WO2007099821A1 - ステータの固定構造および電動車両 - Google Patents

ステータの固定構造および電動車両 Download PDF

Info

Publication number
WO2007099821A1
WO2007099821A1 PCT/JP2007/053118 JP2007053118W WO2007099821A1 WO 2007099821 A1 WO2007099821 A1 WO 2007099821A1 JP 2007053118 W JP2007053118 W JP 2007053118W WO 2007099821 A1 WO2007099821 A1 WO 2007099821A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
stator
housing
fixing structure
opening
Prior art date
Application number
PCT/JP2007/053118
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hattori
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/087,994 priority Critical patent/US7737599B2/en
Priority to CN2007800062580A priority patent/CN101390276B/zh
Priority to EP07714618.1A priority patent/EP1988621B1/en
Priority to AU2007219849A priority patent/AU2007219849B2/en
Publication of WO2007099821A1 publication Critical patent/WO2007099821A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a stator fixing structure and an electric vehicle, and more particularly, to a stator fixing structure that suppresses vibration and noise during driving of a rotating electrical machine and an electric vehicle including the structure.
  • a rotating electrical machine having a stator is conventionally known.
  • Japanese Patent Application Laid-Open No. 2 04-14-15957 discloses an electric motor (rotary electric machine) in which a stator having a stator core (core) is press-fitted into an outer frame (case).
  • Japanese Patent Application Laid-Open No. 2 00- 1 6 6 2 0 7 discloses a brushless fan motor provided with a vibration-proof rubber at a portion in contact with a housing in a case housing a stator.
  • Japanese Patent Application Laid-Open No. 9 1 1 6 8 2 5 3 discloses a motor bearing structure intended to suppress vibration and mechanical noise.
  • stator vibration generated when the rotating electrical machine is driven is easily transmitted to the case.
  • An object of the present invention is to provide a stator fixing structure that suppresses vibration and noise, and an electric vehicle including the structure.
  • a stator fixing structure includes a stator including a stator core and a housing having an opening for storing the stator core, and the housing has a relatively small gap between the inner peripheral surface of the opening and the stator core,
  • the first portion has a constant inner diameter of the opening, and the second portion is aligned with the first portion in the axial direction of the stator core, and the gap between the inner peripheral surface of the opening and the stator core is relatively large.
  • the stator core can be easily positioned with high accuracy. Further, since the gap is large in the second portion of the housing, the contact between the inner peripheral surface of the opening and the stator core is suppressed, and the contact area between the housing and the stator core is reduced. And it can suppress that the vibration of a stator core transmits to a housing. As a result, vibration and noise during driving of the rotating electrical machine are suppressed.
  • the inner diameter of the opening in the first and second portions and the stator core are changed by changing the inner diameter of the opening of the housing along the axial direction of the stator core. The gaps are different.
  • the gap between the inner peripheral surface of the opening in the first and second portions and the stator core is varied by changing the outer diameter of the stator core along the axial direction of the stator core. ing.
  • the depth of the second portion is preferably 1/2 or less of the entire depth of the opening.
  • the fall of the stator core can be reduced.
  • the stator core is tilted at a maximum angle.
  • the gap between the inner peripheral surface of the opening and the stator core in the second portion is determined so that the second portion of the housing and the stator core are separated from each other.
  • the stator fixing structure further includes a fastening member that is inserted into the stator core in the axial direction of the stator core, and that one end of the stator core is fixed to the housing, thereby fastening the stator core to the housing.
  • the fastening member is located on the side fixed to the housing with respect to the second part.
  • the electric vehicle according to the present invention includes the stator fixing structure described above. As a result, the vehicle interior is highly quiet and an electric vehicle is obtained.
  • FIG. 1 is a diagram schematically showing a configuration of a drive unit to which a stator fixing structure according to one embodiment of the present invention is applied.
  • FIG. 2 is a cross-sectional view of a rotating electric machine including a stator fixing structure according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a rotating electrical machine including a modification of the stator latch fixing structure according to one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a rotating electrical machine including another modification of the stator fixing structure according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a rotating electrical machine including still another modified example of the stator fixing structure according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a rotating electrical machine including still another modification of the stator fixing structure according to one embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a rotating electrical machine including still another modification of the stator fixing structure according to one embodiment of the present efforts.
  • FIG. 8 is a diagram (part 1) illustrating a fastening member in a stator fixing structure according to one embodiment of the present invention.
  • FIG. 9 is a diagram (part 2) illustrating a fastening member in the stator fixing structure according to one embodiment of the present invention.
  • FIG. 10 is a diagram (No. 1) for explaining a contact portion between a stator core and a housing in a stator fixing structure according to one embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a contact portion between the stator core and the housing in the stator fixing structure according to Comparative Example 1.
  • FIG. 12 is a diagram (No. 2) for explaining the contact portion between the stator core and the housing in the stator fixing structure according to one embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a contact portion between the stator core and the housing in the stator fixing structure according to Comparative Example 2.
  • FIG. 1 is a diagram schematically showing a configuration of a drive unit to which a stator fixing structure according to one embodiment of the present invention is applied.
  • the drive unit 1 is a drive unit mounted on a hybrid vehicle as an “electric vehicle”, and includes a motor generator 100, a housing 20 00, and a speed reduction mechanism 3 0 0. And a differential mechanism 400 and a drive shaft receiving portion 500.
  • the motor generator 100 is a rotating electrical machine having a function as an electric motor or a generator.
  • the rotating shaft 1 2 0 is rotatably attached to the housing 2 0 0 via a bearing 1 1 0, and the rotating shaft 1 And a rotor 1 30 attached to 20 and a stator 1 4 0.
  • the stator 1 4 0 has a stator core 1 4 1, and a coil 1 4 2 is wound around the stator core 1 4 1.
  • the coil 1 4 2 is electrically connected to the power supply cable 6 0 OA via a terminal block 2 1 0 provided in the housing 2 0 0.
  • the other end of Bull 6 0 0 A is connected to PCU 6 0 0.
  • the PCU 6 0 0 is electrically connected to the battery 7 0 0 via the power supply cable 7 0 OA. As a result, the battery 700 and the coil 14 2 are electrically connected.
  • the power output from the motor generator 100 is transmitted from the speed reduction mechanism 3 0 0 force to the drive shaft receiving portion 5 0 0 via the differential mechanism 4 0 0.
  • the driving force transmitted to the drive shaft receiving portion 50 is transmitted as a rotational force to a wheel (not shown) via a drive shaft (not shown), thereby causing the vehicle to travel.
  • the wheels are rotated by the inertial force of the vehicle body.
  • the motor generator 100 is driven via the drive shaft receiving portion 50 0, the differential mechanism 4 0 0 and the speed reduction mechanism 3 0 0 by the rotational force from the wheels. At this time, the motor generator 100 operates as a generator.
  • the electric power generated by the motor generator 100 is stored in the battery 700 through an inverter in the PCU 600.
  • the feeding cables 60A and 70A are three-phase cables composed of a U-phase cable, a V-phase cable, and a W-phase cable.
  • Coil 14 2 is composed of a U-phase coil, a V-phase coil, and a W-phase coil, and the terminals of these three coils are connected to feeding cables 60A and 70A that are three-phase cables.
  • motor generator 100 is not limited to a hybrid vehicle (HV), but may be mounted on other “electric vehicles” (for example, fuel cell vehicles and electric vehicles).
  • HV hybrid vehicle
  • electric vehicles for example, fuel cell vehicles and electric vehicles.
  • a mode in which the engine is stopped during traveling (for example, an EV traveling mode in which the vehicle is driven by an electric motor supplied with power from a power storage mechanism at low vehicle speeds, converts kinetic energy of the vehicle into electrical energy during deceleration. Regenerative mode for recovery in the power storage mechanism, etc., low noise and relatively easy to hear gear noise and motor noise. Therefore, it is important to suppress noise when driving the motor generator 100.
  • the motor generator 100 is mounted on a vehicle, taking noise countermeasures for the transmission system and the resonance system may be limited due to space and weight restrictions. It is important to suppress the noise when driving the motor generator 100 while satisfying these constraints.
  • FIG. 2 is a cross-sectional view of a motor generator 100 including a stator fixing structure according to one embodiment of the present invention.
  • FIG. 2 for convenience of explanation, only the stator housing portion at the housing 20 ° and the vicinity thereof are shown, but the housing 200 may have a portion other than the stator housing portion. .
  • the stator accommodating portion of housing 2 0 0 includes a case 2 2 0 and a cover 2 3 0.
  • Stator core 14 1 is formed by laminating plate-like magnetic bodies such as iron or iron alloy. Stator core 14 1 is accommodated in case 2 20.
  • the outer diameter of the stator core 14 1 is almost constant over the entire axial direction.
  • a step is formed on the inner peripheral surface of the case 2 20. Therefore, a portion where the gap between the outer peripheral surface of stator core 14 1 and the inner peripheral surface of case 2 20 is relatively small (A portion) and a portion where the gap is relatively large (B portion) are formed. .
  • FIGS. 10 to 13 are diagrams for explaining the effect of the stator fixing structure shown in FIG.
  • FIGS. 10 and 12 are diagrams for explaining a contact portion between the stator core 14 1 and the case 2 20 in the structure shown in FIG. 2.
  • FIGS. 1 1 and 1 3 are comparison examples 1
  • FIG. 3 is a diagram for explaining a contact portion between stator core 14 1 and case 2 20 in the structure according to FIGS.
  • stator core 1 4 1 and the case 2 20 are in contact with each other in part of the axial direction of the stator core 14 1. That is, the contact portion C between the stator core 1 4 1 and the case 2 2 0 extends only to a part of the stator core 1 4 1 in the axial direction.
  • stator core 1 4 1 and case 2 20 are in contact at one point in the axial direction of stator core 1 4 1.
  • the inner diameter of the large diameter portion of the case 2 20 is defined so that the core and the case 2 20 do not come into contact with each other even when the tilt angle ( ⁇ ) of the stator core 1 4 1 becomes maximum. . Therefore, the contact portion C between the stator core 14 1 and the case 2 20 is limited to one point in the axial direction of the stator core 14 1.
  • stator fixing structure compared with the stator fixing structure according to Comparative Examples 1 and 2, the contact area between stator core 14 1 and case 2 20 is reduced. ing. By doing so, the vibration of the stator core 14 1 is hardly transmitted to the case 2 20.
  • the inner diameter of the case 2 20 located in the part A (see FIG. 2) where the clearance between the outer peripheral surface of the stator core 14 1 and the inner peripheral surface of the case 2 2 0 is relatively small
  • the stator core 1 4 1 is easily positioned when the stator core 1 4 1 is inserted into the case 2 20. As a result, misalignment between the rotor 1 3 0 and the stator 1 4 0 is suppressed.
  • the depth of the large diameter portion of the case 220 is preferably about 1/2 or less of the entire depth of the opening of the housing 20. In this way, by limiting the depth of the large-diameter portion of the case 220, it is possible to reduce the collapse of the stator core 141, and to suppress the contact between the core and the case 220.
  • FIGS. 5 to 7 are views showing modifications of the stator fixing structure shown in FIG.
  • the gap A between the outer peripheral surface of stator core 1 4 1 and the inner peripheral surface of case 2 2 0 is relatively small. It may be located on the 30 side.
  • the gap A is relatively small and
  • the relatively large B portion may be formed by providing a tapered portion on the inner peripheral surface of the case 220, in which the inner diameter of the case 220 is gradually increased.
  • the A part and the B part may be provided by changing the outer diameter of the stator core 14 1 along the axial direction of the stator core 14 1.
  • a step may be formed on the outer peripheral surface of the stator core 14 1 as shown in FIGS. 5 and 6, and the outer diameter of the stator core 1 4 1 gradually decreases as shown in FIG.
  • the tapered portion may be formed on the outer peripheral surface of the stator core 14 1.
  • stator core 14 1 has hole 14 1 A extending in the axial direction.
  • the fastening member 1 4 3 is inserted into the hole 1 4 1 A.
  • the distal end portion of the fastening member 14 3 is screwed into the case 2 20 and fixed.
  • the axial force of the fastening member 1 4 3 is transmitted to the stator core 1 4 1, and the stator core 1 4 1 is fixed to the case 2 20.
  • the other end side of the fastening member 14 3 (the head side of the bolt) is not supported by the case 2 20. That is, in the examples of FIGS.
  • the fastening member 1 4 3 is cantilevered by the case 2 20.
  • the swing of the fastening member 1 4 3 The width tends to increase, and as a result, the vibration of the stator core 14 1 when the motor generator 100 is driven tends to increase.
  • the B portion where the gap between the outer peripheral surface of the stator core 14 1 and the inner peripheral surface of the case 2 20 is relatively large is indicated by B, and the gap A is relatively small.
  • the diameter of the stator core 14 1 is almost constant over the entire axial direction, whereas the case 2 on the side close to the tip (fixed part) of the fastening member 1 4 3.
  • the inner diameter of 20 is reduced.
  • the inner diameter of the case 2 20 is substantially constant over the entire axial direction, whereas the outer diameter of the stator core 1 4 1 on the side close to the tip (fixed part) of the fastening member 1 4 3 Has been expanded.
  • the stator fixing structure includes a stator 140 including the stator core 14 1, and a housing 20 0 having an opening for storing the stator core 14 1, and a housing 2 0.
  • “0” indicates a portion “A” as the “first portion” in which the gap between the inner peripheral surface of the opening and the stator core 14 1 is relatively small and the inner diameter of the opening is constant, and the stator core 1 4 1 And the B portion as a “second portion” in which the gap between the inner peripheral surface of the opening and the stator core 14 1 is relatively large.
  • the gaps in the A portion and the B portion are different.
  • the outer diameter of the stator core 14 1 is changed along the axial direction of the stator core 14 1 to make the gaps in the A part and the B part different. ing.
  • the inner circumference of the opening in the B section is such that the B section of the housing 200 and the stator core 14 1 are separated from each other even when the tilt angle ( ⁇ ) of the stator core 14 1 is maximum.
  • the clearance between the surface and the stator core 1 4 1 is determined.
  • the stator fixing structure is inserted into the stator core 14 1 in the axial direction of the stator core 14 1, and one end of the stator core 14 1 is fixed to the housing 20 0.
  • a fastening member 1 4 3 to be fastened to 0 is further provided.
  • the A part of the housing 20 0 is located on the side where the fastening members 1 4 3 are fixed to the housing 2 0 0 relative to the B part (that is, the lower side in FIG. 8).
  • the stator fixing structure since the gap between the inner peripheral surface of the opening and the steer core 14 1 is small in the portion A of the housing 200, the stator core 1 4 1 It becomes easy to perform the positioning with high accuracy.
  • the gap is large at the B part of the housing 200, the contact between the inner peripheral surface of the opening and the stator core 14 1 is suppressed, and the contact area between the housing 200 and the stator core 14 1 is reduced. It is done. Then, transmission of the vibration of the stator core 14 1 to the housing 2 0 0 can be suppressed. As a result, vibration and noise during driving of motor generator 100 are suppressed.
  • the contact area between the stator core 1 4 1 and the housing 2 0 0 is small, even when the tilt angle of the stator core 1 4 1 is large, the deformation has a small effect on the housing 2 0 0, and the housing 2 0 0 It is possible to suppress the loss of the sealing performance.
  • the present invention is applicable to, for example, a stator fixing structure and an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

 ステータの固定構造は、ステータコア(141)を含むステータと、ステータコア(141)を格納する開口部を有するハウジング(200)とを備え、ハウジング(200)は、開口部の内周面とステータコア(141)との隙間が相対的に小さく、かつ、開口部の内径が一定であるA部と、ステータコア(141)の軸方向にA部と並び、開口部の内周面とステータコア(141)との隙間が相対的に大きいB部とを含む。

Description

明細書 ステータの固定構造および電動車両 技術分野
本発明は、 ステータの固定構造および電動車両に関し、 特に、 回転電機の駆動 時の振動および騷音を抑制するステータの固定構造および該構造を備えた電動車 両に関する。 背景技術
ステータを有する回転電機が従来から知られている。
たとえば、 特開 2 0 0 4— 1 5 9 5 7号公報においては、 ステータ鉄心 (コ ァ) を有するステータを外枠 (ケース) に圧入した電動機 (回転電機) が開示さ れている。
また、 特開 2 0 0 0— 1 6 6 2 0 7号公報においては、 ステータを収納するケ ースにおける筐体と接触する部分に防振ゴムを備えたブラシレスファンモータが 開示されている。
また、 特開平 9一 1 6 8 2 5 3号公報においては、 振動や機械ノイズを抑制す ることを意図したモータの軸受構造が開示されている。
また、 2 0 0 5年 4月 2 8日発行のトヨタ技術公開集の発行番号 1 6 7 4 8に おいては、 I P M (Interior Permanent Magnet) モータの固定構造において、 ステータコアとモータケースの高岡リ性部位とを選択的に当接させて振動および騒 音を低減する技術が開示されている。
ステータをケースに嵌合させることでステータの組付け位置を決定する場合、 回転電機の駆動時に生じるステータ振動がケースに伝達されやすくなる。
ここで、 ステータ嵌入の公差を大きくすると、 ステータとロータとの偏芯量が 大きくなりやすくなる。 この結果、 電磁吸引力の不均衡が生じ、 振動や騒音が増 大する。 また、 ステータとロータとの偏芯量が特に大きい場合、 ステータとロー タとの干渉が生じることが懸念される。 他方、 ステータ嵌入の公差を小さくすると、 ケースへのステータ揷入の作業性 が悪化する。 また、 ケースとステータとの接触面積が増加し、 ステータ振動が減 衰されずにケースに伝達されやすくなる。 発明の開示
本発明の目的は、 振動および騒音を抑制するステータの固定構造および該構造 を備えた電動車両を提供することにある。
本発明に係るステータの固定構造は、 ステータコアを含むステータと、 ステー タコアを格納する開口部を有するハウジングとを備え、 ハウジングは、 開口部の 内周面とステータコアとの隙間が相対的に小さく、 かつ、 開口部の内径が一定で ある第 1部分と、 ステータコアの軸方向に第 1部分と並び、 開口部の内周面とス テータコアとの隙間が相対的に大きい第 2部分とを含む。
上記構成によれば、 ハウジングの第 1部分において開口部の内周面とステータ コアとの隙間が小さいため、 ステータコアの位置決めが精度良く行ないやすくな る。 また、 ハウジングの第 2部分において上記隙間が大きいため、 開口部の内周 面とステータコアとの接触が抑制され、 ハウジングとステータコアとの接触面積 が低減される。 そして、 ステータコアの振動がハウジングに伝達することを抑制 することができる。 この結果、 回転電機の駆動時の振動および騒音が抑制される。 上記ステータの固定構造において、 1つの局面では、 ハウジングの開口部の内 径をステータコアの軸方向に沿って変化させることにより第 1と第 2部分におけ る開口部の内周面とステータコアとの隙間を異ならせている。
上記ステータの固定構造において、 他の局面では、 ステータコアの外径をステ ータコアの軸方向に沿って変化させることにより第 1と第 2部分における開口部 の内周面とステータコアとの隙間を異ならせている。
上記ステータの固定構造において、 好ましくは、 第 2部分の深さは開口部の全 体の深さの 1 / 2以下である。
開口部の内径が相対的に大きい第 2部分の深さを制限することで、 ステータコ ァの倒れを低減することができる。
上記ステータの固定構造において、 好ましくは、 ステータコアの倒れ角度が最 大の場合でもハウジングの第 2部分とステータコアとが離間するように、 第2部 分における開口部の内周面とステータコアとの隙間が決定される。
上記ステータの固定構造は、 好ましくは、 ステータコアの軸方向に該ステータ コアに揷入され、 その一端がハウジングに固定されることによりステータコアを ハウジングに締結する締結部材をさらに備え、 第 1部分は、 第 2部分に対して、 締結部材がハウジングに固定される側に位置する。
これにより、 ステータコアの振動が大きい部分でのステータコアとハウジング との接触を抑制することができる。 結果として、 回転電機の駆動時の振動おょぴ 騒音がより効果的に抑制される。
本発明に係る電動車両は、 上述したステータの固定構造を備える。 これにより、 車室内の静粛性が高レ、電動車両が得られる。
本発明によれば、 上述したように、 回転電機の駆動時の振動および騒音を抑制 することができる。 図面の簡単な説明
図 1は、 本発明の 1つの実施の形態に係るステータの固定構造が適用される駆 動ュニットの構成を概略的に示す図である。
図 2は、 本発明の 1つの実施の形態に係るステータの固定構造を含む回転電機 の断面図である。
図 3は、 本発明の 1つの実施の形態に係るステータめ固定構造の変形例を含む 回転電機の断面図である。
図 4は、 本発明の 1つの実施の形態に係るステータの固定構造の他の変形例を 含む回転電機の断面図である。
図 5は、 本発明の 1つの実施の形態に係るステータの固定構造のさらに他の変 形例を含む回転電機の断面図である。
図 6は、 本発明の 1つの実施の形態に係るステータの固定構造のさらに他の変 形例を含む回転電機の断面図である。
図 7は、 本努明の 1つの実施の形態に係るステータの固定構造のさらに他の変 形例を含む回転電機の断面図である。 図 8は、 本発明の 1つの実施の形態に係るステータの固定構造における締結部 材について説明する図 (その 1 ) である。
図 9は、 本発明の 1つの実施の形態に係るステータの固定構造における締結部 材について説明する図 (その 2 ) である。
図 1 0は、 本発明の 1つの実施の形態に係るステータの固定構造におけるステ ータコアとハウジングの接触部について説明する図 (その 1 ) である。
図 1 1は、 比較例 1に係るステータの固定構造におけるステータコアとハウジ ングの接触部について説明する図である。
図 1 2は、 本発明の 1つの実施の形態に係るステータの固定構造におけるステ ータコアとハウジングの接触部について説明する図 (その 2 ) である。
図 1 3は、 比較例 2に係るステータの固定構造におけるステータコアとハウジ ングの接触部について説明する図である。 発明を実施するための最良の形態
以下に、 本発明に基づくステータの固定構造および電動車両の実施の形態につ いて説明する。 なお、 同一または相当する部分に同一の参照符号を付し、 その説 明を繰返さない場合がある。
図 1は、 本発明の 1つの実施の形態に係るステータの固定構造が適用される駆 動ユニットの構成を概略的に示す図である。 図 1に示される例では、 駆動ュニッ ト 1は、 「電動車両」 としてのハイプリッド車両に搭載される駆動ュニットであ り、 モータジェネレータ 1 0 0と、 ハウジング 2 0 0と、 減速機構 3 0 0と、 デ ィファレンシャル機構 4 0 0とドライブシャフト受け部 5 0 0とを含んで構成さ れる。
モータジェネレータ 1 0 0は、 電動機または発電機としての機能を有する回転 電機であり、 軸受 1 1 0を介してハウジング 2 0 0に回転可能に取付けられた回 転軸 1 2 0と、 回転軸 1 2 0に取付けられたロータ 1 3 0と、 ステータ 1 4 0と を有する。 ステータ 1 4 0はステータコア 1 4 1を有し、 ステータコア 1 4 1に はコイル 1 4 2が卷回されている。 コイル 1 4 2はハウジング 2 0 0に設けられ た端子台 2 1 0を介して給電ケーブル 6 0 O Aと電気的に接続される。 給電ケー ブル 6 0 0 Aの他端は、 P C U 6 0 0に接続されている。 P C U 6 0 0は、 給電 ケーブル 7 0 O Aを介してバッテリ 7 0 0と電気的に接続される。 これにより、 ノ ッテリ 7 0 0とコイル 1 4 2とが電気的に接続される。
モータジェネレータ 1 0 0から出力された動力は、 減速機構 3 0 0力 らディフ アレンシャル機構 4 0 0を介してドライブシャフト受け部 5 0 0に伝達さ; ^る。 ドライブシャフト受け部 5 0 0に伝達された駆動力は、 ドライブシャフト (図示 せず) を介して車輪 (図示せず) に回転力として伝達されて、 車両を走行させる。 —方、 ハイブリッド車両の回生制動時には、 車輪は車体の慣性力により回転さ せられる。 車輪からの回転力によりドライブシャフ ト受け部 5 0 0、 ディファレ ンシャル機構 4 0 0および減速機構 3 0 0を介してモータジェネレータ 1 0 0が 駆動される。 このとき、 モータジェネレータ 1 0 0が発電機として作動する。 モ ータジェネレータ 1 0 0により発電された電力は、 P C U 6 0 0内のインバータ を介してバッテリ 7 0 0に蓄えられる。
給電ケーブル 6 0 O A , 7 0 O Aは、 U相ケーブルと、 V相ケーブルと、 W相 ケーブルとからなる三相ケーブルである。 コイル 1 4 2は、 U相コイル、 V相コ ィルぉよび W相コィルからなり、 これらの 3つのコィルの端子が三相ケーブルで ある給電ケーブル 6 0 O A, 7 0 O Aに接続される。
なおモータジェネレータ 1 0 0の用途は、 ハイブリッド車 (H V : Hybrid Vehicle) に限定されず、 その他の 「電動車両」 (たとえば燃料電池車や電気自 動車) に搭載されてもよい。
たとえば、 ハイブリッド車においては、 走行中にエンジンを停止させるモード (たとえば、 低車速時に蓄電機構から電力が供給された電動機により走行する E V走行モードゃ、 減速時に車両の運動エネルギーを電気エネルギーに変換し蓄電 機構に回収する回生モードなど) があり、 喑騷音が低く、 ギアノイズやモータノ ィズが比較的聞こえやすくなつている。 したがって、 モータジェネレータ 1 〇 0 の駆動時の騒音を抑制することは重要である。 また、 モータジェネレータ 1 0 0 を車両に搭載する際に、 スペースや重量の制約から伝達系、 共振系のノイズ対策 を採ることが制限される場合がある。 これらの制約条件を満たしながらモータジ エネレータ 1 0 0の駆動時の騒音を抑制することは重要である。 図 2は、 本発明の 1つの実施の形態に係るステータの固定構造を含むモータジ エネレータ 1 0 0の断面図である。 なお、 図 2においては、 説明の便宜上、 ハウ ジング 2 0◦におけるステータ収容部およびその近傍のみを図示しているが、 ハ ウジング 2 0 0は、 ステータ収容部以外の部分を有してもよい。
図 2を参照して、 ハウジング 2 0 0のステータ収容部は、 ケース 2 2 0とカバ 一 2 3 0とを含む。 ステータコア 1 4 1は、 鉄または鉄合金などの板状の磁性体 を積層することにより形成される。 そして、 ステータコア 1 4 1は、 ケース 2 2 0内に収納される。 図 2の例では、 ステータコア 1 4 1の外径は、 その軸方向の 全体にわたってほぼ一定である。 一方、 ケース 2 2 0の内周面には、 段差が形成 されている。 したがって、 ステータコア 1 4 1の外周面とケース 2 2 0の内周面 との隙間が相対的に小さい部分 (A部) と、 当該隙間が相対的に大きい部分 (B 部) とが形成される。
図 1 0〜図 1 3は、 図 2に示すステータの固定構造による効果を説明する図で ある。 ここで、 図 1 0, 図 1 2は、 図 2に示す構造におけるステータコア 1 4 1 とケース 2 2 0との接触部について説明する図であり、 図 1 1 , 図 1 3は、 比較 例 1, 2に係る構造におけるステータコア 1 4 1とケース 2 2 0との接触部につ いて説明する図である。
図 1 0を参照して、 本実施の形態に係る固定構造においては、 仮に、 ステータ コア 1 4 1の軸芯とケース 2 2 0の軸芯とが若干ずれた場合にも、 ステータコア 1 4 1とケース 2 2 0とはステータコア 1 4 1の軸方向の一部において接触する。 すなわち、 ステータコア 1 4 1とケース 2 2 0との接触部 Cは、 ステータコア 1 4 1の軸方向の一部にのみ延在する。
これに対し、 比較例 1に係る固定構造においては、 仮に、 図 1 0の例と同様に ステータコア 1 4 1.の軸芯とケース 2 2 0の軸芯とがずれた場合には、 図 1 1に 示すように、 ステータコア 1 4 1とケース 2 2 0とはステータコア 1 4 1の軸方 向の全体において接触する。 すなわち、 ステータコア 1 4 1とケース 2 2 0との 接触部 Cは、 ステータコア 1 4 1の軸方向の全体にわたって延在する。
図 1 2を参照して、 本実施の形態に係る固定構造においては、 仮に、 倒れ角度 ( Θ ) が最大になるまでステータコア 1 4 1が倒れた場合にも、 ステータコア 1 4 1とケース 2 2 0とは、 ステータコア 1 4 1の軸方向における一点で接触する。 換言すると、 ステータコア 1 4 1の倒れ角度 ( Θ ) が最大となった場合にも該コ ァとケース 2 2 0とが接触しないようにケース 2 2 0の大口径部分の内径が規定 されている。 したがって、 ステータコア 1 4 1とケース 2 2 0の接触部 Cは、 ス テータコア 1 4 1の軸方向における一点に限定される。
これに対し、 比較例 2に係る固定構造においては、 仮に、 図 1 2の例と同様に ステータコア 1 4 1が倒れた場合には、 図 1 3に示すように、 ステータコア 1 4 1とケース 2 2 0とはステータコア 1 4 1の軸方向における一定の領域で接触す る。 すなわち、 ステータコア 1 4 1とケース 2 2 0との接触部 Cは、 ステータコ ァ 1 4 1の軸方向の一定の領域に延在する。
上記のように、 本実施の形態に係るステータの固定構造においては、 比較例 1 , 2に係るステータの固定構造と比較して、 ステータコア 1 4 1とケース 2 2 0と の接触面積が低減されている。 このようにすることで、 ステータコア 1 4 1の振 動がケース 2 2 0に伝達されにくくなる。 また、 ステータコア 1 4 1の外周面と ケース 2 2 0の内周面との隙間が相対的に小さい A部 (図 2参照) に位置するケ ース 2 2 0の内径を一定にすることで、 ステータコア 1 4 1をケース 2 2 0に揷 入する際のステータコア 1 4 1の位置決めが行ないやすくなる。 この結果、 ロー タ 1 3 0とステータ 1 4 0との芯ずれが抑制される。
ステータコア 1 4 1の振動のケース 2 2 0への伝達、 および、 ロータ 1 3 0と ステータ 1 4 0との芯ずれを抑制することで、 モータジェネレータ 1 0 0の駆動 時の騒音が抑制される。
なお、 ケース 2 2 0の大口径部分の深さはハウジング 2 0 0の開口部の全体の 深さの 1 / 2以下程度であることが好ましい。 このように、 ケース 2 2 0の大口 径部分の深さを制限することで、 ステータコア 1 4 1の倒れを低減し、 該コアと ケース 2 2 0との接触を抑制することができる。
図 3〜図 7は、 図 2に示ざれるステータの固定構造の変形例を示す図である。 図 3を参照して、.ステータコア 1 4 1の外周面とケース 2 2 0の内周面との隙間 が相対的に小さい A部は、 当該隙間が相対的に大きい B部に対してカバー 2 3 0 側に位置してもよい。 また、 図 4を参照して、 上記隙間が相対的に小さい A部と 相対的に大きい B部とは、 ケース 2 2 0の内径が徐々に大きくなるテーパ部をケ ース 2 2 0の内周面に設けることにより形成されてもよレ、。 図 5〜図 7を参照し て、 ステータコア 1 4 1の外径を該ステータコア 1 4 1の軸方向に沿って変化さ せることで上記 A部, B部が設けられてもよい。 この場合も、 図 5, 図 6に示す ように、 ステータコア 1 4 1の外周面に段差が形成されてもよいし、 図 7に示す ように、 ステータコア 1 4 1の外径が徐々に減少するテーパ部がステータコア 1 4 1の外周面に形成されてもよい。
図 8, 図 9は、 本実施の形態に係るステータの固定構造における締結部材につ いて説明する図である。 図 8 , 図 9を参照して、 ステータコア 1 4 1は、 軸方向 に延びる孔 1 4 1 Aを有する。 孔 1 4 1 Aには締結部材 1 4 3が挿入される。 そ して、 締結部材 1 4 3の先端部は、 ケース 2 2 0にねじ込まれて固定される。 こ れにより、 締結部材 1 4 3の軸力がステータコア 1 4 1に伝えられ、 ステータコ ァ 1 4 1はケース 2 2 0に固定される。 ここで、 締結部材 1 4 3の他端側 (ボル トの頭側) は、 ケース 2 2 0に支持されていない。 すなわち、 図 8, 図 9の例で は、 締結部材 1 4 3は、 ケース 2 2 0に片持ち支持されている。 このような片持 ち支持構造の場合、 締結部材 1 4 3がケース 2 2 0に固定される側と反対の側 (すなわち、 図 8, 図 9における上側) において、 締結部材 1 4 3の振れ幅が大 きくなる傾向にあり、 この結果、 モータジェネレータ 1 0 0の駆動時のステータ コア 1 4 1の振動が大きくなりやすい。 これに対し、 図 8 , 図 9の例では、 ステ ータコア 1 4 1の外周面とケース 2 2 0の内周面との隙間が相対的に大きい B部 を、 当該隙間が相対的に小さい A部に対してカバー 2 3 0側 (すなわち、 図 8, 図 9における上側) に配置している。 より具体的には、 図 8の例では、 ステータ コア 1 4 1の径は軸方向全体にわたってほぼ一定であるのに対し、 締結部材 1 4 3の先端部 (固定部) に近い側のケース 2 2 0の内径が縮小されている。 また、 図 9の例では、 ケース 2 2 0の内径は軸方向全体にわたってほぼ一定であるのに 対し、 締結部材 1 4 3の先端部 (固定部) に近い側のステータコア 1 4 1の外径 が拡大されている。 上記のようにすることで、 図 8, 図 9中の上側に位置する部 分 (B部) においてはステータコア 1 4 1の外周面とケース 2 2 0の内周面との 隙間を相対的に大きくし、 図 8, 図 9中の下側に位置する部分 ( 部) において P T/JP2007/053118 はステータコア 1 4 1の外周面とケース 2 2 0の内周面との隙間を相対的に小さ くすることができる。
図 8, 図 9に示される構造によれば、 ステータコア 1 4 1の振動が大きい部分 でのステータコア 1 4 1とケース 2 2 0との接触を抑制することができるので、 ステータコア 1 4 1の振動のハウジング 2 0 0への伝達をより効果的に抑制する ことができる。 なお、 図 8 , 図 9の例では、 ケース 2 2 0の内周面またはステー タコア 1 4 1の外周面に段差を設けることで、 ステータコア 1 4 1の外周面とケ ース 2 2 0の内周面との隙間を変化させているが、 ケース 2 2 0の内径またはス テータコア 1 4 1の外径が徐々に変化するテーパ部を設けることでステータコア 1 4 1の外周面とケース 2 2 0の内周面との隙間を変化させてもよい。 また、 上 記段差とテーパ部とを併用してステータコア 1 4 1の外周面とケース 2 2 0の内 周面との隙間を変化させてもよい。
上述した内容について要約すると、 以下のようになる。 すなわち、 本実施の形 態に係るステータの固定構造は、 ステータコア 1 4 1を含むステータ 1 4 0と、 ステータコア 1 4 1を格納する開口部を有するハウジング 2 0 0とを備え、 ハウ ジング 2 0 0は、 開口部の内周面とステータコア 1 4 1との隙間が相対的に小さ く、 かつ、 開口部の内径が一定である 「第 1部分」 としての A部と、 ステータコ ァ 1 4 1の軸方向に A部と並び、 開口部の内周面とステータコア 1 4 1との隙間 が相対的に大きい 「第 2部分」 としての B部とを含む。
ここで、 1つの局面では、 図 2〜図 4に示すように、 ハウジング 2 0 0の開口 部の内径をステータコア 1 4 1の軸方向に沿って変化させることにより A部, B 部における上記隙間を異ならせている。
また、 他の局面では、 図 5〜図 7に示すように、 ステータコア 1 4 1の外径を ステータコア 1 4 1の軸方向に沿って変化させることにより A部, B部における 上記隙間を異ならせている。
上記ステータの固定構造においては、 ステータコア 1 4 1の倒れ角度 ( Θ ) が 最大の場合でもハウジング 2 0 0の B部とステータコア 1 4 1とが離間するよう に、 B部における開口部の内周面とステータコア 1 4 1との隙間が決定されてい る。 また、 上記ステータの固定構造は、 ステータコア 1 4 1の軸方向に該ステータ コア 1 4 1に揷入され、 その一端がハウジング 2 0 0に固定されることによりス テータコア 1 4 1をハウジング 2 0 0に締結する締結部材 1 4 3をさらに備える。 ハウジング 2 0 0の A部は、 B部に対して、 締結部材 1 4 3がハウジング 2 0 0 に固定される側 (すなわち、 図 8中の下側) に位置する。
本実施の形態に係るステータの固定構造によれば、 ハウジング 2 0 0の A部に おいて開口部の内周面とステ一夕コア 1 4 1との隙間が小さいため、 ステータコ ァ 1 4 1の位置決めが精度良く行ないやすくなる。 また、 ハウジング 2 0 0の B 部において上記隙間が大きいため、 開口部の内周面とステータコア 1 4 1との接 触が抑制され、 ハウジング 2 0 0とステータコア 1 4 1との接触面積が低減され る。 そして、 ステータコア 1 4 1の振動がハウジング 2 0 0に伝達することを抑 制することができる。 この結果、 モータジェネレータ 1 0 0の駆動時の振動およ ぴ騒音が抑制される。
また、 ステータコア 1 4 1とハウジング 2 0 0との接触面積が小さいため、 ス テータコア 1 4 1の倒れ角が大きな場合でも、 該変形がハウジング 2 0 0に及ぼ す影響が小さく、 ハウジング 2 0 0のシール性などが損なわれることを抑制する ことができる。
以上、 本発明の実施の形態について説明したが、 今回開示された実施の形態は すべての点で例示であって制限的なものではないと考えられるべきである。 本発 明の範囲は請求の範囲によって示され、 請求の範囲と均等の意味および範囲内で のすベての変更が含まれることが意図される。 産業上の利用可能性
本発明は、 たとえば、 ステータの固定構造および電動車両などに適用可能であ る。

Claims

請求の範囲
1. ステータコア (141) を含むステータ (140) と、
前記ステータコア (141) を格納する開口部を有するハウジング (200) とを備え、
前記ハウジング (200) は、 前記開口部の内周面と前記ステータコア (14 1) との隙間が相対的に小さく、 かつ、 前記開口部の内径が一定である第 1部分 (A) と、 前記ステータコア (141) の軸方向に前記第 1部分 (A) と並び、 前記開口部の内周面と前記ステータコア (141) との隙間が相対的に大きい第 2部分 (B) とを含む、 ステータの固定構造。
2. 前記ハウジング (200) の開口部の内径を前記ステータコア (141) の軸方向に沿って変化させることにより前記第 1と第 2部分 (A, B) における 前記開口部の内周面と前記ステータコア (141) との隙間を異ならせている、 請求の範囲第 1項に記載のステータの固定構造。
3. 前記ステータコア (141) の外径を前記ステータコア (141) の軸方 向に沿って変化させることにより前記第 1と第 2部分 (A, B) における前記開 口部の内周面と前記ステータコア (141) との隙間を異ならせている、 請求の 範囲第 1項に記載のステータの固定構造。
4. 前記第 2部分 (B) の深さは前記開口部の全体の深さの 1/2以下である、 請求の範囲第 1項に記載のステータの固定構造。
5. 前記ステータコア (141) の倒れ角度が最大の場合でも前記ハウジング (200) の第 2部分 (B) と前記ステータコア (141) とが離間するように、 前記第 2部分 (B) における前記開口部の内周面と前記ステータコア (141) との隙間が決定される、 請求の範囲第 1項に記載のステータの固定構造。
6. 前記ステータコア (141) の軸方向に該ステータコア (141) に揷入 され、 その一端が前記ハウジング (200) に固定されることにより前記ステー タコア (141) .を前記ハウジング (200) に締結する締結部材 (143) を さらに備え、
前記第 1部分 (A) は、 前記第 2部分 (B) に対して、 前記締結部材 (14 3) が前記ハウジング (200) に固定される側に位置する、 請求の範囲第 1項 に記載のステータの固定構造。
7. 請求の範囲第 1項に記載のステータの固定構造を備えた、 電動車両。
PCT/JP2007/053118 2006-02-23 2007-02-13 ステータの固定構造および電動車両 WO2007099821A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/087,994 US7737599B2 (en) 2006-02-23 2007-02-13 Securing structure for stator and electric vehicle
CN2007800062580A CN101390276B (zh) 2006-02-23 2007-02-13 定子的固定结构以及电动车辆
EP07714618.1A EP1988621B1 (en) 2006-02-23 2007-02-13 Securing structure of stator and electric vehicle
AU2007219849A AU2007219849B2 (en) 2006-02-23 2007-02-13 Securing structure of stator and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006046934A JP4747880B2 (ja) 2006-02-23 2006-02-23 ステータの固定構造および電動車両
JP2006-046934 2006-02-23

Publications (1)

Publication Number Publication Date
WO2007099821A1 true WO2007099821A1 (ja) 2007-09-07

Family

ID=38458933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053118 WO2007099821A1 (ja) 2006-02-23 2007-02-13 ステータの固定構造および電動車両

Country Status (7)

Country Link
US (1) US7737599B2 (ja)
EP (1) EP1988621B1 (ja)
JP (1) JP4747880B2 (ja)
KR (1) KR100998275B1 (ja)
CN (1) CN101390276B (ja)
AU (1) AU2007219849B2 (ja)
WO (1) WO2007099821A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055409A1 (de) * 2009-12-16 2011-06-22 Robert Bosch GmbH, 70469 Elektromotor
CN102687372B (zh) 2009-12-28 2014-08-13 丰田自动车株式会社 定子铁芯的固定结构及具备该结构的旋转电机
JP2012050200A (ja) * 2010-08-25 2012-03-08 Toyota Motor Corp 分割ステータコアとその製造方法、および、分割ステータコアを具備するモータ
JP2012061912A (ja) * 2010-09-15 2012-03-29 Aisin Seiki Co Ltd ハイブリッド車両用駆動装置およびケース
CN102510140A (zh) * 2011-11-19 2012-06-20 中电电机股份有限公司 紧凑型高压电机定子铁心结构
JP5387929B2 (ja) * 2012-11-20 2014-01-15 日本精工株式会社 回転電機
JP6260323B2 (ja) * 2014-02-13 2018-01-17 株式会社豊田自動織機 回転電機
JP2016052200A (ja) * 2014-09-01 2016-04-11 スズキ株式会社 回転電機
JP2016123230A (ja) 2014-12-25 2016-07-07 日本電産株式会社 スピンドルモータ、およびディスク駆動装置
JP6607791B2 (ja) * 2016-01-14 2019-11-20 三菱重工サーマルシステムズ株式会社 モータ及び電動圧縮機
JP2019140756A (ja) * 2018-02-08 2019-08-22 Ntn株式会社 インホイールモータ駆動装置、回転電動機、およびハウジングの製造方法
WO2019187336A1 (ja) * 2018-03-27 2019-10-03 パナソニックIpマネジメント株式会社 モータ
FR3080503B1 (fr) 2018-04-20 2020-03-20 Renault S.A.S Ensemble statorique pour machine electrique
JP7197335B2 (ja) 2018-11-14 2022-12-27 トヨタ自動車株式会社 車両用電動機
FR3090231B1 (fr) * 2018-12-14 2021-10-29 Valeo Equip Electr Moteur Systeme d’anti-rotation pour stator de machine electrique tournante
KR20200111328A (ko) * 2019-03-18 2020-09-29 현대자동차주식회사 차량용 모터
JP7231470B2 (ja) 2019-04-19 2023-03-01 トヨタ自動車株式会社 車両用電動機
JP6969034B2 (ja) * 2019-09-23 2021-11-24 株式会社デンソートリム 回転電機及び回転電機用ステータ
KR102377964B1 (ko) * 2020-03-24 2022-03-24 한국생산기술연구원 회전 방지 구조를 가지는 스테이터-센터하우징 조립 어셈블리 및 이를 포함하는 구동모터, 그리고 이의 제조방법
JP7356600B2 (ja) * 2020-10-15 2023-10-04 株式会社ミツバ モータ
JP2022081336A (ja) 2020-11-19 2022-05-31 日本電産株式会社 モータ、駆動装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065389U (ja) * 1983-10-11 1985-05-09 ダイキン工業株式会社 圧縮機におけるステ−タの固定構造
JPS61258635A (ja) * 1985-05-08 1986-11-17 Nippon Denso Co Ltd 車両用交流発電機
JPS649435U (ja) * 1987-07-06 1989-01-19
JPH09168253A (ja) 1995-12-13 1997-06-24 Sankyo Seiki Mfg Co Ltd モータの軸受構造
JPH11146619A (ja) * 1997-11-08 1999-05-28 Nippon Densan Corp スピンドルモータ
JP2000166207A (ja) 1998-11-24 2000-06-16 Shicoh Eng Co Ltd ブラシレスファンモータ
JP2001342954A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 電動圧縮機及びそれを用いた冷却装置
JP2004015957A (ja) 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 電動機
JP2005229798A (ja) * 2005-02-24 2005-08-25 Sanyo Electric Co Ltd 冷凍装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250423A (en) * 1978-08-25 1981-02-10 Sundstrand Corporation Generator with stator retention
JPS6065389A (ja) 1983-09-21 1985-04-15 Toshiba Corp Idカ−ド処理装置
US4652782A (en) * 1986-03-31 1987-03-24 Sundstrand Corporation Flanged stator assembly for dynamoelectric machine
JPS649435A (en) * 1987-06-30 1989-01-12 Canon Kk Photographing information display device
JPH01120750A (ja) * 1987-11-04 1989-05-12 Jeol Ltd 自動焦点調整信号処理装置
JP3963211B2 (ja) * 2001-12-07 2007-08-22 三菱電機株式会社 密閉型圧縮機
JP4121142B2 (ja) * 2002-02-19 2008-07-23 日本電産株式会社 モータ
JP2005020874A (ja) * 2003-06-25 2005-01-20 Toshiba Tec Corp モータ
JP4241321B2 (ja) * 2003-10-28 2009-03-18 トヨタ自動車株式会社 回転電機の固定子
JP4572699B2 (ja) 2005-02-23 2010-11-04 トヨタ自動車株式会社 回転電機の固定構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065389U (ja) * 1983-10-11 1985-05-09 ダイキン工業株式会社 圧縮機におけるステ−タの固定構造
JPS61258635A (ja) * 1985-05-08 1986-11-17 Nippon Denso Co Ltd 車両用交流発電機
JPS649435U (ja) * 1987-07-06 1989-01-19
JPH09168253A (ja) 1995-12-13 1997-06-24 Sankyo Seiki Mfg Co Ltd モータの軸受構造
JPH11146619A (ja) * 1997-11-08 1999-05-28 Nippon Densan Corp スピンドルモータ
JP2000166207A (ja) 1998-11-24 2000-06-16 Shicoh Eng Co Ltd ブラシレスファンモータ
JP2001342954A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 電動圧縮機及びそれを用いた冷却装置
JP2004015957A (ja) 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 電動機
JP2005229798A (ja) * 2005-02-24 2005-08-25 Sanyo Electric Co Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1988621A4 *

Also Published As

Publication number Publication date
KR100998275B1 (ko) 2010-12-03
KR20080098667A (ko) 2008-11-11
US20090021104A1 (en) 2009-01-22
EP1988621B1 (en) 2020-03-25
AU2007219849A1 (en) 2007-09-07
US7737599B2 (en) 2010-06-15
JP2007228725A (ja) 2007-09-06
EP1988621A4 (en) 2016-12-21
CN101390276B (zh) 2012-07-04
JP4747880B2 (ja) 2011-08-17
AU2007219849B2 (en) 2011-02-10
EP1988621A1 (en) 2008-11-05
CN101390276A (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4747880B2 (ja) ステータの固定構造および電動車両
JP4811114B2 (ja) ステータの固定構造および車両
JP4661614B2 (ja) 冷却パイプの固定構造および電動車両
US6700268B2 (en) Rotational electric machine and a vehicle loaded therewith
US9948159B2 (en) Stator supporting structure for rotating electrical machine and rotating electrical machine including the same
US9379589B2 (en) Stator
JP4685661B2 (ja) ロータおよびその製造方法ならびに電動車両
JP2007336714A (ja) レゾルバセンサの固定構造
CN107431422B (zh) 无刷雨刮电机
WO2012077671A1 (ja) 車載用回転電機および電動車両
US20150364966A1 (en) Rotating electrical machine
JP4775020B2 (ja) ステータの固定構造および電動車両
JP4682045B2 (ja) 電動車両用のインホイールモータ
JP2008289244A (ja) 回転電機の冷却構造
JP5141233B2 (ja) 駆動装置
JP2007221854A (ja) ステータの固定構造および電動車両
JP4962280B2 (ja) 回転電機
JP2020078995A (ja) 駆動ユニット
KR20160051580A (ko) 영구자석 모터
JP2006345601A (ja) 回転電機
US20240178714A1 (en) Motor unit
JP2013027229A (ja) 冷却パイプの固定構造
JP2008301571A (ja) 回転電機および回転電機の製造方法
JP2019041539A (ja) 回転電機の冷却構造
JP2017093170A (ja) 回転電機ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12087994

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007219849

Country of ref document: AU

Ref document number: 2007714618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780006258.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023041

Country of ref document: KR

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)