WO2007105386A1 - 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ - Google Patents

縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ Download PDF

Info

Publication number
WO2007105386A1
WO2007105386A1 PCT/JP2007/051811 JP2007051811W WO2007105386A1 WO 2007105386 A1 WO2007105386 A1 WO 2007105386A1 JP 2007051811 W JP2007051811 W JP 2007051811W WO 2007105386 A1 WO2007105386 A1 WO 2007105386A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
organic thin
general formula
represented
Prior art date
Application number
PCT/JP2007/051811
Other languages
English (en)
French (fr)
Inventor
Masahiro Miura
Tetsuya Satoh
Hiroyuki Watanabe
Masato Ueda
Original Assignee
Osaka University
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Sumitomo Chemical Company, Limited filed Critical Osaka University
Priority to EP07707960A priority Critical patent/EP2006291B1/en
Priority to DE602007010267T priority patent/DE602007010267D1/de
Priority to CN200780008566.7A priority patent/CN101415715B/zh
Priority to US12/282,071 priority patent/US8895692B2/en
Publication of WO2007105386A1 publication Critical patent/WO2007105386A1/ja
Priority to US14/520,839 priority patent/US9362505B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom

Definitions

  • the present invention relates to a condensed ring compound, a method for producing the same, a polymer, an organic thin film containing them, and an organic thin film element and an organic thin film transistor including the same.
  • Organic semiconductor materials have been actively studied in recent years because they are applied to various organic thin film devices such as organic EL (electral luminescence) devices, organic transistors, organic solar cells, and optical sensors.
  • organic EL electroluminescence
  • organic transistors organic transistors
  • organic solar cells organic solar cells
  • optical sensors In order to obtain excellent performance in these applications, organic semiconductor materials are required to have high charge (electron or hole) transportability.
  • charge transport properties it is important to use molecules with expanded ⁇ conjugation in organic semiconductor materials, improve the packing of the molecules, and enhance the interaction between molecules.
  • Patent Document 1 a compound containing dichenothiophene (Patent Document 1) and a compound in which a plurality of thiophene rings are combined in a plane.
  • Patent Documents 1 to 3 a compound containing dichenothiophene (Patent Document 1) and a compound in which a plurality of thiophene rings are combined in a plane.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-339516
  • Non-Patent Document 1 Z. Bao et al, "Appl. Phys. Lett. J, 1996, 69, 4108.
  • Non-Patent Document 2 X. Li et al., "J. Am. Chem. Soc. J, 1998, 120, 2206.
  • Non-Patent Document 3 P. Coppo et al., “Chem. Commun. J, 2003, 2548.
  • the present invention has been made in view of such circumstances, and provides a condensed ring compound and a polymer that can exhibit sufficient charge transporting properties and have excellent solubility in a solvent. With the goal.
  • Another object of the present invention is to provide a method for producing the fused ring compound, an organic thin film using the fused ring compound, and an electric device and an organic thin film transistor including the organic thin film.
  • the condensed ring compound of the present invention is represented by the following general formula (1).
  • the heterocyclic group or cyan group which may have a group is shown. However, at least one of R 11 and R 12 is not a hydrogen atom.
  • R 13 and R 14 each independently represents a monovalent group, and n and m are each independently an integer of 0 to 2. However, when a plurality of R 13 and R 14 are present, they may be the same or different.
  • Y 11 and Y 12 are each independently represented by the following general formula (2a), (2b), (2c), (2d), (2e), (2f), (2g) or (2h) It is the basis of.
  • R 21 and R 22 each independently represent a hydrogen atom or a monovalent group.
  • the condensed ring compound having the above structure has a structure in which three aromatic ring structures are condensed and the ⁇ conjugation is widened. Therefore, when an organic thin film or the like is formed, high charge transport is achieved. It can show sexuality. Further, the condensed condensed ring compound has a structure in which a substituent is introduced into the central benzene ring structure. For this reason, the solubility with respect to a solvent etc. is also favorable, and the process to an organic thin film etc. is easy. Therefore, the fused ring compound of the present invention is useful as an organic semiconductor material for forming an organic thin film in an organic thin film element.
  • Upsilon 11 and Upsilon 12 are preferably a divalent group represented by (2a).
  • the charge transport property by the condensed ring compound is further improved.
  • such a compound has an advantage that it is relatively easy to synthesize and is easily available.
  • R 11 and R 12 are each independently a C 1-: LO alkyl group or a C 6
  • it is the aryl group which may have a substituent of -20. This further improves the solubility of the fused ring compound in the solvent.
  • the polymer of the present invention is characterized by including a monomer unit represented by the following general formula (3).
  • the heterocyclic group or cyan group which may have a group is shown. However, at least one of R 31 and R 32 is not a hydrogen atom.
  • R 33 and R 34 each independently represent a hydrogen atom or a monovalent group.
  • Y 31 and Y 32 are each independently represented by the following general formula (4a), (4b), (4c), (4d), (4e), (4f), (4g) or (4h) 2 Is a valent group.
  • R 41 and R 42 each independently represent a hydrogen atom or a monovalent group.
  • Such a polymer contains the same condensed ring structure as the above-mentioned condensed ring compound of the present invention, it has excellent charge mobility and excellent solubility in a solvent.
  • the polymer of the present invention further includes a repeating unit represented by the following general formula (5). This further improves the charge mobility of the polymer.
  • Ar 5 represents an aromatic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent.
  • the Ar 5 is preferably a group represented by the following general formula (6). By doing so, the charge mobility of the polymer is further improved.
  • R 61 and R 62 each independently represent a hydrogen atom or a monovalent group, and R 61 and R 62 may combine to form a ring.
  • ⁇ 6 is a divalent group represented by the following general formula (7a), (7b), (7c), (7d), (7e), (7f), (7g), (7h) or (7i) It is.
  • R 71 , R 7 R ′′ and R 74 each independently represent a hydrogen atom or a monovalent group, and R 73 and R 74 may be bonded to each other to form a ring.
  • Y 31 and Y 32 are divalent groups represented by the above (4a), and in the group represented by the general formula (6) Y 6 is preferably a divalent group represented by the above (7a). Thereby, further excellent charge mobility and solubility can be obtained.
  • the method for producing a fused ring compound according to the present invention is a method for favorably forming the above fused ring compound of the present invention, and in the presence of a base and a metal complex catalyst, the following general formula (8a) And a compound represented by the following general formula (8b) is reacted to obtain a condensed ring compound represented by the following general formula (8c).
  • X 81 and X are each independently a hydrogen atom or a halogen atom. However, at least one of X 81 and X 82 is a halogen atom.
  • R 81 and R 82 are independent A hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, an alkoxycarbonyl group, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or Indicates a cyano group. However, at least one of R 81 and R 82 is not a hydrogen atom.
  • R 83 and R 84 each independently represent a monovalent group, and p and q are each independently an integer of 0 to 2. However, when there are a plurality of R 83 and R 84 , they may be the same or different.
  • Y 81 and Y 82 are each independently a divalent group represented by the following general formula (9a), (9b), (9c), (9d), (9e), (9f), (9g) or (9h) It is the basis of.
  • R 91 and R 92 each independently represent a hydrogen atom or a monovalent group.
  • Y 81 and Y 82 are preferably a divalent group represented by the above (9a).
  • a condensed ring compound having excellent charge transportability can be obtained.
  • a condensed ring compound can be easily produced by using such a compound.
  • X 81 and X 82 is more preferably preferably tool both, at least one of a halogen atom is a C androgenic atom. More specifically, at least one of X 81 and X 82 is preferably an iodine atom, more preferably both are iodine atoms. In this way, a reaction between the compound represented by the general formula (8a) and the compound represented by the general formula (8b) is likely to occur, and the compound represented by the general formula (8c) is more efficiently produced. It will be obtained.
  • the present invention also provides an organic thin film comprising the fused ring compound of the present invention and Z or a polymer. Since such an organic thin film contains the condensed ring compound of the present invention and Z or a polymer, it has an excellent charge transport property and is suitable for an organic thin film element or the like.
  • the present invention further provides an organic thin film element comprising the organic thin film of the present invention.
  • an organic thin film element an organic thin film transistor is preferable.
  • Such organic thin film elements Since the organic thin film having a high charge transport property of the present invention is provided, excellent characteristics can be exhibited.
  • the present invention it is possible to provide a condensed ring compound and a polymer that can exhibit a sufficient charge transport property and have an excellent solubility in a solvent.
  • FIG. 1 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a first example.
  • FIG. 2 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a second example.
  • FIG. 3 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a third example.
  • FIG. 4 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a fourth example.
  • FIG. 5 is a diagram schematically showing a cross-sectional configuration of a solar cell according to a preferred embodiment.
  • FIG. 6 is a diagram schematically showing a cross-sectional configuration of the photosensor according to the first example.
  • FIG. 7 is a diagram schematically showing a cross-sectional configuration of an optical sensor according to a second example.
  • FIG. 8 is a diagram schematically showing a cross-sectional configuration of an optical sensor according to a third example.
  • the fused ring compound of the present embodiment is a compound represented by the general formula (1).
  • the group represented by R 11 or R 12 is a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, an alkoxycarbo group, a substituent. Or an aryl group, a heterocyclic group or a cyano group which may have a substituent. It is preferable that at least one of R 11 and R 12 is not a hydrogen atom, and both of these are not hydrogen atoms.
  • alkyl group a linear, branched, and cyclic thing is contained.
  • part or all of the hydrogen atoms of the functional group may be substituted with halogen atoms (particularly fluorine atoms).
  • the alkyl group is preferably one having 1 to 20 carbon atoms (abbreviated as “C1 to 20”, the same applies hereinafter).
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an nbutyl group, an isobutyl group, a tertbutyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Nonyl group, decyl group, lauryl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclonor group, cyclododecyl group and the like can be mentioned.
  • Cl-10 alkyl groups are preferred, for example, pentyl, hexyl, octyl,
  • alkoxy group the alkylthio group, the alkylamino group, or the alkoxycarbo yl group
  • those in which the alkyl group that these have are Cl-20 alkyl groups are suitable.
  • Examples of the alkyl group of Cl to 20 are the same as those described above.
  • the aryl group which may have a substituent is preferably a C6-60 one.
  • a phenyl group, a phenyl group having a Cl-12 alkoxy group, a phenyl group having a Cl-12 alkyl group, a 1 naphthyl group, a 2 naphthyl group and the like can be exemplified.
  • a phenyl group having a Cl-12 alkoxy group or a phenyl group having a C1-12 alkyl group is more preferred, which is preferably a C6-20 aryl group.
  • the heterocyclic group is preferably a C4-60 group.
  • a C4-20 heterocyclic group is preferred, a C1-12 alkyl group, a pyridyl group, or a Cl-12 alkyl group, a pyridyl group having a Cl-12 alkyl group.
  • the bicyclic group is a group in which at least one atom constituting the ring is a heteroatom in an organic group having a cyclic structure.
  • R 11 and R 12 are each independently preferably an alkyl group having 1 to 20 carbon atoms or an aryl group optionally having a substituent having 6 to 60 carbon atoms.
  • An alkyl group having 1 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms or an aryl group optionally having a substituent having 6 to 20 carbon atoms are more preferable.
  • R 13 and R 14 are each independently a monovalent group, n and m is 0-2. However, when n or m is 2, the plurality of R 13 or R 14 may be the same group or different groups.
  • R 13 and R 14 include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an aryl amino group, or a heterocyclic group. Of these, an alkyl group, an alkoxyl group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group or an arylylamino group is preferred, and an alkyl group or an aryl group is more preferred.
  • R 13 and R 14 are preferably changed as appropriate according to the carrier to be transported by the organic thin film containing the condensed ring compound.
  • an electron-withdrawing group such as a fluoroalkyl group or a fluoroalkoxy group is preferred from the viewpoint of increasing the electron-transporting property, which is preferably an electron donating group such as an arylamino group, when enhancing the hole transporting property of the organic thin film.
  • the monovalent group represented by R 13 and R 14 also includes a polymerizable functional group.
  • the condensed ring compound represented by the general formula (1) is suitable as a raw material for the polymer described later.
  • R 13 and R 14 are preferably groups as described above other than the polymerizable functional group.
  • the polymerizable functional group refers to a group capable of causing a polymerization reaction with other polymerizable functional groups.
  • Wittig reaction Heck reaction, Horner-Wadsworth-Emmons reaction, Knoevenagel reaction , Suzuki coupling reaction, Grinard reaction, Stille reaction, polymerization reaction using Ni (0) catalyst, etc. to react with other polymerizable functional groups to bond A group that can occur.
  • Examples of the polymerizable functional group include a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, an alkyl star group, an aryl star group, an aryl alkyl star group, and boron.
  • Acid ester group (—B (OR)) sulfo-methyl group, phospho-methyl group, phosphonate methyl group, monohalogen
  • Examples thereof include a methyl bromide group, a boric acid group (—B (OH)), a formyl group, and a vinyl group.
  • R is an alkyl group or an aryl group, and two Rs may be bonded to form a ring.
  • Y 11 and Y 12 are each independently represented by the general formula (2a), (2b), (2c), (2d), (2e), (2f), (2g) or (2h) , Expressed as “(2a) to (2h)”).
  • R 21 and R 22 in these divalent groups are each independently a hydrogen atom or a monovalent group. Examples of the monovalent group include a halogen atom and a group similar to R 11 or R 12 described above.
  • the group represented by (2h) has an asymmetric structure, but the direction in which the bonding chain is bonded is not particularly limited.
  • Y 11 and Y 12 the above-mentioned (2a), (2b), (2a), (2b), (2c) and (2h) are preferred. Or the bivalent group represented by (2c) is more preferable.
  • Y 11 and Y 12 are divalent groups represented by the above (2a), (2b) or (2c), a ring structure containing them (two 5-members condensed to a benzene ring) Ring) is a thiophene ring, a furan ring or a pyrrole ring, respectively.
  • Y 11 and Y 12 are divalent groups represented by (2a) (that is, the ring structure is a thiophene ring) because good charge transport properties can be obtained.
  • the polymer of the present embodiment includes a monomer unit represented by the general formula (3).
  • R 31, R 32, R 33, R 34, as the Y 31 and Y 32, 1 respectively above, R 12, R 1 3, R 14, Y 11 And the same groups as Y 12 are preferred.
  • R 33 and R 34 are preferably groups other than the above-described polymerizable functional groups.
  • the polymer means a polymer having two or more monomer units, and is usually classified as an oligomer or a polymer. Both are included.
  • the polymer of the present embodiment may be composed of only other monomer units of the above general formula (3) but may further include other monomer units.
  • the monomer units of the plurality of general formulas (3) may have the same structure or different structures. You may do it. However, from the viewpoint of easily obtaining a polymer, it is preferable that the monomer units of the general formula (3) each have the same structure.
  • the polymer preferably further includes a monomer unit of the general formula (5) in addition to the monomer unit of the general formula (3).
  • a monomer unit of the general formula (5) in addition to the monomer unit of the general formula (3).
  • the group represented by Ar 5 in the monomer unit of the general formula (5) may have a substituent! /! / ⁇ Has an aromatic hydrocarbon group or a substituent! /, May be a heterocyclic group.
  • a powerful aromatic hydrocarbon group or heterocyclic group is a group having a structure in which two substitution positions in an aromatic hydrocarbon or heterocyclic ring are provided for bonding in the polymer, and from the aromatic hydrocarbon or heterocyclic ring. It is a group composed of the remaining atomic groups excluding two hydrogen atoms.
  • the aromatic hydrocarbon group is preferably a divalent group formed of C6 to 60, more preferably C6 to 20 aromatic rings (monocyclic or condensed rings).
  • the condensed ring include naphthalene, anthracene, pyrene, perylene, and fluorene.
  • a benzene ring or fluorene is preferable.
  • the aromatic hydrocarbon group may further have a substituent as described above.
  • substituents examples include a halogen atom, a saturated or unsaturated hydrocarbon group, an aryl group, an alkoxy group, an aryloxy group, a heterocyclic group, an amino group, a nitro group, and a cyano group.
  • the heterocyclic group is preferably a divalent group that can also form a heterocyclic force of C4-60, more preferably C4-20.
  • Examples of such a substituent that may be further substituted by a strong heterocyclic group include the same substituents as the aromatic hydrocarbon group described above.
  • the group represented by Ar 5 is preferably a group represented by general formula (6).
  • the group represented by Y 6 in the general formula (6) the above general formula (1) Y or the same as Y is preferable.
  • ⁇ 6 in the group represented by the general formula (6) is preferably a group represented by the general formula (7a).
  • the polymer contains both the monomer unit represented by the general formula (3) and the monomer unit represented by the general formula (5), these suitable ratios in the polymer are generally It is such that the monomer unit of the general formula (5) is preferably 10 to 1000 monoles, more preferably 25 to 400 monoles, and even more preferably 50 to 200 monoles per 100 mol of the monomer units of the formula (3) Rate.
  • a polymer containing the monomer unit represented by the general formula (3) and the monomer unit represented by the general formula (5) as described above is preferable.
  • these monomer units may be copolymerized randomly or may be copolymerized in blocks.
  • Examples of such a polymer include those having a structure represented by the following general formula (10a), (10b) or (10c).
  • two Ar 5 s may be the same or different.
  • R 31 to R 34 , ⁇ 31 , ⁇ " 2 and ⁇ are all as defined above.
  • a is preferably Or an integer of 2 to 500, more preferably 3 to 20.
  • b is preferably an integer of 1 to 500, more preferably 2 to 20.
  • c is preferably an integer of 1 to 500, more preferably 1 to 10.
  • Y 31 and Y 32 are both sulfide groups, R 31 and R 32 are each independently an alkyl group or an aryl group (preferably an alkyl group), and R 33 and R 34 are hydrogen. Particularly preferred are those that are atoms.
  • the terminal group of the polymer is not particularly limited, but an electron-absorbing group or electron-donating group such as a hydrogen atom, an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, a heterocyclic group, or the like. Is mentioned. From the viewpoint of enhancing the electron transport property of the polymer, the terminal group is preferably an electron withdrawing group such as a fluoroalkyl group or a fluoroalkoxy group. In addition, the terminal group may have a structure that can be conjugated with a conjugated structure of the main chain, and examples thereof include an aryl group or a heterocyclic group having an unsaturated bond at the bonding site with the main chain.
  • a condensed ring compound having a polymerizable functional group as a group represented by R 13 and R 14 in the general formula (1) is used as a raw material monomer used in the production of the polymer.
  • a polymerizable functional group remains at the terminal after polymerization.
  • the terminal having a polymerizable functional group strength may deteriorate durability and the like when an organic thin film is formed. Therefore, in the polymer, it is preferable to protect the polymerizable functional group with a stable group.
  • R lld to R 115 each independently represent a hydrogen atom or a monovalent group.
  • the monovalent group include the same groups as R 13 and R 14 in the general formula (1). Of these, an alkyl group is preferred, and an alkyl group or an alkoxy group is more preferred.
  • d represents an integer of 1 to 500, and e is an integer up to the number that 0 to R 113 can be substituted. However, when there are a plurality of R 113 , they may be the same or different.
  • the value of d is preferably selected as appropriate according to the method for forming the organic thin film using the polymer.
  • the polymer when an organic thin film is formed by vapor deposition such as vacuum deposition, the polymer is an oligomer wherein d is preferably 1 to 10, more preferably 2 to 10, and further preferably 2 to 5. Is preferred.
  • d when forming an organic thin film by the method of apply
  • it is 3-500, More preferably, it is 6-300, More preferably, 20- What is 200 is preferable.
  • the number average molecular weight of the polymer is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , and 1 ⁇ 10 4 to 1 ⁇ 10 6 is more preferable ⁇ .
  • the polymer has a structure in which a plurality of structural units in parentheses in each of the general formulas described above are repeated.
  • the plurality of structural units have the same structure. May have different structures. That is, the functional groups such as R 113 to R 115 in the structural unit may be the same or different for each repeating unit. However, from the viewpoint of easily producing the polymer, it is preferable that all the structural units have the same structure.
  • the condensed ring compound can be obtained by reacting the compound represented by the general formula (8a) with the compound represented by the general formula (8b) in the presence of a base and a metal complex catalyst.
  • a reaction occurs between the group represented by X 81 and X 82 in the compound of the general formula (8a) and the triple bond in the compound of the general formula (8b).
  • the two 5-membered rings in the compound of the general formula (8a) are bridged to form a 6-membered ring structure between them. This reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • R 83 , Y 81, and Y 82 represent the above general formula (1
  • the same groups as those represented by R 13 , R 14 , Y 11 and Y 12 in) can be used.
  • X 81 and X 82 are each independently a hydrogen atom or a halogen atom, and both are preferably a halogen atom.
  • X 81 and X 82 it is preferable that at least one is an iodine atom, and it is more preferable that both are iodine atoms.
  • R 81 and R 82 in the compound of the general formula (8b) those similar to R 11 and R 12 in the general formula (1) can be applied.
  • Examples of the metal complex catalyst in the above reaction include a noradium complex, a nickel complex, a platinum complex, a ruthenium complex, a rhodium complex, and an iridium complex. Of these, a rhodium complex is more preferred, preferably a rhodium complex or a nickel complex.
  • the nordium complex is not particularly limited, but is preferably one that can promote the coupling reaction of aromatic halides.
  • Examples of the palladium complex include a divalent palladium complex and a palladium complex compound having an electron donating ligand.
  • Examples of the divalent palladium complex include palladium acetate, palladium chloride, sodium radium acid, potassium palladium acid and the like, and palladium acetate is preferable.
  • Examples of the palladium complex compound having an electron donating ligand include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, and tris (dibenzylideneacetone) dipalladium. Tetrakis (triphenylphosphine) palladium is preferred.
  • Metal complex catalyst is a raw material formula with respect to the compound represented by (8a), preferably 0.01 to 50 mol 0/0, more preferably from 1.0 to 20 mole 0/0, more preferably 3 to 1 5 mole 0/0 used.
  • inorganic bases examples include alkali metal or alkaline earth metal hydroxides, carbonates, ammonium salts, and acetates.
  • organic base examples include trialkylamines, dialkylarylamines, alkyldiarylamines, triarylamines, and other amines containing Cl to 20 alkyl groups, as well as pyridine.
  • organic base examples include trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tributylamine, dicyclohexylmethylamine, pyridine, 2,3-lutidine, 2, 4-Lutidine, 2,5-Lutidine, 2,6-Lutidine, 3,4-Lutidine, 3,5-Lutidine, 2,3,4-Colidine, 2,4,5-Colidine, 2,5,6 Collidine, 2, 4, 6-collidine, 3, 4, 5-collidine, 3, 5, 6-collidine and the like.
  • amines are particularly preferred. By using amines as the base, the formation of by-products during the reaction can be suppressed, and the desired fused ring compound can be obtained in high yield.
  • alkylamines particularly trialkylamines are preferred.
  • the reaction described above can also be performed in a solvent.
  • a solvent inert to the reaction by the metal complex catalyst is preferable. Examples include toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), dioxane, isopropyl alcohol, acetonitrile, and pinacolone. Of these, toluene, NMP or dioxane is preferred.
  • the amount of the solvent used is not particularly limited. For example, it is preferably 1 to: LOO times, more preferably 2 to 30 times the weight of the compound represented by the general formula (8a) as a raw material. be able to.
  • the reaction time is not particularly limited, and the reaction can be terminated when one of the compound of the general formula (8a) or the compound of the general formula (8b) disappears.
  • the time required to complete the reaction initiation force is about 0.5 to 200 hours.
  • the reaction temperature can be appropriately set in the range of ⁇ 50 to 300 ° C., preferably about 50 to 150 ° C. /.
  • the condensed ring compound can be satisfactorily obtained by the production method described above, the production method is not particularly limited, but a reaction represented by the following reaction formula occurs, and the following general formula (8c) The condensed ring compound represented by these is obtained.
  • the following reaction formula is expressed as X81 and X82. This is an example when iodine atoms are applied.
  • the polymer can be obtained by reacting a monomer represented by the following general formula (13a) and a monomer represented by the following general formula (13b) into a polymer.
  • R 31 to R 34 , Y 31 and Y 32 are all as defined above.
  • R 131 to R 134 are each independently a polymerizable functional group. Examples of the polymerizable functional group include the same groups as those exemplified as the polymerizable functional group for R 13 and R 14 in the general formula (1).
  • a compound of the general formula (13a) and a compound of the general formula (13b), a compound of the general formula (13a), or a compound of the general formula (13b) Reactions that cause bonds to occur repeatedly occur.
  • the reaction for forming a bond between the above compounds Wittig reaction, Heckle heart, Horner-Wadsworth-Emmons anti-Jj, Knoevenagel reaction, Suzuki coupling reaction, Grinard reaction, Stille reaction, Ni (0) catalyst was used. Heavy Combined reaction etc. are mentioned.
  • a reaction by decomposition of an intermediate compound having an appropriate leaving group can be applied.
  • a method of synthesizing poly (P-phenylenevinylene) from an intermediate compound having a sulfo-um group can be mentioned.
  • the polymerizable functional groups of R to R 134 are preferably selected as appropriate according to the target reaction.
  • the polymer may be formed by a method other than the reaction with a polymerizable functional group.
  • the condensed ring compounds in which n and m are 0 are mixed with each other by an oxidation polymerization reaction or electrochemical reaction using FeCl.
  • a method of repeatedly bonding by a polymerization reaction by oxidation or the like is also included.
  • the Suzuki coupling reaction, the Grina rd reaction, the Stille reaction, and the polymerization reaction using a Ni (O) catalyst are raw materials that are easy to control the structure. It is preferable because preparation is relatively easy and reaction force is simple.
  • the oxidative polymerization reaction using 3 is also preferable because the preparation of the raw material is relatively easy and the reaction operation is simple.
  • combinations of polymerizable functional groups suitable for these reactions include a combination of a boric acid group or a boric acid ester group and a halogen in the case of the Suzuki coupling reaction.
  • the Grinard reaction In the case of, a combination of halomagnesium luba-on and halogen can be mentioned.
  • a combination of an alkylstar group and a halogen can be mentioned.
  • a combination of halogens can be mentioned.
  • the reaction for obtaining the polymer is preferably performed in an inert atmosphere in order to suppress side reactions. Moreover, it is desirable that the raw material monomer is purified by various methods such as distillation, sublimation, and recrystallization in terms of polymer power and viewpoint of obtaining a highly pure organic thin film. In addition, after the reaction, the target product polymer is extracted with an organic solvent and the solvent is distilled off, and then the extract is isolated. The polymer is further purified by means such as chromatography and recrystallization. It is preferable to do.
  • each of the above reactions can be caused in a solution in which a raw material monomer is dissolved in a solvent.
  • Suitable solvents vary depending on the reaction to be generated, for example, pentane, Saturated hydrocarbons such as hexane, heptane, octane, cyclohexane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, and black pentane, Halogenated saturated hydrocarbons such as promopentane, black hexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated aromatic hydrocarbons such as black benzene, dichlorobenzene, and trichlorobenzene.
  • Saturated hydrocarbons such as hexane, heptane, octane, cyclohexane
  • aromatic hydrocarbons such as
  • the organic thin film has a structure having a film shape including the condensed ring compound or polymer of the above-described embodiment.
  • the organic thin film may contain only one of the condensed ring compound and the polymer, or may contain both of them.
  • the organic thin film may contain two or more condensed ring compounds or polymers in combination.
  • the organic thin film may be constituted only by a condensed ring compound or a polymer, or may further comprise other components.
  • the preferred thickness of such an organic thin film varies depending on the element to which the organic thin film is applied, but is usually Inn! It is preferably in the range of ⁇ 100 / z m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and even more preferably 20 nm to 200 nm! /.
  • the organic thin film may further contain a compound having a hole transporting property or an electron transporting property in order to obtain excellent charge (hole or electron) mobility.
  • the compound having a hole transporting property include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenylamine derivatives, oligothiophene or derivatives thereof, polybutcarbazole or derivatives thereof, polysilane or derivatives thereof, side Fragrance in the chain or main chain
  • Examples of the compound having an electron transporting property include, for example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyananthraquinodimethane or derivatives thereof. , Fluorenone derivatives, diphenyldisyanoethylene or its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline or its derivatives, polyquinoline or its derivatives, polyquinoxaline or its derivatives, polyfluorene or its derivatives, fullerenes such as C Or its derivatives, etc.
  • the organic thin film may further contain other components in order to improve its properties.
  • other components include charge generation materials.
  • the organic thin film contains a charge generation material, the thin film absorbs light to generate charges, which is suitable for applications such as an optical sensor that requires charge generation by light absorption.
  • Examples of the charge generation material include azo compounds or derivatives thereof, diazo compounds or derivatives thereof, metal-free phthalocyanine compounds or derivatives thereof, metal phthalocyanine compounds or derivatives thereof, Perylene compounds or derivatives thereof, polycyclic quinone compounds or derivatives thereof, squarylium compounds or derivatives thereof, azurenium compounds or derivatives thereof, thiapyrylium compounds or derivatives thereof, fullerenes such as C or derivatives thereof, etc.
  • the organic thin film includes a sensitizer for sensitizing the charge generation function of the above-described charge generation material, a stabilizer for stabilizing the thin film, and a UV absorber for absorbing UV light. Etc. may be further included.
  • the organic thin film may further contain a polymer compound other than the condensed ring compound or the polymer as a polymer binder from the viewpoint of increasing its mechanical strength.
  • a polymer binder those that do not excessively reduce the charge transport property are preferred. Those that do not absorb visible light excessively are preferred.
  • polymer binder examples include poly (N-butylcarbazole), polyarine or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenol-biylene) or a derivative thereof, poly (2 , 5-Cha-lenbiylene) or derivatives thereof, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the organic thin film described above can be manufactured, for example, by the following method.
  • the organic thin film is prepared by applying a solution obtained by dissolving a condensed ring compound and Z or a polymer, and other components described above as necessary in a solvent onto a predetermined substrate, and then applying a solvent. It can be formed by removing by volatilization.
  • the solvent is preferably a solvent that can dissolve or uniformly disperse the condensed ring compound or polymer and other components.
  • solvents include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, n-butylbenzene, carbon tetrachloride, black mouth Honolem, dichloromethane, dichloroethane, chlorobutane, promobutane, black mouth pentane.
  • Halogenated saturated hydrocarbon solvents such as bromopentane, black hexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated aromatic hydrocarbon solvents such as black benzene, dichlorobenzene, and trichlorobenzene And ether solvents such as tetrahydrofuran and tetrapyran pyran.
  • the condensed ring compound or polymer is preferably dissolved in a solvent in an amount of 0.1% by mass or more.
  • Examples of the method for applying the solution include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating. Method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method and the like. Of these, the spin coat method, flexographic printing method, inkjet printing method or dispenser printing method is preferred.
  • the organic thin film can be obtained by the method as described above, the method for producing the organic thin film is not necessarily limited thereto.
  • a vapor phase growth method such as a vacuum vapor deposition method can be applied.
  • the organic thin film may be further subjected to a step of orienting the condensed ring compound or polymer in the organic thin film depending on the application. Due to the strong orientation, condensed ring compounds and polymers (main chain or side chain) in the organic thin film are arranged in a certain direction, and the charge transportability of the organic thin film is further enhanced.
  • an alignment method of the organic thin film a method usually used for alignment of liquid crystal or the like can be applied.
  • the rubbing method, photo-alignment method, shearing method (shear stress application method), pull-up coating method, and the like are preferable because they are simple and useful, and the preferred rubbing method or shearing method is more preferable.
  • the organic thin film of the above-described embodiment includes the condensed ring compound of the above-described embodiment and Z or a polymer, and thus has excellent charge (electron or hole) transportability. Therefore, this organic thin film can efficiently transport electrons or holes injected from electrodes or the like, or electric charges generated by light absorption, etc. It can be applied to organic thin film devices. Hereinafter, each example of the organic thin film element will be described.
  • the organic thin film transistor includes a source electrode and a drain electrode, a current path between them, an active layer made of an organic thin film containing the condensed ring compound of the embodiment described above or a polymer containing the same, and a current passing through the current path.
  • a gate electrode to be controlled and an insulating layer disposed between the active layer and the gate electrode are provided.
  • Such an organic transistor is a V-type field effect transistor that controls the amount of current flowing through the active layer by adjusting the voltage applied to the gate electrode.
  • FIGS a preferred configuration of such an organic thin film transistor will be described with reference to FIGS.
  • FIG. 1 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a first example.
  • the organic thin film transistor 100 is formed on an active layer formed on the substrate 1 so as to cover the source electrode 5 and the drain electrode 6, the source electrode 5 and the drain electrode 6 formed on the substrate 1.
  • Insulating layer 3 formed on active layer 2 and shape on insulating layer 3 It has a configuration including the formed gate electrode 4.
  • the substrate 1 can be applied without particular limitation as long as it does not affect the characteristics as a transistor, and examples thereof include a glass substrate, a plastic substrate, and a flexible film substrate.
  • the active layer 2 is composed of an organic thin film according to the present invention. Such an active layer 2 can be formed by forming an organic thin film on the substrate 1 by the formation method as described above.
  • the insulating layer 3 is formed between the active layer 2 and the gate electrode 4, and electrically insulates them.
  • Examples of the insulating layer 3 include SiO, SiN, Ta 2 O, polyimide, polybutyl
  • Examples are those that have coal, polybuluenol and the like. From the viewpoint of lowering the drive voltage, a material having a high dielectric constant and material strength is preferable.
  • the gate electrode 4 is made of a conductive material.
  • Conductive materials include metals such as aluminum, gold, platinum, silver, copper, chromium, nickel and titanium, conductive oxides such as ITO, poly (3,4 ethylenedioxythiophene) and polystyrene sulfonic acid. Examples thereof include conductive polymers such as mixed polymers. Further, a conductive material in which metal fine particles, carbon black, and graphite fine powder are dispersed in a binder can also be applied.
  • the source electrode 5 and the drain electrode 6 are provided so as to be in contact with the active layer 2, respectively, and are made of the same conductive material as that of the gate electrode 4.
  • the organic thin film transistor 100 has a structure in which the active layer 2 and the insulating layer 3 are in close contact with each other.
  • the insulating thin film 3 on the side in contact with the active layer 2 is used.
  • the surface is preferably modified by treatment with a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • the surface treating agent include long-chain alkylchlorosilanes, long-chain alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxysilanes, and silylamine compounds such as hexamethyldisilazane.
  • the surface of the insulating layer 3 is treated with ozone UV, O plasma, etc. before the treatment with the surface treatment agent.
  • FIG. 2 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a second example.
  • the organic thin film transistor 110 includes a source electrode 5 provided on the substrate substrate 1, an active layer 2 provided on the substrate 1 so as to cover the source electrode 5, and a drain electrode provided on the active layer 2.
  • An electrode 6, an insulating layer 3 provided on the active layer 2, and a gate electrode 4 provided on the insulating layer 3 are provided.
  • the source electrode 5 and the drain electrode 6 are formed on different surfaces of the active layer 2, respectively.
  • FIG. 3 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a third example.
  • the organic thin film transistor 120 includes a gate electrode 4 provided on the substrate substrate 1, an insulating layer 3 provided on the substrate 1 so as to cover the gate electrode 4, a source electrode 5 and a drain electrode provided on the insulating layer 3. 6 and an active layer 2 provided on the insulating layer 3 so as to be in contact with the source electrode 5 and the drain electrode 6.
  • FIG. 4 is a diagram schematically showing a cross-sectional configuration of an organic thin film transistor according to a fourth example.
  • the organic thin film transistor 130 includes a gate electrode 4 provided on the substrate substrate 1, an insulating layer 3 provided on the substrate 1 so as to cover the gate electrode 4, a source electrode 5 provided on the insulating layer 3, and a source electrode.
  • Active layer 2 provided on insulating layer 3 so as to cover 5, and drain electrode 6 provided on active layer 2 and having an end in contact with insulating layer 3.
  • the active layer 2 serves as a current path (channel) between the source electrode 5 and the drain electrode 6.
  • the gate electrode 4 controls the amount of current passing through the current path (channel) in the active layer 2 by applying a voltage.
  • Such an organic thin film transistor can be manufactured by a known method. Examples of the production method include the method described in JP-A No. 5-110069.
  • the organic thin film transistor of the embodiment described above has an element structure (a structure including an active layer 2, an insulating layer 3, a gate electrode 4, a source electrode 5, and a drain electrode 6 for the purpose of improving the durability and the like. ) May be covered with a protective film. As a result, contact between the element structure and the atmosphere is suppressed, and deterioration in characteristics of the organic thin film transistor over time can be reduced. In addition, when other electric elements such as a display device are formed on the organic thin film transistor, it is possible to reduce the influence on the formation process of the element structure.
  • Examples of such a protective film include UV curable resins, thermosetting resins, and inorganic films such as SiON films.
  • the protective film is preferably formed under conditions where the element structure does not come into contact with the air, for example, under a dry nitrogen atmosphere or under vacuum. This makes it very difficult for the organic thin film transistor to deteriorate over time.
  • a method for producing an organic thin film transistor will be specifically described. That is, first, a dichroic benzene solution of a polymer (oligomer) that is a constituent material of the active layer 2 is prepared.
  • substrate 1 a highly doped n-type silicon substrate serving as both the substrate 1 and the gate electrode 4
  • the surface thereof is thermally oxidized to form a silicon oxide having a thickness of 200 nm.
  • a film is formed to form the insulating layer 3. The surface of the insulating layer 3 is cleaned by ultrasonic cleaning with an alkaline detergent, ultrapure water, and acetone, followed by ozone UV irradiation.
  • a source electrode 5 and a drain electrode 6 having a channel width of 2 mm and a channel length of 20 m.
  • the laminate on which the substrate 1, the insulating layer 3 and the source and drain electrodes 5 and 6 are formed is placed on a spin coater, and hexamethyl is formed on the surface on the side where the source and drain electrodes 5 and 6 are formed.
  • the surface is treated with HMDS by dripping disilazane (HMDS, Ardrich) and spinning at 2000 rpm.
  • the above-described oligomeric dichlorobenzene solution was applied onto the surface of the laminate subjected to the HMDS treatment by spin coating to form an active layer 2 made of an organic thin film on the surface.
  • An organic thin film transistor is obtained.
  • the organic thin film transistor thus obtained has the same configuration as the organic thin film transistor 120 shown in FIG. 3, and the gate electrode 4 also functions as the substrate 1.
  • FIG. 5 is a diagram schematically showing a cross-sectional configuration of a solar cell according to a preferred embodiment.
  • the solar cell 200 has a configuration in which a first electrode 17a, an active layer 12, and a second electrode 17b are provided on a substrate 10 in this order.
  • a substrate 10 a silicon substrate, a glass substrate, a plastic substrate or the like is preferable.
  • the active layer 12 is composed of the organic thin film according to the present invention.
  • the active layer 12 may further contain a carrier generating agent, a sensitizer and the like in order to increase sensitivity to light.
  • an electrode material constituting the first or second electrode 17a, 17b for example, aluminum, examples thereof include metals such as gold, silver, copper, alkali metals, alkaline earth metals, and the like.
  • a transparent or translucent electrode material is applied to at least one of the first and second electrodes 17a and 17b. In order to obtain a high open-circuit voltage, it is preferable that the electrode material be a combination that increases the work function difference between the first and second electrodes 17a and 17b.
  • FIG. 6 is a diagram schematically showing a cross-sectional configuration of the photosensor according to the first example.
  • An optical sensor 300 shown in FIG. 6 has a configuration in which a first electrode 27a, an active layer 22, a charge generation layer 28, and a second electrode 27b are provided on a substrate 20 in this order.
  • the substrate 20 the active layer 22, and the first and second electrodes 27a, 27b, the same configurations as the substrate 10, the active layer 12, and the first and second electrodes 17a, 17b in the solar cell described above are applied. it can.
  • the charge generation layer 28 is formed between at least one electrode and the active layer 22.
  • the charge generation layer 28 is a layer that absorbs light and generates charges.
  • FIG. 7 is a diagram schematically showing a cross-sectional configuration of the photosensor according to the second example.
  • the optical sensor 310 shown in FIG. 7 has a configuration in which a first electrode 27a, a charge generation layer 28, an active layer 22 and a second electrode 27b are provided on a substrate 20 in this order.
  • FIG. 8 is a diagram schematically showing a cross-sectional configuration of an optical sensor according to a third example.
  • the optical sensor 320 shown in FIG. 8 has a configuration in which a first electrode 27a, an active layer 22, and a second electrode 27b are provided on a substrate 20 in this order.
  • the active layer 22 made of an organic thin film itself can generate a sufficient charge upon incidence of light
  • the photosensor does not necessarily have the charge generation layer 28 as in the first and second examples. You don't have to.
  • organic thin film element As described above, the embodiment of the organic thin film element to which the organic thin film according to the present invention is applied has been exemplified, but the organic thin film element is not limited to the above-described embodiment as long as it is an electric element to which the organic thin film is applied.
  • organic thin film elements other than those described above include organic EL elements, organic memories, photorefractive elements, spatial light modulators, and image sensors.
  • the starting material 3, 3 'jib mouth mo 2, 2' bitiophene was referred to the reference (Hong M., Wei H., J. Org. Chem., 2000, 65, 3895). Synthesized. Using this, a halogen exchange reaction was carried out to synthesize 3, 3, one-diode 2, 2, one-bithiophene. That is, first, 3, 3, 1 jib-necked Mo 2, 2, 1-bithiophene (2.7 g (7 mmol)) was placed in a 300 mL three-necked flask and dissolved in jetyl ether (70 mL). Next, the inside of the reaction vessel was purged with nitrogen and cooled to 78 ° C.
  • Tributylamine (11 lmg (0.6 mmo 1) was used instead of N, N-dicyclohexylmethylamine, cyclohexyldimethylamine (76 mg (0.6 mmol)) was used, and The reaction was the same as in Example 1 except that the reaction time was 8 hours. After the reaction, GC and GC-MS analysis showed that 4,5 di (n propyl) benzo [2, 1 -b: 3, 4 b '] dithiophene was produced in the reaction mixture with a GC yield of 92%. Was confirmed.
  • the target 4,5 di (n-heptyl) benzo [2, lb] was used in the same manner as in Example 5 except that 8 hexadecin (53 mg (0.24 mmol)) was used instead of dodecin. : 3, 4 b '] dithiophene was obtained in the form of an oil (58 mg). When the solution after the reaction was analyzed by GC, the GC yield of the product was 99% or more.
  • the 1 H-NMR and HRMS measurement results of the obtained target product were as follows.
  • Example 13 Synthesis of 2,7 diphenyl-4,5 di (n-butyl) benzo [2,1-b: 3,4-b,] dithiophene 2, 7 Jib mouth mode 4, 5 Di (n-pentyl) benzo [2, 1— b: 3, 4— b,] Dithiophene instead of 2, 7 jib port mode 4, 5 di (n-heptyl) ) Benzo [2,1-b: 3,4-b,] Dithiophene (128.2 mg (0.24 mmol)) was used in the same manner as in Example 12, but the target 2,7 diphenyl 4,5 Di (n-butyl) benzo [2,1-b: 3,4-b ′] dithiophene was obtained in the form of a yellow solid (54.5 mg, yield 42%).
  • the measurement results of 1 H-NMR and HRMS of the obtained target product were as follows.
  • the target product 2, 7 di (2 naphthyl) -4, 5 was used in the same manner as in Example 12 except that 2 naphthyl boronic acid (137.6 mg (0.80 mmol)) was used instead of phenol boronic acid.
  • Di (n-pentyl) benzo [2,1-b: 3,4-b,] dithiophene was obtained in the form of a yellow solid (72. Omg, 62% yield).
  • Measurement results of 1 H-NMR and HRMS of the obtained target product were as follows.
  • the resulting solution was cooled to room temperature and then reprecipitated with 50 ml of a methanol / water mixture (1: 1) to obtain the desired polymer.
  • the polymer obtained had a polystyrene equivalent molecular weight of 4.1 ⁇ 10 3 . This polymer is referred to as a polymer E.
  • an alkaline detergent is applied to the substrate in which a thermal oxide silicon oxide film serving as an insulating layer is formed to 200 nm on the surface of a heavily doped n-type silicon substrate serving as a gate electrode.
  • a thermal oxide silicon oxide film serving as an insulating layer is formed to 200 nm on the surface of a heavily doped n-type silicon substrate serving as a gate electrode.
  • the surface was cleaned by ozone UV irradiation. This wash Hexamethyldisilazane (HMDS; Hexamethyldisilazane, Aldrich) was dropped on the cleaned substrate, and then the substrate surface was treated with HMDS by spinning at 2000 rpm.
  • the above-mentioned polymer D black mouth form solution was dropped and spun at lOOOO rpm to form a polymer D thin film.
  • a PtZAu electrode was deposited on a thin film of polymer D by a vacuum deposition method using a metal mask at 2nmZ50nm to form a source electrode and a drain electrode having a channel width of 2mm and a channel length of 20 ⁇ m.
  • a metal mask at 2nmZ50nm to form a source electrode and a drain electrode having a channel width of 2mm and a channel length of 20 ⁇ m.
  • the obtained organic thin film transistor was subjected to gate voltage V and source-drain voltage V in vacuum.
  • Example 26 Production of organic thin film transistor and evaluation of its characteristics
  • An organic thin film transistor is produced in the same manner as in Example 25 except that the polymer A is used instead of the polymer D.
  • the gate voltage V and source-drain voltage V were changed in vacuum to the obtained organic thin film transistor, the transistor characteristics were measured.
  • Example 27 Production of organic thin film transistor and evaluation of its characteristics
  • An organic thin film transistor is produced in the same manner as in Example 25 except that the polymer C is used in place of the polymer D.
  • the obtained organic thin film transistor was subjected to a gate voltage V and so
  • An organic thin film transistor was produced in the same manner as in Example 25 except that the polymer E was used instead of the polymer D.
  • the obtained organic thin film transistor was subjected to a gate voltage V and so
  • the transistor characteristics were measured by changing the source-drain voltage V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は、十分な電荷輸送性を発揮し得るとともに、溶媒に対する優れた溶解性を有する縮合環化合物を提供することを課題とする。本発明の縮合環化合物は、下記一般式(1)で表される。 【化1】 [式中、R11及びR12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルコキシカルボニル基、炭素数6~60の置換基を有していてもよいアリール基、炭素数4~60の置換基を有していてもよい複素環基又はシアノ基を示す。ただし、R11及びR12の少なくとも一方は水素原子ではない。R13及びR14は、それぞれ独立に1価の基を示し、n及びmは、それぞれ独立に0~2の整数である。Y11及びY12は、それぞれ独立に硫黄原子、酸素原子、窒素原子、セレン原子又はテルル原子を含む2価の基である。]

Description

明 細 書
縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並び に、これを備える有機薄膜素子及び有機薄膜トランジスタ
技術分野
[0001] 本発明は、縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並び に、これを備える有機薄膜素子及び有機薄膜トランジスタに関する。
背景技術
[0002] 有機半導体材料は、有機 EL (エレクト口ルミネッセンス)素子、有機トランジスタ、有機 太陽電池、光センサ等の種々の有機薄膜素子に適用されることから、近年盛んに検 討されている。これらの用途において優れた性能を得るために、有機半導体材料に 対しては、電荷 (電子又はホール)輸送性が高いことが求められる。高い電荷輸送性 を得るためには、有機半導体材料において、 π共役が広がった分子を用い、分子の パッキングを良好とし、分子間の相互作用を高めることが重要である。
[0003] このような観点カゝら高い電荷輸送性が得られる有機半導体材料として、ジチェノチォ フェンを含む化合物 (特許文献 1)や、複数のチオフ ン環が平面的に結合された化 合物 (非特許文献 1〜3参照)等が知られて ヽる。
特許文献 1 :特開 2004— 339516号公報
非特許文献 1 : Z. Bao et al,「Appl. Phys. Lett.J , 1996, 69, 4108.
非特許文献 2 : X. Li et al.,「J. Am. Chem. Soc.J , 1998, 120, 2206.
非特許文献 3 : P. Coppo et al.,「Chem. Commun.J , 2003, 2548.
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、上述した有機半導体材料として用いられる化合物は、いずれも平面性 が高く電荷輸送性にも優れるものであるが、これらの化合物は溶媒への溶解性が高 くないため、有機薄膜等の形成が困難なものが多かった。化合物の平面性を低くす る等によって溶媒への溶解性を高めることも考えられる力 その場合、今度は電荷輸 送性が不十分となり易 、傾向にあった。 [0005] そこで、本発明はこのような事情に鑑みてなされたものであり、十分な電荷輸送性を 発揮し得るとともに、溶媒に対する優れた溶解性を有する縮合環化合物及び重合体 を提供することを目的とする。本発明はまた、上記縮合環化合物の製造方法、上記 縮合環化合物を用いた有機薄膜、並びに、この有機薄膜を備える電気素子及び有 機薄膜トランジスタを提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するため、本発明の縮合環化合物は、下記一般式(1)で表される ことを特徴とする。
[化 1]
Figure imgf000003_0001
[式中、 R11及び は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ァ ルキルチオ基、アルキルアミノ基、アルコキシカルボ-ル基、置換基を有していてもよ ぃァリール基、置換基を有していてもよい複素環基又はシァノ基を示す。ただし、 R11 及び R12の少なくとも一方は水素原子ではない。 R13及び R14は、それぞれ独立に 1価 の基を示し、 n及び mは、それぞれ独立に 0〜2の整数である。ただし、 R13及び R14が それぞれ複数存在する場合、それらは同一でも異なっていてもよい。 Y11及び Y12は、 それぞれ独立に下記一般式(2a)、(2b)、(2c)、 (2d) , (2e)、 (2f)、 (2g)又は(2h )で表される 2価の基である。
[化 2] ヽ3, (2a) \〇/ (2b) (2c) (2d) X (2e) i21 II o^o
R21 〇 ヽ S (2f) ヽ Te, (2g) =N/ (2 )
R22 ただし、 R21及び R22は、それぞれ独立に、水素原子又は 1価の基を示す。 ] [0007] 上記構造を有する縮合環化合物は、 3つの芳香環構造が縮合して π共役が広がつ た構造を有して ヽることから、有機薄膜等を形成した場合に高 ヽ電荷輸送性を発揮 し得る。また、カゝかる縮合環化合物は、中央のベンゼン環構造に置換基が導入され た構造を有している。このため、溶媒等に対する溶解性も良好であり、有機薄膜等へ の加工が容易なものである。したがって、本発明の縮合環化合物は、有機薄膜素子 における有機薄膜を形成するための有機半導体材料として有用である。
[0008] 上記本発明の縮合環化合物において、 Υ11及び Υ12は、上記(2a)で表される 2価の 基であると好ましい。これにより、縮合環化合物による電荷輸送性が更に良好になる 。また、このような化合物は、合成が比較的容易であり、入手し易いという利点も有し ている。
[0009] さらに、 R11及び R12は、それぞれ独立に、炭素数 1〜: LOのアルキル基又は炭素数 6
〜20の置換基を有していてもよいァリール基であると好ましい。これにより、縮合環化 合物の溶媒への溶解性が更に良好となる。
[0010] また、本発明の重合体は、下記一般式 (3)で表されるモノマー単位を含むことを特徴 とする。
[化 3]
Figure imgf000004_0001
[式中、 R31及び は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ァ ルキルチオ基、アルキルアミノ基、アルコキシカルボ-ル基、置換基を有していてもよ ぃァリール基、置換基を有していてもよい複素環基又はシァノ基を示す。ただし、 R31 及び R32の少なくとも一方は水素原子ではない。 R33及び R34は、それぞれ独立に、水 素原子又は 1価の基を示す。 Y31及び Y32は、それぞれ独立に、下記一般式 (4a)、 ( 4b)、(4c)、(4d)、(4e)、(4f)、(4g)又は (4h)で表される 2価の基である。
Figure imgf000005_0001
ただし、 R41及び R42は、それぞれ独立に、水素原子又は 1価の基を示す。 ]
[0011] このような重合体は、上記本発明の縮合環化合物と同様の縮合環構造を含むことか ら、優れた電荷移動度を有するとともに、溶媒に対する溶解性にも優れるものとなる。
[0012] 本発明の重合体は、下記一般式(5)で表される繰り返し単位を更に含むものであると より好ましい。これにより、重合体の電荷移動度が更に優れるようになる。
[化 5]
Ar5 (5)
[式中、 Ar5は、置換基を有していてもよい芳香族炭化水素基又は置換基を有してい てもよい複素環基を示す。]
[0013] 特に、上記 Ar5は、下記一般式 (6)で表される基であると好適である。こうすれば、重 合体の電荷移動度が一層優れるようになる。
[化 6]
R6 R62
、 (6)
Z 、Y6
[式中、 R61及び R62は、それぞれ独立に水素原子又は 1価の基であり、 R61と R62とが 結合して環を形成してもよい。 Υ6は、下記一般式(7a)、(7b)、(7c)、(7d)、(7e)、 ( 7f)、(7g)、(7h)又は(7i)で表される 2価の基である。
[化 7]
Figure imgf000006_0001
ただし、 R71、 R7 R"及び R74は、それぞれ独立に、水素原子又は 1価の基を示し、 R73と R74とは、互いに結合して環を形成していてもよい。 ]
[0014] より具体的には、上記本発明の重合体において、 Y31及び Y32は、上記 (4a)で表され る 2価の基であり、一般式(6)で表される基における Y6は、上記(7a)で表される 2価 の基であると好ましい。これにより、更に優れた電荷移動度及び溶解性が得られるよ うになる。
[0015] また、本発明による縮合環化合物の製造方法は、上記本発明の縮合環化合物を良 好に形成する方法であって、塩基及び金属錯体触媒の存在下で、下記一般式 (8a) で表される化合物と、下記一般式 (8b)で表される化合物とを反応させて、下記一般 式 (8c)で表される縮合環化合物を得ることを特徴とする。
[化 8]
Figure imgf000006_0002
[式中、 X81及び X ま、それぞれ独立に水素原子又はハロゲン原子である。ただし、 X81及び X82の少なくとも一方はハロゲン原子である。 R81及び R82は、それぞれ独立 に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アル コキシカルボニル基、置換基を有していてもよいァリール基、置換基を有していてもよ い複素環基又はシァノ基を示す。ただし、 R81及び R82の少なくとも一方は水素原子 ではない。 R83及び R84は、それぞれ独立に 1価の基を示し、 p及び qは、それぞれ独 立に 0〜2の整数である。ただし、 R83及び R84がそれぞれ複数存在する場合、それら は同一でも異なっていてもよい。 Y81及び Y82は、それぞれ独立に下記一般式 (9a)、 (9b)、(9c)、(9d)、(9e)、(9f)、(9g)又は(9h)で表される 2価の基である。
[化 9] (9d) (9e) 、0
Figure imgf000007_0001
ただし、 R91及び R92は、それぞれ独立に、水素原子又は 1価の基を示す。 ]
[0016] 力かる製造方法において、 Y81及び Y82は、上記(9a)で表される 2価の基であると好 ましい。これにより、電荷輸送性に優れる縮合環化合物が得られるようになる。また、 このような化合物は合成が比較的容易であるため、かかる化合物を用いることにより、 縮合環化合物を容易に製造することができる。
[0017] また、 X81及び X82は、少なくとも一方がハロゲン原子であることが好ましぐ両方がハ ロゲン原子であることがより好ましい。より具体的には、 X81及び X82は、少なくとも一方 力 Sヨウ素原子であると好ましぐ両方がヨウ素原子であるとより好ましい。こうすれば、 上記一般式 (8a)で表される化合物と上記一般式 (8b)で表される化合物との反応が 生じ易くなり、上記一般式 (8c)で表される化合物が更に効率よく得られるようになる。
[0018] 本発明はまた、上記本発明の縮合環化合物及び Z又は重合体を含む有機薄膜を 提供する。このような有機薄膜は、上記本発明の縮合環化合物及び Z又は重合体を 含むことから、優れた電荷輸送性を有しており、有機薄膜素子等に好適である。
[0019] 本発明は更に、上記本発明の有機薄膜を備える有機薄膜素子を提供する。かかる 有機薄膜素子としては、有機薄膜トランジスタが好ましい。このような有機薄膜素子は 、本発明の電荷輸送性の高い有機薄膜を備えることから、優れた特性を発揮し得る ものとなる。
発明の効果
[0020] 本発明によれば、十分な電荷輸送性を発揮し得るとともに、溶媒に対する優れた溶 解性を有する縮合環化合物及び重合体を提供することが可能となる。また、本発明 によれば、上記縮合環化合物の好適な製造方法を提供することが可能となる。さらに 、本発明によれば、上記縮合環化合物を用いて得られた優れた電荷輸送性を有する 有機薄膜、並びに、この有機薄膜を備える有機薄膜素子及び有機薄膜トランジスタ を提供することが可能となる。
図面の簡単な説明
[0021] [図 1]第 1の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
[図 2]第 2の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
[図 3]第 3の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
[図 4]第 4の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
[図 5]好適な実施形態に係る太陽電池の断面構成を模式的に示す図である。
[図 6]第 1の例に係る光センサの断面構成を模式的に示す図である。
[図 7]第 2の例に係る光センサの断面構成を模式的に示す図である。
[図 8]第 3の例に係る光センサの断面構成を模式的に示す図である。
符号の説明
[0022] 1…基板、 2…活性層、 3…絶縁層、 4…ゲート電極、 5· · ·ソース電極、 6· · ·ドレイン電 極、 10· · ·基板、 12· · ·活性層、 17a…第 1の電極、 17b…第 2の電極、 20· · ·基板、 22 …活性層、 27a…第 1の電極、 27b…第 2の電極、 28· · ·電荷発生層、 100, 110, 12 0, 130· · ·有機薄膜卜ランジスタ、 200· · ·太陽電池、 300, 310, 320· · ·光センサ。 発明を実施するための最良の形態
[0023] 以下、必要に応じて図面を参照することにより、本発明の好適な実施の形態につい て詳細に説明する。なお、図面の説明においては、同一の要素には同一の符号を付 し、重複する説明は省略する。 [縮合環化合物]
[0024] まず、好適な実施形態に係る縮合環化合物について説明する。本実施形態の縮合 環化合物は、上記一般式(1)で表される化合物である。一般式(1)で表される化合 物において、 R11又は R12で表される基は、水素原子、アルキル基、アルコキシ基、ァ ルキルチオ基、アルキルアミノ基、アルコキシカルボ-ル基、置換基を有していてもよ ぃァリール基、置換基を有していてもよい複素環基又はシァノ基である。 R11及び R12 の少なくとも一方は水素原子ではなぐこれらの両方が水素原子でないことが好まし い。なお、アルキル基としては、直鎖状、分岐状及び環状のものが含まれる。また、上 述した官能基は、当該官能基が有している水素原子の一部又は全てがハロゲン原 子 (特にフッ素原子)で置換されて 、てもよ 、。
[0025] ここで、アルキル基としては、炭素数 1〜20 (「C1〜20」と略す。以下同様)のものが 好ましい。このようなアルキル基としては、例えば、メチル基、ェチル基、 n—プロピル 基、 iso プロピル基、 n ブチル基、 iso ブチル基、 tert ブチル基、ペンチル基 、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ラウリル基、シクロプロ ピル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基 、シクロノ-ル基、シクロドデシル基等が挙げられる。なかでも、 Cl〜10のアルキル 基が好ましぐ例えば、ペンチル基、へキシル基、ォクチル基、デシル基又はシクロへ キシル基が好適である。
[0026] また、アルコキシ基、アルキルチオ基、アルキルアミノ基又はアルコキシカルボ-ル基 としては、これらの有しているアルキル基が Cl〜20のアルキル基であるものが好適 である。この Cl〜20のアルキル基としては、上述したのと同様のものが例示できる。
[0027] 置換基を有していてもよいァリール基としては、 C6〜60のものが好ましい。例えば、 フエ-ル基、 Cl〜12のアルコキシ基を有するフエ-ル基、 Cl〜12のアルキル基を 有するフエニル基、 1 ナフチル基、 2 ナフチル基等が例示できる。なかでも、 C6 〜20のァリール基が好ましぐ Cl〜12のアルコキシ基を有するフエ-ル基又は C1 〜 12のアルキル基を有するフエ-ル基が更に好適である。
[0028] 置換基を有して!/、てもよ 、複素環基としては、 C4〜60のものが好まし 、。例えば、チ ェニル基、 Cl〜 12のアルキル基を有するチェ-ル基、ピロリル基、フリル基、ピリジ ル基、 Cl〜12のアルキル基を有するピリジル基等が挙げられる。なかでも、 C4〜20 の複素環基が好ましぐチェ-ル基、 Cl〜 12のアルキル基を有するチェ-ル基、ピ リジル基、又は、 Cl〜12のアルキル基を有するピリジル基がより好ましい。なお、複 素環基とは、環状構造を有する有機基において、環を構成する少なくとも 1つの原子 がへテロ原子である基を 、うものとする。
[0029] 縮合環化合物において、 R11及び R12としては、それぞれ独立に、炭素数 1〜20のァ ルキル基又は炭素数 6〜60の置換基を有していてもよいァリール基が好ましぐ炭素 数 1〜10のアルキル基又は炭素数 6〜20の置換基を有していてもよいァリール基が より好ましぐ炭素数 1〜10のアルキル基が特に好ましい。
[0030] R13及び R14は、それぞれ独立に一価の基であり、 n及び mは 0〜2である。ただし、 n 又は mが 2である場合、複数の R13又は R14は、それぞれ同一の基であっても異なる 基であってもよい。 R13及び R14としては、アルキル基、アルコキシ基、フルォロアルキ ル基、フルォロアルコキシ基、ァリール基、ァリールアミノ基又は複素環基が挙げられ る。なかでも、アルキル基、アルコキシ基、フルォロアルキル基、フルォロアルコキシ 基、ァリール基又はァリールァミノ基が好ましぐアルキル基又はァリール基が更に好 ましい。なお、 R13及び R14は、縮合環化合物を含む有機薄膜が輸送すべきキャリア に応じて適宜変更することが好ましい。例えば、有機薄膜のホール輸送性を高める 場合はァリールアミノ基等の電子供与基が好ましぐ電子輸送性を高める観点からは 、フルォロアルキル基、フルォロアルコキシ基等の電子吸引基が好ましい。
[0031] また、 R13及び R14で表される一価の基としては、重合性官能基も挙げられる。特に、 R13及び R14のそれぞれ少なくとも 1つずつが重合性官能基であると、一般式(1)で表 される縮合環化合物は、後述する重合体の原料として好適となる。なお、縮合環化合 物のみで有機薄膜を形成する場合は、 R13及び R14としては、重合性官能基以外の 上述したような基とすることが好ま 、。
[0032] ここで、重合性官能基とは、他の重合性官能基との間で重合反応を生じさせ得る基 をいい、例えば、 Wittig反応、 Heck反応、 Horner— Wadsworth— Emmons反応 、 Knoevenagel反応、鈴木カップリング反応、 Grinard反応、 Stille反応等や、 Ni(0 )触媒を用いた重合反応等に供することにより、他の重合性官能基と反応して結合を 生じ得る基をいう。重合性官能基としては、例えば、ハロゲン原子、アルキルスルホネ ート基、ァリールスルホネート基、ァリールアルキルスルホネート基、アルキルスタ -ル 基、ァリールスタ-ル基、ァリールアルキルスタ -ル基、ホウ酸エステル基(—B (OR) )、スルホ -ゥムメチル基、ホスホ-ゥムメチル基、ホスホネートメチル基、モノハロゲ
2
ン化メチル基、ホウ酸基(-B (OH) )、ホルミル基、ビニル基等が例示できる。なか
2
でも、ハロゲン原子、アルキルスタ -ル基又はホウ酸エステル基が好ましい。なお、こ れらの例示中、 Rは、アルキル基又はァリール基であり、 2つの Rが結合して環を形成 していてもよい。
[0033] Y11及び Y12は、それぞれ独立に、上記一般式(2a)、(2b)、(2c)、 (2d) , (2e)、 (2f ) , (2g)又は(2h) (以下、「(2a)〜(2h)」のように表記する)で表される 2価の基であ る。これらの 2価の基における R21及び R22は、それぞれ独立に、水素原子又は 1価の 基である。この一価の基としては、上述した R11又は R12と同様の基のほ力、ハロゲン 原子が挙げられる。なお、上記(2h)で表される基は非対称な構造を有しているが、 その結合鎖が結合する方向は特に限定されない。
[0034] なかでも、 Y11及び Y12としては、上記(2a)、 (2b)、 (2c)又は(2h)で表される 2価の 基が好ましぐ上記(2a)、(2b)又は(2c)で表される 2価の基がより好ましい。なお、 Y11及び Y12が、上記(2a)、(2b)又は(2c)で表される 2価の基である場合、これらを 含む環構造 (ベンゼン環に縮合している 2つの 5員環)は、それぞれ、チォフェン環、 フラン環又はピロール環となる。特に、 Y11及び Y12が(2a)で表される 2価の基である (すなわち環構造がチォフェン環である)と、良好な電荷輸送性が得られることから好 ましい。
[重合体]
[0035] 次に、好適な実施形態に係る重合体について説明する。本実施形態の重合体は、 上記一般式(3)で表されるモノマー単位を含む。一般式(3)で表されるモノマー単位 において、 R31、 R32、 R33、 R34、 Y31及び Y32としては、それぞれ上述した 1、 R12、 R1 3、 R14、 Y11及び Y12と同様の基が好ましい。ただし、 R33及び R34としては、上述した重 合性官能基以外の基が好適である。なお、本実施形態において、重合体とは、モノ マー単位を 2つ以上有するものをいい、通常オリゴマーやポリマーに分類されるもの の両方を含むこととする。
[0036] 本実施形態の重合体は、上記一般式(3)のモノマー単位のみ力 構成されるもので もよぐ他のモノマー単位を更に含むものであってもよい。なお、重合体中、一般式( 3)のモノマー単位は複数含まれることとなる力 複数の一般式(3)のモノマー単位は 、それぞれ同一の構造を有していてもよぐ異なる構造を有していてもよい。ただし、 重合体を容易に得る観点からは、複数の一般式 (3)のモノマー単位は、それぞれ同 一の構造であると好ましい。
[0037] 重合体は、上記一般式(3)のモノマー単位に加え、上記一般式(5)のモノマー単位 を更に有して 、ることも好まし 、。このように一般式(5)のモノマー単位を有することで 、重合体による電荷輸送性が高められるとともに、溶媒への溶解性、機械的強度、耐 熱性等も向上する。
[0038] 一般式(5)のモノマー単位における Ar5で表される基は、置換基を有して!/、てもよ!/ヽ 芳香族炭化水素基又は置換基を有して!/、てもよ!、複素環基である。力かる芳香族炭 化水素基又は複素環基は、芳香族炭化水素又は複素環において 2箇所の置換位が ポリマーにおける結合に供された構造を有する基であり、芳香族炭化水素又は複素 環から 2つの水素原子を除いた残りの原子団から構成される基である。
[0039] 芳香族炭化水素基としては、好ましくは C6〜60、より好ましくは C6〜20の芳香環( 単環又は縮合環)から形成される 2価の基が好ましい。縮合環としては、ナフタレン、 アントラセン、ピレン、ペリレン、フルオレンが例示できる。なかでも、この芳香族炭化 水素基を構成する芳香環としては、ベンゼン環又はフルオレンが好ましい。また、芳 香族炭化水素基は、上述の如ぐ置換基を更に有していてもよい。かかる置換基とし ては、ハロゲン原子、飽和又は不飽和炭化水素基、ァリール基、アルコキシ基、ァリ ールォキシ基、複素環基、アミノ基、ニトロ基又はシァノ基が例示できる。
[0040] また、複素環基としては、好ましくは C4〜60、より好ましくは C4〜20の複素環力も形 成される 2価の基が好ましい。力かる複素環基も更に置換基を有していてもよぐこの ような置換基としては、上述した芳香族炭化水素基と同様の置換基が挙げられる。
[0041] 一般式(5)のモノマー単位において、 Ar5で表される基としては、上記一般式(6)で 表される基が好ましい。一般式 (6)中の Y6で表される基としては、上記一般式(1)に おける Y 又は Y と同様のものが好ましい。特に、一般式 (6)で表される基における Υ6は、一般式(7a)で表される基であると好適である。
[0042] 重合体が上記一般式(3)で表されるモノマー単位と上記一般式(5)で表されるモノ マー単位との両方を含む場合、重合体における好適なこれらの比率は、一般式(3) のモノマー単位 100モルに対して、一般式(5)のモノマー単位が好ましくは 10〜 10 00モノレ、より好ましくは 25〜400モノレ、更に好ましくは 50〜200モノレとなるような it 率である。
[0043] 本実施形態の重合体としては、上述の如ぐ上記一般式(3)で表されるモノマー単位 と上記一般式(5)で表されるモノマー単位とを含むものが好適である。重合体にお ヽ て、これらのモノマー単位は、ランダムに共重合していてもよぐブロック的に共重合し ていてもよい。このような重合体としては、下記一般式(10a)、(10b)又は(10c)で表 される構造を有するものが例示できる。なお、下記一般式(10c)において、 2つの Ar 5は、それぞれ同一であっても異なっていてもよい。
[化 10]
Figure imgf000013_0001
[0044] 式中、 R31〜R34、 Υ31、 Υ"2及び ΑΓΊま、いずれも上記と同義である。また、 aは、好まし くは 2〜500、より好ましくは 3〜20の整数である。さらに、 bは好ましくは 1〜500、より 好ましくは 2〜20の整数である。さらにまた、 cは好ましくは 1〜500、より好ましくは 1 〜10の整数である。これらの重合体としては、 Y31及び Y32がいずれもスルフイド基で あり、 R31及び R32がそれぞれ独立にアルキル基又はァリール基 (好ましくはアルキル 基)であり、 R33及び R34が水素原子であるものが特に好適である。
[0045] 重合体の末端基としては、特に限定されないが、水素原子、アルキル基、アルコキシ 基、フルォロアルキル基、フルォロアルコキシ基、ァリール基、複素環基等の電子吸 引基又は電子供与基が挙げられる。重合体の電子輸送性を高める観点からは、末 端基はフルォロアルキル基、フルォロアルコキシ基等の電子吸引基であることが好ま しい。また、末端基は、主鎖の共役構造と共役し得る構造を有するものであってもよく 、例えば、主鎖との結合部位に不飽和結合を有するァリール基又は複素環基が挙げ られる。
[0046] また、後述するように、重合体の製造に用いる原料モノマーとして、上記一般式(1) において R13及び R14で表される基として重合性官能基を有する縮合環化合物を用 いる場合は、重合後の末端には重合性官能基が残ることになる。しかし、この重合性 官能基力もなる末端は、有機薄膜としたときに耐久性等を低下させるおそれがある。 したがって、重合体においては、重合性官能基を安定な基で保護しておくことが好ま しい。
[0047] より具体的には、本実施形態の重合体としては、下記一般式(l la)〜(l lg)で表さ れるものが好適である。
[化 11]
Figure imgf000015_0001
基である。 Rlld〜R115は、それぞれ独立に水素原子又は 1価の基を示す。この 1価の 基としては、上記一般式(1)における R13及び R14等と同様のものが挙げられる。なか でも、アルキル基又はアルコキシ基が好ましぐアルキル基がより好ましい。また、式 中、 dは、 1〜500の整数を示し、 eは、 0〜R113が置換可能な数までの整数である。た だし、 R113が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。こ こで、 dの値は、重合体を用いた有機薄膜の形成方法に応じて適宜選択することが 好ましい。例えば、真空蒸着法等の気相成長法により有機薄膜を形成する場合は、 上記重合体としては、 dが好ましくは 1〜10、より好ましくは 2〜10、更に好ましくは 2 〜5であるオリゴマーが好ましい。また、重合体を有機溶媒に溶解した溶液を塗布す る方法により有機薄膜を形成する場合は、重合体としては、 dが好ましくは 3〜500、 より好ましくは 6〜300、更に好ましくは 20〜200であるものが好ましい。さらに、塗布 により成膜する場合に、膜の均一性を向上する観点からは、重合体の数平均分子量 は、 1 X 103〜1 X 108であると好ましく、 1 X 104〜1 X 106であるとより好まし ヽ。
[0049] なお、重合体は、上述した各一般式における括弧内の構造単位が複数繰り返された 構成を有するが、重合体において、この複数の構造単位は、それぞれ同一の構造を 有していても異なる構造を有していてもよい。つまり、構造単位中の R113〜R115等の 官能基は、繰り返し単位ごとに同じでも異なっていてもよい。ただし、重合体を容易に 製造する観点からは、全ての構造単位が同一の構造を有していることが好ましい。
[縮合環化合物の製造方法]
[0050] 次に、上述した構造を有する縮合環化合物の好適な製造方法について説明する。
縮合環化合物は、上記一般式 (8a)で表される化合物と、上記一般式 (8b)で表され る化合物とを、塩基及び金属錯体触媒の存在下で反応させることによって得ることが できる。このような製造方法においては、一般式 (8a)の化合物における X81及び X82 で表される基と、一般式 (8b)の化合物における 3重結合との間で反応が生じ、これに よって一般式 (8a)の化合物における 2つの 5員環が架橋されて、これらの間に 6員環 構造が形成される。なお、この反応は、窒素やアルゴン等の不活性ガス雰囲気下で 行うことが好ましい。
[0051] 上記一般式 (8a)の化合物において、 R83、 Y81及び Y82としては、上記一般式(1 )における R13、 R14、 Y11及び Y12で表される基とそれぞれ同様のものが適用できる。 また、 X81及び X82は、それぞれ独立に水素原子又はハロゲン原子であり、両方がハ ロゲン原子であると好ましい。 X81及び X82としては、少なくとも一方がヨウ素原子であ ると好ましぐ両方がヨウ素原子であるとより好ましい。 X81及び X82がヨウ素原子である と、上述した反応が極めて生じ易くなる傾向にある。また、一般式 (8b)の化合物にお ける R81及び R82としては、上記一般式(1)における R11及び R12とそれぞれ同様のも のが適用できる。
[0052] 上記反応における金属錯体触媒としては、例えば、ノ ラジウム錯体、ニッケル錯体、 白金錯体、ルテニウム錯体、ロジウム錯体又はイリジウム錯体が挙げられる。なかでも 、 ノ《ラジウム錯体又はニッケル錯体が好ましぐノ《ラジウム錯体がより好ましい。ノ ラジ ゥム錯体としては、特に制限されないが、芳香族ハロゲンィ匕物のカップリング反応を 促進し得るものが好適である。このパラジウム錯体としては、例えば、 2価パラジウム 錯体ゃ電子供与性の配位子を有するパラジウム錯体ィ匕合物等が挙げられる。
[0053] 2価パラジウム錯体としては、酢酸パラジウム、塩化パラジウム、ノ《ラジウム酸ナトリウ ム、パラジウム酸カリウム等が例示でき、酢酸パラジウムが好ましい。また、電子供与 性の配位子を有するパラジウム錯体ィ匕合物としては、テトラキス(トリフエ-ルホスフィ ン)パラジウム、ジクロロビス(トリフエ-ルホスフィン)パラジウム、トリス(ジベンジリデン アセトン)ジパラジウム等が挙げられ、テトラキス(トリフエ-ルホスフィン)パラジウムが 好ましい。
[0054] なお、金属錯体触媒としては、上述したものを単独で、又は複数種組み合わせて適 用してもよい。金属錯体触媒は、原料である一般式 (8a)で表される化合物に対し、 好ましくは 0. 01〜50モル0 /0、より好ましくは 1. 0〜20モル0 /0、更に好ましくは 3〜1 5モル0 /0用いる。
[0055] また、塩基としては、無機塩基及び有機塩基の両方が適用でき、有機塩基がより好ま しい。無機塩基としては、アルカリ金属又はアルカリ土類金属の水酸ィ匕物、炭酸塩、 アンモニゥム塩、酢酸塩等が挙げられる。有機塩基としては、 Cl〜20のアルキル基 を含むトリアルキルァミン、ジアルキルァリールァミン、アルキルジァリールアミンゃ、ト リアリールァミン等のアミン類のほかピリジン等が挙げられる。 [0056] 有機塩基としては、具体的には、トリメチルァミン、トリェチルァミン、ジイソプロピルェ チルァミン、トリ一 n—プロピルァミン、トリブチルァミン、ジシクロへキシルメチルァミン 、ピリジン、 2, 3—ルチジン、 2, 4—ルチジン、 2, 5—ルチジン、 2, 6—ルチジン、 3, 4—ルチジン、 3, 5—ルチジン、 2, 3, 4—コリジン、 2, 4, 5—コリジン、 2, 5, 6—コリ ジン、 2, 4, 6—コリジン、 3, 4, 5—コリジン、 3, 5, 6—コリジン等力挙げられる。
[0057] 有機塩基としては、特にアミン類が好ま U、。塩基としてアミン類を用いることで、反応 中の副生成物の生成を抑制でき、高収率で目的とする縮合環化合物を得ることがで きるようになる。アミン類のなかでも、アルキルァミン、特にトリアルキルァミンが好適で ある。このようなアルキルァミンとしては、窒素原子に隣接する炭素が 1つ以上の水素 原子を有するもの、つまり、 N— CHx(X= l〜3)で表される構造を有するものが好ま しぐ窒素原子に隣接する炭素が 2つ以上の水素原子を有するもの、つまり、 N-CH X (X= 2〜3)で表される構造を有するものがより好ま 、。
[0058] 上述した反応は、溶媒中で行うこともできる。反応に用いる溶媒としては、金属錯体 触媒による反応に対して不活性なものが好適である。例えば、トルエン、ジメチルホ ルムアミド(DMF)、 N—メチルー 2—ピロリドン(NMP)、テトラヒドロフラン(THF)、 ジォキサン、イソプロピルアルコール、ァセトニトリル、ピナコロン等が挙げられる。な かでも、トルエン、 NMP又はジォキサンが好ましい。溶媒の使用量は特に限定され ないが、例えば、原料である一般式 (8a)で表される化合物の重量に対して好ましく は 1〜: LOO倍量、より好ましくは 2〜30倍量とすることができる。
[0059] 反応時間は特に限定されず、一般式 (8a)の化合物又は一般式 (8b)の化合物のい ずれか一方が無くなった時点で終了とすることができる。反応開始力 終了までにか かる時間は、 0. 5〜200時間程度である。また、反応温度は、—50〜300°Cの範囲 で適宜設定することができ、 50〜 150°C程度とすることが好まし!/、。
[0060] なお、高純度の有機薄膜を得るために、上述した反応後には、得られた縮合環化合 物を蒸留、昇華、再結晶等により精製することが好ましい。
[0061] 以上説明した製造方法により縮合環化合物が良好に得られるが、かかる製造方法に おいては、特に限定されないが、以下の反応式で表される反応が生じ、下記一般式 ( 8c)で表される縮合環化合物が得られる。なお、下記の反応式は、 X81及び X82として ヨウ素原子を適用した場合の例である。
[化 12]
Figure imgf000019_0001
(8a) (8b) (8c)
[重合体の製造方法]
[0062] 次に、上述した構造を有する重合体の好適な製造方法について説明する。以下の 説明にお!、ては、上記一般式(3)で表されるモノマー単位及び上記一般式(5)で表 されるモノマー単位の両方を有する重合体を製造する方法について説明する。
[0063] 重合体は、下記一般式(13a)で表されるモノマー及び下記一般式(13b)で表される モノマーを反応させて高分子化することにより得ることができる。
[化 13]
Figure imgf000019_0002
R133_A|-5― R134 (13b)
[0064] 式中、 R31〜R34、 Y31及び Y32は、いずれも上記と同義である。また、 R131〜R134は、 それぞれ独立に重合性官能基である。この重合性官能基としては、上記一般式(1) における R13及び R14の重合性官能基として例示したものと同様の基が挙げられる。
[0065] 重合体を得るためには、上記一般式(13a)の化合物と上記一般式(13b)の化合物 との間、一般式(13a)の化合物同士、又は、一般式(13b)の化合物同士で結合を生 じる反応を繰り返し生じさせる。上記の化合物同士で結合を生じさせる反応としては、 Wittig反応、 Heckle心、 Horner— Wadsworth— Emmons反 Jj 、 Knoevenagel 反応、鈴木カップリング反応、 Grinard反応、 Stille反応や、 Ni (0)触媒を用いた重 合反応等が挙げられる。その他、適当な脱離基を有する中間体化合物の分解による 反応も適用できる。例えば、スルホ -ゥム基を有する中間体ィ匕合物からポリ(P—フエ 二レンビニレン)を合成する方法が挙げられる。上記 R 〜R134の重合性官能基は、 目的とする反応に応じて適宜選択することが好ましい。また、重合体は、重合性官能 基による反応以外によって形成されてもよい。例えば、上記一般式(1)において n及 び mが 0である縮合環化合物同士を、 FeClを用いた酸化重合反応や電気化学的な
3
酸化による重合反応等によって繰り返し結合させる方法も挙げられる。
[0066] 重合体を得るための反応としては、上述したなかでも、鈴木カップリング反応、 Grina rd反応、 Stille反応、 Ni(O)触媒を用いた重合反応が、構造制御がし易ぐ原料の準 備が比較的容易であり、し力も反応操作が簡便であることから好ましい。また、 FeCl
3 を用いた酸化重合反応も、原料の準備が比較的容易であり、しかも反応操作が簡便 であること力 好ましい。
[0067] これらの反応に好適な重合性官能基の組み合わせとしては、具体的には、鈴木カツ プリング反応の場合、ホウ酸基又はホウ酸エステル基と、ハロゲンとの組み合わせが 挙げられ、 Grinard反応の場合、ハロマグネシウム力ルバ-オンとハロゲンとの組み 合わせが挙げられる。また、 Stille反応の場合、アルキルスタ -ル基とハロゲンとの組 み合わせが挙げられ、 Ni (O)触媒を用いた重合反応の場合、ハロゲン同士の組み合 わせが挙げられる。
[0068] 重合体を得るための反応は、副反応を抑制するため、不活性雰囲気下で行うことが 好ましい。また、重合体力も純度の高い有機薄膜を得る観点力もは、原料のモノマー は、蒸留、昇華、再結晶等の種々の方法で精製しておくことが望ましい。さらに、反応 後、目的生成物である重合体は、有機溶媒で抽出して溶媒を留去した後に抽出物 力 単離されるが、この重合体は、クロマトグラフィーや再結晶等の手段で更に精製 することが好ましい。
[0069] また、上記の各反応は、原料モノマーを溶媒に溶解させた溶液中で生じさせることが できる。この場合、必要に応じて塩基や触媒等を加えて溶解させた上、溶媒の沸点 以下の温度で反応を行うことが好まし 、。
[0070] 好適な溶媒は、生じさせるべき反応によってそれぞれ異なるが、例えば、ペンタン、 へキサン、ヘプタン、オクタン、シクロへキサン等の飽和炭化水素、ベンゼン、トルェ ン、ェチルベンゼン、キシレン等の芳香族炭化水素、四塩化炭素、クロ口ホルム、ジク ロロメタン、クロロブタン、ブロモブタン、クロ口ペンタン、プロモペンタン、クロ口へキサ ン、ブロモへキサン、クロロシクロへキサン、ブロモシクロへキサン等のハロゲン化飽 和炭ィ匕水素、クロ口ベンゼン、ジクロロベンゼン、トリクロ口ベンゼン等のハロゲンィ匕芳 香族炭化水素、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタ ノール、 t ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等の力 ルボン酸類、ジメチルエーテル、ジェチルエーテル、メチルー t ブチルエーテル、 テトラヒドロフラン、テトラヒドロピラン、ジォキサン等のエーテル類、塩酸、臭素酸、フ ッ化水素酸、硫酸、硝酸等の無機酸等が例示できる。これらは、必要に応じて複数種 組み合わせてもよい。なお、溶媒としては、副反応を抑制する観点から、十分に脱酸 素処理が施されたものを用いることが好まし 、。
[有機薄膜]
[0071] 次に、好適な実施形態に係る有機薄膜について説明する。有機薄膜は、上述した実 施形態の縮合環化合物や重合体を含み膜状の形状を有する構成を有して!/ヽる。有 機薄膜は、縮合環化合物及び重合体のいずれか一方のみを含んでいてもよぐこれ らの両方を含んでいてもよい。また、有機薄膜中には、縮合環化合物又は重合体が それぞれ 2種以上組み合わせて含まれて 、てもよ 、。
[0072] さらに、有機薄膜は、縮合環化合物又は重合体のみ力 構成されるものであってもよ ぐ他の成分を更に含んで構成されるものであってもよい。このような有機薄膜の好適 な厚さは、当該有機薄膜を適用する素子に応じて異なるが、通常 Inn!〜 100 /z mの 範囲とされ、 2nm〜1000nmであると好ましぐ 5nm〜500nmであるとより好ましく、 20nm〜200nmであると更に好まし!/、。
[0073] 有機薄膜は、優れた電荷 (ホール又は電子)移動性を得るために、ホール輸送性又 は電子輸送性を有する化合物を更に含んで 、てもよ 、。ホール輸送性を有する化合 物としては、例えば、ピラゾリン誘導体、ァリールァミン誘導体、スチルベン誘導体、ト リフエ-ルジァミン誘導体、オリゴチォフェン若しくはその誘導体、ポリビュルカルバゾ ール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香 族ァミンを有するポリシロキサン誘導体、ポリア-リン若しくはその誘導体、ポリチオフ ェン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリフエ-レンビ-レン若 しくはその誘導体、又は、ポリチェ-レンビ-レン若しくはその誘導体等が例示できる
[0074] また、電子輸送性を有する化合物としては、例えば、ォキサジァゾール誘導体、アン トラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン 若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシァノアンスラキノジメ タン若しくはその誘導体、フルォレノン誘導体、ジフエニルジシァノエチレン若しくは その誘導体、ジフエノキノン誘導体、 8—ヒドロキシキノリン若しくはその誘導体の金属 錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフル オレン若しくはその誘導体、 C 等のフラーレン類若しくはその誘導体等が例示でき
60
る。
[0075] 有機薄膜は、その特性を向上させるために、その他の成分を更に含有していてもよ い。その他の成分としては、例えば、電荷発生材料が挙げられる。有機薄膜が電荷 発生材料を含むことで、当該薄膜が光を吸収して電荷を発生するようになり、光の吸 収による電荷発生を要する光センサ等の用途に好適となる。
[0076] 電荷発生材料としては、例えば、ァゾ化合物又はその誘導体、ジァゾィ匕合物又はそ の誘導体、無金属フタロシア-ンィ匕合物又はその誘導体、金属フタロシア-ンィ匕合 物又はその誘導体、ペリレン化合物又はその誘導体、多環キノン系化合物又はその 誘導体、スクァリリウム化合物又はその誘導体、ァズレニウム化合物又はその誘導体 、チアピリリウム化合物又はその誘導体、 C 等のフラーレン類又はその誘導体等が
60
挙げられる。
[0077] また、有機薄膜は、上述した電荷発生材料による電荷発生機能を増感するための増 感剤や、薄膜を安定化するための安定化剤、 UV光を吸収するための UV吸収剤等 を更に含んでいてもよい。
[0078] さらに、有機薄膜は、その機械的強度を高める観点から、高分子バインダーとして、 縮合環化合物又は重合体以外の高分子化合物を更に含有していてもよい。このよう な高分子バインダーとしては、電荷輸送性を過度に低下させないものが好ましぐま た、可視光を過度に吸収しないものが好ましい。
[0079] 高分子バインダーとしては、例えば、ポリ(N—ビュルカルバゾール)、ポリア-リン若 しくはその誘導体、ポリチォフェン若しくはその誘導体、ポリ(p—フエ-レンビ-レン) 若しくはその誘導体、ポリ(2, 5—チェ-レンビ-レン)若しくはその誘導体、ポリカー ボネート、ポリアタリレート、ポリメチルアタリレート、ポリメチルメタタリレート、ポリスチレ ン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
[0080] 上述した有機薄膜は、例えば、以下のような方法によって製造することができる。
[0081] すなわち、有機薄膜は、縮合環化合物及び Z又は重合体、並びに、必要に応じて上 述したその他の成分を溶媒に溶解させた溶液を、所定の基材上に塗布した後、溶媒 を揮発させる等により除去することによって形成することができる。
[0082] 溶媒としては、縮合環化合物又は重合体や、その他の成分を溶解又は均一に分散 し得るものが好ましい。このような溶媒としては、トルエン、キシレン、メシチレン、テトラ リン、デカリン、 n—ブチルベンゼン等の芳香族炭化水素系溶媒、四塩化炭素、クロ口 ホノレム、ジクロロメタン、ジクロロエタン、クロロブタン、プロモブタン、クロ口ペンタン、 ブロモペンタン、クロ口へキサン、ブロモへキサン、クロロシクロへキサン、ブロモシクロ へキサン等のハロゲン化飽和炭化水素系溶媒、クロ口ベンゼン、ジクロロベンゼン、ト リクロロベンゼン等のハロゲンィ匕芳香族炭化水素系溶媒、テトラヒドロフラン、テトラヒド 口ピラン等のエーテル類系溶媒等が例示できる。縮合環化合物又は重合体は、溶媒 に 0. 1質量%以上溶解させることが好ましい。
[0083] 溶液を塗布する方法としては、例えば、スピンコート法、キャスティング法、マイクログ ラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイア一バーコート 法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセッ ト印刷法、インクジェット印刷法、ディスペンサー印刷法等が挙げられる。なかでも、ス ピンコート法、フレキソ印刷法、インクジェット印刷法又はディスペンサー印刷法が好 ましい。
[0084] 上述したような方法により有機薄膜が得られるが、有機薄膜の製造方法は必ずしもこ れに限定されない。例えば、原料として縮合環化合物やオリゴマー等の低分子材料 を用いる場合は、真空蒸着法等の気相成長法を適用することもできる。 [0085] なお、有機薄膜に対しては、その用途に応じて有機薄膜中の縮合環化合物又は重 合体を配向させる工程を更に施してもよい。力かる配向によって、有機薄膜中の縮合 環化合物や重合体 (主鎖又は側鎖)が一定の方向に並ぶこととなり、有機薄膜の電 荷輸送性が更に高められる。
[0086] 有機薄膜の配向方法としては、通常液晶等の配向に用いられる方法を適用すること ができる。具体的には、ラビング法、光配向法、シ アリング法 (ずり応力印加法)、引 き上げ塗布法等が、簡便かつ有用であることから好ましぐラビング法又はシェアリン グ法がより好ましい。
[有機薄膜素子]
[0087] 上述した実施形態の有機薄膜は、上記実施形態の縮合環化合物及び Z又は重合 体を含むことから、優れた電荷 (電子又はホール)輸送性を有するものとなる。したが つて、この有機薄膜は、電極等から注入された電子又はホール、或いは、光吸収によ り発生した電荷等を効率よく輸送できるものであり、有機薄膜を用いた各種の電気素 子 (有機薄膜素子)に応用することができる。以下、有機薄膜素子の例についてそれ ぞれ説明する。
[0088] (有機薄膜トランジスタ)
まず、好適な実施形態に係る有機薄膜トランジスタについて説明する。有機薄膜ト ランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり上述した実 施形態の縮合環化合物又はこれを含む重合体を含有する有機薄膜からなる活性層 、電流経路を通る電流を制御するゲート電極、並びに、活性層とゲート電極との間に 配置される絶縁層を備えるものである。このような有機トランジスタは、ゲート電極に印 加する電圧を調節することで活性層を流れる電流量を制御する、 Vヽゎゆる電界効果 トランジスタである。以下、このような有機薄膜トランジスタの好適な構成について、図 1〜図 4を参照して説明する。
[0089] 図 1は、第 1の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
図示されるように、有機薄膜トランジスタ 100は、基板 この基板 1上に形成されたソ ース電極 5及びドレイン電極 6、ソース電極 5及びドレイン電極 6を覆うように基板 1上 に形成された活性層 2、活性層 2上に形成された絶縁層 3、並びに、絶縁層 3上に形 成されたゲート電極 4を備えた構成を有して 、る。
[0090] 基板 1は、トランジスタとしての特性に影響し難いものであれば特に制限なく適用でき 、例えば、ガラス基板、プラスチック基板又はフレキシブルなフィルム基板等が挙げら れる。活性層 2は、本発明に係る有機薄膜から構成される。このような活性層 2は、基 板 1上に上述したような形成方法により有機薄膜を形成することで形成することができ る。
[0091] 絶縁層3は、活性層 2とゲート電極 4との間に形成され、これらを電気的に絶縁するも のである。絶縁層 3としては、例えば、 SiO、 SiN、 Ta O、ポリイミド、ポリビュルアル
2 5
コール、ポリビュルフエノール等力もなるものが例示できる。なお、駆動電圧を低くす る観点から、誘電率の高 、材料力もなるものが好適である。
[0092] ゲート電極 4は、導電性材料カゝら構成される。導電性材料としては、アルミニウム、金 、白金、銀、銅、クロム、ニッケル、チタン等の金属、 ITO等の導電性酸化物、ポリ(3, 4 エチレンジォキシチォフェン)とポリスチレンスルホン酸の混合高分子等の導電性 高分子等が例示できる。また、金属微粒子、カーボンブラック、グラフアイト微粉がバ インダ一中に分散した導電性材料も適用できる。また、ソース電極 5及びドレイン電極 6は、活性層 2とそれぞれ接するように設けられており、ゲート電極 4と同様の導電性 材料から構成される。
[0093] なお、有機薄膜トランジスタ 100は、活性層 2と絶縁層 3とが密着した構成を有してい る力 この両層の界面特性を改善するため、絶縁層 3の活性層 2に接する側の表面 は、シランカップリング剤等の表面処理剤で処理されることにより改質されていること が好ましい。表面処理剤としては、長鎖アルキルクロロシラン類、長鎖アルキルアルコ キシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン 類、へキサメチルジシラザン等のシリルアミン化合物等が挙げられる。なお、表面処 理剤による処理を行う前に、絶縁層 3の上記表面をオゾン UV、 Oプラズマ等で処理
2
をしておいてもよい。
[0094] 図 2は、第 2の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
有機薄膜トランジスタ 110は、基板 基板 1上に設けられたソース電極 5、ソース電 極 5を覆うように基板 1上に設けられた活性層 2、活性層 2上に設けられたドレイン電 極 6、活性層 2上に設けられた絶縁層 3、及び、絶縁層 3上に設けられたゲート電極 4 を備えている。このように、有機薄膜トランジスタ 110においては、ソース電極 5及びド レイン電極 6が活性層 2のそれぞれ異なる面側に形成されて!ヽる。
[0095] 図 3は、第 3の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
有機薄膜トランジスタ 120は、基板 基板 1上に設けられたゲート電極 4、ゲート電 極 4を覆うように基板 1上に設けられた絶縁層 3、絶縁層 3上に設けられたソース電極 5及びドレイン電極 6、並びに、ソース電極 5及びドレイン電極 6と接するように絶縁層 3上に設けられた活性層 2を備えている。
[0096] 図 4は、第 4の例に係る有機薄膜トランジスタの断面構成を模式的に示す図である。
有機薄膜トランジスタ 130は、基板 基板 1上に設けられたゲート電極 4、ゲート電 極 4を覆うように基板 1上に設けられた絶縁層 3、絶縁層 3上に設けられたソース電極 5、ソース電極 5を覆うように絶縁層 3上に設けられた活性層 2、並びに、活性層 2上に 設けられ、且つ、端部が絶縁層 3に接しているドレイン電極 6を備えている。
[0097] 第 1〜第 4の例で示した有機薄膜トランジスタにおいては、活性層 2は、ソース電極 5 とドレイン電極 6の間の電流通路(チャンネル)となる。また、ゲート電極 4は、電圧を 印加することにより活性層 2における電流通路 (チャンネル)を通る電流量を制御する 。このような有機薄膜トランジスタは、公知の方法により製造することができる。その製 造方法としては、例えば、特開平 5— 110069号公報に記載の方法が挙げられる。
[0098] なお、上述した実施形態の有機薄膜トランジスタは、その耐久性の向上等を目的とし て、素子構造 (活性層 2、絶縁層 3、ゲート電極 4、ソース電極 5及びドレイン電極 6を 含む構造)が保護膜によって覆われていてもよい。これにより、上記素子構造と大気 との接触が抑制され、有機薄膜トランジスタの経時的な特性低下等を低減することが 可能となる。また、有機薄膜トランジスタ上に表示デバイス等の他の電気素子を形成 する場合、その素子構造の形成プロセスに対する影響を低減することも可能となる。
[0099] このような保護膜としては、 UV硬化榭脂、熱硬化榭脂や、 SiON膜等の無機膜等が 挙げられる。なお、保護膜の形成は、例えば、乾燥した窒素雰囲気下や真空下等、 大気に素子構造が触れない条件で行うことが好ましい。こうすれば、有機薄膜トラン ジスタの経時劣化が極めて生じ難くなる。 [0100] 以下、有機薄膜トランジスタの製造方法の一例を具体的に示す。すなわち、まず、活 性層 2の構成材料である重合体 (オリゴマー)のジクロ口ベンゼン溶液を調整する。ま た、基板 1とゲート電極 4を兼ねる高濃度にドープされた n型シリコン基板 (これを基板 1とする)を準備した後、その表面を熱酸ィ匕することにより厚さ 200nmのシリコン酸ィ匕 膜を生じさせて絶縁層 3を形成する。この絶縁層 3の表面は、アルカリ洗剤、超純水 及びアセトンで超音波洗浄を行った後、オゾン UV照射を施して清浄ィ匕する。
[0101] 次いで、絶縁層 3上に真空蒸着法により Auを堆積させ、チャネル幅 2mm、チャネル 長 20 mのソース電極 5及びドレイン電極 6を形成する。それから、基板 1、絶縁層 3 並びにソース及びドレイン電極 5, 6が形成された積層体をスピンコーター上に配置し 、そのソース及びドレイン電極 5, 6が形成された側の表面上にへキサメチルジシラザ ン(HMDS、 Ardrich社製)を滴下して 2000rpmでスピンを行うことにより、当該表面 を HMDSで処理する。
[0102] その後、上述したオリゴマーのジクロロベンゼン溶液を、上記積層体の HMDS処理 を行った表面上にスピンコート法により塗布して、この表面上に有機薄膜からなる活 性層 2を形成して、有機薄膜トランジスタを得る。このようにして得られた有機薄膜トラ ンジスタは、図 3に示す有機薄膜トランジスタ 120と同等の構成を有し、ゲート電極 4 が基板 1の機能を兼ねるものとなる。
[0103] このような構成を有する有機薄膜トランジスタについて、真空中でゲート電圧及びソ ース一ドレイン間電圧を変化させることによりトランジスタ特性を測定した場合、良好 な Isd— Vg特性が得られる。
[0104] (太陽電池)
次に、好適な実施形態に係る太陽電池について説明する。図 5は、好適な実施形 態に係る太陽電池の断面構成を模式的に示す図である。太陽電池 200は、基板 10 上に、第 1の電極 17a、活性層 12及び第 2の電極 17bをこの順に備える構成を有して いる。基板 10としては、シリコン基板、ガラス基板、プラスチック基板等が好ましい。ま た、活性層 12は、本発明に係る有機薄膜から構成される。この活性層 12は、光に対 する感度を高めるためにキャリア発生剤、増感剤等を更に含んで 、てもよ 、。
[0105] 第 1又は第 2の電極 17a, 17bを構成する電極材料としては、例えば、アルミニウム、 金、銀、銅、アルカリ金属、アルカリ土類金属等の金属等が挙げられる。第 1及び第 2 の電極 17a, 17bのうちの少なくとも一方は、透明又は半透明の電極材料が適用され る。高い開放電圧を得るために、電極材料としては、第 1及び第 2の電極 17a, 17b 間の仕事関数の差が大きくなるような組み合わせとすることが好ましい。
[0106] (光センサ)
次に、好適な実施形態に係る光センサについて説明する。図 6は、第 1の例に係る 光センサの断面構成を模式的に示す図である。図 6に示す光センサ 300は、基板 20 上に、第 1の電極 27a、活性層 22、電荷発生層 28及び第 2の電極 27bをこの順に備 える構成を有している。基板 20、活性層 22並びに第 1及び第 2の電極 27a, 27bとし ては、上述した太陽電池における基板 10、活性層 12並びに第 1及び第 2の電極 17a , 17bとそれぞれ同様の構成が適用できる。
[0107] 電荷発生層 28は、少なくとも一方の電極と活性層 22との間に形成される。この電荷 発生層 28は、光を吸収して電荷を発生する層である。電荷発生層 28の構成材料と しては、上述した有機薄膜に適用し得る各種の電荷発生材料が適用できる。
[0108] 図 7は、第 2の例に係る光センサの断面構成を模式的に示す図である。図 7に示され る光センサ 310は、基板 20上に、第 1の電極 27a、電荷発生層 28、活性層 22及び 第 2の電極 27bをこの順に備える構成を有して 、る。
[0109] また、図 8は、第 3の例に係る光センサの断面構成を模式的に示す図である。図 8に 示される光センサ 320は、基板 20上に、第 1の電極 27a、活性層 22及び第 2の電極 27bをこの順に備える構成を有している。このように、有機薄膜からなる活性層 22自 身が光の入射により十分に電荷を発生し得る場合、光センサは、必ずしも第 1及び第 2の例のような電荷発生層 28を有して 、なくてもょ 、。
[0110] 以上、本発明に係る有機薄膜を適用した有機薄膜素子の実施形態を例示したが、 有機薄膜素子は、有機薄膜を適用した電気素子であれば上述した実施形態のもの に限定されない。上記以外の有機薄膜素子としては、例えば、有機 EL素子、有機メ モリー、フォトリフラクティブ素子、空間光変調器、撮像素子等が挙げられる。
実施例
[0111] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限 定されるものではない。
[0112] (測定条件)
以下の合成例及び実施例において、各種の分析等は以下の条件で行った。すな わち、まず、核磁気共鳴(NMR)スペクトルは、 日本電子社製の JNM— GSX—400 を用いて測定した。ガスクロマトグラフ—質量分析 (GC— MS)は、島津社製の QP— 5050を用い、電子衝撃法により行った。高分解質量分析 (HRMS)は、 日本電子社 製の JMS— DX— 303を用いて行った。ガスクロマトグラフ(GC)分析は、島津社製 の GC— 8Aにジーエルサイエンス社製のシリコン OV— 17充填ガラスカラム(内径 2. 6mm,長さ 1. 5m)を装着して用いた。カラムクロマトグラフィー分離におけるシリカゲ ルは、和光純薬工業社製のヮコーゲル C 200を用いた。
[0113] (合成例 1 ; 3, 3,一ジョードー 2, 2,一ビチォフェンの合成)
まず、出発原料である 3, 3' ジブ口モー 2, 2' ビチォフェンを、参考文献 (Hong M., Wei H., J. Org. Chem., 2000, 65, 3895)の記載を参照して合成した。そして、こ れを用いてハロゲン交換反応を行い、 3, 3,一ジョードー 2, 2,一ビチォフェンを合 成した。すなわち、まず、 300mLの三口フラスコに 3, 3,一ジブ口モー 2, 2,一ビチォ フェン(2. 7g (7mmol) )を入れ、これをジェチルエーテル(70mL)に溶かした。次に 、反応容器内を窒素置換し、 78°Cに冷却した。続いて、ブチルリチウム(1. 5Mへ キサン溶液、 10. 3mL (15. 4mmol) )をカ卩え、 1時間撹拌した。さら〖こ、ジェチノレエ 一テルに溶力したヨウ素(3. 9g (15. 4mmol) )をカ卩え、室温下で 1時間撹拌して反 応させた。
[0114] 反応後の溶液に、ジェチルエーテル (約 50mL)をカ卩えて飽和チォ硫酸ナトリウム水 溶液で洗浄した。それから、有機層を硫酸ナトリウムで乾燥させた後、セライトでろ過 した。そして、ろ液力も溶媒を留去し、得られた固体をへキサンとトルエンで再結晶し て、 目的物である 3, 3,一ジョードー 2, 2,一ビチォフェンを白色固体(1. 9g,収率 6 5%)の状態で得た。得られた白色固体の融点を測定したところ、 148°Cであった。 ( 文献値 149. 5— 151°C ;Gronowitz S., Vilks V., Arkiv Kemi, 1963, 21, 191.)。
[縮合環化合物の製造]
[0115] (実施例 1 ;4, 5 ジ(n—プロピル)ベンゾ [2, 1— b : 3, 4— b, ]ジチォフェンの合成 )
20mLの二口フラスコに 3, 3,一ジョードー 2, 2,一ビチォフェン(84mg(0.2mmo 1))、酢酸パラジウム(II) (4.5mg(0.02mmol))、 4—ォクチン(66mg(0.6mmol) ), N, N—ジシクロへキシルメチルァミン(117mg(0.6mmol))、N, N—ジメチルホ ルムアミド(2.5mL)を加え、反応容器内を窒素置換して 100°Cで加熱、撹拌して反 応させた。 4時間後、 GC及び GC— MS分析により、反応混合物中に 4, 5—ジ (n— プロピル)ベンゾ [2, 1— b:3, 4— b']ジチォフェンがほぼ定量的(GC収量; 99%以 上)に生成していることが確認された。
[0116] 次 、で、得られた反応溶液にジェチルエーテル (約 20mL)を加え、水で洗浄した。
その後、有機層を硫酸ナトリウムで乾燥させた後、セライトでろ過した。ろ液から溶媒 を留去した後、残存した液体を、へキサンを展開溶媒とするシリカゲルカラムクロマト グラフィ一で精製することにより、 目的物である 4, 5—ジ (n—プロピル)ベンゾ [2, 1 -b:3, 4— b']ジチォフェンを油状物質 (46mg)の状態で得た。得られた目的物の1 H— NMR及び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm) : δ 7.45(d, J = 5.5Hz, 2H), 7.35 (d, J
3
=5.5Hz, 2H), 3.01 (m, 4H), 1.74—1.64 (m, 4H), 1.07(t, J = 7.3Hz, 6H).
HRMS(EI):m/z 274.0847 (C H Sで測定して得られた値は 274.0850で
16 18 2
あった).
[0117] (実施例 2)
N, N—ジシクロへキシルメチルァミンに代えてトリブチルァミン(11 lmg(0.6mmo 1))を用いたこと、及び、反応時間を 8時間としたこと以外は、実施例 1と同様の反応を 行った。反応後、 GC及び GC— MS分析により、反応混合物中に 4, 5—ジ (n—プロ ピル)ベンゾ [2, 1— b:3, 4— b']ジチォフェンがほぼ定量的(GC収量; 99%以上) に生成して 、ることが確認された。
[0118] (実施例 3)
N, N—ジシクロへキシルメチルァミンに代えてトリブチルァミン(11 lmg(0.6mmo 1) )を用いたことシクロへキシルジメチルァミン(76mg (0.6mmol) )を用いたこと、及 び、反応時間を 8時間としたこと以外は、実施例 1と同様の反応を行った。反応後、 G C及び GC— MS分析により、反応混合物中に 4, 5 ジ (n プロピル)ベンゾ [2, 1 -b : 3, 4 b' ]ジチォフェンが 92%の GC収量で生成していることが確認された。
[0119] (実施例 4)
N, N—ジシクロへキシルメチルァミンに代えてジイソプロピルェチルァミン(78mg ( 0. 6mmol) )を用いたこと、及び、反応時間を 6時間としたこと以外は、実施例 1と同 様の反応を行った。反応後、 GC及び GC— MS分析により、反応混合物中に 4, 5— ジ(n—プロピル)ベンゾ [2, 1— b : 3, 4— b,]ジチォフェンが 88%の GC収量で生成 していることが確認された。
[0120] (実施例 5 ;4, 5 ジ(n—ペンチル)ベンゾ [2, 1— b : 3, 4— b, ]ジチォフェンの合成 )
20mLの二口フラスコに 3, 3,一ジョードー 2, 2,一ビチォフェン(84mg, 0. 2mm ol)、酢酸パラジウム(II) (2. 2mg, 0. Olmmol)、 6 ドデシン(40mg, 0. 24mmol ) , N, N—ジシクロへキシルメチルァミン(94mg, 0. 48mmol)、 N, N ジメチルホ ルムアミド(2. 5mL)を加え、反応容器内を窒素置換して 130°Cで加熱、撹拌して反 応させた。
[0121] 3時間後、反応溶液にジェチルエーテル (約 20mL)を加え、水で洗浄した。その後、 有機層を硫酸ナトリウムで乾燥させ、セライトでろ過した。ろ液力 溶媒を留去した後 、残存した液体を、へキサンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精 製することにより、 目的物である 4, 5 ジ (n—ペンチル)ベンゾ [2, 1— b : 3, 4— b,] ジチォフェンを油状物質 (4 lmg)の状態で得た。なお、反応後の溶液を GCにより分 祈したところ、生成物の GC収量は 89%であった。得られた目的物の1 H— NMR及 び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm) : δ 7. 46 (d, J = 5. 5Hz, 2H) , 7. 37 (d, J
3
= 5. 5Hz, 2H) , 3. 02 (m, 4H) , 1. 70—1. 62 (m, 4H) , 1. 53〜: L 37 (m, 8 H)、 0. 93 (t, J = 7. 3Hz, 6H) .
HRMS (EI) :m/z 330. 1469(C H Sで測定して得られた値は 330. 1476で
20 26 2
あった。 ). [0122] (実施例 6;4, 5 ジ(n—へプチル)ベンゾ [2, 1— b:3, 4— b, ]ジチォフェンの合成 )
6 ドデシンに代えて、 8 へキサデシン(53mg(0. 24mmol))を用いたこと以外 は、実施例 5と同様にして目的物である 4, 5 ジ (n—へプチル)ベンゾ [2, l-b:3 , 4 b']ジチォフェンを油状物質(58mg)の状態で得た。なお、反応後の溶液を G Cにより分析したところ、生成物の GC収量は 99%以上であった。得られた目的物の1 H— NMR及び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm) : δ 7.46(d, J = 5. 5Hz, 2H), 7. 36 (d, J
3
=5. 5Hz, 2H), 3. 01 (m, 4H), 1. 70—1. 61 (m, 4H), 1. 52〜: L 45 (m, 4
H)、 1.41〜: L 25 (m, 12H), 0. 90(t, J = 7. 0Hz, 6H) .
HRMS(EI):m/z 386. 2168(C H Sで測定して得られた値は 386. 2102で
24 34 2
あった。 ).
[0123] (実施例 7;4, 5 ジフエ-ルペンゾ [2, 1— b:3, 4— b, ]ジチォフェンの合成)
20mLの二口フラスコに、 3, 3, 一ジョードー 2, 2, 一ビチォフェン(418mg(lmmo
I) )、酢酸パラジウム(Π) (llmg(0. 05mmol))、ジフヱ-ルアセチレン(214mg(l. 2mmol))、 N, N—ジシクロへキシルメチルァミン (469mg(2.4mmol))、 N, N—ジ メチルホルムアミド (2. 5mL)をカ卩え、反応容器内を窒素置換して 130°Cで加熱、撹 拌して反応させた。
[0124] 3時間後、反応溶液にジェチルエーテル (約 20mL)を加え、水で洗浄した。その後、 有機層を硫酸ナトリウムで乾燥させ、セライトでろ過した。ろ液力 溶媒を留去した後 、残存した液体を、へキサンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精 製することにより、 目的物である 4, 5 ジフエ-ルペンゾ [2, 1— b:3, 4— b,]ジチォ フェンを褐色固体(134mg)の状態で得た。なお、反応後の溶液を GCにより分析し たところ、生成物の GC収量は 64%であった。得られた目的物の1 H— NMR及び GC MSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 34(d, J = 5. 5Hz, 2H), 7. 26— 7.
3
17(m, 10H), 7. 16(d, J = 5. 5Hz, 2H) .
GC-MS(EI):m/z 342. [0125] 実施例 1〜7においては、 R11及び R12で表される基として各種の基を有する上記一 般式(1)で表される縮合環化合物が得られることが確認された。また、実施例 1〜7よ り、塩基として各種アミンを用いることで、縮合環化合物が高収率で得られることが確 f*i¾ れ 。
[0126] (実施例 8;2, 7—ジブ口モー 4, 5—ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— 〕ジ チオフ ンの合成)
20mLの二口フラスコに、 4, 5—ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチ ォフェン(191. lmg(0. 70mmol))、 N—ブロモスクシンイミド(261. 6mg(l. 47m mol))、N, N—ジメチルホルムアミド(2. 5mL)をカロえ、反応容器内を窒素置換して 室温下で 2. 5時間撹拌して反応させた。
[0127] 反応後の溶液に、ジェチルエーテル (約 20mL)をカ卩えて水で洗浄した。その後、有 機層を硫酸ナトリウムで乾燥させた後、ろ過した。ろ液力 溶媒を留去した後、得られ た固体をへキサンで再結晶して、 目的物である 2, 7—ジブ口モー 4, 5—ジ (n—プロ ピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを白色固体(214. 5mg,収率 70%) の状態で得た。得られた目的物の1 H— NMR及び HRMSの測定結果は以下の通り であった。
'H-NMR (400MHz, CDC1 , ppm): δ 7.40 (s, 2H), 2. 91— 2. 86 (m, 4H)
3
, 1. 67-1. 60 (m, 4H), 1. 06 (t, J=7. 3Hz, 6H) .
HRMS (EI) :m/z 429. 9055 (C H Br Sで柳』定して得られた値は 429. 906
16 16 2 2
0であった。)
[0128] (実施例 9;2, 7—ジブ口モー 4, 5—ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— 〕ジ チオフ ンの合成)
4, 5—ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンに代えて、 4, 5— ジ(n—ペンチノレ)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン(442. lmg(l. 34mmo 1))を用いたこと以外は、実施例 8と同様にして反応を行った。反応後の溶液に、ジェ チルエーテル (約 20mL)を加え、水で洗浄した。その後、有機層を硫酸ナトリウムで 乾燥させた後、ろ過した。ろ液力も溶媒を留去した後、残存した液体を、へキサンを 展開溶媒とするシリカゲルカラムクロマトグラフィーで精製することにより、 目的物であ る 2, 7 ジブ口モー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4—b'〕ジチォフエ ンを白色固体(124. 9mg,収率 59%)の状態で得た。得られた目的物の1 H— NM R及び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 39 (s, 2H), 2. 94— 2. 85 (m, 4H)
3
, 1. 64-1. 54 (m, 4H), 1. 50—1. 32 (m, 8H), 0. 93 (t, J=7. 3Hz, 6H) . HRMS (EI) :m/z 485. 9689 (C H Br Sで柳』定して得られた値は 485. 968
20 24 2 2
6であった。 )
[0129] (実施例 10;2, 7 ジブ口モー 4, 5 ジ(n—へプチル)ベンゾ〔2, 1— b:3, 4— b,〕 ジチォフェンの合成)
4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンに代えて、 4, 5 ージ(n プチノレ)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン(247. 3mg(0. 64m mol))を用いた事以外は、実施例 9と同様にして目的物である 2, 7 ジブ口モー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを白色固体(242. 0 mg,収率 69%)の状態で得た。得られた目的物の1 H— NMR及び HRMSの測定結 果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 39 (s, 2H), 2. 91— 2. 86 (m, 4H)
3
, 1. 64-1. 55 (m, 4H), 1. 50—1. 24 (m, 16H), 0. 90 (t, J=7. 3Hz, 6H) . HRMS (EI) :m/z 542. 0314 (C H Br Sで測定して得られた値は 542. 031
24 32 2 2
2であった。 )
[0130] (実施例 11 ;2, 7 ジフエ-ルー 4, 5 ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b, 〕ジチォフェンの合成)
20mLの二口フラスコに、 2, 7 ジブ口モー 4, 5 ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン(81. 9mg(0. 19mmol))、フエ-ルポロン酸(92. 7mg( 0. 76mmol))、酢酸パラジウム(Π) (2. lmg(0. Olmmol))、フッ化カリウム(88. 3 mg(l. 52mmol))、ジ(t—ブチル) 2 ビフエ-ルホスフィン(5. 7mg(0. 02mm ol))、及び、トルエン(2. 5mL)をカ卩え、反応容器内を窒素置換して 100°Cで 3時間 撹拌して反応させた。
[0131] 反応後の溶液に、ジェチルエーテル (約 20mL)を加え、水で洗浄した。その後、有 機層を硫酸ナトリウムで乾燥させた後、ろ過した。ろ液力 溶媒を留去した後、得られ た固体をへキサンとトルエンで再結晶して、 目的物である 2, 7 ジフエ-ルー 4, 5— ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(64. 5mg, 収率 80%)の状態で得た。得られた目的物の1 H— NMR及び HRMSの測定結果は 以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 77— 7. 74 (m, 4H), 7. 65 (s, 2H)
3
, 7.47-7.42 (m, 4H), 7. 37— 7. 32 (m, 2H), 3. 05— 3. 00 (m, 4H), 1. 7 8-1. 69 (m, 4H), 1. ll(t, J=7. 3Hz, 6H) .
HRMS (EI) :m/z 426. 1480 (C H Sで柳』定して得られた値は 426. 1476で
28 26 2
あった。 )
[0132] (実施例 12;2, 7 ジフエ-ルー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b ,〕ジチオフ ンの合成)
2, 7 ジブ口モー 4, 5 ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフエ ンに代えて、 2, 7 ジブ口モー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕 ジチォフェン(124. 9mg(0. 26mmol))を用いたこと以外は、実施例 11と同様にし て反応を行った。反応後の溶液に、ジェチルエーテル (約 20mL)を加え、水で洗浄 した。その後、有機層を硫酸ナトリウムで乾燥させた後、ろ過した。ろ液力 溶媒を留 去した後、残存した固体を、へキサンを展開溶媒とする薄層クロマトグラフィーで精製 することにより、 目的物である 2, 7 ジフエ-ルー 4, 5 ジ(n—ペンチル)ベンゾ〔2 , 1 b:3, 4— b'〕ジチオフ ンを黄色固体(83. 8mg,収率 67%)の状態で得た。 得られた目的物の1 H— NMR及び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 77— 7. 74 (m, 4H), 7. 66 (s, 2H)
3
, 7.47-7.42 (m, 4H), 7. 37— 7. 32 (m, 2H), 3. 05— 3. 00 (m, 4H), 1. 79-1. 68 (m, 4H), 1. 55— 1.40 (m, 8H), 0. 95 (t, J= 7. 3Hz, 6H) .
HRMS (EI) :m/z 482. 2097 (C H Sで測定して得られた値は 482. 2102で
32 34 2
あった。 )
[0133] (実施例 13;2, 7 ジフエ-ルー 4, 5 ジ(n プチル)ベンゾ〔2, 1— b:3, 4—b ,〕ジチオフ ンの合成) 2, 7 ジブ口モー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフエ ンに代えて、 2, 7 ジブ口モー 4, 5 ジ(n—ヘプチル)ベンゾ〔2, 1— b:3, 4— b,〕 ジチォフェン(128. 2mg(0. 24mmol))を用いた事以外は、実施例 12と同様にして 目的物である 2, 7 ジフエ-ルー 4, 5 ジ(n プチル)ベンゾ〔2, 1— b:3, 4—b '〕ジチォフェンを黄色固体(54. 5mg,収率 42%)の状態で得た。得られた目的物 の1 H— NMR及び HRMSの測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 77— 7. 71 (m, 4H), 7. 63 (s, 2H)
3
, 7.46-7.40 (m, 4H), 7. 36— 7. 30 (m, 2H), 3. 05— 2. 97 (m, 4H), 1. 7 4—1. 63 (m, 4H), 1. 56— 1. 47 (m, 4H), 1.46— 1. 19(m, 12H), 0. 91 (t , J=6. 9Hz, 6H).
HRMS (EI) :m/z 538. 2722 (C H Sで測定して得られた値は 538. 2728で
36 42 2
あった。 )
[0134] (実施例 14;2, 7 ジ(2 ナフチル) 4, 5 ジ(n ペンチル)ベンゾ〔2, 1— b:3 , 4 b,〕ジチオフ ンの合成)
フエ-ルボロン酸に代えて 2 ナフチルボロン酸(137. 6mg(0. 80mmol))を用 いた事以外は、実施例 12と同様にして目的物である 2, 7 ジ(2 ナフチル)—4, 5 ージ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(72. Omg ,収率 62%)の状態で得た。得られた目的物の1 H— NMR及び HRMSの測定結果 は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm) : δ 8. 15 (s, 2Η), 7. 92— 7. 81 (m, 8H)
3
, 7. 75 (s, 2H), 7. 54-7. 45 (m, 4H), 3. 08— 3. 03 (m, 4H), 1. 78— 1. 6
9(m, 4H), 1. 58-1.40(m, 8H), 0. 97 (t, J=7. 3Hz, 6H) .
HRMS (EI) :m/z 582. 2423 (C H Sで測定して得られた値は 582. 2415で
40 38 2
あった。 )
[0135] (実施例 15;2, 7 ジ(2 ナフチル) 4, 5 ジ(n プチル)ベンゾ〔2, 1— b:3 , 4 b,〕ジチオフ ンの合成)
フエ-ルボロン酸に代えて 2 ナフチルボロン酸(111. 8mg(0. 65mmol))を用 いたこと、及び、 2, 7 ジブ口モー 4, 5 ジ(n—プロピル)ベンゾ〔2, 1— b:3, 4—b '〕ジチォフェンに代えて 2, 7 ジブ口モー 4, 5 ジ(n—へプチノレ)ベンゾ〔2, 1— b :3, 4 b,〕ジチォフェン(89. lmg(0. 16mmol))を用いたこと以外は、実施例 11 と同様にして、 目的物である 2, 7 ジ(2 ナフチル) 4, 5 ジ (n プチル)ベ ンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(96. 6mg,収率 94%)の状態で 得た。得られた目的物の1 H— NMR及び HRMSの測定結果は以下の通りであった
'H-NMR (400MHz, CDC1 , ppm) : δ 8. 19 (s, 2H), 7. 93— 7. 83 (m, 8H)
3
, 7. 78 (s, 2H), 7. 55-7. 47 (m, 4H), 3. 11— 3. 03 (m, 4H), 1. 79— 1. 6
9(m, 4H), 1. 61-1. 28 (m, 16H), 0. 92 (t, J=6. 9Hz, 6H) .
HRMS (EI) :m/z 638. 3031 (C H Sで測定して得られた値は 638. 3041で
44 46 2
あった。 )
[0136] (実施例 16;2, 7 ジ(4ービフエ-ル) 4, 5 ジ(n—ペンチル)ベンゾ〔2, l—b:
3, 4 b,〕ジチォフェンの合成)
2 ナフチルボロン酸に代えて 4 ビフエ-ルボロン酸(158. 6mg(0. 80mmol) ) を用いた事以外は、実施例 14と同様にして、 目的物である 2, 7 ジ (4ービフエ-ル )ー4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(1 22. 5mg,収率 96%)の状態で得た。得られた目的物の1 H— NMR及び HRMSの 測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7. 84— 7. 80 (m, 4H), 7. 70— 7. 63
3
(m, 8H), 7. 69 (s, 2H), 7. 50— 7.45 (m, 4H), 7.40— 7. 35 (m, 2H), 3. 0 7-3. 02 (m, 4H), 1. 77—1. 68 (m, 4H), 1. 56— 1. 41 (m, 8H), 0. 97 (t, J =7. 3Hz, 6H) .
HRMS (EI) :m/z 634. 2720 (C H Sで測定して得られた値は 634. 2728で
44 42 2
あった。 )
[0137] (実施例 17;2, 7 ジ(4ービフエ-ル) 4, 5 ジ(n プチル)ベンゾ〔2, l—b:
3, 4 b,〕ジチォフェンの合成)
2 ナフチルボロン酸に代えて 4 ビフエ-ルボロン酸(103. 0mg(0. 52mmol)) を用いた事以外は、実施例 15と同様にして、 目的物である 2, 7 ジ (4 ビフエ-ル )ー4, 5 ジ(n プチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(5 6.4mg,収率 63%)の状態で得た。得られた目的物の1 H— NMR及び HRMSの測 定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7.84— 7.80 (m, 4H), 7.71— 7.63
3
(m, 8H), 7.69 (s, 2H), 7.50— 7.44 (m, 4H), 7.41— 7.35 (m, 2H), 3.0 8-3.02 (m, 4H), 1.76— 1.66 (m, 4H), 1.58— 1.25 (m, 16H), 0.92 (t , J=6.9Hz, 6H). HRMS (EI) :m/z 690.3362(C H Sで測定して得られた
48 50 2
値は 690.3354であった。 )
[0138] (実施例 18;2, 7 ジフエ-ルー 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b ,〕ジチオフ ンの合成)
20mLの二口フラスコに, 4, 5 ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— 〕ジ チォフェン(172.4mg(0.52mmol))、ブロモベンゼン(244.9mg(l.56mmol) ) 、酢酸パラジウム(II) (11.7mg(0.05mmol))、炭酸セシウム(407.3mg(l.25m mol))、ジ(t—ブチル)一2 ビフエ-ルホスフィン(29.8mg(0. lmmol))、及び、 N, N ジメチルホルムアミド(2.5mL)をカ卩え、反応容器内を窒素置換して 150°C で 17時間撹拌して反応させた。
[0139] 反応後の溶液に、ジェチルエーテル (約 20mL)をカ卩えて水で洗浄した。その後、有 機層を硫酸ナトリウムで乾燥させた後、ろ過した。ろ液力 溶媒を留去した後、得られ た固体をへキサンとトルエンで再結晶して、 目的物である 2, 7 ジフエ-ルー 4, 5— ジ(n—ペンチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェンを黄色固体(94. Omg, 収率 37%)の状態で得た。
[0140] (実施例 19;2, 7 ジ(2 チェ-ル) 4, 5 ジ(n プチル)ベンゾ〔2, 1— b:3 , 4 b,〕ジチオフ ンの合成)
30mLの二口フラスコに、 2, 7 ジブ口モー 4, 5 ジ(n プチル)ベンゾ〔2, 1 -b:3, 4 b,〕ジチォフェン(163.3mg(0.30mmol))、トリブチル(2 チェ-ル) スズ(223.9mg(0.6mmol))、テトラキス(トリフエ-ルホスフィン)パラジウム(17.3 mg(0.015mmol))、N, N—ジメチルホルムアミド(2.5mL)、及び、トルエン(2.5 mL)を加え、反応容器内を窒素置換して 85°Cで 24時間攪拌して反応させた。 [0141] 反応後の溶液に、塩化メチレン (約 20mL)を加え、水で洗浄した。その後、有機層を 硫酸ナトリウムで乾燥させた後、ろ紙でろ過した。ろ液力 溶媒を留去した後、得られ た固体をトルエンに溶かし、へキサンを展開溶媒とするシリカゲルカラムクロマトグラフ ィ一で精製した後、得られた固体をへキサンで再結晶して、 目的物である 2, 7—ジ( 2—チェ-ル)—4, 5—ジ(n プチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン を黄白色固体 (89. 2mg、収率 54%)の状態で得た。得られた目的物の1 H—NMR の測定結果は以下の通りであった。
'H-NMR (400MHz, CDC1 , ppm): δ 7.46 (s, 2H), 7. 31— 7. 27 (m, 4H)
3
, 7. 07-7. 04(dd, J = 5. 2, 3. 6Hz, 2H), 2. 99— 2. 92 (m, 4H), 1. 68— 1 . 60 (m, 4H), 1. 54-1. 27 (m, 16H), 0. 92(t, J = 7. 3Hz, 6H) .
[重合体の製造]
[0142] (実施例 20;ポリ(4, 5—ジ(n プチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン )の合成)
20mLの二口フラスコに、 2, 7—ジブ口モー 4, 5—ジ(n プチル)ベンゾ〔2, 1 -b:3, 4— b'〕ジチォフェン(108. 9mg(0. 20mmol) ) Ni (COD) (66. 0mg(0
2
. 24mmol))、 1, 5—シクロォクタジェン(21. 6mg(0. 20mmol))、ビビリジル(37 . 5mg(0. 24mmol))、及び、 N, N—ジメチルホルムアミド(2. 5mL)を加え、反応 容器内を窒素置換して 60°Cで 24時間撹拌して反応させた。
[0143] 反応後の溶液に、トルエン (約 20mL)をカ卩えて水で洗浄した。その後、有機層を硫 酸ナトリウムで乾燥させた後、ひだ折りろ紙でろ過した。ろ液力 溶媒を留去した後、 へキサンとトルエン(7: 3)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製 し、得られた液体にエタノールをカ卩えることにより、 目的物である、ポリ(4, 5—ジ (n— ヘプチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン)を茶褐色固体(36.4mg)の状 態で得た。得られたポリマーを重合体 Aとする。
[0144] (実施例 21;ポリ(4, 5—ジ(n プチル)ベンゾ〔2, 1— b:3, 4— b,〕ジチォフェン )の合成)
lOOmLの二口フラスコに、 4, 5—ジ(n—ヘプチル)ベンゾ〔2, 1— b:3, 4— 〕ジ チォフェン(223.4mg(0. 58mmol))、塩ィ匕鉄(III) (1844. 5mg(ll. 6mmol))、 及び、ジクロロメタン(20mL)をカ卩え、反応容器内を窒素置換して室温で 20時間撹 拌して反応させた。
[0145] 反応後の溶液に、ヒドラジン水溶液、トルエン (約 20mL)をカ卩えて水で洗浄した。そ の後、有機層を硫酸ナトリウムで乾燥させた後、ろ過した。ろ液力 溶媒を留去した後 、へキサンとトルエン(7: 3)を展開溶媒とするシリカゲルカラムクロマトグラフィーで精 製し、得られた液体にエタノールをカ卩えることにより、 目的物である、ポリ(4, 5—ジ (n 一へプチル)ベンゾ〔2, 1— b : 3, 4— b,〕ジチォフェン)を赤褐色固体(37. 3mg)の 状態で得た。得られたポリマーを、重合体 Bとする。
[0146] (実施例 22 ;ポリ(4, 5 ジ(n—へプチル)ベンゾ〔2, 1— b : 3, 4— b,〕ジチォフェン )の合成)
20mLの二口フラスコに、 4, 5 ジ(n—ヘプチル)ベンゾ〔2, 1— b : 3, 4— 〕ジ チォフェン(119. 3mg (0. 31mmol) )、塩化鉄(III) (110. 6mg (0. 68mmol) )、 及び、クロ口ベンゼン(5. 5mL)をカ卩え、空気雰囲気下、 65°Cで 36時間撹拌して反 応させた。
[0147] 反応後の溶液に、ヒドラジン水溶液、トルエン (約 20mL)をカ卩えて水で洗浄した。そ の後、有機層をろ紙でろ過し、ろ紙に付着した固体をクロ口ホルムに溶力して回収し た。溶媒を留去した後、得られた固体をエタノールで洗浄することにより、 目的物であ るポリ(4, 5 ジ(n—へプチル)ベンゾ〔2, 1— b : 3, 4— b,〕ジチォフェン)を赤褐色 固体 (41. 5mg)の状態で得た。得られたポリマーを重合体 Cとする。
[0148] (実施例 23 ;ポリ(9, 9ージォクチルフルオレン co— 4, 5 ジ(n—へプチル)ベン ゾ〔2, 1— b : 3, 4— b,〕ジチォフェン)の合成)
窒素置換した 50mlカローセル試験管に、 2, 7 ビス(ボロン酸ェチルエステル)— 9, 9ージォクチルフルオレン(0. 26mmol)、 2, 7 ジブ口モー 4, 5 ジ(n—ヘプ チル)ベンゾ〔2, 1— b : 3, 4— b,〕ジチォフェン)(0. 26mmol)、及び、ジクロロビス( トリフエ-ルホスフィン)パラジウム(0. 19 mol)を入れ、次いで、あら力じめ 30分間 窒素パブリングしたトルエン 4mlを入れ、これらを撹拌して完全に溶解させた。
[0149] 続いて、 Aliquat336 (0. 07mmol)を加え、試験管を密閉した。これを 105°Cまで昇 温しながら、炭酸ナトリウム水溶液(2molZl、 0. 48ml)をシリンジでセプタムを通し て滴下し、 5時間加熱撹拌した。さらに、フエ-ルポロン酸 (4. 2mg)を THFに溶かし て加え、 105°Cで 5時間加熱撹拌した。得られた溶液を 90°Cまで冷却した後、これに N, N ジェチルジチォカルバミド酸ナトリウム三水和物 0. lgをイオン交換水に溶か して加え、 90°Cで 3時間加熱撹拌した。
[0150] それから、撹拌を停止し、水層を除いた後、 60°Cのイオン交換水 4mlで 3回有機層を 洗浄し、次いで 3%酢酸 4mlで 3回洗浄し、再び 60°Cのイオン交換水で 3回洗浄した 。そして、シリカゲル、中性アルミナカラムを用いたクロマトグラフィーにより精製し、更 にメタノール 60mlで再沈殿させることにより、目的とするポリマーを得た。得られたポ リマーのポリスチレン換算分子量は 1. 0 X 105であった。得られたポリマーを重合体 Dとする。
[0151] (実施例 24 ;ポリ(2, 2, 一ビチォフェン一 co— 4, 5 ジ(n—へプチル)ベンゾ〔2, 1 b : 3, 4— b,〕ジチォフェン)の合成)
窒素置換した 50mlシュレンク型フラスコに、 5, 5, 一ビス(トリメチルスタ-ル)一2, 2, 一ビチォフェン(0. 44mmol)、 2, 7 ジブ口モー 4, 5 ジ(n—へプチル)ベンゾ [2, 1 b : 3, 4— b,〕ジチォフェン)(0. 37mmol)、及び、ジクロロビス(トリフエ-ル ホスフィン)パラジウム(0. 97 /z mol)を入れ、さらに DMFを 3mlカ卩えて 150°Cまで昇 温し、 24時間撹拌した。続いて、 THFを 2ml加え、これをさらに 48時間撹拌した。得 られた溶液を室温まで冷却した後、メタノール Z水混合液(1: 1) 50mlで再沈殿させ ることにより、目的とするポリマーを得た。得られたポリマーのポリスチレン換算分子量 は 4. 1 X 103であった。このポリマーを、重合体 Eとする。
[有機薄膜素子の製造及び評価]
[0152] (実施例 25;有機薄膜トランジスタの製造及びその特性の評価)
重合体 Dを 5mg秤量しこれにクロ口ホルム lgをカ卩えて、 0. 5wt%のクロ口ホルム溶 液を調整した後、これをテフロン (登録商標)製の 0. 2 mメンブランフィルターで濾 過して、塗布液とした。
[0153] 次に、ゲート電極となる高濃度にドープされた n—型シリコン基板の表面上に、絶縁 層となる熱酸ィ匕シリコン酸ィ匕膜を 200nm形成させた基板に対し、アルカリ洗剤、超純 水、アセトンで超音波洗浄を行った後、オゾン UV照射により表面を洗浄した。この洗 浄された基板に、へキサメチルジシラザン(HMDS ;Hexamethyldisilazane、 Aldri ch製)を滴下した後、 2000rpmでスピンすることにより、基板表面を HMDSで処理し た。この表面処理された基板上に、上記の重合体 Dのクロ口ホルム溶液 (塗布液)を 滴下し、 lOOOrpmでスピンして重合体 Dの薄膜を形成した。
[0154] それから、重合体 Dの薄膜の上に、真空蒸着法により、金属マスクを用いて PtZAu 電極を 2nmZ50nmで蒸着し、チャネル幅 2mm、チャネル長 20 μ mのソース電極 及びドレイン電極を形成して、有機薄膜トランジスタを得た。
[0155] 得られた有機薄膜トランジスタに、真空中でゲート電圧 V、ソース一ドレイン間電圧 V
G
を変化させて、トランジスタ特性を測定したところ、良好な Id— Vg特性が得られた。
SD
そして、 Vg=— 60V, Vd=—60Vにおいてドレイン電流 Id= l. 5 X 10_7Aの電流 が流れた。このときの移動度は、 1. 3 X 10_3cm2ZVsであり、 onZoff比 = 104であ り、電流が入るしきい値電圧 Vth=— 27Vであった。
[0156] (実施例 26;有機薄膜トランジスタの製造及びその特性の評価)
重合体 Dに代えて重合体 Aに変えたこと以外は、実施例 25と同様にして有機薄膜 トランジスタを作製する。そして、得られた有機薄膜トランジスタに、真空中でゲート電 圧 V、ソース ドレイン間電圧 V を変化させ、トランジスタ特性を測定すると、良好
G SD
な Id Vg特性が得られる。
[0157] (実施例 27 ;有機薄膜トランジスタの製造及びその特性の評価)
重合体 Dに代えて重合体 Cを用いたこと以外は、実施例 25と同様にして有機薄膜ト ランジスタを作製する。得られた有機薄膜トランジスタに、真空中でゲート電圧 V、ソ
G
ース一ドレイン間電圧 V を変化させ、トランジスタ特性を測定すると、良好な Id—Vg
SD
特性が得られる。
[0158] (実施例 28;有機薄膜トランジスタの製造及びその特性の評価)
重合体 Dに代えて重合体 Eを用いたこと以外は、実施例 25と同様にして有機薄膜ト ランジスタを作製した。得られた有機薄膜トランジスタに、真空中でゲート電圧 V、ソ
G
ース一ドレイン間電圧 V を変化させて、トランジスタ特性を測定したところ、良好な Id
SD
—Vg特性が得られた。そして、 Vg=— 60V、 Vd=— 60Vで、ドレイン電流 Id= 2. 2 X 10_8Aの電流が流れた。このときの移動度は、 1. 6 X 10_5cm2ZVsであり、 on/ off比 = 102であり、電流が流れるしきい値電圧 Vthは 5Vであった。

Claims

請求の範囲
[1] 下記一般式 (1)で表される、ことを特徴とする縮合環化合物。
[化 1]
Figure imgf000044_0001
[式中、 R11及び R12は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ァ ルキルチオ基、アルキルアミノ基、アルコキシカルボ-ル基、置換基を有していてもよ ぃァリール基、置換基を有していてもよい複素環基又はシァノ基を示す。ただし、 R11 及び R12の少なくとも一方は水素原子ではない。 R13及び R14は、それぞれ独立に 1価 の基を示し、 η及び mは、それぞれ独立に 0〜2の整数である。ただし、 R13及び R14が それぞれ複数存在する場合、それらは同一でも異なっていてもよい。 Y11及び Y12は、 それぞれ独立に下記一般式(2a)、(2b)、(2c)、 (2d) , (2e)、(2f)、(2g)又は(2h )で表される 2価の基である。
[化 2]
(2a) \〇Z (2b) (2c) 、 (2d) X (2e) i21 II o^o
R21 〇 ヽ S (2f) ヽ Te, (2g) (2 )
Figure imgf000044_0002
ただし、 R21及び R22は、それぞれ独立に、水素原子又は 1価の基を示す。 ]
[2] 前記 Y11及び前記 Y12は、前記(2a)で表される 2価の基である、ことを特徴とする請求 項 1記載の縮合環化合物。
[3] 前記 R11及び前記 R12は、それぞれ独立に、炭素数 1〜10のアルキル基又は炭素数
6〜20の置換基を有して 、てもよ 、ァリール基である、ことを特徴とする請求項 1又は
2記載の縮合環化合物。
[4] 下記一般式 (3)で表されるモノマー単位を含む、ことを特徴とする重合体。 [化 3]
Figure imgf000045_0001
[式中、 Rdl及び R は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ァ ルキルチオ基、アルキルアミノ基、アルコキシカルボ-ル基、置換基を有していてもよ ぃァリール基、置換基を有していてもよい複素環基又はシァノ基を示す。ただし、 R31 及び R32の少なくとも一方は水素原子ではない。 R33及び R34は、それぞれ独立に、水 素原子又は 1価の基を示す。 Y31及び Y32は、それぞれ独立に、下記一般式 (4a)、 ( 4b)、(4c)、(4d)、 (4e)、 (4f)、 (4g)又は (4h)で表される 2価の基である。
[化 4]
Figure imgf000045_0002
ただし、 R41及び R42は、それぞれ独立に、水素原子又は 1価の基を示す。 ]
[5] 下記一般式 (5)で表されるモノマー単位を更に含む、ことを特徴とする請求項 4記載 の重合体。
[化 5]
Ar5 (5)
[式中、 Ar5は、置換基を有していてもよい芳香族炭化水素基又は置換基を有してい てもよい複素環基を示す。]
[6] 前記 Ar5は、下記一般式 (6)で表される基である、ことを特徴とする請求項 5記載の重 合体。
[化 6] z 、γ6' ヽ
[式中、 R"及び Rb ま、それぞれ独立に水素原子又は 1価の基であり、 R"と とが 結合して環を形成してもよい。 Y6は、下記一般式(7a)、(7b)、(7c)、(7d)、(7e)、 ( 7f)、(7g)、(7h)又は(7i)で表される 2価の基である。
[化 7] ヽ (7a) ヽ。z (7b) (7e)
ヽ (ァり ヽ Te, (7g) i)
Figure imgf000046_0001
ただし、 R71、 R72、 R73及び R74は、それぞれ独立に、水素原子又は 1価の基を示し、
R73と R74とは、互いに結合して環を形成していてもよい。 ]
[7] 前記 Y31及び前記 Y32は、前記 (4a)で表される 2価の基であり、前記 Y6は、前記(7a) で表される 2価の基である、ことを特徴とする請求項 6記載の重合体。
[8] 塩基及び金属錯体触媒の存在下で、下記一般式 (8a)で表される化合物と、下記一 般式 (8b)で表される化合物と、を、反応させて、下記一般式 (8c)で表される縮合環 化合物を得る、ことを特徴とする縮合環化合物の製造方法。
[化 8]
Figure imgf000047_0001
81. ■R 82 (8b)
Figure imgf000047_0002
[式中、 χ81及び χ82は、それぞれ独立に水素原子又はハロゲン原子である。ただし、 X81及び X82の少なくとも一方はハロゲン原子である。 R81及び R82は、それぞれ独立 に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アル コキシカルボニル基、置換基を有していてもよいァリール基、置換基を有していてもよ い複素環基又はシァノ基を示す。ただし、 R81及び R82の少なくとも一方は水素原子 ではない。 R83及び R84は、それぞれ独立に 1価の基を示し、 ρ及び qは、それぞれ独 立に 0〜2の整数である。ただし、 R83及び R84がそれぞれ複数存在する場合、それら は同一でも異なっていてもよい。 Y81及び Y82は、それぞれ独立に下記一般式 (9a)、 (9b)、(9c)、(9d)、(9e)、(9f)、(9g)又は(9h)で表される 2価の基である。
[化 9]
S (9a) ゝ。z (9b) (9e)
ヽ S (9f) ヽ (9g)
Figure imgf000047_0003
ただし、 R91及び R92は、それぞれ独立に、水素原子又は 1価の基を示す。 ]
[9] 前記 Y81及び前記 Y82は、前記(9a)で表される 2価の基である、ことを特徴とする請求 項 8記載の縮合環化合物の製造方法。 [10] 前記 x81及び前記 Xs"の少なくとも一方は、ヨウ素原子である、ことを特徴とする請求 項 8又は 9記載の縮合環化合物の製造方法。
[11] 請求項 1〜3のいずれか一項に記載の縮合環化合物、及び Z又は、請求項 4〜7の
V、ずれか一項に記載の重合体を含む、ことを特徴とする有機薄膜。
[12] 請求項 11記載の有機薄膜を備える、ことを特徴とする有機薄膜素子。
[13] 請求項 11記載の有機薄膜を備える、ことを特徴とする有機薄膜トランジスタ。
PCT/JP2007/051811 2006-03-10 2007-02-02 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ WO2007105386A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07707960A EP2006291B1 (en) 2006-03-10 2007-02-02 Fused polycyclic polymer, organic thin film containing the polymer and organic thin film transistor comprising the organic thin film
DE602007010267T DE602007010267D1 (de) 2006-03-10 2007-02-02 Kondensierte polyzyklische polymer, dünner organischer film unter verwendung davon und transistor mit dünnem organischem film
CN200780008566.7A CN101415715B (zh) 2006-03-10 2007-02-02 稠环化合物及其制造方法、聚合物、含有它们的有机薄膜,有机薄膜元件及有机薄膜晶体管
US12/282,071 US8895692B2 (en) 2006-03-10 2007-02-02 Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film
US14/520,839 US9362505B2 (en) 2006-03-10 2014-10-22 Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-066504 2006-03-10
JP2006066504 2006-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/282,071 A-371-Of-International US8895692B2 (en) 2006-03-10 2007-02-02 Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film
US14/520,839 Division US9362505B2 (en) 2006-03-10 2014-10-22 Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film

Publications (1)

Publication Number Publication Date
WO2007105386A1 true WO2007105386A1 (ja) 2007-09-20

Family

ID=38509224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051811 WO2007105386A1 (ja) 2006-03-10 2007-02-02 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ

Country Status (6)

Country Link
US (2) US8895692B2 (ja)
EP (2) EP2192123B1 (ja)
KR (1) KR20090021146A (ja)
CN (1) CN101415715B (ja)
DE (1) DE602007010267D1 (ja)
WO (1) WO2007105386A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101982A1 (ja) * 2008-02-13 2009-08-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
WO2010000669A1 (en) * 2008-07-02 2010-01-07 Basf Se Poly(5,5'bis(thiophen-2-yl)-benzo[2,1-b;3,4-b']dithiophene) and its use as high performance solution processable semiconducting polymer
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
WO2010058833A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規な複素環式化合物及びその利用
EP2117059A3 (en) * 2008-04-11 2011-03-02 Xerox Corporation Organic Thin Film Transistors
WO2011052710A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
WO2011052709A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
WO2011052712A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 光電変換素子
WO2011052711A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 光電変換素子
WO2011067192A2 (en) 2009-12-02 2011-06-09 Basf Se Dithienobenzo-thieno[3,2-b]thiophene-copolymer and its use as high performance solution processable semiconducting polymer
US20110204341A1 (en) * 2009-09-04 2011-08-25 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
WO2012031404A1 (zh) * 2010-09-10 2012-03-15 海洋王照明科技股份有限公司 苯并二噻吩有机半导体材料及其制备方法和应用
JP2013062497A (ja) * 2011-08-22 2013-04-04 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ
CN103288848A (zh) * 2013-06-28 2013-09-11 中国科学院宁波材料技术与工程研究所 苯并三噻吩类化合物及其制备方法和用途
WO2014086722A1 (en) 2012-12-04 2014-06-12 Basf Se Functionnalized benzodithiophene polymers for electronic application
CN103998453A (zh) * 2011-12-19 2014-08-20 艾尼股份公司 用于制备苯并二噻吩化合物的方法
CN104051641A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种叠层有机电致发光器件及其制备方法
WO2020261933A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、光電変換素子用材料

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136401A2 (en) * 2009-05-27 2010-12-02 Basf Se Polycyclic dithiophenes
EP2449561A2 (en) * 2009-06-30 2012-05-09 Plextronics, Inc. Polymers comprising at least one bithiophene repeat unit, methods synthetising said polymers and compositions comprising the same
KR101648072B1 (ko) 2009-07-03 2016-08-12 삼성전자 주식회사 유기 반도체 고분자 및 이를 포함하는 트랜지스터
US8372945B2 (en) * 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
CN102146151B (zh) * 2010-02-04 2013-10-16 海洋王照明科技股份有限公司 苝四羧酸二酰亚胺共轭聚合物及其制备方法和应用
JP2013523931A (ja) * 2010-03-31 2013-06-17 ビーエーエスエフ ソシエタス・ヨーロピア 縮合環系ジチオフェンコポリマー
US8729220B2 (en) 2010-03-31 2014-05-20 Basf Se Annellated dithiophene copolymers
JP2013533895A (ja) * 2010-05-19 2013-08-29 ビーエーエスエフ ソシエタス・ヨーロピア 有機半導体デバイスにおいて使用するためのジケトピロロピロール系ポリマー
WO2011147067A1 (zh) * 2010-05-24 2011-12-01 海洋王照明科技股份有限公司 含稠环噻吩单元喹喔啉共轭聚合物及其制备方法和应用
CN103025787B (zh) * 2010-06-09 2014-07-23 海洋王照明科技股份有限公司 基于苝四羧酸二酰亚胺和苯并二噻吩的共轭聚合物及其制备方法和应用
WO2011160302A1 (zh) * 2010-06-25 2011-12-29 海洋王照明科技股份有限公司 基于苯唑二噻吩和噻吩并吡嗪的共轭聚合物及其制备方法和应用
KR101854942B1 (ko) * 2010-10-20 2018-05-04 메르크 파텐트 게엠베하 공액 중합체
KR101730617B1 (ko) 2010-11-22 2017-04-27 삼성전자주식회사 유기 반도체 소자용 조성물 및 이로부터 얻어지는 고분자를 포함하는 트랜지스터와 전자 소자
JP5598410B2 (ja) * 2011-04-11 2014-10-01 大日本印刷株式会社 有機半導体素子の製造方法および有機半導体素子
KR101424978B1 (ko) * 2012-05-24 2014-07-31 경상대학교산학협력단 길만시약 화합물을 이용한 헤테로 융합고리 화합물의 신규한 제조방법
JP6207606B2 (ja) 2012-07-23 2017-10-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジチエノベンゾフランポリマーおよび電子的な応用のための小分子
CN103936964B (zh) * 2013-01-17 2016-02-10 海洋王照明科技股份有限公司 含1,8-咔唑-苯并二(苯并噻二唑)共聚物及其制备方法和应用
CN103936966B (zh) * 2013-01-17 2016-04-13 海洋王照明科技股份有限公司 含3,6-咔唑-苯并二(苯并噻二唑)共聚物及其制备方法和应用
CN104072731B (zh) * 2013-03-29 2016-02-10 海洋王照明科技股份有限公司 含噻吩-苯并二(苯并硒二唑)的共聚物及其制备方法和应用
TW201611298A (zh) * 2014-09-12 2016-03-16 中華映管股份有限公司 雙薄膜電晶體及其製造方法
CN105709692A (zh) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 一种铜基金属有机骨架材料及其制备方法
KR20190116305A (ko) * 2017-02-08 2019-10-14 히타치가세이가부시끼가이샤 전하 수송성 재료 및 그 이용
KR102110990B1 (ko) * 2017-11-03 2020-05-14 삼성에스디아이 주식회사 중합체, 유기막 조성물 및 패턴 형성 방법
CN112885904B (zh) * 2021-01-15 2022-07-12 电子科技大学 一种浮栅控制型近红外波段双向记忆的光电存储器及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215079A (ja) * 1985-07-15 1987-01-23 Matsushita Electric Ind Co Ltd 切断砥石の製造方法
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JPH07228865A (ja) * 1994-02-22 1995-08-29 Fuji Electric Co Ltd 有機薄膜発光素子
JPH11195790A (ja) * 1997-10-16 1999-07-21 Lucent Technol Inc 薄膜トランジスタ及び薄膜トランジスタ用半導体材料
JP2000076640A (ja) * 1998-08-31 2000-03-14 Sony Corp 磁気記録再生装置
JP2003221579A (ja) * 2002-02-01 2003-08-08 Toppan Printing Co Ltd 有機発光材料
WO2003072581A1 (en) * 2002-02-26 2003-09-04 Board Of Regents, The University Of Texas System Cyclo[n]pyrroles and methods thereto
JP2003530366A (ja) * 2000-04-10 2003-10-14 ハネウェル・インターナショナル・インコーポレーテッド キノンのアリール化を介して製造されるオリゴマー性及びポリマー性oled材料
JP2004269519A (ja) * 2003-02-19 2004-09-30 Sumitomo Chem Co Ltd カップリング化合物の製造方法
JP2004339516A (ja) 2003-05-16 2004-12-02 Merck Patent Gmbh フルオレンおよびアリール基を含むモノマー、オリゴマーおよびポリマー
JP2006005036A (ja) * 2004-06-16 2006-01-05 Sony Corp 有機化合物結晶及び電界効果型トランジスタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853090A (en) 1988-04-28 1989-08-01 Eastman Kodak Company Lithium ion-selective compositions, electrodes and a method of use
US5646284A (en) * 1991-12-12 1997-07-08 Toyota Jidosha Kabushiki Kaisha Polarizable phenanthroline complex crystal having improved stability to heat and moisture
US7074534B2 (en) 2002-07-10 2006-07-11 E. I. Du Pont De Nemours And Company Polymeric charge transport compositions and electronic devices made with such compositions
EP1449580B1 (en) 2003-02-19 2005-12-28 Sumitomo Chemical Company, Limited Production method of a cross-coupling compound from an alkyl halide and an organoboron compound
WO2005003126A1 (en) 2003-07-07 2005-01-13 The University Of Hong Kong Photochromic diarylethene-containing coordination compounds and the production thereof
WO2005034929A2 (en) * 2003-10-10 2005-04-21 Fibrogen, Inc. Tissue remodeling and vascularization

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215079A (ja) * 1985-07-15 1987-01-23 Matsushita Electric Ind Co Ltd 切断砥石の製造方法
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JPH07228865A (ja) * 1994-02-22 1995-08-29 Fuji Electric Co Ltd 有機薄膜発光素子
JPH11195790A (ja) * 1997-10-16 1999-07-21 Lucent Technol Inc 薄膜トランジスタ及び薄膜トランジスタ用半導体材料
JP2000076640A (ja) * 1998-08-31 2000-03-14 Sony Corp 磁気記録再生装置
JP2003530366A (ja) * 2000-04-10 2003-10-14 ハネウェル・インターナショナル・インコーポレーテッド キノンのアリール化を介して製造されるオリゴマー性及びポリマー性oled材料
JP2003221579A (ja) * 2002-02-01 2003-08-08 Toppan Printing Co Ltd 有機発光材料
WO2003072581A1 (en) * 2002-02-26 2003-09-04 Board Of Regents, The University Of Texas System Cyclo[n]pyrroles and methods thereto
JP2004269519A (ja) * 2003-02-19 2004-09-30 Sumitomo Chem Co Ltd カップリング化合物の製造方法
JP2004339516A (ja) 2003-05-16 2004-12-02 Merck Patent Gmbh フルオレンおよびアリール基を含むモノマー、オリゴマーおよびポリマー
JP2006005036A (ja) * 2004-06-16 2006-01-05 Sony Corp 有機化合物結晶及び電界効果型トランジスタ

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GRONOWITZ S.; VILKS V., ARKIV KEMI, vol. 21, 1963, pages 191
HONG M.; WEI H., J. ORG. CHEM., vol. 65, 2000, pages 3895
MERLIC C.A. ET AL.: "Synthesis of indolocarbazoles via sequential palladium catalyzed cross-coupling and benzannulation reactions", TETRAHEDRON LETTERS, vol. 38, no. 44, 1997, pages 7661 - 7664, XP004093389 *
P. COPPO ET AL., CHEM. COMMUN., 2003, pages 2548
See also references of EP2006291A4
TSUCHIMOTO T. ET AL.: "Easy access to aryl- and heteroaryl-annulated[a]carbazoles by the indium-catalyzed reaction of 2-arylindoles with propargyl ethers", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 44, no. 9, 2005, pages 1336 - 1340, XP002448772 *
WIERSEMA A.K. ET AL.: "Thiophene analogues of fluorene. IV. An Unusual behaviour of a cyclopentadithiophenone in the reaction with dienophiles", ACTA CHEMICA SCANDINAVICA, vol. 24, no. 7, 1970, pages 2653 - 2665, XP003017754 *
X. LI ET AL., J. AM. CHEM. SOC., vol. 120, 1998, pages 2206
Z. BAO ET AL., APPL. PHYS. LETT., vol. 69, 1996, pages 4108

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190999A (ja) * 2008-02-13 2009-08-27 Osaka Univ 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ。
US8344095B2 (en) 2008-02-13 2013-01-01 Osaka University Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
WO2009101982A1 (ja) * 2008-02-13 2009-08-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
EP2117059A3 (en) * 2008-04-11 2011-03-02 Xerox Corporation Organic Thin Film Transistors
TWI476225B (zh) * 2008-07-02 2015-03-11 Basf Se 聚(5,5’-雙(噻吩-2-基)-苯并〔2,1-b;3,4-b’〕二噻吩)及其作為高效能溶液可加工半導體聚合物之用途
WO2010000669A1 (en) * 2008-07-02 2010-01-07 Basf Se Poly(5,5'bis(thiophen-2-yl)-benzo[2,1-b;3,4-b']dithiophene) and its use as high performance solution processable semiconducting polymer
KR101561323B1 (ko) 2008-07-02 2015-10-16 바스프 에스이 폴리(5,5'-비스(티오펜-2-일)-벤조[2,1-b;3,4-b']디티오펜) 및 이의 고성능 용액 가공가능한 반전도성 중합체로서의 용도
US8598304B2 (en) 2008-07-02 2013-12-03 Basf Se Poly(5,5′bis(thiophen-2-yl)-benzo[2,1-b;3,4-b′]dithiophene) and its use as high performance solution processable semiconducting polymer
WO2010058833A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規な複素環式化合物及びその利用
US8816100B2 (en) 2008-11-21 2014-08-26 Hiroshima University Compound, method of producing the compound, organic semiconductor material and organic semiconductor device
JP5622585B2 (ja) * 2008-11-21 2014-11-12 日本化薬株式会社 新規な複素環式化合物及びその利用
CN102224158B (zh) * 2008-11-21 2015-09-16 日本化药株式会社 新的杂环化合物及其用途
US8313671B2 (en) 2008-11-21 2012-11-20 Hiroshima University Heterocyclic compound and use thereof
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
US20110204341A1 (en) * 2009-09-04 2011-08-25 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
US8968885B2 (en) * 2009-09-04 2015-03-03 Solvay Usa, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
WO2011052709A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
US10290809B2 (en) 2009-10-29 2019-05-14 Sumitomo Chemical Company, Limited Macromolecular compound
JP2012036357A (ja) * 2009-10-29 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物
US9472763B2 (en) 2009-10-29 2016-10-18 Sumitomo Chemical Company, Limited Macromolecular compound
US9209404B2 (en) 2009-10-29 2015-12-08 Sumitomo Chemical Company, Limited Macromolecular compound
JP2011246687A (ja) * 2009-10-29 2011-12-08 Sumitomo Chemical Co Ltd 高分子化合物
JP2011249757A (ja) * 2009-10-29 2011-12-08 Sumitomo Chemical Co Ltd 光電変換素子
JP2011211138A (ja) * 2009-10-29 2011-10-20 Sumitomo Chemical Co Ltd 光電変換素子
US9006714B2 (en) 2009-10-29 2015-04-14 Sumitomo Chemical Company, Limited Photovoltaic device
US8772763B2 (en) 2009-10-29 2014-07-08 Sumitomo Chemical Company, Limited Photovoltaic cell
WO2011052711A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 光電変換素子
WO2011052712A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 光電変換素子
WO2011052710A1 (ja) * 2009-10-29 2011-05-05 住友化学株式会社 高分子化合物
WO2011067192A2 (en) 2009-12-02 2011-06-09 Basf Se Dithienobenzo-thieno[3,2-b]thiophene-copolymer and its use as high performance solution processable semiconducting polymer
US8389670B2 (en) 2009-12-02 2013-03-05 Basf Se Dithienobenzo-thieno[3,2-B]thiophene-copolymer and its use as high performance solution processable semiconducting polymer
JP2013542586A (ja) * 2010-09-10 2013-11-21 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ベンゾジチオフェン有機半導体材料、その調合法、及び、その使用方法
WO2012031404A1 (zh) * 2010-09-10 2012-03-15 海洋王照明科技股份有限公司 苯并二噻吩有机半导体材料及其制备方法和应用
JP2013062497A (ja) * 2011-08-22 2013-04-04 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ
CN103998453A (zh) * 2011-12-19 2014-08-20 艾尼股份公司 用于制备苯并二噻吩化合物的方法
WO2014086722A1 (en) 2012-12-04 2014-06-12 Basf Se Functionnalized benzodithiophene polymers for electronic application
US9550791B2 (en) 2012-12-04 2017-01-24 Basf Se Functionnalized benzodithiophene polymers for electronic application
CN104051641A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种叠层有机电致发光器件及其制备方法
CN103288848A (zh) * 2013-06-28 2013-09-11 中国科学院宁波材料技术与工程研究所 苯并三噻吩类化合物及其制备方法和用途
CN103288848B (zh) * 2013-06-28 2016-02-03 中国科学院宁波材料技术与工程研究所 苯并三噻吩类化合物及其制备方法和用途
WO2020261933A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、光電変換素子用材料

Also Published As

Publication number Publication date
US20150045525A1 (en) 2015-02-12
EP2192123B1 (en) 2012-11-21
US9362505B2 (en) 2016-06-07
EP2192123A1 (en) 2010-06-02
EP2006291A4 (en) 2009-04-29
US20090065770A1 (en) 2009-03-12
EP2006291A1 (en) 2008-12-24
KR20090021146A (ko) 2009-02-27
DE602007010267D1 (de) 2010-12-16
EP2006291B1 (en) 2010-11-03
CN101415715B (zh) 2012-10-10
US8895692B2 (en) 2014-11-25
CN101415715A (zh) 2009-04-22

Similar Documents

Publication Publication Date Title
WO2007105386A1 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP5164134B2 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
KR101347419B1 (ko) 아릴-에틸렌 치환된 방향족 화합물 및 유기 반도체로서의 이의 용도
WO2009101982A1 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
TWI421246B (zh) 共軛系化合物、含氮稠環化合物、含氮稠環聚合物、有機薄膜及有機薄膜元件
WO2009102031A1 (ja) 多環縮環化合物、多環縮環重合体及びこれらを含む有機薄膜
WO2007097395A1 (ja) 含フッ素化合物及びその製造方法、含フッ素重合体、有機薄膜、並びに、有機薄膜素子
JP2008248228A (ja) ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2009101823A1 (ja) 分岐型化合物、これを用いた有機薄膜及び有機薄膜素子
TW201245265A (en) Polycyclic condensed ring compound, polycyclic condensed ring polymer, and organic thin film comprising same
TW201038551A (en) Conjugated compound, and organic thin-film and organic thin-film element using the same
WO2010104118A1 (ja) 分岐型化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP5760875B2 (ja) 高分子化合物及びそれを用いた有機トランジスタ
JP5600267B2 (ja) 新規な化合物及びその利用
JP2013181071A (ja) 高分子化合物、これを含む組成物、インク組成物、薄膜及び素子
JP5987237B2 (ja) 高分子化合物、それを用いた有機半導体材料、有機トランジスタ及び有機太陽電池
WO2011108646A1 (ja) 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
TW201529580A (zh) 新穎縮合多環芳香族化合物及其用途
JP2008110957A (ja) 含フッ素化合物及びその製造方法、含フッ素重合体、有機薄膜、並びに、有機薄膜素子
JP2013184932A (ja) 化合物、それを用いた有機半導体材料、有機トランジスタ及び有機太陽電池
TW202116732A (zh) 有機薄膜及有機薄膜之製造方法、有機電致發光元件、顯示裝置、照明裝置、有機薄膜太陽電池、薄膜電晶體、光電轉換元件、塗料組成物、有機電致發光元件用材料
WO2014021145A1 (ja) 高分子化合物及びそれを用いた有機トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780008566.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12282071

Country of ref document: US