WO2007086459A1 - 液状物質供給装置及び液状物質供給方法 - Google Patents

液状物質供給装置及び液状物質供給方法 Download PDF

Info

Publication number
WO2007086459A1
WO2007086459A1 PCT/JP2007/051163 JP2007051163W WO2007086459A1 WO 2007086459 A1 WO2007086459 A1 WO 2007086459A1 JP 2007051163 W JP2007051163 W JP 2007051163W WO 2007086459 A1 WO2007086459 A1 WO 2007086459A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid substance
syringe
liquid
pressure
nozzle
Prior art date
Application number
PCT/JP2007/051163
Other languages
English (en)
French (fr)
Inventor
Hironobu Nishimura
Masahiro Nakamura
Original Assignee
Origin Electric Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Company, Limited filed Critical Origin Electric Company, Limited
Priority to US12/223,207 priority Critical patent/US8117981B2/en
Publication of WO2007086459A1 publication Critical patent/WO2007086459A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers

Definitions

  • the present invention relates to a liquid material supply apparatus and a liquid material supply method for supplying a liquid material such as an adhesive or a solder paste to a coated member such as an optical disk substrate, a printed circuit board, or a semiconductor substrate.
  • a liquid adhesive for bonding disk substrates of an optical disk, a liquid grease for forming a resin layer to protect the surface of the disk substrate, a liquid photoresist material or a solder paste used in the manufacturing process of electronic components Various methods and apparatuses for supplying various kinds of liquid substances to the target member have already been proposed.
  • optical discs especially DVD (Digital Versataile Disc)
  • a step of adhering disc substrates together with an adhesive or in the case of next-generation optical discs called Blu-ray discs, a light transmission cover layer is formed.
  • HD-DVD High Definition-Digital Versataile Disc
  • the viscosity of the liquid resin used to form the adhesive layer or the resin layer may be several times higher than that of DVD.
  • the apparatus for example, refer to Patent Documents 1 and 2), it is extremely difficult to make the bubbles below the allowable value, and it is not possible to cope with the production of the next generation optical disc.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-275859
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-067740
  • the present invention performs a bubble removal process at a stage close to a syringe serving as a liquid material discharge head, and supplies the liquid material in which the bubbles have just been removed into the syringe.
  • the discharge of the liquid material is controlled by adjusting the pressure without using a mechanical valve, and a liquid material with few bubbles is supplied to the object to be coated.
  • the bubble removal filter structure for removing bubbles, the flow path of the liquid material after the bubble removal process, the structure of the syringe, the liquid substance discharge nozzle, and the bubble size even in the liquid substance discharge stage are used. Improvements have been made to reduce the size.
  • a first invention is a liquid substance supply apparatus comprising: a pressurized tank that applies a positive pressure higher than atmospheric pressure to a liquid substance; and a syringe having a nozzle that discharges the liquid substance.
  • a valve member that is provided in the middle of the pressure tank and the syringe and starts or stops the flow of the liquid substance, and is located between the syringe and the valve member to remove the liquid substance force bubbles.
  • a pressure for starting or stopping the discharge of the liquid substance by the nozzle by selectively applying a positive pressure higher than atmospheric pressure or a negative pressure lower than atmospheric pressure to the bubble removal filter and the syringe.
  • a liquid substance supply device including an application mechanism.
  • a liquid material supply device that supplies a liquid material that does not include bubbles larger than a predetermined size and has a small amount of bubbles to be mixed to a member to be coated.
  • the second invention is a liquid level detection sensor that detects a liquid level of the liquid substance in the syringe and outputs a first detection signal; and inputs the first detection signal; When it is detected that the liquid substance in the inside is less than the set level, the valve member is opened first.
  • the liquid substance supply apparatus further comprising a controller.
  • the supply of the liquid substance into the syringe can be automatically started or stopped without adversely affecting the liquid substance in the syringe. Can always be maintained above the set level.
  • the third invention further includes a coated member detection sensor that outputs a second detection signal when the presence of the coated member supplied with the liquid substance is detected, and the first controller.
  • the roller When the second detection signal is input, the roller outputs a request signal for applying the positive pressure to the pressure applying mechanism, and the pressure applying mechanism receives the positive signal when the request signal is input. It is the said liquid substance supply apparatus which gives a pressure in the said syringe.
  • the liquid substance when the member to be coated is placed at a predetermined position, the liquid substance can be automatically supplied to the member to be coated.
  • the fourth invention further includes an outflow hole provided at a position lower than the set level in the syringe and through which the liquid substance supplied from the tank via the valve member flows out into the syringe.
  • the liquid substance supply device is not limited to a position lower than the set level in the syringe and through which the liquid substance supplied from the tank via the valve member flows out into the syringe.
  • the mixing of bubbles can be prevented, so that the liquid substance with fewer bubbles can be supplied to the coated member. it can.
  • a fifth invention is the liquid substance supply device, wherein the outflow hole is disposed in the vicinity of a side wall surface of the syringe.
  • the liquid substance when the liquid substance is supplied into the syringe, the liquid substance is gently injected along the wall surface. A small amount of V and liquid material can be supplied to the coated member.
  • a sixth invention is the pressure application tip provided in the syringe, for injecting a pressurized gas into the syringe when the pressure application mechanism applies a positive pressure into the syringe,
  • the liquid substance supply device further comprising a small hole provided at a pressure applying tip and oriented in parallel or obliquely upward with respect to the liquid surface of the liquid substance in the syringe.
  • a flexible piping member having one end connected to the nozzle and having an inner diameter equal to the nozzle, and another flexible member connected to the other end of the piping member and having an inner diameter equal to the nozzle.
  • the liquid substance supply device further comprising a nozzle.
  • the liquid substance can be discharged to an arbitrary position, the margin for constructing the device is increased, and an easy-to-use device can be provided. Since bubbles mixed between other nozzles can be reduced, a liquid material with fewer bubbles can be supplied to the coated member.
  • An eighth invention is the liquid substance supply device, wherein the outer diameter of the tip surface of the nozzle is smaller than the outer diameter other than the tip surface of the nozzle.
  • the eighth aspect of the invention since the size of the liquid material formed on the tip surface of the other nozzle can be reduced, the contact area force with the substrate is reduced, and bubbles are not mixed. Further, it is possible to reduce the amount of bubbles mixed in the liquid material at the tip surface of the other nozzle, and it is possible to further increase the uniformity of the discharged liquid material.
  • a ninth aspect of the invention is the liquid substance supply apparatus, wherein the outer diameter force of the tip surface of the other nozzle is smaller than the outer diameter of the other nozzle other than the tip surface.
  • the size of the liquid substance formed on the tip surface of the nozzle can be reduced, so that the contact area with the substrate can be reduced, and mixing of bubbles can be suppressed.
  • a tenth aspect of the invention is the liquid substance supply device further comprising a liquid substance recovery pipe provided on an upper part of the bubble removing filter and recovering the liquid substance.
  • the amount of bubbles mixed is large, and the liquid substance can be reused while the liquid substance is efficiently recovered.
  • An eleventh aspect of the invention is the liquid substance supply apparatus including at least one mesh plate having micropores as the bubble removal filter. [0028] According to the eleventh aspect, even if the viscosity of the liquid substance is large or the flow rate of the liquid substance is relatively high, the bubbles in the liquid substance can be normally removed over a long period of time.
  • the diameter of the micropores in the mesh plate located on the inflow side of the liquid substance is the minute size of the mesh plate located on the outflow side.
  • the liquid substance supply device is larger than the diameter of the hole.
  • the bubbles in the liquid substance can be normally removed over a long period of time.
  • the pressure applying mechanism includes a first negative pressure portion that applies a first negative pressure to the syringe, and a second negative pressure that is smaller than the first negative pressure.
  • the second negative pressure part to be applied to the syringe and the first negative pressure part are instructed to apply the first negative pressure when the discharge of the liquid substance is stopped, and the first negative pressure part is given after a predetermined time has elapsed.
  • a second controller that instructs the first negative pressure section to stop applying the first negative pressure, and instructs the second negative pressure section to apply the second negative pressure.
  • the liquid substance supply device includes a first negative pressure portion that applies a first negative pressure to the syringe, and a second negative pressure that is smaller than the first negative pressure.
  • the tip of the discharge nozzle that can only supply a liquid material that does not contain bubbles larger than a predetermined size and that has a small amount of bubbles mixed into the member to be coated.
  • the amount of bubbles mixed in the liquid material can be reduced, and the uniformity of the liquid material discharged to the coated member can be further improved.
  • a fourteenth aspect of the invention is an optical disc manufacturing apparatus having the liquid substance supply device.
  • optical disc manufacturing apparatus capable of manufacturing a high-quality optical disc by minimizing bubbles contained in an adhesive or the like.
  • the present invention includes a pressurized tank that applies a positive pressure higher than atmospheric pressure to a liquid substance, a syringe having a nozzle that discharges the liquid substance, and the liquid substance is allowed to flow from the pressurized tank to the syringe.
  • a liquid material supply device including a flow path member that forms a flow path, the valve member being provided in the middle of the flow path member to open and close the flow path, and between the syringe and the valve member
  • the flow path part located in the middle of the flow path member A bubble removing filter that removes bubbles from the liquid substance flowing through the material, and a positive pressure higher than atmospheric pressure or a negative pressure lower than atmospheric pressure is selectively given to the syringe, and the nozzle is used to And a pressure applying mechanism for starting or stopping the discharge of the liquid material.
  • the present invention includes a liquid level detection sensor for detecting a liquid level of the liquid substance existing in the syringe in the above invention, and a detection signal from the liquid level detection sensor.
  • a liquid substance supply device comprising a controller that controls opening and closing of the valve member so that the liquid substance in the syringe is at a set level or higher.
  • the present invention includes a sensor for detecting a member to be coated that detects the presence of a member to be coated to which the liquid substance is supplied from the syringe in the above invention, and the controller includes a sensor force for detecting the member to be coated.
  • the pressure applying mechanism is operated, and the pressure applying mechanism applies the positive pressure into the syringe.
  • the flow path member includes an outflow hole through which the liquid substance flows into the syringe at a tip portion, and the outflow hole is located at a position lower than the set level in the syringe.
  • a liquid substance supply device characterized by being always below the surface of the liquid substance.
  • the outflow hole at the tip of the flow path member is disposed in the vicinity of the side wall surface of the syringe, and the liquid substance is supplied along the side wall surface of the syringe.
  • a liquid substance supply device is provided.
  • the pressure applying mechanism has a pressure applying tip portion that applies the pressure in the syringe, and the pressure applying tip portion is against a liquid surface of the liquid substance in the syringe.
  • the liquid substance supply device is provided with a small hole extending in a parallel direction or obliquely upward.
  • one end of a flexible piping member is connected to the nozzle of the syringe, and a second nozzle is coupled to the other end of the piping member.
  • the inner diameter of the member and the second nozzle is equal to the inner diameter of the nozzle of the syringe.
  • a liquid substance supply device is provided.
  • an outer diameter of a tip surface of the nozzle or the second nozzle is smaller than an outer diameter of the other part of the nozzle or the second nozzle.
  • a liquid substance supply device is provided.
  • a liquid substance recovery pipe is provided on an upper part of the bubble removing filter, and the liquid substance Provided is a liquid substance supply device characterized by recovering quality.
  • the bubble removing filter is characterized in that a plurality of mesh plates having a large number of small pores having a small diameter are juxtaposed at a predetermined interval. I will provide a.
  • the invention of the present application is the above invention, wherein the mesh plate of the bubble removal filter is more than the one located on the inlet side of the bubble removal filter is located on the outlet side.
  • a liquid substance supply device characterized in that the diameter of the micropores is large.
  • the nozzle or the second nozzle is made of a metal material, and an electric field is formed between the nozzle or the second nozzle and the member to be coated.
  • a liquid substance supply apparatus characterized by this is provided.
  • the present invention is a liquid material supply method for supplying a liquid material to a member to be coated! Then, a first step of opening and closing the liquid substance supplied to the flow path, a second step of removing bubbles contained in the liquid substance supplied to the flow path, and a bubble removal process were performed. A third step of supplying the liquid substance into the syringe; a fourth step of supplying the liquid substance to the member to be coated by applying a positive pressure higher than atmospheric pressure in the syringe; A fifth step of stopping the supply of the liquid substance by applying a negative pressure lower than the atmospheric pressure into the syringe, and the first step force also sequentially performs the steps up to the fifth step.
  • a liquid material supply method is provided.
  • the invention of the present application is characterized in that in the above invention, the opening and closing of the liquid substance is performed according to the level of the liquid level of the liquid substance in the syringe or at regular intervals. Provide a supply method.
  • the liquid substance in the syringe is supplied to the member to be coated.
  • Syringe force The second step of supplying the liquid substance to the member to be coated, and applying a first negative pressure lower than atmospheric pressure into the syringe, and after the set time has elapsed, from the first negative pressure
  • the positive pressure is applied to the syringe, whereby the syringe is A liquid substance supply method is provided, characterized in that a liquid substance is supplied to the member to be coated.
  • the supply of the liquid substance into the syringe can be automatically started or stopped without any adverse effect on the liquid substance in the syringe, and the liquid substance in the syringe is always set. Can be maintained above the level.
  • the liquid material when the member to be coated is placed at a predetermined position, the liquid material can be automatically supplied to the member to be coated.
  • the liquid substance when the liquid substance is supplied into the syringe, the liquid substance is gently injected along the wall surface, so that bubbles can be prevented from being mixed, and the liquid substance with fewer bubbles can be prevented. Can be supplied to the member to be coated.
  • the liquid surface of the liquid material is not roughened due to a sudden change in pressure, so that bubbles are prevented from being mixed into the liquid material. It is possible to supply a liquid material with fewer bubbles to the member to be coated.
  • the liquid substance can be discharged to an arbitrary position, the margin for constructing the apparatus is increased, and an easy-to-use apparatus can be provided, and the tube member and the second nozzle Since bubbles mixed in between can be reduced, a liquid substance with fewer bubbles can be supplied to the coated member.
  • the size of the liquid substance formed on the tip surface of the nozzle can be reduced, the contact area force with the substrate can be reduced, mixing of bubbles can be suppressed, and It is possible to reduce the amount of bubbles mixed in the liquid material at the tip end surface of the nozzle and further increase the uniformity of the discharged liquid material.
  • the liquid substance can be reused and the bubbles in the liquid substance are removed. be able to.
  • the bubbles in the liquid substance can be normally removed over a long period of time.
  • the supply of the liquid substance into the syringe can be automatically started or stopped without any adverse effect on the liquid substance in the syringe, and the liquid substance in the syringe is always set. It is possible to provide a method for supplying a liquid substance that is maintained at or above a level.
  • the liquid material can be supplied to the liquid material at the tip end of the discharge nozzle that does not contain bubbles larger than the predetermined size and can supply the liquid material with a small amount of bubbles to the coated member.
  • the amount of bubbles mixed in can be reduced, and the uniformity of the liquid substance discharged to the member to be coated can be further improved.
  • the liquid material can be automatically supplied to the member to be coated when the member to be coated is placed at a predetermined position or according to a sequence.
  • FIG. 1 is a diagram showing a liquid material supply apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a view showing an example of a preferable bubble removing filter in the liquid material supply apparatus 100 according to the present invention.
  • FIG. 3 is a diagram showing a liquid material supply apparatus 200 according to Embodiment 2 of the present invention.
  • FIG. 4A is a view showing an example of the air pressure application tip portion of a preferable air feeding tube in the liquid substance supply device 200 according to the present invention.
  • FIG. 4B is a diagram showing a general structure of an air pressure applying tip portion of a preferable air feeding tube in the liquid substance supply device 200 according to the present invention.
  • FIG. 5A is a view showing an example of a preferable tip of a discharge nozzle in the liquid substance supply apparatus 200 according to the present invention.
  • FIG. 5B is a view showing a tip portion of a general discharge nozzle in the liquid substance supply apparatus 200 according to the present invention.
  • FIG. 6 is a view showing an example of a preferred pressure reducing mechanism in the liquid substance supply apparatus 200 according to the present invention.
  • the storage tank 1 contains a liquid substance S that has been subjected to a normal defoaming process.
  • the liquid substance S is various, such as a liquid adhesive, a liquid resin that forms a transparent film excellent in scratch resistance and light transmission, or a solder paste.
  • minute bubbles cannot be completely removed, and the liquid substance S contains many minute bubbles.
  • This liquid substance S is sent to the filter 4 by the pump 3 provided in the middle of the pipe 2A connected to the storage tank 1.
  • the filter 4 is generally used and removes foreign matter such as rubbish mixed with the liquid substance S.
  • the liquid substance S from which foreign matter has been removed is sent to the pressurized tank 5 through the pipe 2B.
  • a predetermined positive pressure larger than 1 atm is applied to the surface of the liquid substance S in the pressurized tank 5 from a compressed gas supply mechanism (not shown), and the pressurized tank 5 causes the liquid substance S to be described later by the applied pressure. Feed to syringe.
  • a valve member 6 such as a solenoid valve provided in the middle of the pipe 2C connected to the pressurized tank 5 opens and closes the flow path in the pipe 2C by an electric signal to block the flow of the liquid substance S.
  • the liquid substance S is allowed to pass by opening the flow path in the pipe 2D.
  • the liquid substance S is sent to the bubble removal filter 7 through the pipe 2D.
  • the internal diameters of the pipes 2A to 2D are made uniform so that bubbles do not enter the liquid substance S.
  • the amount of air bubbles mixed in is small compared with that of the liquid material S.
  • the liquid substance S has air bubbles mixed in at each stage, or the air bubbles are combined to form large air bubbles.
  • the bubble removing filter 7 is connected to the pipe 2D in the subsequent stage of the valve member 6 that mechanically opens and closes the liquid substance S in the flow path, and the bubble removing filter The liquid substance S from which bubbles are removed by 7 is supplied to the syringe 8 through the short pipe 2E.
  • the bubble removing filter 7 is preferably disposed in the vicinity of the syringe 8.
  • the pipes 2A to 2E are formed before the flow path is formed.
  • the flow path member is configured.
  • a preferred example of the bubble removal filter 7 will be described with reference to FIG.
  • a conventional bubble removal filter is not shown in the figure, but a large number of fine wires made of a metal, such as stainless steel, that hardly resists are rounded to form a myriad of minute gaps, and a liquid substance is allowed to flow through the numerous countless gaps.
  • the bubbles were removed.
  • the filter structure using the above-mentioned fine wires rounded by a force that the liquid material pushes when passing through the bubble removing filter. Since it is gradually crushed, the thickness of the filter structure by the ultrathin wire gradually decreases.
  • an example of a preferable bubble removing filter 7 of the present invention shown in FIG. 2 has a filter structure in which a plurality of mesh plates each having a predetermined number of minute holes formed therein are arranged substantially in parallel with a small gap.
  • the bubble removal filter 7 shown in FIG. 2 includes a casing 7A connected to the pipe 2D, and the inlet 7B force leading to the pipe 2D is also directed to the outlet 7E in the casing 7A.
  • Mesh plates 7Cl to 7Cn in which numerous micropores (not shown) are formed are arranged at regular intervals.
  • the mesh plates 7Cl to 7Cn are sandwiched between spacers 7D fixed to the bottom portion of the casing portion 7A, and are supported by side walls (not shown) in the front and back directions of the drawing, and push the liquid substance S. It is fixed in such a way that it can hardly be absorbed by force.
  • the distance between the mesh plates 7Cl to 7Cn is, for example, about 500 / z m to about 1 mm.
  • Each of the mesh plates 7Cl to 7Cn has a large number of micro holes each having a diameter of about 2 / zm, for example.
  • a bubble recovery pipe 2X is connected to the upper space K between the inlet 7B and the mesh plate 7C1, and the liquid substance S containing a large amount of bubbles accumulated in the space K is recovered in the storage tank 1. Is done.
  • the liquid substance S that has flowed into the housing 7A is first blocked by the micropores of the mesh plate 7C1 from the majority of bubbles having a diameter force of about ⁇ / zm, and bubbles having a diameter smaller than that are blocked. Only the mixed liquid substance S passes through the cache plate 7C1.
  • the liquid material S in which bubbles with a diameter of about 2 m or more are mixed, has a low specific gravity, so it is pushed by the subsequent liquid material S, moves upward, and reaches the space K. At this time, the force that is blocked by the micro-holes of most bubble cache plates 7C1 of 2 m or more
  • the mesh plates 7C2 to 7Cn prevent passage. Further, not only bubbles but also a plurality of mesh plates can prevent the passage of substances on the gel, fine dust, and the like due to alteration of the resin itself.
  • each mesh plate 7Cl-7Cn In the case where even bubbles of the smallest size are removed by the bubble removal filter 7, the diameter of the micropores of each mesh plate 7Cl-7Cn is further reduced to reduce the amount of liquid substance S used per unit time. Accordingly, the area of each mesh plate 7Cl-7Cn, that is, the number of micro holes in each mesh plate 7Cl-7Cn may be increased.
  • the diameter of the fine holes in the mesh plate located on the inlet 7B side of the bubble removal filter 7 may be larger than the diameter of the fine holes in the mesh plate located on the outlet 7E side.
  • mesh plate 7C1 has many micro holes with a diameter of 10 m
  • mesh plate 7C2 has many micro holes with a diameter of 8 ⁇ m
  • mesh plate 7C3 has micro holes with a diameter of 6 ⁇ m.
  • the mesh plate 7Cn-1 has many micro holes with a diameter force m
  • the last mesh plate 7Cn has many micro holes with a diameter of 2 m.
  • Each of the mesh plates 7C1 to 7Cn may be one in which the diameters of the micropores are sequentially reduced every few sheets along the flow of the liquid substance S. Further, the number of mesh plates 7Cl to 7Cn is arbitrary, and even if there is only one mesh plate, it is sufficient if it is a mesh plate having micropores with a diameter suitable for the size of the bubbles that are finally removed.
  • Outlet 7E of the casing 7A of the bubble removal filter 7E force The surface force to reduce the mixing of bubbles as much as possible is preferable when the flow path to the syringe 8 is shortened as much as possible. Therefore, the bubble removal filter 7 is arranged in the vicinity of the syringe 8 as far as there is no practical problem.
  • the pipe 2E is connected to a pipe member 8A extending downward from the syringe 8, and the pipe member 8A is connected to the pipe 2E.
  • the liquid substance S is injected into the liquid substance S in the syringe 8.
  • the inner wall surface of the syringe 8 is placed in a liquid state by disposing the outlet at the tip of the tube member 8A with a slight gap so as not to contact the inner wall surface of the syringe 8. It can be supplied gently with substance S along.
  • the outflow port is not necessarily required to face the inner wall surface of the syringe 8 and may be disposed in the vicinity of the inner wall surface so that the liquid substance S can be supplied in a state along the inner wall surface. By doing so, when the liquid substance S flows into the liquid substance S in the syringe 8, the mixing of bubbles that avoids disturbing the surface of the liquid substance S in the syringe 8 is avoided.
  • the inner diameter of the pipe 2E and the pipe member 8A is the same, that is, the diameter of the flow path is the same, and there is no step at the joint, and the flow path is smooth. By doing so, bubbles are not mixed at the joint between the pipe 2E and the pipe member 8A. In addition, since there is little pressure loss, it is suitable for constant volume application.
  • the pipe member 8A also constitutes a part of the flow path member.
  • a detection element 9 A of a liquid level detection sensor 9 that detects the liquid level of the liquid substance S stored therein is provided.
  • This detection element 9A is composed of, for example, a normal light emitting element and a light receiving element (not shown), and detects the liquid level of the liquid substance S by the difference in refractive index between the liquid substance S and the gas in the syringe 8. is there.
  • the liquid level detection sensor 9 detects a change in the detection amount of the detection element 9A and sends a signal to the controller 10.
  • the controller 10 When the controller 10 receives a signal from the liquid level detection sensor 9 that the liquid level of the liquid substance S in the syringe 8 has fallen below the detection level, the controller 10 sends a signal to the valve member 6 through the wiring 11. Open part 6 for a specified time. The liquid material S passes through the valve member 6 only for the predetermined time, and the liquid material S, from which bubbles are removed, is supplied into the syringe 8 along with this.
  • the controller 10 increases the atmospheric pressure in the syringe 8 at a high speed to discharge the nozzle 8B force liquid substance S attached to the tip of the syringe 8 or reduce the pressure in the syringe 8. Discharge of liquid material S with nozzle 8B force is stopped at high speed.
  • a valve that mechanically opens and closes the flow path through which the liquid material is fed.
  • a bubble removal filter that removes bubbles larger than the specified size from the liquid material is installed in the flow path downstream of the member, and when the bubbles are removed, the liquid material is supplied into the syringe.
  • the liquid substance is discharged or stopped by controlling the increase or decrease in the pressure inside the syringe without any open / close operation, so the liquid substance S discharged from the nozzle 8B at the tip of the syringe 8 is discharged.
  • the possibility that bubbles exceeding a predetermined diameter are mixed is greatly reduced.
  • FIGS. 3 to 5 a second liquid substance supply device 200 suitable for manufacturing the next generation optical disc will be described with reference to FIGS. 3 to 5, the same symbols as those shown in FIGS. 1 and 2 indicate the same names as those used in these drawings.
  • the air supply tube 12 extends into the syringe 8.
  • the air supply pipe 12 is connected to the pressure device 14 through the switching valve member 13, and supplies or exhausts compressed gas into the syringe 8.
  • the switching valve member 13 is indicated by a positive pressure switching valve 13A and a negative pressure switching valve 13B.
  • the positive pressure switching valve 13A and the negative pressure switching valve 13B do not open at the same time, and operate so that when one is closed, the other is open.
  • the specific configuration of the pressure device 14 is not shown, but it is a circuit force of two systems of positive pressure and negative pressure that can give positive pressure and negative pressure. These two systems are equipped with a general regulator (not shown) that can adjust the pressure level to a desired value.
  • a flexible piping member 15 is attached to the nozzle 8B attached to the tip of the syringe 8, and a discharge nozzle 16 for discharging the liquid substance is attached to the tip of the nozzle 8B.
  • the disk substrate D is placed on the rotating head 18 in the rotation processing device 17 that performs high-speed rotation processing.
  • the air supply pipe 12, the switching valve member 13, the pressure device 14, etc. constitute a pressure applying mechanism.
  • the tip of the discharge nozzle When one disk substrate D is placed on the rotary head 18 by a transfer mechanism (not shown), the vacuum device (not shown) operates. As a result, the disk substrate D is stably held on the rotary head 18 by suction. Since the air pressure clearly changes between the free state before adsorbing the disk substrate D and the state after adsorbing, the coated member detection sensor 19 such as a vacuum switch provided in the suction passage works and wiring Through 20, a signal si indicating that the disk substrate D is placed on the rotary head 18 is sent to the controller 10.
  • the coated member detection sensor 19 such as a vacuum switch provided in the suction passage works and wiring Through 20, a signal si indicating that the disk substrate D is placed on the rotary head 18 is sent to the controller 10.
  • the controller 10 Upon receiving this signal si, the controller 10 immediately sends a signal s2 to the positive pressure switching valve 13A of the switching valve member 13.
  • the positive pressure switching valve 13A is an electromagnetic valve that opens the knob when a current s2 flows when a signal s2 is received. Therefore, when the positive pressure switching valve 13A is opened, a predetermined compressed gas higher than the atmospheric pressure is supplied from the pressure device 14 into the syringe 8 through the air supply pipe 12, and the atmospheric pressure in the syringe 8 suddenly becomes a predetermined positive pressure. Become.
  • FIG. 4A is a diagram for explaining the distal end portion 12A of the air pipe 12 according to an example of the present invention
  • FIG. 4B is a diagram for explaining a general configuration for comparison with the tip portion 12A.
  • the tip surface force gas of the pressure applying tip portion 12A of the air feeding tube 12 is all ejected, the liquid substance S greatly undulates due to the gas jet output, At this time, bubbles of various diameters are mixed into the liquid substance S, from large sized bubbles to small sized bubbles. Therefore, as shown in FIG. 4A, in the present invention, the tip end surface of the pressure applying tip end portion 12A of the air feeding tube 12 is almost closed, and the plurality of holes H are formed substantially uniformly in the cylindrical surface. . It is not necessary to limit the shape of the hole H in various shapes such as round holes, square holes, and long holes.
  • the compressed gas sent from the air supply pipe 12 is applied to the liquid surface of the hole H force liquid substance S. It is ejected in a direction almost parallel to or slightly upward. Therefore, the liquid level of the liquid substance S in the syringe 8 is not substantially affected by the compressed gas ejected from the air supply pipe 12 into the syringe 8, and the liquid level of the liquid substance S does not wave, so that bubbles are not generated. The liquid substance S is not mixed.
  • the liquid substance S in the syringe 8 is discharged onto the disk substrate D through the nozzle 8B, the flexible piping member 15, and the discharge nozzle 16 by this positive pressure.
  • the flow path formed by the nozzle 8B, the flexible piping member 15, and the discharge nozzle 16 is formed by the inner diameter of each of the nozzle 8B, the flexible piping member 15, and the discharge nozzle 16. Therefore, in Embodiment 2, the inner diameters of the nozzle 8B, the flexible piping member 15, and the discharge nozzle 16 are all the same so that the flow path has a constant diameter and is smooth without a step at the joint. Therefore, the possibility that bubbles are mixed before the liquid substance S is discharged from the syringe 8 by the discharge nozzle 16 is extremely low. Because of this, the liquid substance S discharged from the discharge nozzle 16 is temporarily small in size even if bubbles are mixed! Because it only contains bubbles, it has no effect on signal reading.
  • Such a liquid substance S is ejected in a circular shape onto the disk substrate D rotating at a low speed or onto the disk substrate D where the discharge nozzle 16 is stopped by one rotation. Rotates at a high speed and spreads the liquid substance S on the disk substrate D to form a uniform thickness of the resin film.
  • the resin film has a characteristic that can be sufficiently applied to next-generation optical discs.
  • the discharge nozzle 16 is made of a metal material, and when the liquid substance S is discharged from the discharge nozzle 16, an AC or DC voltage is applied between the discharge nozzle 16 and the rotary head 18. By forming the electric field in advance, the amount of bubbles mixed in when the liquid substance S is discharged from the discharge nozzle 16 onto the disk substrate D can be reduced, and a high-quality resin film can be obtained. be able to.
  • the tip of the discharge nozzle 16 preferably has a structure as shown in FIG. 5A.
  • the discharge nozzle 16 Since the discharge nozzle 16 has a connection with the flexible piping member 15 and the like, it must have a certain mechanical strength and therefore a certain thickness. As shown in Fig. 5B, if the tip of the discharge nozzle 16 has a uniform thickness up to the tip surface, the outer diameter of the tip surface 16a of the discharge nozzle 16 is larger by the thickness than the inner diameter. .
  • the liquid substance S discharged from the tip of the discharge nozzle 16 becomes spherical due to the surface tension when the discharge is stopped, and the spherical diameter increases according to the outer diameter of the tip of the discharge nozzle 16.
  • the spherical liquid substance Sp at the tip of the tip becomes a large sphere.
  • the liquid substance S spreads outward from the tip surface 16a of the discharge nozzle 16 and has a spherical shape. Since the liquid substance Sp is formed, the bubbles are mixed into the spherical liquid substance Sp when spreading on the tip surface 16a. After this, the first droplet of the spherical liquid substance Sp discharged from the tip of the discharge nozzle 16 becomes large, so that when it is discharged onto the disk substrate D, the contact area with the disk substrate becomes large. If the air bubbles are likely to be mixed in, the force is adversely affected.
  • the discharge nozzle 16 in the second embodiment has the tapered portion 16B that gradually decreases the outer diameter of the tip surface 16A. This is because there is no problem in mechanical strength even if the tip of the discharge nozzle 16 is thin. It is clear that the outer diameter of the tip surface 16A of the discharge nozzle 16 is smaller than the outer diameter of the tip surface 16a of the general discharge nozzle shown in FIG. In the process of forming the material SP, the area where the liquid material S spreads on the tip surface 16A is smaller than the tip surface 16a, so the amount of bubbles mixed into the liquid material SP is reduced accordingly.
  • the diameter of the spherical liquid substance SP is approximately the same as the inner diameter of the discharge nozzle 16, it is approximately the same as the diameter of the liquid substance that is subsequently discharged from the first drop at the start of discharge. Since it is smaller than the spherical liquid substance Sp, the contact area force with the substrate is reduced and the amount of bubbles mixed in is reduced. In addition, the liquid substance will not sag due to its weight, and the discharge will be better when stopped. Therefore, the uniformity of the coating film thickness is improved.
  • a step may be provided at a position of a predetermined dimension from the tip surface 16A of the discharge nozzle 16 to reduce the outer diameter.
  • the controller 10 normally sends a signal to the positive pressure switching valve 13A when the liquid substance S is discharged for a set time equal to a time corresponding to one rotation of the disk substrate D.
  • the positive pressure switching valve 13A is closed and the negative pressure switching valve 13B is opened, so that the pressure in the syringe 8 is reduced to a negative pressure. Stopped.
  • the decompression state in the syringe 8 is most preferably a state in which the liquid substance S stays almost flat at the tip of the discharge nozzle 16. It is very difficult to adjust the pressure.
  • the positive pressure is in the range of 0.05 to 0.4 MPa
  • the negative pressure is in the range of 0 to 1-30 kPa.
  • the negative pressure part of the pressure device 14 includes a first negative pressure part 14A and a second negative pressure part 14B, and each negative pressure part is a first negative pressure switching valve. 13B1 is connected to the air supply pipe 12 through the second negative pressure switching valve 13B2.
  • the first negative pressure part 14A gives a strong first negative pressure
  • the second negative pressure part 14B gives a second pressure that is weaker than the first negative pressure.
  • the first negative atmospheric pressure is an atmospheric pressure large enough to suck the liquid substance S present at the tip of the discharge nozzle 16 into the discharge nozzle 16. For example, it is in the range of ⁇ 10 to ⁇ 30 kPa.
  • the second atmospheric pressure is a pressure at which the liquid substance S present at the tip of the discharge nozzle 16 is maintained at the tip of the discharge nozzle 16 and is smaller than the first negative pressure, for example, 0 to -5kPa.
  • the controller 10 first sends a signal to the first negative pressure switching valve 13B1 according to the built-in sequence to open the first negative pressure switching valve 13B1 for a predetermined short period of time T1, and the discharge nozzle 16 The liquid substance S is stopped from being discharged at high speed. After the period T1, the controller 10 shuts off the signal to the first negative pressure switching valve 13B1, and simultaneously gives a signal to the second negative pressure switching valve 13B2 to open the second negative pressure switching valve 13B2 and discharge.
  • the liquid substance S present at the tip of the nozzle 16 is maintained in a state of being almost horizontal at the tip of the discharge nozzle 16. This state is maintained until the positive pressure switching valve 13A is next opened.
  • the pressure reduction state By switching the pressure reduction state to two stages in this way, the liquid material S can be discharged from the discharge nozzle 16 at a high speed, and at the same time, the liquid material S can be maintained at the tip of the discharge nozzle 16 in a preferable state.
  • the amount of bubbles mixed in is extremely small, and particularly the liquid material containing no bubbles larger than a predetermined size is coated. Since it can supply to a member, the coating film which does not contain a bubble can be formed.
  • Embodiment 2 In the above, an example of forming a coating film for a next-generation optical disc has been described. However, according to the present invention, it is possible to cope with a liquid having a high viscosity exceeding 500 OcP, such a high viscosity, Even if the liquid substance is mixed with bubbles, the liquid substance can be discharged from the nozzle.
  • the present invention is not limited to adhesives used in next-generation discs and liquid resins for forming cover layers, but also adhesives used in DVDs, liquid greases, photoresist materials used in semiconductor manufacturing processes, and solder pastes. It can be applied to supply of various liquid substances. Further, the detection of the presence or absence of an object to be coated such as a disk substrate may of course be performed by other detection methods such as a general optical sensor using light emission and light reception. The opening / closing control of the valve member 6 may be performed at predetermined intervals according to a sequence.
  • a liquid material supply device that supplies a V-liquid material that does not contain bubbles larger than a predetermined size and that contains a small amount of bubbles to a coated member such as an optical disk substrate, a printed circuit board, or a semiconductor substrate. it can.

Abstract

 気泡の少ない液状物質、特に所定の直径を超える気泡をほとんど含まない液状物質を被塗布部材に供給するために、液状物質供給装置は、液状物質に大気圧よりも高い正の圧力を与える加圧タンクと、前記液状物質を吐出するノズルを有するシリンジと、前記加圧タンクから前記シリンジに前記液状物質を通流させる流路を形成する流路部材とを備える液状物質供給装置であって、前記流路部材の途中に設けられて前記流路を開閉するバルブ部材と、前記シリンジと前記バルブ部材との間における前記流路部材の途中に位置して前記流路部材を流れる前記液状物質から気泡を除去する気泡除去用フィルタと、前記シリンジ内に大気圧よりも高い第1の圧力又はその第1の圧力よりも低い第2の圧力を選択的に与えて、前記ノズルによる前記液状物質の吐出を開始又は停止させる圧力付与機構とを備える。

Description

明 細 書
液状物質供給装置及び液状物質供給方法
技術分野
[0001] 本発明は、接着剤又ははんだペーストなどのような液状物質を光ディスク基板、ある いはプリント基板又は半導体基板などの被塗布部材に供給する液状物質供給装置 及び液状物質供給方法に関する。
本願は、 2006年 1月 25日に出願された特願 2006— 016256号に対し優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 光ディスクのディスク基板同士を接着する液状接着剤、ディスク基板の表面を保護 する榭脂層を形成するための液状榭脂、電子部品の製造工程で使用される液状フ オトレジスト材料又ははんだペーストなど多種類の液状物質を対象部材に供給する 種々の方法及び装置が既に提案されている。例えば、光ディスク、特に DVD (Digit al Versataile Disc)の製造工程では接着剤でディスク基板同士を接着する工程、 あるいはブルーレイディスクと称される次世代光ディスクにあっては光透過用のカバ 一層を形成する液状榭脂を供給する工程、また HD— DVD (High Definition -D igital Versataile Disc)と称される次世代光ディスクでは前記 DVDにおける接着 層よりも力なり薄い接着層でディスク基板同士を接着する工程が求められている。
[0003] このような光ディスクにあっては、接着層ゃ榭脂層に含まれる気泡のサイズが大きな 場合には、光ディスクに記録されている情報を正確に読み出すことができないために 、従来力も液状樹脂の供給工程にぉ 、て液状樹脂から気泡を除去するための脱泡 工程を行って ヽる。既存の DVDでは比較的サイズの大きな気泡まで許容されるので 、現在提案されて!ヽる液状物質の供給方法及び装置では光ディスクの製造に役立つ て ヽるが、次世代光ディスクでは接着層や榭脂層に含まれる気泡のサイズに対する 許容値が厳しいものになっている。例えば、既存の DVDでは接着層ゃ榭脂層に含 まれる気泡の直径の許容値が 100 m程度以下であった力 次世代光ディスクでは 、混入される気泡の直径が大幅に小さいことが要求される。また、次世代光ディスクで は接着層ゃ榭脂層の形成に使用される液状樹脂の粘度が DVDの場合に比べて数 倍程度に高くなつている場合があり、 DVDの製造に使用されている現在の液状物質 供給方法及び装置 (例えば、特許文献 1、 2参照))では、気泡を許容値以下にするこ とが極めて困難であり、次世代光ディスクの製造に対応することができない。
[0004] そこで本発明者は、次世代光ディスクなどの接着層や榭脂層に含まれる気泡のサ ィズを小さくするためには、先ず被塗布部材に供給される液状物質に含まれる気泡 のサイズを小さくしなければならないと考えて種々の実験を行った。その結果、従来 の液状物質供給装置及び方法では特許文献 1の発明に記載されて!ヽるように、液状 物質を被塗布物へ吐出する工程の比較的近い前段階で液状物質を機械的に開閉 することが行われており、このことが液状物質に含まれる気泡の直径を小さくできない 大きな原因の一つであることをつき止めた。この点についてもう少し詳しく述べる。例 えば前掲の特許文献 1に記載されているように、バルブ部材などによって液体吐出口 に通じる流路を開閉して液状物質の供給、停止を行うと、そのときに液状物質中をバ ルブ部材が開閉動作を行うので、液状物質がバルブ部材によって機械的に搔き回さ れることになり、新たに気泡が発生したり、液状物質に混入されている小さいサイズの 気泡同士が一緒になつてより大きなサイズの気泡を形成されることが確認された。特 に、次世代光ディスクにあっては、既存の DVDに比べて粘性の高い接着剤又は液 状榭脂が用いられており、このような粘性の高い液状物質を用いた場合には、気泡を 混入させないで塗布膜を形成するのは困難である。
[0005] また、前掲の特許文献 2に開示されているような塗布システムに限らず、すべての 塗装システムのそれぞれの段階にぉ 、て気泡が非常に発生し易 、ことを確認した。 例えば、特許文献 2では加温タンクにお ヽて接着剤に混入した気泡を除去して!/ヽる 力 その気泡の除去された接着剤が接着剤吐出ヘッドまで供給されるまでの流路に 、その流路を形成する複数の配管部材、複数のポンプ、複数の温度制御タンクなど が存在し、最後に接着剤吐出ヘッドから接着剤が吐出される構造になっている。そし て、接着剤吐出ヘッドにおいては、前掲特許文献 1のように機械的に液状物質の供 給、供給停止を行っている。しかし、接着剤に限らず、流路を流れる液状物質は配管 の継ぎ目、配管の段差、配管部材力 各種のタンクに入る際、各種タンクから配管部 材に出る際、ポンプへの入出の際、配管から接着剤吐出ヘッドに入る際などで、液状 物質に気泡が混入したり、発生することが分力 た。したがって、吐出される接着剤 に含まれる気泡を極力少なくするためには、液状物質の塗布システムの各段階で気 泡の混入を防止し、又は気泡のサイズが大きくならな 、ような注意を払わなければな らない。
特許文献 1:特開 2004— 275859公報
特許文献 2:特開 2001— 067740公報
発明の開示
[0006] 本発明は前述の問題点を解決するために、液状物質の吐出ヘッドとなるシリンジに 近い段階で気泡の除去処理を行い、気泡が除去処理されたばかりの液状物質をシリ ンジ内に供給すると共に、機械的なバルブを使用することなく圧力調整で液状物質 の吐出を制御して、気泡の少ない液状物質を被塗布物に供給している。また、本発 明では、気泡の除去処理を行う気泡除去フィルタの構造、気泡の除去処理後の液状 物質の流路、シリンジの構造、液状物質吐出ノズル、液状物質の吐出段階において も気泡のサイズを小さくするような改良がなされている。
[0007] 第 1の発明は、 液状物質に大気圧よりも高い正の圧力を与える加圧タンクと、前記 液状物質を吐出するノズルを有するシリンジと、備える液状物質供給装置であって、 前記加圧タンクと前記シリンジとの途中に設けられ、前記液状物質の通流を開始また は停止するバルブ部材と、前記シリンジと前記バルブ部材との間に位置して前記液 状物質力 気泡を除去する気泡除去用フィルタと、前記シリンジ内に大気圧よりも高 い正の圧力又は大気圧よりも低い負の圧力を選択的に与えて、前記ノズルによる前 記液状物質の吐出を開始又は停止させる圧力付与機構と、を備える液状物質供給 装置である。
[0008] 前記第 1の発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混 入量が少ない液状物質を被塗布部材に供給する液状物質供給装置を提供できる。
[0009] 第 2の発明は、前記シリンジ内の前記液状物質の液面を検出して第 1の検出信号 を出力する液面検出用センサと、前記第 1の検出信号を入力し、前記シリンジ内の前 記液状物質が設定レベルより少ないことを検出したとき、前記バルブ部材を開く第 1 のコントローラとを更に具備する上記液状物質供給装置である。
[0010] 前記第 2の発明によれば、シリンジ内の液状物質に全く悪影響を与えることなくシリ ンジ内への液状物質の供給開始又は停止を自動的に行うことができ、シリンジ内の 液状物質を常に設定レベル以上に維持することができる。
[0011] 第 3の発明は、前記液状物質が供給される被塗布部材の存在を検出したときに第 2 の検出信号を出力する被塗布部材検出用センサを更に具備し、前記第 1のコント口 ーラは、前記第 2の検出信号を入力したとき、前記圧力付与機構に前記正の圧力を 加える要求信号を出力し、該圧力付与機構は、前記要求信号を入力したとき、前記 正の圧力を前記シリンジ内に与える上記液状物質供給装置である。
[0012] 前記第 3の発明によれば、被塗布部材が所定位置に載置されるときに、自動的に 液状物質を被塗布部材に供給することができる。
[0013] 第 4の発明は、前記シリンジ内の前記設定レベルよりも低い位置に設けられ、前記 バルブ部材経由で前記タンクから供給される前記液状物質を前記シリンジ内へ流出 する流出孔を更に具備する前記液状物質供給装置である。
[0014] 前記第 4の発明によれば、シリンジ内へ液状物質が供給されるときに、気泡の混入 を防ぐことができるので、より気泡の少な 、液状物質を被塗布部材に供給することが できる。
[0015] 第 5の発明は、前記流出孔が、前記シリンジの側壁面近傍に配置された前記液状 物質供給装置である。
[0016] 前記第 5の発明によれば、シリンジ内へ液状物質が供給されるときに、壁面に沿つ て液状物質が静かに注入されるため、気泡の混入を防ぐことができ、より気泡の少な V、液状物質を被塗布部材に供給することができる。
[0017] 第 6の発明は、前記シリンジ内に設けられ、前記圧力付与機構が前記シリンジ内に 正の圧力を与える際に加圧した気体を前記シリンジ内に噴射する圧力付与先端部と 、前記圧力付与先端部に設けられ、前記シリンジ内の前記液状物質の液面に対して 平行又は斜め上方向に向いた小孔とを更に具備する前記液状物質供給装置である
[0018] 前記第 6の発明によれば、シリンジ内へ正の気圧を供給するときに、急激な圧力の 変化によって液状物質の液面が荒れることがないため、気泡が液状物質に混入する ことを防ぐことができ、より気泡の少な 、液状物質を被塗布部材に供給することができ る。
[0019] 第 7の発明は、前記ノズルに一端が接続され、前記ノズルと等しい内径を有するフ レキシブルな配管部材と、該配管部材の他端に接続され、前記ノズルと等しい内径 を有する他のノズルとを更に具備する前記液状物質供給装置である。
[0020] 前記第 7の発明によれば、液状物質を任意の位置に吐出することができ、装置構 成する上での余裕度が大きくなり、使い易い装置を提供できると共に、管部材と前記 他のノズル間で混入される気泡を低減することができるので、より気泡の少な 、液状 物質を被塗布部材に供給できる。
[0021] 第 8の発明は、前記ノズルの先端面の外径が、前記ノズルの先端面以外の外径より も小さ!、前記液状物質供給装置である。
[0022] 前記第 8の発明によれば、前記他のノズルの先端面に形成される液状物質の大き さを小さくすることができるので、基板との接触面積力 、さくなり、気泡の混入を抑制 でき、さらに、前記他のノズルの先端面で液状物質に混入する気泡の量を低減する と共に、吐出される液状物質の均一化をより高めることができる。
[0023] 第 9の発明は、前記他のノズルの先端面の外径力 前記他のノズルの先端面以外 の外径よりも小さ!/ヽ前記液状物質供給装置である。
[0024] 前記第 9の発明によれば、ノズルの先端面に形成される液状物質の大きさを小さく することができるので、基板との接触面積が小さくなり、気泡の混入を抑制でき、さら に、ノズルの先端面で液状物質に混入する気泡の量を低減すると共に、吐出される 液状物質の均一化をより高めることができる。
[0025] 第 10の発明は、前記気泡除去用フィルタの上部に設けられ、前記液状物質を回収 する液状物質回収用配管を更に具備する前記液状物質供給装置である。
[0026] 前記第 10の発明によれば、気泡の混入量が多!、液状物質を効率良く回収しなが ら液状物質を再利用することができる。
[0027] 第 11の発明は、前記気泡除去用フィルタとして、微小孔を有する 1枚以上のメッシ ュ板を具備する前記液状物質供給装置である。 [0028] 前記第 11の発明によれば、仮に液状物質の粘度が大きぐ又は液状物質の流速 が比較的速くても、長い期間にわたって正常に液状物質内の気泡の除去を行うこと ができる。
[0029] 第 12の発明は、前記メッシュ板が 2枚以上あり、前記液状物質の流入側に位置す る前記メッシュ板の前記微小孔の直径が、流出側に位置する前記メッシュ板の前記 微小孔の直径よりも大きい前記液状物質供給装置である。
[0030] 前記第 12の発明によれば、仮に液状物質の粘度が大きぐ又は液状物質の流速 が比較的速くても、長い期間にわたって正常に液状物質内の気泡の除去を行うこと ができる。
[0031] 第 13の発明は、前記圧力付与機構が、前記シリンジに第 1の負圧を付与する第 1 の負圧部と、前記第 1の負圧よりも小さな第 2の負圧を前記シリンジに付与する第 2の 負圧部と、前記液状物質の吐出の停止の際に前記第 1の負圧部に前記第 1の負圧 の付与を指示し、所定の時間の経過後に前記第 1の負圧部に前記第 1の負圧の付 与の停止を指示し、前記第 2の負圧部に前記第 2の負圧の付与を指示する第 2のコ ントローラと、を更に具備する前記液状物質供給装置である。
[0032] 前記第 13の発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混 入量が少ない液状物質を被塗布部材に供給することができるだけでなぐ吐出用ノズ ル先端で液状物質に混入される気泡の量を低減し、かつ被塗布部材に吐出される 液状物質の均一性をより向上させることができる。
[0033] 第 14の発明は、前記液状物質供給装置を有する光ディスク製造装置である。
[0034] 前記第 14の発明によれば、接着剤などに含まれる気泡を極力少なくし、高品質な 光ディスクの製造が可能な光ディスク製造装置を提供することができる。
[0035] また、上記の他にも本願は課題の解決のために以下の発明を提供する。
本願発明は、液状物質に大気圧よりも高い正の圧力を与える加圧タンクと、前記液 状物質を吐出するノズルを有するシリンジと、前記加圧タンクから前記シリンジに前記 液状物質を通流させる流路を形成する流路部材とを備える液状物質供給装置であ つて、前記流路部材の途中に設けられて前記流路を開閉するバルブ部材と、前記シ リンジと前記バルブ部材との間における前記流路部材の途中に位置して前記流路部 材を流れる前記液状物質から気泡を除去する気泡除去用フィルタと、前記シリンジ内 に大気圧よりも高い正の圧力又は大気圧よりも低い負の圧力を選択的に与えて、前 記ノズルによる前記液状物質の吐出を開始又は停止させる圧力付与機構とを備える ことを特徴とする液状物質供給装置を提供する。
[0036] 本願発明は、上記発明にお 、て、前記シリンジ内に存在する前記液状物質の液面 を検出する液面検出用センサを有し、前記液面検出用センサからの検出信号によつ て、前記シリンジ内の前記液状物質が設定レベル以上にあるように前記バルブ部材 の開閉を制御するコントローラを備えることを特徴とする液状物質供給装置を提供す る。
[0037] 本願発明は、上記発明において、前記シリンジから前記液状物質が供給される被 塗布部材の存在を検出する被塗布部材検出用センサを備え、前記コントローラは、 前記被塗布部材検出用センサ力 の検出信号を受けるときに前記圧力付与機構を 動作させ、該圧力付与機構は前記正の圧力を前記シリンジ内に与えることを特徴と する液状物質供給装置を提供する。
[0038] 本願発明は、上記発明において、前記流路部材は先端部に前記液状物質が前記 シリンジ内へ流出する流出孔を備え、その流出孔は、前記シリンジ内において前記 設定レベルよりも低い位置にあり、常時、前記液状物質の水面下にあることを特徴と する液状物質供給装置を提供する。
[0039] 本願発明は、上記発明において、前記流路部材の先端部の前記流出孔は、前記 シリンジの側壁面の近傍に配置されており、前記液状物質が前記シリンジの側壁面 に沿って供給されることを特徴とする液状物質供給装置を提供する。
[0040] 本願発明は、上記発明において、前記圧力付与機構は前記シリンジ内に前記圧力 を与える圧力付与先端部を有し、その圧力付与先端部は前記シリンジ内の前記液状 物質の液面に対して平行な方向に、又は斜め上方向に向 、て 、る小孔を備えて ヽ ることを特徴とする液状物質供給装置を提供する。
[0041] 本願発明は、上記発明にお 、て、前記シリンジの前記ノズルにはフレキシブルな配 管部材の一端が接続され、その配管部材の他端には第 2のノズルが結合され、前記 配管部材と前記第 2のノズルの内径は前記シリンジの前記ノズルの内径に等しいこと を特徴とする液状物質供給装置を提供する。
[0042] 本願発明は、上記発明にお 、て、前記ノズル又は前記第 2のノズルの先端面の外 径は、前記ノズル又は前記第 2のノズルの他部分の外径よりも小さ 、ことを特徴とする 液状物質供給装置を提供する。
[0043] 第 9の発明は、前記第 1の発明ないし前記第 8の発明のいずれかにおいて、前記気 泡除去用フィルタの上部には、液状物質回収用配管が備えられており、前記液状物 質を回収することを特徴とする液状物質供給装置を提供する。
[0044] 本願発明は、上記発明において、前記気泡除去用フィルタは、直径の小さな多数 の微小孔を有する複数のメッシュ板を所定間隔だけ空けて並置してなることを特徴と する液状物質供給装置を提供する。
[0045] 本願発明は、上記発明にお 、て、前記気泡除去用フィルタの前記メッシュ板は、前 記気泡除去用フィルタの流入口側に位置するものが流出口側に位置するものよりも 前記微小孔の直径が大きいことを特徴とする液状物質供給装置を提供する。
[0046] 本願発明は、上記発明にお 、て、前記ノズル又は前記第 2のノズルは金属材料か らなり、これらノズル又は第 2のノズルと前記被塗布部材との間に電界が形成されるこ とを特徴とする液状物質供給装置を提供する。
[0047] 本願発明は、被塗布部材に液状物質を供給する液状物質供給方法にお!ヽて、流 路を供給される前記液状物質を開閉する第 1の工程と、前記流路を供給される前記 液状物質に含まれる気泡を除去する第 2の工程と、気泡の除去処理された前記液状 物質をシリンジ内に供給する第 3の工程と、前記シリンジ内に大気圧よりも高い正の 圧力を与えることによって前記シリンジ力 前記液状物質を前記被塗布部材に供給 する第 4の工程と、大気圧よりも低い負の圧力を前記シリンジ内に与えて前記液状物 質の供給を停止する第 5の工程とを備え、前記第 1の工程力も前記第 5の工程までを 順次行うことを特徴とする液状物質供給方法を提供する。
[0048] 本願発明は、上記発明において、前記液状物質の開閉は、前記シリンジ内におけ る前記液状物質の液面のレベルに応じて、又は一定間隔で行われることを特徴とす る液状物質供給方法を提供する。
[0049] 本願発明は、上記発明において、シリンジ内の前記液状物質を被塗布部材に供給 する液状物質供給方法お!/、て、気泡の除去処理された前記液状物質をシリンジ内 に供給する第 1の工程と、前記シリンジ内に大気圧よりも高い正の圧力を与えることに よって前記シリンジ力 前記液状物質を前記被塗布部材に供給する第 2の工程と、 大気圧よりも低い第 1の負の圧力を前記シリンジ内に与え、設定時間経過後に、前記 第 1の負の圧力よりも高ぐかつ前記正の圧力よりも低い第 2の負の圧力に切り替えて 前記液状物質の供給を停止する第 3の工程と備えることを特徴とする液状物質供給 方法を提供する。
[0050] 本願発明は、上記発明において、前記被塗布部材の存在が検出されるときに、又 は予め決めたシーケンスに従って、前記正の圧力が前記シリンジ内に与えられること によって、前記シリンジが前記液状物質を前記被塗布部材に供給することを特徴と する液状物質供給方法を提供する。
[0051] 上記発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混入量が 少ない液状物質を被塗布部材に供給する液状物質供給装置を提供できる。
[0052] 上記発明によれば、シリンジ内の液状物質に全く悪影響を与えることなくシリンジ内 への液状物質の供給開始又は停止を自動的に行うことができ、シリンジ内の液状物 質を常に設定レベル以上に維持することができる。
[0053] 上記発明によれば、被塗布部材が所定位置に載置されるときに、自動的に液状物 質を被塗布部材に供給することができる。
[0054] 上記発明によれば、シリンジ内へ液状物質が供給されるときに、気泡の混入を防ぐ ことができるので、より気泡の少な 、液状物質を被塗布部材に供給することができる。
[0055] 上記発明によれば、シリンジ内へ液状物質が供給されるときに、壁面に沿って液状 物質が静かに注入されるため、気泡の混入を防ぐことができ、より気泡の少ない液状 物質を被塗布部材に供給することができる。
[0056] 上記発明によれば、シリンジ内へ正の気圧を供給するときに、急激な圧力の変化に よって液状物質の液面が荒れることがないため、気泡が液状物質に混入することを 防ぐことができ、より気泡の少な 、液状物質を被塗布部材に供給することができる。
[0057] 上記発明によれば、液状物質を任意の位置に吐出することができ、装置構成する 上での余裕度が大きくなり、使い易い装置を提供できると共に、管部材と第 2のノズル 間で混入される気泡を低減することができるので、より気泡の少な 、液状物質を被塗 布部材に供給できる。
[0058] 上記発明によれば、ノズルの先端面に形成される液状物質の大きさを小さくするこ とができるので、基板との接触面積力 、さくなり、気泡の混入を抑制でき、さらに、ノズ ルの先端面で液状物質に混入する気泡の量を低減すると共に、吐出される液状物 質の均一化をより高めることができる。
[0059] 上記発明によれば、気泡の混入量が多!、液状物質を効率良く回収することができ るため、液状物質を再利用することができる他、液状物質内の気泡の除去を行うこと ができる。
[0060] 上記発明によれば、仮に液状物質の粘度が大きぐ又は液状物質の流速が比較的 速くても、長い期間にわたって正常に液状物質内の気泡の除去を行うことができる。
[0061] 上記発明によれば、気泡除去がなされる液状物質の処理量を増大することができ、 また有効に気泡処理を行うので、気泡除去フィルタの小型化も可能である。
[0062] 上記発明によれば、吐出用ノズル力 液状物質が被塗布部材に吐出される際に、 液状物質に気泡が混入される量を低減することができる。
[0063] 上記発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混入量が 少ない液状物質を被塗布部材に供給する液状物質供給方法を提供できる。
[0064] 上記発明によれば、シリンジ内の液状物質に全く悪影響を与えることなくシリンジ内 への液状物質の供給開始又は停止を自動的に行うことができ、シリンジ内の液状物 質を常に設定レベル以上に維持する液状物質供給方法を提供できる。
[0065] 上記発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混入量が 少ない液状物質を被塗布部材に供給することができるだけでなぐ吐出用ノズル先 端で液状物質に混入される気泡の量を低減し、かつ被塗布部材に吐出される液状 物質の均一性をより向上させることができる。
[0066] 上記発明によれば、被塗布部材が所定位置に載置されるときに、又はシーケンス に従って自動的に液状物質を被塗布部材に供給することができる。
図面の簡単な説明
[0067] [図 1]図 1は、本発明の実施形態 1に係る液状物質供給装置 100を示す図である。 [図 2]図 2は、本発明に係る液状物質供給装置 100における好ましい気泡除去用フィ ルタの一例を示す図である。
[図 3]図 3は、本発明の実施形態 2に係る液状物質供給装置 200を示す図である。
[図 4A]図 4Aは、本発明に係る液状物質供給装置 200における好ましい気送管の気 圧付与先端部の一例を示す図である。
[図 4B]図 4Bは、本発明に係る液状物質供給装置 200における好ましい気送管の気 圧付与先端部の一般的な構造を示す図である。
[図 5A]図 5Aは、本発明に係る液状物質供給装置 200における好ましい吐出用ノズ ルの先端部の一例を示す図である。
[図 5B]図 5Bは、本発明に係る液状物質供給装置 200における一般的な吐出用ノズ ルの先端部を示す図である。
[図 6]図 6は、本発明に係る液状物質供給装置 200における好ましい減圧機構の一 例を示す図である。
符号の説明
1···貯蔵タンク
2Α〜2Ε···配管
2Χ···気泡回収用配管
3· "ポンプ
4· "フィルタ
5···加圧タンク
6···バルブ部材
7···気泡除去用フィルタ
7Α- · '気泡除去用フィルタ 7の筐体部
7Β- · '気泡除去用フィルタ 7の流入口
7Cl〜7Cn' · '気泡除去用フィルタ 7のメッシュ板
7D- · '気泡除去用フィルタ 7のスぺーサ
7E- · '気泡除去用フィルタ 7の流出口
8·· 'シリンジ 8Α···シリンジ 8の管部材
8Β···シリンジ 8のノズル
8C'.'シリンジ 8の蓋部
9···液面検出用センサ
9Α· · '液面検出用センサ 9の検知素子
9Β- · '液面検出用センサ 9の配線
10· "コントローラ
11··,配線
12··,
12A- · '送気管 12の圧力付与先端部
13···切替バルブ部材
13Α·· '正圧用切替バルブ
13Β···負圧用切替バルブ
13B1 · · '第 1の負圧用切替バルブ
13Β2·· '第 2の負圧用切替バルブ
14 •圧力装置
15 •フレキシブルな配管部材
16 •吐出用ノズル
17
18 • ·回 ヘッド
19 • '被塗布部材検出用センサ
20 • .酉己線
S- ,液状物質
SP ··球状の液状物質
D- 'ディスク基板
発明を実施するための最良の形態
[実施形態 1]
図 1及び図 2によって本発明に係る実施形態 1の第 1の液状物質供給装置 100 ついて説明する。図 1において、貯蔵タンク 1には、通常の脱泡処理が施された液状 物質 Sが収納されている。液状物質 Sは液状の接着剤、あるいは耐擦傷性及び光透 過性に優れた透明膜を形成する液状の榭脂、又は半田ペーストなど様々である。通 常の脱泡処理が施されているとは言え、実際上は微小な気泡を除去しきれず、液状 物質 Sには多くの微小な気泡が混入している。この液状物質 Sは、貯蔵タンク 1に接 続された配管 2Aの途中に設けられているポンプ 3によってフィルタ 4に送られる。フィ ルタ 4は一般的に用 、られて 、るものであり、液状物質 Sに混入されて 、るゴミなどの 異物を除去するものである。異物の除去された液状物質 Sは配管 2Bを通して加圧タ ンク 5に送られる。加圧タンク 5における液状物質 Sの表面には、図示しない圧搾気体 供給機構から 1気圧よりも大きい所定の正圧がかけられており、その加圧力によって 加圧タンク 5は液状物質 Sを後述するシリンジまで給送する。
加圧タンク 5に接続された配管 2Cの途中に設けられた電磁弁のようなバルブ部材 6 は、電気信号によって配管 2C内の流路の開閉を行って、液状物質 Sの流れを遮断し たり、あるいは配管 2D内の流路を開いて液状物質 Sを通過させる。そして、液状物質 Sは配管 2Dを通して気泡除去用フィルタ 7に送られる。貯蔵タンク 1から気泡除去用 フィルタ 7に入るまでの段階でも、液状物質 Sに気泡が混入しないように各配管 2A〜 2Dの内径を均一にし、継ぎ目を極力無くすなどの改良を行っており、従来に比べて 混入される気泡の量は少ないが、し力しそれでも液状物質 Sには、途中の各段階で 気泡が混入したり、あるいは気泡同士が結合して大きなサイズの気泡になっているた めに、極めて微小な気泡から大きなサイズの気泡まで混入している。したがって、この 状態の液状物質 Sを被塗布物に吐出して所望の膜厚の塗膜を形成しても、その塗膜 に所定サイズよりも大きな気泡が含まれてしまい、したがって、配管 2D内の液状物質 Sを吐出しても満足できる塗膜を形成することはできな 、ことが確認されて 、る。この ようなことから、実施形態 1の液状物質供給装置では流路の液状物質 Sを機械的に 開閉するバルブ部材 6の後段における配管 2Dに気泡除去用フィルタ 7を接続し、気 泡除去用フィルタ 7によって気泡が除去された液状物質 Sは短い配管 2Eを通してシ リンジ 8に供給される。気泡の混入を極力避けるために、気泡除去用フィルタ 7はシリ ンジ 8の近傍に配設されるのが好ましい。ここで、配管 2A〜2Eは流路を形成する前 記流路部材を構成する。
[0071] 気泡除去用フィルタ 7の好ましい一例を図 2によって説明する。従来の気泡除去用 フィルタについては図示しないが、ステンレス材料のような鲭びにくい金属からなる極 細線を多数丸めて微小な無数の間隙を形成し、その微小な無数の間隙を通して液 状物質を流し、気泡を除去していた。しかし、このような構造の気泡除去用フィルタで は比較的粘性の高い液状物質の場合に、気泡除去用フィルタを通過するときに液状 物質が押す力によって多数丸められた前記極細線によるフィルタ構造が次第に潰れ て行くので、前記極細線によるフィルタ構造の厚みが次第に薄くなる。これに伴って、 フィルタ構造の微小間隔が更に狭くなり、液状物質が通過し難くなるという問題点が あった。したがって、図 2に示す本発明の好ましい気泡除去用フィルタ 7の一例では、 所定の微小孔が無数に形成されたメッシュ板を僅かな間隙ごとに複数枚ほぼ平行に 並べたフィルタ構造として 、る。
[0072] 図 2に示す気泡除去用フィルタ 7は配管 2Dに接続された筐体部 7Aを備え、筐体 部 7A内には配管 2Dに通ずる流入口 7B力も流出口 7Eに向力つて順に所定の微小 孔(図示しな 、)が無数に形成されたメッシュ板 7Cl〜7Cnが一定間隔で配置されて いる。メッシュ板 7Cl〜7Cnは筐体部 7Aの底部分に固定されているスぺーサ 7Dに 挟まれていると共に、図面の表裏方向における不図示の側壁に支承されており、液 状物質 Sの押す力によってもほとんど橈むことがな 、ように固定されて 、る。メッシュ 板 7Cl〜7Cn相互の間隔は、例えば 500 /z m程度から lmm程度である。メッシュ板 7Cl〜7Cnは、例えばそれぞれ直径が 2 /z m程度の微小孔を多数有している。流入 口 7Bとメッシュ板 7C1との間の上方の空部 Kには、気泡回収用配管 2Xが接続され ており、空部 Kに溜まった気泡を多く含んだ液状物質 Sは貯蔵タンク 1に回収される。
[0073] 筐体部 7A内に流入した液状物質 Sは、先ずメッシュ板 7C1の微小孔によって直径 力^ / z m程度以上の気泡の大部分が通過を阻止され、それよりも直径の小さな気泡 が混入されている液状物質 Sだけカ^ッシュ板 7C1を通過する。直径が 2 m程度以 上の気泡が混入している液状物質 Sは比重が軽くなるから後続の液状物質 Sに押さ れて、上方に移動し、空部 Kに達する。このとき、 2 m以上のほとんどの気泡カ^ツ シュ板 7C1の微小孔によって通過を阻止される力 気泡が通過したとしても、複数の メッシュ板 7C2〜7Cnによって通過を阻止するようにしている。また、気泡のみならず 、複数のメッシュ板によって、榭脂自体の変質によるゲル上物質、微細なゴミなども通 過を阻止することができる。
[0074] したがって、気泡除去用フィルタ 7の筐体部 7Aの流出口 7E力 配管 2Eに流出す る液状物質 Sには、直径が 2 m以上の気泡はほとんどみられない。なお、直径がほ ぼ 2 mを超えるサイズの気泡を含む液状物質 Sは、気泡除去用フィルタ 7内の圧力 によって気泡回収用配管 2Xを通して貯蔵タンク 1内に送られ、再利用される。前述し た各メッシュ板 7Cl〜7Cnに形成される多数の微小孔の直径はあくまでも一例であ つて、メッシュ板 7Cl〜7Cnの大きさ、加圧タンク 5の圧力の大きさ、単位時間当たり の液状物質 Sの使用量などによって決められる。気泡除去用フィルタ 7によって、極 力小さ 、サイズの気泡までも除去した 、場合には、各メッシュ板 7Cl〜7Cnの微小 孔の直径を更に小さくし、液状物質 Sの単位時間当たりの使用量に応じて各メッシュ 板 7Cl〜7Cnの面積、つまり各メッシュ板 7Cl〜7Cnの微小孔の数を増やせばよい
[0075] また、気泡除去用フィルタ 7の流入口 7B側に位置するメッシュ板の微小孔の直径は 流出口 7E側に位置するメッシュ板の微小孔の直径よりも大きくしても構わない。例え ば、メッシュ板 7C1は直径が 10 mの微小孔を多数有し、メッシュ板 7C2は直径が 8 μ mの微小孔を多数有し、また、メッシュ板 7C3は直径が 6 μ mの微小孔を多数有す る。そして、メッシュ板 7Cn— 1は直径力 mの微小孔を多数有し、そして最後段の メッシュ板 7Cnは直径が 2 mの微小孔を多数有する。なお、各メッシュ板 7C1〜7C nは、液状物質 Sの流れに沿って数枚ごとに微小孔の直径が順次小さくなるものであ つてもよい。また、メッシュ板 7Cl〜7Cnの枚数は任意であり、仮にメッシュ板が 1枚で あっても、最終的に除去した 、気泡のサイズに適した直径の微小孔を備えるメッシュ 板ならばよい。
[0076] 気泡除去用フィルタ 7の筐体部 7Aの流出口 7E力 シリンジ 8までの流路をできるだ け短くした方が気泡の混入を極力低減するという面力も好ましいので、気泡除去用フ ィルタ 7は実際上で支障が生じることが無 、範囲でシリンジ 8の近傍に配置される。配 管 2Eはシリンジ 8の下方向まで延びる管部材 8Aに接続され、管部材 8Aは配管 2E 力 の液状物質 Sをシリンジ 8内の液状物質 S内に注入する。好ましくは、図 3に示す ように、管部材 8Aの先端の流出口をシリンジ 8の内壁面に接しない程度に僅かな間 隔を空けた状態で配置させることで、シリンジ 8の内壁面を液状物質 Sが沿うような状 態で静かに供給させることができる。ただし、流出口は、必ずしもシリンジ 8の内壁面 の方向に向いている必要はなぐ液状物質 Sが内壁面を沿うような状態で供給できる 程度に内壁面の近傍に配置されていればよい。このようにすることによって、液状物 質 Sがシリンジ 8内の液状物質 Sに流れ込むときに、シリンジ 8内の液状物質 Sの表面 が乱されることはなぐ気泡の混入が避けられる。また、図示はしないが、配管 2Eと管 部材 8Aとの内径は同一、つまり流路の直径は同一であり、それらの継ぎ目で段差が できずに流路は平滑であることが好ましい。このようにすることによって、配管 2Eと管 部材 8Aとの継ぎ目で気泡が混入されることはない。さらに圧力損失も少ないため、定 量塗布に適している。なお、管部材 8Aも前記流路部材の一部分を構成する。
[0077] シリンジ 8内には、収納されている液状物質 Sの液面を検出する液面検出用センサ 9の検知素子 9Aが備えられている。この検知素子 9Aは、例えば図示しない通常の 発光素子と受光素子とからなり、シリンジ 8内における液状物質 Sと気体との光の屈折 率の差で、液状物質 Sの液面を検知するものである。シリンジ 8内における液状物質 Sの液面が検知レベルよりも下がると、液面検出用センサ 9は検知素子 9Aの検出量 の変化を検知して、信号をコントローラ 10に送出する。そして、コントローラ 10は、シリ ンジ 8内における液状物質 Sの液面が検知レベルよりも下がったという信号を液面検 出用センサ 9から受けるとき、配線 11を通してバルブ部材 6に信号を送ってバルブ部 材 6を所定時間開かせる。その所定時間だけ液状物質 Sはバルブ部材 6を通過し、 それに伴って、気泡の除去処理が行われた液状物質 Sがシリンジ 8内へ供給される。 これら動作については、図 3を用いて後述する。
[0078] 他方、コントローラ 10はシリンジ 8内の気圧を高速で増圧して、シリンジ 8の先端部 に取り付けられているノズル 8B力 液状物質 Sを吐出させ、あるいはシリンジ 8内の気 圧の減圧を高速で行ってノズル 8B力もの液状物質 Sの吐出を停止させる。この点に ついては実施形態 2で具体的に説明を行う。以上の説明から分かるように、実施形態 1の液状物質供給装置では、液状物質が給送される流路の機械的開閉を行うバルブ 部材の後段の流路に、所定のサイズを超える気泡を液状物質から除去する気泡除 去フィルタを設け、その気泡を除去したば力りの液状物質をシリンジ内へ供給し、シリ ンジ内では機械的な開閉を一切行うことなぐシリンジ内の気圧の増減の制御で液状 物質を吐出させ、あるいはその吐出を停止させているので、シリンジ 8の先端部のノズ ル 8Bから吐出される液状物質 Sには所定の直径を超える気泡はほとんど混入されて おらず、このような液状物質で形成された塗膜には所定の直径を超える気泡が混入 される可能性は大幅に低減される。
[0079] [実施形態 2]
次に、図 3〜図 5を用いて次世代光ディスクの製造に適した第 2の液状物質供給装 置 200について説明する。図 3〜図 5において、図 1及び図 2で示した記号と同一の 記号はそれら図で用いた名称と同じ名称を示すものとする。シリンジ 8の蓋部 8Cを通 して、前述の管部材 8A、液面検出用センサ 9の検知素子 9Aに接続されている配線 9Bの他に、シリンジ 8内の気圧を増圧、減圧するための送気管 12がシリンジ 8内に延 びている。送気管 12は切替バルブ部材 13を通して圧力装置 14に接続されており、 シリンジ 8内へ圧縮気体を供給又は排気している。説明を分力り易くするために、切 替バルブ部材 13を正圧用切替バルブ 13 Aと負圧用切替バルブ 13Bとで示している 。正圧用切替バルブ 13Aと負圧用切替バルブ 13Bとは同時に開くことは無ぐいず れか一方が閉じたときに、他方が開いているように動作する。圧力装置 14について は具体的な構成を示さないが、正圧と負圧とを与えることができる正圧、負圧 2系統 の回路力 なる。これら 2系統の回路には気圧の大きさを所望の値に調整できる不図 示の一般的なレギユレータが備えられている。シリンジ 8の先端部に取り付けられてい るノズル 8Bにはフレキシブルな配管部材 15が取り付けられており、その先端には液 状物質を吐出する吐出用ノズル 16が取り付けられている。高速回転処理を行う回転 処理装置 17における回転ヘッド 18上にディスク基板 Dが載置される。なお、送気管 1 2、切替バルブ部材 13、圧力装置 14などは圧力付与機構を構成する。
[0080] 次に、実施形態 2に係る液状物質供給方法及び装置の動作を説明しながら、吐出 ノズルの先端部などの好ま 、具体例につ 、て説明する。 1枚のディスク基板 Dが不 図示の移載機構によって回転ヘッド 18上に載置されると、図示しない真空装置の働 きによってディスク基板 Dは回転ヘッド 18上に安定に吸着保持される。ディスク基板 Dを吸着する前のフリーな状態と、吸着後の状態では気圧が明らかに変化するので、 その吸引通路に設けられている真空スィッチのような被塗布部材検出用センサ 19が 働き、配線 20を通して、回転ヘッド 18上にディスク基板 Dが載置されたことを示す信 号 siをコントローラ 10に送る。コントローラ 10は、この信号 siを受けると直ちに切替バ ルブ部材 13の正圧用切替バルブ 13Aに信号 s2を送る。図示しないが、例えば正圧 用切替バルブ 13Aは信号 s2を受けると、不図示の駆動コイルに電流が流れてノ レ ブを開く電磁バルブである。したがって、正圧用切替バルブ 13Aが開くと、圧力装置 14から大気圧よりも高い所定の圧縮気体が送気管 12を通してシリンジ 8内に供給さ れ、シリンジ 8内の気圧が急激に所定の正圧となる。
ここで、シリンジ 8の蓋部 8Cを通してその中に延びる送気管 12の先端部分の好まし い一例について図 4A及び Bによって説明する。図 4Aは本発明の一例に係る送気管 12の先端部分 12Aを説明するための図であり、図 4Bはそれと比較するための一般 的な構成を説明するための図である。液状物質 Sの供給開始、終了を高速で行うた めには、送気管 12の先端部分である圧力付与先端部 12Aからシリンジ 8内に噴出さ れる単時間当たりの気体の量を多くしなければならないので、当然に気体の噴出力 は大きくなる。したがって、図 4Bに示すように一般的な構成の場合には、送気管 12 の圧力付与先端部 12Aの先端面力 気体がすべて噴出されるので、気体の噴出力 によって液状物質 Sは大きく波打ち、このときに大きなサイズの気泡から小さなサイズ の気泡まで様々な直径の気泡が液状物質 Sに混入される。したがって、図 4Aに示す ように、本発明においては送気管 12の圧力付与先端部 12Aの先端面がほとんど閉 じられており、筒状面に複数の孔 Hがほぼ一様に形成されている。孔 Hは丸孔、角孔 、長孔など様々な形状でよぐ形状を制限する必要はない。孔 Hは液状物質 Sの液面 に対してほぼ平行方向、又は幾分斜め上方に向いているので、送気管 12から送気さ れてくる圧縮気体は孔 H力 液状物質 Sの液面に対してほぼ平行な方向又は幾分斜 め上方に噴出される。したがって、シリンジ 8内の液状物質 Sの液面は送気管 12から シリンジ 8内に噴出される圧縮気体によって実質的に影響を受けず、液状物質 Sの液 面は波打つことがないので、気泡が液状物質 Sに混入されることはない。 [0082] 説明を元に戻すと、シリンジ 8内の液状物質 Sはこの正圧によって、ノズル 8B、フレ キシブルな配管部材 15、及び吐出用ノズル 16を通してディスク基板 D上に吐出され る。ノズル 8B、フレキシブルな配管部材 15、及び吐出用ノズル 16によって形成され る流路は、ノズル 8B、フレキシブルな配管部材 15、及び吐出用ノズル 16それぞれの 内径によって形成される。したがって、実施形態 2では流路が一定の径になり、かつ 継ぎ目で段差を生じずに平滑になるように、ノズル 8B、フレキシブルな配管部材 15、 及び吐出用ノズル 16の内径をすベて同一にしてあるから、液状物質 Sがシリンジ 8内 力も吐出用ノズル 16により吐出されるまでの間に気泡が混入される可能性は極めて 低い。このようになっているので、吐出用ノズル 16から吐出される液状物質 Sは仮に 気泡が混入されて!、てもサイズが極めて小さ!、気泡を含むだけであるので、信号の 読み取りなどに全く影響を与えない。このような液状物質 Sが低速回転しているディス ク基板 D上に、あるいは吐出用ノズル 16が 1回転して止まっているディスク基板 D上 に円形状に吐出され、し力る後に回転ヘッド 18が高速回転して液状物質 Sをディスク 基板 Dに展延して一様な厚さの榭脂膜を形成する。その榭脂膜は次世代光ディスク に十分に対応できる特性を有する。ここで、吐出用ノズル 16を金属材料で構成し、液 状物質 Sが吐出用ノズル 16から吐出される際に、吐出用ノズル 16と回転ヘッド 18と の間に交流又は直流の電圧を印加して電界を形成しておくことによって、液状物質 S が吐出用ノズル 16からディスク基板 D上に吐出される際に混入する気泡の量を低減 することができ、更に高品質の榭脂膜を得ることができる。
[0083] 吐出用ノズル 16の先端部分は図 5Aに示すような構造になっているのが好ましい。
吐出用ノズル 16は、フレキシブルな配管部材 15との結合などがあるので、機械的に ある程度の強度を持って 、なければならず、したがってある程度の厚みを持って 、な ければならない。吐出用ノズル 16の先端部分が図 5Bに示すように、先端面まで一様 な肉厚を有すると、吐出用ノズル 16の先端面 16aの外径は内径に比べて肉厚分だ け大きくなる。吐出用ノズル 16の先端から吐出される液状物質 Sは、吐出停止時に 表面張力によって球状になり、その球状の直径は吐出用ノズル 16の先端の外径に 応じて大きくなるので、吐出用ノズル 16の先端の球状の液状物質 Spは大きな球状に なる。つまり、液状物質 Sが吐出用ノズル 16の先端面 16aを外側に広がって球状の 液状物質 Spが形成されるので、その先端面 16aを広がるときに気泡が球状の液状物 質 Spに混入される。こればかりでなぐ次に球状の液状物質 Spが吐出用ノズル 16の 先端部から吐出される最初の一滴が大きくなるので、ディスク基板 D上に吐出される ときに、ディスク基板との接触面積が大きくなり、気泡が混入し易くなるば力りでなぐ 塗膜の厚みの均一化に悪影響を与える。
[0084] したがって、実施形態 2における吐出用ノズル 16はその先端面 16Aの外径を徐々 に小さくするテーパー部 16Bを有する。吐出用ノズル 16の先端部の肉厚が薄くなつ ていても機械的強度に問題が生じないからである。このテーパー部 16Bによって、吐 出用ノズル 16の先端面 16Aの外径は図 5Bに示す一般的な吐出用ノズルの先端面 16aの外径よりも小さくなることは明らかであり、球形状の液状物質 SPが形成される 過程で、液状物質 Sが先端面 16Aを広がる面積が先端面 16aに比べて小さいので、 その分だけ気泡が液状物質 SPに混入する量は少なくなる。また、球形状の液状物 質 SPの直径が吐出用ノズル 16の内径とほぼ同程度であるので、吐出開始時におけ る最初の一滴が続いて吐出される液状物質の直径とほぼ同程度であり、球状の液状 物質 Spに比べて小さいので、基板との接触面積力 、さくなり、気泡の混入量が少な くなる。さらに、液状物質がその重みで垂れ落ちることがなくなり、また、吐出停止時 の切れが良くなる。したがって、塗膜の膜厚の均一性が良くなる。なお、テーパー部 1 6Bに代えて、吐出用ノズル 16の先端面 16Aから所定寸法の位置に段差を設けて外 径を小さくしても良い。
[0085] 再び説明を元に戻すと、通常、ディスク基板 Dの 1回転分に相当する時間に等しい 設定時間だけ液状物質 Sが吐出された時点で、コントローラ 10は正圧用切替バルブ 13Aへの信号 s2の送出を止めると同時に、負圧用切替バルブ 13Bに信号 s3を送出 する。これに伴って、正圧用切替バルブ 13Aは閉じ、負圧用切替バルブ 13Bが開く ことによってシリンジ 8内の気圧は一気に減圧され、負圧となるので、吐出用ノズル 16 力もの液状物質 Sの吐出が停止される。この際におけるシリンジ 8内の減圧状態は、 吐出用ノズル 16の先端にほぼ平坦に液状物質 Sが留まっている状態が最も好ましい 力 しかし液状物質の吐出の停止の応答性を高速にした上でこのように圧力を調整 することは非常に難しい。減圧を緩やかに行うと、又は減圧が小さいと、液状物質の 吐出の停止の応答性が悪くなつて不必要に液状物質 Sがディスク基板 Dに吐出され たり、液ダレが生じ、好ましい塗膜の形成は不可能になる。また、減圧が強すぎると、 減圧時に液状物質 Sが吐出用ノズル 16の内部まで、更にはフレキシブルな配管部 材 15の途中まで戻ってしまうことがあり、このことは液状物質 Sに気泡が混入する大き な原因になるので避けなければならない。この実施例では、例えば、正圧は 0. 05〜 0. 4MPa、負圧は 0〜一 30kPaの範囲である。
[0086] したがって、実施形態 2では好ましい下記のような減圧方法を採用した。図 6に示す ように、圧力装置 14の負圧部は第 1の負圧部 14A、第 2の負圧部 14Bとからなり、そ れぞれの負圧部は第 1の負圧用切替バルブ 13B1、第 2の負圧用切替バルブ 13B2 を通して送気管 12に接続される。第 1の負圧部 14Aは強い第 1の負の気圧を与え、 第 2の負圧部 14Bは第 1の負の気圧よりも弱い圧力の第 2の気圧を与える。前記第 1 の負の気圧は、吐出用ノズル 16の先端に存在する液状物質 Sを吐出用ノズル 16の 内部に吸い込む程度に大きな気圧である。例えば、— 10〜― 30kPaの範囲である。 前記第 2の気圧は、吐出用ノズル 16の先端に存在する液状物質 Sを吐出用ノズル 1 6の先端に維持する程度の圧力であり、前記第 1の負の気圧よりも小さい気圧、例え ば、 0〜― 5kPa程度である。吐出停止時には、コントローラ 10は、内蔵するシーケン スに従って、先ず第 1の負圧用切替バルブ 13B1に信号を送って所定の短い期間 T 1だけ第 1の負圧用切替バルブ 13B1を開き、吐出用ノズル 16から液状物質 Sが吐 出されるのを高速で停止させる。期間 T1後、コントローラ 10は第 1の負圧用切替バ ルブ 13B1への信号を遮断すると同時に、第 2の負圧用切替バルブ 13B2に信号を 与えて第 2の負圧用切替バルブ 13B2を開き、吐出用ノズル 16の先端に存在する液 状物質 Sを吐出用ノズル 16の先端にほぼ水平に近い状態で維持する。この状態は 次に正圧用切替バルブ 13Aが開かれるまで維持される。このように減圧状態を 2段 に切り替えることによって、吐出用ノズル 16からの液状物質 Sの吐出を高速で行える と同時に、液状物質 Sを吐出用ノズル 16の先端に好ましい状態で維持できる。
[0087] 以上述べたように、本発明の液状物質供給装置及び方法によれば、気泡の混入量 が極めて少な 、、特に所定のサイズよりも大きなサイズの気泡を含まな 、液状物質を 被塗布部材に供給できるので、気泡を含まない塗膜を形成できる。なお、実施形態 2 では次世代光ディスクの塗膜を形成する例につ!ヽて述べたが、本発明によれば 500 OcPを超える粘度の高 、液状物質にも対応することができ、そのような粘度の高 、液 状物質でも気泡の混入して 、な 、液状物質をノズルから吐出することができる。本発 明は次世代ディスクに用いられる接着剤、カバー層形成用の液状樹脂に限ることなく 、 DVDに用いられる接着剤、液状榭脂、あるいは半導体の製造工程で用いられるフ オトレジスト材料、半田ペーストなど様々な液状物質の供給に適用することができる。 また、ディスク基板のような被塗布物の有無の検出は発光及び受光を利用した一般 的な光センサなど他の検出方法でも勿論よい。なお、バルブ部材 6の開閉制御はシ 一ケンスに従って所定の間隔で行ってもよい。
産業上の利用可能性
発明によれば、所定のサイズよりも大きな気泡を含まず、かつ気泡の混入量が少な Vヽ液状物質を光ディスク基板、プリント基板あるいは半導体基板などの被塗布部材に 供給する液状物質供給装置を提供できる。

Claims

請求の範囲
[1] 液状物質に大気圧よりも高い正の圧力を与える加圧タンクと、前記液状物質を吐出 するノズルを有するシリンジと、備える液状物質供給装置であって、
前記加圧タンクと前記シリンジとの間に設けられ、前記液状物質の通流を開始また は停止するバルブ部材と、
前記シリンジと前記バルブ部材との間に位置して前記液状物質力 気泡を除去す る気泡除去用フィルタと、
前記シリンジ内に大気圧よりも高い正の圧力又は大気圧よりも低い負の圧力を選択 的に与えて、前記ノズルによる前記液状物質の吐出を開始又は停止させる圧力付与 機構と、
を備える液状物質供給装置。
[2] 前記シリンジ内の前記液状物質の液面を検出して第 1の検出信号を出力する液面 検出用センサと、
前記第 1の検出信号を入力し、前記シリンジ内の前記液状物質が設定レベルより少 ないことを検出したとき、前記バルブ部材を開く第 1のコントローラと
を更に具備する請求項 1に記載の液状物質供給装置。
[3] 前記液状物質が供給される被塗布部材の存在を検出したときに第 2の検出信号を 出力する被塗布部材検出用センサを更に具備し、
前記第 1のコントローラは、前記第 2の検出信号を入力したとき、前記圧力付与機構 に前記正の圧力を加える要求信号を出力し、
該圧力付与機構は、前記要求信号を入力したとき、前記正の圧力を前記シリンジ 内に与える
請求項 2に記載の液状物質供給装置。
[4] 前記シリンジ内の前記設定レベルよりも低い位置に設けられ、前記バルブ部材経 由で前記タンクから供給される前記液状物質を前記シリンジ内へ流出する流出孔を 更に具備する請求項 2に記載の液状物質供給装置。
[5] 前記流出孔が、前記シリンジの側壁面近傍に配置された請求項 4に記載の液状物 質供給装置。
[6] 前記シリンジ内に設けられ、前記圧力付与機構が前記シリンジ内に正の圧力を与 える際に加圧した気体を前記シリンジ内に噴射する圧力付与先端部と、
前記圧力付与先端部に設けられ、前記シリンジ内の前記液状物質の液面に対して 平行又は斜め上方向に向いた小孔と
を更に具備する請求項 1に記載の液状物質供給装置。
[7] 前記ノズルに一端が接続され、前記ノズルと等 、内径を有するフレキシブルな配 管部材と、
該配管部材の他端に接続され、前記ノズルと等しい内径を有する他のノズルと を更に具備する請求項 1に記載の液状物質供給装置。
[8] 前記ノズルの先端面の外径は、前記ノズルの先端面以外の外径よりも小さい請求 項 1に記載の液状物質供給装置。
[9] 前記他のノズルの先端面の外径は、前記他のノズルの先端面以外の外径よりも小 さ 、請求項 7に記載の液状物質供給装置。
[10] 前記気泡除去用フィルタの上部に設けられ、前記液状物質を回収する液状物質回 収用配管を更に具備する請求項 1に記載の液状物質供給装置。
[11] 前記気泡除去用フィルタとして、微小孔を有する 1枚以上のメッシュ板を具備する請 求項 1に記載の液状物質供給装置。
[12] 前記メッシュ板は 2枚以上あり、
前記液状物質の流入側に位置する前記メッシュ板の前記微小孔の直径は、流出 側に位置する前記メッシュ板の前記微小孔の直径よりも大き 、請求項 11に記載の液 状物質供給装置。
[13] 前記圧力付与機構は、
前記シリンジに第 1の負圧を付与する第 1の負圧部と、
前記第 1の負圧よりも小さな第 2の負圧を前記シリンジに付与する第 2の負圧部と 前記液状物質の吐出の停止の際に前記第 1の負圧部に前記第 1の負圧の付与 を指示し、所定の時間の経過後に前記第 1の負圧部に前記第 1の負圧の付与の停 止を指示し、前記第 2の負圧部に前記第 2の負圧の付与を指示する第 2のコントロー ラと、を更に具備する、
請求項 1に記載の液状物質供給装置。
請求項 1に記載の液状物質供給装置を有する光ディスク製造装置。
PCT/JP2007/051163 2006-01-25 2007-01-25 液状物質供給装置及び液状物質供給方法 WO2007086459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/223,207 US8117981B2 (en) 2006-01-25 2007-01-25 Liquid material supplying apparatus and liquid material supplying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-016256 2006-01-25
JP2006016256A JP4919665B2 (ja) 2006-01-25 2006-01-25 液状物質供給装置

Publications (1)

Publication Number Publication Date
WO2007086459A1 true WO2007086459A1 (ja) 2007-08-02

Family

ID=38309247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051163 WO2007086459A1 (ja) 2006-01-25 2007-01-25 液状物質供給装置及び液状物質供給方法

Country Status (4)

Country Link
US (1) US8117981B2 (ja)
JP (1) JP4919665B2 (ja)
TW (1) TWI338596B (ja)
WO (1) WO2007086459A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745784A (zh) * 2018-06-19 2018-11-06 苏州舍勒智能科技有限公司 一种自动化双液注胶机构
CN113523200A (zh) * 2021-06-10 2021-10-22 罗晔 一种对新能源电机轻质耐用电机壳的加工辅助装置
CN115025945A (zh) * 2021-03-03 2022-09-09 株式会社斯库林集团 供液装置、涂布装置、老化装置及供液方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231028B2 (ja) * 2008-01-21 2013-07-10 東京エレクトロン株式会社 塗布液供給装置
KR101108168B1 (ko) * 2010-03-03 2012-01-31 삼성모바일디스플레이주식회사 액제 정량 도포 장치
KR101337368B1 (ko) 2010-10-27 2013-12-05 엘지디스플레이 주식회사 코팅장치 및 이를 이용한 코팅막 형성방법
KR102021350B1 (ko) * 2011-12-30 2019-09-17 미래나노텍(주) 성형 몰드 충진 조립체 및 이를 구비하는 미세 패턴성형 장치
JP5741549B2 (ja) * 2012-10-09 2015-07-01 東京エレクトロン株式会社 処理液供給方法、処理液供給装置及び記憶媒体
JP6118577B2 (ja) * 2013-02-14 2017-04-19 株式会社Screenホールディングス 基板処理装置
KR102223165B1 (ko) * 2013-03-14 2021-03-03 무사시 엔지니어링 가부시키가이샤 액체 재료 토출 장치, 그 도포 장치 및 도포 방법
TWI625248B (zh) * 2014-06-30 2018-06-01 石井表記股份有限公司 噴墨塗佈液控制裝置
KR102291399B1 (ko) * 2014-07-14 2021-08-23 세메스 주식회사 액 공급 유닛 및 이를 가지는 기판 처리 장치
JP6614755B2 (ja) * 2016-03-18 2019-12-04 株式会社Fuji 粘性流体供給装置
JP6892686B2 (ja) * 2017-12-27 2021-06-23 株式会社日本スペリア社 はんだ塗布装置用ノズル
JP2020068323A (ja) * 2018-10-25 2020-04-30 株式会社ディスコ 保護膜被覆装置
CN117531668B (zh) * 2024-01-10 2024-04-05 泰州衡川新能源材料科技有限公司 一种锂电池隔膜涂覆工序的供料组件及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647918A (en) * 1987-06-30 1989-01-11 Toshio Tokunaga Counter-gravity three-dimensional precise filter device for low viscous fluid using large number of metallic mesh filter plate of various mesh
JPH0227903Y2 (ja) * 1985-12-27 1990-07-26
JPH04115520A (ja) * 1990-09-05 1992-04-16 Tokyo Electron Ltd 液体供給装置
JPH04190873A (ja) * 1990-11-26 1992-07-09 Tokyo Electron Ltd 塗布装置
JPH1190293A (ja) * 1997-09-18 1999-04-06 Dainippon Printing Co Ltd 塗工液容器
JPH11290745A (ja) * 1998-04-07 1999-10-26 Musashi Eng Co Ltd 液体吐出装置および吐出方法
JP2001155985A (ja) * 1999-11-25 2001-06-08 Nec Kyushu Ltd フィルタ装置及びレジスト塗布装置
JP2002175648A (ja) * 2000-12-05 2002-06-21 Dainippon Ink & Chem Inc ディスク製造装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751208A1 (de) * 1977-11-16 1979-05-17 Fichtel & Sachs Ag Luftleitungsanschluss
JPH0227903A (ja) 1988-07-18 1990-01-30 Kubota Ltd トラクタの油圧配管構造
EP0356140B1 (en) * 1988-08-19 1995-01-04 Hitachi Maxell Ltd. Optical data recording medium and manufacturing apparatus and method thereof
JP3259309B2 (ja) * 1992-01-23 2002-02-25 カシオ計算機株式会社 液状樹脂の脱泡方法およびその装置
JP3524212B2 (ja) * 1995-06-06 2004-05-10 ヤマハ発動機株式会社 部品実装システムにおけるディスペンサ
JPH09136052A (ja) * 1995-11-13 1997-05-27 Toray Ind Inc 保護層の形成方法および装置、および光記録媒体の製造方法および装置
JPH10272409A (ja) * 1997-03-31 1998-10-13 Mitsumi Electric Co Ltd 定量吐出装置
JPH11156267A (ja) * 1997-11-28 1999-06-15 Toshiba Corp シール剤脱泡装置、シール剤脱泡方法及びディスペンサ装置
US6029479A (en) * 1998-03-11 2000-02-29 Pattee; Harley J. Fine particle lint filter
JP3445937B2 (ja) * 1998-06-24 2003-09-16 東京エレクトロン株式会社 多段スピン型基板処理システム
US6402821B1 (en) * 1998-08-18 2002-06-11 Tokyo Electron Limited Filter unit and solution treatment unit
US6280291B1 (en) * 1999-02-16 2001-08-28 Speedfam-Ipec Corporation Wafer sensor utilizing hydrodynamic pressure differential
JP4077575B2 (ja) * 1999-03-17 2008-04-16 株式会社名南製作所 板状体の切欠部への接着剤の塗布方法
JP2001067740A (ja) 1999-08-30 2001-03-16 Sony Disc Technology Inc 2層型光ディスクの製造方法及び製造装置
JP2001230191A (ja) * 2000-02-18 2001-08-24 Tokyo Electron Ltd 処理液供給方法及び処理液供給装置
JP2001347210A (ja) * 2000-06-09 2001-12-18 Dainippon Printing Co Ltd ペースト塗布装置
JP2004275859A (ja) 2003-03-14 2004-10-07 Origin Electric Co Ltd 液状物質供給器
US7396512B2 (en) * 2003-11-04 2008-07-08 Drummond Scientific Company Automatic precision non-contact open-loop fluid dispensing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227903Y2 (ja) * 1985-12-27 1990-07-26
JPS647918A (en) * 1987-06-30 1989-01-11 Toshio Tokunaga Counter-gravity three-dimensional precise filter device for low viscous fluid using large number of metallic mesh filter plate of various mesh
JPH04115520A (ja) * 1990-09-05 1992-04-16 Tokyo Electron Ltd 液体供給装置
JPH04190873A (ja) * 1990-11-26 1992-07-09 Tokyo Electron Ltd 塗布装置
JPH1190293A (ja) * 1997-09-18 1999-04-06 Dainippon Printing Co Ltd 塗工液容器
JPH11290745A (ja) * 1998-04-07 1999-10-26 Musashi Eng Co Ltd 液体吐出装置および吐出方法
JP2001155985A (ja) * 1999-11-25 2001-06-08 Nec Kyushu Ltd フィルタ装置及びレジスト塗布装置
JP2002175648A (ja) * 2000-12-05 2002-06-21 Dainippon Ink & Chem Inc ディスク製造装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745784A (zh) * 2018-06-19 2018-11-06 苏州舍勒智能科技有限公司 一种自动化双液注胶机构
CN115025945A (zh) * 2021-03-03 2022-09-09 株式会社斯库林集团 供液装置、涂布装置、老化装置及供液方法
CN113523200A (zh) * 2021-06-10 2021-10-22 罗晔 一种对新能源电机轻质耐用电机壳的加工辅助装置
CN113523200B (zh) * 2021-06-10 2023-10-24 浙江台兴机电科技有限公司 一种对新能源电机轻质耐用电机壳的加工辅助装置

Also Published As

Publication number Publication date
TWI338596B (en) 2011-03-11
US20100229726A1 (en) 2010-09-16
JP4919665B2 (ja) 2012-04-18
US8117981B2 (en) 2012-02-21
TW200812708A (en) 2008-03-16
JP2007196109A (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
WO2007086459A1 (ja) 液状物質供給装置及び液状物質供給方法
JP2005218866A (ja) 微小調量装置
US20090038645A1 (en) Cleaning apparatus, cleaning tank, cleaning method and computer-readable storage medium
US20130033545A1 (en) Liquid discharging nozzle and method for recovering water-repellent layer of the liquid discharging nozzle
JP2000294591A (ja) バンプ形成装置、半導体製造装置、及びバンプ形成方法
JP5947953B2 (ja) 分注装置および分注システム
JP2010083133A (ja) インク回収装置
JP5530968B2 (ja) 流路部品
JP2009226230A (ja) 微小気泡生成装置および微小気泡生成方法
JP2008272996A (ja) インクジェット記録装置
JP5278646B2 (ja) スリットコータおよび塗工方法
JP2010005544A (ja) インクジェット・ヘッドの洗浄方法および装置
JP2008088451A (ja) 成膜方法及び成膜装置
JP2008086846A (ja) 印刷装置
JP2004119075A (ja) 液滴吐出装置、デバイスの製造方法、デバイス及び電子機器
JP7309297B2 (ja) 給液装置、塗布装置、エージング装置、給液方法、およびエージング方法
JP2011031447A (ja) 画像記録装置
CN111825225A (zh) 充气机
KR20230127152A (ko) 액체 토출 장치 및 임프린트 장치
JP5733402B2 (ja) インクタンク、及び該インクタンクを用いたインク撹拌方法
JP7378983B2 (ja) 液体吐出装置
JP4059149B2 (ja) 液滴吐出方法、及び液滴吐出装置
JP2004358414A (ja) 濾過装置および濾過方法
JP2014113804A (ja) 液体供給装置、画像形成装置
WO2006068050A1 (ja) 光ディスク製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12223207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6551/DELNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07713696

Country of ref document: EP

Kind code of ref document: A1