WO2007080904A1 - 感光性組成物、ディスプレイ部材およびその製造方法 - Google Patents

感光性組成物、ディスプレイ部材およびその製造方法 Download PDF

Info

Publication number
WO2007080904A1
WO2007080904A1 PCT/JP2007/050197 JP2007050197W WO2007080904A1 WO 2007080904 A1 WO2007080904 A1 WO 2007080904A1 JP 2007050197 W JP2007050197 W JP 2007050197W WO 2007080904 A1 WO2007080904 A1 WO 2007080904A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
photosensitive composition
light
photosensitive
compound
Prior art date
Application number
PCT/JP2007/050197
Other languages
English (en)
French (fr)
Inventor
Takenori Ueoka
Kazuki Goto
Satoshi Matsuba
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007503726A priority Critical patent/JP5003481B2/ja
Priority to EP07706544A priority patent/EP1980910A4/en
Priority to US12/087,672 priority patent/US20090004597A1/en
Publication of WO2007080904A1 publication Critical patent/WO2007080904A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders

Definitions

  • the present invention relates to a photosensitive composition used for various members of a flat panel display, a fluorescent light emitting device (cold cathode tube) member, and the like. Moreover, it is related with the manufacturing method of a display member using the same, and a display member.
  • an image display device using an electron-emitting device that is a self-luminous discharge type display As an image display device replacing a cathode ray tube, an image display device using an electron-emitting device that is a self-luminous discharge type display has been proposed. Compared to liquid crystal displays and plasma displays, this image display device has a well-balanced superiority because it has a large contrast between light and dark, low power consumption, excellent video performance, and can meet the demands for higher definition. The need for a new display is increasing.
  • electron-emitting devices hot cathode electron-emitting devices and cold cathode electron-emitting devices.
  • Cold cathode electron emission types include field emission type (field emission type), metal Z insulating layer Z metal type (MIM type), and surface conduction type (SED).
  • An image display device using a cold cathode electron-emitting device displays an image by irradiating a phosphor with an electron beam emitted from the electron-emitting device to generate fluorescence.
  • a fluorescent light-emitting device that generates fluorescence based on the same principle and is used as a light source instead of an image display device has been proposed and developed.
  • the CNT field emission display (FED) using carbon nanotubes (CNT) as an electron emission element has an electron emission characteristic of large area. Active development is taking place because it is easy.
  • Such an electron emission type flat image display device and a fluorescent light emitting device include a front glass substrate and a back glass substrate having respective functions.
  • the back glass substrate is provided with a plurality of electron-emitting devices and matrix wiring for connecting these devices. These wirings are installed in the X and Y directions and intersect at the electrode part of the electron-emitting device. In order to insulate the two at this intersection, a patterned insulating film is required. It is important.
  • Patent Document 1 a method of forming an oxide silicon film by a vacuum deposition method, a printing method, a sputtering method, or the like, or applying a photosensitive composition to the entire surface by screen printing and then patterning by ultraviolet exposure.
  • Patent Document 1 a method of forming an oxide silicon film by a vacuum deposition method, a printing method, a sputtering method, or the like, or applying a photosensitive composition to the entire surface by screen printing and then patterning by ultraviolet exposure.
  • a photosensitive composition for forming a member such as an insulating layer for display
  • a photosensitive composition comprising a photosensitive organic component containing a photosensitive monomer, a binder polymer and a photopolymerization initiator, and an inorganic component.
  • Patent Document 2 a photosensitive composition comprising an alkali-soluble polyorganosiloxane oxalate composition, an acid generator, and an inorganic component.
  • a photosensitive composition comprising a photosensitive organic component and an inorganic component containing a photosensitive monomer and a photopolymerization initiator is preferred because it has many variations in material selection and can easily control its performance. Being
  • the photosensitive composition is applied on a substrate, and a pattern is formed by photolithography prescription. And firing. Glasses that can be fired at low temperatures are known to contain many substances that have an effect of lowering the melting point, such as lead oxide, bismuth oxide, and alkali metal oxide (Patent Document 3, Four).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2002-245928 (paragraphs 29-30)
  • Patent Document 2 Japanese Patent Laid-Open No. 11 185601 (Claim 4)
  • Patent Document 3 Japanese Patent Laid-Open No. 10-182185 (Claims 1, 8, 9)
  • Patent Document 4 JP-A-11 323147 (Claim 1, Paragraph 30)
  • the photosensitive composition is required to be fired at a low temperature in order to prevent the substrate from being deformed by heat.
  • the pattern is as small as several meters to several tens of meters, so it is important that fine pattern processing is possible. Become.
  • a force chromium such as a gate electrode is formed on the insulating layer and the partition wall obtained by the firing step.
  • the force formed by using a metal such as this often requires a metal etching step.
  • the photosensitive composition is also required to have etching resistance so as to withstand a strongly acidic etching solution.
  • the present invention relates to a photosensitive composition used for various members of a flat panel display, such as a fluorescent light emitting device (cold cathode tube) member, and the like, which can be fired at a relatively low temperature and has a fine pattern formed by photolithography. It is an object of the present invention to provide a photosensitive composition that can be applied with strength and has resistance to an etching solution used in a metal etching process.
  • the present invention relates to a photosensitive composition containing 50 to 5% by weight of a photosensitive organic component and 50 to 95% by weight of glass powder, and the glass powder is 70 to 85% by weight of BiO in terms of oxide.
  • the present invention also includes a method for producing a display member, which includes a step of applying the photosensitive composition described above on a substrate, an exposure step, a development step, and a baking step in this order.
  • the present invention is a display member in which an insulating layer made of a glass cover is formed on a substrate, the composition of the glass being BiO 70 to 85 wt% in terms of oxide, SiO3 to 15 Heavy
  • the photosensitive composition of the present invention has high storage stability of the composition and can form a fine pattern. Moreover, the member obtained by using the photosensitive composition of the present invention has excellent resistance to strong acid. Further, since it can be fired at a relatively low temperature, the photosensitive composition of the present invention can be suitably used for an insulating layer of a field emission display or an insulating layer of a fluorescent light emitting device.
  • the photosensitive composition of the present invention contains 50 to 5% by weight of a photosensitive organic component and 50 to 95% by weight of glass powder.
  • the content of glass powder in the photosensitive composition is 70 to 95% by weight is more preferred 80 to 90% by weight is even more preferred.
  • the content of the glass powder is 50% by weight or more, the pattern shape at the time of firing can be made preferable, and when it is 95% by weight or less, good photosensitive characteristics can be obtained.
  • the glass powder content exceeds 95% by weight, the production of the photosensitive composition itself becomes difficult.
  • the average particle size of the glass powder used in the present invention is preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 / ⁇ ⁇ , and more preferably 0.1. ⁇ 1 / ⁇ ⁇ .
  • glass powder having an average particle size of 0.1 ⁇ m or more the dispersion stability of the photosensitive composition is improved.
  • glass powder with an average particle size of 5 m or less fine lithographic processing with a thin film is improved.
  • the average particle size of the glass powder is the particle size when the cumulative frequency of the obtained particle size distribution is 50% using the laser diffraction scattering method. When the particles are nano-sized or less and agglomerated, it is preferable to use the value converted by the BET method.
  • the specific surface area is measured by adsorbing an inert gas such as nitrogen gas, that is, nitrogen gas, and then the specific surface area force particle diameter is calculated assuming that the particle is a sphere.
  • the average particle diameter is obtained as an average.
  • the average refractive index of the glass powder to be used is preferably 1.8 or more. More preferably 2.
  • the refractive index of the glass powder is measured using an ellipsometer. Measuring the refractive index at the exposure wavelength is accurate in confirming the effect. It is particularly preferable to measure with light in the wavelength range of 350 to 650 nm. Furthermore, refractive index measurement with i-line (365nm) or g-line (436nm) is preferred.
  • the specific gravity of the glass is preferably 4 or more and 7 or less. 4.5 or more and 6.5 or less is more preferable 5.5 or more 6. 3 or less is more preferable. Within this range, shrinkage during firing can be reduced, and the pattern shape after firing can be made preferable.
  • the specific gravity of the glass powder is measured using the Archimedes method.
  • the thermal expansion coefficient of the glass powder has a value of 70 in the range of 50 to 350 ° C.
  • the glass powder of the photosensitive composition of the present invention is preferably a low soft spot glass in order to enable firing at a relatively low temperature.
  • the component is SiO, Al 2 O
  • borosilicate glass, alkali silicate glass, lead-based glass, bismuth-based glass and the like are included.
  • lead-based glass may be considered a non-acid-lead-based or low-acid-lead-based system because of the possibility of causing environmental pollution.
  • the glass film obtained by firing the photosensitive composition of the present invention is desirably glass that is difficult to dissolve even during the etching process, that is, glass having high etching resistance to acid.
  • Bismuth glass is particularly preferred because it has a high etching resistance to acids.
  • bismuth-based glass is preferable because it can form fine particles and is suitable for fine pattern processing.
  • the firing temperature is 500 ° C or lower, there is an advantage that an inexpensive glass substrate can be used.
  • the low softening point in the present invention means that the thermal softening point temperature of the glass is 350 ° C to 600 ° C, more preferably 400 ° C to 580 ° C, more preferably 450 ° C. ⁇ 500 ° C is preferred.
  • amorphous glass and crystallized glass exist, and both amorphous glass and crystallized glass can be used in the present invention.
  • amorphous glass has the property of crystallizing when heated to the crystallization temperature. Since glass crystals are formed in the crystallized glass from several tens to about 90% by volume, the strength and thermal expansion coefficient can be improved. Using this, it is possible to suppress shrinkage during firing. It is also possible to use already crystallized glass. In the case of crystallized glass, it is desirable to use glass having a crystallization temperature of 550 ° C or lower.
  • the glass used be alkali-free glass.
  • Alkali metals and Al metals Li earth metals such as Na (sodium), Li (lithium), K (potassium), Ba (barium), Ca ( If calcium is included, ion exchange occurs with the glass components in the glass substrate and electrode after firing or after firing, and electrical characteristics are degraded and thermal expansion coefficients are mismatched, causing defects. Therefore, it is not preferable.
  • Zn-B and Bi-Zr glass are preferred, but not limited to this! /.
  • BiO is contained in the range of 70 to 85% by weight.
  • SiO is preferably 3 to 15% by weight. When it is less than 3% by weight, vitrification becomes difficult.
  • the B 2 O content is preferably 5 to 20% by weight. More preferably, it is 7 to 15% by weight. Contains B O
  • ZrO is preferably contained in the range of 0 to 3% by weight, more preferably 0.01 to 2.5%.
  • the glass becomes non-uniform and a residue is generated by acid etching.
  • ZnO is preferably 1 to 10% by weight, more preferably 2 to 5% by weight. If it is less than 1% by weight, the effect of improving the compactness is small. If it exceeds 20% by weight, the baking temperature becomes low, it becomes difficult to control, and the insulation resistance becomes low.
  • a raw material of the glass powder for example, as SiO, potassium feldspar, soda feldspar, kaolin, For example, silica sand, Al O, alumina, aluminum hydroxide, potassium feldspar, soda feldspar
  • Examples of the glass pulverization method include a ball mill, a bead mill, an attractor and a sand mill. Among these, a ball mill and a bead mill are preferably used.
  • the photosensitive composition of the present invention may contain a filler in addition to the glass powder!
  • Specific fillers include SiO, Al O, ZrO, mullite, spinel, magnesia, Z
  • the filler is preferably one that does not melt during sintering.
  • the filler content is preferably less than 20% by volume with respect to the inorganic component in the photosensitive composition. If the content is higher than that, cracks may occur during sintering or sintering may be insufficient.
  • the average particle diameter of the filler is preferably 0.01 ⁇ m to 0.5 ⁇ m, and more preferably 0.01 to 0.05 m.
  • the strength of the fired member can be improved by adding a filler of 0.01 / z m or more, and good photosensitive characteristics can be obtained by using the following filler.
  • the average particle size of the filler after measuring the specific surface area by the BET method using nitrogen gas, the particle is assumed to be a sphere, the particle size is obtained from the specific surface area, and the average particle size is obtained as the number average.
  • the photosensitive organic component may be a negative type that is cured by light or a positive type that is solubilized by light.
  • the photosensitive organic component includes a) an ethylenically unsaturated group-containing compound and a photopolymerization initiator, b) a glycidyl ether compound, and an alicyclic epoxy compound. And group forces of one or more cationically polymerizable compounds and photopowers selected from thione polymerization initiators, c) from quinone diazide compounds, diazo-um compounds and azide compounds One or more selected compounds are preferably used.
  • a (meth) acrylic type is preferred. Methyl acrylate, ethyl acrylate, n-propyl Mouth-pyl acrylate, isopropyl acrylate, n-butyl acrylate, sec butyl acrylate, iso butyl acrylate, tert butyl acrylate, n-pentyl acrylate, allylic acrylate, benzyl acrylate, butoxychelate , Butoxytriethylene glycol acrylate, Cyclohexyl acrylate, 2-Ethyl hexyl acrylate, 2-Hydroxy ethyl acrylate, Ethylene glycol diatalate, Diethylene glycol diatalate, Triethylene glycol diatalate, Polyethylene Glycol diatalylate, dipentaerythritol hexaatalylate, dipentaerythritol monohydroxypentaacrylate, ditrimethylolpropane
  • the content of the ethylenically unsaturated group-containing compound is preferably 50 to 99% by weight, more preferably 60 to 90% by weight, based on the photosensitive organic component. By making it 50% by weight or more, fine pattern processing becomes possible, and by making it 99% by weight or less, the pattern shape after firing can be kept good.
  • the photopolymerization initiator among the components a) is benzophenone, o methyl benzoyl benzoate, 4, 4 bis (dimethylamine) benzophenone, 4, 4 bis (jetylamino) benzophenone, 4, 4-dichroic mouth Benzophenone, thixanthone, 2-methylthioxanthone, 2,4 dimethylthioxanthone, benzoin, benzoin methyl ether, anthraquinone , 2-t-butylanthraquinone, 2-methyl- [4 (methylthio) phenol] 2 morpholino 1 propanone, 2 benzyl 1 2 dimethylamino 1 1 (4 monofluorinophenyl) -butanone, and the like.
  • the photopolymerization initiator is preferably in the range of 0.05 to 50% by weight, more preferably 1 to 35% by weight, based on the photosensitive organic component. Within this range, it is possible to increase the remaining ratio of the exposed area with good sensitivity.
  • the component b) is a group power consisting of a glycidyl ether compound, an alicyclic epoxy compound, and an oxetane compound. Contains agents. Specific examples of the glycidyl ether compound among components b) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A diglycidyl ether, bisphenol hexafluoro.
  • Specific examples of the alicyclic epoxy compound among the components b) include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4 epoxy hexylethyl-8,4 epoxy Cyclohexanecarboxylate, 2- (3,4-epoxycyclohexenole 5,5-spiro 3,4-epoxy) cyclohexane m-di-xane, bis (3,4-epoxycyclohexenole) adipate, Examples thereof include bis (3,4-epoxy hexylmethyl) adipate, bis (3,4-epoxycyclohexyl) ether, bis (3,4-epoxycyclohexyl) jetylsiloxane, and the like.
  • oxetane compound among the components b 2-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benze
  • oxetane compounds such as silicon-modified oxetane compounds.
  • the proportion of the glycidyl ether compound, the alicyclic epoxy compound, and one or more cationically polymerizable compounds selected from the group having oxetane compound power in the photosensitive organic component is 1 -75 wt% is preferred, more preferably 5-35 wt%. By making it within this range, the pattern shape can be kept good.
  • the light-powered thione polymerization initiator among the components b) include aromatic sulfo-sulfate salts such as triphenylsulfo-hexafluorophosphate, and diphenol-deoxy-um.
  • Aromatic ododonium salts such as xafluorophosphate, aromatic odosyl salts, aromatic sulfoxo-um salts, and metasynthetic compounds.
  • the blending amount in the case of using the light power thione polymerization initiator is preferably in the range of 0.01 to 15% by weight in the photosensitive organic component.
  • 9,10 dimethoxy-12-ethyl-anthracene, 9,10-ethoxyanthracene, 2,4-jetylthioxanthone, and the like are also preferably used as photopower thione polymerization accelerators.
  • component c one or more compounds selected from a diazonium compound and an azide compound are preferably used.
  • the quinonediazide compound among the components c) is a compound obtained by diazotizing an aromatic compound having a hydroxyl group at the ortho or para position with respect to the amino group, or a diazo group of benzene or a naphthalene derivative.
  • it refers to a compound obtained by heating a compound having a hydroxyl group in the ortho or para position in an alkaline aqueous solution.
  • the diazo group does not turn on and does not form a salt.
  • benzoquinone diazide sulfonic acid and its derivatives naphthoquinone diazide sulfonic acid and its derivatives, which are usually used in positive PS plates, Wibbon plates, photoresists and the like.
  • 1,2-naphthoquinone 2-diazide 4-sulfonic acid and its derivatives 1,2 naphthoquinone-2 diazido 5-sulfonic acid and its derivatives are preferred!
  • These naphthoquinone diazide compounds may be used by mixing or derivatizing with an alkali-soluble component such as polyhydroxyphenol pyrogallol acetone resin, parahydroxystyrene copolymer, phenol formaldehyde novolac resin, etc. preferable.
  • alkali-soluble component such as polyhydroxyphenol pyrogallol acetone resin, parahydroxystyrene copolymer, phenol formaldehyde novolac resin, etc. preferable.
  • alkali-soluble component such as polyhydroxyphenol pyrogallol acetone resin, parahydroxystyrene copolymer, phenol formaldehyde novolac resin, etc. preferable.
  • alkali-soluble component such as polyhydroxyphenol pyrogallol acetone resin, parahydroxystyrene copolymer, phenol formaldehyde novolac resin, etc. preferable.
  • new derivatives include esters of 1,2-naphthoquinon
  • the proportion of these quinonediazide compounds in the photosensitive organic component is preferably 1% by weight to 96% by weight, and more preferably 3% by weight to 80% by weight.
  • the quinonediazide compound is less than 1% by weight, the change in solvent solubility due to the quinonediazide compound during exposure is reduced, resulting in poor pattern formation.
  • the quinonediazide compound is more than 96% by weight, There may be problems with dispersibility.
  • the diazo-um compound among the components c) includes a condensation product of a diazo monomer and a condensing agent.
  • diazo monomers include 4-diazodiphenylamine, 1 diazo 4-N, N dimethylaminobenzene, 1 diazo 4-N, N jetylaminobenzene, 1 diazo 4 N ethyl ethyl hydroxyethyl.
  • Aminobenzene 1 Diazo 4 N—Methyl-N Hydroxyethylaminobenzene, 1 Diazo 2,5 Diethoxy-4 Monobenzoylaminobenzene, 1 Diazo 4-—N-Benzylaminobenzene, 1-Diazo 4— N, N dimethylaminobenzene, 1 diazo 4 morpholinobenzene and the like.
  • the condensing agent include formaldehyde, acetoaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, and benzaldehyde.
  • water-soluble diazo resin can be obtained by using chlorine ion or tetrachloro-hydrochloric acid, and boron tetrafluoride, hexafluorophosphoric acid, triisopropylnaphthalenesulfonic acid, 4, 4, -By using biphenyldisulfonic acid, 2,5 dimethylbenzenesulfonic acid, 2-trobenzenesulfonic acid, 2-methoxy-4-hydroxy-15-benzoylbenzensulfonic acid, etc., organic solvent-soluble diazo resin can be obtained. .
  • An equimolar reaction product of a diazo-um compound and a hydroxybenzophenone can also be used.
  • the pH should be 7.5 or less so that they do not react to form an azo compound.
  • the diazonium compound is the same as the diazo resin shown above.
  • Hydroxybenzophenones include 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2, -dihydroxy 4,4'-dimethoxybenzophenone, 2,2'-dihydroxy Examples include alkali salts of 4,4'-dimethoxysulfobenzophenone and 2-hydroxy-4 methoxybenzophenone-5-sulfonic acid. In particular, those containing sulfonic acid groups are excellent in stability.
  • the proportion of these diazonium compounds in the photosensitive organic component is preferably 5 to 80% by weight, more preferably 10 to 50% by weight. If the amount of the diazo-um compound is too small, curing may be insufficient, while if it is too large, the storage stability of the composition may be problematic.
  • the azido compound is one having an azide group in the molecule, specifically, 2, 6 dichloro- 4-12 troazide benzene, azido diphenylenolamine, 3 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4,4'-diazidodiphenylamine, 4, and the like.
  • These azide compounds are used alone.
  • the proportion of these azide compounds in the photosensitive organic component is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
  • the photosensitive component may be insufficiently cured, and when it is too large, the stability of the composition may be adversely affected.
  • a) an ethylenically unsaturated group-containing compound and a photo-radical polymerization initiator are included because of the large selection of materials and the ease of controlling the performance based thereon. Preferred.
  • a force-like silsesquioxane may be further added to the components a) to c) whose component forces are also selected.
  • the rugged silsesquioxane may be added to the photosensitive composition as it is, or may be added after reacting with another compound in advance. In the case of reacting with another compound in advance, it is preferable to react with the compound constituting the photosensitive organic component from the viewpoint of increasing the compatibility.
  • the refractive index of the photosensitive organic component is generally in the range of 1.4 to 1.7.
  • the average refractive index of the photosensitive organic component is obtained by the following method. First, for each component, V-block method To measure the refractive index at a desired wavelength. Next, it is determined by adding the respective refractive indexes according to the weight% of the photosensitive organic component. For example, a photosensitive organic component is composed of A (50% by weight) and B (50% by weight), the refractive index of component A at a certain wavelength is 1.46, and the refractive index of component B is 1.
  • a photosensitive organic component is coated on glass and dried, and then directly measured using an ellipsometer. The refractive index is measured accurately at the wavelength used when exposing the photosensitive composition in order to confirm the effect. Since exposure usually uses light in the wavelength range of 350 to 650 nm, it is preferable to measure in this range. Furthermore, refractive index measurement with i-line (365nm) or g-line (436nm) is preferred! /.
  • the average refractive index of the photosensitive organic component and the average refractive index of the glass powder are preferably as close as possible.
  • the refractive index is close, light scattering hardly occurs at the interface between the photosensitive organic component and the glass powder, and fine pattern processing becomes possible when pattern formation is performed using photolithography.
  • the bismuth glass used in the present invention has advantages such as a low firing temperature and high etching resistance, but has an average refractive index of 1. It is difficult to make it less than 8. Therefore, the difference in refractive index between the photosensitive organic component and the glass powder is as large as 0.1 to 1.3. If the refractive index difference is large, light does not reach the inside of the photosensitive composition due to light scattering at the interface between the photosensitive organic component and the glass powder, and it becomes difficult to cure the portion with a large exposure surface force. .
  • the photosensitive organic component contains a compound that absorbs light and emits light having a wavelength longer than the absorbed wavelength (hereinafter referred to as compound (A) t!)!
  • compound (A) t) a compound that absorbs light and emits light having a wavelength longer than the absorbed wavelength
  • Compound (A) absorbs light having a wavelength used for exposure, emits light having a longer wavelength than the absorbed light, and the emitted light cures or solubilizes the photosensitive organic component.
  • Compound (A) suppresses scattering by absorbing ultraviolet rays, and emits long-wave fluorescence from compound (A), which is stronger and more transmissive than ultraviolet rays. .
  • the absorption wavelength range of the compound (A) is more preferably 35 Onm to 380 nm, still more preferably 360 nm to 375 nm, more preferably the wavelength range of 320 to 410 nm.
  • the compound (A) preferably has a maximum absorption wavelength within the above range.
  • the fluorescence emission wavelength region of the compound (A) is preferably a wavelength region force S of 400 to 500 nm, more preferably 400 nm to 450 nm, and further preferably 430 nm to 445 nm.
  • the compound (A) preferably has a maximum emission wavelength within the above range.
  • ultraviolet rays at the time of exposure are effectively absorbed, scattering is suppressed, and fluorescence in the high wavelength range that is more transmissive than the irradiated ultraviolet rays is emitted, so that from the deep part, that is, from the exposure surface. It is possible to cure or dissolve the photosensitive organic component far away.
  • the molar extinction coefficient of the compound (A) is preferably 20000 or more! /.
  • the molar extinction coefficient is preferably 60000 or less. In this range, it is possible to effectively absorb ultraviolet rays, suppress ultraviolet light scattering during exposure, and cure or solubilize photosensitive organic components to a deeper portion.
  • the ultraviolet absorption wavelength, the fluorescence emission wavelength, and the molar extinction coefficient were measured using a spectrofluorometer (F-2500, manufactured by Hitachi, Ltd.) and an ultraviolet-visible spectrophotometer (MultiSpec 1500, Shimadzu Corporation). )).
  • the compound (A) used in the present invention includes a coumarin fluorescent brightener, an oxazole fluorescent brightener, a stilbene fluorescent brightener, an imidazole fluorescent brightener, a triazole fluorescent brightener, etc.
  • Fluorescent whitening agents such as fluorescent whitening agents, imidazolone series, oxocyanine series, methine series, pyridine series, anthrapyridazine series and carbostyril series are preferably used.
  • a coumarin-based fluorescent whitening agent or an oxazole-based fluorescent whitening agent is more preferable because of its good compatibility with the compounds and binder polymers selected from a) to c) contained in the photosensitive organic component. It is used well.
  • a coumarin-based optical brightener is preferable because of its high solubility in polar solvents.
  • the solubility of the compound (A) in the polar solvent is preferably 2 gZl00 g solvent or more, more preferably 50 gZlOOg solvent or more.
  • Coumarin derivatives are especially preferred for their ability to dissolve. These can be used alone or in combination.
  • the coumarin fluorescent whitening agent has a coumarin structure represented by the following formula in the molecule.
  • Ma Specific examples of coumarin-based optical brighteners include 7-Jetyldiamino-4 methyltamarin, 7-Hydroxy-4 methylcoumarin, 7-Ethylamino-4 methylcoumarin, 7-Dimethylamino4 Methyltamarin, 7-Amino-4 Examples include methyl tamarin.
  • the oxazole-based optical brightener has an oxazole ring represented by the following formula in the molecule.
  • the stilbene fluorescent whitening agent has a stilbene structure represented by the following formula in the molecule.
  • stilbene-based optical brightener examples include s-triazine ring substitution of 4,4'-diaminostilbene 2,2 'disulphonic acid, stilbene triazole, imidazole, oxazole substitution, and the like. .
  • the imidazole fluorescent whitening agent has an imidazole structure represented by the following formula in the molecule.
  • the triazole fluorescent whitening agent has a complex 5-membered ring composed of 3 nitrogen atoms and 2 carbon atoms in the molecule.
  • Specific examples of the 5-membered ring include the following rings.
  • the content of the compound (A) in the present invention is preferably 0.1 to 30% by weight with respect to the photosensitive organic component, particularly 2 to 20 for field emission members and fluorescent light emitting device applications. 5% to 15% by weight is more preferred. Within this range, a fine pattern force can be obtained.
  • the photosensitive organic component preferably further has a binder polymer.
  • Additives such as an ultraviolet absorber, a sensitizer, a polymerization inhibitor, a plasticizer, a dispersant, and an antioxidant are added. Can be contained.
  • the noinder polymer examples include acrylic resin, epoxy resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, silicone resin, melamine resin, phenolic resin, cellulose derivative, and polybule.
  • Various polymers such as alcohols can be used, but polymethylmetatalylate, polybutyl petital, polybulal alcohol, ethyl cellulose, (meth) acrylic acid ester copolymer and the like are preferable.
  • the binder polymer has a reactive functional group such as a carboxyl group, a hydroxyl group, and an ethylenically unsaturated double bond from the viewpoint of pattern formation by photosensitivity.
  • the thermal decomposition temperature of the binder polymer is preferably 500 ° C or lower, more preferably 450 ° C or lower, 150 ° C or higher, more preferably 400 ° C or higher.
  • the thermal stability of the photosensitive composition is maintained, and in each step from the step of applying the composition to the pattern cache, Good pattern processing is possible without impairing photosensitivity. If a binder polymer having a thermal decomposition temperature of 500 ° C. or lower is used, cracks, peeling, warping and deformation during the firing process can be prevented.
  • the technique for adjusting the thermal decomposition temperature of the binder polymer can be achieved by selecting the monomer of the copolymerization component.
  • the thermal decomposition temperature of the copolymer can be lowered by using a monomer that is thermally decomposed at a low temperature as a copolymer.
  • the component that thermally decomposes at a low temperature include methyl methacrylate, isobutyl methacrylate, a-methylstyrene, and the like.
  • the thermal decomposition temperature is set at approximately 20 mg with a TG measuring device (TGA-50, manufactured by Shimadzu Corporation), in an air atmosphere with a flow rate of 20 mlZ, at a heating rate of 20 to 0.6 ° CZ.
  • the Tg (glass transition temperature) of the binder polymer is preferably 60 to 100 ° C. More preferably, it is 40-95 degreeC, More preferably, it is 60-90 degreeC.
  • Tg glass transition temperature
  • the tackiness of the paste can be reduced.
  • Tg 100 ° C or less, the adhesion of the paste to the glass substrate can be maintained.
  • Tg exceeds 100 ° C., the possibility of cracking in the turn increases after the film of the photosensitive paste composition is exposed and developed.
  • the glass transition temperature of the Norder polymer can be controlled by the type of monomer to be copolymerized and the content ratio of the monomer constituting the polymer.
  • the glass transition temperature of each monomer homopolymer species constituting the binder polymer can be calculated from the glass transition temperature of the binder polymer according to the following Fox equation.
  • Tg Binder polymer glass transition temperature (absolute temperature)
  • monomers to be copolymerized may be selected according to the Fox formula so that the glass transition temperature of the binder polymer is 60 to 100 ° C., and they may be polymerized to obtain a binder polymer.
  • the Tg of the obtained binder polymer was measured using a DSC-50 type measuring device manufactured by Shimadzu Corporation with a sample weight of 10 mg, heated at a rate of temperature increase of 20 ° CZ under a nitrogen stream.
  • the temperature at which baseline deviation starts is Tg.
  • Examples of the glass transition temperature of each monomer homopolymer include, for example, technical data and polymer data handbooks of monomer manufacturers (published by Baifukan, edited by the Society of Polymer Science (Basic), first published in January 1986). It is described in. For example, methyl methacrylate (105 ° C), methacrylic acid (228 ° C), ethyl acrylate (22 ° C), glycidyl methacrylate (74 ° C), methyl acrylate (10 ° C), styrene ( 100 ° C).
  • the binder polymer used preferably has a weight average molecular weight of 100,000 or less. More preferably, it is 5,000 to 80,000. When the weight average molecular weight is 100,000 or less, the solubility of the developer is maintained, and as a result, a finer pattern can be obtained. Furthermore, since the viscosity of the binder polymer increases in proportion to the weight average molecular weight, in order to reduce the viscosity of the photosensitive composition and maintain the workability in the filtration, degassing and coating processes, U, preferred to lower the weight average molecular weight.
  • the weight average molecular weight of the binder polymer was measured by size exclusion chromatography using tetrahydrofuran as a mobile phase. The column was Shodex KF-803, and the weight average molecular weight was calculated in terms of polystyrene.
  • the binder polymer is obtained by copolymerization of an ethylenically unsaturated double bond-containing compound as described above or by copolymerization. It can be obtained by adding an ethylenically unsaturated group-containing compound having a reactive functional group to a part of the reactive functional group of the binder polymer.
  • a carboxyl group is obtained by a method of adding an epoxy group-containing talato toy compound such as glycidyl metatalylate to a part of the carboxyl group of a binder polymer having an unsaturated carboxylic acid as a copolymer component.
  • a binder polymer having an ethylenically unsaturated double bond a binder polymer having an ethylenically unsaturated double bond.
  • the acid value of such a binder polymer should be 50-140 (mgKOH / g) preferable. By setting the acid value to 140 or less, the development allowable range can be widened, and by setting the acid value to 50 or more, the solubility in the alkali developer in the unexposed area is maintained and a high-definition pattern is obtained. be able to.
  • the acid value is measured by dissolving the binder polymer lg in lOOmL of ethanol and then titrating with 0.1N aqueous potassium hydroxide solution.
  • the double bond density of the binder polymer is preferably 0.1 to 2.5 mmol Zg, and more preferably 0.2 to 1.6 mmol Zg. If the double bond density is less than 0.1 mmolZg, pattern formation by exposure is not sufficient, and film developability is greatly deteriorated due to large film loss. On the other hand, if it exceeds 2.5mmolZg, cracks, peeling and warping will occur in the firing process.
  • the content of the binder polymer in the photosensitive organic component is preferably 1 to 50% by weight based on the photosensitive organic component. More preferably, it is 5 to 40% by weight. By setting the content in the range of 1 to 50% by weight, it is possible to achieve both pattern cache properties and characteristics such as shrinkage during firing.
  • an ultraviolet absorber it is also effective to add an ultraviolet absorber to the photosensitive composition of the present invention.
  • an ultraviolet absorber By adding an ultraviolet absorber, light scattering in the exposure process can be suppressed, and a high aspect ratio, high definition and high resolution pattern can be formed.
  • organic dyes having organic dye power particularly organic dyes having a high UV absorption coefficient in the wavelength range of 350 to 450 nm are preferably used.
  • Organic dyes are preferred because they do not remain in the glass film after firing even when added as an ultraviolet absorber, and the deterioration of the insulating film properties due to the ultraviolet absorber can be reduced.
  • an azo dye or a benzophenone dye is preferable because the absorption wavelength can be easily controlled in a desired wavelength region.
  • the addition amount of the organic dye in the photosensitive organic component is preferably 0.05 to 5% by weight with respect to the photosensitive organic component. More preferably, it is 0.1 to 1% by weight. If it is less than 0.05% by weight, the effect of adding the UV absorber is reduced, and if it exceeds 5% by weight, the insulating film properties after firing are deteriorated.
  • a sensitizer is added to improve sensitivity.
  • Specific examples of the sensitizer include 2,4 ethylthioxanthone, isopropyl thioxanthone, 2,3 bis (4-jetylaminobenzal) cyclopentanone, 2,6 bis (4-dimethylaminobenzal) cyclohexanone. 2, 6 bis (4 dimethylaminobenzal) 4-methylcyclohexanone, Michler's ketone and the like. In the present invention, one or more of these can be used.
  • the Some sensitizers can also be used as photopolymerization initiators.
  • the addition amount is preferably 0.05 to 30% by weight, more preferably 0.1 to 20% by weight, based on the photosensitive component. If the amount of the sensitizer is too small, the effect of improving the photosensitivity is not exhibited, and if the amount of the sensitizer is too large, the residual ratio of the exposed portion may be too small.
  • a polymerization inhibitor examples include hydroquinone, monoesterified hydroquinone, N-trosodiphenylamine, phenothiazine, p-tert-butylcatechol, N phenylnaphthylamine, 2, 6 tert-butyl p Examples include methylphenol, chloranil, pyrogallol and the like.
  • the addition amount is preferably 0.001 to 1% by weight based on the entire composition.
  • a plasticizer or an antioxidant may be added!
  • the plasticizer include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, glycerin and the like.
  • antioxidants include 2,6-di-tert-butyl-p-cresol, butylated hydroxy-sol, 2,6-di-t-4 ethylphenol, 2,2-methylene bis (4-methyl-6-t —Butylphenol), and the like.
  • the addition amount is preferably 0.5 to LO weight% with respect to the entire composition.
  • an antioxidant is added, the addition amount is preferably 0.001 to 1% by weight based on the composition.
  • the photosensitive composition of the present invention can be prepared as follows. A binder polymer as the photosensitive organic component and, if necessary, a) to c) component strength The compound selected, compound (A), various additives, etc. are mixed and then filtered to prepare an organic vehicle. To this, a pretreated glass powder is added if necessary, and homogeneously mixed with a kneader such as a ball mill to prepare a photosensitive composition.
  • a kneader such as a ball mill
  • the viscosity of the photosensitive composition is a force that is appropriately adjusted depending on the addition ratio of inorganic components, thickeners, organic solvents, plasticizers and precipitation inhibitors, etc.
  • the range is 2 to 200 Pa's (Pascal's ) Is preferred.
  • 2 to 5 Pa ′ s is preferable.
  • 50 to 20 OPa's is preferable.
  • OPa's is preferred.
  • Examples of the organic solvent used to adjust the viscosity of the solution include methyl solvate, ethyl solvate, butyl solvate, methyl ethyl ketone, dioxane, acetone, cyclohexanone, cyclopentanone, and isobutyl.
  • Alcohol isopropyl alcohol, 3-methoxy-3-methyl-1-butanol, tetrahydrofuran, dimethyl sulfoxide, y butyrolatathone, bromobenzene, black benzene, dibromobenzene, dichlorobenzene, bromobenzoic acid, black benzoic acid, etc.
  • An organic solvent mixture containing one or more of these is used.
  • the photosensitive composition of the present invention is used in a state where the solvent is volatilized, the organic solvent is not included in the photosensitive organic component when calculating the component ratio or the like.
  • the photosensitive composition of the present invention comprises various members of a flat panel display, a fluorescent light emitting tube.
  • a (cold cathode tube) member it is particularly preferably used as a field emission member represented by an insulating layer of a field emission display.
  • Field emission refers to field emission.
  • Field emission refers to a cathode made of a conductor such as a semiconductor or metal in a vacuum, and an anode is placed in the vicinity of the surface, from the cathode surface toward the cathode. This refers to a physical phenomenon in which electrons are released into a vacuum.
  • the field emission member refers to a member utilizing such field emission. Specific examples include, but are not limited to, field emission displays, liquid crystal display backlights, field emission lamps, scanning electron microscope electron beam sources, and micro vacuum tubes.
  • a glass substrate is preferably used as the substrate.
  • soda lime glass or heat-resistant glass (PD200 manufactured by Asahi Glass Co., Ltd., PP8 manufactured by Nippon Electric Glass Co., Ltd., CS25 manufactured by Saint-Gobain Co., Ltd., CP600V manufactured by Central Glass Co., Ltd.) can be preferably used.
  • Ceramic substrates, metal substrates, semiconductor substrates (A1N, CuW, CuMo, SiC substrates, etc.), and various plastic films can also be used. On these substrates, if necessary, one or more insulators, semiconductors, and conductors, or a combination thereof may be formed. [0099] Next, a method for manufacturing a field emission member will be described by taking a method for manufacturing an insulating layer of a field emission display as an example.
  • a photosensitive composition is applied to the whole or a part of a glass substrate on which an ITO electrode is formed.
  • a coating method general methods such as screen printing, bar coater, roll coater, slit die coater and the like can be used.
  • the coating thickness can be adjusted by selecting the number of coatings, the screen mesh, and the viscosity of the photosensitive composition. In consideration of shrinkage due to drying or baking, the thickness after drying is 5 to: LOO / zm, preferably 5 to It is preferable to apply so as to be 60 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the first and second and subsequent photosensitive compositions may be the same photosensitive composition or different photosensitive compositions. May be. Further, when the photosensitive composition is applied a plurality of times, it is preferable to dry after the first photosensitive composition application and before the second and subsequent photosensitive composition applications. If it does so, the reduction
  • coating can be prevented.
  • the drying temperature and time are preferably 50 to 100 ° C. for 5 to 30 minutes depending on the composition of the photosensitive composition. It is desirable that drying be performed in a convection drying furnace or IR drying furnace.
  • the tack value of the film of the photosensitive composition obtained by drying is preferably 0-4. Within this range, the tackiness of the film of the photosensitive composition is suppressed, and contact exposure can be easily used. If the tack value is outside this range, pinholes may occur in the film of the photosensitive composition, or the photosensitive composition may adhere to the photomask, which may make it difficult to perform contact exposure. When contact exposure can be performed, a higher-precision pattern can be formed than when alignment-type exposure is performed in which a gap is provided between the photosensitive composition film and the photomask. Furthermore, when the tack value is within this range, the labor for cleaning the photomask can be reduced, so that the cost can be reduced. Evaluation of the tack value in the present invention is as described later.
  • the tack value depends on the glass transition temperature of the binder polymer, the molecular weight of the binder polymer, the amount of the organic solvent, the ratio of the inorganic particles in the photosensitive composition, and the like, but is greatly influenced by the glass transition temperature of the binder polymer.
  • the tack value can be kept in the range of 0 to 4.
  • the residual amount of the organic solvent in the photosensitive composition before being subjected to exposure is 3% by weight or less, preferably 1% by weight or less. If it exceeds 3% by weight, the tack value will be poor.
  • a pattern can be formed by exposure and development.
  • the shape of the pattern varies depending on the field emission member, but in the case of the insulating layer of the field emission display, the diameter 3 ⁇ : a circle of LOO m or one side 3 ⁇ : of LOO m It is preferable to form a pattern including a square hole.
  • One side of the circle or square is preferably 3 to 50 111, more preferably 3 to 20 / ⁇ ⁇ . Within this range, the effect of the photosensitive composition can be sufficiently exerted.
  • a mask exposure method using a photomask and a direct drawing exposure method using a laser beam or the like can be used.
  • exposure using a photomask can shorten the exposure time.
  • a stepper exposure machine, a proximity exposure machine or the like can be used as an exposure apparatus in this case.
  • the active light source used includes, for example, visible light, near-ultraviolet light, ultraviolet light, near-infrared light, electron beam, X-ray, and laser light.
  • ultraviolet light is preferred as the light source.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a halogen lamp, or a germicidal lamp can be used.
  • an ultrahigh pressure mercury lamp is suitable.
  • the exposure conditions vary depending on the coating thickness 0.5 to: Use an ultra-high pressure mercury lamp with LOOOWZm 2 output for 0.5 to 30 minutes. In particular, the exposure amount is 0. 05 ⁇ : Shi preferred to perform LjZcm 2 about exposure ⁇ .
  • the wavelength of light used for exposure is preferably 300 to 650, more preferably 350 to 650 ⁇ m, still more preferably 350 to 500 nm, and most preferably 350 to 450 nm.
  • the immersion method is performed by a spray method, a shower method, or a brush method.
  • the shower method is preferable in that uniform development can be realized.
  • the developer flow rate and pressure when developing by the shower method vary depending on the type and concentration of the developer.
  • the flow rate is preferably 50 mlZ to 200 mlZ, more preferably lOOmlZ to 170 mlZ.
  • Pressure is preferably 0.05 MPa to 0.2 MPa lkgZ min The amount of ⁇ 1.6 kgZ is more preferable.
  • As the developer an organic solvent or an aqueous solution in which an organic component in the photosensitive composition can be dissolved or dispersed is used.
  • An aqueous solution containing an organic solvent may be used.
  • the photosensitive composition contains a compound having a functional group such as a carboxyl group, a phenolic hydroxyl group, or a silanol group
  • the photosensitive composition can be developed even in an alkaline aqueous solution.
  • Metal alkaline aqueous solutions such as sodium hydroxide, calcium hydroxide, aqueous sodium carbonate, etc. can be used as the alkaline aqueous solution, but the use of an organic alkaline aqueous solution is preferred because alkali components can be easily removed during firing. .
  • a general amine compound can be used as the organic alkali.
  • the concentration of the alkali component in the aqueous alkali solution is preferably 0.01 to LO weight%, more preferably 0.1 to 5 weight%. If the alkali concentration is too low, the unexposed area is not removed. If the alkali concentration is too high, the pattern area may be peeled off and the exposed area may be corroded.
  • the temperature of the developing solution during development is preferably 20 to 50 ° C. for process control.
  • a surfactant to the developer in order to improve the wettability of the photosensitive composition to the coating film, the uniformity of development, and the reduction of residues.
  • the surfactant various surfactants such as non-one, cation, cation and amphoteric can be used.
  • the nonionic surfactant include polyethylene glycol type and polyhydric alcohol type. Specifically, polyethylene glycol, polyoxyethylene lauryl ether, polyoxyethylene nonyl ether, polyoxyethylene cetyl ether, polyoxyethylene. Examples include stearyl ether and polyoxyethylene glycol ether.
  • Examples of the cation surfactant include higher alcohol sulfates such as sodium lauryl sulfate, aliphatic alcohol phosphates such as sodium cetyl alcohol phosphate, etc.
  • There are alkylaryl sulfonates such as sodium salt of dodecylbenzene sulfonic acid, sulfonates of alkylamide, sulfonates of dibasic fatty acid ester, such as dioctyl sodium sulfosuccinate.
  • polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl aryl ether sulfate, alkyl Examples include lauryl sulfonates.
  • Examples of the cationic surfactant include ammine type and quaternary ammonium salt type.
  • Specific examples of the amine type include polyoxyethylene alkylamine, N alkylpropylamine, N-alkyl polyethylene polyamine and the like.
  • Examples of quaternary ammonium salt types include long-chain primary amine salts, alkyltrimethylammonium salts, dialkyldimethylethylammonium salts, and alkyldimethylammonium salts. is there.
  • amphoteric surfactant for example, a compound such as sodium N-methyl N pentadecylaminoacetate may be contained.
  • the surfactant preferably used in the present invention is a non-one type or a key type surfactant.
  • the addition amount of the surfactant is preferably in the range of 0.01 to 20% by weight, more preferably 0.05 to 10% by weight, and still more preferably 0.1 to 5% by weight. is there. If the addition amount exceeds 20% by weight, the developability may be insufficient. If the addition amount is less than 0.01% by weight, the effect of adding the surfactant may be difficult to express.
  • frequency modulation type ultrasonic treatment power particularly frequency modulation type ultrasonic treatment that is modulated in a wavelength range between 20 and 50 KHz is preferable.
  • Such ultrasonic treatment has a great effect on reducing residues as well as forming fine and uniform patterns.
  • the photosensitive composition of the present invention is formed on the substrate with a thickness of 5 to: LOO / zm, a diameter of 3 to: LOO ⁇ m, or a side of 3 to: LOO ⁇ m.
  • a pattern including a square hole can be formed.
  • the patterned substrate is baked in a baking furnace to burn out the organic components, and at the same time, the glass powder is sintered to form an insulating layer.
  • the firing atmosphere, temperature, and time can be appropriately selected depending on the type of the photosensitive composition and the substrate, and firing is performed in air, nitrogen, hydrogen, or the like. Firing is preferably performed by holding at a temperature of 400 to 600 ° C. for 10 to 60 minutes.
  • the firing furnace a batch-type firing furnace or a belt-type continuous firing furnace can be used.
  • heating at 50 to 300 ° C. may be performed during the above steps for the purpose of drying and preliminary reaction.
  • the thickness of the insulating layer is preferably 30 m or less.
  • the holes formed in the insulating layer are preferably 30 m or less.
  • the gate electrode is formed by the following method. After obtaining an insulating layer in which holes having a desired pattern are formed, a chromium film is uniformly formed thereon by sputtering or vapor deposition. Next, a positive resist is applied to the entire surface of the chrome film by a known coating method such as spin coating or screen printing, and pre-baked with a hot plate or the like. Next, a photomask having a desired pattern is placed on the resist layer, and an etching mask made of a positive resist remaining on the chromium film is formed through ultraviolet irradiation, exposure, and development processes.
  • etching is performed for several minutes with an acidic etchant (second ammonium nitrate: 9 wt% + perchloric acid: 6 wt%, etc.), and the glass substrate force is not covered with the etching mask of the chrome film. Remove the part. Thereafter, the etching mask is peeled off using a stripping solution and washed with water to leave a masked chromium layer and form a gate electrode. At this time, if the insulating layer is weak against the etching solution, the insulating layer is dissolved during the etching process, so that it is necessary that the insulating layer is hardly dissolved in the etching solution.
  • an acidic etchant second ammonium nitrate: 9 wt% + perchloric acid: 6 wt%, etc.
  • the electron-emitting device is formed by the following method.
  • the formation method differs depending on the electron emission source.
  • the electron emission source is a Spindt type metal chip (or microchip) whose main material is molybdenum
  • vapor deposition is preferred.
  • CNT carbon nanotubes
  • the weight average molecular weight of the Norder polymer was measured by size exclusion chromatography using tetrahydrofuran as a mobile phase.
  • the column was Shodex KF-803, and the weight average molecular weight was calculated in terms of polystyrene.
  • the acid value of the binder polymer was determined by dissolving the binder polymer lg in ethanol lOOmL and then titrating with 0.1N aqueous potassium hydroxide solution.
  • the viscosity of the binder polymer was measured with a rotational viscometer (RVDVII +, manufactured by Brookfield) at a temperature of 25 ⁇ 0.1 ° C, a rotational speed of 10 rpm, and a viscosity 5 minutes after the start of measurement. It was.
  • the thermal decomposition temperature of the binder polymer is set to about 20 mg with a TG measuring device (TGA-50, manufactured by Shimadzu Corporation), and the temperature rise rate is 10 ° CZ in an air atmosphere with a flow rate of 20 mlZ. Increase the temperature to 700 ° C in minutes.
  • TGA-50 manufactured by Shimadzu Corporation
  • a chart plotting the relationship between temperature (vertical axis) and weight change (horizontal axis) was printed, the tangent line between the part before decomposition and the part during decomposition was drawn, and the temperature at the intersection was taken as the thermal decomposition temperature.
  • Tg glass transition point
  • the thermal softening temperature of the glass powder was set in a platinum cell, and using a differential thermal analyzer (TG8 120, manufactured by Rigaku Corporation), the room temperature power was raised to 700 ° C by 20 ° CZ. Differential thermal analysis was performed at a speed, and the temperature at which the endotherm was completed after passing through the minimum point of the endothermic portion that appeared first was defined as the soft spot (Ts).
  • Ts soft spot
  • the average particle size of the glass powder was measured using a laser diffraction scattering measurement device (Microtrac particle size distribution meter HRA, manufactured by Nikkiso Co., Ltd.). Specific gravity was measured using the Archimedes method with the glass covered to a size of about 5 ⁇ 5 ⁇ 5 mm.
  • the refractive index of the glass powder was measured for light having a wavelength of 436 nm at 25 ° C by ellipsometry using an ellipsometer after a glass film was formed on quartz glass.
  • the tack value of the photosensitive composition film was measured as follows.
  • the photosensitive composition was applied uniformly and partially on the glass substrate using screen printing, and then dried in a hot air oven to form a film of the photosensitive composition. Drying in a hot air oven was performed at 85 ° C for 20 minutes.
  • the size of the substrate to be evaluated is a size that can be used in the tilting ball tacking device described in JIS Z 0237 (2000). In the evaluation, 30 ° was used as the inclination angle.
  • the tack value of the composition was set to 0. Even when the ball was the smallest, it was set to 0. A glass plate of the same thickness was placed so that there was no difference in level from the glass coated with the composition, and a PET film with a thickness of 20 m was applied on top of it, and a black screen was used to prevent the composition from being exposed to light. Measurements were made in
  • glycidyl metatalylate (GMA)
  • carboxyl group of a copolymer consisting of 30 parts by weight of methyl acrylate, 40 parts by weight of ethyl acrylate, and 30 parts by weight of metatalic acid.
  • the polymer has a weight average molecular weight of 17000, an acid value of 100 mgKOHZg, a double bond density of 1.5 mmolZg, and a viscosity of 8.2 Pa's.
  • the thermal decomposition temperature was 390 ° C and Tg was 25 ° C.
  • glycidyl metatalylate (GMA)
  • carboxyl group of the copolymer consisting of 40 parts by weight methyl methacrylate, 30 parts by weight ethyl acrylate, and 30 parts by weight metatalic acid.
  • the polymer has a weight average molecular weight of 18000, an acid value of lllmgKOHZg, a double bond density of 1.4 mmolZg, and a viscosity of 13.4 Pa's.
  • the thermal decomposition temperature was 422 ° C and Tg was 38 ° C.
  • GMA glycidyl metatalylate
  • the polymer has a weight average molecular weight of 16000, an acid value of 105 mgKOHZg, a double bond density of 2.5 mmolZg, and a viscosity of 11.2 Pa's.
  • the thermal decomposition temperature was 430 ° C and Tg was 74 ° C.
  • This glass powder has a heat softening temperature of 509 ° C, an average particle size of 0.5 / ⁇ ⁇ , and a specific gravity of 5.86 g.
  • Glass powders include Bi 2 O (77 wt%), SiO 2 (6.7 wt%), B 2 O (10 wt%), ZrO (
  • the glass powder had a heat softening temperature of 493 ° C., an average particle size of 0.5 / ⁇ ⁇ , a specific gravity of 6. Og / cm 3 , and a refractive index (n) of 2.2.
  • This glass powder has a heat softening temperature of 493 ° C, an average particle size of 0.5 / ⁇ ⁇ , and a specific gravity of 6. lg.
  • Glass powders include BiO (67 wt%), SiO (7.6 wt%), B2O (13.7 wt%), Zr
  • Glass powder having a composition of O (0% by weight), ZnO (8.0% by weight), and A1 0 (3.2% by weight) was used.
  • the glass powder had a heat softening temperature of 534 ° C., an average particle diameter of 1.4 / ⁇ ⁇ , a specific gravity of 5.4 g / cm 3 , and a refractive index (n) of 1.98.
  • Glass powders are BiO (67 wt%), SiO (9.7 wt%), BO (11.5 wt%), Zr Glass powder with a composition of O (3.3 wt%), ZnO (3.8 wt%), and A10 (4 wt%) was used.
  • This glass powder had a heat softening temperature of 529 ° C., an average particle diameter of 0.5 / ⁇ ⁇ , a specific gravity of 5.33 g / cm 3 , and a refractive index (n) of 1.95.
  • This glass powder had a heat softening temperature of 590 ° C., an average particle size of 1.6 / ⁇ ⁇ , a specific gravity of 5. Og / cm 3 , and a refractive index (n) of 1.95.
  • Inorganic powders are PbO (70 wt%), SiO (13 wt%), Al 2 O (3 wt%), B 2 O (10
  • This glass powder had a heat softening temperature of 590 ° C., an average particle size of 1.2 / ⁇ ⁇ , and a refractive index ( ⁇ ) of 2.1.
  • the thermal softening temperature of the powder was 462 ° C., the average particle diameter was 0.5 / ⁇ ⁇ , the specific gravity was 6 gZcm 3 , and the refractive index) g was 2.31.
  • Ceramics Alumina particles with an average particle size of 37nm (Chi Kasei Co., Ltd., trade name Nanotech)
  • the average particle size after measuring the specific surface area by the BET method using nitrogen gas, the particle size was obtained from the specific surface area assuming that the particles were spheres, and the average particle size was obtained as the number average.
  • Silica Silica particles with an average particle size of 12 nm (Nippon Aerosil Co., Ltd., trade name: Aerosil 200), the average particle size is measured by the BET method using nitrogen gas, and the particle is assumed to be a sphere. The particle diameter was determined from the specific surface area, and the average particle diameter was determined as the number average.
  • Oxazole derivatives (trade name: Kayalight O, manufactured by Nippon Kayaku Co., Ltd.)
  • the maximum absorption wavelength of ultraviolet light in a 3-methoxy-3-methyl-1-butanol solution was 374 nm, and the maximum emission wavelength of fluorescence was 436 nm.
  • the compound that absorbs the exposure wavelength to the photosensitive organic component, emits light having a wavelength longer than the exposure wavelength, and the emitted light hardens or dissolves the photosensitive organic component is compound (A). Is written.
  • a photosensitive organic component 7 parts by weight of an acrylic monomer (Carad (registered trademark) TPA-330, manufactured by Nippon Kayaku Co., Ltd.) that is an ethylenically unsaturated group-containing compound, and 7% of the above binder polymer I are used.
  • an acrylic monomer Carad (registered trademark) TPA-330, manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 ethylenically unsaturated group-containing compound
  • the above photosensitive composition was uniformly applied on a glass substrate using screen printing, dried by holding at 80 ° C for 15 minutes, and a layer of the photosensitive composition having a thickness of 20 m was formed. .
  • the tack value was 6 or 8 for all 10 samples.
  • the refractive index (n) of the photosensitive organic component is mixed with only the photosensitive organic component and applied to the substrate.
  • the substrate after the formation of the no-turn was observed with an optical microscope, and the proportion of the corresponding via pattern formed in 100 mask via patterns was evaluated as the via processing rate (%).
  • 100 via patterns were formed in both 20 / ⁇ ⁇ and 30 m, and the via processing rate was 100%.
  • the substrate after patterning was heated to the vicinity of the softening point of the glass powder at a rate of 4 ° C / min and baked by holding for 20 minutes.
  • a chromium film having a thickness of lOOnm was formed on the patterned substrate after firing by sputtering.
  • a positive type photoresist HAZ Electronic Materials Co., Ltd., trade name AZ1500
  • beta coating was performed at 100 ° C. for 1 minute.
  • the photoresist film thickness was 1.5 ⁇ m.
  • UV exposure was performed with an ultrahigh pressure mercury lamp with 0.5 kw output from the top surface. did. Exposure was found to be 1 OOmjZcm 2.
  • the resist developer (trade name AZ400K, manufactured by AZ Electronic Materials Co., Ltd.) maintained at 25 ° C was immersed for 60 seconds and developed by shaking. Thereafter, the resist pattern was obtained by washing with pure water for 30 seconds and performing post-beta for 120 ° C for 2 minutes.
  • a chromium etching solution prepared with a composition of secondary ammonium cerium nitrate 9wt%, perchloric acid 6wt% and pure water 85wt% was maintained at 25 ° C, and the pattern-forming substrate 18 After immersing for 0 seconds to etch the chromium film, it was washed pure. Further, the resist was removed by washing with acetone.
  • a photosensitive composition was prepared in the same manner as in Example 1 except that the compositions described in Tables 1 and 2 were used, and evaluated for non-turn cache property, presence of cracks after development, etching solution resistance, and tack value. .
  • the ultraviolet light absorber in Example 1 was changed to 4, 4, -dimethylaminoazobenzene (azo organic dye: Wako Pure Chemical Industries, Ltd.), and the amounts of acrylic monomer, binder polymer, and glass powder are shown in Table 1.
  • a photosensitive composition was prepared in the same manner as in Example 1 except that the amount was changed, and the pattern processability was evaluated.
  • the amount of glass powder was 90 parts by weight, and even when the content was high relative to the photosensitive organic component, both 20 ⁇ m and 30 m had high beer erection rates. The results are shown in Table 1.
  • a photosensitive composition was prepared in the same manner as in Example 1 except that the amount of the acrylic monomer, binder polymer, and glass powder not changed in Example 1 was changed to the amount shown in Table 1. The pattern processability was evaluated. The results are shown in Table 1.
  • the photosensitive composition of the present invention has high storage stability of the composition and can form a good fine pattern. Moreover, the member obtained by using the photosensitive composition of the present invention has excellent resistance to strong acid. In addition, since the photosensitive composition of the present invention can be fired at a relatively low temperature, the insulating composition of the field emission display or the insulating material of the fluorescent light emitting device is used. It can be suitably used for the layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Glass Compositions (AREA)
  • Materials For Photolithography (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)

Abstract

 感光性有機成分50~5重量%およびガラス粉末50~95重量%を含有する感光性組成物であって、該ガラス粉末が酸化物換算表記でBi2O370~85重量%、SiO23~15重量%、B2O35~20重量%、ZrO20~3重量%およびZnO 1~10重量%を含む感光性組成物。フラットパネルディスプレイの各種部材や蛍光発光管などに用いられるフォトリソグラフィー処方による微細パターン加工を可能とする感光性組成物を提供する。

Description

明 細 書
感光性組成物、ディスプレイ部材およびその製造方法
技術分野
[0001] 本発明は、フラットパネルディスプレイの各種部材や、蛍光発光装置 (冷陰極管)部 材などに用いられる感光性組成物に関する。また、それを用いたディスプレイ部材の 製造方法およびディスプレイ部材に関する。
背景技術
[0002] ブラウン管に換わる画像表示装置として、自発光型の放電型ディスプレイである電 子放出素子を用いた画像表示装置が提案されている。この画像表示装置は、液晶 ディスプレイやプラズマディスプレイに比べ、明暗のコントラストが大きい、低消費電 力、動画性能に優れる、および、高精細化の要求にも応えうることから、バランスのと れた優れたディスプレイとしてそのニーズが高まりつつある。電子放出素子としては、 大別して熱陰極電子放出素子と冷陰極電子放出素子の 2種類が知られて 、る。冷 陰極電子放出型には、電界放出型 (フィールドェミッション型)、金属 Z絶縁層 Z金 属型 (MIM型)や表面伝導型 (SED)などがある。冷陰極電子放出素子を用いた画 像表示装置は、電子放出素子から放出される電子ビームを蛍光体に照射して蛍光を 発生させることで画像を表示する。また、同様の原理で蛍光を発生させて、画像表示 装置ではなく光源として用いる蛍光発光装置としての用途も提案され、開発が行われ ている。このような電子放出型平面画像表示装置および蛍光発光装置のなかでも、 カーボンナノチューブ(CNT)を電子放出素子に用いた CNT—フィールドエミッショ ンディスプレイ (FED)が、電子放出特性ゃ大面積ィ匕が容易であるという理由から、活 発な開発が行われている。
[0003] このような電子放出型平面画像表示装置および蛍光発光装置は、それぞれの機能 を有する前面ガラス基板と背面ガラス基板とを備える。背面ガラス基板には、複数の 電子放出素子とそれらの素子を接続するためのマトリックス状の配線が設けられてい る。これらの配線は X方向および Y方向に設置され、電子放出素子の電極の部分で 交差するが、この交差部において両者を絶縁するために、パターン状の絶縁膜が必 要である。
[0004] この絶縁膜の作製に関しては、真空蒸着法、印刷法、スパッタ法などで酸ィ匕珪素膜 を形成する方法や、感光性組成物をスクリーン印刷で全面塗布後、紫外線露光でパ ターン形成する方法などが開示されている (特許文献 1)。
[0005] 一方、ディスプレイ用絶縁層などの部材を形成する感光性組成物としては、感光性 モノマー、バインダーポリマーおよび光重合開始剤を含む感光性有機成分と、無機 成分とからなる感光性組成物(特許文献 2)や、アルカリ可溶性ポリオルガノシロキサ ン榭脂組成物と酸発生剤からなる感光性成分と、無機成分とからなる感光性組成物 など各種提案されている。これらの中でも、感光性モノマーおよび光重合開始剤を含 む感光性有機成分と無機成分とからなる感光性組成物は、材料選択のバリエーショ ンが多ぐその性能をコントロールし易 、こと力 好ましく用いられて 、る。
[0006] このような感光性組成物力 ディスプレイ用および蛍光発光装置の絶縁層などの部 材を得るためには、感光性組成物を基板上に塗布し、フォトリソグラフィー処方により ノターンを形成し、その後、焼成を行う。低い温度で焼成することのできるガラスとし ては鉛酸化物、ビスマス酸ィ匕物、アルカリ金属酸ィ匕物など融点を下げる効果のある 物質を多く含むものが知られている(特許文献 3、 4)。
特許文献 1:特開 2002— 245928号公報 (第 29— 30段落)
特許文献 2:特開平 11 185601号公報 (請求項 4)
特許文献 3 :特開平 10— 182185号公報 (請求項 1、 8、 9)
特許文献 4:特開平 11 323147号公報 (請求項 1、第 30段落)
発明の開示
発明が解決しょうとする課題
[0007] 前記の焼成工程において、基板が熱により変形することを防止するために、感光性 組成物は、低 、温度で焼成できることが求められる。
[0008] また、特に、フィールドェミッションディスプレイおよび蛍光発光管の絶縁層などを作 製する場合は、そのパターンが数 m〜数 10 mと小さいため、微細パターン加工 が可能であることが重要となる。
[0009] また、前記焼成工程により得られた絶縁層や隔壁の上に、ゲート電極など力 クロム 等の金属を用 、て形成される力 この工程にぉ 、て金属をエッチングする工程を経 なければならない場合が多い。このエッチング工程において、強酸性のエッチング液 に耐えるように、感光性組成物には、エッチング耐性も求められている。
[0010] 本発明は、フラットパネルディスプレイの各種部材ゃ蛍光発光装置 (冷陰極管)部 材などに用いられる感光性組成物に関し、比較的低温で焼成が可能であり、フォトリ ソグラフィ一による微細パターン力卩ェが可能であり、かつ、金属エッチング工程で使 用するエッチング液に対する耐性を有する感光性組成物を提供することを目的とす る。
課題を解決するための手段
[0011] 本発明は、感光性有機成分 50〜5重量%およびガラス粉末 50〜95重量%を含有 する感光性組成物であって、該ガラス粉末が酸化物換算表記で Bi O 70〜85重量
2 3
%、 SiO 3〜15重量%、 B O 5〜20重量%、 ZrO 0〜3重量%および ZnO 1〜10
2 2 3 2
重量%を含む感光性組成物である。
[0012] また本発明は、上記の感光性組成物を基板上に塗布する工程、露光工程、現像ェ 程および焼成工程をこの順に含むディスプレイ部材の製造方法を含む。
[0013] また本発明は、基板上に、ガラスカゝらなる絶縁層が形成されたディスプレイ部材で あって、該ガラスの組成が酸化物換算表記で Bi O 70〜85重量%、 SiO 3〜15重
2 3 2 量0 /0、 B O 5〜20重量%、 ZrO 0〜3重量%および、 ZnO 1〜10重量%の範囲で
2 3 2
あるディスプレイ部材を含む。
発明の効果
[0014] 本発明の感光性組成物は、組成物の保存安定性が高ぐかつ、良好な微細パター ンを形成することができる。また、本発明の感光性組成物を用いて得られた部材は、 強酸に対する耐性が優れている。また、比較的低温で焼成できるので、本発明の感 光性組成物は、フィールドェミッションディスプレイの絶縁層や蛍光発光装置の絶縁 層に好適に用いることができる。
発明を実施するための最良の形態
[0015] 本発明の感光性組成物は、感光性有機成分 50〜5重量%およびガラス粉末 50〜 95重量%を含有する。感光性組成物中におけるガラス粉末の含有量としては、 70〜 95重量%がより好ましぐ 80〜90重量%がさらに好ましい。ガラス粉末の含有量を 5 0重量%以上とすることで、焼成時のパターン形状を好ましくすることができ、一方、 9 5重量%以下とすることで良好な感光特性が得られる。ガラス粉末の含有量が 95重 量%を超える場合には、感光性組成物の製造自体が困難となる。
[0016] 本発明で用いるガラス粉末の平均粒子径は、 0. 1〜5 μ mであることが好ましぐさ らには 0. 1〜2 /ζ πιが好ましぐより好ましくは 0. 1〜1 /ζ πιである。平均粒子径 0. 1 μ m以上のガラス粉末を使用することにより、感光性組成物の分散安定性が向上す る。平均粒子径 5 m以下のガラス粉末を用いることにより、薄膜での微細なフォトリソ グラフィ一による加工が良好となる。ガラス粉末の平均粒子径はレーザー回折散乱法 を用い、得られた粒度分布の累積度数が 50%になる時の粒子径のことを示す。粒子 がナノサイズ以下で、凝集している場合には、 BET法換算値を用いるのが好ましい。 BET法換算値を用いる場合には BET法、すなわち窒素ガスなどの不活性ガスを吸 着させて、比表面積を測定した後に、粒子を球と仮定して比表面積力 粒子径を求 め、数平均として平均粒子径を求める。
[0017] 用いるガラス粉末の平均屈折率は 1. 8以上であることが好ましい。より好ましくは 2.
7より小さいことが好ましい。さらに好ましくは 2. 0以上 2. 2以下であることが好ましい 。ガラス粉末の平均屈折率が上記範囲よりも高いと、感光性有機成分との屈折率差 が大きくなつてしまう。また、本発明のガラス組成の範囲を満たして、かつ、ガラス粉末 の平均屈折率を 1. 8未満とすることは困難である。
[0018] ガラス粉末の屈折率についてはエリプソメーターを用いて測定する。屈折率は露光 波長で測定することが効果を確認する上で正確である。特に、 350〜650nmの波長 範囲の光で測定することが好ましい。さらには、 i線(365nm)もしくは g線 (436nm) での屈折率測定が好ま 、。
[0019] また、上記ガラス粉末の含有量の範囲内において、ガラスの比重は 4以上 7以下で あることが好ましぐ 4. 5以上 6. 5以下がより好ましぐ 5. 5以上 6. 3以下がさらに好 ましい。この範囲内であれば、焼成時の収縮を小さくすることができ、焼成後のパター ン形状を好ましくすることができる。ガラス粉末の比重にっ 、てはアルキメデス法を用 いて測定する。 [0020] ガラス粉末の熱膨張係数は、 50〜350°Cの範囲の熱膨張係数 α の値が 70
50〜350
〜100 Χ 10_7ΖΚが好ましぐ 72〜90 Χ 10_7ΖΚがより好ましい。この範囲内であ れば基板ガラスの熱膨張係数と整合し、焼成の際にガラス基板にカゝかる応力を低減 できるので好ましい。
[0021] 本発明の感光性組成物のガラス粉末は、比較的低温での焼成を可能にするため に、低軟ィ匕点ガラスが好ましい。低軟ィ匕点ガラスとしては、成分として、 SiO、 Al O
2 2 3
、 B O、 ZnO、 PbO、 Bi O、 ZrO、アルカリ土類金属酸化物、アルカリ金属酸化物
2 3 2 3 2
などを含有したもの、例えば、ホウケィ酸ガラス、アルカリ珪酸ガラス、鉛系ガラス、ビ スマス系ガラスなどが挙げられる。これらのうち、鉛系ガラスは、環境汚染を起こす可 能性が問題視される場合があるので、非酸ィ匕鉛系または低酸ィ匕鉛系であることが望 ましい。また、本発明の感光性組成物を焼成して得られたガラス膜は、エッチングェ 程においても、溶解しにくいガラス、すなわち酸に対するエッチング耐性が高いガラ スが望ましい。ビスマス系ガラスは、酸に対するエッチング耐性が高いので、特に好ま しい。さらに、ビスマス系ガラスは、微粒ィ匕が可能であり、微細パターン加工に適する ので好ましい。
[0022] 低温焼成によるコスト削減と生産性の向上はもちろんのこと、焼成温度が 500°C以 下であれば、安価なガラス基板を利用できるメリットが生じる。本発明における低軟化 点とは、ガラスの熱軟化点温度が 350°C〜600°Cであることを指し、 400°C〜580°C であることがより好ましぐさらに好ましくは 450°C〜500°Cが好ましい。
[0023] ガラスには非晶質ガラスおよび結晶化ガラスが存在するが、本発明にお 、ては非 晶質ガラスおよび結晶化ガラス共に利用可能である。一般に非晶質ガラスは、結晶 化温度まで加熱されると結晶化する性質を有して 、る。結晶化したガラス中にはガラ スの結晶が数十から 90体積%前後まで形成されるので、強度や熱膨張率を改善で きる。これを利用して、焼成時における収縮を抑制することが可能である。また、すで に結晶化されたガラスを使用することも可能である。結晶化ガラスである場合は結晶 化温度が 550°C以下であるガラスを利用することが望ましい。
[0024] また、用いるガラスは無アルカリガラスであることが望ま U、。アルカリ金属やアル力 リ土類金属、例えば Na (ナトリウム)、 Li (リチウム)、 K (カリウム)、 Ba (バリウム)、 Ca ( カルシウム)等が含まれる場合は、焼成時や焼成後のガラス基板や電極中のガラス 成分とイオン交換が起こりやすぐ電気特性の低下や熱膨張係数の不整合が発生し 、不良の原因となるため好ましくない。
[0025] 以上より、本発明で低軟ィ匕点ガラスを用いる場合は、 Zn— B係および Bi— Zr系ガ ラスが好まし 、が、これに限定されるものではな!/、。
[0026] 本発明で用いるガラス粉末の成分としては、 Bi Oが 70〜85重量%の範囲で含ま
2 3
れることが望ましぐより好ましくは 73〜85重量%である。 Bi O力 重量%未満で
2 3
は、酸に対するエッチング耐性が弱ぐエッチング工程において溶解してしまう。 Bi
2
Oが 85重量%を超えるとガラスの耐熱温度が低くなり、ガラス基板上への焼き付け
3
の点で好ましくない。
[0027] SiOは 3〜15重量%が好ましい。 3重量%未満の場合は、ガラス化が困難となる。
2
また、 15重量%を超えると熱軟ィ匕点が高くなり、ガラス基板への焼付けが難しくなる。
[0028] B Oは 5〜20重量%が好ましい。さらに好ましくは 7〜15重量%である。 B Oを含
2 3 2 3 有させることによって電気絶縁性、強度、熱膨張係数、緻密性などの電気、機械およ び熱的特性を調整することができる。 20重量%を超えるとガラスの酸や水に対する安 定性が低下する。
[0029] ZrOは 0〜3重量%の範囲で含むことが好ましぐより好ましくは 0. 01-2. 5重量
2
%、さらに好ましくは 0. 01〜1重量%である。 ZrOはガラス材料の耐酸性を向上さ
2
せるが、 3重量%を越えると、ガラスが不均一になり、酸によるエッチングによって残渣 が生じる。
[0030] ZnOは 1〜10重量%が好ましぐさらに好ましくは 2〜5重量%である。 1重量%未 満では緻密性向上の効果が少なぐ 20重量%を超えると、焼き付け温度が低くなり 制御しにくくなり、また絶縁抵抗も低くなるので好ましくない。
[0031] また、これらの他に、 Al O等のその他の成分を、本発明の効果を損なわない範囲
2 3
で含んでもかまわない。ただし、上記のように、鉛、アルカリ金属およびアルカリ土類 金属は含まないことが好ましい。これらその他の成分の含有量は、ガラス粉末に対し て、 10重量%以下が好ましい。
[0032] ガラス粉末の原料としては、例えば SiOとしては、カリ長石、ソーダ長石、カオリン、 けい砂などを、 Al Oとしては、アルミナ、水酸化アルミニウム、カリ長石、ソーダ長石
2 3
、カオリンなどを、 B O としては、ほう酸やほう砂などを、 ZnOとしては、亜鉛華などを
2 3
用いることができる。これらの原料、 Bi O
2 3、 ZrOなどを所定の配合組成となるように
2
混合し、 900〜1200°Cで溶融後、急冷し、ガラスフリットにして力も粉砕して微細な 粉末にする。
[0033] ガラスの粉砕方法としては、ボールミル、ビーズミル、アトラクターやサンドミルなどが あり、そのうち、ボールミルやビーズミルが好ましく用いられる。
[0034] また、本発明の感光性組成物は、上記ガラス粉末のほかにフィラーを入れてもよ!ヽ
。具体的なフイラ一としては、 SiO、 Al O、 ZrO、ムライト、スピネル、マグネシア、 Z
2 2 3 2
nO、酸ィ匕チタンなどのセラミック粉末が挙げられる。これらは単独種で用いても複数 種組み合わせて用いても良 、。フイラ一は焼結時にぉ 、て溶融しな 、ものであること が好ましい。フィラーの含有量は、感光性組成物中の無機成分に対して、 20体積% 未満が好ましい。含有量がそれ以上であると、焼結時にひび割れが発生したり、焼結 不足になる場合がある。フィラーの平均粒子径としては、 0. 01 μ m〜0. 5 μ mであ ることが好ましぐさらには 0. 01〜0. 05 mであることが好ましい。 0. 01 /z m以上 のフイラ一の添カ卩により、焼成後の部材の強度を向上することができ、 0. 以下 のフイラ一を使用することにより、良好な感光特性を得ることができる。フィラーの平均 粒子径は、窒素ガスを用いた BET法により比表面積を測定した後に、粒子を球と仮 定して比表面積から粒子径を求め、数平均として平均粒子径を求める。
[0035] 本発明にお 、て感光性有機成分は、光によって硬化するネガタイプでも、光によつ て可溶化するポジタイプでも良 ヽ。
[0036] 本発明にお 、て、感光性有機成分は、 a)エチレン性不飽和基含有ィ匕合物および 光重合開始剤、 b)グリシジルエーテルィ匕合物、脂環式エポキシィ匕合物およびォキセ タンィ匕合物力 なる群力 選択された 1種以上のカチオン重合性ィ匕合物および光力 チオン重合開始剤、 c)キノンジアジドィ匕合物、ジァゾ -ゥム化合物およびアジドィ匕合 物からなる群力 選択された 1種以上の化合物等が好ましく用いられる。
[0037] a)成分におけるエチレン性不飽和基含有ィヒ合物は、バリエーションの豊富さ等から
(メタ)アクリル系であることが好ましい。メチルアタリレート、ェチルアタリレート、 n—プ 口ピルアタリレート、イソプロピルアタリレート、 n—ブチルアタリレート、 sec ブチルァ タリレート、イソ ブチルアタリレート、 tert ブチルアタリレート、 n—ペンチルアタリレ ート、ァリルアタリレート、ベンジルアタリレート、ブトキシェチルアタリレート、ブトキシト リエチレングリコールアタリレート、シクロへキシルアタリレート、 2—ェチルへキシルァ タリレート、 2—ヒドロキシェチルアタリレート、エチレングリコールジアタリレート、ジェ チレングリコールジアタリレート、トリエチレングリコールジアタリレート、ポリエチレング リコールジアタリレート、ジペンタエリスリトールへキサアタリレート、ジペンタエリスリト ールモノヒドロキシペンタアタリレート、ジトリメチロールプロパンテトラアタリレート、グリ セロールジアタリレート、メトキシ化シクロへキシルジアタリレート、ネオペンチルグリコ ールジアタリレート、プロピレングリコールジアタリレート、ポリプロピレングリコールジァ タリレート、トリグリセロールジアタリレート、トリメチロールプロパントリアタリレート、ァク リルアミド、アミノエチルアタリレート、フエ-ルアタリレート、フエノキシェチルアタリレー ト、ベンジルアタリレート、 1 ナフチルアタリレート、 2—ナフチルアタリレート、ビスフ ェノール Aジアタリレート、ビスフエノール A エチレンオキサイド付カ卩物のジアタリレ ート、上記化合物の分子内のアタリレートを一部もしくはすべてをメタタリレートに変え たもの、もしくは、スチレン、 ρ—メチノレスチレン、 o—メチルスチレン、 α—メチルスチ レン、 Ί—メタクリロキシプロピルトリメトキシシラン、 1—ビニル 2—ピロリドン、アタリ ル酸、メタアクリル酸、ィタコン酸、クロトン酸、マレイン酸、フマル酸、ビュル酢酸、各 種ウレタンアタリレートなどが挙げられる。本発明ではこれらを 1種または 2種以上使 用することができる。
[0038] エチレン性不飽和基含有化合物の含有量は、感光性有機成分に対して、 50〜99 重量%が好ましぐより好ましくは 60〜90重量%である。 50重量%以上とすることで 精細なパターン加工が可能となり、 99重量%以下とすることで焼成後のパターン形 状を良好に保つことができる。
[0039] また、 a)成分のうちの光重合開始剤は、ベンゾフヱノン、 o ベンゾィル安息香酸メ チル、 4, 4 ビス(ジメチルァミン)ベンゾフエノン、 4, 4 ビス(ジェチルァミノ)ベンゾ フエノン、 4, 4ージクロ口べンゾフエノン、チォキサントン、 2—メチルチオキサントン、 2 , 4 ジメチルチオキサントン、ベンゾイン、ベンゾインメチルエーテル、アントラキノン 、 2—t—ブチルアントラキノン、 2—メチルー [4 (メチルチオ)フエ-ル ] 2 モル フォリノ一 1 プロパノン、 2 ベンジル一 2 ジメチルァミノ一 1一(4 モノフオリノフ ェニル)ーブタノンなどがあげられる。特に波長 400〜450nmの可視光にも感度を有 するものを用いるのが好ましい。本発明ではこれらを 1種または 2種以上使用すること ができる。光重合開始剤は、感光性有機成分に対し 0. 05〜50重量%の範囲が好 ましぐより好ましくは 1〜35重量%である。この範囲内であれば感度もよぐ露光部 の残存率を大きくすることができる。
[0040] b)成分は、グリシジルエーテルィ匕合物、脂環式エポキシィ匕合物およびォキセタン 化合物からなる群力 選択された 1種以上のカチオン重合性ィ匕合物および光力チォ ン重合開始剤を含有する。 b)成分のうちのグリシジルエーテルィ匕合物の具体例とし ては、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、水添ビス フエノール Aジグリシジルエーテル、ビスフエノールへキサフルォロアセトンジグリシジ ルエーテル、テトラブロムビスフエノール Aジグリシジルエーテル、 1, 3 ビス(1— (2 , 3 エポキシプロポキシ)ー1 トリフルォロメチルー 2, 2, 2 トリフルォロェチル) ベンゼン、 1, 4 ビス(1— (2, 3 エポキシプロポキシ)—1 トリフルォロメチル— 2 , 2, 2 トリフルォロェチル)シクロへキシル、 4, 4 '—ビス(2, 3 エポキシプロポキ シ)ォクタフルォロビフエ-ル、フエノールノボラック型エポキシ榭脂、クレゾールノボラ ック型エポキシ榭脂、トリスフエノールメタン型エポキシ榭脂等あるいは、これらェポキ シ榭脂のカルボン酸変性物等が挙げられる。
[0041] b)成分のうちの脂環式エポキシ化合物の具体例としては、 3, 4—エポキシシクロへ キシルメチルー 3, 4—エポキシシクロへキサンカルボキシレート、 3, 4 エポキシシク 口へキシルェチルー 8, 4 エポキシシクロへキサンカルボキシレート、 2- (3, 4ーェ ポキシシクロへキシノレ 5, 5—スピロ 3, 4—エポキシ)シクロへキサン m—ジ才 キサン、ビス(3, 4—エポキシシクロへキシノレ)アジペート、ビス(3, 4—エポキシシク 口へキシルメチル)アジペート、ビス(3, 4—エポキシシクロへキシル)エーテル、ビス( 3, 4 エポキシシクロへキシル)ジェチルシロキサン等が挙げられる。
[0042] b)成分のうちのォキセタン化合物の具体例としては、 2 ェチルー 3 ヒドロキシメ チルォキセタン、 1, 4 ビス〔(3 ェチルー 3—ォキセタ -ルメトキシ)メチル〕ベンゼ ン、シリコン変性ォキセタン化合物等のォキセタンィ匕合物等が挙げられる。
[0043] グリシジルエーテルィ匕合物、脂環式エポキシ化合物およびォキセタンィ匕合物力もな る群から選択された 1種以上のカチオン重合性化合物の感光性有機成分中に占め る割合としては、 1〜75重量%が好ましぐより好ましくは 5〜35重量%である。この 範囲内とすることでパターン形状を良好に保つことができる。
[0044] b)成分のうちの光力チオン重合開始剤の具体例としては、トリフエ-ルスルホ -ゥム へキサフルォロホスフェート等の芳香族スルホ -ゥム塩、ジフエ-ルョード-ゥムへキ サフルォロホスフェート等の芳香族ョードニゥム塩、芳香族ョードシル塩、芳香族スル ホキソ -ゥム塩、メタ口センィ匕合物等が挙げられる。光力チオン重合開始剤を使用す る場合の配合量は、感光性有機成分中の 0. 01〜15重量%の範囲が好ましい。
[0045] また、光力チオン重合促進剤として、 9, 10 ジメトキシ一 2 ェチルーアントラセン 、 9, 10 ジェトキシアントラセン、 2, 4 ジェチルチオキサントン等をカ卩えることも好 ましく行われる。
[0046] c)成分は、ジァゾニゥム化合物、アジド化合物から選択された 1種以上の化合物等 が好ましく用いられる。
[0047] c)成分のうちのキノンジアジド化合物としては、ァミノ基に対しオルソまたはパラの 位置に水酸基を持つ芳香族化合物をジァゾ化して得られる化合物、ベンゼンやナフ タレン誘導体のジァゾニゥム塩でジァゾ基に対しオルソまたはパラ位に水酸基を有す る化合物をアルカリ水溶液中で加熱することにより得られる化合物等のことを言う。一 般的には後述のジァゾ -ゥム化合物のようにジァゾ基力 オンィ匕せず塩を形成しな い。具体的には、通常ポジ型 PS版、ワイボン版、フォトレジストなどに用いられている ベンゾキノンジアジドスルホン酸およびその誘導体、ナフトキノンジアジドスルホン酸 およびその誘導体などが挙げられる。 具体的には 1, 2—ナフトキノン 2—ジアジド 4ースルホン酸およびその誘導体、および 1, 2 ナフトキノンー2 ジアジドー 5— スルホン酸およびその誘導体が好まし!/、。
[0048] これらナフトキノンジアジド化合物は、ポリヒドロキシフエ-ルゃピロガロールアセトン 榭脂、パラヒドロキシスチレン共重合体や、フエノールホルムアルデヒドノボラック榭脂 などのアルカリ可溶性成分と混合、もしくは誘導体ィ匕して用いることが好ましい。好ま しい誘導体の具体例としては、 1, 2—ナフトキノンー2—ジアジドスルホン酸のポリヒド ロキシフエ-ルゃピロガロールアセトン榭脂、パラヒドロキシスチレン共重合体や、フエ ノールホルムアルデヒドノボラック榭脂などとのエステルが挙げられる。
[0049] これらキノンジアジドィ匕合物の感光性有機成分中に占める割合としては、 1重量% 以上 96重量%以下が好ましぐさらには 3重量%以上 80重量%以下が好ましい。キ ノンジアジド化合物が 1重量%より少ない場合は露光時のキノンジアジド化合物によ る溶媒溶解性の変化が少なくなるためパターン形成性が悪くなり、一方、 96重量%よ り多い場合は感光性組成物の分散性などに問題を生じる場合がある。
[0050] c)成分のうちのジァゾ -ゥム化合物としては、ジァゾモノマーと縮合剤との縮合生成 物がある。ここでジァゾモノマーとしては、 4ージァゾジフエニノレアミン、 1 ジァゾ 4 —N, N ジメチルァミノベンゼン、 1 ジァゾ 4—N, N ジェチルァミノベンゼン、 1 ジァゾ 4 N ェチル N ヒドロキシェチルァミノベンゼン、 1 ジァゾ 4 N—メチルー N ヒドロキシェチルァミノベンゼン、 1 ジァゾ 2, 5 ジエトキシー4 一べンゾィルァミノベンゼン、 1 ジァゾ 4—N—ベンジルァミノベンゼン、 1ージァ ゾ 4—N, N ジメチルァミノベンゼン、 1 ジァゾー4 モルホリノベンゼンなどが 挙げられる。また、縮合剤としては、ホルムアルデヒド、ァセトアルデヒド、プロピオンァ ルデヒド、ブチルアルデヒド、イソブチルアルデヒド、またはべンズアルデヒドなどが挙 げられる。さらに塩素イオンゃテトラクロ口亜塩酸などを用いることにより水溶性のジァ ゾ榭脂を得ることができ、また四フッ化ホウ素、六フッ化隣酸、トリイソプロピルナフタレ ンスルホン酸、 4, 4,ービフエ-ルジスルホン酸、 2, 5 ジメチルベンゼンスルホン酸 、 2 -トロベンゼンスルホン酸、 2—メトキシ一 4 ヒドロキシ一 5 ベンゾィルベンゼ ンスルホン酸などを用いることにより、有機溶媒可溶性のジァゾ榭脂を得ることができ る。
[0051] また、ジァゾ -ゥム化合物とヒドロキシベンゾフエノン類との当モル反応物も用いるこ とができる。ただし両者が反応してァゾィ匕合物を形成することのないよう、 pHは 7. 5 以下で接触させる。ジァゾニゥム化合物は上記に示したジァゾ榭脂と同様のものが用 いられる。ヒドロキシベンゾフエノン類としては、 2, 2' , 4, 4'ーテトラヒドロキシベンゾ フエノン、 2, 2,ージヒドロキシ 4, 4'ージメトキシベンゾフエノン、 2, 2'ージヒドロキ シ 4, 4'ージメトキシ スルホベンゾフエノンのアルカリ塩、 2 ヒドロキシー4 メトキシベンゾフエノンー5—スルホン酸などが用いられる。特にスルホン酸基を含む ものは安定性に優れている。
[0052] これらジァゾニゥム化合物の感光性有機成分中に占める割合としては、 5〜80重量 %が好ましぐより好ましくは 10〜50重量%である。ジァゾ -ゥム化合物が少なすぎ る場合は、硬化が不十分となる場合があり、逆に多すぎる場合は組成物の保存安定 性に問題が生じる場合がある。
[0053] c)成分のうちのアジドィ匕合物としては、分子中にアジド基を有するものであり、具体 的には、 2, 6 ジクロロー 4一二トロアジドベンゼン、アジドジフエニノレアミン、 3, 3,一 ジメトキシ—4, 4'ージアジドジフエニル、 4'ーメトキシー 4 アジドジフエニルァミン、 4, 4'ージアジドジフエ-ルァミン、 4, 4'ージアジドジフエ-ルメタン、 4などが挙げら れる。これらアジド化合物は単独で用いられる力 感光波長域の短いものでは、例え ば 1 -トロピレンのような増感剤を用いて感光波長域を長波長側に分光増感するこ とが好ましい。
[0054] これらアジド化合物の感光性有機成分中に占める割合としては、 5〜70重量%が 好ましぐより好ましくは 10〜50重量%である。アジドィ匕合物が少なすぎる場合は、 感光性成分の硬化が不十分となる場合があり、逆に多すぎる場合は組成物の安定 性に悪影響をもたらす場合がある。
[0055] 以上のような感光性有機成分としては、材料選択のノリエーシヨンの多さ、それに 基づく性能のコントロールし易さなどから、 a)成分のエチレン性不飽和基含有化合物 および光ラジカル重合開始剤が好ま 、。
[0056] また、 a)〜c)成分力も選ばれたものに、力ゴ状シルセスキォキサンをさらに添カ卩して もよい。力ゴ状シルセスキォキサンは、感光性組成物中にそのまま添加してもよいし、 予め他の化合物と反応させた上で添加してもよ 、。予め他の化合物と反応させる場 合は、感光性有機成分を構成する化合物と反応させることが、相溶性を上げるという 点で好ましい。
[0057] 感光性有機成分の屈折率は一般に 1. 4〜1. 7の範囲である。感光性有機成分の 平均屈折率は以下のような方法で求める。まず個々の成分について Vブロック法に て所望の波長における屈折率を測定する。次に感光性有機成分の重量%に応じて 、それぞれの屈折率を足し合わせることによって求める。例えば、ある感光性有機成 分が A (50重量%)と B (50重量%)で構成されており、ある波長における成分 Aの屈 折率が 1. 46、成分 Bの屈折率が 1. 58の場合、感光性有機成分の平均屈折率は(1 . 46 X 0. 5) + (1. 58 X 0. 5) =0. 73 + 0. 79 = 1. 52となる。ある ヽは感光'性有 機成分をガラス上に塗布および乾燥したのち、エリプソメーターを用いて直接測定す る。屈折率の測定は、感光性組成物を露光する際に用いる波長で測定することが効 果を確認する上で正確である。露光には、通常、 350〜650nmの波長範囲の光を 用いるので、この範囲で測定することが好ましい。さらには、 i線(365nm)もしくは g線 (436nm)での屈折率測定が好まし!/、。
[0058] 一般に、感光性有機成分およびガラス粉末を含有する感光性組成物において、感 光性有機成分の平均屈折率とガラス粉末の平均屈折率は、なるべく近 、方が好まし い。屈折率が近いと、感光性有機成分とガラス粉末との界面での光散乱が起きにくく 、フォトリソグラフィーを用いてパターン形成をする際に、精細なパターン加工が可能 となる。
[0059] し力しながら、本発明に用いられるビスマス系ガラスは、焼成温度が低い、エツチン グ耐性が高い等の利点がある反面、前記のように屈折率が大きぐ平均屈折率を 1. 8未満とすることは困難である。したがって、感光性有機成分とガラス粉末との屈折率 差は 0. 1〜1. 3と非常に大きい。屈折率差が大きいと、感光性有機成分とガラス粉 末との界面での光散乱のために、感光性組成物の内部に光が十分到達せず、露光 面力も遠い部分が硬化しにくくなる。
[0060] しかし、感光性有機成分中に、光を吸収して、吸収した波長より長波長の光線を発 する化合物 (以下、化合物 (A) t ヽぅ)を含有して!/ヽると、感光性有機成分とガラス粉 末との屈折率差が大きい場合でも、露光面力 遠い部分も硬化させることが可能とな る。化合物 (A)は、露光に用いられる波長の光を吸収し、吸収した光より長波長の光 線を発し、発した光線が感光性有機成分を硬化あるいは可溶化させる。化合物 (A) は、紫外線を吸収することで散乱を抑制し、し力も紫外線よりも透過性が高い長波長 の蛍光を化合物 (A)から発することで、露光面から遠!、部分も硬化させる。 [0061] 化合物 (A)の吸収波長域は、 320〜410nmの波長域が好ましぐより好ましくは 35 Onm〜380nm、さらに好ましくは 360nm〜375nmである。化合物(A)は、最大吸 収波長が、上記の範囲内にあることがより好ましい。
[0062] また化合物(A)の蛍光の発光波長域は、 400〜500nmの波長域力 S好ましく、より 好ましくは 400nm〜450nmであり、さらに好ましくは 430nm〜445nmである。化合 物 (A)は、最大発光波長が上記の範囲内にあることがより好ましい。
[0063] この範囲内であれば、露光時の紫外線を有効に吸収して、散乱を抑え、かつ照射 する紫外線よりも透過性の高 ヽ波長域の蛍光を発することで深部、つまり露光面から 遠 、部分まで感光性有機成分を硬化あるいは可溶ィ匕させることができる。
[0064] また、上記化合物 (A)の含有量の範囲にお 、て、化合物 (A)のモル吸光係数は 2 0000以上であることが好まし!/、。またモル吸光係数は 60000以下であることが好ま しい。この範囲において有効に紫外線を吸収し、露光時の紫外線の散乱を抑えるこ とができ、かつより深部まで感光性有機成分を硬化あるいは可溶化させることができ る。
[0065] 紫外線の吸収波長および蛍光の発光波長ならびにモル吸光係数は、分光蛍光光 度計 (F— 2500、日立製作所 (株)製)、ならびに紫外可視分光光度計 (MultiSpec 1500、島津製作所 (株)製)にて測定できる。
[0066] 本発明で用いる化合物 (A)としては、クマリン系蛍光増白剤、ォキサゾール系蛍光 増白剤、スチルベン系蛍光増白剤、イミダゾール系蛍光増白剤、トリァゾール系蛍光 増白剤などの蛍光増白剤、イミダゾロン系、ォキサシァニン系、メチン系、ピリジン系、 アントラピリダジン系、カルボスチリル系などの蛍光増白剤が好ましく用いられる。感 光性有機成分に含まれる a)〜c)より選ばれたィ匕合物やバインダーポリマー等との相 溶性が良いため、クマリン系蛍光増白剤またはォキサゾール系蛍光増白剤が、より好 ましく用いられる。特にクマリン系蛍光増白剤は極性溶媒に対する溶解性が大きいた め好ましい。化合物 (A)の極性溶媒に対する溶解度は 2gZl00g溶媒以上であるこ とが好ましぐより好ましくは 50gZlOOg溶媒以上である。溶解性などの点力も特にク マリン系誘導体が好まし 、。またこれらは単独でも組み合わせて使用してもよ 、。
[0067] クマリン系蛍光増白剤は、下記式で表わされるクマリン構造を分子中に有する。ま た、クマリン系蛍光増白剤の具体例としては、 7—ジェチルジアミノー 4 メチルタマリ ン、 7—ヒドロキシー4 メチルクマリン、 7—ェチルアミノー 4 メチルクマリン、 7—ジ メチルァミノ 4 メチルタマリン、 7—アミノー 4 メチルタマリンなどが挙げられる。
[0068] [化 1]
Figure imgf000016_0001
[0069] ォキサゾール系蛍光増白剤は、下記式で表されるォキサゾール環を分子中に有す る。
[0070] [化 2]
Figure imgf000016_0002
[0071] スチルベン系蛍光増白剤は、下記式で表わされるスチルベン構造を分子中に有す る。
[0072] [化 3]
Figure imgf000016_0003
[0073] スチルベン系蛍光増白剤の具体例は、 4, 4'ージアミノスチルベン 2, 2' ジス ルホン酸の s—トリアジン環置換体、スチルベンのトリァゾール、イミダゾール、ォキサ ゾール置換体などが挙げられる。
[0074] イミダゾール系蛍光増白剤は、下記式で表わされるイミダゾール構造を分子中に有 する。
[0075] [化 4]
Figure imgf000017_0001
[0076] トリァゾール系蛍光増白剤は、窒素 3原子および炭素 2原子から構成されている複 素 5員環を分子中に有する。複素 5員環の具体例としては、下記の環が挙げられる。
[0077] [化 5]
Figure imgf000017_0002
[0078] 本発明における化合物 (A)の含有量は、感光性有機成分に対して、 0. 1〜30重 量%が好ましぐ特にフィールドェミッション部材および蛍光発光装置用途では 2〜2 0重量%が好ましぐ 5〜15重量%がさらに好ましい。この範囲内であれば精細なパ ターン力卩ェが可能となる。
[0079] 本発明において、感光性有機成分は、さらにバインダーポリマーを有することが好 ましぐまた紫外線吸収剤、増感剤、重合禁止剤、可塑剤、分散剤、酸化防止剤など の添加剤を含有することができる。
[0080] ノインダーポリマーとしては、アクリル榭脂、エポキシ榭脂、ポリウレタン榭脂、ポリエ ステル樹脂、ポリアミド榭脂、ポリイミド榭脂、シリコーン榭脂、メラミン榭脂、フエノーノレ 榭脂、セルロース誘導体、ポリビュルアルコールなどの各種ポリマーを用いることがで きるが、ポリメチルメタタリレート、ポリビュルプチラール、ポリビュルアルコール、ェチ ルセルロース、(メタ)アクリル酸エステル共重合体などが好ましい。さらに、無機粉末 の分散性や現像性の観点から、力 tlえて、感光によるパターン形成性の観点から、バ インダーポリマーはカルボキシル基や水酸基、エチレン性不飽和二重結合などの反 応性官能基を有して 、ることが好ま 、。 [0081] また、バインダーポリマーの熱分解温度が 500°C以下であること、さらには 450°C以 下であること、また 150°C以上、さらに好ましくは 400°C以上であることが好ましい。熱 分解温度が 150°C以上のノ インダーポリマーを用いると、感光性組成物の熱安定性 が保持され、組成物を塗布する工程から、パターンカ卩ェにいたるまでの各工程にお いて、感光性を損なうことなく良好なパターン加工が可能となる。また熱分解温度が 5 00°C以下のバインダーポリマーを用いると、焼成工程でのクラック、剥がれ、反りや変 形を防止できる。バインダーポリマーの熱分解温度を調整する手法は、共重合成分 のモノマーを選択することで可能となる。特に低温で熱分解するモノマーを共重合成 分とすることで共重合体の熱分解温度を低くできる。このように低温で熱分解する成 分として、例えばメチルメタタリレート、イソブチルメタタリレート、 aーメチルスチレン等 を挙げることができる。熱分解温度は、 TG測定装置 (TGA— 50、島津製作所 (株) 製)にて約 20mgの試料をセットし、流量 20mlZ分の空気雰囲気で、昇温速度 20〜 0. 6°CZ分で 700°Cまで昇温する。その結果、温度 (縦軸)と重量変化 (横軸)の関 係がプロットされたチャートを印刷し、分解前 (横軸に平行の部分)の部分と分解中の 部分の接線を引き、その交点の温度を熱分解温度とする。
[0082] また、バインダーポリマーの Tg (ガラス転移温度)は、 60〜100°Cが好ましい。よ り好ましくは 40〜95°Cで、さらに好ましくは 60〜90°Cである。 Tgを 30°C以上とする ことでペーストの粘着性を低減することができる。 Tgを 100°C以下とすることでガラス 基板に対するペーストの密着性を保持することができる。また、 Tgが 100°Cを越える と、感光性ペースト組成物の膜を露光および現像した後に、ノターンにクラックが発 生する可能性が大きくなる。
[0083] ノ インダーポリマーのガラス転移温度は、共重合するモノマーの種類およびポリマ 一を構成するモノマーの含有比によって制御が可能である。この場合、バインダーポ リマーのガラス転移温度は、以下のフォックス式に従って、バインダーポリマーを構成 している各モノマー単独重合体種のガラス転移温度力も計算できる。
フォックス式: lOOZTg = ∑ (Wn/Tgn)
Tg:バインダーポリマーのガラス転移温度 (絶対温度)
Wn:各モノマー単独重合体の重量分率(%) Tgn:各モノマー単独重合体のガラス転移温度 (絶対温度)
本発明ではバインダーポリマーのガラス転移温度が 60〜100°Cになるように、フ オックス式に従って、共重合するモノマーを選び、それらを重合し、バインダーポリマ 一を得ても良い。
[0084] 得られたバインダーポリマーの Tgの測定法は、島津製作所 (株)製 DSC— 50型測 定装置を用い、サンプル重量 10mg、窒素気流下で昇温速度 20°CZ分で昇温し、 ベースラインの偏起が開始する温度を Tgとした。
[0085] 各モノマー単独重合体のガラス転移温度としては、例えば、モノマーメーカーの技 術資料や高分子データハンドブック (倍風館発行、高分子学会編 (基礎編)、昭和 61 年 1月初版)に記載されている。例えば、メタクリル酸メチル(105°C)、メタクリル酸(2 28°C)、アクリル酸ェチル( 22°C)、メタクリル酸グリシジル(74°C)、アクリル酸メチ ル( 10°C)、スチレン( 100°C)などである。
[0086] さらに用いるバインダーポリマーの重量平均分子量は 10万以下が好ましい。より好 ましくは 5千〜 8万である。重量平均分子量を 10万以下とすることにより、現像液溶解 性が保持され、その結果より精細なパターンィ匕が可能となる。さらにバインダーポリマ 一の粘度は重量平均分子量に比例して増大するため、感光性組成物の粘度を低く して、濾過や脱気、塗布工程での作業性を保持するためには、バインダーポリマーの 重量平均分子量を低くすることが好ま U、。バインダーポリマーの重量平均分子量は テトラヒドロフランを移動相としたサイズ排除クロマトグラフィーにより測定した。カラム は Shodex KF— 803を用い、重量平均分子量はポリスチレン換算により計算した。
[0087] 感光性有機成分に、 a)成分を用いた場合の好ま 、バインダーポリマーは、上述 のようなエチレン性不飽和二重結合含有ィヒ合物の共重合により、あるいは共重合で 得られたバインダーポリマーの反応性官能基の一部に、反応性官能基を有するェチ レン性不飽和基含有ィ匕合物を付加するなどして得ることができる。具体的には、不飽 和カルボン酸を共重合成分に持つバインダーポリマーのカルボキシル基の一部に、 グリシジルメタタリレートなどのエポキシ基含有アタリレートイ匕合物を付加させる方法に より、カルボキシル基とエチレン性不飽和二重結合を有するバインダーポリマーが得 られる。このようなバインダーポリマーの酸価は 50〜140 (mgKOH/g)であることが 好ましい。酸価を 140以下とすることで、現像許容幅を広くすることができ、酸価を 50 以上とすることで、未露光部のアルカリ現像液に対する溶解性が保持され、高精細な パターンを得ることができる。なお、酸価の測定は、バインダーポリマー lgをエタノー ル lOOmLに溶解した後、 0. 1N水酸ィ匕カリウム水溶液を用いた滴定にて求められる 。さらに、バインダーポリマーの二重結合密度を 0. 1〜2. 5mmolZgとすることが好 ましぐさらには 0. 2〜1. 6mmolZgが好ましい。二重結合密度が 0. ImmolZg未 満では露光によるパターン形成が十分でなく膜減りが大きぐ現像性が著しく悪くなる 。一方 2. 5mmolZgを越える範囲では焼成工程でのクラック、剥がれ、反りなどが発 生する。
[0088] 感光性有機成分中のバインダーポリマーの含有量は感光性有機成分に対して 1〜 50重量%が好ましい。より好ましくは 5〜40重量%である。 1〜50重量%の範囲とす ることで、パターンカ卩ェ性と、焼成時の収縮などの特性を両立させることができる。
[0089] また、本発明の感光性組成物には紫外線吸収剤を添加することも有効である。紫 外線吸収剤を添加することによって、露光工程における光の散乱が抑えられ、高ァス ぺクト比、高精細かつ高解像度のパターンを形成することができる。紫外線吸収剤と しては有機系染料力もなるもの、中でも 350〜450nmの波長範囲で高 UV吸収係数 を有する有機系染料が好ましく用いられる。有機系染料は紫外線吸収剤として添カロ した場合にも、焼成後のガラス膜中に残存しないで紫外線吸収剤による絶縁膜特性 の低下を少なくできるので好まし 、。このような化合物としてァゾ系およびべンゾフエ ノン系染料が吸収波長を所望の波長域に制御しやすく好ましい。感光性有機成分中 の有機系染料の添加量は感光性有機成分に対して 0. 05〜5重量%が好ましい。よ り好ましくは 0. 1〜1重量%でぁる。 0. 05重量%未満では紫外線吸収剤の添加効 果が減少し、 5重量%を越えると焼成後の絶縁膜特性が低下するので好ましくな 、。
[0090] 増感剤は、感度を向上させるために添加される。増感剤の具体例としては、 2, 4 ジェチルチオキサントン、イソプロピルチォキサントン、 2, 3 ビス(4ージェチルアミ ノベンザル)シクロペンタノン、 2, 6 ビス(4 -ジメチルァミノベンザル)シクロへキサ ノン、 2, 6 ビス(4 ジメチルァミノベンザル) 4—メチルシクロへキサノン、ミヒラー ケトンなどがあげられる。本発明ではこれらを 1種または 2種以上使用することができ る。なお、増感剤の中には光重合開始剤としても使用できるものがある。増感剤を添 加する場合、その添加量は感光性成分に対して 0. 05〜30重量%が好ましぐより 好ましくは 0. 1〜20重量%である。増感剤の量が少なすぎれば光感度を向上させる 効果が発揮されず、増感剤の量が多すぎれば露光部の残存率が小さくなりすぎるお それがある。
[0091] さらに、重合禁止剤を添加することが好ましい。重合禁止剤の具体的な例としては、 ヒドロキノン、ヒドロキノンのモノエステル化物、 N -トロソジフエ-ルァミン、フエノチ ァジン、 p— tーブチルカテコール、 N フエニルナフチルァミン、 2, 6 ジー tーブチ ルー p メチルフエノール、クロラニール、ピロガロールなどが挙げられる。重合禁止 剤を添加する場合、その添加量は、組成物全体に対し、 0. 001〜1重量%が好まし い。
[0092] また、可塑剤あるいは酸化防止剤を添加してもよ!/ヽ。可塑剤の具体的な例としては 、ジブチルフタレート、ジォクチルフタレート、ポリエチレングリコール、グリセリンなど があげられる。酸化防止剤の具体的な例として 2, 6 ジ—tーブチルー p クレゾ一 ル、ブチル化ヒドロキシァ-ソール、 2, 6 ジ t—4 ェチルフエノール、 2, 2—メチ レン ビス(4ーメチルー 6— t—ブチルフエノール)、などが挙げられる。可塑剤を添 加する場合、その添加量は組成物全体に対し 0. 5〜: LO重量%が好ましい。酸ィ匕防 止剤を添加する場合、その添加量は組成物に対し 0. 001〜1重量%が好ましい。
[0093] 本発明の感光性組成物は次のようにして調製できる。感光性有機成分としてバイン ダーポリマーや必要に応じて a)〜c)成分力 選択される化合物、化合物 (A)、各種 添加剤等を混合した後、濾過し、有機ビヒクルを調製する。これに、必要に応じて前 処理されたガラス粉末を添加し、ボールミルなどの混練機で均質に混合して感光性 組成物を作製する。
[0094] 感光性組成物の粘度は無機成分、増粘剤、有機溶媒、可塑剤および沈殿防止剤 などの添加割合によつて適宜調整される力 その範囲は 2〜200Pa' s (パスカル '秒 )が好ましい。例えばガラス基板への塗布をスピンコート法で行う場合は、 2〜5Pa' s が好ましい。スクリーン印刷法で 1回塗布して膜厚 10〜20 mを得るには、 50〜20 OPa' sが好ましい。ブレードコーター法ゃダイコーター法などを用いる場合は、 2〜2 OPa' sが好ましい。
[0095] 溶液の粘度を調整するために用いられる有機溶媒としては、メチルセ口ソルブ、ェ チルセ口ソルブ、ブチルセ口ソルブ、メチルェチルケトン、ジォキサン、アセトン、シク 口へキサノン、シクロペンタノン、イソブチルアルコール、イソプロピルアルコール、 3— メトキシー3—メチルー 1ーブタノール、テトラヒドロフラン、ジメチルスルフォキシド、 y ブチロラタトン、ブロモベンゼン、クロ口ベンゼン、ジブロモベンゼン、ジクロロべンゼ ン、ブロモ安息香酸、クロ口安息香酸などやこれらのうちの 1種以上を含有する有機 溶媒混合物が用いられる。なお、本発明の感光性組成物は、溶媒が揮発した状態で 用いるため、成分比等の算出をする際などは、有機溶媒は感光性有機成分には含 めないこととする。
[0096] 本発明の感光性組成物は、フラットパネルディスプレイの各種部材や、蛍光発光管
(冷陰極管)部材などに好ましく用いられるが、フィールドェミッションディスプレイの絶 縁層に代表されるフィールドェミッション部材として特に好ましく用いられる。
[0097] フィールドェミッションとは電界放出のことであり、電界放出とは真空中で半導体や 金属などの導電体を陰極とし、その表面近傍に陽極を設置すると、陰極表面から陽 極へ向かって、電子が真空中へ放出される物理現象のことをいう。本発明において、 フィールドェミッション部材とはこのような電界放出を利用した部材のことを指す。具 体的にはフィールドェミッションディスプレイ、液晶ディスプレイのバックライト、フィー ルドエミッションランプ、走査型電子顕微鏡の電子線源、微少真空管などが挙げられ るがこれらに限定されない。
[0098] 本発明の感光性組成物を用いて、フィールドェミッション部材を製造する場合、基 板として、ガラス基板を用いることが好ましい。ガラス基板として、ソーダライムガラスや 耐熱ガラス (旭硝子 (株)製 PD200、日本電気硝子 (株)製 PP8、サンゴバン (株)製 C S25、セントラル硝子 (株)製 CP600Vなど)を好ましく用いることができる。また、セラ ミック基板、金属基板や半導体基板 (A1N、 CuW、 CuMo、 SiC基板など)、各種ブラ スチックフィルムも用いることも可能である。これら基板の上に、必要に応じて、絶縁 体、半導体、導体を一層以上、あるいはそれらを組み合わせたものを形成しても構わ ない。 [0099] 次に、フィールドェミッション部材の製造方法について、一例として、フィールドエミ ッシヨンディスプレイの絶縁層の製造方法を挙げて説明する。
[0100] 基板として、 ITO電極が形成されたガラス基板上に、感光性組成物を全面もしくは 部分的に塗布する。塗布方法としては、スクリーン印刷、バーコ一ター、ロールコータ 一、スリットダイコーター等の一般的な方法を用いることができる。塗布厚みは、塗布 回数、スクリーンのメッシュ、感光性組成物の粘度を選ぶことによって調整できるが、 乾燥や焼成による収縮を考慮して、乾燥後の厚みが 5〜: LOO /z m 好ましくは 5〜60 μ m、さらに好ましくは 5〜40 μ mになるように塗布することが好ましい。
[0101] 感光性組成物を複数回塗布する場合、 1回目と 2回目以降の塗布される感光性組 成物は、同じ感光性組成物であってもよいし、異なった感光性組成物であってもよい 。また、感光性組成物を複数回塗布する場合、 1回目の感光性組成物塗布後、 2回 目以降の感光性組成物塗布前に、乾燥を施すのが好ましい。そうすると、 2回目の感 光性組成物塗布時の塗膜の厚みの減少を防ぐことができる。乾燥の温度および時間 は構成する感光性組成物の組成によって異なる力 50°C〜100°Cで 5分から 30分 程度施すのが好ましい。また、乾燥は、対流式乾燥炉や IR乾燥炉で行うことが望まし い。
[0102] 乾燥して得られた感光性組成物の膜のタック値は、 0〜4であることが好ましい。こ の範囲であると感光性組成物の膜の粘着性が抑制され、コンタクト露光を容易に用 いることができる。タック値力この範囲以外であると、感光性組成物の膜にピンホール が生じたり、フォトマスクに感光性組成物が付着したりするため、コンタクト露光を行う ことが困難になる場合がある。コンタクト露光を行うことができると、感光性組成物の膜 とフォトマスクとの間にギャップを設けるァライメント方式の露光を行う場合よりも、高精 細なパターン形成が可能となる。さらに、タック値がこの範囲であると、フォトマスクを 洗浄する手間を減らすことができるので、低コスト化も可能である。本発明におけるタ ック値の評価は後述のとおりである。
[0103] タック値は、バインダーポリマーのガラス転移温度やバインダーポリマーの分子量、 有機溶媒量、感光性組成物中の無機粒子の比率等に寄るが、バインダーポリマーの ガラス転移温度による影響が大き 、。 [0104] 感光性有機成分に含まれるバインダーポリマーのガラス転移温度が 30〜: L00°Cで ある感光性組成物を用いることで、タック値を 0〜4の範囲に収めることができる。
[0105] また、露光に供する前の、感光性組成物中の有機溶媒残存量は 3重量%以下、好 ましくは、 1重量%以下である。 3重量%を超えると、タック値が悪ィ匕する。
[0106] 上記のようにして基板上に感光性組成物の膜を形成した後に、露光および現像す ることで、パターンを形成することが可能である。パターンの形状は、フィールドェミツ シヨン部材により必要とされる形状は様々であるが、フィールドェミッションディスプレ ィの絶縁層の場合は、直径 3〜: LOO mの円形もしくは一辺 3〜: LOO mの四角形 のホールを含むパターンを形成することが好ましい。円形もしくは四角形の一辺は、 ょり好ましくは3〜50 111、さらに好ましくは 3〜20 /ζ πιである。この範囲内であれば 感光性組成物の効果を十分に発揮することができる。
[0107] 露光は、フォトマスクを用いてマスク露光する方法とレーザー光等で直接描画露光 する方法を用いることができるが、フォトマスクを用いた露光のほうが、露光時間を短 くできる。この場合の露光装置としては、ステッパー露光機、プロキシミティ露光機等 を用いることができる。
[0108] 使用される活性光源は、例えば、可視光線、近紫外線、紫外線、近赤外線、電子 線、 X線、レーザー光などが挙げられる力 これらの中で、紫外線が好ましぐその光 源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺 菌灯などが使用できる。これらの中でも超高圧水銀灯が好適である。露光条件は塗 布厚みによって異なる力 0. 5〜: LOOOWZm2の出力の超高圧水銀灯を用いて 0. 5 〜30分間露光を行う。特に、露光量が 0. 05〜: LjZcm2程度の露光を行うことが好ま し ヽ。露光に用 ヽる光の波長 ίま、 300〜650力好ましく、より好ましく ίま 350〜650η m、さらに好ましくは 350〜500nm、最も好ましくは 350nm〜450nmである。
[0109] その後、現像液を使用して現像を行うが、この場合、浸漬法ゃスプレー法、シャワー 法、ブラシ法で行う。これらの中でもシャワー法が、均一な現像を実現できる点で好 適である。シャワー法で現像を行う際の現像液の流量および圧力は、現像液の種類 、濃度によっても異なる力 流量は 50mlZ分〜 200mlZ分が好ましぐ lOOmlZ分 〜170mlZ分がより好ましい。圧力は 0. 05MPa〜0. 2MPaが好ましぐ lkgZ分 〜1. 6kgZ分がより好ましい。現像液は、感光性組成物中の有機成分が溶解または 分散可能な有機溶媒や水溶液を使用する。また、有機溶媒含有の水溶液を使用し てもよい。感光性組成物中にカルボキシル基やフエノール性水酸基、シラノール基等 の官能基を持つ化合物が存在する場合、アルカリ水溶液でも現像できる。アルカリ水 溶液として水酸ィ匕ナトリウムや水酸ィ匕カルシウム、炭酸ナトリウム水溶液などのような 金属アルカリ水溶液を使用できるが、有機アルカリ水溶液を用いた方が焼成時にァ ルカリ成分を除去しやすいので好ましい。有機アルカリとしては、一般的なアミンィ匕合 物を用いることができる。具体的には、テトラメチルアンモ-ゥムヒドロキサイド、トリメチ ルベンジルアンモ-ゥムヒドロキサイド、モノエタノールァミン、ジエタノールァミンなど が挙げられる。アルカリ水溶液のアルカリ成分の濃度は 0. 01〜: LO重量%が好ましく 、より好ましくは 0. 1〜5重量%である。アルカリ濃度が低すぎれば未露光部が除去 されず、アルカリ濃度が高すぎれば、パターン部を剥離させ、また露光部を腐食させ るおそれがあり好ましくない。現像時の現像液の温度は、 20〜50°Cで行うことが工程 管理上好ましい。
[0110] また、現像液には、感光性組成物の塗布膜への塗れ性改善、現像の均一性、残渣 の低減などのために、界面活性剤を添加することが好ましい。界面活性剤としては、 ノ-オン、ァ-オン、カチオンおよび両性の各種界面活性剤を用いることができる。ノ ユオン型界面活性剤としては、ポリエチレングリコール型や多価アルコール型が挙げ られ、具体的には、ポリエチレングリコール、ポリオキシエチレンラウリルエーテル、ポ リオキシエチレンノニルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシェ チレンステアリルエーテル、ポリオキシエチレンォレイルエーテル等が挙げられる。
[0111] ァ-オン型界面活性剤としては、高級アルコール硫酸エステル塩類、例えば、ラウ リルアルコールサルフェートのナトリウム塩など、脂肪族アルコールリン酸エステル塩 類例えば、セチルアルコールリン酸エステルのナトリウム塩など、アルキルァリールス ルホン酸塩類、例えば、ドデシルベンゼンスルホン酸のナトリウム塩など、アルキルァ ミドのスルホン酸塩類、二塩基性脂肪酸エステルのスルホン酸塩類、例えば、ナトリウ ムスルホコハク酸ジォクチルエステルなどがある。好ましくはポリオキシエチレンアル キルエーテル硫酸塩、ポリオキシエチレンアルキルァリールエーテル硫酸塩、アルキ ルァリールスルホン酸塩類が挙げられる。
[0112] カチオン型界面活性剤はァミン型と第四アンモ-ゥム塩型が挙げられる。アミン型 の具体例としては、ポリオキシエチレンアルキルァミン、 N アルキルプロピレンァミン 、 N—アルキルポリエチレンポリアミン等がある。また、第四アンモ-ゥム塩型の例とし ては、長鎖第 1アミン塩、アルキルトリメチルアンモ -ゥム塩、ジアルキルジメチルェチ ルアンモ -ゥム塩、アルキルジメチルアンモ -ゥム塩などがある。
[0113] 両性界面活性剤としては、例えば N—メチル N ペンタデシルァミノ酢酸ナトリウ ムのような化合物を含有してもよ ヽ。本発明にお ヽて好ましく用いられる界面活性剤 はノ-オン型またはァ-オン型界面活性剤である。
[0114] 界面活性剤の添加量としては、 0. 01〜20重量%の範囲にあることが好ましぐより 好ましくは 0. 05〜10重量%、さらに好ましくは 0. 1〜5重量%である。添加量が 20 重量%を越えると、現像性が不十分になる可能性が生じ、 0. 01重量%より少ないと 、界面活性剤添加の効果が発現しにくくなることがある。
[0115] また、現像時に、現像液中で超音波処理を行うことが好ましい。さらに周波数変調 型超音波処理力 特に 20〜50KHzの間の波長範囲で変調される周波数変調型超 音波処理が好ましい。このような超音波処理により、微細で均一なパターンの形成と 共に、残渣の低減に大きな効果が得られる。
[0116] 上記のような方法により、本発明の感光性組成物から、基板上に厚さ 5〜: LOO /z m 、直径 3〜: LOO μ mの円开もしくは一辺 3〜: LOO μ mの四角形のホールを含むパター ンを形成することができる。
[0117] この後、パターン形成された基板を、焼成炉にて焼成し、有機成分を焼き尽くすと 同時に、ガラス粉末を焼結させて、絶縁層を形成させる。焼成雰囲気、温度および時 間は、感光性組成物や基板の種類によって適宜選択することでき、空気中、窒素、 水素等の雰囲気中で焼成する。焼成は 400〜600°Cの温度で 10〜60分間保持し て焼成を行うことが好ましい。焼成炉としては、バッチ式の焼成炉ゃベルト式の連続 型焼成炉を用いることができる。また、以上の各工程中に、乾燥および予備反応の目 的で、 50〜300°Cの加熱をおこなっても良い。
[0118] 以上の工程により、基板上に形成された厚さ 5〜: L00 μ m、直径 3〜: LOO mの円 形もしくは一辺 3〜 100 μ mの四角形のホールを含むパターンを有するフィールドェ ミッションディスプレイ用絶縁層が得られる。フィールドェミッションディスプレイの低電 圧駆動化のためには、ゲート電極部と電子放出素子の距離を近接ィ匕する必要がある 。そのために絶縁層の厚さは、 30 m以下が好ましい。また、高解像度化と輝度の 均一化のために、絶縁層に形成されるホールは、 30 m以下であることが好ましい。
[0119] ゲート電極の形成は次のような方法で行う。所望のパターンのホールが形成された 絶縁層を得た後、その上に、スパッタ法あるいは蒸着法によって、クロム膜を均一に 形成する。つぎに、クロム膜の表面にポジ型レジストをスピンコート法やスクリーン印 刷法などの公知のコーティング方法で全面に塗布し、ホットプレートなどにてプリべ一 クする。つぎに、所望のパターンのフォトマスクを上記のレジスト層上に設置し、紫外 線照射、露光および現像の各工程を経て、クロム膜上に残ったポジ型レジストによる エッチングマスクを形成する。つぎに、酸性エッチング液 (硝酸第二アンモ-ゥムセリ ゥム: 9wt% +過塩素酸: 6wt%等)にて数分エッチングを行 、、ガラス基板力もクロ ム膜のエッチングマスクで覆われていない部分を除去する。その後、エッチングマス クを剥離液を使用して剥離し、水洗洗浄することによって、マスクされたクロム層が残 り、ゲート電極が形成される。この際、絶縁層がエッチング液に対して弱いと、エッチ ング工程にぉ 、て絶縁層が溶けてしまうので、絶縁層がエッチング液に溶けにくいこ とが必要である。
[0120] 電子放出素子の形成は次のような方法で行う。形成方法は電子放出源によって異 なる。電子放出源が、モリブデンを主材質とするスピントタイプの金属チップ (または マイクロチップ)の場合には、蒸着法が好ましい。電子放出源が、カーボンナノチュー ブ (CNT)を用いる場合には、前記絶縁層のホール内部に感光性を有する CNTぺ 一ストをスクリーン印刷法などにより塗布した後、基板の後面力も光を照射して、前記 CNTペーストのうちホール内部の部分のみを選択的に露光させ、露光されていない 部分を除去することによって、ホール内部の CNTのみを残存させる方法などにより形 成される。
[0121] このような絶縁層、ゲート電極および電子放出素子を形成した上記基板を背面板と して使用し、別途作製された前面板と封着した後、配線の実装を行うと、高輝度でコ ントラストの高いフィールドェミッションディスプレイを得ることができる。
実施例
[0122] 以下に、実施例を用いて具体的に説明する。ただし、本発明はこれに限定されるも のではない。
<測定方法 >
ノインダーポリマーの重量平均分子量は、テトラヒドロフランを移動相としたサイズ 排除クロマトグラフィーにより測定した。カラムは Shodex KF— 803を用い、重量平 均分子量はポリスチレン換算により計算した。
[0123] バインダーポリマーの酸価の測定は、バインダーポリマー lgをエタノール lOOmL に溶解した後、 0. 1N水酸ィ匕カリウム水溶液を用いた滴定を行い、求めた。
[0124] バインダーポリマーの粘度の測定は、回転粘度計 (RVDVII +、ブルックフィールド 社製)にて、温度 25±0. 1°C、回転数 10rpm、測定開始から 5分後の粘度を測定し た。
[0125] バインダーポリマーの熱分解温度は、 TG測定装置 (TGA— 50、島津製作所 (株) 製)にて約 20mgの試料をセットし、流量 20mlZ分の空気雰囲気で、昇温速度 10°C Z分で 700°Cまで昇温する。温度 (縦軸)と重量変化 (横軸)の関係がプロットされた チャートを印刷し、分解前の部分と分解中の部分の接線を引き、その交点の温度を 熱分解温度とした。
[0126] ノインダーポリマーのガラス転移点 (Tg)は、島津製作所 (株)製 DSC— 50型測定 装置を用い、サンプル重量 10mg、窒素気流下で昇温速度 20°CZ分で昇温し、ベ ースラインの偏起が開始する温度を Tgとした。
[0127] ガラス粉末の熱軟化温度はガラス粉末を白金セルに入れ、示差熱分析装置 (TG8 120、理学電機 (株)製)を用いて、常温力も 700°Cまで 20°CZ分の昇温速度で示差 熱分析を行い、最初に現れる吸熱部の極小点を経て吸熱が終了する温度を軟ィ匕点 (Ts)とした。
[0128] ガラス粉末の平均粒子径はレーザー回折散乱測定装置 (マイクロトラック粒度分布 計 HRA、日機装 (株)製)を用いて測定した。比重は、ガラスを約 5 X 5 X 5mmの大 きさにカ卩ェし、アルキメデス法を用いて測定した。 [0129] ガラス粉末の屈折率は、石英ガラス上にガラス膜を作製した後、エリプソメーターを 用いたエリプソメトリー法によって、 25°Cにおける 436nmの波長の光に関して測定を 行った。
[0130] 感光性組成物膜のタック値の測定は、以下のようにして行った。ガラス基板上に感 光性組成物を、スクリーン印刷を用いて全面および部分的に均一に塗布した後、熱 風オーブンで乾燥し、感光性組成物の膜を形成した。熱風オーブンでの乾燥は、 85 °C20分で行った。評価する基板の大きさは、 JIS Z 0237 (平成 12年度)で記載され ている傾斜式ボールタック装置で利用できる大きさである。また、評価では傾斜角とし て 30° を利用した。 JIS G 4805 (平成 11年度)で規定された材質のボールの大きさ miS B 1501 (昭和 63年度)の"ボールの呼び"の 1Z16から 1までの合計 31種類( 5/64, 7/64, 9/64, 15/64, 17,64の 5種類は除く)とし、 "ボールの呼び,,の 32倍の数値をボールナンバーと呼び、それをタック性の指標とした。傾斜式ボールタ ック装置の傾斜板上の所定の位置に、感光性組成物の塗布した面を上にしたガラス 基板(厚み 1. 3mm、 12. 5cm角)を取り付け、各大きさのボールをゲートにセットし た後、ゲートをゆっくりと開いてボールを転がし、測定部内に完全に停止(5秒以上ボ ールが動かないこと)するようなボールのうちで最大のものを見つけ出し、そのときの ボールナンバーを感光性組成物のタック値とした。一番小さなボールでも、止まらな い場合を 0とした。助走路には、感光性組成物を塗ったガラスと段差が生じないように 、それと同じ厚みのガラス板を置き、その上力も厚み 20 mの PETフィルムを貼り付 けた。また、組成物が感光しないように、暗幕の中で測定を行った。
[0131] <バインダーポリマー 1>
30重量部のアクリル酸メチル、 40重量部のアクリル酸ェチル、 30重量部のメタタリ ル酸からなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタタリレート (GMA)を付加反応させた重量平均分子量 17000、酸価 100mgKOHZg、二重結 合密度 1. 5mmolZg、粘度 8. 2Pa' sのポリマーである。熱分解温度は 390°C、 Tg は 25°Cであった。
[0132] <バインダーポリマー II >
45重量部のイソブチルメタタリレート、 25重量部の 2—ェチルへキシルアタリレート 、 13重量部のアクリル酸メチル、 17重量部のメタクリル酸力もなる共重合体のカルボ キシル基に対し、グリシジルメタタリレート (GMA)を付加反応させた重量平均分子量 64000、酸価 84mgKOHZg、二重結合密度 0. 5mmol/g,粘度 18Pa'sのポリマ 一である。 TG測定の結果、熱分解温度は 310°C、 Tgは 15°Cであった。
[0133] <バインダーポリマー III >
40重量部のメタクリル酸メチル、 30重量部のアクリル酸ェチル、 30重量部のメタタリ ル酸からなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタタリレート (GMA)を付加反応させた重量平均分子量 18000、酸価 lllmgKOHZg、二重結 合密度 1. 4mmolZg、粘度 13. 4Pa'sのポリマーである。熱分解温度は 422°C、 Tg は 38°Cであった。
[0134] <バインダーポリマー IV >
40重量部のメタクリル酸メチル、 20重量部のアクリル酸ェチル、 40重量部のメタタリ ル酸からなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタタリレート (GMA)を付加反応させた重量平均分子量 16000、酸価 105mgKOHZg、二重結 合密度 2. 5mmolZg、粘度 11. 2Pa'sのポリマーである。熱分解温度は 430°C、 Tg は 74°Cであった。
[0135] <バインダーポリマー V>
50重量部のメタクリル酸メチル、 30重量部のスチレン、 20重量部のメタクリル酸か らなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタクリレー HGMA )を付加反応させた重量平均分子量 31000、酸価 58mgKOHZg、二重結合密度 1 . 4mmolZg、粘度 7. 7Pa'sのポリマーである。熱分解温度は 421°C、 Tgは 94°Cで めつに。
[0136] <バインダーポリマー VI >
50重量部のメタクリル酸メチル、 30重量部のスチレン、 20重量部のメタクリル酸か らなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタクリレー HGMA )を付加反応させた重量平均分子量 22000、酸価 52mgKOHZg、二重結合密度 0 . 34mmolZg、粘度 13. 3Pa'sのポリマーである。熱分解温度は 402°C、 Tgは 106 °Cであった。 [0137] <バインダーポリマー VII >
30重量部のメタクリル酸メチル、 30重量部のスチレン、 40重量部のメタクリル酸か らなる共重合体のカルボキシル基に対し、 0. 4当量のグリシジルメタクリレー HGMA )を付加反応させた重量平均分子量 34000、酸価 102mgKOHZg、二重結合密度 2. 7mmolZg、粘度 8. 3Pa ' sのポリマーである。熱分解温度は 433°C、 Tgは 118 °Cであった。
[0138] くガラス粉末 1 >
ガラス粉末として、 Bi O (74重量0 /0)、 SiO (7. 2重量0 /0)、 B O (10重量0 /0)、 Zn
2 3 2 2 3
0 (2. 3重量0 /0)、ZrO (2. 2重量0 /0)、Α1 Ο (2. 5重量0 /0)の組成のガラス粉末を
2 2 3
用いた。このガラス粉末の熱軟化温度は 509°C、平均粒子径 0. 5 /ζ πι、比重 5. 86g
)は 2. 15であった。
Figure imgf000031_0001
[0139] <ガラス粉末 II >
ガラス粉末は、 Bi O (77重量%)、 SiO (6. 7重量%)、 B O (10重量%)、 ZrO (
2 3 2 2 3 2
0. 58重量%)、ZnO (2. 3重量%)、A1 0 (2. 5重量%)の組成のガラス粉末を用
2 3
いた。このガラス粉末の熱軟化温度は 493°C、平均粒子径 0. 5 /ζ πι、比重 6. Og/c m3、屈折率 (n )は 2. 2であった。
g
[0140] <ガラス粉末 III >
ガラス粉末は、 Bi O (77. 2重量%)、 SiO (6. 9重量%)、 B O (10. 2重量0 /0)、
2 3 2 2 3
ZrO (0重量%)、ZnO (2. 5重量%)、A1 0 (2. 7重量%)の組成のガラス粉末を
2 2 3
用いた。このガラス粉末の熱軟化温度は 493°C、平均粒子径 0. 5 /ζ πι、比重 6. lg
)は 2. 21であった。
Figure imgf000031_0002
[0141] <ガラス粉末 IV>
ガラス粉末は、 Bi O (67重量%)、 SiO (7. 6重量%)、 B O (13. 7重量%)、 Zr
2 3 2 2 3
O (0重量%)、ZnO (8. 0重量%)、A1 0 (3. 2重量%)の組成のガラス粉末を用い
2 2 3
た。このガラス粉末の熱軟化温度は 534°C、平均粒子径 1. 4 /ζ πι、比重 5. 4g/cm3 、屈折率 (n )は 1. 98であった。
g
[0142] <ガラス粉末 V>
ガラス粉末は、 Bi O (67重量%)、 SiO (9. 7重量%)、 B O (11. 5重量%)、 Zr O (3. 3重量%)、ZnO (3. 8重量%)、A1 0 (4重量%)の組成のガラス粉末を用い
2 2 3
た。このガラス粉末の熱軟化温度は 529°C、平均粒子径 0. 5 /ζ πι、比重 5. 33g/c m3、屈折率 (n )は 1. 95であった。
g
[0143] <ガラス粉末 VI >
ガラス粉末として、 Bi O (70重量%)、 SiO (16重量%)、 B O (9. 2重量%)、 Zr
2 3 2 2 3
O (0重量%)、ZnO (2. 3重量%)、A1 0 (2. 5重量%)の組成のガラス粉末を用い
2 2 3
た。このガラス粉末の熱軟化温度は 590°C、平均粒子径 1. 6 /ζ πι、比重 5. Og/cm3 、屈折率 (n )は 1. 95であった。
g
[0144] くガラス粉末 VII >
無機粉末は、 PbO (70重量%)、 SiO (13重量%)、 Al O (3重量%)、 B O (10
2 2 3 2 3 重量%)、 ZnO (4重量%)の組成のガラス粉末を用いた。このガラス粉末の熱軟化温 度は 590°C、平均粒子径は 1. 2 /ζ πι、屈折率 (η )は 2. 1であった。
g
[0145] <ガラス粉末 VIII >
Bi O (82重量%)、 SiO (4. 9重量%)、 B O (8. 1重量%)、 ZnO (l. 5重量%)
2 3 2 2 3
、ZrO (0. 15重量0 /0)、Al O (2. 2重量0 /0)の組成のガラス粉末を用いた。このガラ
2 2 3
ス粉末の熱軟化温度は 462°C、平均粒子径 0. 5 /ζ πι、比重 6gZcm3、屈折率 ) g は 2. 31であった。
[0146] <フィラー1>
セラミックス:平均粒子径 37nmのアルミナ粒子 (シーアィ化成 (株)製、商品名ナノ テック)
平均粒子径は窒素ガスを用いた BET法により比表面積を測定した後に、粒子を球 と仮定して比表面積から粒子径を求め、数平均として平均粒子径を求めた。
[0147] <フイラ一 Π>
シリカ:平均粒子径 12nmのシリカ粒子(日本ァエロジル (株)製、商品名ァエロジル 2 00)、平均粒子径は窒素ガスを用いた BET法により比表面積を測定した後に、粒子 を球と仮定して比表面積から粒子径を求め、数平均として平均粒子径を求めた。
[0148] <化合物(A) I>
クマリン系誘導体(日本ィ匕薬 (株)製、商品名 Kayalight B) 3—メトキシ— 3—メチ ルー 1ーブタノール溶液中での紫外線の吸収最大波長は 370nm、蛍光の最大発光 波長は 44 lnmであった。
[0149] <化合物(Α) Π >
ォキサゾール系誘導体(日本ィ匕薬 (株)製 商品名 Kayalight O) 3—メトキシ 3 ーメチルー 1ーブタノール溶液中での紫外線の吸収最大波長は 374nm、蛍光の最 大発光波長は 436nmであった。なお、表 1において、感光性有機成分に露光波長 を吸収し露光波長より長波長の光線を発し、かつ発した光線が感光性有機成分を硬 化あるいは可溶ィ匕させる化合物は化合物 (A)と表記する。
[0150] 実施例 1
感光性有機成分として、エチレン性不飽和基含有ィ匕合物であるアクリルモノマー( 日本ィ匕薬 (株)製カャラッド (登録商標) TPA- 330)を 7重量部、上記バインダーポリ マー Iを 7重量部、溶媒(3—メチルー 3—メトキシブタノール)を 10重量部、光重合開 始剤(日本化薬 (株)製、 2, 4 ジメチルチオキサントンとチノくスペシャルティケミカル ズ社製、ィルガキュア (登録商標) 369を 1: 2の重量比で用いる)を 2重量部、化合物 (A) Iを 3重量部、紫外線吸光剤(ァゾ系有機染料 4—アミノアゾベンゼン:和光純薬 工業 (株)製)を 0. 2重量部、分散剤 (サンノプコ (株)製 商品名ノブコスパース 092) を 0. 3重量部、重合禁止剤 (p—メトキシフエノール)を 0. 5重量部、無機成分として、 上記ガラス粉末 Iを 80重量部混合した。これを 3本ロールに 5回通し、感光性組成物 を作製した。この感光性組成物をさらに 400メッシュのフィルターを用いて濾過した。
[0151] ガラス基板上に上記感光性組成物を、スクリーン印刷を用いて均一に塗布し、 80 °Cで 15分間保持して乾燥し、厚さ 20 mの感光性組成物の層を形成した。このよう にしてサンプルを 10枚作成し、感光性組成物の層のタック性評価を行ったところ、 10 枚とも、タック値は、 6か 8であった。
[0152] その後、 20 μ mのビアパターン /60 μ mピッチ、 30 μ mのビアパターン /90 μ m ピッチのパターンを持つネガ型クロムマスクを用いて、上面から 0. 5kw出力の超高 圧水銀灯で紫外線露光した。露光量は UZcm2であった。
[0153] 次に 25°Cに保持した炭酸ナトリウム 0. 1重量%の水溶液をシャワーで 30秒間現像 した。その後シャワースプレーを用いて水洗浄し、光硬化していない部分を除去して ガラス基板上に約 20 μ mおよび約 30 μ mの孔径をもつビアパターンを形成した。
[0154] 感光性有機成分の屈折率 (n )は、感光性有機成分だけを混合して、基板に塗布
g
および乾燥した後に、エリプソメーターを用いてエリプソメトリー法によって、 25°Cに おける 436nmの波長の光に関して測定を行ったところ、 1. 52であった。
[0155] ノターン形成後の基板を光学顕微鏡で観察し、マスクのビアパターン 100個のうち 、対応するビアパターンが形成された割合をビア加工率 (%)として評価した。その結 果、 20 /ζ πι、 30 m共に 100個のビアパターンが形成されており、 100%のビア加 工率であった。また、ノターン形成基板の表面観察を行ったところ、パターンのクラッ クは見られな力 た。ノ ターン形成後の基板を 4°C/分の昇温レートでガラス粉末の 軟化点付近まで昇温し、 20分保持して焼成を行った。
[0156] 次に、焼成後のパターン形成基板に、スパッタ法を用いて膜厚 lOOnmのクロム膜 を形成した。得られたクロム膜付きパターン基板にスピンコーター法でポジ型のフォト レジス HAZエレクトロニックマテリアルズ (株)製 商品名 AZ1500)を塗布した後、 1 00°Cで 1分ベータした。フォトレジストの膜厚は 1. 5 μ mであった。その後、 25 μ mの ビアパターン /60 μ mピッチ、 37. 5 μ mのビアパターン /90 μ mピッチを持つネガ 型クロムマスクを用いて、上面から 0. 5kw出力の超高圧水銀灯で紫外線露光した。 露光量は 1 OOmjZcm2であつた。
[0157] 次に 25°Cに保持したレジスト現像液 (AZエレクトロニックマテリアルズ (株)製 商品 名 AZ400Kを 5倍に希釈)に 60秒間浸漬、揺動して現像した。その後、 30秒間純水 洗浄し、 120°C2分のポストベータを行うことでレジストパターンを得た。
[0158] 続いて、硝酸第二アンモ-ゥムセリウム 9wt%、過塩素酸 6重量%ぉよび純水 85重 量%の組成で作製したクロムエッチング液を 25°Cに保持し、パターン形成基板を 18 0秒浸漬してクロム膜のエッチングを行った後、純粋で洗浄を行った。さらに、アセトン で洗浄し、レジストを剥離した。
[0159] 得られたエッチング後のパターン形成基板の表面を、 SEM (走査型電子顕微鏡) を用いて観察し、エッチングの残渣を測定した。 1万 5000倍率時に 3 m四方の面 積内に 0. 3 m以上の大きさの塊を残渣として、個数を目視にて数えた。観察場所 を変えて 10回繰り返した平均値を評価したところ、 1個であり残渣は少な力つた。 [0160] また、前記の感光性組成物を、調整後、室温もしくは 22°Cの恒温室に 1週間放置し た後、前記と同様にパターン形成を行い、その加工率を評価したところいずれも 100 %のビア加工率であり、組成物の保存安定性は良好であった。
[0161] 実施例 2〜10、 13〜21、比較例 1〜4
表 1および 2に記載された組成にした以外は、実施例 1と同様に感光性組成物を作 製し、ノターンカ卩ェ性、現像後のクラックの有無、エッチング液耐性およびタック値を 評価した。
[0162] 実施例 11
実施例 1における紫外線吸光剤を 4, 4, -ジメチルアミノアゾベンゼン (ァゾ系有機 染料:和光純薬工業 (株)製)へ変更、アクリルモノマー、バインダーポリマー、ガラス 粉末の量を表 1に示したような量に変更した以外は実施例 1と同様に感光性組成物 を作製し、パターン加工性を評価した。ガラス粉末量が 90重量部であり、感光性有機 成分に対し含有量が多い状態でも、 20 ^ m, 30 m共に高いビアカ卩工率であった。 結果は表 1に示す。
[0163] 実施例 12
実施例 1における化合物 (A)を添加しない、アクリルモノマー、バインダーポリマー 、ガラス粉末の量を表 1に示したような量に変更した以外は実施例 1と同様に感光性 組成物を作製し、パターン加工性を評価した。結果は表 1に示す。
[0164] [表 1]
〔〕 表 1
Figure imgf000036_0001
表 2
Figure imgf000037_0001
Figure imgf000037_0002
〔〕0167
表 3
Figure imgf000038_0001
4
Figure imgf000039_0001
産業上の利用可能性
本発明の感光性組成物は、組成物の保存安定性が高ぐかつ、良好な微細パター ンを形成することができる。また、本発明の感光性組成物を用いて得られた部材は、 強酸に対する耐性が優れている。また、比較的低温で焼成できるので、本発明の感 光性組成物は、フィールドェミッションディスプレイの絶縁層や蛍光発光装置の絶縁 層に好適に用いることができる。

Claims

請求の範囲
[I] 感光性有機成分 50〜5重量%およびガラス粉末 50〜95重量%を含有する感光性 組成物であって、該ガラス粉末が酸ィ匕物換算表記で Bi O 70〜85重量%、 SiO 3
2 3 2
〜15重量%、 B O 5〜20重量%、 ZrO 0〜3重量%および ZnO 1〜10重量%を
2 3 2
含む感光性組成物。
[2] 感光性有機成分に、光を吸収して吸収した光より長波長の光線を発する化合物を含 有し、当該化合物の含有量が感光性有機成分に対して 0. 1〜30重量%である請求 項 1記載の感光性組成物。
[3] 当該化合物力 露光に用いられる波長の光を吸収し、吸収した光より長波長の光線 を発し、発した光線が感光性有機成分を硬化あるいは可溶化させる請求項 2記載の 感光性組成物。
[4] 前記ガラス粉末が 1. 8以上 2. 2以下の平均屈折率を有する請求項 1記載の感光性 組成物。
[5] 前記ガラス粉末が 350〜600°Cの熱軟ィ匕温度を有する請求項 1記載の感光性組成 物。
[6] 前記ガラス粉末の平均粒子径が 0. 1〜5 μ mの範囲である請求項 1記載の感光性組 成物。
[7] 前記光を吸収し、吸収した光より長波長の光線を発する化合物が、 350ηπ!〜 380η mの範囲に最大吸収があり、かつ、 3—メトキシ一 3—メチル 1—ブタノール溶液中 で測定したときの蛍光の最大発光波長が 400nm〜450nmの範囲にある請求項 2記 載の感光性組成物。
[8] 前記光を吸収し、吸収した光より長波長の光線を発する化合物がクマリン誘導体であ る請求項 2記載の感光性組成物。
[9] 前記光を吸収し、吸収した光より長波長の光線を発する化合物の極性溶媒に対する 溶解度が 2gZ溶媒 100g以上である請求項 2記載の感光性組成物。
[10] 前記光を吸収し、吸収した光より長波長の光線を発する化合物のモル吸光係数が 2
0000以上である請求項 2記載の感光性組成物。
[I I] 基板上に形成した感光性組成物の膜のタック値が 0〜4である請求項 1記載の感光 性組成物。
[12] 請求項 1記載の感光性組成物を基板上に塗布する工程、露光工程、現像工程、およ び焼成工程をこの順に含むディスプレイ部材の製造方法。
[13] 基板上に、ガラスカゝらなる絶縁層が形成されたディスプレイ部材であって、該ガラスの 組成が酸化物換算表記で Bi O 70〜85重量%、 SiO 3〜15重量%、 B O 5〜20
2 3 2 2 3 重量0 /0、 ZrO 0〜3重量0 /0および、 ZnO 1〜10重量0 /0の範囲であるディスプレイ部
2
材。
PCT/JP2007/050197 2006-01-12 2007-01-11 感光性組成物、ディスプレイ部材およびその製造方法 WO2007080904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007503726A JP5003481B2 (ja) 2006-01-12 2007-01-11 感光性組成物、ディスプレイ部材およびその製造方法
EP07706544A EP1980910A4 (en) 2006-01-12 2007-01-11 LIGHT-SENSITIVE COMPOSITION, DISPLAY AND MANUFACTURING PROCESS THEREFOR
US12/087,672 US20090004597A1 (en) 2006-01-12 2007-01-11 Photosensitive Composition, Display Member, and Process for Producing The Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-004464 2006-01-12
JP2006004464 2006-01-12

Publications (1)

Publication Number Publication Date
WO2007080904A1 true WO2007080904A1 (ja) 2007-07-19

Family

ID=38256309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050197 WO2007080904A1 (ja) 2006-01-12 2007-01-11 感光性組成物、ディスプレイ部材およびその製造方法

Country Status (7)

Country Link
US (1) US20090004597A1 (ja)
EP (1) EP1980910A4 (ja)
JP (1) JP5003481B2 (ja)
KR (1) KR20080081939A (ja)
CN (1) CN101371195A (ja)
TW (1) TW200739253A (ja)
WO (1) WO2007080904A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213526A (ja) * 2010-03-31 2011-10-27 Nihon Yamamura Glass Co Ltd ガラス組成物
CN105467759A (zh) * 2014-09-26 2016-04-06 东友精细化工有限公司 自发光感光性树脂组合物和包含利用其而制造出的颜色转换层的显示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058839B2 (ja) * 2008-02-01 2012-10-24 株式会社ノリタケカンパニーリミテド 転写用感光性導体ペーストおよび感光性転写シート
TWI377451B (en) * 2008-12-08 2012-11-21 Everlight Chem Ind Corp Developer composition
JP5530561B2 (ja) * 2011-04-08 2014-06-25 太陽インキ製造株式会社 感光性組成物、その硬化皮膜及びそれらを用いたプリント配線板
CN103163744A (zh) * 2011-12-16 2013-06-19 江阴润玛电子材料股份有限公司 一种新型有机光刻胶剥离液及其制备工艺
JP6155823B2 (ja) * 2012-07-12 2017-07-05 Jsr株式会社 有機el素子、感放射線性樹脂組成物および硬化膜
CN104781691A (zh) * 2012-11-01 2015-07-15 东丽株式会社 放射线检测装置以及其制造方法
JP6087655B2 (ja) * 2013-02-18 2017-03-01 東京応化工業株式会社 現像液、及び感光性樹脂組成物の現像処理方法
JP6449788B2 (ja) 2013-02-25 2019-01-09 サン−ゴバン グラス フランス 有機発光ダイオードを有するデバイスのための基材
FR3002533A1 (fr) * 2013-02-25 2014-08-29 Saint Gobain Substrat pour dispositif a diode electroluminescente organique
US10283808B2 (en) * 2013-06-27 2019-05-07 Toyota Jidosha Kabushiki Kaisha Method for producing electrode for lithium ion batteries
CN104614939A (zh) * 2015-01-09 2015-05-13 苏州瑞红电子化学品有限公司 一种用于gpp工艺中混合玻璃粉用负性光刻胶组合物
CN105824191A (zh) * 2015-01-09 2016-08-03 日本化药株式会社 光固化性着色组合物、固化物和物品
WO2017057348A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置
KR102338023B1 (ko) * 2015-11-25 2021-12-10 도레이 카부시키가이샤 평판 인쇄용 잉크
JP6753468B2 (ja) * 2016-08-26 2020-09-09 株式会社村田製作所 感光性ガラスペースト、電子部品、及び、電子部品の製造方法
JP7169739B2 (ja) * 2017-02-23 2022-11-11 日本電気硝子株式会社 ビスマス系ガラス粉末、封着材料及び気密パッケージ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231141A (ja) * 1997-02-13 1998-09-02 E I Du Pont De Nemours & Co 鉛およびカドミウムを含まない封止剤組成物
JPH10273338A (ja) * 1997-03-28 1998-10-13 Toray Ind Inc 感光性導電ペーストおよび電極の製造方法
JPH11323147A (ja) * 1998-05-18 1999-11-26 Toray Ind Inc 誘電体ペーストおよびそれを用いたディスプレイ基板の製造方法
JPH11338128A (ja) * 1998-05-25 1999-12-10 Fujifilm Olin Co Ltd 感光性樹脂組成物
JP2002023383A (ja) * 2000-07-05 2002-01-23 Toray Ind Inc 感光性ペーストおよびそれを用いたディスプレイ用部材、並びにディスプレイ用部材の製造方法
JP2003330164A (ja) * 2002-05-10 2003-11-19 Sumitomo Bakelite Co Ltd 感光性銀ペースト及びそれを用いた画像表示装置
JP2004182589A (ja) * 2002-11-19 2004-07-02 Toray Ind Inc ペーストおよびそれを用いたディスプレイパネル用部材の製造方法
JP2004238273A (ja) * 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd ビスマス系ガラス組成物、ならびにそれを封着部材として用いた磁気ヘッドおよびプラズマディスプレイパネル
JP2004250242A (ja) * 2003-02-18 2004-09-09 Toray Ind Inc ペーストおよびそれを用いたディスプレイパネル用部材の製造方法
EP1495025A1 (de) 2002-04-04 2005-01-12 Basf Aktiengesellschaft Cyclische verbindungen und ihre verwendung als lichtabsorber, lichtemitter oder komplexliganden
JP2005306699A (ja) * 2004-04-26 2005-11-04 Taiyo Ink Mfg Ltd 銀ペースト用ガラス組成物及びそれを用いた感光性銀ペースト及び電極パターン
JP2006126716A (ja) * 2004-11-01 2006-05-18 Toray Ind Inc 感光性絶縁ペーストおよびそれを用いた電子回路部品の製造方法
JP2006169047A (ja) * 2004-12-16 2006-06-29 Central Glass Co Ltd 無鉛低融点ガラス

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147552A (en) * 1976-05-21 1979-04-03 Eastman Kodak Company Light-sensitive compositions with 3-substituted coumarin compounds as spectral sensitizers
JP3069139B2 (ja) * 1990-03-16 2000-07-24 旭化成工業株式会社 分散型電界発光素子
US5472823A (en) * 1992-01-20 1995-12-05 Hitachi Chemical Co., Ltd. Photosensitive resin composition
US5656204A (en) * 1993-02-12 1997-08-12 Fuji Xerox Co., Ltd. Optical element and process for producing the same
US5378408A (en) * 1993-07-29 1995-01-03 E. I. Du Pont De Nemours And Company Lead-free thick film paste composition
TW375759B (en) * 1996-07-10 1999-12-01 Toray Industries Plasma display and preparation thereof
JPH11185601A (ja) * 1997-12-18 1999-07-09 Toray Ind Inc プラズマディスプレイの製造方法
JP4081217B2 (ja) * 1999-03-17 2008-04-23 互応化学工業株式会社 紫外線硬化性樹脂組成物、フォトソルダーレジストインク、予備乾燥被膜、基板及びプリント配線板
WO2001004705A1 (fr) * 1999-07-12 2001-01-18 Taiyo Ink Manufacturing Co., Ltd. Composition photodurcissable a developpement alcalin et motif de matiere cuite en etant fait
GB9928270D0 (en) * 1999-12-01 2000-01-26 Eastman Kodak Co Colour filter array film
US7318966B2 (en) * 2000-11-24 2008-01-15 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
US6723478B2 (en) * 2000-12-08 2004-04-20 Hitachi, Ltd. Color filter and liquid crystal display provided therewith
JP2003146696A (ja) * 2001-11-15 2003-05-21 Asahi Glass Co Ltd セラミックカラー組成物およびセラミックカラーペースト
CN1286753C (zh) * 2002-03-29 2006-11-29 松下电器产业株式会社 铋系玻璃组合物、使用它作为密封部件的磁头和等离子显示板
KR20050116431A (ko) * 2004-06-07 2005-12-12 삼성에스디아이 주식회사 감광성 페이스트 조성물, 이를 이용하여 제조된 pdp전극, 및 이를 포함하는 pdp
KR100637174B1 (ko) * 2004-10-06 2006-10-20 삼성에스디아이 주식회사 Pdp 전극 형성용 포지티브형 감광성 페이스트 조성물,이를 이용하여 제조된 pdp 전극 및 이를 포함하는 pdp
US7384577B2 (en) * 2005-03-09 2008-06-10 E.I. Du Pont De Nemours And Company Black conductive thick film compositions, black electrodes, and methods of forming thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231141A (ja) * 1997-02-13 1998-09-02 E I Du Pont De Nemours & Co 鉛およびカドミウムを含まない封止剤組成物
JPH10273338A (ja) * 1997-03-28 1998-10-13 Toray Ind Inc 感光性導電ペーストおよび電極の製造方法
JPH11323147A (ja) * 1998-05-18 1999-11-26 Toray Ind Inc 誘電体ペーストおよびそれを用いたディスプレイ基板の製造方法
JPH11338128A (ja) * 1998-05-25 1999-12-10 Fujifilm Olin Co Ltd 感光性樹脂組成物
JP2002023383A (ja) * 2000-07-05 2002-01-23 Toray Ind Inc 感光性ペーストおよびそれを用いたディスプレイ用部材、並びにディスプレイ用部材の製造方法
JP2004238273A (ja) * 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd ビスマス系ガラス組成物、ならびにそれを封着部材として用いた磁気ヘッドおよびプラズマディスプレイパネル
EP1495025A1 (de) 2002-04-04 2005-01-12 Basf Aktiengesellschaft Cyclische verbindungen und ihre verwendung als lichtabsorber, lichtemitter oder komplexliganden
JP2003330164A (ja) * 2002-05-10 2003-11-19 Sumitomo Bakelite Co Ltd 感光性銀ペースト及びそれを用いた画像表示装置
JP2004182589A (ja) * 2002-11-19 2004-07-02 Toray Ind Inc ペーストおよびそれを用いたディスプレイパネル用部材の製造方法
JP2004250242A (ja) * 2003-02-18 2004-09-09 Toray Ind Inc ペーストおよびそれを用いたディスプレイパネル用部材の製造方法
JP2005306699A (ja) * 2004-04-26 2005-11-04 Taiyo Ink Mfg Ltd 銀ペースト用ガラス組成物及びそれを用いた感光性銀ペースト及び電極パターン
JP2006126716A (ja) * 2004-11-01 2006-05-18 Toray Ind Inc 感光性絶縁ペーストおよびそれを用いた電子回路部品の製造方法
JP2006169047A (ja) * 2004-12-16 2006-06-29 Central Glass Co Ltd 無鉛低融点ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980910A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213526A (ja) * 2010-03-31 2011-10-27 Nihon Yamamura Glass Co Ltd ガラス組成物
CN105467759A (zh) * 2014-09-26 2016-04-06 东友精细化工有限公司 自发光感光性树脂组合物和包含利用其而制造出的颜色转换层的显示装置
JP2016071360A (ja) * 2014-09-26 2016-05-09 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、それにより製造された色変換層を含む表示装置

Also Published As

Publication number Publication date
TW200739253A (en) 2007-10-16
EP1980910A1 (en) 2008-10-15
EP1980910A4 (en) 2010-11-24
US20090004597A1 (en) 2009-01-01
JP5003481B2 (ja) 2012-08-15
JPWO2007080904A1 (ja) 2009-06-11
KR20080081939A (ko) 2008-09-10
CN101371195A (zh) 2009-02-18

Similar Documents

Publication Publication Date Title
JP5003481B2 (ja) 感光性組成物、ディスプレイ部材およびその製造方法
JP4692136B2 (ja) 感光性ペースト組成物およびそれを用いたフィールドエミッションディスプレイ部材
JP4697031B2 (ja) 無機粒子含有感光性樹脂組成物、感光性フィルムおよび無機パターン形成方法
TWI620983B (zh) 導電圖案形成構件的製造方法
CN111149056B (zh) 感光性导电糊剂及导电图案形成用膜
CA2197331C (en) A photosensitive paste, a plasma display, and a method for the production thereof
JP2008039872A (ja) 焼成用感光性組成物及びそれを用いたディスプレイ部材
TW201903526A (zh) 附有配線電極之基板的製造方法及附有配線電極之基板
TWI311688B (en) Photosensitive insulative paste composition and photosensitive film using the same
JP2004118050A (ja) 感光性樹脂組成物およびそれを用いた無機造形物の製造方法
JP2009040628A (ja) マイクロレンズ用感光性ガラスペーストおよびそれを用いたマイクロレンズアレイ
JP2007279407A (ja) 感光性ペースト組成物およびそれを用いたフラットパネルディスプレイ部材
KR20080055682A (ko) 무기 입자 함유 감광성 수지 조성물, 감광성 필름, 패턴형성 방법, 및 평판 디스플레이의 제조 방법
TW201804259A (zh) 積層圖案形成基材及觸控面板之製造方法
TWI493288B (zh) 用於厚層之光敏性聚合物樹脂及包含該樹脂之樹脂組合物
JP4797465B2 (ja) パネルディスプレイ部材の製造方法
JP2007122024A (ja) 感光性組成物
JPH09230112A (ja) マイクロレンズアレイおよびその製造方法
JP3567606B2 (ja) プラズマディスプレイの製造方法
JP2009175399A (ja) 電子放出素子の絶縁層形成用感光性組成物
TW201800850A (zh) 感光性導電糊及附有導電圖案之基板的製造方法
JP2009193679A (ja) フラットパネルディスプレイ部材の製造方法。
TW201728999A (zh) 感光性樹脂組成物、感光性元件、抗蝕劑圖案的形成方法及觸控面板的製造方法
JP2009016320A (ja) 電極部材の製造方法
TW201302656A (zh) 糊劑組成物及電漿顯示器的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007503726

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087015839

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780002326.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12087672

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007706544

Country of ref document: EP