WO2007069389A1 - 非水電解質二次電池用負極とそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用負極とそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2007069389A1
WO2007069389A1 PCT/JP2006/320824 JP2006320824W WO2007069389A1 WO 2007069389 A1 WO2007069389 A1 WO 2007069389A1 JP 2006320824 W JP2006320824 W JP 2006320824W WO 2007069389 A1 WO2007069389 A1 WO 2007069389A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
negative electrode
current collector
weight
parts
Prior art date
Application number
PCT/JP2006/320824
Other languages
English (en)
French (fr)
Inventor
Takayuki Shirane
Katsumi Kashiwagi
Kaoru Inoue
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/664,805 priority Critical patent/US7892677B2/en
Publication of WO2007069389A1 publication Critical patent/WO2007069389A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, and more particularly to a technique for extending the life of a negative electrode using a composite negative electrode active material containing a silicon-containing particle as an active material nucleus.
  • active material particles containing a metal or metalloid capable of forming a lithium alloy are used as nuclei (active material nuclei), and a plurality of carbon fibers are bonded to the active material nuclei to form composite particles (composite negative electrode active material).
  • active material nuclei active material nuclei
  • composite particles composite negative electrode active material
  • Japanese Patent Application Laid-Open No. 2004-349056 proposes a technique used as a). In this configuration, it has been reported that conductivity is ensured and cycle characteristics can be maintained even if the volume of the active material particles changes. Based on this technology, for example, it is considered that a high capacity and high functionality negative electrode can be constructed by utilizing a technique for appropriately combining the binder disclosed in JP-A-11-354126. .
  • the mixture layer containing the composite negative electrode active material peels from the negative electrode current collector due to the stress generated when the composite negative electrode active material expands and contracts. It is difficult to suppress this. Alternatively, it is difficult to prevent the composite negative electrode active material from being detached from the mixture layer. This is presumably because the surface properties of the carbon-containing particles are different from the surface properties of the carbon fibers. By ignoring these surface properties and simply mixing a plurality of binders, it is difficult to obtain a negative electrode having a mixture layer with sufficient binding force. Disclosure of the invention
  • the present invention suppresses an increase in impedance of the entire negative electrode by maintaining the binding force between the composite negative electrode active materials in the mixture layer and also maintaining the binding force between the mixture layer and the current collector.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention has a current collector, a composite negative electrode active material, a mixture layer containing a first binder and a second binder. The mixture layer is provided on the current collector.
  • the composite negative electrode active material is composed of at least a silicon-containing particle capable of occluding and releasing lithium ions, a carbon nanofiber (hereinafter referred to as CNF), and a catalytic element.
  • CNF is attached to the surface of the silicon-containing particles.
  • the catalytic element is at least one selected from the group consisting of copper (Cu), iron (Fe), connolto (Co), nickel (Ni), molybdenum (Mo), and manganese (Mn). Promote growth.
  • the first binder is an acryl-containing polymer.
  • the second binder is an adhesive rubber particle. The first binder is bound to the carbon-containing particles and the current collector, and the second binder is bound to the CNFs.
  • the first binder has a high affinity with the carbon-containing particles
  • the second binder has a high affinity with CNF
  • the current collector has a high affinity with the first binder as with the carbon-containing particles. Therefore, the composite negative electrode active materials containing CNF are joined together by the second binder, and the composite negative electrode active material and the current collector are joined together with a chemical bond by the first binder as a bridge. As a result, the bonding within the mixture layer and between the mixture layer and the current collector become strong, and even if the silicon-containing particles expand / contract due to charge / discharge, the inside of the mixture layer and the mixture layer and the current collector The conductive structure between the body and the body is maintained, and as a result, the cycle characteristics are improved.
  • the present invention further relates to a non-aqueous electrolyte secondary battery using a negative electrode containing the composite negative electrode active material described above.
  • FIG. 1 is a perspective plan view showing a configuration of a model cell in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the model cell shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a mixture layer in the vicinity of a current collector of a negative electrode for a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view showing another configuration of the negative electrode for a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.
  • FIG. 1 is a perspective plan view showing the structure of a model cell for evaluating the negative electrode for a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line IB-1B.
  • 3 is a schematic view showing the structure of the mixture layer in the vicinity of the current collector.
  • the negative electrode 1 shown in FIGS. 1 and 2 has a mixture layer 1B provided on the current collector 1A and electrically connected to the current collector 1A.
  • the mixture layer 1B is composed of a composite negative electrode active material 14 having a carbon-containing particle 11 capable of charging and discharging lithium ions and a carbon nanofiber (CNF) 12 attached to the silicon-containing particle 11. including.
  • the CNF 12 is formed by growing with the catalytic element 13 held on the surface of the silicon-containing particle 11 as a nucleus.
  • Catalytic element 13 is at least one selected from the group power consisting of copper (Cu), iron (Fe), connort (Co), nickel (Ni), molybdenum (Mo) and manganese (Mn), and grows CNF12 Promote.
  • the mixture layer 1B further includes a first binder 15 having an acrylic group-containing polymer force and a second binder 16 also having an adhesive rubber particle force. The first binder 15 binds the carbon-containing particles 11 and the current collector 1A, and the second binder 16 binds CNFs 12 to each other.
  • a counter electrode 2 made of metallic lithium is disposed to face the negative electrode 1 with a separator 3 interposed therebetween.
  • a current collector 2A is bonded to the opposite side of the separator 3 of the counter electrode 2.
  • Laminate bag 4 contains these.
  • the laminate bag 4 is filled with a nonaqueous electrolyte 5 and sealed. That is, the nonaqueous electrolyte 5 is interposed between the negative electrode 1 and the counter electrode 2.
  • Leads 1C and 2C taken outside are connected to current collectors 1A and 2A.
  • the leads 1C and 2C are thermally welded by a modified polypropylene film 7 provided in the opening of the laminate bag 4, respectively. As a result, the laminate bag 4 is sealed.
  • the silicon-containing particles 11 include Si, Si 2 O (0. 05 ⁇ ⁇ 1. 95, more preferably ⁇ or 0.3 ⁇ ⁇ ⁇ 1.3).
  • An alloy, a compound, a solid solution, or the like in which a part is substituted can be used.
  • the cage-containing particles 11 may constitute the cage-containing particles 11 alone, or a plurality of them may constitute the cage-containing particles 11 at the same time.
  • the silicon-containing particles 11 include at least one of the group consisting of a simple substance of Si, an alloy containing Si, a compound containing Si, and a solid solution force containing Si.
  • the CNF 12 adheres to the key element-containing particles 11 on the surface of the key element-containing particles 11 serving as a starting point of the growth. That is, CNF 12 is directly attached to the surface of the silicon-containing particles 11 without using a binder. Depending on the growth form, CNF 12 may adhere to the surface of the silicon-containing particle 11 by chemical bonding at least at one end that is the starting point of the growth. Therefore, the resistance to current collection is reduced in the battery, and high electron conductivity is ensured. Therefore, good charge / discharge characteristics can be expected. In addition, when CNF 12 is bonded to the caged particle 11 via the catalyst element 13, CNF 12 is difficult to come off from the caged particle 11. Therefore, the resistance of the negative electrode 1 to the rolling load, which is a mechanical load exerted on the negative electrode when the negative electrode is rolled to increase the packing density of the negative electrode, is improved.
  • the catalytic element 13 In order for the catalytic element 13 to exhibit good catalytic action until the growth of CNF12 is completed, it is desirable that the catalytic element 13 exists in a metallic state in the surface layer portion of the silicon-containing particle 11. .
  • the catalytic element 13 is, for example, a particle size Inn! ⁇ It is desirable to exist in the form of lOOOnm metal particles. On the other hand, after completion of the growth of CNF12, it is desirable to oxidize the metal particles composed of catalyst element 13.
  • the fiber length of CNF12 is preferably from lnm to: Lmm, and more preferably from 500 nm to 100 ⁇ m. If the fiber length of CNF12 is less than 1 nm, the effect of increasing the conductivity of the electrode is too small. When the fiber length exceeds lmm, the active material density and capacity of the electrode tend to decrease.
  • the form of CNF12 is not particularly limited, but is desirably at least one selected from the group consisting of tubular carbon, accordion carbon, plate carbon, and herringbone carbon.
  • the CNF 12 may incorporate the catalyst element 13 into itself during the growth process.
  • the fiber diameter of CNF12 is preferably 50 ⁇ from lnm to 1000nm! More preferably, ⁇ 300 nm.
  • the catalytic element 13 provides an active point for growing CNF12 in a metallic state. That is, when the catalyst-containing particles 11 having the catalytic element 13 exposed in a metallic state on the surface are introduced into a high-temperature atmosphere containing the CNF 12 source gas, the growth of CNF 12 proceeds. When the catalytic element 13 does not exist on the surface of the silicon-containing particles 11, CNF 12 does not grow.
  • the method of providing the metal particles comprising the catalytic element 13 on the surface of the caged particles 11 is not particularly limited, but for example, a method of supporting the metal particles on the surfaces of the caged particles 11 is preferable.
  • solid metal particles can be mixed with the silicon-containing particles 11, but the metal compound that is a raw material of the metal particles is dissolved in an appropriate solvent.
  • a method of immersing the silicon-containing particles 11 in a solution is preferable. After immersing the silicon-containing particles 11 in the solution, removing the solvent from the silicon-containing particles 11 and heat-treating as necessary, the particles are uniformly and highly dispersed on the surface and have a particle diameter of 1 nm to 1000 nm, preferably It is possible to obtain silicon-containing particles 11 carrying metal particles composed of catalyst elements 13 of 10 nm to 100 nm.
  • the particle size of the metal particles comprising the catalytic element 13 is less than lnm, it is difficult to form the metal particles.
  • the particle size exceeds lOOOnm the size of the metal particles becomes non-uniform and it is difficult to grow CNF12. It becomes. Therefore, it is difficult to obtain a negative electrode having excellent conductivity. Therefore, the particle size of the metal particles composed of the catalytic element 13 is preferably 1 nm or more and lOOOnm or less.
  • Examples of the metal compound for obtaining the above solution include nickel nitrate, cobalt nitrate, iron nitrate, copper nitrate, manganese nitrate, and hexamolybdate hexaammonium tetrahydrate.
  • the solvent used for the solution is preferably selected from water, organic solvents, and mixtures of water and organic solvents in consideration of the solubility of the metal compound and the compatibility with the electrochemically active phase of the carbon-containing particles 11. If you choose one, ⁇ .
  • the electrochemically active phase is a crystalline phase or amorphous phase constituting the silicon-containing particles 11, such as an oxidation-reduction reaction involving electron transfer, that is, a metal phase capable of performing a battery reaction, a metal oxide phase, etc.
  • the organic solvent for example, ethanol, isopropyl alcohol, toluene, benzene, hexane, tetrahydrofuran and the like can be used.
  • alloy particles containing the catalyst element 13 can be synthesized and used as the cage-containing particles 11. In this case, an alloy of Si and catalytic element 13 is synthesized by a normal alloy manufacturing method.
  • an electrochemically active phase is formed. At least a part of the metal phase composed of the catalyst element 13 is exposed on the surface of the alloy particles in the form of particles having a particle size of, for example, 10 nm to 100 nm.
  • the content of the metal particles or metal phase composed of the catalyst element 13 is preferably 0.01% by weight to 10% by weight with respect to the silicon-containing particles 11 and is 1% by weight to 3% by weight. It is even more desirable. If the content of metal particles or metal phase is too small, it may take a long time to grow CNF12, which may reduce production efficiency. On the other hand, if the content of the metal particles or metal phase composed of the catalyst element 13 is too large, the catalyst element 13 aggregates to grow nonuniform and thick fiber diameter CNF12. This leads to a decrease in the active material density. In addition, the proportion of the electrochemically active phase is relatively reduced, making it difficult to make the composite negative electrode active material 14 into a high-capacity negative electrode material.
  • CNF12 is adjusted below containing Kei particles 11 0. tap density beating 42GZcm 3 than on 0. 91GZcm 3 adhered step.
  • the catalytic negative electrode active material 14 may be further heat-treated at 100 ° C to 400 ° C in the atmosphere to oxidize the catalytic element 13. If the heat treatment is performed at 100 ° C. or more and 400 ° C. or less, it is possible to oxidize only the catalytic element 13 without oxidizing CNF12.
  • the catalyst element 13 is provided on the surface layer of the silicon-containing particle 11 as a method.
  • a method for supporting metal particles composed of catalytic element 13 on the surface of the elemental particle 11 a method for reducing the surface of the elemental particle 11 including the element 13, Si element and catalyst element And a method of synthesizing alloy particles with 13 and the like.
  • C-containing particles 11 having catalyst element 13 at least in the surface layer portion are introduced into a high-temperature atmosphere containing CNF 12 source gas
  • the growth of CNF 12 proceeds.
  • the silicon-containing particles 11 are put into a ceramic reaction vessel, and the temperature is raised to 100 ° C to 1000 ° C, preferably 300 ° C to 600 ° C in an inert gas or a gas having a reducing power.
  • carbon-containing gas and hydrogen gas which are CNF12 source gases, are introduced into the reaction vessel. If the temperature in the reaction vessel is less than 100 ° C, CNF12 does not grow. Power growth is too slow and productivity is impaired.
  • the temperature in the reaction vessel exceeds 1000 ° C, decomposition of the raw material gas is promoted and CNF12 is hardly generated.
  • a mixed gas of carbon-containing gas and hydrogen gas is suitable.
  • the carbon-containing gas methane, ethane, ethylene, butane, carbon monoxide, etc. can be used.
  • the molar ratio (volume ratio) of the carbon-containing gas in the mixed gas is preferably 20% to 80%.
  • step (c) the C-containing particles 11 to which CNF 12 is adhered are fired at 400 ° C or higher and 1600 ° C or lower in an inert gas atmosphere. Firing is preferable because the crystallinity of CNF12 is improved, the irreversible reaction between the nonaqueous electrolyte 5 and CNF12 that proceeds during the initial charging of the battery is suppressed, and excellent charge / discharge efficiency can be obtained. If such a firing process is not performed or if the firing temperature is less than 00 ° C, the above-described irreversible reaction may not be suppressed and the charge / discharge efficiency of the battery may decrease.
  • the electrochemically active phase of the carbon-containing particles 11 reacts with CNF12 to deactivate the electrochemically active phase or reduce the electrochemically active phase.
  • the charge / discharge capacity of the battery may decrease.
  • the electrochemically active phase of the silicon-containing particles 11 is Si, Si and C It reacts with NF12 to produce inactive carbide, which reduces the charge / discharge capacity of the battery.
  • the firing temperature is particularly preferably 1000 ° C or higher and 1600 ° C or lower.
  • highly crystalline CNF12 can be obtained.
  • step C) is not necessarily required if highly crystalline CNF12 is obtained in step (b). .
  • the composite negative electrode active material 14 after calcination in an inert gas is used in the atmosphere in order to further oxidize at least a part (for example, the surface) of the metal particles or metal phase comprising the catalyst element 13 1
  • Heat treatment at 00 ° C to 400 ° C is preferred! If the heat treatment temperature is less than 100 ° C, it is difficult to oxidize the metal, and if it exceeds 400 ° C, the grown CNF12 may burn.
  • step (d) the calcined silicon-containing particles 11 to which CNF 12 is adhered are crushed. This is preferable because a composite negative electrode active material 14 with good filling properties can be obtained. However, if the tap density is 0.42 gZcm 3 or more and 0.91 gZcm 3 or less even if it is not crushed, it is not always necessary to crush. That is, step (d) is not always necessary when using the filler-containing silicon-containing particles as a raw material.
  • the negative electrode mixture is prepared by mixing the first binder 15, the second binder 16 and the solvent into the composite negative electrode active material 14 composed of the carbon-containing particles 11 having CNF12 attached to the surface as described above. Prepare a slurry.
  • the first binder 15 is a polymer containing an acrylic group.
  • Specific examples thereof include polyacrylic acid, polyacrylic acid ester, and polymethacrylic acid polyacrylic acid ester.
  • polyacrylic acid and polymethacrylic acid having a carboxyl group are preferable because the hydrogen atom contained in the carboxyl group forms a hydrogen bond with the metal atom to give a high binding force.
  • the second binder 16 is an adhesive rubber particle.
  • a styrene-butadiene copolymer SBR
  • a core-shell type modified SBR designed to give elasticity to the core and stickiness to the shell is more preferable.
  • NMP N-methyl-2-pyrrolidone
  • water water
  • the obtained slurry is applied to both surfaces of the current collector 1A using a doctor blade and dried to form a mixture layer 1B on the current collector 1A.
  • the first binder 15 binds to the carbon-containing particles 11 and the current collector 1A
  • the second binder 16 binds to CNF12.
  • the temperature and air volume are adjusted and dried.
  • the second binder 16 having the property of moving with the solvent to evaporate accumulates more on the side closer to the surface of the mixture layer 1B than in the vicinity of the current collector 1A.
  • the first binder 15 is bonded to the silicon-containing particles 11 and the current collector 1A.
  • the thickness of the mixture layer 1B is adjusted by roll rolling.
  • the completed strip-shaped negative electrode continuous body is punched or cut to a predetermined size.
  • a nickel or copper lead 8 is connected to the exposed portion of the current collector 1A by welding or the like to complete the negative electrode 1.
  • the current collector 1A can be made of a metal foil such as stainless steel, nickel, copper, or titanium, or a thin film of carbon or conductive resin. Furthermore, surface treatment may be performed with carbon, nickel, titanium, or the like.
  • an electrolyte solution in which a solute is dissolved in an organic solvent or a polymer electrolyte in which the electrolyte solution is made non-fluidized with a polymer can be used.
  • a separator 3 such as a non-woven fabric or microporous membrane that has strength such as polyethylene, polypropylene, aramid resin, amideimide, polyphenylene sulfide, polyimide between the counter electrode 2 and the negative electrode 1. It is preferred to impregnate the solution.
  • the inside or the surface of the separator 3 may contain a heat-resistant filler such as alumina, magnesia, silica, and titer.
  • a heat-resistant layer composed of these fillers and a binder similar to that used for the electrode may be provided.
  • the material of the nonaqueous electrolyte 5 is selected in consideration of the oxidation-reduction potential of the active material.
  • Solutes preferably used for non-aqueous electrolyte 5 include LiPF, LiBF, LiCIO, LiAlCl, Li
  • the organic solvent for dissolving the solute includes ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, jetyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl formate, methyl acetate, propion.
  • Tetrahydrofuran derivatives dimethyl sulfoxide, 1,3 dioxolane, dioxolane derivatives such as 4-methyl-1,3-dioxolane, formamide, acetoamide, dimethylformamide, Tonitrile, propyl-tolyl, nitromethane, ethyl monoglyme, phosphate triester, acetate ester, propionate ester, sulfolane, 3-methylsulfolane, 1,3 dimethyl-2 imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate Solvents commonly used in lithium batteries, such as derivatives, ethyl ether, jetyl ether, one or more mixtures of 1,3 propane sultone, carsol, fluorobenzene, etc. can be used.
  • the non-aqueous electrolyte 5 is made of a polymer material such as polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylenesulfide, polybutyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene. Mix or dissolve the above solute in one or more mixtures, etc., and use it as a solid polymer electrolyte May be. Further, a solid polymer electrolyte may be mixed or dissolved with the organic solvent and used as a gel polymer electrolyte.
  • Solid electrolyte made of inorganic materials such as SiS, Li PO -Li S-SiS, phosphorus sulfide compounds
  • the laminate bag 4 is made of a sheet obtained by laminating a heat-meltable resin film such as polyethylene on at least one surface of a metal foil such as an aluminum foil.
  • the sheet is processed into a bag shape so that the hot-melt resin film forms the inner surface of the bag.
  • the inside of the laminate bag 4 is hermetically sealed by thermally welding the heat-melting resin films on the inner surface.
  • the mixture layer 1B includes the composite negative electrode active material 14, the first binder 15 having an acrylic-containing high molecular force, and the second binder having an adhesive rubber particle force. Including 16.
  • the first binder 15 is bound to the carbon-containing particles 11 and the current collector 1 A, and the second binder 16 is bound to the CNFs 12.
  • the composite negative electrode active material 14 is bound. Hard to wear. Therefore, the composite negative electrode active material 14 may be easily detached from the mixture layer 1B with charge / discharge. Further, when only the second binder 16 having adhesive rubber particle force is added as the binder, the composite negative electrode active materials 14 are bound to each other through the CN F12, but are hardly bound to the current collector 1A. For this reason, most of the mixture layer 1B is peeled off from the current collector 1A during charging and discharging.
  • first binder 15 and the second binder 16 are simply mixed and evenly dispersed (distributed) in the mixture layer 1B, the properties of each binder are not fully exhibited. Again, most of the mixture layer 1B is peeled off from the current collector 1A by charging and discharging. Therefore, it is important that the first binder 15 is bound to the carbon-containing particles 11 and the current collector 1A, and the second binder 16 is bound to the CNF 12.
  • the surface of current collector 1A It is preferable to roughen the surface of current collector 1A. As a result, the area where the first binder 15 having a high affinity with the current collector 1A is bound to the current collector 1A is increased, the binding property is further increased, and the cycle characteristics are improved.
  • the roughening treatment include sand blasting, plating at a high current density, and chemical etching.
  • the rough surface obtained by the roughening treatment preferably has a surface roughness of 1 ⁇ m or more and 5 ⁇ m or less.
  • the content of the first binder 15 having high properties be higher than that of other parts in the vicinity of the phosphor 1A.
  • the other part indicates a position closer to the surface of the mixture layer 1B.
  • several negative electrode mixture slurries with different contents of the first binder 15 are prepared, and the first binder is applied to the current collector 1A in order from the slurry with the highest content.
  • the content of the agent 15 can be increased in the vicinity of the current collector 1A.
  • a binder layer 20 having a higher content of the first binder 15 than the mixture layer 1B between the current collector 1A and the mixture layer 1B. May be further provided.
  • a conductive material such as acetylene black
  • the binder layer 20 is formed, for example, by putting a conductive substance into a solvent in which the first binder 15 is dispersed, stirring and slurrying, and then applying the slurry to the current collector 1A. Then, the negative electrode mixture slurry is applied on the binder layer 20 and dried to prepare the mixture layer 1B.
  • the composite negative electrode active material 14 which is a component in the mixture layer 1B moves to the part binding layer 20, and the content of the first binder 15 is reduced to the current collector 1A.
  • the content of the first binder 15 can be increased in the vicinity of the current collector 1A, and the bonding between the silicon-containing particles 11 and the current collector 1A can be more reliably performed.
  • the content of the first binder 15 is less than 1 part by weight with respect to 100 parts by weight of the silicon-containing particles 11, the mixture layer 1B and the current collector are collected by repeated charge and discharge (expansion and shrinkage).
  • the binding property between the body 1A and the mixture layer 1B becomes easy to peel off. That is, the cycle characteristics deteriorate.
  • the content of the first binder 15 exceeds 30 parts by weight with respect to 100 parts by weight of the key-containing particles 11, the first binder 15 excessively coats the key-containing particles 11, thereby causing the negative electrode.
  • the ionic conductivity inside decreases and the high-load discharge characteristics deteriorate. Therefore, the content of the first binder 15 is preferably 1 part by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the carbon-containing particles.
  • the composite negative electrode active material 14 is not sufficiently bound to each other in the mixture layer 1B, and charge / discharge is performed. (expansion By repeating (shrinkage), the binding property in the mixture layer IB is lowered, and the composite negative electrode active material 14 is easily detached from the mixture layer 1B. That is, the cycle characteristics deteriorate.
  • the content of the second binder 16 exceeds 80 parts by weight with respect to 100 parts by weight of CNF12, the second binder 16 excessively coats CNF12, thereby reducing the conductivity in the negative electrode. As a result, the cycle characteristics deteriorate.
  • the content of the second binder 16 is preferably 3 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of CNF12.
  • the SiO particles carrying iron nitrate were placed in a ceramic reaction vessel and heated to 500 ° C. in a helium gas atmosphere. After that, helium gas is replaced with a mixed gas of 50% by volume of hydrogen gas and 50% by volume of oxygen-carbon gas, and the SiO particles are heated at 500 ° C for 1 hour.
  • the fiber diameter is about 80 nm and the fiber length is about 50 ⁇ m flat plate CNFl 2 was grown.
  • the mixed gas was replaced with helium gas, and the mixture was cooled until the temperature inside the reaction vessel reached room temperature, whereby a composite negative electrode active material 14 was prepared.
  • the amount of CNF12 grown was 25 parts by weight per 100 parts by weight of SiO particles.
  • the negative electrode 1 of Sample 1 100 parts by weight of the composite negative electrode active material 14, 10 parts by weight of a 1% aqueous solution of polyacrylic acid (average molecular weight 150,000) as the first binder 15, and the core-shell type modified SBR as the second binder 16 10 parts by weight and 200 parts by weight of distilled water were mixed and dispersed uniformly to prepare a negative electrode mixture slurry.
  • the blending amount of the first binder 15 is 13.3 parts by weight with respect to 100 parts by weight of SiO.
  • the total amount is 40 parts by weight per 100 parts by weight of CNF12.
  • the negative electrode mixture slurry thus prepared was applied to a 14 ⁇ m-thick copper (Cu) foil as current collector 1A so that the electrode plate thickness after drying was 100 m. Then, a negative electrode 1 was produced by punching into a square of 11 mm on a side.
  • Cu copper
  • the negative electrode 1 thus prepared, the counter electrode 2 having a thickness of 300 ⁇ m and a square metal lithium foil having a side of 13 mm, a thickness of 20 / ⁇ ⁇ , and the separator 3 having a porosity of about 40%
  • a flat model cell was constructed using a polyethylene microporous membrane. After inserting the model cell into the laminate bag 4, the non-aqueous electrolyte 5 was injected, and then the laminate bag 4 was sealed.
  • EC ethylene carbonate
  • DMC dimethinorecarbonate
  • EMC ethinoremethinorecarbonate
  • the battery capacity (C, unit: mAh) of the sample 1 model cell obtained is 5 mAh.
  • the amount of BM-400B, which is the second binder 16 in Sample 1 is 100 parts by weight of the composite negative electrode active material 14. 0.4, 0.8, 2.5, 15, 20, and 24 weights were used. Except for this, model cells of Samples 8 to 13 were produced in the same manner as Sampu Nore 1. In Samples 8 to 13 !, the amount of the second binder 16 to 100 parts by weight of CNF12 is 3, 10, 60, 80 and 96 parts by weight, respectively.
  • Sample 15 was the same as Sample 1 except that the copper foil as current collector 1A was sandblasted to roughen the surface roughness Ra, which was 0.1 m, to 1 ⁇ m.
  • a model cell of Sample 15 was produced in the same manner.
  • Sample 16 two types of negative electrode mixture slurry were used.
  • Sample 16 was prepared in the same manner as Sample 1 negative electrode mixture slurry, except that the amount of polyacrylic acid as first binder 15 was 0.7 parts by weight with respect to 100 parts by weight of composite negative electrode active material 14.
  • a first slurry was prepared.
  • the amount of the first binder 15 is 1 part by weight per 100 parts by weight of SiO.
  • a second slurry of sample 16 was prepared in the same manner as the negative electrode mixture slurry of sample 1, except that the amount of polyacrylic acid was 22.4 parts by weight with respect to 100 parts by weight of composite negative electrode active material 14.
  • the amount of the first binder 15 is 30 parts by weight with respect to 100 parts by weight of SiO.
  • the second slurry is applied on the copper foil as current collector 1A so that the thickness after drying is 43 ⁇ m to form a lower layer, and the thickness after drying the first slurry is 43
  • the upper layer was formed by coating to m. Except for this, a model cell of Sample 16 was fabricated in the same manner as Sample 1.
  • the binder layer 20 was formed on the current collector 1A prior to the formation of the mixture layer 1B.
  • 20 parts by weight of polyacrylic acid as the first binder was blended with 100 parts by weight of acetylene black, and a third slurry was prepared using distilled water as a solvent. This third slurry was applied onto the copper foil as current collector 1A so that the thickness after drying was 5 m, and then the same slurry as the negative electrode mixture slurry used for sample 1 was applied and dried.
  • a model cell of Sample 17 was produced in the same manner as Sample 1 except that the binding layer 20 was formed in this way.
  • each model cell of Samples 1 to 17 produced was evaluated.
  • Each model cell was charged with a current of 0.1 lCmA, discharged with a current of 0.5CmA, and the discharge capacity at 0.5CmA was measured.
  • the obtained discharge capacity was divided by the discharge capacity at 0.1 lCmA to obtain the capacity retention rate, which was used as an indicator of high load characteristics.
  • the content of the first binder 15 is 5 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of SiO
  • the content of the second binder 16 is 10 parts by weight with respect to 100 parts by weight of CNF12.
  • the model cells of Samples 1, 4, 5, 10, and 11 that are greater than or equal to 60 parts by weight exhibited particularly excellent properties.
  • Sample 15 having a roughened surface of current collector 1A has an increased current collector area for adsorbing first binder 15 having a high affinity with current collector 1A. The cycle characteristics were further improved.
  • the affinity for current collector 1A is such that the content of first binder 15 is increased in the vicinity of current collector 1A.
  • peeling of the current collector 1A force of the mixture layer 1B due to the intense expansion and contraction of SiO was greatly reduced, and the cycle characteristics were further improved.
  • Sample 14 the composition of SiO and CNF 12 that are the silicon-containing particles 11 in the composite negative electrode active material 14 is changed.
  • the non-aqueous electrolyte secondary battery with excellent cycle characteristics and high load discharge characteristics can be obtained by optimizing the amount of the first binder 15 in SiO and the amount of the second binder 16 in CNF 12. A negative electrode for use was obtained.
  • the cycle characteristics are also low in the case of less than 3 parts by weight of sample 8 with respect to 100 parts by weight of CNF 12 content of second binder 16. This is presumably due to repeated binding and discharging (expansion and shrinkage), the binding property in the mixture layer 1B is lowered, and the composite negative electrode active material 14 is easily detached. After the characteristic evaluation, the model cell was disassembled and examined, and desorption was actually observed. On the other hand, the high load discharge characteristics are also low in the case of Sample 13 in which the content of the second binder 16 exceeds 80 parts by weight with respect to 100 parts by weight of CNF12. This is presumably because the second binder 16 excessively covers CNF12, resulting in a decrease in conductivity.
  • Lithium ions were occluded / released instead of the metallic lithium used as the force counter electrode 2. If a positive electrode that can be used is used, a laminated nonaqueous electrolyte secondary battery in which the battery is enclosed in a laminate bag 4 can be obtained.
  • This positive electrode is made of LiCoO, LiNiO, Li M
  • a positive electrode active material reduces lithium ions at least during discharge, and contains lithium ions in an uncharged state.
  • the positive electrode needs to contain lithium ions in this way.
  • the negative electrode 1 configured as described above, a battery having both good high load characteristics and cycle characteristics can be obtained.
  • LiMPO (M V, Fe,
  • lithium-containing compounds such as lithium fluorophosphate represented by the general formula
  • a ich compound obtained by substituting a part of these lithium-containing compounds with a different element may be used.
  • These lithium-containing compounds may be used after being surface-treated with a metal oxide, a lithium oxide, a conductive agent or the like. Further, the surface of these lithium-containing compounds may be used after being hydrophobized.
  • Examples of the conductive agent used for the positive electrode include natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon blacks such as thermal black, conductive fibers such as carbon fibers and metal fibers, metal powders such as aluminum powder, conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers, and conductive properties such as titanium oxide Organic conductive materials such as metal oxides and phenylene derivatives can be used.
  • the binder used for the positive electrode is PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacryl-tolyl, polyacrylic acid, polyacrylic acid.
  • Methyl ester polyacrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyacetic acid butyl, polyvinylpyrrolidone, polyether, polyether mon Phon, hexafluoropolypropylene, styrene butadiene rubber, carboxymethyl cellulose, etc. can be used.
  • the material of the current collector lead used for the positive electrode stainless steel, aluminum, titanium, carbon, conductive resin, and the like can be used. Also, any of these materials may be surface treated with carbon, nickel, titanium, etc.
  • the structure of the battery is not limited to the structure of the above-described laminate-type battery in which the rectangular positive and negative electrode plates face each other.
  • a coin-type battery structure in which circular positive and negative electrode plates face each other, a cylindrical battery structure in which thin and long positive and negative electrode plates are wound, a rectangular battery structure, and the like can be used. Regardless of the structure, the same effects as those of the laminate-type battery described above can be obtained.
  • the current collector 1A may be provided with the mixture layer 1B directly on the inner surface of a metal case such as iron that also serves as an external terminal or iron with nickel.
  • a powder binder and a composite negative electrode active material may be mixed and this mixture may be pressed! , instead of using a wet process for handling negative electrode mixture slurries, a powder binder and a composite negative electrode active material may be mixed and this mixture may be pressed! ,.
  • the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention can provide a high-capacity non-aqueous electrolyte secondary battery with improved high load characteristics and cycle characteristics. Contributes to increased energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 非水電解質二次電池用負極は、集電体上に設けられた合剤層を有する。合剤層は、少なくともリチウムイオンの吸蔵放出が可能な含ケイ素粒子とカーボンナノファイバと触媒元素とからなる複合負極活物質と含アクリル基高分子である第1結着剤と粘着性ゴム粒子である第2結着剤とを含む。第1結着剤は含ケイ素粒子と集電体に結着し、第2結着剤はカーボンナノファイバ12同士に結着している。

Description

明 細 書
非水電解質二次電池用負極とそれを用いた非水電解質二次電池 技術分野
[0001] 本発明は非水電解質二次電池用負極に関し、より詳しくは含ケィ素粒子を活物質 核として含有する複合負極活物質を用いた負極を長寿命化する技術に関する。 背景技術
[0002] 電子機器のポータブル化、コードレス化が進むにつれて、小型'軽量で、かつ高工 ネルギー密度を有する非水電解質二次電池への期待は高まりつつある。現在、黒鉛 などの炭素材料が非水電解質二次電池の負極活物質として実用化されて 、る。しか しながらその理論容量密度は 372mAhZgである。そこで、さらに非水電解質二次 電池を高工ネルギー密度化するために、リチウムと合金化するケィ素(Si)、スズ (Sn) 、ゲルマニウム(Ge)やこれらの酸化物および合金などが負極活物質として検討され ている。これらの材料の理論容量密度は、炭素材料に比べて大きい。特に Si粒子や 酸ィ匕ケィ素粒子などの含ケィ素粒子は安価なため、幅広く検討されている。
[0003] し力しながら、これらの材料を負極活物質に用いて充放電サイクルを繰り返すと、活 物質粒子の体積変化が起こる。この体積変化により活物質粒子は微紛ィ匕し、その結 果、活物質粒子間の導電性が低下する。そのため、十分な充放電サイクル特性 (以 下、「サイクル特性」と 、う)が得られな!/、。
[0004] そこでリチウム合金を形成しうる金属または半金属を含む活物質粒子を核 (活物質 核)にして、この活物質核に複数の炭素繊維を結合させて複合粒子 (複合負極活物 質)として用いる技術が例えば、特開 2004— 349056号公報に提案されている。こ の構成では、活物質粒子の体積変化が起こっても導電性が確保され、サイクル特性 が維持できることが報告されている。また、この技術をベースに、例えば、特開平 11 — 354126号公報に開示された結着剤を適正に組み合わせる技術を活用することに より、高容量で機能性の高い負極を構成できると考えられる。
[0005] しかし単に複数種の結着剤を配合するだけでは、複合負極活物質が膨張収縮した 際に発生する応力により、複合負極活物質を含む合剤層が負極集電体から剥離す るのを抑えることは困難である。あるいは複合負極活物質が合剤層から脱離するのを 抑えることは困難である。これは含ケィ素粒子の表面物性と炭素繊維の表面物性と が異なるためであると考えられる。これらの表面物性を無視して結着剤を単に複数種 混ぜただけでは、結着力が十分な合剤層を有する負極を得るのは困難である。 発明の開示
[0006] 本発明は、合剤層内における複合負極活物質同士の結着力を維持しつつ、合剤 層と集電体との結着力も維持することで負極全体のインピーダンス増大を抑制して、 優れたサイクル特性を有する非水電解質二次電池用負極およびこれを用いた非水 電解質二次電池である。本発明の非水電解質二次電池用負極は、集電体と、複合 負極活物質と第 1結着剤と第 2結着剤とを含む合剤層とを有する。合剤層は集電体 上に設けられている。複合負極活物質は、少なくともリチウムイオンの吸蔵放出が可 能な含ケィ素粒子とカーボンナノファイバ(以下、 CNFと呼ぶ)と触媒元素とから構成 されている。 CNFは、含ケィ素粒子の表面に付着されている。触媒元素は銅 (Cu)、 鉄(Fe)、コノルト(Co)、ニッケル(Ni)、モリブデン(Mo)およびマンガン(Mn)よりな る群カゝら選択された少なくとも 1種であり、 CNFの成長を促進する。第 1結着剤は含ァ クリル基高分子である。第 2結着剤は粘着性ゴム粒子である。第 1結着剤は含ケィ素 粒子と集電体とに結着し、第 2結着剤は CNF同士に結着している。第 1結着剤は含 ケィ素粒子と親和性が高ぐ第 2結着剤は CNFと親和性が高い。また集電体は含ケ ィ素粒子と同じく第 1結着剤と親和性が高い。そのため CNFを含む複合負極活物質 同士は第 2結着剤により接合され、複合負極活物質と集電体とは第 1結着剤による化 学結合を橋渡しにして接合される。これにより合剤層内および合剤層と集電体との接 合が強固になり、含ケィ素粒子が充放電に伴って膨張 *収縮しても合剤層内および 合剤層と集電体との間の導電構造が保たれ、結果としてサイクル特性が向上する。
[0007] 本発明はさらに、上述の複合負極活物質を含む負極を用いた非水電解質二次電 池に関する。
図面の簡単な説明
[0008] [図 1]図 1は本発明の実施の形態 1におけるモデルセルの構成を示す透視平面図で ある。 [図 2]図 2は図 1に示すモデルセルの A— A線における断面図である。
[図 3]図 3は本発明の実施の形態 1における非水電解質二次電池用負極の集電体近 傍における合剤層の構造を示す模式断面図である。
[図 4]図 4は本発明の実施の形態 1における非水電解質二次電池用負極の他の構成 を示す断面図である。
符号の説明
[0009] 1 負極
1A 集電体
1B 合剤層
1C リード
2 対極
2A 集電体
2C リード
3 セパレータ
4 ラミネート袋
5 非水電解質
7 変性ポリプロピレンフィルム
11 含ケィ素粒子
12 カーボンナノファイバ
13 触媒元素
14 複合負極活物質
15 第 1結着剤
16 第 2結着剤
20 結着層
発明を実施するための最良の形態
[0010] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本発 明は本明細書に記載された基本的な特徴に基づく限り、以下の内容に限定されない [0011] (実施の形態 1)
図 1は、本発明の実施の形態 1における非水電解質二次電池用負極を評価するた めのモデルセルの構造を示す透視平面図、図 2は、同 IB— 1B線における断面図、 図 3は集電体近傍における合剤層の構造を示す模式図である。
[0012] 図 1、図 2に示す負極 1は、集電体 1A上に設けられ、集電体 1Aと電気的に接続さ れた合剤層 1Bを有する。合剤層 1Bは、図 3に示すようにリチウムイオンの充放電が 可能な含ケィ素粒子 11と、含ケィ素粒子 11に付着したカーボンナノファイバ(CNF) 12とを有する複合負極活物質 14を含む。 CNF12は、含ケィ素粒子 11の表面に担 持された触媒元素 13を核として成長して形成されて ヽる。触媒元素 13は銅 (Cu)、 鉄(Fe)、コノルト(Co)、ニッケル(Ni)、モリブデン(Mo)およびマンガン(Mn)よりな る群力 選択された少なくとも 1種であり、 CNF12の成長を促進する。合剤層 1Bはさ らに含アクリル基高分子力もなる第 1結着剤 15と粘着性ゴム粒子力もなる第 2結着剤 16とを含む。第 1結着剤 15は含ケィ素粒子 11と集電体 1Aとを結着し、第 2結着剤 1 6は CNF12同士を結着させている。
[0013] 金属リチウム製の対極 2は、セパレータ 3を介して負極 1に対向して配置されている 。また、対極 2のセパレータ 3の反対側には集電体 2Aが接合されている。ラミネート袋 4はこれらを収納している。またラミネート袋 4は非水電解質 5で満たされて密閉され ている。すなわち非水電解質 5は負極 1と対極 2との間に介在している。集電体 1A、 2Aには外部に取り出されたリード 1C、 2Cが接続されている。リード 1C、 2Cはそれぞ れ、ラミネート袋 4の開口部に設けられた変性ポリプロピレンフィルム 7により熱溶着さ れて 、る。これによりラミネート袋 4は密閉されて 、る。
[0014] 次に、複合負極活物質 14について詳細に説明する。含ケィ素粒子 11には Si、 Si O (0. 05<χ< 1. 95、より好ましく ίま 0. 3≤χ≤1. 3)、また ίまこれらの!/ヽずれ力の 材料に B、 Mg、 Ni, Ti、 Mo、 Co、 Ca、 Cr、 Cu、 Fe、 Mn、 Nb、 Ta、 V、 W、 Zn、 C、 N、 Snから選択される 1つ以上の元素で Siの一部を置換した合金やィ匕合物、または 固溶体などを用いることができる。
[0015] これらは単独で含ケィ素粒子 11を構成してもよぐ複数種が同時に含ケィ素粒子 1 1を構成してもよい。複数種が同時に含ケィ素粒子 11を構成する例として、 Siと酸素 と窒素とを含む化合物や、 Siと酸素とを含み、 Siと酸素との比率が異なる複数の化合 物の複合物などが挙げられる。このように含ケィ素粒子 11は Siの単体と、 Siを含む合 金と、 Siを含む化合物および Siを含む固溶体力 なる群のうち少なくとも 1種を含む。 含ケィ素粒子 11の粒子形状あるいは種類、膨張収縮の大きさには特に限定はない。 中でも、 SiOは、放電容量密度が大きぐかつ充電時の膨張率が Si単体より小さい ため好ましい。
[0016] CNF12は、その成長の開始点となる含ケィ素粒子 11の表面において含ケィ素粒 子 11と付着している。すなわち、 CNF12は、結着剤を介さずに、含ケィ素粒子 11の 表面に直接付着している。 CNF12は成長形態によっては、少なくともその成長の開 始点となる一端において、含ケィ素粒子 11の表面に化学結合により付着することもあ る。そのため電池内では集電に対する抵抗が小さくなり、高い電子伝導性が確保さ れる。したがって、良好な充放電特性が期待できる。また、触媒元素 13を介して CN F12が含ケィ素粒子 11に結合して 、る場合、 CNF12が含ケィ素粒子 11から外れに くい。したがって、負極の充填密度を上げるために負極を圧延加工する際に負極に 力かる機械的な負荷である圧延負荷に対する負極 1の耐性が向上する。
[0017] CNF12の成長が終了するまでの間、触媒元素 13が良好な触媒作用を発揮するに は、触媒元素 13が含ケィ素粒子 11の表層部において金属状態で存在することが望 ましい。触媒元素 13は、例えば粒径 Inn!〜 lOOOnmの金属粒子の状態で存在する ことが望ましい。一方、 CNF12の成長終了後においては、触媒元素 13からなる金属 粒子を酸ィ匕することが望まし 、。
[0018] CNF12の繊維長は、 lnm〜: Lmmが好ましぐ 500nm〜100 μ mがさらに好まし い。 CNF12の繊維長が lnm未満では、電極の導電性を高める効果が小さくなりす ぎる。また繊維長が lmmを超えると、電極の活物質密度や容量が小さくなる傾向が ある。 CNF12の形態は、特に限定されないが、チューブ状カーボン、アコーディオン 状カーボン、プレート状カーボンおよびヘーリング ·ボーン状カーボンよりなる群から 選択された少なくとも 1種であることが望ましい。 CNF12は、成長する過程で触媒元 素 13を自身の内部に取り込んでもよい。また、 CNF12の繊維径は lnm〜1000nm が好ましぐ 50ηπ!〜 300nmがさらに好ましい。 [0019] 触媒元素 13は、金属状態で CNF12を成長させるための活性点を与える。すなわ ち、触媒元素 13が金属状態で表面に露出した含ケィ素粒子 11を、 CNF12の原料 ガスを含む高温雰囲気中に導入すると、 CNF12の成長が進行する。含ケィ素粒子 1 1の表面に触媒元素 13が存在しない場合には、 CNF12は成長しない。
[0020] 含ケィ素粒子 11の表面に触媒元素 13からなる金属粒子を設ける方法は、特に限 定されないが、例えば含ケィ素粒子 11の表面に金属粒子を担持させる方法などが 好適である。
[0021] 上記の方法で金属粒子を担持させる場合、固体の金属粒子を含ケィ素粒子 11と 混合することも可能であるが、金属粒子の原料である金属化合物を適当な溶媒に溶 解した溶液に、含ケィ素粒子 11を浸漬する方法が好適である。含ケィ素粒子 11を溶 液に浸漬後、含ケィ素粒子 11から溶媒を除去し、必要に応じて加熱処理すると、表 面に均一にかつ高分散状態で、粒径 lnm〜1000nm、好ましくは 10nm〜100nm の触媒元素 13からなる金属粒子を担持した含ケィ素粒子 11を得ることが可能である
[0022] 触媒元素 13からなる金属粒子の粒径が lnm未満の場合、金属粒子の生成が難し ぐまた lOOOnmを超えると、金属粒子の大きさが不均一となり、 CNF12を成長させ ることが困難となる。そのため、導電性に優れた負極を得ることが困難となる。したが つて、触媒元素 13からなる金属粒子の粒径は lnm以上 lOOOnm以下であることが 望ましい。
[0023] 上記溶液を得るための金属化合物としては、硝酸ニッケル、硝酸コバルト、硝酸鉄 、硝酸銅、硝酸マンガン、七モリブデン酸六アンモ-ゥム四水和物などを挙げること ができる。また溶液に用いる溶媒には、金属化合物の溶解度、含ケィ素粒子 11の電 気化学的活性相との相性を考慮して、水、有機溶媒および水と有機溶媒との混合物 の中から好適なものを選択すればょ ヽ。電気化学的活性相とは含ケィ素粒子 11を構 成する結晶相あるいは非結晶相のうち、電子移動を伴う酸化還元反応すなわち、電 池反応を行うことのできる金属相、金属酸化物相などの結晶相あるいは非結晶相を 意味する。有機溶媒としては、例えばエタノール、イソプロピルアルコール、トルエン、 ベンゼン、へキサン、テトラヒドロフランなどを用いることができる。 [0024] 一方、触媒元素 13を含む合金粒子を合成し、これを含ケィ素粒子 11として用いる こともできる。この場合、 Siと触媒元素 13との合金を、通常の合金製造法により合成 する。 Si元素は、電気化学的にリチウムと反応して合金を生成するので、電気化学的 活性相が形成される。触媒元素 13からなる金属相の少なくとも一部は、例えば粒径 1 0nm〜100nmの粒子状で合金粒子の表面に露出する。
[0025] 触媒元素 13からなる金属粒子もしくは金属相の含有量は、含ケィ素粒子 11に対し 0. 01重量%〜10重量%であることが望ましぐ 1重量%〜3重量%であることがさら に望ましい。金属粒子もしくは金属相の含有量が少なすぎると、 CNF12を成長させ るのに長時間を要し、生産効率が低下する場合がある。一方、触媒元素 13からなる 金属粒子もしくは金属相の含有量が多すぎると、触媒元素 13の凝集により、不均一 で太 ヽ繊維径の CNF12が成長するため、合剤層 1B中の導電性や活物質密度の低 下に繋がる。また、電気化学的活性相の割合が相対的に少なくなり、複合負極活物 質 14を高容量の負極材料とすることが困難となる。
[0026] 次に、含ケィ素粒子 11と CNF12と触媒元素 13とから構成される複合負極活物質 1 4の製造方法にっ 、て述べる。この製造方法は以下の 4つのステップで構成される。
[0027] (a)リチウムイオンの吸蔵放出が可能な含ケィ素粒子 11の少なくとも表層部に、 CN F12の成長を促進する Cu、 Fe、 Co、 Ni、 Moおよび Mnから選択される少なくとも 1 種の触媒元素 13を設けるステップ。
[0028] (b)炭素含有ガスおよび水素ガスを含む雰囲気中で、含ケィ素粒子 11の表面に、 CNF 12を成長させるステップ。
[0029] (c)不活性ガス雰囲気中で、 CNF12が付着した含ケィ素粒子 11を 400°C以上 16 00°C以下で焼成するステップ。
[0030] (d) CNF12が付着した含ケィ素粒子 11を解砕してタップ密度を 0. 42gZcm3以 上 0. 91gZcm3以下に調整するステップ。
[0031] ステップ (c)の後、さらに、大気中で複合負極活物質 14を 100°C以上 400°C以下 で熱処理して触媒元素 13を酸化してもよい。 100°C以上 400°C以下の熱処理であ れば、 CNF12を酸ィ匕させずに触媒元素 13だけを酸ィ匕することが可能である。
[0032] ステップ (a)において触媒元素 13を含ケィ素粒子 11の表層部に設ける方法として は、特に制限はないが、含ケィ素粒子 11の表面に触媒元素 13からなる金属粒子を 担持する方法、触媒元素 13を含む含ケィ素粒子 11の表面を還元する方法、 Si元素 と触媒元素 13との合金粒子を合成する方法などが挙げられる。
[0033] 次に、ステップ (b)において、含ケィ素粒子 11の表面に CNF 12を成長させる際の 条件について説明する。少なくとも表層部に触媒元素 13を有する含ケィ素粒子 11を 、 CNF12の原料ガスを含む高温雰囲気中に導入すると CNF12の成長が進行する 。例えばセラミック製反応容器に含ケィ素粒子 11を投入し、不活性ガスもしくは還元 力を有するガス中で 100°C〜1000°C、好ましくは 300°C〜600°Cの高温になるまで 昇温させる。その後、 CNF12の原料ガスである炭素含有ガスと水素ガスとを反応容 器に導入する。反応容器内の温度が 100°C未満では、 CNF12の成長が起こらない 力 成長が遅すぎて生産性が損なわれる。また、反応容器内の温度が 1000°Cを超 えると、原料ガスの分解が促進され CNF12が生成し難くなる。
[0034] 原料ガスとしては、炭素含有ガスと水素ガスとの混合ガスが好適である。炭素含有 ガスとしては、メタン、ェタン、エチレン、ブタン、一酸ィ匕炭素などを用いることができる 。混合ガスにおける炭素含有ガスのモル比(体積比)は、 20%〜80%が好適である 。含ケィ素粒子 11の表面に金属状態の触媒元素 13が露出していない場合には、水 素ガスの割合を多めに制御することで、触媒元素 13の還元と CNF 12の成長とを並 行して進行させることができる。 CNF12の成長を終了させる際には、炭素含有ガスと 水素ガスとの混合ガスを不活性ガスに置換し、反応容器内を室温まで冷却する。
[0035] 続 、て、ステップ(c)にお 、て、 CNF12が付着した含ケィ素粒子 11を、不活性ガス 雰囲気中にて 400°C以上 1600°C以下で焼成する。焼成により CNF12の結晶性が 向上し、電池の初期充電時に進行する非水電解質 5と CNF12との不可逆反応が抑 制され、優れた充放電効率を得ることができるため好ましい。このような焼成行程を行 わないか、もしくは焼成温度力 00°C未満では、上記の不可逆反応が抑制されず電 池の充放電効率が低下することがある。また、焼成温度が 1600°Cを超えると、含ケィ 素粒子 11の電気化学的活性相と CNF12とが反応して電気化学的活性相が不活性 化したり、電気化学的活性相が還元されて電池の充放電容量が低下したりすること がある。例えば、含ケィ素粒子 11の電気化学的活性相が Siである場合には、 Siと C NF12とが反応して不活性な炭化ケィ素が生成し、電池の充放電容量が低下する。 なお、含ケィ素粒子 11が Siの場合、焼成温度は 1000°C以上 1600°C以下が特に好 ましい。なお、ステップ (b)の成長条件によっては、結晶性の高い CNF12を得ること ができる。上述のとおり、 CNF12の結晶性が向上すると電解質 5と CNF12との不可 逆反応が抑制されるので、ステップ (b)において結晶性の高い CNF12が得られる場 合は、ステップ )は必ずしも必要ではない。
[0036] 不活性ガス中で焼成後の複合負極活物質 14は、さらに触媒元素 13からなる金属 粒子もしくは金属相の少なくとも一部(例えば表面)を酸ィ匕するために、大気中で、 1 00°C以上 400°C以下で熱処理することが好まし!/、。熱処理温度が 100°C未満では、 金属を酸ィ匕することは困難であり、 400°Cを超えると成長させた CNF12が燃焼してし まつことがある。
[0037] ステップ (d)では CNF12が付着した焼成後の含ケィ素粒子 11を解砕する。このよ うにすることにより、充填性の良好な複合負極活物質 14が得られるため好ましい。た だし、解砕しなくてもタップ密度が 0. 42gZcm3以上 0. 91gZcm3以下の場合は必 ずしも解砕する必要はない。すなわち、充填性のよい含ケィ素粒子を原料に用いると 、ステップ (d)は必ずしも必要ではない。
[0038] 次に、負極 1の製造方法について説明する。前述のようにして CNF12を表面に付 着させた含ケィ素粒子 11からなる複合負極活物質 14に第 1結着剤 15、第 2結着剤 1 6と溶媒とを混合し、負極合剤スラリーを調製する。
[0039] 前述のように第 1結着剤 15はアクリル基を含む高分子である。具体的には、ポリアク リル酸、ポリアクリル酸エステル、ポリメタクリル酸ゃポリメタクリル酸エステルが挙げら れる。中でも、カルボキシル基を有するポリアクリル酸ゃポリメタクリル酸は、カルボキ シル基に含まれる水素原子が金属原子との間で水素結合を形成し高い結着力を与 えるので好ましい。
[0040] 第 2結着剤 16は粘着性ゴム粒子である。例えばスチレン—ブタジエン共重合体 (S BR)を用いることができる。特に、コアに弾性をもたせ、シェルに粘着性をもたせるよう 設計されたコアシェル型変性 SBRがより好ましい。
[0041] 溶媒としては、例えば N—メチルー 2—ピロリドン (NMP)、あるいは水などが使用可 能である。
[0042] 得られたスラリーを、集電体 1Aの両面にドクターブレードを用いて塗布し、乾燥す ることで集電体 1A上に合剤層 1Bを形成する。この際、乾燥条件を適切に調整するこ とで第 1結着剤 15が含ケィ素粒子 11と集電体 1Aに結着し、第 2結着剤 16が CNF1 2同士に結着している構造を得ることができる。具体的には、温度や風量を調整して 乾燥させる。蒸散する溶媒に伴って移動する性質を有する第 2結着剤 16は、集電体 1Aの近傍よりも合剤層 1Bの比較的表面に近い側により多く集積する。結果として第 1結着剤 15が含ケィ素粒子 11と集電体 1Aとに結着した構造となる。
[0043] その後、ロール圧延して合剤層 1Bの厚みを調整する。でき上がった帯状の負極連 続体を所定の寸法に打ち抜くかまたは切断する。そして集電体 1Aの露出した部分 にニッケルや銅のリード 8を溶接などにより接続して負極 1が完成する。
[0044] なお、集電体 1Aには、ステンレス鋼、ニッケル、銅、チタンなどの金属箔、炭素や導 電性榭脂の薄膜などが利用可能である。さらに、カーボン、ニッケル、チタンなどで表 面処理を施してもよい。
[0045] 非水電解質 5には有機溶媒に溶質を溶解した電解質溶液や、電解質溶液が高分 子で非流動化された高分子電解質を用いることができる。電解質溶液を用いる場合 には対極 2と負極 1との間にポリエチレン、ポリプロピレン、ァラミド榭脂、アミドイミド、 ポリフエ-レンサルファイド、ポリイミドなど力もなる不織布や微多孔膜などのセパレー タ 3を用い、これに溶液を含浸させるのが好ましい。またセパレータ 3の内部あるいは 表面には、アルミナ、マグネシア、シリカ、チタ-ァ等の耐熱性フィラーを含んでもよい 。セパレータ 3とは別に、これらのフィラーと、電極に用いるのと同様の結着剤とから構 成される耐熱層を設けてもよい。
[0046] 非水電解質 5の材料は、活物質の酸化還元電位などを考慮して選択される。非水 電解質 5に用いるのが好ましい溶質としては、 LiPF、 LiBF、 LiCIO、 LiAlCl、 Li
6 4 4 4
SbF、 LiSCN、 LiCF SO、 LiCF CO、 LiAsF、 LiB CI 、低級脂肪族カルボ
6 3 3 3 2 6 10 10
ン酸リチウム、 LiF、 LiCl、 LiBr、 Lil、クロロボランリチウム、ビス(1, 2—ベンゼンジォ レート(2—)ー0, 0,)ほう酸リチウム、ビス(2, 3—ナフタレンジォレート(2—)ー0, 0,)ほう酸リチウム、ビス(2, 2,—ビフエ-ルジォレート(2— )— O, 0,)ほう酸リチウ ム、ビス(5 フルオロー 2—ォレートー1 ベンゼンスルホン酸—O, 0,)ほう酸リチウ ム等のほう酸塩類、(CF SO ) NLiゝ LiN (CF SO ) (C F SO )、(C F SO ) NL
3 2 2 3 2 4 9 2 2 5 2 2 i、テトラフエニルホウ酸リチウムなど、一般にリチウム電池で使用されている塩類が挙 げられる。
[0047] さらに上記溶質を溶解させる有機溶媒には、エチレンカーボネート、プロピレンカー ボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジェ チルカーボネート、ェチルメチルカーボネート、ジプロピルカーボネート、ギ酸メチル 、酢酸メチル、プロピオン酸メチル、プロピオン酸ェチル、ジメトキシメタン、 γ—ブチ 口ラタトン、 y バレロラタトン、 1, 2—ジエトキシェタン、 1, 2—ジメトキシェタン、エト キシメトキシェタン、トリメトキシメタン、テトラヒドロフラン、 2—メチルテトラヒドロフラン 等のテトラヒドロフラン誘導体、ジメチルスルホキシド、 1, 3 ジォキソラン、 4—メチル - 1, 3—ジォキソラン等のジォキソラン誘導体、ホルムアミド、ァセトアミド、ジメチル ホルムアミド、ァセトニトリル、プロピル-トリル、ニトロメタン、ェチルモノグライム、リン 酸トリエステル、酢酸エステル、プロピオン酸エステル、スルホラン、 3—メチルスルホ ラン、 1, 3 ジメチルー 2 イミダゾリジノン、 3—メチルー 2 ォキサゾリジノン、プロ ピレンカーボネート誘導体、ェチルエーテル、ジェチルエーテル、 1, 3 プロパンサ ルトン、ァ-ソール、フルォロベンゼンなどの 1種またはそれ以上の混合物など、一般 にリチウム電池で使用されて 、る溶媒を用いることができる。
[0048] さらに、ビ-レンカーボネート、シクロへキシルベンゼン、ビフエ-ル、ジフエ-ルェ 一テル、ビュルエチレンカーボネート、ジビュルエチレンカーボネート、フエ-ルェチ レンカーボネート、ジァリルカーボネート、フルォロエチレンカーボネート、カテコール カーボネート、酢酸ビュル、エチレンサルファイト、プロパンサルトン、トリフルォロプロ ピレンカーボネート、ジベ-ゾフラン、 2, 4 ジフルォロア-ノール、 ο ターフェニル 、 m—ターフェ-ルなどの添加剤を含んで!/、てもよ!/、。
[0049] なお、非水電解質 5は、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホス ファゼン、ポリアジリジン、ポリエチレンスルフイド、ポリビュルアルコール、ポリフッ化ビ ユリデン、ポリへキサフルォロプロピレンなどの高分子材料の 1種またはそれ以上の 混合物などに上記溶質を混合あるいは溶解して、固体状の高分子電解質として用い てもよい。また、固体状の高分子電解質を上記有機溶媒と混合あるいは溶解してゲ ル状の高分子電解質として用いてもよい。さらに、リチウム窒化物、リチウムハロゲン 化物、リチウム酸素酸塩、 Li SiO、 Li SiO— Lil— LiOH、 Li PO—Li SiO、 Li
4 4 4 4 3 4 4 4 2
SiS、 Li PO -Li S-SiS、硫化リン化合物などの無機材料からなる固体電解質
3 3 4 2 2
を用いてもよい。
[0050] ラミネート袋 4は、アルミニウム箔などの金属箔の少なくとも片面にポリエチレンなど の熱溶融性榭脂フィルムをラミネートしたシートでできて 、る。熱溶融性榭脂フィルム が袋の内面を形成するようにシートを袋状に加工したものである。内面の熱溶融性榭 脂フィルム同士を熱溶着することでラミネート袋 4の内部は密閉される。
[0051] 前述のとおり図 3に示すように、合剤層 1Bは、複合負極活物質 14と含アクリル基高 分子力もなる第 1結着剤 15と粘着性ゴム粒子力もなる第 2結着剤 16とを含む。第 1結 着剤 15は含ケィ素粒子 11と集電体 1 Aとに結着し、第 2結着剤 16は CNF 12同士に 結着している。
[0052] 結着剤として含アクリル基高分子力もなる第 1結着剤 15のみを用いた場合、含ケィ 素粒子 11と集電体 1Aとは結着するが複合負極活物質 14同士は結着しにくい。その ため充放電に伴い合剤層 1Bから複合負極活物質 14が脱離しやすくなる場合がある 。また結着剤として粘着性ゴム粒子力もなる第 2結着剤 16のみを添加した場合、 CN F12を介して複合負極活物質 14同士は結着するが集電体 1Aとは結着しにくい。そ のため充放電に伴い合剤層 1Bの大半が集電体 1Aから剥れてしまう。また単純に第 1結着剤 15と第 2結着剤 16とを混合し、合剤層 1B中に均一に分散 (配分)しても、各 結着剤の特性が充分に発揮されず、やはり充放電に伴い合剤層 1Bの大半が集電 体 1Aカゝら剥れてしまう。したがって、第 1結着剤 15を含ケィ素粒子 11と集電体 1Aに 結着させ、第 2結着剤 16を CNF12に結着させることが大切である。
[0053] なお集電体 1 Aの表面を粗面化することが好ましい。これにより、集電体 1 Aと親和 性の高い第 1結着剤 15が集電体 1Aに結着する面積が増し、結着性がより高まって サイクル特性が向上する。粗面化処理としては、サンドブラスト法や、高電流密度で のメツキ、化学エッチングなどを挙げることができる。なお粗面化処理で得られる粗面 は、 1 μ m以上、 5 μ m以下の表面粗さを有することが好ましい。 [0054] また、複合負極活物質 14の膨張収編こより引き起こされる集電体 1Aからの合剤層 1Bの剥離を有効に防ぐためには、合剤層 1Bにおいて、集電体 1 Aとの親和性が高 い第 1結着剤 15の含有量魏電体 1Aの近傍において他の部位より高くするのが望 ましい。ここで他の部位とは合剤層 1Bの表面により近い位置を示す。具体的には、 第 1結着剤 15の含有量が異なる数種の負極合剤スラリーを準備し、この含有量が高 いスラリーから順に集電体 1Aに塗布することで、第 1結着剤 15の含有量を集電体 1 Aの近傍において高くすることができる。
[0055] あるいは、図 4の断面図に示すように集電体 1Aと合剤層 1Bとの間に、合剤層 1Bよ りも第 1結着剤 15の含有量の多い結着層 20をさらに設けてもよい。良好な導電性を 有する負極を作製するために、結着層 20にはアセチレンブラック等の導電性物質を 添加するのが好ましい。結着層 20は、例えば、第 1結着剤 15を分散した溶剤中に導 電性物質を投入して攪拌し、スラリー化した後、集電体 1Aに塗布することにより形成 される。そして結着層 20の上に負極合剤スラリーを塗布、乾燥することで合剤層 1B を作製する。なお、この後、負極 1を圧延すると合剤層 1B中の成分である複合負極 活物質 14がー部結着層 20に移動して、第 1結着剤 15の含有量を集電体 1Aの近傍 において高くすることができる。このようにいずれの方法によっても、第 1結着剤 15の 含有量を集電体 1Aの近傍において高くすることができ、含ケィ素粒子 11と集電体 1 Aとの接合がより確実になる。
[0056] なお、第 1結着剤 15の含有量が含ケィ素粒子 11の 100重量部に対し 1重量部未 満の場合、充放電 (膨張収縮)の繰り返しにより合剤層 1Bと集電体 1Aとの間の結着 性が低下して合剤層 1Bが剥離し易くなる。すなわちサイクル特性が低下する。一方 、第 1結着剤 15の含有量が含ケィ素粒子 11の 100重量部に対し 30重量部を超える と、第 1結着剤 15が含ケィ素粒子 11を過度に被覆することによって負極中のイオン 伝導性が低下し、高負荷放電特性が低下する。したがって、第 1結着剤 15の含有量 は含ケィ素粒子 100重量部に対し 1重量部以上、 30重量部以下であることが好まし い。
[0057] また、第 2結着剤 16の含有量力CNF12の 100重量部に対し 3重量部未満の場合 、合剤層 1B内において複合負極活物質 14同士の結着が不充分で、充放電 (膨張 収縮)の繰り返しにより合剤層 IB内の結着性が低下して複合負極活物質 14が合剤 層 1Bから脱離し易くなる。すなわちサイクル特性が低下する。一方、第 2結着剤 16の 含有量が CNF12の 100重量部に対し 80重量部を超える場合、第 2結着剤 16が CN F12を過度に被覆することによって負極中の導電性が低下し、サイクル特性が低下 する。したがって、第 2結着剤 16の含有量は CNF12の 100重量部に対し 3重量部 以上、 80重量部以下であることが好ましい。結着剤の配合量を上記範囲内にするこ とで、サイクル特性と高負荷放電特性とが共に優れた非水電解質二次電池が得られ る。
[0058] 次に、具体的な実験とその結果を用い本発明の効果について説明する。なお以下 のサンプル 1から 17において、結着剤の配合量は、すべて固形分に換算した値であ る。
[0059] まずサンプル 1の複合負極活物質 14の作製手順について説明する。硝酸鉄 9水和 物 lgをイオン交換水 100gに溶解した溶液に、所定量の酸ィ匕ケィ素(SiO粒子、平均 粒径 10 μ m以下)を添加、混合した。ここで用いた SiOを重量分析法 (JIS Z2613) に準じて解析したところ、 O/Si比はモル比で 1. 01であった。この SiO粒子と溶液と の混合物を 1時間攪拌後、エバポレータ装置で水分を除去し、 SiO粒子の表面に硝 酸鉄を担持した。次に、硝酸鉄を担持した SiO粒子をセラミック製反応容器に入れ、 ヘリウムガス雰囲気中で 500°Cまで加熱した。その後ヘリウムガスを水素ガス 50体積 %とー酸ィ匕炭素ガス 50体積%との混合ガスに置換し、 SiO粒子を 500°Cで 1時間加 熱して、繊維径が約 80nmで繊維長が約 50 μ mの平板状の CNFl 2を成長させた。 その後、混合ガスをヘリウムガスに置換し、反応容器内部の温度が室温になるまで冷 却し、複合負極活物質 14を調製した。成長した CNF12の量は、 SiO粒子 100重量 部あたり 25重量部であった。
[0060] 次にサンプル 1の負極 1の作製について説明する。複合負極活物質 14の 100重量 部と、第 1結着剤 15としてポリアクリル酸 (平均分子量 15万) 1%水溶液を 10重量部 と、第 2結着剤 16として前述のコアシェル型変性 SBRを 10重量部と、蒸留水 200重 量部とを均一となるように混合分散し、負極合剤スラリーを作製した。ここで、第 1結着 剤 15の配合量は SiOの 100重量部に対し 13. 3重量部であり、第 2結着剤 16の配 合量は CNF12の 100重量部に対し 40重量部である。
[0061] このようにして調製した負極合剤スラリーを、集電体 1 Aである厚さ 14 μ mの銅 (Cu )箔に、乾燥後の極板厚みが 100 mとなるように塗布乾燥し、一辺 11mmの正方形 に打ち抜き負極 1を作製した。
[0062] このように作製した負極 1と、対極 2である厚さ 300 μ m、一辺 13mmの正方形の金 属リチウム箔と、厚さ 20 /ζ πι、セパレータ 3である多孔度約 40%のポリエチレン微多 孔膜とを用いて平板状のモデルセルを構成した。モデルセルをラミネート袋 4に挿入 したのち、非水電解質 5を注入した後、ラミネート袋 4を密閉した。非水電解質 5として は、エチレンカーボネート (EC)とジメチノレカーボネート (DMC)とェチノレメチノレカー ボネート(EMC)との混合溶媒(体積比で EC: DMC: EMC = 2 : 3 : 3)に LiPFを lm
6 olZdm3の濃度で溶解させた溶液を用いた。得られたサンプル 1のモデルセルの電 池設計容量(C、単位: mAh)は 5mAhである。
[0063] サンプル 2〜7の複合負極活物質 14および負極 1の作製では、サンプル 1において 第 1結着剤 15であるポリアクリル酸の配合量を複合負極活物質 14の 100重量部に 対し 0. 4、 0. 7、 3. 8、 15、 22. 5、 28重量咅とした。これ以外は、サンプノレ 1と同様 にしてサンプル 2〜7のモデルセルを作製した。サンプル 2〜7において SiOの 100 重量部に対する第 1結着剤 15の配合量はそれぞれ 0. 5、 1、 5、 20、 30、 37. 3重量 部である。
[0064] サンプル 8〜13の複合負極活物質 14および負極 1の作製では、サンプル 1におい て第 2結着剤 16である BM - 400Bの配合量を複合負極活物質 14の 100重量部に 対し 0. 4、 0. 8、 2. 5、 15、 20および 24重量咅とした。これ以外は、サンプノレ 1と同 様にしてサンプル 8〜 13のモデルセルを作製した。サンプル 8〜 13にお!/、て CNF1 2の 100重量部に対する第 2結着剤 16の配合量はそれぞれ 3、 10、 60、 80および 9 6重量部である。
[0065] サンプル 14の作製では、反応時間を 80分とした以外はサンプル 1と同様にして Si Oの表面に CNF12を成長させた。反応時間を延ばすことにより CNF12の量を SiO の 100重量部あたり 30重量部とした。得られた複合負極活物質 14の 100重量部に 対し第 1結着剤 15であるポリアクリル酸を 9. 5重量部、第 2結着剤 16である BM— 40 OBを 9. 5重量部添加した。これらの条件以外は、サンプル 1と同様にしてサンプル 1 4のモデルセルを作製した。 SiOの 100重量部に対する第 1結着剤 15の配合量は 1 3. 6重量部、 CNF12の 100重量部に対し第 2結着剤 16の配合量は 31. 7重量部で ある。
[0066] サンプル 15は、集電体 1Aである銅箔をサンドブラスト処理し、 0. 1 mであった表 面粗さ Raを 1 μ mとなるように粗面化した以外は、サンプル 1と同様にしてサンプル 1 5のモデルセルを作製した。
[0067] サンプル 16では、 2種類の負極合剤スラリーを用いた。第 1結着剤 15であるポリア クリル酸の配合量を複合負極活物質 14の 100重量部に対し 0. 7重量部とした以外 は、サンプル 1の負極合剤スラリーと同様にしてサンプル 16の第 1スラリーを調製した 。第 1結着剤 15の配合量は、 SiOの 100重量部に対し 1重量部である。一方、ポリア クリル酸の配合量を複合負極活物質 14の 100重量部に対し 22. 4重量部とした以外 は、サンプル 1の負極合剤スラリーと同様にしてサンプル 16の第 2スラリーを調製した 。第 1結着剤 15の配合量は、 SiOの 100重量部に対し 30重量部である。集電体 1A である銅箔の上にまず第 2スラリーを乾燥後の厚みが 43 μ mとなるように塗布して下 層を形成し、その上に第 1スラリーを乾燥後の厚みが 43 mとなるように塗布して上 層を形成した。これ以外はサンプル 1と同様にしてサンプル 16のモデルセルを作製 した。
[0068] サンプル 17では、合剤層 1Bの形成に先立ち、集電体 1A上に結着層 20を形成し た。結着層 20は、アセチレンブラック 100重量部に対し第 1結着剤であるポリアクリル 酸を 20重量部配合し、蒸留水を溶媒として第 3スラリーを作製した。この第 3スラリー を集電体 1Aである銅箔の上に乾燥後の厚みが 5 mとなるように塗布した後、サン プル 1に用いた負極合剤スラリーと同様のスラリーを塗布乾燥した。このようにして結 着層 20を形成した以外は、サンプル 1と同様にしてサンプル 17のモデルセルを作製 した。
[0069] 以上のように作製したサンプル 1から 17の各モデルセルについて、 0. lCmAの充 放電電流で初回充電容量と初回放電容量とを測定した。得られた放電容量を合剤 層 1Bの単位体積(lcm3)あたりに換算して放電容量密度を算出した。なお、充電は 極間の電圧力 SOVになるまで行い、放電は 1. 5Vになるまで行った。ここで 0. lCmA とは、電池設計容量を 10時間で除した電流値を意味する。
[0070] 次に作製したサンプル 1から 17の各モデルセルの高負荷特性を評価した。各モデ ルセルを 0. lCmAの電流で充電後、 0. 5CmAの電流で放電し、 0. 5CmAでの放 電容量を測定した。得られた放電容量を、 0. lCmAでの放電容量で除して容量維 持率を求め、高負荷特性の指標とした。
[0071] 最後に充放電サイクル特性を評価した。初回容量測定と同じ条件で充放電を繰り 返した。各充放電の間の休止時間は 20分とした。サンプル 1から 17の各モデルセル を 5サイクル後に放電状態で分解し、合剤層 1Bの剥離または脱離の状態を観察した 。また各モデルセルを初回放電容量に対して 60%になるまで充放電サイクルを繰り 返した。そのときのサイクル数を各モデルセルのサイクル特性の指標とした。
[0072] なお黒鉛を活物質に用いた負極を用いた場合を参考に、容量維持率は 60%以上 を評価における基準とした。またサイクル数は実用性を考慮し、 50サイクル以上を評 価における基準とした。サンプル 1から 17の各負極の構成と、各モデルセルについて 上記各特性評価の結果とを (表 1)に示す。
[0073] [表 1]
Figure imgf000019_0001
[0074] (表 1)力も明らかなように、含アクリル基高分子力もなる第 1結着剤 15と粘着性ゴム 粒子力もなる第 2結着剤 16とを含む負極を用いたサンプル 1から 17のモデルセルは 、良好な高負荷放電特性ならびにサイクル特性を示した。中でも、第 1結着剤および 第 2結着剤を適正な配合量で含む負極を用いたサンプル 1およびサンプル 3〜6、サ ンプル 9〜12、サンプル 14, 15、 16、 17のモデルセルは優れた高負荷放電特性と サイクル特性とを示した。さらに、第 1結着剤 15の含有量が SiOの 100重量部に対し 5重量部以上 20重量部以下であり、かつ第 2結着剤 16子の含有量力CNF12の 10 0重量部に対し 10重量部以上 60重量部以下であるサンプル 1、 4、 5、 10および 11 のモデルセルは、特に優れた特性を示した。
[0075] 集電体 1Aの表面を粗面化したサンプル 15は、集電体 1Aと親和性の高い第 1結着 剤 15が吸着する集電体面積が増したので、結着性をより高めることができサイクル特 性がさらに向上した。
[0076] サンプル 16では集電体 1Aとの親和性が第 1結着剤 15の含有量を集電体 1Aの近 傍において高くしている。その結果、 SiOの激しい膨張収縮による合剤層 1Bの集電 体 1A力 の剥離が大幅に低減され、サイクル特性がさらに向上した。
[0077] サンプル 17では集電体 1Aの上に第 1結着剤 15を含む結着層 20を設け、合剤層 1 Bを集電体 1Aに貼り付けた。その結果、サンプル 16と同様にサイクル特性がさら〖こ 向上した。
[0078] なお、サンプル 14では、複合負極活物質 14において含ケィ素粒子 11である SiOと CNF12との組成を変えている。この場合も SiOに対する第 1結着剤 15の配合量、お よび CNF12に対する第 2結着剤 16の配合量を適正化することでサイクル特性と高 負荷放電特性に優れた非水電解質二次電池用負極が得られた。
[0079] 一方、第 1結着剤 15の含有量が SiOの 100重量部に対し 1重量部未満のサンプル 2の場合、サイクル特性が低い。これは、充放電 (膨張収縮)の繰り返しによって合剤 層 1Bと集電体 1Aとの間の結着性が低下して合剤層 1Bが剥離し易くなつていると思 われる。特性評価後、モデルセルを分解して調べたところ、実際に剥離が観察された 。一方、第 1結着剤 15の含有量が SiOの 100重量部に対し 30重量部を超えるサン プル 7の場合、高負荷放電特性が低い。これは、第 1結着剤 15が含ケィ素粒子 11を 過度に被覆することによってイオン伝導性が低下するためと考えられる。
[0080] また第 2結着剤 16の含有量力CNF 12の 100重量部に対し 3重量部未満のサンプ ル 8の場合もサイクル特性が低い。これは、充放電 (膨張収縮)の繰り返しにより合剤 層 1B内の結着性が低下して複合負極活物質 14が脱離し易くなつていると思われる 。特性評価後、モデルセルを分解して調べたところ、実際に脱離が観察された。一方 、第 2結着剤 16の含有量が CNF12の 100重量部に対し 80重量部を超えるサンプ ル 13の場合も高負荷放電特性が低い。これは第 2結着剤 16が CNF12を過度に被 覆することによって導電性が低下するためと考えられる。
[0081] 以上、図 1に構成を示したモデルセルを用いた具体的な実験およびその結果により 本発明の効果について説明した力 対極 2として用いた金属リチウムの代わりに、リチ ゥムイオンを吸蔵 ·放出できる正極を用いればラミネート袋 4内に電池を封入したラミ ネート型の非水電解質二次電池が得られる。この正極は、 LiCoOや LiNiO、 Li M
2 2 2 ηθ
4、またはこれらの混合、あるいは複合酸ィ匕物などの含リチウム化合物を正極活物 質として含む合剤層を備える。このような正極活物質は少なくとも放電時にリチウムィ オンを還元し、かつ未充電状態においてリチウムイオンを含む。負極 1が未充電状態 にお 、てリチウムを含まな 、構成では、このように正極にリチウムイオンを含む必要が ある。このようにして構成された非水電解質二次電池にお!ヽても前述のようにして構 成された負極 1を用いることで、良好な高負荷特性とサイクル特性とを兼ね備えた電 池が得られる。
[0082] 正極活物質としては上記の含リチウム複合酸ィ匕物以外に、 LiMPO (M=V、 Fe、
4
Ni、 Mn)の一般式で表されるオリビン型リン酸リチウム、 Li MPO F (M=V、 Fe、 Ni
2 4
、 Mn)の一般式で表されるフルォロリン酸リチウムなどの含リチウム化合物も用いるこ とができる。さらに、これら含リチウム化合物の一部を異種元素で置換したィヒ合物を 用いてもよい。これら含リチウム化合物を、金属酸化物、リチウム酸化物、導電剤など で表面処理して用いてもよい。また、これら含リチウム化合物の表面を疎水化処理し て用いてもよい。
[0083] 正極に用いる導電剤としては、天然黒鉛や人造黒鉛のグラフアイト類、アセチレン ブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、 サーマルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維 類、アルミニウム粉末などの金属粉末類、酸化亜鉛ゥイスカーやチタン酸カリウムウイ スカーなどの導電性ウイスカ一類、酸化チタンなどの導電性金属酸化物、フエ-レン 誘導体などの有機導電性材料を用いることができる。
[0084] また正極に用いる結着剤としては、 PVDF、ポリテトラフルォロエチレン、ポリエチレ ン、ポリプロピレン、ァラミド榭脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリル- トリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸ェチルエステル、 ポリアクリル酸へキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、 ポリメタクリル酸ェチルエステル、ポリメタクリル酸へキシルエステル、ポリ酢酸ビュル、 ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、へキサフルォロポリプロ ピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどを用いることができ る。また、テトラフルォロエチレン、へキサフルォロエチレン、へキサフルォロプロピレ ン、パーフルォロアルキルビュルエーテル、フッ化ビ-リデン、クロ口トリフルォロェチ レン、エチレン、プロピレン、ペンタフノレォロプロピレン、フノレオロメチルビニノレエーテ ル、アクリル酸、へキサジェンより選択された 2種以上の材料の共重合体を用いてもよ V、。またこれらのうちから選択された 2種以上を混合して用いてもょ 、。
[0085] 正極に用いる集電体ゃリードの材料としては、ステンレス鋼、アルミニウム、チタン、 炭素、導電性榭脂などを用いることができる。またこのいずれかの材料に、カーボン、 ニッケル、チタンなどで表面処理をして用いてもょ 、。
[0086] 電池の構造は、矩形の正負極板が対向する前述のラミネート型の電池の構造に限 定されない。円形の正負極板が対向したコイン型電池構造、薄形長尺の正負極板を 卷回した円筒形電池構造や角形電池構造などを用いることができる。何れの構造で あっても、前述のラミネート型の電池と同様の効果が得られる。コイン型電池の場合、 必ずしも集電体 1 Aは必要なぐ外部端子を兼ねる鉄、ニッケルめつきされた鉄などの 金属製ケースの内面に直接合剤層 1Bを設けてもよい。また、負極合剤スラリーを扱う 湿式のプロセスを用いずに、粉体の結着剤と複合負極活物質とを混合し、この混合 体をプレスして用いてもよ!、。
産業上の利用可能性 本発明に係る非水電解質二次電池用負極は、高負荷特性およびサイクル特性の 改善された高容量非水電解質二次電池を提供することができ、今後ますます需要が 増大するリチウム電池の高工ネルギー密度化に寄与する。

Claims

請求の範囲
[1] 集電体と、
前記集電体に電気的に接続された合剤層と、を備え、
前記合剤層層は、
少なくともリチウムイオンの吸蔵放出が可能な含ケィ素粒子と、
前記含ケィ素粒子の表面に付着されたカーボンナノファイバと、
前記カーボンナノファイバの成長を促進し、 Cu、 Fe、 Co、 Ni、 Moおよび Mnよりなる 群から選択された少なくとも 1種の触媒元素とからなる複合負極活物質と、 含アクリル基高分子からなる第 1結着剤と、
粘着性ゴム粒子からなる第 2結着剤と、を含み、
前記第 1結着剤が前記含ケィ素粒子と前記集電体に結着し、前記第 2結着剤が前記 カーボンナノファイバ同士に結着した、
非水電解質二次電池用負極。
[2] 前記集電体は表面が粗面化されている、
請求項 1記載の非水電解質二次電池用負極。
[3] 前記合剤層中にお 、て、前記第 1結着剤の含有量が前記集電体の近傍にぉ 、て他 の部位よりも高い、
請求項 1記載の非水電解質二次電池用負極。
[4] 前記集電体と前記合剤層との間に、前記合剤層よりも前記第 1結着剤の含有量の多 い結着層がさらに設けられた、
請求項 1記載の非水電解質二次電池用負極。
[5] 前記第 1結着剤の配合量が前記含ケィ素粒子 100重量部に対し 1重量部以上、 30 重量部以下、前記第 2結着剤の配合量が前記カーボンナノファイバ 100重量部に対 し 3重量部以上、 80重量部以下である、
請求項 1記載の非水電解質二次電池用負極。
[6] 請求項 1記載の非水電解質二次電池用負極と、
リチウムイオンを吸蔵 ·放出できる正極と、
前記負極と前記正極との間に介在する非水電解質と、を備えた、 非水電解質二次電池。
PCT/JP2006/320824 2005-12-13 2006-10-19 非水電解質二次電池用負極とそれを用いた非水電解質二次電池 WO2007069389A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/664,805 US7892677B2 (en) 2005-12-13 2006-10-19 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005358754A JP5162825B2 (ja) 2005-12-13 2005-12-13 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2005-358754 2005-12-13

Publications (1)

Publication Number Publication Date
WO2007069389A1 true WO2007069389A1 (ja) 2007-06-21

Family

ID=38162704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320824 WO2007069389A1 (ja) 2005-12-13 2006-10-19 非水電解質二次電池用負極とそれを用いた非水電解質二次電池

Country Status (5)

Country Link
US (1) US7892677B2 (ja)
JP (1) JP5162825B2 (ja)
KR (1) KR100832205B1 (ja)
CN (1) CN100495769C (ja)
WO (1) WO2007069389A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2250689A1 (en) * 2008-03-10 2010-11-17 Nissan Motor Co., Ltd. Battery with battery electrode and method of manufacturing same
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US20110111304A1 (en) * 2009-11-11 2011-05-12 Amprius, Inc. Preloading lithium ion cell components with lithium
WO2012160854A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2897320A1 (en) 2005-07-28 2007-01-28 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
KR100759556B1 (ko) * 2005-10-17 2007-09-18 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP4905267B2 (ja) * 2007-06-21 2012-03-28 ソニー株式会社 正極合剤および非水電解質電池
KR101386163B1 (ko) 2007-07-19 2014-04-17 삼성에스디아이 주식회사 복합 음극활물질, 이를 채용한 음극 및 리튬 전지
AU2008283846A1 (en) 2007-08-07 2009-02-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
KR101307623B1 (ko) * 2008-02-25 2013-09-12 로날드 앤쏘니 로제스키 고용량 전극
JP5605533B2 (ja) * 2008-12-25 2014-10-15 日本ゼオン株式会社 支持体付電極組成物層及び電気化学素子用電極の製造方法
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US20110020701A1 (en) * 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
KR101155909B1 (ko) * 2010-01-07 2012-06-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN102754246A (zh) * 2010-01-11 2012-10-24 安普雷斯股份有限公司 可变容量电池组件
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
CN102834955B (zh) * 2010-01-18 2016-01-20 新强能电池公司 用于电化学储存的复合材料
KR101173202B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2012029373A1 (ja) * 2010-08-31 2012-03-08 トヨタ自動車株式会社 負極材料、リチウム二次電池、および負極材料の製造方法
US20130122353A1 (en) * 2010-09-02 2013-05-16 Nec Corporation Secondary battery
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9397338B2 (en) 2010-12-22 2016-07-19 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP6003015B2 (ja) 2011-06-24 2016-10-05 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
GB2492167C (en) * 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
KR20140128379A (ko) 2012-01-30 2014-11-05 넥세온 엘티디 에스아이/씨 전기활성 물질의 조성물
WO2013158174A1 (en) * 2012-02-07 2013-10-24 Nanocomp Technologies, Inc. Nanostructure composite batteries and methods of making same from nanostructure composite sheets
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
JP5754855B2 (ja) * 2012-04-25 2015-07-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
KR20150027022A (ko) * 2012-06-13 2015-03-11 가부시키가이샤 산고 리튬 이차 전지용 부극 및 그의 제조 방법
WO2014031440A1 (en) * 2012-08-23 2014-02-27 Nanocomp Technologies, Inc. Batteries having nanostructured composite cathode
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
KR20140075836A (ko) * 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
WO2014204561A1 (en) 2013-06-17 2014-12-24 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
CN103413922B (zh) * 2013-08-14 2016-08-17 湖北万润新能源科技发展有限公司 锂离子电池负极材料的制备方法
KR101775542B1 (ko) * 2013-08-20 2017-09-06 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR101631847B1 (ko) * 2014-03-25 2016-06-27 전자부품연구원 리튬이온 이차전지용 음극합제 및 이의 제조 방법
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP7182758B2 (ja) 2014-05-12 2022-12-05 アンプリウス テクノロジーズ インコーポレイテッド リチウムバッテリのためのアノードおよびその製造方法
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP6821575B2 (ja) 2015-02-03 2021-01-27 ナノコンプ テクノロジーズ,インク. カーボンナノチューブ構造体およびその生成のための方法
CN106159246B (zh) * 2015-03-31 2019-12-06 中国科学院金属研究所 一种含硅多孔非晶合金锂离子电池负极材料及其制备方法
JP6911758B2 (ja) * 2015-05-08 2021-07-28 凸版印刷株式会社 非水電解質二次電池用電極および非水電解質二次電池
KR20170055325A (ko) 2015-11-11 2017-05-19 현대자동차주식회사 전고체 배터리용 전해질층 및 이를 이용한 전고체 배터리의 제조방법
CN107346831A (zh) * 2016-05-04 2017-11-14 上海奇谋能源技术开发有限公司 一种提高锂离子电池使用寿命的方法
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11387442B2 (en) 2017-08-24 2022-07-12 Nec Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
EP4009400B1 (en) 2019-09-30 2024-01-31 Lg Energy Solution, Ltd. Composite anode active material, preparation method therefor, and anode comprising same
JP7262492B2 (ja) * 2021-01-13 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 負極活物質、リチウムイオン電池、および負極活物質の製造方法
US20220302520A1 (en) * 2021-03-16 2022-09-22 Beam Global Phase change composite apparatus for battery packs and methods of making
IT202100017024A1 (it) * 2021-06-29 2022-12-29 Pierfrancesco Atanasio Elettrodi ibridi carbonio/materiale attivo per accumulatori agli ioni di litio
CA3233037A1 (en) * 2021-09-24 2023-03-30 Yverick Pascal RANGOM Electrodes comprising covalently joined carbonaceous and metalloid powders and methods of manufacturing same
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2005263616A (ja) * 2004-02-16 2005-09-29 Toray Ind Inc カーボンナノチューブの製造方法
JP2005272261A (ja) * 2004-03-26 2005-10-06 Toray Ind Inc カーボンナノチューブの製造方法
JP2006339093A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 巻回型非水電解液二次電池およびその負極

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571638A (en) * 1993-09-30 1996-11-05 Sumitomo Chemical Company Limited Lithium secondary battery
JP3500245B2 (ja) * 1995-08-01 2004-02-23 株式会社リコー ゲル状固体電解質二次電池
JP4441935B2 (ja) 1998-06-09 2010-03-31 パナソニック株式会社 非水電解液二次電池用負極およびそれを用いた電池
JP4212263B2 (ja) * 2000-09-01 2009-01-21 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
US6773838B2 (en) * 2000-09-04 2004-08-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and negative electrode for the same
JP3585122B2 (ja) * 2001-09-14 2004-11-04 松下電器産業株式会社 非水系二次電池とその製造法
JP4116784B2 (ja) * 2001-11-08 2008-07-09 大日本印刷株式会社 負極用塗工組成物、負極板、その製造方法、及び、非水電解液二次電池
JP2004214046A (ja) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極とそれを用いたリチウムイオン二次電池
JP2004349056A (ja) 2003-05-21 2004-12-09 Mitsui Mining Co Ltd リチウム二次電池用負極材料及びその製造方法
JP4859373B2 (ja) * 2004-11-30 2012-01-25 パナソニック株式会社 非水電解液二次電池
CN100456533C (zh) * 2005-11-14 2009-01-28 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2005263616A (ja) * 2004-02-16 2005-09-29 Toray Ind Inc カーボンナノチューブの製造方法
JP2005272261A (ja) * 2004-03-26 2005-10-06 Toray Ind Inc カーボンナノチューブの製造方法
JP2006339093A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 巻回型非水電解液二次電池およびその負極

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US10978702B2 (en) 2008-02-25 2021-04-13 Cf Traverse Llc Energy storage devices
US11502292B2 (en) 2008-02-25 2022-11-15 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US11152612B2 (en) 2008-02-25 2021-10-19 Cf Traverse Llc Energy storage devices
US11127948B2 (en) 2008-02-25 2021-09-21 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US10964938B2 (en) 2008-02-25 2021-03-30 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
EP2250689A4 (en) * 2008-03-10 2012-09-19 Nissan Motor BATTERY ELECTRODE BATTERY AND METHOD FOR MANUFACTURING THE SAME
US9105939B2 (en) 2008-03-10 2015-08-11 Nissan Motor Co., Ltd. Battery with battery electrode and method of manufacturing same
EP2250689A1 (en) * 2008-03-10 2010-11-17 Nissan Motor Co., Ltd. Battery with battery electrode and method of manufacturing same
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US10714267B2 (en) 2009-02-25 2020-07-14 Cf Traverse Llc Energy storage devices including support filaments
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US10461324B2 (en) 2009-02-25 2019-10-29 Cf Traverse Llc Energy storage devices
US10622622B2 (en) 2009-02-25 2020-04-14 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US10673250B2 (en) 2009-02-25 2020-06-02 Cf Traverse Llc Hybrid energy storage device charging
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10727482B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10741825B2 (en) 2009-02-25 2020-08-11 Cf Traverse Llc Hybrid energy storage device production
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US20150004495A1 (en) * 2009-11-11 2015-01-01 Amprius, Inc. Preloading lithium ion cell components with lithium
US8846251B2 (en) * 2009-11-11 2014-09-30 Amprius, Inc. Preloading lithium ion cell components with lithium
US20110111304A1 (en) * 2009-11-11 2011-05-12 Amprius, Inc. Preloading lithium ion cell components with lithium
US9048492B2 (en) 2011-05-25 2015-06-02 Nissan Motor Co., Ltd. Negative electrode active material for electric device
WO2012160854A1 (ja) * 2011-05-25 2012-11-29 日産自動車株式会社 電気デバイス用負極活物質
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers

Also Published As

Publication number Publication date
US20090004566A1 (en) 2009-01-01
CN100495769C (zh) 2009-06-03
US7892677B2 (en) 2011-02-22
KR100832205B1 (ko) 2008-05-23
JP5162825B2 (ja) 2013-03-13
KR20070088523A (ko) 2007-08-29
JP2007165078A (ja) 2007-06-28
CN101061593A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
JP5162825B2 (ja) 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP6207143B2 (ja) 負極活物質及び該物質を採用したリチウム電池
JP5255143B2 (ja) 正極材料、これを用いたリチウムイオン二次電池、及び正極材料の製造方法
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
JP6314831B2 (ja) 負極活物質およびその製造方法、並びにリチウム二次電池
WO2012001845A1 (ja) 非水電解質二次電池用負極およびその製造方法
JP2007165079A (ja) 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP2013084600A (ja) 負極活物質及び該物質を採用したリチウム電池
JP2022009746A (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP2016062860A (ja) 非水電解質二次電池用電極活物質およびそれを備えた非水電解質二次電池
JP2003303585A (ja) 電 池
WO2012001844A1 (ja) 非水電解質二次電池用負極およびその製造方法
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
JP3867030B2 (ja) リチウム二次電池用負極、正極およびリチウム二次電池
JP2017520892A (ja) リチウム電池用正極
JP2007220585A (ja) 非水電解質二次電池用負極および非水電解質二次電池
JP2019175657A (ja) リチウムイオン二次電池。
JP2007188864A (ja) 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP7143478B2 (ja) 複合正極活物質、それを採用した正極、リチウム電池及びその製造方法
JP2007227138A (ja) 非水電解質二次電池用電極とそれを用いた非水電解質二次電池
JP4996827B2 (ja) リチウムイオン二次電池負極用金属−黒鉛系複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極ならびにリチウムイオン二次電池
JP5066132B2 (ja) 多結晶メソカーボン小球体黒鉛化品、負極活物質およびリチウムイオン二次電池
JP7187156B2 (ja) 電気化学素子用負極およびリチウムイオン二次電池
JP2017162693A (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP6184385B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池および電池パック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020077006236

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11664805

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001121.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812012

Country of ref document: EP

Kind code of ref document: A1