WO2007058087A1 - 放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート - Google Patents

放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート Download PDF

Info

Publication number
WO2007058087A1
WO2007058087A1 PCT/JP2006/322145 JP2006322145W WO2007058087A1 WO 2007058087 A1 WO2007058087 A1 WO 2007058087A1 JP 2006322145 W JP2006322145 W JP 2006322145W WO 2007058087 A1 WO2007058087 A1 WO 2007058087A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
scintillator plate
iodide
vapor deposition
substrate
Prior art date
Application number
PCT/JP2006/322145
Other languages
English (en)
French (fr)
Inventor
Takehiko Shoji
Mika Sakai
Yasushi Nakano
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007545198A priority Critical patent/JP5407140B2/ja
Publication of WO2007058087A1 publication Critical patent/WO2007058087A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/626Halogenides
    • C09K11/628Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/12Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a support

Definitions

  • the present invention relates to a method for producing a radiation scintillator plate mainly composed of cesium iodide and a radiation scintillator plate produced by the method.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screen-film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in medical settings around the world.
  • these pieces of image information are so-called analog image information, and cannot perform free image processing or instantaneous image transfer.
  • CR combined radiography
  • CR is mainly accepted in the medical field, and X-ray images are obtained using photostimulable phosphor plates.
  • the “stimulable phosphor plate” refers to accumulated radiation that accumulates radiation transmitted through a subject and excites it in time series by irradiation with electromagnetic waves (excitation light) such as infrared rays. Is emitted as stimulated luminescence with an intensity corresponding to the dose, and has a structure in which a photostimulable phosphor is formed in a layer on a predetermined substrate.
  • FPD is superior to CR in that it can be downsized and can display moving images.
  • the image quality level of the screen's film system has not been reached, and the demand for high image quality has increased in recent years.
  • a scintillator plate made of an X-ray phosphor having a characteristic of emitting light to convert radiation into visible light is used.
  • a TFT is a circuit that drives the TFT. Due to the large electrical noise generated by such factors, the signal-to-noise ratio was reduced in low-dose photography, and the light emission efficiency sufficient to ensure a sufficient image quality level could not be ensured.
  • the light emission efficiency of the scintillator plate is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor.
  • the thicker the phosphor layer the more the light emission efficiency in the phosphor layer. Scattering of light occurs, and sharpness decreases. Therefore, when the sharpness necessary for image quality is determined, the film thickness is also determined automatically.
  • the luminous efficiency is low when Csl is used alone.
  • the concentration of the activator is 0.01 mol% or less relative to the base Csl. It is known that the luminous efficiency is increased by the above.
  • Patent Document 1 a mixture of Csl and sodium iodide (Nal) in an arbitrary molar ratio is deposited as vapor-deposited sodium-activated cesium iodide (CsI: Na) on a substrate.
  • CsI cesium iodide
  • Patent Document 2 describes an activator for Csl, but further improvement is desired in the light emission efficiency by radiation irradiation, which does not focus on the melting point of the activator.
  • Patent Document 1 Japanese Patent Publication No. 54-35060
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-59899
  • An object of the present invention is to provide a scintillator plate for radiation and a method for manufacturing the same, which can further improve the light emission rate.
  • One aspect of the present invention for achieving the above object is that a substrate is formed by vapor deposition using a raw material containing a plurality of activators having different melting points relative to Csl in an amount of 0. Olmol% or more.
  • a scintillator plate is characterized in that a phosphor film is formed thereon.
  • Another aspect of the present invention for achieving the above object is a heating step of heating a mixture containing cesium iodide and an activator compound at 350 to 620 ° C for 1 hour or longer. And a vapor deposition step of forming the phosphor layer on the substrate by vapor-depositing the mixture on the substrate after the heating step.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a scintillator plate 10 for radiation.
  • FIG. 2 is an enlarged sectional view of a scintillator plate 10 for radiation.
  • FIG. 3 is a drawing showing a schematic configuration of a vapor deposition apparatus 61.
  • ⁇ 4 A partially broken perspective view showing a schematic configuration of the radiation image detector 100.
  • FIG. 5 is an enlarged cross-sectional view of the imaging panel 51.
  • Radiation characterized in that a phosphor film is formed on a substrate by vapor deposition using a raw material containing 0.01 mol% or more of a plurality of activator compounds having different melting points relative to Csl. Scintillator plate.
  • the plurality of activator compounds include at least a first activator compound having a melting point in a range within about 50 ° C before and after the melting point of the Csl. Radiation scintillator plate.
  • the first activator compound contains at least one of copper iodide, europium iodide, sodium iodide, rubidium iodide, and manganese iodide.
  • the plurality of activator compounds include a second activator compound having a melting point of 100 ° C or more apart from the melting point of the first activator compound! (2) The scintillator plate for radiation according to (3).
  • a method for manufacturing a scintillator plate for radiation comprising:
  • the activator compound is any one element of indium, thallium, lithium, potassium, rubidium, sodium, and europium, or two or more. It is a compound containing A method for producing a scintillator plate for radiation, characterized in that
  • the method for producing a scintillator plate for radiation wherein the phosphor layer is an aggregate of columnar crystals.
  • a method of manufacturing a scintillator plate for radiation characterized by
  • a method of manufacturing a scintillator plate for radiation wherein the heating step is performed in a vacuum atmosphere of 0.1 lPa or less, an inert gas atmosphere, or a reducing gas atmosphere.
  • the inside of the crystal of the phosphor layer formed in the vapor deposition step is made more transparent and the emission light rate of the phosphor layer can be further improved (to be carried out below). See example).
  • the scintillator plate 10 for radiation has a configuration in which a phosphor layer 2 is formed on a substrate 1, and when the phosphor layer 2 is irradiated with radiation, Phosphor layer 2 absorbs the energy of the incident radiation and emits electromagnetic waves with a wavelength of 300 to 800 nm, that is, ultraviolet light force centered on visible light and electromagnetic waves (light) ranging from infrared light. ing.
  • the substrate 1 is capable of transmitting radiation such as X-rays, and is composed of a glass substrate, a metal plate, or the like. From the viewpoint of improving the resistance of the substrate 1 and light weight, it is preferable to use a resin such as an aluminum plate of 1 mm or less or a carbon fiber reinforced resin sheet as the substrate 1.
  • a crystal is formed on the basis of Cs, and Csl is preferable.
  • the phosphor layer 2 contains a plurality of activators having different melting points. These plural activators may be contained in an amount of 0. Olmol% or more with respect to the base Csl.
  • the content ratio of the activator specified as described above refers to the ratio in the material when the phosphor layer 2 is formed.
  • the material for forming the phosphor layer 2 refers to a raw material that becomes a supply source (vapor deposition source) for vapor deposition. Talk!
  • the condition of the plurality of activators contained in the phosphor layer 2 is that the melting point power Csl of at least one activator among the plurality of activators is about 50 ° C from the melting point (621 ° C).
  • the first activator within the range of ° C is preferred.
  • Specific examples of the first activator constituting the phosphor layer 2 include copper iodide (605 ° C), europium iodide (580 ° C), sodium iodide (6 51 ° C), rubidium iodide (642 ° C), and manganese iodide (613 ° C).
  • a preferable amount of addition force of the first activator is 0. Olmol% to: LOmol%, and more preferably 0.1 mol% to 3. Omol%.
  • the second activator includes a difference in melting point from the first activator of at least 100 ° C or more! / ,.
  • An example of the second activator is thallium iodide (441 ° C).
  • a preferable amount of addition force of the second activator is 0. Olmol% to 10 mol%, more preferably 0.1 mol% to 3. Omol%.
  • the melting point in the present invention is a melting point under normal pressure.
  • the phosphor layer 2 is formed by a vapor deposition method.
  • the substrate 1 is set in a well-known vapor deposition apparatus, the raw material for the phosphor layer 2 containing the activator specified as described above is filled in the vapor deposition source, and then the interior of the apparatus is filled.
  • the exhaust gas inert to introduce Roca such simultaneously nitrogen, and et introduced to 1. 333Pa ⁇ l. 33 X 10- 3 Pa about vacuum and then, at least one resistance heating method of the phosphor
  • the phosphor layer 2 is formed on the substrate 1 by heating and evaporating by a method such as a beam method to deposit the phosphor on the surface of the substrate 1 to a desired thickness.
  • the phosphor layer 2 can also be formed by performing this vapor deposition step in a plurality of times.
  • the phosphor layer 2 is formed on the substrate 1 by one vapor deposition source, the raw materials contained in the vapor deposition source are deposited on the substrate 1 in order from the lowest melting point, and the outermost surface of the phosphor layer 2 has the highest melting point. Therefore, by repeating the above operation, the phosphor layer 2, that is, the phosphor film, contains a plurality of activators and the plurality of activators. Even if they have different melting points, it is possible to make the distribution of light emission in the phosphor film formed on the substrate 1 more uniform.
  • the substrate 1 may be cooled or heated as necessary. Further, after the vapor deposition is completed, the phosphor layer 2 may be heat-treated together with the substrate 1.
  • the phosphor film formed on the substrate 1 contains a plurality of activators, and exhibits characteristics specific to each activator.
  • the columnar crystals constituting the phosphor layer 2 are uniformly formed, and the light emission amount distribution in the phosphor film is uniform.
  • the phosphor layer 2 can improve the light emission efficiency of instantaneous light emission and greatly improve the sensitivity of the radiation scintillator blade 10 to radiation.
  • the luminous efficiency of the phosphor layer 2 can be dramatically improved to improve the light emission luminance. .
  • the phosphor layer 2 contains cesium iodide as a main component. Specifically, a mixture containing cesium iodide and an activator compound is used at 350 to 620 ° C. The mixture is formed by heating the substrate for 1 hour or more and depositing the mixture on the substrate 1. As shown in FIG. 2, the phosphor layer 2 is composed of an infinite number of columnar crystals 2a, and each of these columnar crystals 2a is formed on the substrate 1 as an aggregate.
  • thallium iodide is applied as an activator compound, and the mixing ratio of the thallium iodide to cesium iodide is 0.01 to 10 mol%. Preferably it is 0.01 to 3. Omol%.
  • the activator compound in the above mixture may be any known compound as long as the phosphor layer 2 contains cesium iodide as a main component. It can be arbitrarily selected according to the required characteristics. As an example, thallium bromide may be applied instead of the above thallium iodide, or indium, thallium, lithium, potassium, rubidium, sodium, europium, copper, cerium, zinc, titanium, gadolinium, Even if any one of terbium or a compound containing two or more elements is applied Good.
  • the vapor deposition apparatus 61 has a box-shaped vacuum vessel 62, and a vacuum vapor deposition boat 63 is arranged inside the vacuum vessel 62.
  • the boat 63 is a filling member as a vapor deposition source, and an electrode is connected to the boat 63.
  • the boat 63 When current flows through the electrode to the boat 63, the boat 63 generates heat due to Joule heat.
  • a mixture containing cesium iodide and an activator compound is filled in the boat 63, and an electric current flows through the boat 63, whereby the mixture can be heated and evaporated. I can do it!
  • an alumina crucible around which a heater is wound may be applied as the member to be filled! /, Or a refractory metal heater may be applied.
  • a holder 64 for holding the substrate 1 is arranged inside the vacuum vessel 62 and immediately above the boat 63. Even if a heater (not shown) is provided in the holder 64, the substrate 1 mounted on the holder 64 can be heated by operating the heater. When the substrate 1 is heated, the adsorbate on the surface of the substrate 1 is removed and removed, and an impurity layer is prevented from being formed between the substrate 1 and the phosphor layer 2 formed on the surface. In addition, the adhesion between the substrate 1 and the phosphor layer 2 formed on the surface thereof can be strengthened, or the film quality of the phosphor layer 2 formed on the surface of the substrate 1 can be adjusted.
  • the holder 64 is provided with a rotation mechanism 65 that rotates the holder 64.
  • the rotating mechanism 65 includes a rotating shaft 65a connected to the holder 64 and a motor (not shown) force as a driving source thereof. When the motor is driven, the rotating shaft 65a rotates and the holder 64 rotates. Can be rotated while facing the boat 63. Further, a slit for adjusting the vapor flow of the phosphor evaporating from the resistance heating boat 63 may be provided between the boat 63 and the substrate 1 as necessary.
  • a vacuum pump 66 is disposed in the vacuum vessel 62.
  • the vacuum pump 66 exhausts the inside of the vacuum vessel 62 and introduces gas into the vacuum vessel 62. By operating the vacuum pump 66, the inside of the vacuum vessel 62 is discharged. Can be maintained under a gas atmosphere at a constant pressure.
  • the evaporation device 61 described above can be suitably used.
  • a method for producing the scintillator blade 10 for radiation using the evaporator 61 will be described.
  • the substrate 1 is attached to the holder 64, and the boat 63 is filled with a powdery mixture containing cesium iodide and thallium iodide (preparation step).
  • the vacuum pump 66 is operated to exhaust the inside of the vacuum vessel 62, and the inside of the vacuum vessel 62 is brought to a vacuum atmosphere of 0.1 lPa or less (vacuum atmosphere forming process). ).
  • a vacuum atmosphere means a pressure atmosphere of lOOPa or less, and is preferably a pressure atmosphere of 0.1 lPa or less.
  • the electrode force is passed through the boat 63 while maintaining the inside of the vacuum vessel 62 in a vacuum atmosphere of 0.1 lPa or less, and cesium iodide and thallium iodide are supplied.
  • the mixture containing is heated at 350 to 620 ° C for 1 hour or longer (heating step). Since the melting point of cesium iodide is 621 ° C and the melting point of thallium iodide is 441 ° C, the heating temperature during the heating process is preferably set within the range of 441 to 621 ° C.
  • the inside of the vacuum vessel 62 is evacuated again while the boat 63 is filled with the mixture containing cesium iodide and thallium iodide, and an inert gas such as argon is discharged into the vacuum vessel 62.
  • the inside of the vacuum vessel 62 is maintained in a vacuum atmosphere of 0.1 lPa or less.
  • the heater of the holder 64 and the motor of the rotating mechanism 65 are driven to rotate the substrate 1 mounted on the holder 64 while heating it while facing the boat 63.
  • the mixture containing cesium iodide and thallium iodide is heated under a predetermined condition in the heating step before the vapor deposition step.
  • the inside of each columnar crystal body 2a of the phosphor layer 2 becomes more transparent and the light guide effect of the phosphor layer 2 is enhanced. Therefore, the luminous efficiency of the phosphor layer 2 can be further improved than ever (see the following examples).
  • the vapor deposition process is performed by the same vapor deposition apparatus 61 used for the process of the heating process, so that the heating process force includes cesium iodide and thallium iodide through the vapor deposition process. It is possible to prevent water from adhering to the mixture which becomes a vapor deposition source without coming into contact with outside air. Therefore, white turbidity of the phosphor layer 2 can be prevented and the luminous efficiency of the phosphor layer 2 can be reliably improved.
  • the resistance heating method is used in the heating step and the vapor deposition step.
  • the processing in each step may be an electron beam treatment or a high frequency. Processing by induction may be used.
  • the heat treatment by the resistance heating method is executed, in the same boat 63, it is possible to achieve both the heat treatment and the vapor deposition treatment of the mixture of cesium iodide and thallium iodide!
  • a reducing gas such as an inert gas such as argon or nitrogen or a mixed gas of hydrogen and nitrogen is introduced into the vacuum container 62 to obtain a vacuum container.
  • the inside of 62 is in an inert gas atmosphere of 0.1 lPa or less or a reducing gas atmosphere of 0.1 lPa or less (as the reducing gas, any gas having a reducing action can be used, but it is safe to use. From the viewpoint of safety, it is preferable to use a mixed gas containing hydrogen at a ratio of less than 5% with respect to nitrogen.), And the heating process may be performed in the atmosphere.
  • the vacuum vessel during the heating process 62 As described above, the gas atmosphere inside is preferably a vacuum atmosphere.
  • a shirter (not shown) that blocks the space from the boat 63 to the holder 64 may be disposed between the boat 63 and the holder 64 of the vapor deposition apparatus 61. Good. In this case, it is possible to prevent substances other than the target substance attached to the surface of the mixture on the boat 63 by the shatter from evaporating at the initial stage of the vapor deposition process, and the substances from adhering to the substrate 1.
  • the configuration of the radiation image detector 100 including the radiation scintillator plate 10 will be described with reference to FIGS. 4 and 5.
  • the radiation image detector 100 includes an imaging panel 51, a control unit 52 that controls the operation of the radiation image detector 100, a rewritable dedicated memory (for example, a flash memory), and the like.
  • a memory unit 53 that is a storage unit that stores the image signal output from the panel 51, and a power supply unit 54 that is a power supply unit that supplies power necessary to obtain the image signal by driving the imaging panel 51. , Etc. are provided inside the housing 55.
  • the housing 55 includes a communication connector 56 for performing communication from the radiological image detector 100 to the outside as necessary, an operation unit 57 for switching the operation of the radiographic image detector 100, and preparation for radiographic imaging.
  • a display unit 58 for indicating completion or a predetermined amount of image signal written in the memory unit 53 is provided.
  • the radiation image detector 100 is provided with the power supply unit 54 and the memory unit 53 for storing the image signal of the radiation image, and the radiation image detector 100 is detachable via the connector 56, A portable structure in which the radiation image detector 100 can be carried can be provided.
  • the imaging panel 51 includes a radiation scintillator plate 10 and an output substrate 20 that absorbs electromagnetic waves from the radiation scintillator plate 10 and outputs an image signal. .
  • the radiation scintillator plate 10 is disposed on the radiation irradiation surface side and is configured to emit an electromagnetic wave corresponding to the intensity of incident radiation.
  • the output substrate 20 is a surface of the radiation scintillator plate 10 opposite to the radiation irradiation surface.
  • the diaphragm 20a, the photoelectric conversion element 20b, the image signal output layer 20c, and the substrate 20d are provided in this order from the radiation scintillator plate 10 side.
  • the diaphragm 20a is used to separate the radiation scintillator plate 10 from other layers.
  • Oxi-nitride is used.
  • the photoelectric conversion element 20b includes a transparent electrode 21, a charge generation layer 22 that generates electric charges by being excited by electromagnetic waves that are transmitted through the transparent electrode 21, and is opposite to the transparent electrode 21.
  • the transparent electrode 21, the charge generation layer 22, and the counter electrode 23 are arranged in this order from the diaphragm 20a side.
  • the transparent electrode 21 is an electrode that transmits electromagnetic waves to be photoelectrically converted, and is formed using a conductive transparent material such as indium tinoxide (ITO), SnO, or ZnO.
  • ITO indium tinoxide
  • SnO SnO
  • ZnO ZnO
  • the charge generation layer 22 is formed in a thin film on one surface side of the transparent electrode 21, and contains an organic compound that separates charges by light as a photoelectrically convertible compound, and can generate charges. It contains conductive compounds as electron donors and electron acceptors. In the charge generation layer 22, when an electromagnetic wave is incident, the electron donor is excited to emit electrons, and the emitted electrons move to the electron acceptor, and charge, that is, in the charge generation layer 22. Hole and electron carriers are generated! /
  • examples of the conductive compound as the electron donor include a p-type conductive polymer compound
  • examples of the p-type conductive polymer compound include Compound 11 to Compound 18
  • X is preferably an integer of 1 or more
  • Examples of the conductive compound as an electron acceptor include an n-type conductive polymer compound.
  • Examples of the n-type conductive polymer compound include compounds 2-1 to 2-2. Those having the basic skeleton of polypyridine shown are preferred, particularly those having the basic skeleton of poly (p-pyridylbiylene), (compound 2-1 to compound 2-2, where X is An integer greater than or equal to 1).
  • the film thickness of the charge generation layer 22 is 1 m or less from the viewpoint of ensuring the amount of light absorption, from the viewpoint that lOnm or more (particularly lOOnm or more) is preferred and the electrical resistance does not become too large. (Especially 300nm or less) is preferred.
  • the counter electrode 23 is disposed on the side opposite to the surface on the side where the electromagnetic wave of the charge generation layer 22 is incident.
  • the counter electrode 23 can be selected from, for example, a general metal electrode such as gold, silver, aluminum, and chromium, or the transparent electrode 21. It is preferred to use small (4.5 eV or less) metals, alloys, electrically conductive compounds and mixtures thereof as electrode materials!
  • a buffer for acting as a buffer zone so that the charge generation layer 22 and these electrodes do not react with each other (transparent electrode 21 and counter electrode 23) sandwiching the charge generation layer 22.
  • One layer may be provided.
  • the nofer layer is composed of lithium fluoride and poly (3,4-ethylenedioxythiophene), poly (4 styrenesulfonate), 2,9 dimethyl-4,7 diphenyl [1,10] phenanthrene. Etc. are formed.
  • the image signal output layer 20c accumulates the charge obtained by the photoelectric conversion element 20b and outputs a signal based on the accumulated charge.
  • the image signal output layer 20c outputs the charge generated by the photoelectric conversion element 20b for each pixel.
  • the capacitor 24 is a charge storage element that accumulates, and a transistor 25 is an image signal output element that outputs the accumulated charge as a signal.
  • a TFT Thin Film Transistor
  • This TFT may be an inorganic semiconductor type used in liquid crystal displays or the like or an organic semiconductor type, and is preferably a TFT formed on a plastic film.
  • amorphous silicon-based TFTs are known, but in addition, FS A (Fluidic Self Assembly) technology developed by Alien Technology in the United States, that is, made of single crystal silicon.
  • Embossed micro CMOS Nanoblocks
  • the TFTs may be formed on a flexible plastic film by arranging them on a plastic film.
  • TFTs using organic semiconductors such as those described in Science, 283, 822 (1999), Appl. Phys.ett, 771488 (1998), Nature, 403, 521 (2000), etc. may be used. .
  • a TFT using an organic semiconductor is particularly preferable, and a TFT using an organic semiconductor and a TFT using an organic semiconductor are preferable. If a TFT is configured using this organic semiconductor, equipment such as a vacuum evaporation system is not required as in the case where TFT is configured using silicon, and the TFT can be formed using printing technology and ink jet technology. , Manufacturing cost is low. Furthermore, since the processing temperature can be lowered, it can be formed on a plastic substrate that is vulnerable to heat.
  • the transistor 25 accumulates charges generated in the photoelectric conversion element 20b, and is electrically connected to a collection electrode (not shown) which is one electrode of the capacitor 24.
  • the capacitor 24 accumulates the charges generated by the photoelectric conversion element 20 b and reads the accumulated charges by driving the transistor 25. That is, by driving the transistor 25, a signal for each pixel of the radiation image can be output.
  • the substrate 20d functions as a support for the imaging panel 51, and can be formed of the same material as the substrate 1.
  • the radiation incident on the radiation image detector 100 enters the radiation from the radiation scintillator plate 10 side of the imaging panel 51 toward the substrate 20d side.
  • the radiation incident on the radiation scintillator plate 10 is absorbed by the phosphor layer 2 in the radiation scintillator plate 10 and emits an electromagnetic wave corresponding to its intensity.
  • the electromagnetic wave incident on the output substrate 20 passes through the diaphragm 20a and the transparent electrode 21 of the output substrate 20, and reaches the charge generation layer 22.
  • the electromagnetic wave is absorbed in the charge generation layer 22, and a hole and electron acceptance (charge separation state) is formed according to the intensity.
  • the generated charges are transported to different electrodes (transparent electrode film and conductive layer) by the internal electric field generated by the application of a bias voltage by the power supply unit 54, and light is emitted. Current flows.
  • the holes carried to the counter electrode 23 side are accumulated in the capacitor 24 of the image signal output layer 20c.
  • the accumulated holes output an image signal when the transistor 25 connected to the capacitor 24 is driven, and the output image signal is stored in the memory unit 53.
  • the radiation scintillator plate 10 since the radiation scintillator plate 10 is provided, the photoelectric conversion efficiency can be increased, and the SN ratio at the time of low-dose imaging in the radiation image can be improved. In addition, it is possible to prevent the occurrence of image unevenness and linear noise.
  • the radiation image conversion panels of Examples 1 to 16 and Comparative Example were produced according to the following method.
  • the ratio of thallium iodide (T1I) and europium iodide (Eul) as a plurality of activator or activator raw materials is 0.3 (mol%) and 0.2 (mol%), respectively.
  • the vapor deposition source material was vapor-deposited on one side of a support made of a carbon fiber reinforced resin sheet using the vapor deposition apparatus 20 shown in FIG. 2 to form a phosphor layer.
  • the phosphor raw material is filled in the resistance heating boat 63 as a vapor deposition source as a vapor deposition material, and the substrate 1 is placed on the support holder 64 rotated by the rotation mechanism 65.
  • the distance from the resistance heating boat 63 was adjusted to 400 mm.
  • the inside of the deposition apparatus 62 is once evacuated by the vacuum pump 66, Ar gas is introduced, the degree of vacuum is adjusted to 0.1 lPa, and then the temperature of the substrate 1 is rotated while the substrate 1 is rotated at the lOrpm speed by the rotation mechanism 65. Was maintained at 150 ° C.
  • the resistance heating boat 63 is heated to deposit the phosphor, and when the phosphor layer 2 has a thickness of 500 ⁇ m, the deposition on the substrate 1 is terminated and the radiation image of Example 1 is obtained. A conversion panel was obtained.
  • the obtained radiation image conversion panel of Example 1 was set on a 10 cm x 10 cm CMOS flat panel (X-ray CMOS camera system Shad—o-Box, manufactured by Radicon), and X-ray with tube voltage of 80 kVp. Is irradiated from the back of each sample (the surface where the scintillator phosphor layer is formed!), Instantaneous light emission is taken out with an optical fiber, and the amount of emitted light is measured with a photodiode (S2281) manufactured by Hamamatsu Photonics. The measured value was “emission luminance (sensitivity)”.
  • the emission luminance of the radiation image conversion panel of Example 1 is 2.7, and the measurement results are shown in Table 1 below.
  • Table 1 the values indicating the emission luminance of the radiation image conversion panel used in each example are relative values when the emission luminance of the radiation image conversion panel of the comparative example is 1.0 [Table 1 ]
  • a radiation image conversion panel was prepared and obtained in the same manner as in Example 1 except that the ratio of Vidum (Rbl) was 0.2 (mol 0.2 (mol%) and 0.1 l (mol%), respectively.
  • the radiation image conversion panel was the radiation image conversion panel of Example 2.
  • the luminance was measured in the same manner as in Example 1, the emission luminance of the radiation image conversion panel of Example 2 was 3.1. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1, except that the ratio of (Cul) was 0.2 (mol%), 0.2 (mol%), and 0.1 (mol%), respectively.
  • the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 3.
  • luminance was measured in the same manner as in Example 1.
  • the emission luminance of the radiation image conversion panel of Example 3 was 2.5. Table 1 shows the measurement results.
  • Csl is mixed with T1I and indium iodide (Inl) at a ratio of 0.3 (mol%) and 0.2 (mol%), respectively, as multiple activators. Except for the above, a radiation image conversion panel was produced in the same manner as in Example 1, and the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 4. Thereafter, luminance was measured in the same manner as in Example 1. As a result, the emission luminance of the radiation image conversion panel of Example 4 was 1.4. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1, and the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 8. Thereafter, the luminance was measured in the same manner as in Example 1. As a result, the emission luminance of the radiation image conversion panel of Example 8 was 2.1. Table 1 shows the measurement results.
  • Manganese iodide (Mnl) as multiple activators for Csl in (Preparation of evaporation source material)
  • Yttrium iodide (YI) and T1I ratios of 0 ⁇ 2 (mol%), 0 ⁇ l (mol%) and
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the mixture was mixed at a ratio of 0.2 (mol%), and the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 9. . Thereafter, the luminance was measured in the same manner as in Example 1. As a result, the emission luminance of the radiation image conversion panel of Example 9 was 1.9. Table 1 shows the measurement results.
  • the ratio of titanium ( ⁇ ) is the ratio of 0.2 (mol%), 0.2 (mol%) and 0.1 (mol%) respectively.
  • a radiation image conversion panel was prepared in the same manner as in Example 1, and the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 10. Then the real When the luminance was measured in the same manner as in Example 1, the emission luminance of the radiation image conversion panel of Example 10 was 2.8. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the mixing ratios were 0.2 (mol%), 0.1 (mol%), and 0.2 (mol%), respectively.
  • the obtained radiation image conversion panel was designated as the radiation image conversion panel of Example 11.
  • luminance was measured in the same manner as in Example 1.
  • the emission luminance of the radiation image conversion panel of Example 11 was 3.7. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the ratios were mixed at a ratio of 0.1 (mol%), 0.1 (mol%), and 0.3 (mol%), respectively.
  • the obtained radiation image conversion panel was designated as the radiation image conversion panel of Example 13.
  • the luminance was measured in the same manner as in Example 1.
  • the emission luminance of the radiation image conversion panel of Example 13 was 3.9. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the ratios were mixed at a ratio of 0.3 (mol%), 0.1 (mol%), and 0.1 (mol%), respectively.
  • the obtained radiographic image conversion panel was used as the radiographic image conversion panel of Example 14. Then, as in Example 1.
  • the emission luminance of the radiation image conversion panel of Example 14 was 3.1. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the mixing ratios were 0.2 (mol%), 0.2 (mol%), and 0.1 (mol%), respectively.
  • the obtained radiation image conversion panel was used as the radiation image conversion panel of Example 15. Thereafter, the luminance was measured in the same manner as in Example 1. As a result, the emission luminance of the radiation image conversion panel of Example 15 was 3.4. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that the ratios were mixed at a ratio of 0.1 (mol%), 0.3 (mol%), and 0.1 (mol%), respectively.
  • the obtained radiation image conversion panel was designated as the radiation image conversion panel of Example 16.
  • the luminance was measured in the same manner as in Example 1.
  • the emission luminance of the radiation image conversion panel of Example 16 was 3.8. Table 1 shows the measurement results.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that no activator other than T1I was mixed, and the obtained radiation image conversion panel was used as a radiation image of a comparative example. A conversion panel was used. Thereafter, the luminance of the radiation image conversion panel of the comparative example was measured in the same manner as in Example 1, and the measured emission luminance is set to 1.0 and listed in Table 1. Table 1 shows the measurement results.
  • the radiation image conversion panels of Examples 1, 5, and 12 with the radiation image conversion panel of the comparative example, as a plurality of activators, at least 50 ° to the melting point of Csl. Inclusion of the first activator with a melting point within the range of C can improve the brightness. In this state, the second activator having a melting point that is more than 100 ° C away from the melting point of the first activator may be included in the same or more. It is shown that the brightness can be improved.
  • the radiation image conversion panel of Example 1 to Example 3 with the radiation image conversion panel of Example 4, among the multiple activators, the one having the maximum melting point and the minimum If the difference between the melting point and the melting point is at least 100 ° C, it is shown that the brightness can be further improved.
  • Csl and T1I are mixed with cesium iodide (Csl) mixed with thallium iodide (T1I) as an activator compound at a ratio of 0.3 mol% and pulverized in a mortar so that the mixture becomes uniform. did. Thereafter, a carbon fiber reinforced resin sheet was applied as a substrate, and a vapor deposition apparatus similar to the vapor deposition apparatus 61 in FIG. 3 was applied to form a phosphor layer on the substrate.
  • Csl cesium iodide
  • T1I thallium iodide
  • the boat was filled with the above mixture in powder form as a vapor deposition material, and the substrate was placed in a holder, and the distance between the boat and the holder was adjusted to 400 mm (preparation step) .
  • the vacuum pump is activated, and a vacuum atmosphere inside the 1. 0 X 10- 4 Pa of vacuum vessel evacuated once the interior of the vacuum vessel (vacuum atmosphere forming step).
  • the electrode force was also applied to the boat, and the mixture filled in the boat was heated at 350 ° C. for 2 hours (heating step).
  • the inside of the vacuum vessel was evacuated again, and argon was introduced into the inside of the vacuum vessel to adjust the inside of the vacuum vessel to a vacuum degree of 0.1 lPa.
  • the motor of the rotating mechanism and the heater of the holder were operated, and the substrate was heated to 150 ° C while rotating the substrate at a speed of lOrpm.
  • a larger electric current was passed through the electrode power boat, and the mixture as filled in the boat was heated at 700 ° C. to evaporate to form a phosphor layer on the substrate.
  • the phosphor layer thickness reached 500 m, deposition on the substrate was terminated (deposition process), and the product was designated as “Sample 101”.
  • sample 101 was prepared otherwise.
  • samples 102 to 117 were produced.
  • X-rays with a tube voltage of 80 kVp are irradiated from the back of each sample 101-117 (phosphor layer is formed !, na! /, Surface).
  • the amount was measured with a photodiode (S2281) manufactured by Hamamatsu Photonics Co., Ltd., and the measured value was defined as “luminescence luminance (sensitivity)”.
  • the measurement results of each sample 1-17 are shown in Table 2 below. However, in Table 2, the value indicating the emission luminance of each of the samples 101 to 117 is a relative value when the emission luminance of the sample 115 is 1.0.
  • V was substantially the same as the samples 101 to 117, even from the sample formed by heating for 1 hour in the heating step.
  • Samples 103, 109-112 have a higher emission luminance than that of Samples 108, 113.
  • the mixing ratio of T1I to Csl is 0.01- : LOmol% is found to be particularly useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 CsIに対して、融点の異なる複数の賦活剤化合物をそれぞれ0.01mol%以上含んでなる原材料を供給源として、蒸着により基板上に蛍光体膜を形成したことを特徴とするシンチレータプレート。

Description

明 細 書
放射線用シンチレータプレートの製造方法及び放射線用シンチレータプ レート 技術分野
[0001] 本発明は、ヨウ化セシウムを主成分とする放射線用シンチレータプレートの製造方 法とその製造方法で製造された放射線用シンチレータプレートとに関する。
背景技術
[0002] 従来から、 X線画像のような放射線画像は医療現場において病状の診断に広く用 いられている。特に、増感紙—フィルム系による放射線画像は、長い歴史のなかで高 感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ 持った撮像システムとして、いまなお、世界中の医療現場で用いられている。しかしな 力 これら画像情報はいわゆるアナログ画像情報であって、自由な画像処理や瞬時 の画像転送を行うことができな 、ものであった。
[0003] その後、デジタル方式の放射線画像検出装置として、コンビユーテッドラジオグラフ ィ(CR)が登場している。 CRでは、デジタルの放射線画像が直接得られ、陰極管や 液晶パネル等の画像表示装置に画像を直接表示することが可能なことから、写真フ イルム上への画像形成が不要となり、アナログの銀塩写真方式による画像形成に比 ベ、病院や診療所での診断作業の利便性を大幅に向上させている。
[0004] CRは、主に医療現場で受け入れられており、輝尽性蛍光体プレートを用いて X線 画像を得ている。ここで、「輝尽性蛍光体プレート」というのは、被写体を透過した放 射線を蓄積して、赤外線などの電磁波 (励起光)の照射で時系列的に励起させること により、蓄積された放射線をその線量に応じた強度で輝尽発光として放出するもので あり、所定の基板上に輝尽性蛍光体が層状に形成された構成を有している。
[0005] し力しながら、この輝尽性蛍光体プレートでは、 SN比や鮮鋭性が十分でなぐ空間 分解能も不十分であり、スクリーン 'フィルムシステムの画質レベルには到達していな い。
[0006] そこで、さらに新たなデジタル X線画像技術として、例えば、雑誌 Physics Today 、 1997年 11月号 24頁のジョン.ローランズ論文" Amorphous Semiconductor Usher in Digital X-ray Imaging"や、雑誌 SPIEの 1997年 32卷 2頁の Law y E. Antonukの餘文" Development of A High Resolution^ Active Ma trix、 Flat— Panel Imager with Enhanced Fill Factor"などに己載された、 薄膜トランジスタ (TFT)を用いた平板 X線検出装置(FPD: Flat Panel Detecter) が登場している。この FPDにおいては放射線画像をデジタル情報として取得して自 由に画像処理をおこなったり、瞬時に画像情報を伝送したりすることが可能となって いる。
[0007] また、 FPDでは、 CRに比べ、装置の小型化が可能である点や、動画表示が可能 である点において優れているという特徴がある。し力しながら、 CRと同様、スクリーン' フィルムシステムの画質レベルには到達しておらず、高画質に対する要望が近年益 々高まっていた。
[0008] ここで、 FPDでは、放射線を可視光に変換するために発光する特性を有する X線 蛍光体で作られたシンチレータプレートを使用して ヽるが、 TFTゃ該 TFTを駆動す る回路等にて発生する電気ノイズが大きいために、低線量撮影において、 SN比が低 下し、画質レベルを十分にするだけの発光効率を確保することができな 、ものであつ た。
[0009] 一般に、シンチレータプレートの発光効率は、蛍光体層の厚さ、蛍光体の X線吸収 係数によって決まるが、蛍光体層の厚さを厚くすればするほど、蛍光体層内での発 光光の散乱が生じ、鮮鋭性が低下する。そのため、画質に必要な鮮鋭性を決めると、 膜厚も自ずと決定される。
[0010] そこで、今日では、蛍光体層の厚さを十分に確保した状態で鮮鋭性の低下を抑え られる材料の改良が進められており、その一改良結果物としてヨウ化セシウムが用い られている。当該ヨウ化セシウムは、放射線から可視光への変換率が比較的高ぐ蒸 着によって容易に柱状結晶構造を形成し得るため、蛍光体層の厚さが厚くなつても、 光ガイド効果により結晶内での発光光の散乱を抑えることができるものである。
[0011] ここで、蛍光体層の形成に際し、 Cslの単独使用では、発光効率が低いために各種 の賦活剤が用いられる。賦活剤の濃度は、ベースとなる Cslに対して 0. 01mol%以 上とすることで発光効率が上昇することが知られて 、る。
[0012] 例えば、特許文献 1では、 Cslとヨウ化ナトリウム (Nal)を任意のモル比で混合したも のを蒸着により基板上にナトリウム付活ヨウ化セシウム (CsI :Na)として堆積させ、後 工程としてァニールを行うことで可視変換効率を向上させ、 X線蛍光体として使用す る技術が開示されている。
[0013] また、最近では、例えば特許文献 2のように、 Cslを蒸着で、インジウム (In)、タリウ ム (T1)、リチウム (Li)、カリウム (K)、ルビジウム (Rb)、ナトリウム (Na)等の付活物質 をスパッタで形成する X線蛍光体を作製する技術が開示されている。
[0014] し力しながら、特許文献 1に記載の方法や、特許文献 2に記載の方法により X線蛍 光体を作製する技術をもってしても放射線照射による発光効率は未だ低いものであ つた。特に、特許文献 2では、 Cslへの賦活剤に関して記載されているものの、該賦 活剤の融点に着目したものではなぐ放射線照射による発光効率においては、更な る改良が望まれていた。
特許文献 1:特公昭 54— 35060号公報
特許文献 2 :特開 2001— 59899号公報
発明の開示
[0015] 本発明の目的は、発光光率の更なる向上を図ることができる放射線用シンチレータ プレートおよびその製造方法、を提供することである。
[0016] 上記目的を達成するための本発明の態様の一つは、 Cslに対して、融点の異なる 複数の賦活剤をそれぞれ 0. Olmol%以上含んでなる原材料を供給源として、蒸着 により基板上に蛍光体膜を形成したことを特徴とするシンチレータプレートにある。
[0017] また、上記目的を達成するための本発明の別の態様の一つは、ヨウ化セシウムと賦 活剤化合物とを含む混合物を 350〜620°Cで 1時間以上加熱する加熱工程と、前記 加熱工程の後に、前記混合物を基板上に蒸着して前記基板上に蛍光体層を形成す る蒸着工程と、を有することを特徴とする放射線用シンチレータプレートの製造方法 にある。
図面の簡単な説明
[0018] [図 1]放射線用シンチレータプレート 10の概略構成を示す断面図である。 [図 2]放射線用シンチレータプレート 10の拡大断面図である。
[図 3]蒸着装置 61の概略構成を示す図面である。
圆 4]放射線画像検出器 100の概略構成を示す一部破断斜視図である。
[図 5]撮像パネル 51の拡大断面図である。
発明を実施するための最良の形態
本発明の上記目的は以下の構成により達成される。
(1) Cslに対して、融点の異なる複数の賦活剤化合物をそれぞれ 0. 01mol%以上 含んでなる原材料を供給源として、蒸着により基板上に蛍光体膜を形成したことを特 徴とする放射線用シンチレータプレート。
(2)前記複数の賦活剤化合物は、前記 Cslの融点に対し前後 50°C以内の範囲に融 点をもつ第 1の賦活剤化合物を少なくとも含むことを特徴とする前記(1)に記載の放 射線用シンチレータプレート。
(3)前記第 1の賦活剤化合物は、ヨウ化銅、ヨウ化ユーロピウム、ヨウ化ナトリウム、ョ ゥ化ルビジウム、ヨウ化マンガンのうち、少なくともいずれか一種類を含むことを特徴と する前記(2)に記載の放射線用シンチレータプレート。
(4)前記複数の賦活剤化合物は、前記第 1の賦活剤化合物がもつ融点と 100°C以 上離れて!/ヽる融点をもつ第 2の賦活剤化合物を含むことを特徴とする前記 (2)又 (3) に記載の放射線用シンチレータプレート。
(5)前記第 2の賦活剤化合物がヨウ化タリウムであることを特徴とする前記 (4)に記 載の放射線用シンチレータプレート。
(6)ヨウ化セシウムと賦活剤化合物とを含む混合物を 350〜620°Cで 1時間以上カロ 熱する加熱工程と、
前記加熱工程の後に、前記混合物を基板上に蒸着して前記基板上に蛍光体層を 形成する蒸着工程と、
を有することを特徴とする放射線用シンチレータプレートの製造方法。
(7)前記(6)に記載の放射線用シンチレータプレートの製造方法において、 前記賦活剤化合物が、インジウム、タリウム、リチウム、カリウム、ルビジウム、ナトリウ ム、ユーロピウムのうち、いずれか一の元素又は 2以上の元素を含む化合物であるこ とを特徴とする放射線用シンチレータプレートの製造方法。
(8)前記(6)又は(7)に記載の放射線用シンチレータプレートの製造方法において 前記賦活剤化合物が、ヨウ化タリウム又は臭化タリウムであることを特徴とする放射 線用シンチレータプレートの製造方法。
(9)前記(8)に記載の放射線用シンチレータプレートの製造方法において、 前記ヨウ化タリウムの前記ヨウ化セシウムに対する混合比が 0. 01〜: LOmol%であ ることを特徴とする放射線用シンチレータプレートの製造方法。
(10) 前記(6)〜(9)の 、ずれか一項に記載の放射線用シンチレータプレートの製 造方法において、
前記蛍光体層が柱状結晶体の集合体であることを特徴とする放射線用シンチレ一 タプレートの製造方法。
(11) 前記(6)〜(10)の 、ずれか一項に記載の放射線用シンチレータプレートの 製造方法において、
前記混合物を蒸着装置の被充填部材に充填して前記加熱工程の処理を実行し、 前記加熱工程の処理に引き続いて前記混合物を前記被充填部材に充填したまま 前記蒸着工程の処理を実行することを特徴とする放射線用シンチレータプレートの 製造方法。
(12) 前記(6)〜(11)のいずれか一項に記載の放射線用シンチレータプレートの 製造方法において、
前記加熱工程の処理を 0. lPa以下の真空雰囲気下、不活性ガス雰囲気下又は還 元ガス雰囲気下で実行することを特徴とする放射線用シンチレータプレートの製造方 法。
(13) 前記(6)〜(12)のいずれか一項に記載の放射線用シンチレータプレートの 製造方法に従って製造されていることを特徴とする放射線用シンチレータプレート。
[0020] 本発明によれば、蒸着工程において形成される蛍光体層の結晶の内部がより高く 透明化し、蛍光体層の発光光率を今まで以上に更に向上させることができる(下記実 施例参照)。
[0021] 以下、図面を参照しながら本発明を実施するための最良の形態について説明する 。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい 種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定さ れるものではない。
[0022] 始めに、図 1を参照しながら、本発明に係る放射線用シンチレータプレート 10の構 成について説明する。
[0023] 図 1に示す通り、放射線用シンチレータプレート 10は、基板 1上に蛍光体層 2が形 成された構成を有しており、蛍光体層 2に放射線が照射された場合に、当該蛍光体 層 2が入射した放射線のエネルギーを吸収して、波長 300〜800nmの電磁波、すな わち、可視光線を中心にした紫外光力 赤外光にわたる電磁波 (光)を発光するよう になっている。
[0024] 基板 1は X線等の放射線を透過させることが可能なものであり、榭脂ゃガラス基板、 金属板等から構成されている。基板 1の耐性の向上や軽量ィ匕といった観点からすれ ば、基板 1としては、 1mm以下のアルミ板や炭素繊維強化榭脂シートを始めとする榭 脂を用いるのが好ましい。
[0025] また、蛍光体層 2としては、 Csをベースとして結晶が形成されたものであり、 Cslが好 適である。
[0026] 本発明の態様の一つにおいては、蛍光体層 2には、融点の異なる複数の賦活剤が 含まれている。これら複数の賦活剤は、ベースとなる Cslに対し、 0. Olmol%以上含 んでいればよい。ここで、 Cslに対し、賦活剤が 0. Olmol%未満であると、 Csl単独 使用で得られる発光輝度と大差なぐ目的とする発光輝度を得ることができない。な お、前述のように規定された賦活剤の含有割合は、蛍光体層 2を形成する際の材料 における割合を指している。本発明においては、蛍光体層 2は、後述するように蒸着 により形成されるため、蛍光体層 2を形成する際の材料とは、蒸着する際の供給源( 蒸着源)となる原材料を指して!/ヽる。
[0027] また、蛍光体層 2に含有される複数の賦活剤の条件としては、当該複数の賦活剤 のうち、少なくとも一種類の賦活剤の融点力 Cslの融点(621°C)から前後 50°C以 内にある第 1の賦活剤であることが好ましい。蛍光体層 2を構成する第 1の賦活剤の 具体例としては、ヨウ化銅(605°C)、ヨウ化ユーロピウム(580°C)、ヨウ化ナトリウム(6 51°C)、ヨウ化ルビジウム(642°C)、ヨウ化マンガン(613°C)が挙げられる。第 1の賦 活剤の好ましい添力卩量は 0. Olmol%〜: LOmol%であり、より好ましくは 0. lmol% 〜3. Omol%である。
[0028] さらに、複数の賦活剤の条件としては、第 1の賦活剤との融点の差が少なくとも 100 °C以上離れて!/、る第 2の賦活剤が含まれて 、ることが好ま 、。第 2の賦活剤として は、ヨウ化タリウム (441°C)が挙げられる。第 2の賦活剤の好ましい添力卩量は 0. Olm ol%〜10mol%であり、より好ましくは 0. lmol%〜3. Omol%である。なお、本発明 での融点とは、常圧下における融点である。
[0029] 以下、基板 1上に蛍光体層 2を形成させる方法について説明する。
[0030] 蛍光体層 2は、蒸着法により形成される。
[0031] 蒸着法は基板 1を概知の蒸着装置内に設置するとともに、蒸着源に前述のように規 定された付活剤を含む蛍光体層 2の原材料を充填したのち、装置内を排気すると同 時に窒素等の不活性なガスを導入ロカ、ら導入して 1. 333Pa〜l. 33 X 10— 3Pa程度 の真空とし、次いで、蛍光体の少なくとも 1つを抵抗加熱法、エレクトロンビーム法な どの方法で加熱蒸発させて基板 1表面に蛍光体を所望の厚みに堆積させ、基板 1上 に蛍光体層 2が形成される。なお、この蒸着工程を複数回に分けて行い、蛍光体層 2 を形成することも可能である。
[0032] 例えば、同一構成の蒸着源を複数用意し、一つの蒸着源による蒸着が終了したら 、次の蒸着源による蒸着を開始し、所望の厚さの蛍光体層 2になるまで、これを繰り 返し行う。 1つの蒸着源により基板 1上に蛍光体層 2を形成した場合、蒸着源に含ま れる原材料のうち、融点が低いものから順に基板 1上に付着し、蛍光体層 2の最表面 は最も融点が高いものの割合が多くなる層構成となるため、前述の操作を繰り返し行 うことにより、蛍光体層 2、つまり蛍光体膜では、複数の賦活剤が含まれると共に、こ れら複数の賦活剤の融点が異なるものであっても、基板 1上に形成される蛍光体膜 中における発光量の分布をより均一にすることが可能となる。
[0033] なお、蒸着時は、必要に応じて基板 1を冷却或いは加熱してもよい。また、蒸着終 了後、基板 1ごと蛍光体層 2を加熱処理してもよい。
[0034] なお、蒸着装置については後述する。 [0035] 次に、放射線用シンチレータプレート 10の作用について説明する。
[0036] 放射線用シンチレータプレート 10に対し、蛍光体層 2側から基板 1側に向けて放射 線を入射すると、蛍光体層 2に入射された放射線は、蛍光体層 2中の蛍光体粒子に 放射線のエネルギーが吸収され、蛍光体層 2からその強度に応じた電磁波(光)が発 光される。
[0037] このとき、基板 1上に形成される蛍光体膜には、複数の賦活剤が含まれており、各 賦活剤固有の特性を発揮している。また、同時に、蛍光体層 2を構成する各柱状結 晶均一に形成されているおり、蛍光体膜中における発光量の分布が均一になってい る。その結果、蛍光体層 2では、瞬時発光の発光効率を向上させ、放射線用シンチ レータブレート 10の放射線に対する感度を大きく改善させることができる。
[0038] 以上のように、本発明に係る放射線用シンチレータプレート 10では、放射線が照射 された際に、蛍光体層 2の発光効率を飛躍的に向上させて発光輝度を向上させるこ とができる。これより、得られる放射線画像における低線量撮影時の SN比を向上させ ることちでさる。
[0039] また、本発明の別の態様においては、蛍光体層 2はヨウ化セシウムを主成分とする もので、詳しくはヨウ化セシウムと賦活剤化合物とを含む混合物を 350〜620°Cで 1 時間以上加熱してその混合物を基板 1に蒸着して形成されたものである。図 2に示す 通り、蛍光体層 2は無数の柱状結晶体 2aから構成されており、これら各柱状結晶体 2 aが集合体として基板 1上に形成されている。
[0040] 蛍光体層 2を原材料となる上記混合物においては、賦活剤化合物としてヨウ化タリ ゥムが適用されており、当該ヨウ化タリウムのヨウ化セシウムに対する混合比が 0. 01 〜10mol%、好ましくは 0. 01〜3. Omol%となっている。
[0041] 上記混合物における賦活剤化合物は、蛍光体層 2がヨウ化セシウムを主成分とする ものであれば、公知のいかなる化合物であってもよぐ蛍光体層 2の発光波長や耐湿 性等の要求特性に合わせて任意に選択することができる。その一例として、上記ヨウ 化タリウムに代えて、臭化タリウムを適用してもよいし、インジウム、タリウム、リチウム、 カリウム、ルビジウム、ナトリウム、ユーロピウム、銅、セリウム、亜鉛、チタン、ガドリ-ゥ ム、テルビウムのうちいずれか一の元素又は 2以上の元素を含む化合物を適用しても よい。
[0042] 次に、図 3を参照しながら、上記放射線用シンチレータプレート 10を製造する際に 用いる蒸着装置 61につ 、て説明する。
[0043] 図 3に示す通り、蒸着装置 61は箱状の真空容器 62を有しており、真空容器 62の 内部には真空蒸着用のボート 63が配されている。ボート 63は蒸着源の被充填部材 であり、当該ボート 63には電極が接続されている。当該電極を通じてボート 63に電 流が流れると、ボート 63がジュール熱で発熱するようになっている。放射線用シンチ レータブレート 10の製造時においては、ヨウ化セシウムと賦活剤化合物とを含む混合 物がボート 63に充填され、そのボート 63に電流が流れることで、上記混合物を加熱' 蒸発させることができるようになって!/、る。
[0044] なお、被充填部材として、ヒータを卷回したアルミナ製のるつぼを適用してもよ!/、し、 高融点金属製のヒータを適用してもよい。
[0045] 真空容器 62の内部であってボート 63の直上には基板 1を保持するホルダ 64が配 されている。ホルダ 64にはヒータ(図示略)が配されていてもよぐ当該ヒータを作動さ せることでホルダ 64に装着した基板 1を加熱することができるようになつている。基板 1を加熱した場合には、基板 1の表面の吸着物を離脱'除去したり、基板 1とその表面 に形成される蛍光体層 2との間に不純物層が形成されるのを防止したり、基板 1とそ の表面に形成される蛍光体層 2との密着性を強化したり、基板 1の表面に形成される 蛍光体層 2の膜質の調整をおこなったりすることもできる。
[0046] ホルダ 64には当該ホルダ 64を回転させる回転機構 65が配されている。回転機構 6 5は、ホルダ 64に接続された回転軸 65aとその駆動源となるモータ(図示略)力も構 成されたもので、当該モータを駆動させると、回転軸 65aが回転してホルダ 64をボー ト 63に対向させた状態で回転させることができるようになつている。また、ボート 63と、 基板 1との間には、必要に応じて抵抗加熱ボート 63から蒸発する蛍光体の蒸気流を 調節するためのスリットが設けられて 、ても良 、。
[0047] 蒸着装置 61では、上記構成の他に、真空容器 62に真空ポンプ 66が配されている 。真空ポンプ 66は、真空容器 62の内部の排気と真空容器 62の内部へのガスの導入 とをおこなうもので、当該真空ポンプ 66を作動させることにより、真空容器 62の内部 を一定圧力のガス雰囲気下に維持することができるようになって 、る。
[0048] 次に、本発明に係る放射線用シンチレータプレート 10の製造方法について説明す る。
[0049] 当該放射線用シンチレータプレート 10の製造方法においては、上記で説明した蒸 発装置 61を好適に用いることができる。下記では、蒸発装置 61を用いて放射線用シ ンチレータブレート 10を製造する方法について説明する。
[0050] 始めに、ホルダ 64に基板 1を取り付けるとともに、ボート 63にヨウ化セシウムとヨウ化 タリウムとを含む粉末状の混合物を充填する (準備工程)。この場合、ボート 63と基板 1との間隔を 100〜1500mmに設定し、その設定値の範囲内のままで後述の蒸着工 程の処理をおこなうのが好まし 、。
[0051] 準備工程の処理を終えたら、真空ポンプ 66を作動させて真空容器 62の内部を排 気し、真空容器 62の内部を 0. lPa以下の真空雰囲気下にする (真空雰囲気形成ェ 程)。ここでいう「真空雰囲気下」とは、 lOOPa以下の圧力雰囲気下のことを意味し、 0 . lPa以下の圧力雰囲気下であるのが好適である。
[0052] 真空雰囲気形成工程の処理を終えたら、真空容器 62の内部を 0. lPa以下の真空 雰囲気下に維持しながら、ボート 63に電極力も電流を流し、ヨウ化セシウムとヨウ化タ リウムとを含む混合物を 350〜620°Cで 1時間以上加熱する(加熱工程)。なお、ヨウ 化セシウムの融点が 621°Cでヨウ化タリウムの融点が 441°Cであるため、加熱工程中 の加熱温度は 441〜621°Cの範囲内で設定するのが好適である。
[0053] 加熱工程の処理を終えたら、ヨウ化セシウムとヨウ化タリウムとを含む混合物をボート 63に充填したまま、真空容器 62の内部を再度排気してアルゴン等の不活性ガスを 真空容器 62の内部に導入し、当該真空容器 62の内部を 0. lPa以下の真空雰囲気 下に維持する。その後、ホルダ 64のヒータと回転機構 65のモータとを駆動させ、ホル ダ 64に取付け済みの基板 1をボート 63に対向させた状態で加熱しながら回転させる
[0054] この状態において、電極からボート 63に電流を流し、ヨウ化セシウムとヨウ化タリウム とを含む混合物を 700°C程度で所定時間加熱してその混合物を蒸発させる。その結 果、基板 1の表面に無数の柱状結晶体 2aが順次成長して所望の厚さの蛍光体層 2 が形成される (蒸着工程)。これにより、本発明に係る放射線用シンチレータプレート
10を製造することができる。
[0055] 以上の放射線用シンチレータプレート 10の製造方法によれば、蒸着工程前の加熱 工程においてヨウ化セシウムとヨウ化タリウムとを含む混合物を所定の条件で加熱す るため、蒸着工程において形成される蛍光体層 2の各柱状結晶体 2aの内部がより高 く透明化し、当該蛍光体層 2の光ガイド効果が高まる。そのため、蛍光体層 2の発光 光率を今まで以上に更に向上させることができる(下記実施例参照)。
[0056] 更に、加熱工程後に、その加熱工程の処理の用に供した同一の蒸着装置 61で蒸 着工程の処理をおこなうため、加熱工程力 蒸着工程にかけてヨウ化セシウムとヨウ 化タリウムとを含む混合物が外気に触れることはなぐ蒸着源となるその混合物に水 分が付着するのを防止することができる。そのため、蛍光体層 2の白濁を防止して当 該蛍光体層 2の発光効率を確実に向上させることができる。
[0057] なお、上記記載事項においては、本発明の主旨を逸脱しない範囲において種々の 改良及び設計変更をおこなってもよ 、。
[0058] 一の改良 ·設計変更事項として、上記加熱工程及び蒸着工程では抵抗加熱法によ る処理としたが、当該各工程の処理は電子ビームによる処理であってもよいし、高周 波誘導による処理でもよい。本実施形態では、比較的簡単な構成で取り扱いが容易 、安価、かつ、非常に多くの物質に適用可能である点から、上記の通り、抵抗加熱法 による加熱処理を適用するのが好ま ヽ。抵抗加熱法による加熱処理を実行すると、 同一のボート 63において、ヨウ化セシウムとヨウ化タリウムとの混合物の加熱処理と蒸 着処理と!/、う両処理を両立することができる。
[0059] 他の改良'設計変更事項として、真空雰囲気形成工程では、アルゴン、窒素等の不 活性ガスや水素と窒素との混合ガス等の還元ガスを真空容器 62の内部に導入して 真空容器 62の内部を 0. lPa以下の不活性ガス雰囲気下又は 0. lPa以下の還元ガ ス雰囲気(還元ガスとしては、還元作用のあるガスであれば 、かなるガスも使用可能 であるが、安全性の観点から、窒素に対し水素を 5%未満の比率で含有させた混合 ガスを用いるのがよい。)とし、その雰囲気下で上記加熱工程の処理を実行してもよ い。ただし、作業の容易性という観点からすれば、加熱工程中における真空容器 62 の内部のガス雰囲気を、上記の通り、真空雰囲気下とするのが好適である。
[0060] 他の改良'設計変更事項として、蒸着装置 61のボート 63とホルダ 64との間に、ボ ート 63からホルダ 64に至る空間部を遮断するシャツタ(図示略)を配してもよい。この 場合、当該シャツタによってボート 63上の混合物の表面に付着した目的物以外の物 質が蒸着工程の初期段階で蒸発し、その物質が基板 1に付着するのを防止すること ができる。
[0061] 次に、上記放射線用シンチレータプレート 10の一適用例として、図 4及び図 5を参 照しながら、当該放射線用シンチレータプレート 10を具備した放射線画像検出器 10 0の構成について説明する。
[0062] 図 4に示す通り、放射線画像検出器 100には、撮像パネル 51、放射線画像検出器 100の動作を制御する制御部 52、書き換え可能な専用メモリ(例えばフラッシュメモリ )等を用いて撮像パネル 51から出力された画像信号を記憶する記憶手段であるメモ リ部 53、撮像パネル 51を駆動して画像信号を得るために必要とされる電力を供給す る電力供給手段である電源部 54、等が筐体 55の内部に設けられている。筐体 55に は必要に応じて放射線画像検出器 100から外部に通信を行うための通信用のコネク タ 56、放射線画像検出器 100の動作を切り換えるための操作部 57、放射線画像の 撮影準備の完了やメモリ部 53に所定量の画像信号が書き込まれたことを示す表示 部 58、等が設けられている。
[0063] ここで、放射線画像検出器 100に電源部 54を設けるとともに放射線画像の画像信 号を記憶するメモリ部 53を設け、コネクタ 56を介して放射線画像検出器 100を着脱 自在にすれば、放射線画像検出器 100を持ち運びできる可搬構造とすることができ る。
[0064] 図 5に示すように、撮像パネル 51は、放射線用シンチレータプレート 10と、放射線 用シンチレータプレート 10からの電磁波を吸収して画像信号を出力する出力基板 2 0と、力 構成されている。
[0065] 放射線用シンチレータプレート 10は、放射線照射面側に配置されており、入射した 放射線の強度に応じた電磁波を発光するように構成されて ヽる。
[0066] 出力基板 20は、放射線用シンチレータプレート 10の放射線照射面と反対側の面 に設けられており、放射線用シンチレータプレート 10側から順に、隔膜 20a、光電変 換素子 20b、画像信号出力層 20c及び基板 20dを備えている。
[0067] 隔膜 20aは、放射線用シンチレータプレート 10と他の層を分離するためのものであ り、例えば Oxi - nitrideなどが用!、られる。
[0068] 光電変換素子 20bは、透明電極 21と、透明電極 21を透過して入光した電磁波によ り励起されて電荷を発生する電荷発生層 22と、透明電極 21に対しての対極になる 対電極 23とから構成されており、隔膜 20a側カゝら順に透明電極 21、電荷発生層 22、 対電極 23が配置される。
[0069] 透明電極 21とは、光電変換される電磁波を透過させる電極であり、例えばインジゥ ムチンォキシド (ITO)、 SnO、 ZnOなどの導電性透明材料を用いて形成される。
2
[0070] 電荷発生層 22は、透明電極 21の一面側に薄膜状に形成されており、光電変換可 能な化合物として光によって電荷分離する有機化合物を含有するものであり、電荷を 発生し得る電子供与体及び電子受容体としての導電性化合物をそれぞれ含有して いる。電荷発生層 22では、電磁波が入射されると、電子供与体は励起されて電子を 放出し、放出された電子は電子受容体に移動して、電荷発生層 22内に電荷、すな わち、正孔と電子のキャリアが発生するようになって!/、る。
[0071] ここで、電子供与体としての導電性ィ匕合物としては、 p型導電性高分子化合物が挙 げられ、 p型導電性高分子化合物としては、化合物 1 1〜化合物 1 8に示したポリ フエ二レンビニレン、ポリチォフェン、ポリ(チォフェンビニレン)、ポリアセチレン、ポリ ピロール、ポリフルオレン、ポリ(p—フエ-レン)又はポリア-リンの基本骨格を持つも のが好ましい(化合物 1 1〜化合物 1 8で、 Xは 1以上の整数であることが好ましい
) o
[0072] [化 1] 化合物 1 1 化合物 1 -2
Figure imgf000015_0001
ポリフエ二レンビニレン ポリチォフェン 化合物 1-3 化合物 1-4
Figure imgf000015_0002
ポリ(チォフェンビニレン) ポリアセチレン
化合物 1 -5 化合物 1-6
Figure imgf000015_0003
ポリピロ一ル ポリフルオレン
化合物 1 - 化合物 1 -8
Figure imgf000015_0004
ポリ(P-フエ二レン) ポリア二りン
X≥ 1
[0073] また、電子受容体としての導電性ィ匕合物としては、 n型導電性高分子化合物が挙げ られ、 n型導電性高分子化合物としては、化合物 2— 1〜化合物 2— 2に示したポリピ リジンの基本骨格を持つものが好ましぐ特にポリ(p—ピリジルビ-レン)の基本骨格 を持つものが好まし 、(ィ匕合物 2— 1〜化合物 2— 2で、 Xは 1以上の整数である)。
[0074] [化 2] 化合物 2-1 化合物 2 2
Figure imgf000016_0001
[0075] 電荷発生層 22の膜厚は、光吸収量を確保するといつた観点から、 lOnm以上 (特 に lOOnm以上)が好ましぐまた電気抵抗が大きくなりすぎないといった観点から、 1 m以下(特に 300nm以下)が好まし ヽ。
[0076] 対電極 23は、電荷発生層 22の電磁波が入光される側の面と反対側に配置されて いる。対電極 23は、例えば、金、銀、アルミニウム、クロムなどの一般の金属電極や、 透明電極 21の中から選択して用いることが可能であるが、良好な特性を得るために は仕事関数の小さい (4. 5eV以下)金属、合金、電気伝導性化合物及びこれらの混 合物を電極物質とするのが好まし!/、。
[0077] また、電荷発生層 22を挟む各電極 (透明電極 21及び対電極 23)との間には、電荷 発生層 22とこれら電極が反応しな ヽように緩衝地帯として作用させるためのバッファ 一層を設けてもよい。ノ ッファー層は、例えば、フッ化リチウム及びポリ (3, 4—ェチレ ンジォキシチォフェン)、ポリ (4 スチレンスルホナート)、 2, 9 ジメチルー 4, 7 ジ フエニル [1, 10]フエナント口リンなどを用いて形成される。
[0078] 画像信号出力層 20cは、光電変換素子 20bで得られた電荷の蓄積および蓄積され た電荷に基づく信号の出力を行うものであり、光電変換素子 20bで生成された電荷 を画素毎に蓄積する電荷蓄積素子であるコンデンサ 24と、蓄積された電荷を信号と して出力する画像信号出力素子であるトランジスタ 25とを用いて構成されている。
[0079] トランジスタ 25は、例えば TFT (薄膜トランジスタ)を用いるものとする。この TFTは、 液晶ディスプレイ等に使用されている無機半導体系のものでも、有機半導体を用い たものでもよく、好ましくはプラスチックフィルム上に形成された TFTである。プラスチ ックフィルム上に形成された TFTとしては、アモルファスシリコン系のものが知られて いるが、その他、米国 Alien Technology社が開発している FS A (Fluidic Self Assembly )技術、即ち、単結晶シリコンで作製した微小 CMOS (Nanoblocks)をエンボス加工し たプラスチックフィルム上に配列させることで、フレキシブルなプラスチックフィルム上 に TFTを形成するものとしても良い。さらに、 Science,283,822(1999)や Appl.Phys丄 ett ,771488(1998)、 Nature,403,521(2000)等の文献に記載されているような有機半導体 を用いた TFTであってもよ!/、。
[0080] このように、本発明に用いられるトランジスタ 25としては、上記 FSA技術で作製した TFT及び有機半導体を用いた TFTが好ましぐ特に好ま ヽものは有機半導体を用 いた TFTである。この有機半導体を用いて TFTを構成すれば、シリコンを用いて TF Tを構成する場合のように真空蒸着装置等の設備が不要となり、印刷技術やインクジ エツト技術を活用して TFTを形成できるので、製造コストが安価となる。さらに、加工 温度を低くできることから熱に弱いプラスチック基板上にも形成できる。
[0081] トランジスタ 25には、光電変換素子 20bで発生した電荷を蓄積するとともに、コンデ ンサ 24の一方の電極となる収集電極(図示せず)が電気的に接続されている。コンデ ンサ 24には光電変換素子 20bで生成された電荷が蓄積されるとともに、この蓄積さ れた電荷はトランジスタ 25を駆動することで読み出される。すなわちトランジスタ 25を 駆動させることで放射線画像の画素毎の信号を出力させることができる。
[0082] 基板 20dは、撮像パネル 51の支持体として機能するものであり、基板 1と同様の素 材で構成することが可能である。
[0083] 次に、放射線画像検出器 100の作用について説明する。
[0084] まず、放射線画像検出器 100に対し入射された放射線は、撮像パネル 51の放射 線用シンチレータプレート 10側から基板 20d側に向けて放射線を入射する。
[0085] すると、放射線用シンチレータプレート 10に入射された放射線は、放射線用シンチ レータプレート 10中の蛍光体層 2が放射線のエネルギーを吸収し、その強度に応じ た電磁波を発光する。発光された電磁波のうち、出力基板 20に入光される電磁波は 、出力基板 20の隔膜 20a、透明電極 21を貫通し、電荷発生層 22に到達する。そし て、電荷発生層 22において電磁波は吸収され、その強度に応じて正孔と電子のぺ 了 (電荷分離状態)が形成される。
[0086] その後、発生した電荷は、電源部 54によるバイアス電圧の印加により生じる内部電 界により正孔と電子はそれぞれ異なる電極 (透明電極膜及び導電層)へ運ばれ、光 電流が流れる。
[0087] その後、対電極 23側に運ばれた正孔は画像信号出力層 20cのコンデンサ 24に蓄 積される。蓄積された正孔はコンデンサ 24に接続されているトランジスタ 25を駆動さ せると、画像信号を出力すると共に、出力された画像信号はメモリ部 53に記憶される
[0088] 以上の放射線画像検出器 100によれば、上記放射線用シンチレータプレート 10を 備えているので、光電変換効率を高めることができ、放射線画像における低線量撮 影時の SN比を向上させるとともに、画像ムラや線状ノイズの発生を防止することがで きる。
実施例
[0089] 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに 限定されるものではない。
下記の方法にしたがって実施例 1〜実施例 16、比較例の放射線像変換パネルを作 製した。
[実施例 1] (蒸着源材料の作製)
Cslに対し、複数の付活剤すなわち賦活剤原料として、ヨウ化タリウム (T1I)及びヨウ 化ユーロピウム(Eul )の比率をそれぞれ 0. 3 (mol%)及び 0. 2 (mol%)の比率で
2
混合し、乳鉢にてこれらが均一になるように粉砕し、混合した。(放射線像変換パネル の作製)
炭素繊維強化榭脂シートからなる支持体の片面に、図 2に示す蒸着装置 20を使用 して上記蒸着源材料を蒸着させて蛍光体層を形成した。
[0090] すなわち、まず、上記蛍光体原料を蒸着材料として蒸着源である抵抗加熱ボート 6 3に充填するとともに、回転機構 65により回転される支持体ホルダ 64に基板 1を設置 し、基板 1と抵抗加熱ボート 63との間隔を 400mmに調節した。続いて真空ポンプ 66 により蒸着装置 62内を一旦排気し、 Arガスを導入して 0. lPaに真空度を調整した 後、回転機構 65により lOrpmの速度で基板 1を回転させながら基板 1の温度を 150 °Cに保持した。次いで、抵抗加熱ボート 63を加熱して蛍光体を蒸着し、蛍光体層 2 の膜厚が 500 μ mとなったところで基板 1への蒸着を終了させて実施例 1の放射線像 変換パネルを得た。
(輝度の測定)
得られた実施例 1の放射線画像変換パネルを、 10cm X 10cmの大きさの CMOS フラットパネル(ラドアイコン社製 X線 CMOSカメラシステム Shad— o— Box)にセッ トし、管電圧 80kVpの X線を各試料の裏面 (シンチレータ蛍光体層が形成されて!、な い面)から照射し、瞬時発光を光ファイバ一で取り出し、発光量を浜松ホトニタス社製 のホトダイオード (S2281)で測定してその測定値を「発光輝度 (感度)」とした。実施 例 1の放射線画像変換パネルの発光輝度は 2. 7を示すとともに、測定結果を下記表 1に示す。ただし、表 1中、各実施例で用いた放射線像変換パネルの発光輝度を示 す値は、比較例の放射線像変換パネルの発光輝度を 1. 0としたときの相対値である [表 1]
Figure imgf000020_0001
[実施例 2]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 T1I Eul及びヨウ化ル
2
ビジゥム (Rbl)の比率をそれぞれ 0.2(mol 0.2(mol%)及び 0. l(mol%)の 比率で混合する以外は、実施例 1と同様にして放射線像変換パネルを作製し、得ら れた放射線画像変換パネルを実施例 2の放射線画像変換パネルとした。その後、実 施例 1と同様にして輝度の測定を実施したところ、実施例 2の放射線画像変換パネル の発光輝度は 3. 1を示した。測定結果を表 1に示す。
[実施例 3]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 T1I、 Eul及びヨウ化銅
2
(Cul)の比率をそれぞれ 0. 2 (mol%)、 0. 2 (mol%)及び 0. l (mol%)で混合する 以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像 変換パネルを実施例 3の放射線画像変換パネルとした。その後、実施例 1と同様にし て輝度の測定を実施したところ、実施例 3の放射線画像変換パネルの発光輝度は 2 . 5を示した。測定結果を表 1に示す。
[実施例 4]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 T1I及びヨウ化インジゥ ム (Inl)の比率をそれぞれ 0. 3 (mol%)及び 0. 2 (mol%)で混合する以外は、実施 例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変換パネルを 実施例 4の放射線画像変換パネルとした。その後、実施例 1と同様にして輝度の測定 を実施したところ、実施例 4の放射線画像変換パネルの発光輝度は 1. 4を示した。 測定結果を表 1に示す。
[実施例 5]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、ヨウ化ナトリウム (Nal) 及び T1Iの比率をそれぞれ 0. 3 (mol%)及び 0. 2 (mol%)の比率で混合する以外 は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変換 パネルを実施例 5の放射線画像変換パネルとした。その後、実施例 1と同様にして輝 度の測定を実施したところ、実施例 5の放射線画像変換パネルの発光輝度は 2. 7を 示した。測定結果を表 1に示す。
[実施例 6]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Nal、ヨウ化亜鉛 (Znl
2
)及び Rblの比率をそれぞれ 0. 2 (mol%)、0. 2 (mol%)及び 0. l (mol%)の比率 で混合する以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた 放射線画像変換パネルを実施例 6の放射線画像変換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 6の放射線画像変換パネルの発 光輝度は 3. 1を示した。測定結果を表 1に示す。
[実施例 7]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Rbl、 T1I及び Culの比 率をそれぞれ 0. 2 (mol%)、0. 2 (mol%)及び 0. 1 (mol%)の比率で混合する以 外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変 換パネルを実施例 7の放射線画像変換パネルとした。その後、実施例 1と同様にして 輝度の測定を実施したところ、実施例 7の放射線画像変換パネルの発光輝度は 2. 5 を示した。測定結果を表 1に示す。
[実施例 8]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Rbl及びヨウ化ランタン (Lai )の比率をそれぞれ 0. 3 (mol%)及び 0. 2 (mol%)の比率で混合する以外は
3
、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変換パ ネルを実施例 8の放射線画像変換パネルとした。その後、実施例 1と同様にして輝度 の測定を実施したところ、実施例 8の放射線画像変換パネルの発光輝度は 2. 1を示 した。測定結果を表 1に示す。
[実施例 9]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、ヨウ化マンガン (Mnl )
2
、ヨウ化イットリウム(YI )及び T1Iの比率をそれぞれ 0· 2 (mol%)、 0· l (mol%)及
3
び 0. 2 (mol%)の比率で混合する以外は、実施例 1と同様にして放射線像変換パネ ルを作製し、得られた放射線画像変換パネルを実施例 9の放射線画像変換パネルと した。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 9の放射線 画像変換パネルの発光輝度は 1. 9を示した。測定結果を表 1に示す。
[実施例 10]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Mnl、 T1I及びヨウィ匕
2
チタン (ΤΠ )の比率をそれぞれ 0· 2 (mol%)、0. 2 (mol%)及び 0· l (mol%)の比
4
率で混合する以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られ た放射線画像変換パネルを実施例 10の放射線画像変換パネルとした。その後、実 施例 1と同様にして輝度の測定を実施したところ、実施例 10の放射線画像変換パネ ルの発光輝度は 2. 8を示した。測定結果を表 1に示す。
[実施例 11]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 T1I、 Mnl及び Eulの
2 2 比率をそれぞれ 0. 2 (mol%)、0. l (mol%)及び 0. 2 (mol%)の比率で混合する 以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像 変換パネルを実施例 11の放射線画像変換パネルとした。その後、実施例 1と同様に して輝度の測定を実施したところ、実施例 11の放射線画像変換パネルの発光輝度 は 3. 7を示した。測定結果を表 1に示す。
[実施例 12]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Cul及び T1Iの比率を それぞれ 0. 2 (mol%)及び 0. 3 (mol%)の比率で混合する以外は、実施例 1と同様 にして放射線像変換パネルを作製し、得られた放射線画像変換パネルを実施例 12 の放射線画像変換パネルとした。その後、実施例 1と同様にして輝度の測定を実施し たところ、実施例 12の放射線画像変換パネルの発光輝度は 3. 2を示した。測定結 果を表 1に示す。
[実施例 13]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Cul、 Lai及び Tilの
3 4 比率をそれぞれ 0. l (mol%)、0. l (mol%)及び 0. 3 (mol%)の比率で混合する 以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像 変換パネルを実施例 13の放射線画像変換パネルとした。その後、実施例 1と同様に して輝度の測定を実施したところ、実施例 13の放射線画像変換パネルの発光輝度 は 3. 9を示した。測定結果を表 1に示す。
[実施例 14]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Eul、 KI及び Lilの比
2
率をそれぞれ 0. 3 (mol%)、0. l (mol%)及び 0. 1 (mol%)の比率で混合する以 外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変 換パネルを実施例 14の放射線画像変換パネルとした。その後、実施例 1と同様にし て輝度の測定を実施したところ、実施例 14の放射線画像変換パネルの発光輝度は 3. 1を示した。測定結果を表 1に示す。
[実施例 15]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Eul、 Znl及び KIの
2 2 比率をそれぞれ 0. 2 (mol%)、0. 2 (mol%)及び 0. 1 (mol%)の比率で混合する 以外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像 変換パネルを実施例 15の放射線画像変換パネルとした。その後、実施例 1と同様に して輝度の測定を実施したところ、実施例 15の放射線画像変換パネルの発光輝度 は 3. 4を示した。測定結果を表 1に示す。
[実施例 16]
(蒸着源材料の作製)で、 Cslに対し、複数の賦活剤として、 Eul、 T1I及び Culの比
2
率をそれぞれ 0. l (mol%)、0. 3 (mol%)及び 0. 1 (mol%)の比率で混合する以 外は、実施例 1と同様にして放射線像変換パネルを作製し、得られた放射線画像変 換パネルを実施例 16の放射線画像変換パネルとした。その後、実施例 1と同様にし て輝度の測定を実施したところ、実施例 16の放射線画像変換パネルの発光輝度は 3. 8を示した。測定結果を表 1に示す。
[比較例]
(蒸着源材料の作製)で、 T1I以外の賦活剤を混入しない以外は、実施例 1と同様に して放射線像変換パネルを作製し、得られた放射線画像変換パネルを比較例の放 射線画像変換パネルとした。その後、実施例 1と同様にして比較例の放射線画像変 換パネルの輝度の測定を実施し、測定された発光輝度を 1. 0として表 1に記載する。 測定結果を表 1に示す。
[0093] 表 1に示すように、本発明により、 Cslをベースとして用いて形成される蛍光体層の 原材料に融点の異なる複数の賦活剤を含ませることにより、輝度向上の効果が得ら れることが示される。
[0094] その際、実施例 1, 5, 12の放射線画像変換パネルと、比較例の放射線画像変換 パネルとを比較することにより、複数の賦活剤として、少なくとも Cslの融点に対し前 後 50°C以内の範囲に融点をもつ第 1の賦活剤を含ませると、輝度を向上させること が可能であることが示されるが、この状態でさらに第 1の賦活剤がもつ融点と 100°C 以上離れている融点をもつ第 2の賦活剤を含ませても、同様に、或いはそれ以上に 輝度を向上させることが可能であることが示される。特に、実施例 1〜実施例 3の放射 線画像変換パネルと、実施例 4の放射線画像変換パネルとを比較することにより、複 数の賦活剤のうち、最大の融点をもつものと、最小の融点もつものとの融点の差が少 なくとも 100°C以上離れている場合には、一層輝度を向上させることが可能であること が示される。
[実施例 101]
(1)試料の作製
(101. 1)試料 101の作製
ヨウ化セシウム(Csl)に対し、賦活剤化合物としてヨウ化タリウム (T1I)を 0. 3mol% の比率で混合し、これら混合物が均一になるように乳鉢中で粉砕しながら Cslと T1Iと を混合した。その後、基板として炭素繊維強化榭脂シートを適用し、かつ、蒸着装置 として図 3の蒸着装置 61と同様のものを適用し、基板上に蛍光体層を形成した。
[0095] 詳しくは、始めに、粉末状とした上記混合物を蒸着材料としてボートに充填するとと もに基板をホルダに設置し、当該ボートと当該ホルダとの間隔を 400mmに調節した( 準備工程)。続いて、真空ポンプを作動させ、真空容器の内部を一旦排気して真空 容器の内部を 1. 0 X 10— 4Paの真空雰囲気とした (真空雰囲気形成工程)。その後、 電極力もボートに電流を流し、ボートに充填された上記混合物を 350°Cで 2時間加熱 した (加熱工程)。
[0096] 続いて、真空容器の内部を再度排気し、真空容器の内部にアルゴンを導入して当 該真空容器の内部を 0. lPaの真空度に調整した。その後、回転機構のモータとホル ダのヒータとを作動させ、基板を lOrpmの速度で回転させながら当該基板を 150°C に加熱した。この状態で、電極力 ボートに更に大きな電流を流し、ボートに充填され たままの上記混合物を 700°Cで加熱して蒸発させ、基板上に蛍光体層を形成した。 蛍光体層の層厚が 500 mとなったところで基板への蒸着を終了させ (蒸着工程)、 その生成物を「試料 101」とした。
(101. 2)試料 102〜117の作製 賦活剤化合物の種類,賦活剤化合物の Cslに対する混合比,加熱工程中の処理 雰囲気,加熱工程中の加熱温度を下記表 2に示す通りに変更し、それ以外は試料 1 01を作製したときと同様にして「試料 102〜117」を作製した。ただし、試料 115の作 製では、加熱工程中において、真空容器の内部の真空度調整をおこなわず、上記 混合物を加熱することもしなカゝつた。
(2)試料の輝度の測定
管電圧 80kVpの X線を各試料 101〜 117の裏面(蛍光体層が形成されて!、な!/、面 )から照射し、その結果瞬時に発光した光を光ファイバ一で取り出し、その発光量を 浜松ホトニタス社製のフォトダイオード (S2281)で測定し、その測定値を「発光輝度 ( 感度)」とした。各試料 1〜17の測定結果を下記表 2に示す。ただし、表 2中、各試料 101〜117の発光輝度を示す値は、試料 115の発光輝度を 1. 0としたときの相対値 である。
[表 2]
賦活剤化合物
処理雰囲気 加熱温度
試料 No. 混合比
種類 (導入ガス) (°c) 発光輝度
(mol%)
101 Til 0.3 真空(lXl(f4Pa) 350 1.6
102 Til 0.3 真空(1X10— 4Pa) 450 1.8
103 Til 0.3 真空(1X10— 4Pa) 500 2.0
104 TlBr 0.3 真空(lXlcTPa) 500 1.8
105 Nal 0.3 真空(lXlcTPa) 500 1.2
106 Til 0.3 不活性ガス 500 1.8
JS兀ガス
107 Til 0.3 500 2.2
(N2(97%)+H2(3%))
108 Til 0.005 真空(1X10— 4Pa) 500 1.2
109 Til 0.001 真空(1X10— 4Pa) 500 1.7
110 Til 0.1 真空(1X10— 4Pa) 500 1.8
111 Tl[ 1.0 真空(lXl(i4Pa) 500 2.1
112 Til 10.0 真空(1X10— 4Pa) 500 1.8
113 Til 15.0 真空(1X10— 4Pa) 500 1.2
114 Til 0.3 真空(ΙΧΙΟ—'Pa) 620 2.2
115(比較) Til 0.3 ― ― 1.0
116(比較) Til 0.3 真空(1X10— 4Pa) 300 1.0
U7(比較) Til 0.3 真空(lXl(T4Pa) 650 0.9
[0098] なお、結果は示さな V、が、上記加熱工程で 1時間加熱して形成した試料からも、上 記各試料 101〜 117と略同様の結果が得られた。
(3)まとめ
表 1に示す通り、試料 101〜114と試料 115〜117との it較カら、試料 101〜114 は発光輝度が試料 115〜117のそれより高ぐ蒸着工程前の加熱工程の処理中に おいて蒸着材料を 350〜620°Cで 1時間以上加熱するのが有用であることがわかる
[0099] 試料 103, 109〜112と試料 108, 113との it較カら、試料 103, 109〜112は発 光輝度が試料 108, 113のそれより高ぐ T1Iの Cslに対する混合比を 0.01〜: LOmol %とするのが特に有用であることがわかる。

Claims

請求の範囲
[1] Cslに対して、融点の異なる複数の賦活剤化合物をそれぞれ 0. Olmol%以上含 んでなる原材料を供給源として、蒸着により基板上に蛍光体膜を形成したことを特徴 とする放射線用シンチレータプレート。
[2] 前記複数の賦活剤化合物は、前記 Cslの融点に対し前後 50°C以内の範囲に融点 をもつ第 1の賦活剤化合物を少なくとも含むことを特徴とする請求の範囲第 1項に記 載の放射線用シンチレータプレート。
[3] 前記第 1の賦活剤化合物は、ヨウ化銅、ヨウ化ユーロピウム、ヨウ化ナトリウム、ヨウ化 ルビジウム、ヨウ化マンガンのうち、少なくともいずれか一種類を含むことを特徴とする 請求の範囲第 2項に記載の放射線用シンチレータプレート。
[4] 前記複数の賦活剤化合物は、前記第 1の賦活剤化合物がもつ融点と 100°C以上 離れている融点をもつ第 2の賦活剤化合物を含むことを特徴とする請求の範囲第 2 項又は請求の範囲第 3項に記載の放射線用シンチレータプレート。
[5] 前記第 2の賦活剤化合物がヨウ化タリウムであることを特徴とする請求の範囲第 4項 に記載の放射線用シンチレータプレート。
[6] ヨウ化セシウムと賦活剤化合物とを含む混合物を 350〜620°Cで 1時間以上加熱 する加熱工程と、
前記加熱工程の後に、前記混合物を基板上に蒸着して前記基板上に蛍光体層を 形成する蒸着工程と、
を有することを特徴とする放射線用シンチレータプレートの製造方法。
[7] 請求の範囲第 6項に記載の放射線用シンチレータプレートの製造方法において、 前記賦活剤化合物が、インジウム、タリウム、リチウム、カリウム、ルビジウム、ナトリウ ム、ユーロピウムのうち、いずれか一の元素又は 2以上の元素を含む化合物であるこ とを特徴とする放射線用シンチレータプレートの製造方法。
[8] 請求の範囲第 6項又は第 7項に記載の放射線用シンチレータプレートの製造方法 において、
前記賦活剤化合物が、ヨウ化タリウム又は臭化タリウムであることを特徴とする放射 線用シンチレータプレートの製造方法。
[9] 請求の範囲第 8項に記載の放射線用シンチレータプレートの製造方法において、 前記ヨウ化タリウムの前記ヨウ化セシウムに対する混合比が 0. 01〜: LOmol%であ ることを特徴とする放射線用シンチレータプレートの製造方法。
[10] 請求の範囲第 6項〜第 9項のいずれか一項に記載の放射線用シンチレータプレー トの製造方法において、
前記蛍光体層が柱状結晶体の集合体であることを特徴とする放射線用シンチレ一 タプレートの製造方法。
[11] 請求の範囲第 6項〜第 10項のいずれか一項に記載の放射線用シンチレ一タプレ ートの製造方法において、
前記混合物を蒸着装置の被充填部材に充填して前記加熱工程の処理を実行し、 前記加熱工程の処理に引き続いて前記混合物を前記被充填部材に充填したまま 前記蒸着工程の処理を実行することを特徴とする放射線用シンチレータプレートの 製造方法。
[12] 請求の範囲第 6項〜第 11項のいずれか一項に記載の放射線用シンチレ一タプレ ートの製造方法において、
前記加熱工程の処理を 0. lPa以下の真空雰囲気下、不活性ガス雰囲気下又は還 元ガス雰囲気下で実行することを特徴とする放射線用シンチレータプレートの製造方 法。
[13] 請求の範囲第 6項〜第 12項のいずれか一項に記載の放射線用シンチレ一タプレ ートの製造方法に従って製造されていることを特徴とする放射線用シンチレ一タプレ ート。
PCT/JP2006/322145 2005-11-16 2006-11-07 放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート WO2007058087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545198A JP5407140B2 (ja) 2005-11-16 2006-11-07 放射線用シンチレータプレート

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-331639 2005-11-16
JP2005331639 2005-11-16
JP2005353253 2005-12-07
JP2005-353253 2005-12-07

Publications (1)

Publication Number Publication Date
WO2007058087A1 true WO2007058087A1 (ja) 2007-05-24

Family

ID=38039793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322145 WO2007058087A1 (ja) 2005-11-16 2006-11-07 放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート

Country Status (3)

Country Link
US (1) US7482602B2 (ja)
JP (2) JP5407140B2 (ja)
WO (1) WO2007058087A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146601A1 (ja) * 2007-05-28 2008-12-04 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影方法、シンチレータパネル、及び放射線イメージセンサ
WO2010150576A1 (ja) * 2009-06-26 2010-12-29 コニカミノルタエムジー株式会社 シンチレータパネル、シンチレータパネルの製造方法、放射線画像検出器および放射線画像検出器の製造方法
JP2011074352A (ja) * 2009-09-02 2011-04-14 Canon Inc シンチレータ材料
JP2013092528A (ja) * 2005-11-16 2013-05-16 Konica Minolta Medical & Graphic Inc 放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート
JP2016088989A (ja) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 X線耐久性劣化機能を有するシンチレータ、および該シンチレータを有する放射線検出器、並びにこれらの製造方法
JP2016088988A (ja) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 ブライトバーン消去機能を有するシンチレータ、および該シンチレータを有する放射線検出器、並びにこれらの製造方法
JP2018503706A (ja) * 2014-11-19 2018-02-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 新規なタリウムをドープしたヨウ化ナトリウム、ヨウ化セシウムまたはヨウ化リチウムのシンチレーター
JP2019090000A (ja) * 2017-11-10 2019-06-13 キヤノン株式会社 シンチレータ、その形成方法および放射線検出装置
JP2020097669A (ja) * 2018-12-17 2020-06-25 キヤノン株式会社 シンチレータの製造方法
CN111593405A (zh) * 2020-05-28 2020-08-28 上海御光新材料科技股份有限公司 一种闪烁晶体及其制备方法与应用
JP2023500479A (ja) * 2019-10-28 2023-01-06 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 残光を低減するための多価カチオンを含むCsI(Tl)シンチレータ結晶、及びシンチレーション結晶を含む放射線検出装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095009A1 (ja) * 2003-04-24 2004-11-04 Moritex Corporation 光学検査装置
WO2010005977A2 (en) * 2008-07-07 2010-01-14 University Of Florida Research Foundation, Inc. Method and apparatus for x-ray radiographic imaging
JP5610798B2 (ja) * 2010-03-12 2014-10-22 キヤノン株式会社 シンチレータの製造方法
JP2012098175A (ja) * 2010-11-02 2012-05-24 Sony Corp 放射線検出素子およびその製造方法、放射線検出モジュール並びに放射線画像診断装置
RU2581721C2 (ru) 2010-12-13 2016-04-20 Конинклейке Филипс Электроникс Н.В. Детектор излучения с фотодетекторами
JP6000664B2 (ja) * 2011-06-06 2016-10-05 キヤノン株式会社 シンチレータ材料及びそれを用いた放射線検出器
DE102011077401A1 (de) * 2011-06-10 2012-12-13 Siemens Aktiengesellschaft Szintillatorplatte
CN106471097B (zh) 2014-07-03 2019-06-04 爱克发有限公司 具有改善的转换效率的掺杂了铕的溴碘化铯闪烁体及其检测器
WO2016012269A1 (en) * 2014-07-23 2016-01-28 Koninklijke Philips N.V. Characterization apparatus for characterizing scintillator material
US9947427B2 (en) 2015-02-16 2018-04-17 Saint-Gobain Ceramics & Plastics, Inc. Scintillation crystal including a co-doped sodium halide, and a radiation detection apparatus including the scintillation crystal
JP6242954B1 (ja) * 2016-07-11 2017-12-06 浜松ホトニクス株式会社 放射線検出器
JP6985824B2 (ja) * 2017-06-15 2021-12-22 キヤノン株式会社 シンチレータプレート、放射線撮像装置およびシンチレータプレートの製造方法
US11073626B2 (en) * 2017-11-10 2021-07-27 Canon Kabushiki Kaisha Scintillator, method of forming the same, and radiation detection apparatus
JP7097998B2 (ja) * 2018-05-25 2022-07-08 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 残光を低減するためのアンチモン及びその他のマルチバランスカチオンを含むCsI(Tl)シンチレータ結晶、ならびにシンチレーション結晶を含む放射線検出装置
WO2023192587A1 (en) * 2022-03-31 2023-10-05 University Of Tennessee Research Foundation Codoped cesium iodide scintillators

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435060B2 (ja) * 1972-01-19 1979-10-31
JP2003147343A (ja) * 2001-11-13 2003-05-21 Japan Science & Technology Corp シンチレータ材料及びその製造方法並びにその材料を用いた放射線検出装置
JP2005164576A (ja) * 2003-11-14 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961182A (en) * 1970-02-03 1976-06-01 Varian Associates Pick up screens for X-ray image intensifier tubes employing evaporated activated scintillator layer
US4839090A (en) * 1971-09-13 1989-06-13 Harshaw/Filtrol Extrusion of macrocrystal scientillation phosphors
US4101781A (en) * 1977-06-27 1978-07-18 Hewlett-Packard Company Stable fiber optic scintillative x-ray screen and method of production
US5028509A (en) * 1984-09-14 1991-07-02 Konica Corporation Method for converting radiographic image, radiation energy storage panel having stimulable phosphor-containing layer and alkali halide phosphor
US4663187A (en) * 1984-11-01 1987-05-05 Siemens Gammasonics, Inc. Scintillation crystal and method of making it
FR2586508B1 (fr) * 1985-08-23 1988-08-26 Thomson Csf Scintillateur d'ecran d'entree de tube intensificateur d'images radiologiques et procede de fabrication d'un tel scintillateur
US4806757A (en) * 1985-11-07 1989-02-21 Hitachi, Ltd. Information reading apparatus for radiation image
US5541012A (en) * 1992-05-08 1996-07-30 Nippon Telegraph And Telephone Corporation Infrared-to-visible up-conversion material
JP3756681B2 (ja) * 1997-11-21 2006-03-15 東芝電子エンジニアリング株式会社 放射線イメージ管およびその製造方法
AU2003230134A1 (en) * 2002-05-29 2003-12-12 Koninklijke Philips Electronics N.V. X-ray detector with csi: ti conversion layer
US7482602B2 (en) * 2005-11-16 2009-01-27 Konica Minolta Medical & Graphic, Inc. Scintillator plate for radiation and production method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435060B2 (ja) * 1972-01-19 1979-10-31
JP2003147343A (ja) * 2001-11-13 2003-05-21 Japan Science & Technology Corp シンチレータ材料及びその製造方法並びにその材料を用いた放射線検出装置
JP2005164576A (ja) * 2003-11-14 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092528A (ja) * 2005-11-16 2013-05-16 Konica Minolta Medical & Graphic Inc 放射線用シンチレータプレートの製造方法及び放射線用シンチレータプレート
WO2008146601A1 (ja) * 2007-05-28 2008-12-04 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影方法、シンチレータパネル、及び放射線イメージセンサ
WO2010150576A1 (ja) * 2009-06-26 2010-12-29 コニカミノルタエムジー株式会社 シンチレータパネル、シンチレータパネルの製造方法、放射線画像検出器および放射線画像検出器の製造方法
JP2011074352A (ja) * 2009-09-02 2011-04-14 Canon Inc シンチレータ材料
JP2016088989A (ja) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 X線耐久性劣化機能を有するシンチレータ、および該シンチレータを有する放射線検出器、並びにこれらの製造方法
JP2016088988A (ja) * 2014-10-31 2016-05-23 コニカミノルタ株式会社 ブライトバーン消去機能を有するシンチレータ、および該シンチレータを有する放射線検出器、並びにこれらの製造方法
JP2018503706A (ja) * 2014-11-19 2018-02-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 新規なタリウムをドープしたヨウ化ナトリウム、ヨウ化セシウムまたはヨウ化リチウムのシンチレーター
JP2019090000A (ja) * 2017-11-10 2019-06-13 キヤノン株式会社 シンチレータ、その形成方法および放射線検出装置
JP7117950B2 (ja) 2017-11-10 2022-08-15 キヤノン株式会社 シンチレータ、その形成方法および放射線検出装置
JP2020097669A (ja) * 2018-12-17 2020-06-25 キヤノン株式会社 シンチレータの製造方法
JP7149834B2 (ja) 2018-12-17 2022-10-07 キヤノン株式会社 シンチレータの製造方法
JP2023500479A (ja) * 2019-10-28 2023-01-06 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 残光を低減するための多価カチオンを含むCsI(Tl)シンチレータ結晶、及びシンチレーション結晶を含む放射線検出装置
JP7361908B2 (ja) 2019-10-28 2023-10-16 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 残光を低減するための多価カチオンを含むCsI(Tl)シンチレータ結晶、及びシンチレーション結晶を含む放射線検出装置
CN111593405A (zh) * 2020-05-28 2020-08-28 上海御光新材料科技股份有限公司 一种闪烁晶体及其制备方法与应用

Also Published As

Publication number Publication date
US20070108393A1 (en) 2007-05-17
US7482602B2 (en) 2009-01-27
JP2013092528A (ja) 2013-05-16
JP5407140B2 (ja) 2014-02-05
JPWO2007058087A1 (ja) 2009-04-30
JP5765321B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5407140B2 (ja) 放射線用シンチレータプレート
JP4710907B2 (ja) 放射線用シンチレータプレート及び放射線画像検出器
US8723127B2 (en) Radiation detector
JP5499706B2 (ja) シンチレータパネル
US20110121185A1 (en) Radiation image detecting apparatus
WO2010050358A1 (ja) シンチレータパネル、放射線検出装置及びそれらの製造方法
JP2008139064A (ja) シンチレータパネルの製造方法、シンチレータパネル及び真空蒸着装置
JP2010025620A (ja) 放射線画像変換パネルとその製造方法
JP2008209124A (ja) シンチレータパネル
JP2008111789A (ja) 放射線検出器およびその製造方法
US8803098B2 (en) Method of manufacturing scintillator panel, scintillator panel, and radiation image detector
JP2007212218A (ja) シンチレータプレート
JP2007205970A (ja) シンチレータプレート
JPWO2007060814A1 (ja) 放射線用シンチレータプレート
JP2009047577A (ja) シンチレータパネル及びその作製方法
JP2010014469A (ja) 放射線像変換パネルの製造方法
JP2010127628A (ja) シンチレータパネルおよび放射線検出装置
JP5347967B2 (ja) シンチレータプレート
JP2007211199A (ja) 放射線用シンチレータプレート及びその製造方法
JPWO2008029602A1 (ja) シンチレータとそれを用いたシンチレータプレート
WO2007060827A1 (ja) 蛍光体プレートの製造方法及び蛍光体プレート
JP5493577B2 (ja) 放射線画像検出装置
WO2010010735A1 (ja) シンチレータパネルとそれを用いた放射線画像検出器
JP5194796B2 (ja) 放射線用シンチレータプレート
US20080023648A1 (en) Scintillator plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007545198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823058

Country of ref document: EP

Kind code of ref document: A1