forming portion 61 is formed.
- FIG. 8 shows an example in which a plurality of evaluation patterns 60 are formed on a SiC wafer. By interspersing the evaluation patterns 60 on the SiC wafer in this way, the heat treatment environment HE at each location can be evaluated.
- the SiC substrate 50 there are no restrictions on the size and shape of the SiC substrate 50 or the number of evaluation patterns 60.
- an individual piece on which one evaluation pattern 60 is formed may be adopted as an evaluation sample of the heat treatment environment HE.
- FIG. 9 is an example of the evaluation pattern 60, and has a machined hole 611 serving as a step forming portion 61 and a machined recess 621 serving as an environmental evaluation region 62. Since the machined hole 611 is formed deeper than the machined recess 621, a cliff portion 63 is formed between the machined hole 611 and the machined recess 621. When heat-treating in the heat treatment environment HE, etching proceeds preferentially from the cliff portion 63. Therefore, the terrace 102 reflecting the heat treatment environment HE is formed in the region in the processing recess 621.
- FIG. 10 is an example of the evaluation pattern 60, and has a through dislocation 612 which is a step forming portion 61 and a machined recess 622 which is an environmental evaluation region 62.
- the SiC substrate 50 according to the present invention includes a step forming portion 61 that is a source of step 101 during heat treatment, and an environment evaluation region 62 in which a step-terrace structure is formed due to the step forming portion 61.
- a terrace 102 reflecting the heat treatment environment HE can be obtained. Then, by evaluating the SiC substrate 50 by the above-mentioned method for evaluating the heat treatment environment, the heat treatment environment HE can be appropriately evaluated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
前記画像のコントラスト情報に基いて前記炭化ケイ素基板の熱処理環境を評価する環境評価工程と、を含む、熱処理環境の評価方法である。
なお、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味する。
図1は、本発明の実施の形態にかかる熱処理環境の評価方法の工程を説明する概略図である。実施の形態にかかる熱処理環境の評価方法は、六方晶系のSiC基板10を熱処理環境HEで熱処理することによりステップ-テラス構造を形成する熱処理工程S10と、この熱処理されたSiC基板10の{0001}面の法線Nに対して傾斜した入射角度θで電子線PEを入射して画像Iを取得する画像取得工程S20と、この画像Iのコントラスト情報Cに基いてSiC基板10の熱処理環境HEを評価する環境評価工程S30と、を含む。
以下、本発明の好ましい実施の形態の工程に沿って、詳細に説明する。
熱処理工程S10は、本発明の評価対象である熱処理環境HEにて、SiC基板10を熱処理する工程である。具体的には、六方晶系のSiC基板10を熱処理環境HEで熱処理することにより、熱処理環境HEを反映したステップ-テラス構造を形成する工程である。
SiC基板10は、単結晶SiCを薄板状に加工したものを例示することができる。具体的には、昇華法等で作製したSiCインゴットから円盤状にスライスしたSiCウェハ等を例示できる。なお、単結晶SiCは、200種類以上のポリタイプが確認されており、発生確率が高く応用上重要な六方晶系のポリタイプとして、4H-SiC、6H-SiCが知られている。
SiC材料20は、SiC基板10と相対させて加熱することで、SiC基板10との間でSi元素とC元素の受け取り又は受け渡しが可能なSiCで構成される。実施の形態においては、図2及び図3に示すように、保持具34を介してSiC基板10とSiC製基板のSiC材料20と相対させている。この他にも、例えば、SiC製の容器(熱処理容器30)や容器の一部分をSiCで構成した容器を、SiC材料20として採用しても良い。なお、このSiC材料20の結晶多形としては、何れのポリタイプのものも採用することができ、多結晶SiCを採用しても良い。
熱処理容器30は、加熱処理時にSi元素を含む気相種及びC元素を含む気相種の蒸気圧を内部空間に発生させる構成であれば、その構成を採用することができる。例えば、容器の内側にSiCが露出した構成や、熱処理容器30内に別途SiC材料(SiC製の基板等)を配置する構成を示すことができる。また、SiC以外の材料で構成された熱処理容器30を用いて、容器の内部にSi元素及びC元素を発生する材料を収容する形態も含み得る。
高融点容器40は、熱処理容器30を収容し、加熱処理時にSi元素を含む気相種の蒸気圧(Si元素を含む雰囲気)を内部空間に発生させる構成であれば、その構成を採用することができる。実施の形態にかかる高融点容器40内のSi元素を含む雰囲気は、Si蒸気供給源44を用いて形成している。なお、熱処理容器30の周囲にSi元素を含む雰囲気を形成可能な方法であれば、当然に採用することができる。
画像取得工程S20は、図5に示すように、SiC基板10の{0001}面の法線Nに対して傾斜した入射角度θでSiC基板10に電子線PEを入射することで、SiC基板10表面の原子の積層方向を反映したテラス102のコントラスト情報Cを含む画像Iを取得する工程である。
環境評価工程S30は、画像Iのコントラスト情報Cに基いてSiC基板10の熱処理環境HEを評価する工程である。この環境評価工程S30は、SiC基板10のテラス102に表れるコントラスト情報Cを評価する工程である。特に、環境評価工程S30は、<1-100>方向に沿って表れるコントラスト情報Cを評価する工程である。
この時、画像Iの[1-100]方向のテラス102に表れる第1の明度情報C1は、第2の明度情報C2と対比することにより黒色であることが把握できる(明度比較工程S31)。第1の明度情報C1と対比される第2の明度情報C2は、例えば、[10-10]方向と[2-1-10]方向の間の領域において白色で表れている。
この時、画像Iの[1-100]方向のテラス102に表れる第1の明度情報C1は、第2の明度情報C2と対比することにより白色であることが把握できる(明度比較工程S31)。第1の明度情報C1と対比される第2の明度情報C2は、例えば、[10-10]方向と[2-1-10]方向の間の領域において黒色で表れている。
次に、上述した熱処理環境の評価方法で用いるSiC基板の好ましい実施の形態について説明する。
しかしながら、SiC基板50の大きさや形状や評価用パターン60の個数に制限はない。例えば、評価用パターン60を一つ形成した個片を熱処理環境HEの評価試料として採用しても良い。
加工穴611は、加工凹部621よりも深く形成されていることにより、加工穴611と加工凹部621の間に崖部63が形成される。熱処理環境HEで熱処理する際に、崖部63から優先的にエッチングが進行する。そのため、加工凹部621内の領域に熱処理環境HEを反映したテラス102が形成される。
貫通転位612である貫通刃状転位や貫通螺旋転位は、熱処理環境HEで熱処理する際に、優先的に成長又はエッチングが進行する。そのため、加工凹部622内の領域に熱処理環境HEを反映したテラス102が形成される。
101 ステップ
102 テラス
20 SiC材料
30 熱処理容器
31 上容器
32 下容器
33 間隙
34 保持具
35 Si蒸気供給源
40 高融点容器
41 上容器
42 下容器
43 間隙
44 Si蒸気供給源
60 評価用パターン
61 ステップ形成部
611 加工穴
612 貫通転位
62 環境評価領域
621 加工凹部
622 加工凹部
S10 熱処理工程
S20 画像取得工程
S30 環境評価工程
C コントラスト情報
C1 第1の明度情報
C2 第2の明度情報
HE 熱処理環境
PE 電子線
Claims (18)
- 熱処理された炭化ケイ素基板の{0001}面の法線に対して傾斜した入射角度で電子線を入射して画像を取得する画像取得工程と、
前記画像のコントラスト情報に基いて前記炭化ケイ素基板の熱処理環境を評価する環境評価工程と、を含む、熱処理環境の評価方法。 - 前記環境評価工程は、テラスに表れるコントラスト情報を評価する工程である、請求項1に記載の熱処理環境の評価方法。
- 前記環境評価工程は、<1-100>方向に沿って表れるコントラスト情報を評価する工程である、請求項1又は請求項2に記載の熱処理環境の評価方法。
- 前記コントラスト情報は、原子の積層方向を反映した複数の明度情報を有し、
前記環境評価工程は、前記複数の明度情報を比較する明度比較工程を含む、請求項1~3の何れか一項に記載の熱処理環境の評価方法。 - 前記コントラスト情報は、原子の積層方向を反映した第1の明度情報と、この第1の明度情報と対比が可能な第2の明度情報と、を有し、
前記環境評価工程は、前記第1の明度情報と第2の明度情報を比較する明度比較工程を含む、請求項1~4の何れか一項に記載の熱処理環境の評価方法。 - 前記画像取得工程は、<1-100>方向に傾斜させた電子線を前記炭化ケイ素基板へ入射する工程である、請求項1~5の何れか一項に記載の熱処理環境の評価方法。
- 前記環境評価工程は、前記熱処理環境がSi-SiC平衡蒸気圧環境又はC-SiC平衡蒸気圧環境であることを評価する工程である、請求項1~6の何れか一項に記載の熱処理環境の評価方法。
- 前記環境評価工程は、前記熱処理環境がSiリッチ環境又はCリッチ環境であることを評価する工程である、請求項1~6の何れか一項に記載の熱処理環境の評価方法。
- 前記炭化ケイ素基板は、六方晶系の結晶構造である、請求項1~8の何れか一項に記載の熱処理環境の評価方法。
- 炭化ケイ素基板を熱処理環境で熱処理することによりステップ-テラス構造を形成する熱処理工程を含む、請求項1~9の何れか一項に記載の熱処理環境の評価方法。
- 前記炭化ケイ素基板は、熱処理時にステップの発生源となるステップ形成部と、このステップ形成部に起因するステップ-テラス構造が形成される環境評価領域と、を備え、
前記環境評価工程は、前記環境評価領域を評価する工程である、請求項1~10の何れか一項に記載の熱処理環境の評価方法。 - 前記ステップ形成部は、貫通転位である、請求項11に記載の熱処理環境の評価方法。
- 前記ステップ形成部は、加工穴である、請求項11に記載の熱処理環境の評価方法。
- 前記環境評価領域は、加工凹部である、請求項11~13の何れか一項に記載の熱処理環境の評価方法。
- 熱処理時にステップの発生源となるステップ形成部と、
このステップ形成部に起因するステップ-テラス構造が形成される環境評価領域と、を備える、炭化ケイ素基板。 - 前記ステップ形成部は、貫通転位である、請求項15に記載の炭化ケイ素基板。
- 前記ステップ形成部は、加工穴である、請求項15に記載の炭化ケイ素基板。
- 前記環境評価領域は、加工凹部である、請求項15~17の何れか一項に記載の炭化ケイ素基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/250,710 US20240020814A1 (en) | 2020-10-28 | 2021-10-27 | Heat treatment environment evaluation method and silicon carbide substrate |
CN202180070316.6A CN116348640A (zh) | 2020-10-28 | 2021-10-27 | 热处理环境的评价方法和碳化硅衬底 |
EP21886283.7A EP4239112A4 (en) | 2020-10-28 | 2021-10-27 | HEAT TREATMENT ENVIRONMENT EVALUATION METHOD AND SILICON CARBIDE SUBSTRATE |
JP2022559209A JPWO2022092166A1 (ja) | 2020-10-28 | 2021-10-27 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020180971 | 2020-10-28 | ||
JP2020-180971 | 2020-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022092166A1 true WO2022092166A1 (ja) | 2022-05-05 |
Family
ID=81381489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/039699 WO2022092166A1 (ja) | 2020-10-28 | 2021-10-27 | 熱処理環境の評価方法及び炭化ケイ素基板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240020814A1 (ja) |
EP (1) | EP4239112A4 (ja) |
JP (1) | JPWO2022092166A1 (ja) |
CN (1) | CN116348640A (ja) |
TW (1) | TW202233913A (ja) |
WO (1) | WO2022092166A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011049496A (ja) | 2009-08-28 | 2011-03-10 | Showa Denko Kk | SiCエピタキシャルウェハ及びその製造方法 |
WO2015151413A1 (ja) * | 2014-03-31 | 2015-10-08 | 東洋炭素株式会社 | SiC基板の表面処理方法、SiC基板、及び半導体の製造方法 |
JP2016079984A (ja) | 2014-10-21 | 2016-05-16 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | 熱交換器アセンブリ |
WO2017188382A1 (ja) * | 2016-04-27 | 2017-11-02 | 学校法人関西学院 | グラフェン前駆体付きSiC基板の製造方法及びSiC基板の表面処理方法 |
WO2019058440A1 (ja) * | 2017-09-20 | 2019-03-28 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016079984A1 (ja) * | 2014-11-18 | 2016-05-26 | 学校法人関西学院 | SiC基板の表面処理方法 |
JP6664133B2 (ja) * | 2016-04-27 | 2020-03-13 | 学校法人関西学院 | 傾斜支持台付き標準試料、その製造方法、走査型電子顕微鏡の評価方法、及びSiC基板の評価方法 |
TW202037773A (zh) * | 2018-11-05 | 2020-10-16 | 學校法人關西學院 | 碳化矽半導體基板、碳化矽半導體基板的製造方法、碳化矽半導體基板的製造裝置以及降低碳化矽半導體基板之底面差排的方法 |
JP7464806B2 (ja) * | 2018-11-05 | 2024-04-10 | 学校法人関西学院 | SiC半導体基板及びその製造方法及びその製造装置 |
-
2021
- 2021-10-27 EP EP21886283.7A patent/EP4239112A4/en active Pending
- 2021-10-27 CN CN202180070316.6A patent/CN116348640A/zh active Pending
- 2021-10-27 JP JP2022559209A patent/JPWO2022092166A1/ja active Pending
- 2021-10-27 TW TW110139783A patent/TW202233913A/zh unknown
- 2021-10-27 WO PCT/JP2021/039699 patent/WO2022092166A1/ja active Application Filing
- 2021-10-27 US US18/250,710 patent/US20240020814A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011049496A (ja) | 2009-08-28 | 2011-03-10 | Showa Denko Kk | SiCエピタキシャルウェハ及びその製造方法 |
WO2015151413A1 (ja) * | 2014-03-31 | 2015-10-08 | 東洋炭素株式会社 | SiC基板の表面処理方法、SiC基板、及び半導体の製造方法 |
JP2016079984A (ja) | 2014-10-21 | 2016-05-16 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | 熱交換器アセンブリ |
WO2017188382A1 (ja) * | 2016-04-27 | 2017-11-02 | 学校法人関西学院 | グラフェン前駆体付きSiC基板の製造方法及びSiC基板の表面処理方法 |
WO2019058440A1 (ja) * | 2017-09-20 | 2019-03-28 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4239112A4 |
Also Published As
Publication number | Publication date |
---|---|
TW202233913A (zh) | 2022-09-01 |
US20240020814A1 (en) | 2024-01-18 |
JPWO2022092166A1 (ja) | 2022-05-05 |
CN116348640A (zh) | 2023-06-27 |
EP4239112A1 (en) | 2023-09-06 |
EP4239112A4 (en) | 2024-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2059946B1 (en) | Micropipe-free silicon carbide and related method of manufacture | |
EP1801269B1 (en) | Process for producing a free-standing III-N layer, and free-standing III-N substrate | |
JP3899652B2 (ja) | エピタキシャルウェハ | |
WO2021025085A1 (ja) | SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法 | |
JP5186733B2 (ja) | AlN結晶の成長方法 | |
JP2007217227A (ja) | GaN結晶の製造方法、GaN結晶基板および半導体デバイス | |
US20220178048A1 (en) | METHOD AND APPARATUS FOR PRODUCING SiC SUBSTRATE | |
US7718515B2 (en) | Method for fabricating semiconductor device | |
US20220220633A1 (en) | Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method | |
EP1249521B1 (en) | SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME | |
JP4408247B2 (ja) | 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法 | |
WO2022092166A1 (ja) | 熱処理環境の評価方法及び炭化ケイ素基板 | |
US11952678B2 (en) | Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation | |
JP2008091615A (ja) | 被加工処理基板、その製造方法およびその加工処理方法 | |
JP4665286B2 (ja) | 半導体基材及びその製造方法 | |
JP4850807B2 (ja) | 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法 | |
JP2005343722A (ja) | AlN結晶の成長方法、AlN結晶基板および半導体デバイス | |
EP4202090A1 (en) | Gan crystal and gan substrate | |
JP2004262709A (ja) | SiC単結晶の成長方法 | |
JP2014009115A (ja) | 基板製造方法 | |
US20230304186A1 (en) | Method for manufacturing aluminum nitride substrate, aluminum nitride substrate, and method for forming aluminum nitride layer | |
JP5252495B2 (ja) | 窒化アルミニウム単結晶の製造方法 | |
WO2023058491A1 (ja) | 炭化ケイ素の積層欠陥を低減する方法及びその方法により作製された構造 | |
WO2019022053A1 (ja) | 単結晶の製造方法 | |
JP3743013B2 (ja) | エピタキシャルウェハの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21886283 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022559209 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18250710 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021886283 Country of ref document: EP Effective date: 20230530 |