WO2007052627A1 - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
WO2007052627A1
WO2007052627A1 PCT/JP2006/321696 JP2006321696W WO2007052627A1 WO 2007052627 A1 WO2007052627 A1 WO 2007052627A1 JP 2006321696 W JP2006321696 W JP 2006321696W WO 2007052627 A1 WO2007052627 A1 WO 2007052627A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
noble metal
metal particles
exhaust gas
particles
Prior art date
Application number
PCT/JP2006/321696
Other languages
English (en)
French (fr)
Inventor
Masanori Nakamura
Katsuo Suga
Hironori Wakamatsu
Kazuyuki Shiratori
Hirofumi Yasuda
Makoto Aoyama
Jun Ikezawa
Original Assignee
Nissan Motor Co., Ltd.
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd., Renault S.A.S filed Critical Nissan Motor Co., Ltd.
Priority to US12/084,382 priority Critical patent/US8404611B2/en
Priority to EP06822625.7A priority patent/EP1955765B1/en
Priority to CN200680041213.2A priority patent/CN101400441B/zh
Priority to JP2007542740A priority patent/JP4562776B2/ja
Publication of WO2007052627A1 publication Critical patent/WO2007052627A1/ja
Priority to US13/770,344 priority patent/US9073044B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/23
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J35/393
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst that is suitable for a process for purifying exhaust gas discharged from an internal combustion engine, and a method for manufacturing the same.
  • Catalysts are widely used.
  • a large amount of noble metal particles is used in order to improve the durability of the noble metal particles against changes in the surrounding atmosphere.
  • using a large amount of precious metal particles is not desirable from the viewpoint of protecting earth resources.
  • Patent Document 2 JP-A-2005-000829
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-000830
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-117393
  • both the noble metal particles and the transition metal compound particles are fine particles and are in contact with each other. There is a need to be.
  • noble metal particles and transition metal compound particles can be brought into contact with each other, but both do not become fine particles, or both of them become fine particles. Therefore, it is difficult to arrange the transition metal compound particles as designed in the vicinity of the noble metal particles.
  • the average particle diameter of noble metal particles is
  • the average particle diameter of the noble metal particles is 5 [nm] or less.
  • the average particle diameter of the noble metal particles is 1.5 [nm] or less, so it is difficult to expect an improvement in the activity if the durability of the noble metal particles is improved.
  • transition metal compounds are easily dissolved in alumina, which is widely used as a metal oxide support! Therefore, simply placing a transition metal compound in the vicinity of the noble metal particles makes the activity of the noble metal particles. Improvement effect is difficult to obtain.
  • a method of supporting a transition metal compound on a support that does not dissolve in the transition metal compound is considered. When this method is used, a high temperature atmosphere is considered. Underneath, the transition metal compound moves and the transition metal compounds come into contact with each other, causing the transition metal compound to aggregate.
  • a method of producing transition metal compound particles having a large surface area by using the reverse micelle method is also conceivable. And environmental load is large.
  • an exhaust gas purifying catalyst includes a noble metal particle, a first compound that contacts the noble metal particle and suppresses the movement of the noble metal particle, and the noble metal described above.
  • the first compound comprising particles and the first compound, the second compound suppressing the movement of the noble metal particles and the aggregation of the first compound accompanying the contact between the first compounds.
  • the gist of the invention is that the noble metal particles are supported, and the single compound or aggregate of the first compounds supporting the noble metal particles is contained in a compartment separated by the second compound.
  • the exhaust gas purifying catalyst according to the present invention by covering the noble metal particles and the first compound, the movement of the noble metal particles and the aggregation of the first compounds are also suppressed. Improved activity of precious metal particles by the first compound without increasing the load The effect can be maintained.
  • the method for producing an exhaust gas purifying catalyst according to the present invention includes a first step of preparing a composite colloid solution in which noble metal particles are in contact with a first compound, and noble metal particles in the composite colloid solution. And a second step of forming a second compound around the first compound in contact with.
  • the exhaust gas purifying catalyst according to the present invention can be easily produced.
  • FIG. 1 is a schematic diagram showing the configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a configuration of an exhaust gas purifying catalyst according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing an example of before and after aggregation of the noble metal particles 2 in one unit.
  • FIG. 4 is a graph showing the relationship between noble metal particle diameter and noble metal surface area.
  • FIG. 5 is a graph showing the relationship between the noble metal particle diameter and the number of noble metal atoms.
  • FIG. 6 is a schematic diagram showing a configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • Fig. 7 shows the size of the composite particles Da and the crystal growth ratio of CeO and the surface area of Pt.
  • FIG. 8 is an explanatory diagram of a method for producing an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing an example of a first step in the production method of the present invention.
  • FIG. 10 is an explanatory diagram of another example of the first step in the production method of the present invention.
  • FIG. 11 is an explanatory diagram of another example of the second step in the production method of the present invention.
  • FIG. 1 is a schematic diagram of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • the exhaust gas purifying catalyst 1 shown in the figure includes a noble metal particle 2 having catalytic activity, a first compound 3 that contacts the noble metal particle 2 and suppresses the movement of the noble metal particle 2, and the noble metal particle 2 And a second compound 4 that contains the first compound 3 and suppresses the movement of the noble metal particles 2 and suppresses the aggregation of the first compound 3 due to the contact between the first compounds 3.
  • the first compound 3 carries noble metal particles 2.
  • a plurality of aggregates of the first compounds 3 carrying the noble metal particles 2 are included in the compartments separated by the second compounds 4.
  • the inventors of the present invention have intensively studied, and as a result, the movement of the noble metal particles is controlled chemically by binding the transition metal compound to the noble metal particles. It was found that the movement of the noble metal particles can be physically suppressed by covering the noble metal particles with the composite. Furthermore, the inventors have found that by covering both the noble metal particles and the transition metal compound with the compound, not only the movement of the noble metal particles but also the aggregation of the transition metal compound can be suppressed.
  • the exhaust gas purifying catalyst 1 shown in Fig. 1 configured based on this knowledge is obtained by bringing the first compound 3 into contact with the noble metal particles 2 and the first compound 3 so that they are supported. Acts as an anchor for chemical bonds and suppresses the movement of noble metal particles. Further, by moving the noble metal particle 2 into a form in which the first compound 3 and the second compound 4 are covered and encapsulated, the movement of the noble metal particle 2 is physically suppressed. Further, by containing the noble metal particle 2 and the first compound 3 in the section separated by the second compound 4, the first compound 3 is passed over the section separated by the second compound 4. Prevents contact and aggregation.
  • the exhaust gas purifying catalyst 1 can prevent a decrease in catalytic activity due to agglomeration of the precious metal particles 2 without increasing the manufacturing cost and environmental load, and the precious metal 1 is precious.
  • the activity improving effect of the metal particles 2 can be maintained.
  • FIG. 2 is a schematic diagram of an exhaust gas purifying catalyst according to another embodiment of the present invention.
  • the exhaust gas purifying catalyst 1 shown in the figure is composed of noble metal particles 2, a first compound 3 supporting the noble metal particles 2, and a second compound 4 containing the noble metal particles 2 and the first compound 3. This point is the same as the exhaust gas purification catalyst 1 shown in FIG. And separated by the second compound 4.
  • the noble metal particles 2 and the first compound 3 are contained in various modes.
  • the unit U 1 includes a single first compound 3 carrying a single noble metal particle 2.
  • a plurality of first compounds 3 carrying a plurality of noble metal particles 2 are contained in an aggregate (secondary particles).
  • the single first compound 3 carrying a plurality of noble metal particles 2 is contained in various particle sizes.
  • the exhaust gas purifying catalyst of the present embodiment shown in Fig. 2 is similar to the exhaust gas purifying catalyst 1 shown in Fig. 1 and passes through the first section beyond the section separated by the second compound 4. Compound 3 is prevented from contacting and aggregating. Therefore, it has the same effect as the exhaust gas purifying catalyst 1 shown in FIG.
  • the compartments separated by the second compound 4 preferably contain precious metal particles in an amount of 8 X 10_2 mol or less in total.
  • the noble metal particles 2 and the first compound 3 contained in the compartments separated by the second compound 4 have various modes. There are cases in which a plurality of noble metal particles 2 move within these compartments and aggregate together. In this case, the precious metal particles 2 do not move to the second compound 4 due to the effect of the first compound 3 as an anchoring agent in any of the units U1 to U6, and one or a plurality of the precious metal particles 2 only in the unit. Aggregates into noble metal particles. An example before and after aggregation of the noble metal particles 2 in one unit is schematically shown in FIGS. 3 (a) and 3 (b).
  • FIG. 4 is a graph showing the relationship between the noble metal particle diameter and the noble metal surface area for platinum and palladium as noble metals having catalytic activity. In the figure, the curves are almost the same when the noble metal is platinum and when it is palladium, so they are shown as one curve. As is clear from the figure, when the particle diameter of the noble metal is 10 [nm] or less, sufficient activity with a large particle surface area can be obtained, so that deterioration of catalyst activity due to aggregation can be suppressed.
  • FIG. 5 is a graph showing the relationship between the noble metal particle diameter and the number of noble metal atoms for platinum or palladium as a noble metal having catalytic activity.
  • the noble metal is platinum. Since the curve is almost the same as the case of palladium and the case of palladium, it is shown as one curve.
  • the number of atoms when the particle size of the noble metal is 10 [nm] is about 480000, and when this value is converted to the number of moles, the amount is about 8 X 10_2 mol or less. .
  • any of the units U1 to U6 by limiting the amount of noble metal in the unit and making it an amount of 8 X 10_2 mol or less, one unit in the unit Even if they are aggregated, the deterioration of the catalytic activity can be suppressed.
  • the concentration of the noble metal particles 2 of the first compound 3 is decreased, or the first noble metal particles 2 are supported.
  • the present invention is not limited to these means, but in the case of actual catalyst production, the former method of reducing the supported concentration is effective for maintaining the performance of a predetermined exhaust gas purification catalyst. Since the volume of the honeycomb carrier coated with the catalyst for gas purification has to be increased, it is necessary to coat the hard carrier with a coating amount that is usually an order of magnitude larger than the catalyst coating amount. Not right.
  • the maximum particle size of the first compound 3 is preferably 2 [m].
  • the first compound 3 has a function as an anchor agent that contacts the noble metal particles 2 and suppresses the movement of the noble metal particles 2.
  • the inventors have found that the anchoring effect of this anchoring agent is affected by the size of the first compound 3 itself.
  • the above-mentioned sufficient precious metal aggregation suppressing effect can be exhibited even if the first compound in powder form, such as ceria, is impregnated with and supported by noble metal and dispersed in alumina.
  • Difficult For example, when particles of the first compound 3 are obtained by a conventional pulverization method using a ball mill or the like, a particle size of at least 2 to 3 [m] can be obtained.
  • the precious metal particles 2 are supported on the first compound 3 particles having such a particle size, the precious metal particles 2 are first added in an amount determined from the upper limit of the actual amount of coating on the cordierite hard carrier and the amount of precious metal used.
  • the noble metal particles 2 aggregate to several tens [nm] due to use at a high temperature for a long time, and the catalytic activity deteriorates.
  • the first compound 3 contained in the compartment separated by the second compound 4 has a maximum particle size of 2 [; zm] or less. I prefer that.
  • the particle size of the first compound 3 may be represented by an average particle size.
  • the preferred average particle size of the first compound 3 contained in the compartment separated by the second compound 4 is 50 [nm] or less.
  • the average particle diameter of the first compound 3 exceeds 50 [nm] or less, the amount of the noble metal particles 2 supported on the first compound as the anchoring agent increases, and the distance between the noble metal particles 2 increases. Shortening promotes aggregation of the noble metal particles 2.
  • FIG. 6 is a schematic view of another embodiment of the exhaust gas purifying catalyst according to the present invention, in which the first compound 3 is contained alone in a compartment separated by the second compound 4.
  • the exhaust gas purifying catalyst 1 contacts the noble metal particles (PM) 2 and the noble metal particles 2 and moves the noble metal particles 2. It contains the first compound (anchor agent) 3 to be suppressed, the noble metal particles 2 and the first compound (anchor agent) 3 to suppress the movement of the noble metal particles 2 and the first compound (anchor agent).
  • the first compound (anchor agent) that accompanies the contact between the three compounds consists of the second compound 4 that suppresses the aggregation of 3 and the transition metal compound 5 contained as a promoter component. 3)
  • the average particle size of 3 is adjusted to 30 [nm] or less! RU
  • the exhaust gas purifying catalyst 1 according to the embodiment of the present invention shown in FIG. 6 is obtained by covering the noble metal particles 2 and the first compound (anchor agent) 3 with the second compound 4. Simultaneously, the movement of the noble metal particles 2 suppresses the aggregation of the first compounds (anchor agents) 3. Therefore, according to the exhaust gas purifying catalyst 1 according to the embodiment of the present invention, the activity of improving the activity of the noble metal particles 2 by the first compound (anchor material) 3 without increasing the manufacturing cost and environmental load is maintained. can do.
  • the adsorption energy of the noble metal particles 2 to the first compound 3 is Ea
  • the second noble metal particles 2 When the adsorption stabilization energy for compound 4 is Eb, it is preferable that Ea is smaller than Eb (Ea and Eb).
  • Ea and Eb the anchor effect as a function of the first compound 3 is affected by the difference in adsorption energy.
  • the noble metal particle 2 to the first compound 3 is smaller than the adsorption stability energy Eb of the noble metal particle 2 to the second compound 4, the noble metal particle 2 The migration to the compound 4 can be suppressed, whereby the noble metal particles 3 can be prevented from aggregating.
  • the difference (Eb-Ea) force between the adsorption energy Ea of the noble metal particle 2 on the first compound 3 and the adsorption stabilization energy Eb of the noble metal particle 2 on the second compound 4 10.0 To exceed cal / mol.
  • this difference in adsorption energy exceeds lO.Ocal / mol, it is possible to more reliably suppress the movement of the noble metal particle 2 to the second compound 4, and the anchor as a function of the first compound 3 Effectiveness is further demonstrated.
  • the adsorption stability energy Ea of the noble metal particles 2 to the first compound 3 and the adsorption stability energy Eb of the noble metal particles 2 to the second compound 3 are both density functionals. It can be calculated by simulation using the method.
  • This density functional method is a method of predicting the electronic state of a crystal by introducing a Hamiltonian that incorporates the correlation effect between many electrons. The principle is based on the mathematical theorem that the total energy of the ground state of the system can be expressed by the electron density functional theory, and is highly reliable as a method for calculating the electronic state of a crystal.
  • the density functional method is suitable for predicting the electronic state at the interface between the first compound 3 or the second compound 4 made of an oxide or the like and the catalyst component.
  • the catalyst structure of this embodiment designed based on a combination of precious metal and compound selected based on It has been confirmed that the precious metal does not become coarse and that it maintains a high purity after high temperature durability. Analysis software for simulation using such a density functional method is commercially available, and an example of calculation conditions for the analysis software is shown below.
  • Pre-Z post Materials studio 3.2 (Accelrys), solver: DMol3 (Accelrys), temperature: absolute zero, approximation: GGA approximation.
  • a composite particle composed of the noble metal particle 2 and the first compound 3 supporting the noble metal particle 2 has a size of the composite particle (average particle diameter of the composite particle) Da and the composite particle.
  • the average pore diameter Db of the pores formed in the second compound 4 to be included satisfies the relationship of the following inequality Db and Da.
  • Inequality Db Da Da means that the average particle size Da of the composite particle unit composed of the noble metal particles 2 and the first compound 3 is larger than the average diameter Da of the voids formed in the second compound 4. is doing.
  • Figure 7 shows the ratio of the composite particle size Da to the average pore diameter Db, with the horizontal axis of DaZDb, the crystal growth ratio of CeO as the first compound, and the surface area of Pt as noble metal particles after exhaust durability test.
  • the noble metal particle 2 is at least one element selected from the medium force of ⁇ Pt, Pd, Rh ⁇ , and the first compound (anchor agent) 3 is an oxide containing Ce having OSC ability. Since it is known that it is easy to form a bond with noble metal particles 2 (especially Pt), the oxide containing Ce and the second compound 4 are composed of at least one element of which the intermediate force of ⁇ Al, Zr ⁇ is also selected. It is desirable to be an oxide. Also, the oxide containing Ce is preferably CeO or a complex oxide of Ce and Zr.
  • the exhaust gas purifying catalyst 1 is a Pt—CeO coated with Al 2 O or Pt—C
  • eZrO coated with Al O more preferably Pt—CeO coated with ZrO
  • the inventors of the present invention when the average particle diameter of the noble metal particles 2 is 2 [nm] or less, the sintering of the noble metal particles 2 proceeds due to the movement of the noble metal particles 2 itself, and conversely the noble metal particles 2 It has been found that when the average particle diameter of the metal particles 2 is 10 [nm] or more, the reactivity between the noble metal particles 2 and the exhaust gas is significantly reduced. Therefore, it is desirable that the average particle diameter of the noble metal particles 2 is in the range of 2 [nm] to 10 [nm].
  • the inventors of the present invention indicate that the ratio of the noble metal particles 2 in contact with the first compound (anchor agent) 3 is 80% or less, the first compound (anchor agent) As a result of the precious metal particles 2 not existing on 3 becoming 20 [%] or more, it was found that the sintering of the precious metal particles 2 proceeds as the precious metal particles 2 move. Therefore, it is desirable that 80% or more of the precious metal particles 2 are in contact with the first compound (anchor agent 3).
  • a transition metal compound (TM) 5 of at least one element selected from ⁇ Fe, Co, Ni, Mn ⁇ is added. You may make it contain. Since the element forming the transition metal compound 5 becomes a promoter component that further draws out the function of the noble metal particle 2, this configuration can greatly improve the catalyst performance, particularly the low-temperature activity. .
  • La may be contained in the second compound 4.
  • La has durability of Al O and ZrO
  • the heat resistance of 2 can be improved.
  • the exhaust gas purifying catalyst may be formed by coating a slurry containing the exhaust gas purifying catalyst 1 on a refractory inorganic carrier.
  • FIG. 8 is an explanatory diagram of a method for producing an exhaust gas purifying catalyst according to the present invention.
  • a first step of preparing a composite colloid solution 6 in which noble metal particles 2 are in contact with the first compound 3 is performed.
  • the second step of forming the second compound 4 around the first compound 3 in contact with the noble metal particles 2 in the composite colloid solution 6 is performed. .
  • the first step it is necessary to prepare a composite colloid.
  • the composite colloid is uniformly dispersed in the composite colloid solution 6. Aggregation of the first compounds 3 in contact with the particles 2 in the solution can be suppressed.
  • the first compound 3 can be wrapped in advance with a protective material for dispersion, or may not be wrapped with the protective material for dispersion.
  • the method of bringing the noble metal particles into contact with the first compound 3 may be a reduction treatment of the noble metal particles, or another method.
  • the first compound 3 is first wrapped in a protective material 7 for dispersion to prepare a first compound colloid.
  • a protective material for dispersion 7 a polymer compound can be used.
  • the first compound 3 is brought into contact with the colloid of the first compound 3 wrapped with the protective material for dispersion 7 by bringing a solution containing a noble metal into contact therewith.
  • a composite colloid in contact with the noble metal particles 2 is prepared.
  • the dispersion protective material 7 is, for example, a polymer compound (polymer), nitric acid or acetic acid.
  • FIG. 10 Another example of the first step will be described with reference to the explanatory diagram of FIG.
  • noble metal particles 2 are first supported on the surface of the first compound 3 as shown on the left side of the arrow in the figure.
  • the first compound 3 supporting the noble metal particles 2 is wrapped with a protective material 7 for dispersion, whereby the first compound 3 is encapsulated in the noble metal particles 2.
  • a composite colloid in contact with is prepared.
  • the method of forming the second compound 4 around the first compound 3 in the second step may be an impregnation method or an inclusion method.
  • the exhaust gas-purifying catalyst 1 includes a first compound (anchor agent) 3 having an average particle diameter of 30 [nm] or less and wrapped with a polymer compound such as PVP (polyvinylpyrrolidone).
  • the colloid of the product (anchor agent) 3 is prepared, and a noble metal salt having an average particle diameter in the range of 2 [nm] to 10 [nm] on the colloid of the first compound (anchor agent) 3 is ethanol.
  • the first compound (anchor agent) 3 having an average particle size of 30 [nm] or less can be prepared using a commercially available product, or by a solid phase method, a liquid phase method, or a gas phase method.
  • the exhaust gas purifying catalyst 1 is obtained by wrapping a first compound (anchor agent) agent 3 having an average particle size of 30 nm or less with a polymer compound such as PVP (polybulurpyrrolidone).
  • a colloid of the first compound (anchor agent) 3 is prepared, and the colloid of the first compound (anchor agent) 3 has a mean particle diameter of 2 [nm] or more and 10 [nm] or less on the surface. It may be produced by preparing a composite colloidal aqueous solution by contacting with.
  • an organic salt of the second compound 4 such as AIP (aluminum isopropoxide) or ZIP (zirconium isopropoxide) in an organic solvent
  • an oxide can be disposed around the colloid.
  • a step of dispersing the raw material inorganic salt of the second compound 4 in a solvent, rinsing the inorganic salt in the solvent with an acid, and then adding a colloidal aqueous solution into the solvent is performed.
  • the second compound 4 is an A1 oxide
  • the raw inorganic salt is preferably bermite
  • Zr oxide Zr nitrate is preferably used. According to such a method, since the inorganic salt is less expensive than the organic salt, it is possible to arrange the oxide around the colloid at a lower cost.
  • the method for producing an exhaust gas purifying catalyst described so far includes a step of preparing a composite colloidal solution in which noble metal particles are in contact with the first compound.
  • the average particle diameter is 30 nm or less.
  • Prepare a colloid of the first compound by wrapping the first compound in a polymer compound
  • a composite colloid solution is prepared by reducing and precipitating a noble metal salt on the colloid.
  • the reason for preparing the composite colloidal solution in this way is that in the state of nanoparticle powder force powder, it is generally an aggregate of secondary particles in which primary particles are aggregated.
  • the production method of the present embodiment includes a step of pulverizing or dispersing an aggregate in which the first compound particles having an average primary particle diameter of 30 nm or less are aggregated! A step of supporting noble metal particles on the following secondary particles of the first compound, and a step of forming a second compound around the particles of the first compound supporting the noble metal particles.
  • Aggregates having a secondary particle size of about / zm are pulverized or dispersed to a secondary particle size of 300 nm or less, more specifically about 100 to 300 nm, for example, 120 nm.
  • a wet pulverizer or disperser can be used.
  • the first compound particles pulverized or dispersed to have a secondary particle size of 300 nm or less can uniformly support the noble metal particles without being re-aggregated in the liquid. Even if a protective material made of a polymer compound is not used, it does not aggregate or separate when mixed with the precursor of the second compound, and after firing, the secondary of the first compound as the anchor material after firing.
  • a catalyst in which particles are uniformly dispersed in the catalyst can be obtained.
  • a pulverizer or a disperser that pulverizes or disperses the aggregate of the first compound particles having an average primary particle size of 30 nm or less to a secondary particle size of 300 nm or less.
  • Any device that can disperse can be used. Specific examples include a bead mill, a high-speed homogenizer, and a high-pressure collision type pulverizer.
  • the step of supporting the precious metal particles on the secondary particles of the first compound having a particle size of 300 nm or less by a pulverizer or a disperser has several specific embodiments.
  • first noble metal particles having an average particle diameter of 30 nm or less are first supported on an aggregate of first compound particles, and then an aggregate of first compound particles on which the noble metal is supported.
  • noble metal particles are supported on the secondary particles of the first compound having a particle size of 300 nm or less.
  • the secondary particles of the first compound can be uniformly dispersed in the precursor of the second compound.
  • the CO adsorption rate of the exhaust gas purifying catalyst obtained through this process can obtain 100 [g / m 2 -metal] or more when the noble metal particles are Pt.
  • noble metal particles having an average particle diameter of 30 nm or less are supported on the first compound particles during the pulverization or dispersion step of the first compound particle aggregate.
  • secondary particles of the first compound having a particle size of 300 nm or less are added by adding noble metal particles in the pulverizer or disperser.
  • Noble metal particles are supported on the particles.
  • each of the two first compounds having a secondary particle size of 300 nm or less is used.
  • Precious metal particles are uniformly supported on the surface of the next particle. As a result, the activity of the catalyst is further improved.
  • the CO adsorption rate of the exhaust gas purifying catalyst obtained through this process can obtain 150 [g / m 2 -metal] or more when the noble metal particles are Pt.
  • the timing of adding the noble metal particles may be the initial stage, the middle stage, or the final stage of the pulverization or dispersion process of the first compound particle aggregate by the pulverizer or the disperser. Secondary of desired first compound What is necessary is just to determine the timing to add according to a particle size.
  • noble metal particles having an average particle size of 30 nm or less are pulverized or dispersed to a secondary particle size of 300 nm or less, and then supported on the secondary particles of the first compound.
  • Precious metal particles are supported on secondary particles of a first compound having a secondary particle size of 300 nm or less in a pulverizer or disperser that has been pulverized or dispersed, or outside the pulverizer or disperser.
  • the surface of each secondary particle of the first compound is evenly distributed.
  • Precious metal particles are supported.
  • the activity of the catalyst is further improved.
  • the CO adsorption amount of the exhaust gas purifying catalyst obtained through this process can obtain 150 [g / m 2 -metal] or more when the noble metal particles are Pt.
  • Example 1 Pt; JS soot precipitated Ce 0 2 Al 2 0 3 7 95 3.5 21.1
  • the composition of the catalyst powder was Pt (0.3 wt%) and CeO (10%).
  • the average particle sizes of Pt (noble metal) and CeO (first compound) are 2.3 and 7 [n, respectively.
  • the contact ratio is determined by measuring the ratio of the precious metal and the first compound existing inside the spot for each of 50 EDX spots (5 [nm]) using TEM-EDX.
  • the measured force was also calculated by determining the slope of the straight line with the vertical axis Pt [atom%] and the horizontal axis Ce [atom%]. Specifically, when Pt is 3 [atom%] and Ce is 10 [atom%], the slope is 3Z10 if Pt and Ce are in contact with 100 [%], so the slope of the straight line is 2Z10.
  • the average pore diameter of the obtained powder was 6.2 °. Gatsutsu
  • the average pore diameter of the alumina part of the powder of this example is considered to be the same numerical value.
  • the average particle sizes of Pt and CeO are 2.4 and 28 [nm], respectively.
  • Example 3 the Pt, CeO ZA1 O catalyst powder of Example 3 was obtained by performing the same treatment as in Example 1 except that the surfactant Z solvent ratio was 0.35 [mol / L ratio]. Prepared.
  • the average particle sizes of Pt and CeO are 2.4 [nm] and l [nm], respectively.
  • Example 4 after the catalyst powder prepared by drying in a dryer at 120 [° C.] in Example 1 was again put into a mixed solution of water and ethanol, di- Add trodigamine Pt salt. Then, Pt was precipitated by raising the temperature of the solution to 80 [° C], and then calcined in air at 400 [° C], whereby the Pt, CeO 2 / Al O catalyst of Example 4 was used.
  • the ratio of the amount of Pt prepared by adding ethanol and raising the temperature of the solution to 80 [° C] and the amount of Pt prepared by raising the temperature of the solution to 80 [° C] was 8 : 2
  • the average particle sizes of Pt and CeO were 2.4 and 7 [nm], respectively.
  • the contact ratio between Pt and CeO was 82 [%].
  • Example 5 the ratio of the amount of Pt prepared by adding ethanol to raise the temperature of the solution to 80 [° C] and the amount of Pt prepared by raising the temperature of the solution to 80 [° C] was used.
  • the Pt, CeO / Al O catalyst powder of Example 5 was obtained by carrying out the same treatment as in Example 4 except that 7: 3 was applied.
  • Example 7 the Pt, CeO / ZrO catalyst of Example 7 was obtained by performing the same treatment as in Example 1 except that aluminum isopropoxide was changed to zirconium isopropoxide.
  • Example 8 Pt, CeO 2 / Al 2 O of Example 8 was carried out by carrying out the same treatment as in Example 1 except that La acetate was further added after the Pt salt was added to the hexylene dallicol solution.
  • La catalyst powder was prepared.
  • the composition of this catalyst powder is Pt (0.3wt%), CeO (10%),
  • La—Al 2 O (3 wt%) The average particle sizes of Pt and CeO are 2 ⁇ 3 and 7 [
  • Example 9 Pt, CeO / ZrO + La of Example 9 was performed by performing the same treatment as in Example 8 except that aluminum isopropoxide was changed to zirconium isopropoxide.
  • Catalyst powder was prepared.
  • the composition of this catalyst powder is Pt (0.3wt%), CeO (10%), ZrO
  • the average particle sizes of Pt and CeO are 2 ⁇ 2 and 7 [nm], respectively.
  • Example 10 the Pd, CeO 2 / Al 2 O catalyst powder of Example 10 was prepared by performing the same treatment as in Example 1 except that the dinitrodiamin Pt salt was changed to a Pd nitrate salt.
  • the dinitrodiamin Pt salt was changed to a Pd nitrate salt.
  • the average particle sizes of Pd and CeO were 3.5 and 7 [nm], respectively.
  • the contact ratio between Pd and CeO was 91 [%].
  • Example 11 was the same as Example 1 except that the dinitrodiamin Pt salt was changed to the Rh nitrate.
  • the Rh, CeO 2 / ZrO catalyst powder of Example 11 was prepared by performing the same treatment.
  • the average particle sizes of Rh and CeO were 2.1 and 7 [nm], respectively.
  • the average particle sizes of Pt and CeO are 2.3 and 35 [nm], respectively.
  • Example 21 the Pt and CeO powder of Example 21 were prepared by carrying out the same treatment as in Example 1 except that ethanol was not added when the Pt salt was precipitated.
  • the average particle sizes of Pt and CeO are 1.5 [nm] or less and 7
  • Example 22 a commercially available ceria colloidal sol aqueous solution was used instead of the preparation of the Ce colloid solution, and the same treatment as in Example 1 was performed except that the precious metal precipitation step was not performed. CeO.
  • this catalyst powder a commercially available ceria colloidal sol aqueous solution was used instead of the preparation of the Ce colloid solution, and the same treatment as in Example 1 was performed except that the precious metal precipitation step was not performed. CeO.
  • this catalyst powder
  • the average particle diameters of Pt and CeO were 1.5 mm or less and 48 nm, respectively. Also,
  • the contact ratio between Pt and CeO was 95 [%].
  • Example 23 a commercially available nanoceria powder having an average particle diameter of 50 nm was impregnated with a dinitrodiamin Pt aqueous solution, and once dried and calcined, Pt (0.3%) Z ceria powder was obtained. The obtained powder was once put into ion-exchanged water, irradiated with ultrasonic waves, suspended, and polyvinyl pyrrolidone as a surfactant was added and stirred and mixed until uniform. Thus, a powder-dispersed colloidal solution having an average particle diameter of ceria of 50 nm was obtained.
  • Example 24 CeO having an average particle size of 2.5 ⁇ m pulverized by a ball mill was added to the solution.
  • a Pt, CeO solution of Example 24 was prepared by carrying out the same treatment as in Example 1 except that the added Ce colloid solution was prepared and Pt was supported without reduction treatment.
  • the average particle sizes of Pt and CeO are each 1.5 [nm] or less.
  • CeO-supported alumina powder was obtained by impregnating and supporting an aqueous solution of Ce nitrate on activated alumina, drying at 120 ° C., and firing at 400 ° C. for 1 hour in an air stream. This powder
  • a catalyst powder of Comparative Example 1 was obtained by impregnating and supporting an aqueous solution of dinitrodiamin Pt. This powder has a Pt content of 0.3 wt% and a CeO content of 10%. In this catalyst powder, Pt and Ce
  • the average particle diameters of O were 1.5 [nm] or less and 600 [nm], respectively.
  • the contact rate of o was 11 [%].
  • catalyst powder is prepared by drying in a 120 [° C] drier.
  • Pt, CeO ZA1 O catalyst powder of Example 12 was prepared by calcining the catalyst powder in 400 [° C] air.
  • the composition of this catalyst powder is Pt
  • the catalyst powder is prepared by drying in a drier at 120 ° C.
  • the Pt, CeO ZA1 O catalyst powder of Example 13 was obtained by calcining the catalyst powder in 400 [° C] air.
  • catalyst powder is prepared by drying in a dryer at 120 [° C].
  • Pt, CeO ZA1 O catalyst powder of Example 12 was prepared by calcining the catalyst powder in air at 400 [° C]. This touch
  • the composition of the medium powder was Pt (0.3 wt%) and CeO (10%).
  • Pt and CeO 0.1 wt%
  • the average particle size of CeO was 2 ⁇ 2 and 7 [nm], respectively. Also, contact between Pt and CeO
  • Example 15 the catalyst powder 180 [g], alumina sol 20 [g], water 290 [g], and nitric acid 10 [g] of Example 1 were charged into a magnetic ball mill, and mixed and ground to prepare a catalyst slurry. did. Then, the catalyst slurry is adhered to a cordierite monolith support (0.12 L, 400 cells), excess slurry in the cells is removed by air flow, dried at 130 [° C], and then at 400 [° C]. By calcination for 1 hour, an exhaust gas purification catalyst of Example 15 having a coating layer of 100 [gZL] was prepared.
  • Example 16 the exhaust gas purification catalyst of Example 16 was prepared by impregnating the catalyst of Example 15 with Fe nitrate.
  • Example 17 an exhaust gas purification catalyst of Example 17 was prepared by performing the same treatment as in Example 16 except that Fe nitrate was changed to Co nitrate.
  • Example 18 the exhaust gas purifying catalyst of Example 18 was prepared by performing the same treatment as in Example 16 except that Fe nitrate was changed to Ni nitrate.
  • Example 19 an exhaust gas purification catalyst of Example 19 was prepared by performing the same treatment as in Example 16 except that Fe nitrate was changed to Mn nitrate. [0091] [Comparative Example 2]
  • Comparative Example 2 an exhaust gas purification catalyst of Comparative Example 2 was prepared by performing the same treatment as in Example 15 except that the catalyst powder of Comparative Example 1 was used instead of the catalyst powder of Example 1. It was.
  • the colloidal solution is put into an aqueous solution in which boehmite is dispersed. Then, after drying the solution under reduced pressure in an evaporator, the catalyst powder is prepared by further drying in a dryer at 120 [° C]. Finally, the Pt, CeO ZA1 O catalyst powder of Example 26 was prepared by calcining the catalyst powder in air at 400 [° C.].
  • the composition of the catalyst powder was Pt (0.3 wt%) and CeO (10%).
  • the average particle diameters of Pt and CeO were 1.5 [nm] or less and 50 [nm], respectively. Also
  • the contact ratio of 2 2 was 95 [%].
  • the average pore diameter of the obtained powder was 20.6 nm. Therefore, the average pore diameter of the alumina part of the powder of this example is considered to be the same numerical value.
  • Example 27 a commercially available nanoceria powder having an average particle diameter of lOlnm was impregnated with a dinitrodiamin Pt aqueous solution, and once dried and calcined, Pt (0.3%) Z ceria powder was obtained. The obtained powder was once put into ion-exchanged water, irradiated with ultrasonic waves, suspended, and polyvinyl pyrrolidone as a surfactant was added and stirred and mixed until uniform. this In this way, a powder-dispersed colloidal solution having an average particle diameter of 100 nm of ceria was obtained.
  • the colloidal solution is put into an aqueous solution in which boehmite is dispersed. Then, after drying the solution under reduced pressure in an evaporator, the catalyst powder is prepared by further drying in a dryer at 120 [° C]. Finally, the Pt, CeO ZA1 O catalyst powder of Example 27 was prepared by calcining the catalyst powder in air at 400 [° C.].
  • the composition of the catalyst powder was Pt (0.3 wt%) and CeO (10%).
  • the average particle sizes of Pt and CeO were 1.5 mm or less and 101 nm, respectively.
  • the contact ratio between Pt and CeO was 94 [%].
  • the average pore diameter of the obtained powder was 6.2 nm. Therefore, the average pore diameter of the alumina part of the powder of this example is considered to be the same numerical value.
  • Example 28 a commercially available nanoceria powder having an average particle size of lOlnm was impregnated with a dinitrodiamin Pt aqueous solution, and once dried and calcined, Pt (0.3%) Z ceria powder was obtained. The obtained powder was once put into ion-exchanged water, irradiated with ultrasonic waves, suspended, and polyvinyl pyrrolidone as a surfactant was added and stirred and mixed until uniform. In this way, a powder-dispersed colloidal solution having an average particle size of 10 nm of ceria was obtained.
  • the colloidal solution is put into an aqueous solution in which boehmite is dispersed. Then, after drying the solution under reduced pressure in an evaporator, the catalyst powder is prepared by further drying in a dryer at 120 [° C]. Finally, the Pt, CeO ZA1 O catalyst powder of Example 28 was prepared by calcining the catalyst powder in air at 400 [° C.].
  • the composition of the catalyst powder was Pt (0.3 wt%) and CeO (10%).
  • the average particle sizes of Pt and CeO were 1.5 mm or less and 101 nm, respectively.
  • the contact ratio between Pt and CeO was 94 [%].
  • the average pore diameter of the obtained powder was 20.6 nm. Therefore, the average pore diameter of the alumina part of the powder of this example is considered to be the same numerical value.
  • Example 29 was produced without preparing a composite colloidal solution by dispersing an aggregate of secondary particles of the first compound using a disperser when producing an exhaust gas purification catalyst.
  • noble metal particles are supported on an aggregate of secondary particles of the first compound and then dispersed by a disperser.
  • -Zr-0 compound powder was dispersed in water, and an acidic solution of dinitrodiamin Pt nitrate was added dropwise and stirred. Next, after evaporating to dryness, it was fired in an air stream at 400 ° C. for 1 hour.
  • the calcined powder is an aggregate of precious metal particles and secondary particles of the first compound, with an average particle size of 2 ⁇ m.
  • the obtained powder was dispersed by a commercially available bead mill (bead diameter 0.3 mm), and the average particle diameter was 120 nm.
  • the dried powder was calcined in an air stream at 550 ° C for 3 hours to obtain a PtZCeO / A120 catalyst.
  • Example 30 as in Example 29, in producing an exhaust gas purification catalyst, the aggregate of secondary particles of the first compound was dispersed using a disperser to produce a composite colloid.
  • the solution was prepared without preparing the solution, and in particular, the aggregate of the secondary particles of the first compound was dispersed and then the noble metal particles were supported.
  • Ce-Zr-0 compound powder was dispersed in water and dispersed to about 120 nm by a commercially available bead mill (bead diameter: 0.3 mm).
  • a dinitrodiamin Pt nitric acid acidic solution was dropped into the bead mill, and further dispersed.
  • the dried powder was calcined in an air stream at 550 ° C for 3 hours to obtain a PtZCeO / A120 catalyst. It was.
  • Example 31 is a composite colloid obtained by dispersing an aggregate of secondary particles of the first compound using a disperser.
  • the solution was prepared without preparing the solution, and the aggregate of the secondary particles of the first compound was dispersed and then the noble metal particles were supported.
  • this is an example in which the precious metal particles are supported outside the disperser.
  • Ce-Zr-0 compound powder was dispersed in water and dispersed to about 120 nm by a commercially available bead mill (bead diameter: 0.3 mm). After dispersion, the slurry was transferred to a beaker and stirring was continued. Dinitrodiamin Pt nitric acid acidic solution was dropped into the beaker, and stirring was continued.
  • the dried powder was calcined in an air stream at 550 ° C for 3 hours to obtain a PtZCeO / A120 catalyst.
  • Example 32 is a composite colloid obtained by dispersing an aggregate of secondary particles of the first compound using a disperser when producing an exhaust gas purification catalyst. This is an example of manufacturing without preparing a solution.
  • the precious metal particles are added to the disperser, and the first compound is dispersed in the disperser. This is an example in which noble metal particles are supported while being supported.
  • Zr-La-0 compound powder was dispersed in water and put into a commercially available bead mill (bead diameter 0.3 mm). Similarly, an acidic solution of dinitrodiamin Pt nitrate was added to the bead mill and dispersed in the bead mill at about 120 nm.
  • the slurry containing the dispersed secondary particles was mixed with boehmite slurry previously cleaved with a nitric acid solution, and vigorously stirred with a homogenizer or the like.
  • the slurry after stirring was dried by spray drying or the like.
  • the catalyst powders of Examples 1 to 14, Examples 20 to 25, Examples 29 to 32 and Comparative Example 1 were subjected to an endurance test in which the catalyst powder was calcined for 3 hours in an atmospheric furnace at 900 [° C].
  • the average particle size of the precious metal particles after the durability test was measured using TEM.
  • the exhaust gas purifying catalysts of Examples 15 to 19, Examples 26 to 28 and Comparative Example 2 were used in the exhaust system of an engine with a displacement of 3500 [cc] in Examples 15 to 19 and Comparative Example 2. After performing an endurance test with the exhaust gas purification catalyst installed and the engine running for 30 hours at an inlet temperature of 800 [° C], the exhaust gas purification catalyst was incorporated into the simulated exhaust gas distribution device, as shown in Table 3 below.
  • the simulated exhaust gas having the composition shown in the figure was circulated, and the HC purification at 400 [° C] of each of the exhaust gas purification catalysts of Examples 15 to 19 and Comparative Example 2 was determined from the HC concentrations at the inlet and outlet sides at 400 [° C]. ⁇ percentage (r? HC) [%] was calculated.
  • the ratio of the noble metal in contact with the first compound as in the catalyst powder of Example 5 is 80%.
  • the sintering of the noble metal is advanced as compared with the other examples. From this, it can be seen that in order to maintain the effect of improving the activity of the noble metal by the first compound, it is desirable that 80% or more of the noble metal is in contact with the first compound.
  • the exhaust gas purification catalyst contains a compound of at least one element selected from ⁇ Fe, Co, Ni, Mn ⁇ .
  • the reduction rate of the HC conversion rate before and after the endurance test is low as compared with the case where the exhaust gas purification catalyst of Example 15 is not included. Therefore, in order to further maintain the precious metal activity improvement effect by the first compound, the compound of at least one element selected from the medium power of ⁇ Fe, Co, Ni, Mn ⁇ in the exhaust gas purification catalyst It is desirable to include this.
  • La is contained in the second compound as in the catalyst powders of Example 8 and Example 9, it is not allowed!
  • Example 15 and Examples 26 to 28 the average particle diameter Da of the composite particles of the first compound carrying the noble metal particles and the average pore diameter of the pores formed in the second compound The ratio of Db, the size Da of the composite particles to the average pore diameter Db, the crystal growth property of the second compound after the durability test, and r? HC were examined.
  • the average pore diameter of the secondary particles was measured using ASAP2120 manufactured by Shimadzu Corporation. As a pretreatment, it was degassed by heating to 300 ° C, and the adsorbed water was removed by vacuum degassing to 1 ⁇ mHg. The measurement was performed by the N adsorption method.
  • the crystal growth was measured by measuring the samples before and after the endurance test using XRD.
  • the instrument is an X-ray diffractometer (MXP18VAHF) manufactured by Max Science Co., Ltd., and the measurement conditions are an X-ray wavelength of CuK.
  • the current was 300 mA
  • the divergence slit was 1.0 °
  • the scattering slit was 1.0 °
  • the light receiving slit was 0.3 mm.
  • Table 5 shows the measurement results.
  • Example 15 7.0 6.2 1.1 3.9 75
  • Example 26 7.0 20.6 0.3 20.6 52
  • Example 27 101 6.2 16.3 1.4 65
  • Example 28 101 20.6 4.9 1.6 67
  • Comparative Example 2 2500 6.2 403.2 1.1 32
  • Example 15 and Examples 26 to 28 are all excellent in r? HC as compared with Comparative Example 2.
  • Example 15 and Examples 26 to 28 are all excellent in r? HC as compared with Comparative Example 2.
  • Example 15 and Example 27 in which the ratio of Da / Db is 10 or more, since the movement and aggregation of the first compound are suppressed, the crystal growth property of the second compound is low. It has better exhaust gas purification characteristics than a small one.
  • Table 6 shows the measurement results of the initial particle diameter of the exhaust gas purifying catalyst produced according to Examples 29 to 32 and the particle diameter of the noble metal particles after the durability test.
  • the exhaust gas purifying catalysts produced according to Examples 29 to 32 also have a small particle size of the noble metal particles after the endurance test, that is, aggregation is suppressed. As a result, it has excellent exhaust gas purification performance.
  • the CO adsorption amount was measured, and for Example 29, the adsorption amount was 100 [g / m 2 -metal] or more. About Examples 30-32, it was confirmed that it is 150 [g / m ⁇ 2 > -metal] or more. From the measurement results of the CO adsorption amount, the exhaust gas purification catalysts of Examples 29 to 32 have noble metal particles dispersed and supported on the first compound, that is, aggregation is suppressed. It has been found
  • the CO adsorption amount was measured by using BEL-METAL-3 manufactured by Nippon Bell Co., Ltd. as a device.
  • pre-treatment conditions first, in a gas stream containing 100% He, 400 ° C at 10 ° CZ. Raise the temperature to ° C, then oxidize at 400 ° C in a gas stream with 100% O force for 15 minutes. Purge with 100% He gas for 5 minutes, then at 400 ° C with 0% H force

Abstract

 製造コストや環境負荷を大きくすることなく、遷移金属による貴金属粒子の活性向上効果を維持する。  排気ガス浄化用触媒1は、貴金属粒子2と、貴金属粒子2と接触し貴金属粒子2の移動を抑制する第1の化合物3と、貴金属粒子2と第1の化合物3を内包し、貴金属粒子2の移動を抑制すると共に第1の化合物3同士の接触に伴う第1の化合物3の凝集を抑制する第2の化合物4とからなり、第1の化合物3は、貴金属粒子2を担持し、かつ、貴金属粒子2を担持した第1の化合物の3単体又は集合体を、第2の化合物4により隔てられた区画内に含む。

Description

排気ガス浄化用触媒及びその製造方法
技術分野
[0001] 本発明は、内燃機関から排出される排気ガスを浄ィ匕する処理に適用して好適な排 気ガス浄化用触媒及びその製造方法に関する。
背景技術
[0002] 近年、内燃機関カゝら排出される排気ガス中に含まれる炭化水素系化合物 (HC) , 一酸化炭素 (CO) ,窒素酸化物 (NO )等の有害物質を除去するために、アルミナ( Al O )等の金属酸ィ匕物担体に白金 (Pt)等の貴金属粒子を担持した排気ガス浄ィ匕
2 3
用触媒が広く利用されるようになっている。従来の排気ガス浄化用触媒では、周囲の 雰囲気変動に対する貴金属粒子の耐久性を向上させるために、貴金属粒子が多量 に用いられている。し力しながら、貴金属粒子を多量に用いることは地球資源保護の 観点から見ると望ましくない。
[0003] このような背景から、最近では、含浸法によって OSC (Oxygen Storage Component :酸素吸蔵物質)材として機能するセリウム (Ce)やマンガン (Mn)等の遷移金属又は 遷移金属化合物を貴金属粒子近傍に配置し、貴金属粒子周囲の雰囲気変動を遷 移金属又は遷移金属化合物によって抑制することにより、貴金属粒子の耐久性を向 上させる試みがなされている(特許文献 1〜4参照)。なお、このような方法によれば、 貴金属粒子の耐久性向上に加えて、貴金属粒子の活性向上も期待することができる 特許文献 1:特開平 8 - 131830号公報
特許文献 2 :特開 2005— 000829号公報
特許文献 3 :特開 2005— 000830号公報
特許文献 4:特開 2003 - 117393号公報
発明の開示
[0004] 貴金属粒子周囲の雰囲気変動を遷移金属の化合物によって抑制する場合には、 貴金属粒子と遷移金属の化合物粒子の双方が微粒子であり、且つ、互いに接触して いる必要性がある。し力しながら、含浸法を用いた場合には、貴金属粒子と遷移金属 の化合物粒子とを接触させることができても双方が微粒子にならない、若しくは、双 方が微粒子になっても接触させることができない又は接触させることができる量が少 な 、ために、貴金属粒子近傍に遷移金属の化合物粒子を設計通りに配置させること は難しい。また、貴金属粒子の耐久性向上を図る場合、貴金属粒子の平均粒子径は
2[nm]以上、貴金属粒子の活性向上を図る場合には、貴金属粒子の平均粒子径は 5 [nm]以下とすることが望ましい。し力しながら、含浸法を用いた場合には、貴金属 粒子の平均粒子径は 1. 5 [nm]以下になるために、貴金属粒子の耐久性向上ゃ活 性向上を期待することは難しい。
[0005] また、遷移金属の化合物は金属酸化物担体として広く利用されているアルミナと固 溶しやす!/、ために、遷移金属の化合物を貴金属粒子近傍に単に配置しただけでは 貴金属粒子の活性向上効果は得られにくい。なお、このような問題を解決するために 、遷移金属の化合物と固溶しない担体上に遷移金属の化合物を担持する方法が考 えられてはいる力 この方法を用いた場合には、高温雰囲気下において遷移金属の 化合物が移動し、遷移金属の化合物同士が接触することによって遷移金属の化合 物が凝集してしまう。また、遷移金属の化合物の凝集を防止するために、逆ミセル法 を利用して表面積が大きい遷移金属の化合物粒子を製造する方法も考えられるが、 この方法では有機溶媒を使用するために製造コストや環境負荷が大きい。
[0006] 上記課題を解決するために、本発明に係る排気ガス浄化用触媒は、貴金属粒子と 、前記貴金属粒子と接触し、当該貴金属粒子の移動を抑制する第 1の化合物と、前 記貴金属粒子と前記第 1の化合物を内包し、貴金属粒子の移動を抑制すると共に第 1の化合物同士の接触に伴う第 1の化合物の凝集を抑制する第 2の化合物とからなり 、前記第 1の化合物は、前記貴金属粒子を担持し、かつ、この貴金属粒子を担持し た第 1の化合物の単体又は集合体を、前記第 2の化合物により隔てられた区画内に 含むことを要旨とする。
[0007] 本発明に係る排気ガス浄化用触媒によれば、貴金属粒子と第 1の化合物で覆うこと により、貴金属粒子の移動と同時に第 1の化合物同士の凝集も抑制するので、製造 コストや環境負荷を大きくすることなぐ第 1の化合物による貴金属粒子の活性向上 効果を維持することができる。
[0008] また、本発明に係る排気ガス浄化用触媒の製造方法は、第 1の化合物に貴金属粒 子が接触した複合コロイド溶液を調製する第 1の工程と、この複合コロイド溶液中の 貴金属粒子が接触した第 1の化合物の周囲に第 2の化合物を形成させる第 2の工程 とを有することを要旨とする。
[0009] 本発明に係る排気ガス浄化用触媒の製造方法によれば、本発明に係る排気ガス 浄化用触媒を容易に製造することができる。
図面の簡単な説明
[0010] [図 1]図 1は、本発明の実施形態となる排気ガス浄化用触媒の構成を示す模式図で ある。
[図 2]図 2は、本発明の別の実施形態となる排気ガス浄化用触媒の構成を示す模式 図である。
[図 3]図 3は、一つのユニットにおける貴金属粒子 2の凝集前後の一例を示す模式図 である。
[図 4]図 4は、貴金属粒子径と貴金属表面積との関係を示すグラフである。
[図 5]図 5は、貴金属粒子径と貴金属の原子数との関係を示すグラフである。
[図 6]図 6は、本発明の実施形態となる排気ガス浄化用触媒の構成を示す模式図で ある。
[図 7]図 7は、 CeOの結晶成長比及び Ptの表面積に対する複合粒子のサイズ Daと
2
平均細孔径 Dbの比 DaZDbの関係を示すグラフである。
[図 8]図 8は、本発明の実施形態となる排気ガス浄化用触媒の製造方法の説明図で ある。
[図 9]図 9は、本発明の製造方法における第 1の工程の一例の説明図である。
[図 10]図 10は、本発明の製造方法における第 1の工程の別の例の説明図である。
[図 11]図 11は、本発明の製造方法における第 2の工程の別の例の説明図である。 発明を実施するための最良の形態
[0011] 以下、本発明の排気ガス浄ィ匕用触媒の実施形態について、図面を用いつつ説明 する。 [0012] 図 1は、本発明の一実施形態となる排気ガス浄ィ匕用触媒の模式図である。同図に 示す排気ガス浄化用触媒 1は、触媒活性を有する貴金属粒子 2と、この貴金属粒子 2 と接触し、当該貴金属粒子 2の移動を抑制する第 1の化合物 3と、この貴金属粒子 2と 第 1の化合物 3とを内包し、当該貴金属粒子 2の移動を抑制すると共に第 1の化合物 3同士の接触に伴う第 1の化合物 3の凝集を抑制する第 2の化合物 4とからなる。この 第 1の化合物 3は、貴金属粒子 2を担持している。また、貴金属粒子 2を担持した第 1 の化合物 3の複数個の集合体が、第 2の化合物 4により隔てられた区画内に含まれて いる。
[0013] 本願発明の発明者らは、精力的な研究を重ねてきた結果、貴金属粒子に遷移金 属の化合物をィ匕学的に結合することにより貴金属粒子の移動をィ匕学的に抑制するこ とができると共に、貴金属粒子をィ匕合物で覆うことによって貴金属粒子の移動を物理 的に抑制することができることを知見した。さらに、発明者らは、貴金属粒子と遷移金 属の化合物の双方をィ匕合物で覆うことによって貴金属粒子の移動抑制はもちろん、 遷移金属の化合物の凝集も抑制することができることを知見した。
[0014] この知見に基づいて構成された図 1に示す排気ガス浄ィ匕用触媒 1は、貴金属粒子 2と、第 1の化合物 3とが接触して、担持することにより第 1の化合物 3が化学的結合の アンカー剤として作用し、貴金属粒子の移動を抑制する。また、この貴金属粒子 2を 第 1の化合物 3とを第 2の化合物 4で覆い、内包する形態とすることにより、貴金属粒 子 2の移動を物理的に抑制する。更に、この第 2の化合物 4により隔てられた区画内 に貴金属粒子 2と第 1の化合物 3とを含むことにより、この第 2の化合物 4により隔てら れた区画を越えて第 1の化合物 3が接触し凝集することを抑制する。これらのことから 、排気ガス浄ィ匕用触媒 1は、製造コストや環境負荷を大きくすることなぐ貴金属粒子 2の凝集による触媒活性低下を防止することができ、また、第 1の化合物 3による貴金 属粒子 2の活性向上効果を維持することができる。
[0015] 図 2は、本発明の別の実施形態となる排気ガス浄ィ匕用触媒の模式図である。同図 に示す排気ガス浄化用触媒 1は、貴金属粒子 2と、この貴金属粒子 2を担持する第 1 の化合物 3と、貴金属粒子 2及び第 1の化合物 3を内包する第 2の化合物 4とからなる 点は図 1に示した排気ガス浄ィ匕用触媒 1と同一である。そして第 2の化合物 4により隔 てられた区画内に、貴金属粒子 2と第 1の化合物 3とが種々の態様で含まれている。
[0016] 図 2において、第 2の化合物 4により隔てられた複数の区画のうち、ユニット U1では 、単体の貴金属粒子 2を担持した単体の第 1の化合物 3が含まれている。またユニット U2では、複数の貴金属粒子 2を担持している複数個の第 1の化合物 3が、凝集した 集合体(二次粒子)で含まれている。またユニット U3〜U6では、複数の貴金属粒子 2を担持して 、る単体の第 1の化合物 3が、種々の粒径で含まれて 、る。
[0017] 図 2に示す本実施形態の排気ガス浄化用触媒は、図 1に示した排気ガス浄化用触 媒 1と同様に、第 2の化合物 4により隔てられた区画を越えて第 1の化合物 3が接触し 凝集することが抑制される。したがって、図 1に示した排気ガス浄ィ匕用触媒 1と同様の 効果を有している。
[0018] この第 2の化合物 4により隔てられた区画内には、貴金属粒子を合計で 8 X 10_2 モル以下の量で含有することが好ましい。図 2に示したように、第 2の化合物 4により 隔てられた区画内に含まれる貴金属粒子 2と第 1の化合物 3とは、種々の態様がある 。これらの区画内で複数個の貴金属粒子 2が移動して、互いに凝集する場合がある。 この場合に、貴金属粒子 2は、ユニット U1〜U6のいずれでも、アンカー剤としての第 1の化合物 3の効果によって第 2の化合物 4には移動せず、ユニット内でのみ一つ又 は複数個の貴金属粒に凝集する。一つのユニットにおける貴金属粒子 2の凝集前後 の一例を模式的に図 3 (a)及び、(b)に示す。
[0019] ここに、一つのユニット内で貴金属粒が凝集した場合に、凝集した貴金属粒の粒径 力 S 10 [nm]以下であれば、充分な触媒活性を示し、凝集による触媒活性の劣化を抑 制することができる。図 4は、触媒活性を有する貴金属としての白金やパラジウムにつ いて、貴金属粒子径と貴金属表面積との関係を示すグラフである。なお、同図では 貴金属が白金の場合とパラジウムの場合と、ほぼ同じ曲線を示すので、一つの曲線 として示している。同図から明らかなように、貴金属の粒子径が 10 [nm]以下であれ ば粒子表面積が大きぐ十分な活性が得られるので、凝集による触媒活性の劣化を 抑帘 Uすることができる。
[0020] 図 5は、触媒活性を有する貴金属としての白金やパラジウムについて、貴金属粒子 径と貴金属の原子数との関係を示すグラフである。なお、同図では貴金属が白金の 場合とパラジウムの場合と、ほぼ同じ曲線を示すので、一つの曲線として示している。 同図から明らかなように、貴金属の粒子径が 10 [nm]であるときの原子数は約 4800 0個であり、この値をモル数に換算すると約 8 X 10_2モル以下の量になる。
[0021] これらの観点から、ユニット U1〜U6のいずれの態様であっても、ユニット内の貴金 属量を制限し、 8 X 10_2モル以下の量とすることで、ユニット内で 1個に凝集しても、 触媒活性の劣化を抑制することができる。
[0022] ユニット内に含まれる貴金属量を 8 X 10_2°モル以下に低減する手段としては、第 1 の化合物 3の貴金属粒子 2の担持濃度を下げること、又は貴金属粒子 2を担持した 第 1の化合物 3の粒径を小さくすることの、 2つの手段が存在する。本発明では、これ らの手段に限定しないが、実際の触媒製造を考えた場合には、前者の担持濃度を下 げる方法では、所定の排気ガス浄化触媒の性能を維持するためには排気ガス浄ィ匕 用触媒をコートしたハニカム担体の容積を増やさなければならず、したがって、触媒 のコート量が通常の一桁多いようなコート量をハ-カム担体へコートする必要がある ため、現実的ではない。
[0023] 第 1の化合物 3の粒径に関して、最大粒径は、 2 [ m]とすることが好ましい。第 1の 化合物 3は、貴金属粒子 2と接触して貴金属粒子 2の移動を抑制するアンカー剤とし ての機能を有している。このアンカー剤のアンカー効果は、第 1の化合物 3自身の大 きさに影響を受けることを発明者らは見出した。従来の排気ガス浄化用触媒のように 、単に粉末状の第 1の化合物、例えばセリアなどに貴金属を含浸担持し、アルミナ中 に分散させても上記の充分な貴金属凝集抑制効果を発揮することが難 、。例えば 、従来のボールミルなどによる粉砕製法で第 1の化合物 3の粒子を得る場合には,最 小でも 2〜 3 [ m]の粒径までしか得られない。このような粒径の第 1の化合物 3粒子 に貴金属粒子 2を担持させる場合に、実際のコージエライトハ-カム担体へのコート 量上限及び使用貴金属量から定められる量で貴金属粒子 2を第 1の化合物 3粒子に 担持させると、高温、長時間での使用により、貴金属粒子 2が数十 [nm]にまで凝集 し、触媒活性が劣化してしまう。したがって、実際の触媒に適用する際には、第 2の化 合物 4により隔てられた区画内に含まれる第 1の化合物 3が、最大粒子径が 2 [; z m] 以下の粒子径であることが好まし 、。 [0024] 第 1の化合物 3の粒子を各種の製法で製造したときに、得られた第 1の化合物 3の 粒子径にはばらつきがあり、製造条件に応じた所定の粒度分布を有している。そのた め、第 1の化合物 3の粒子径は、平均粒子径で表されることがある。本発明の実施形 態に係る排気ガス浄化用触媒において、第 2の化合物 4により隔てられた区画内に 含まれる第 1の化合物 3の好ましい平均粒子径は、 50 [nm]以下である。第 1の化合 物 3の平均粒子径が 50 [nm]以下を超える場合には、アンカー剤である第 1の化合 物に担持される貴金属粒子 2の量が増え、貴金属粒子 2間の距離が短くなつて、貴 金属粒子 2の凝集が促進される。
[0025] 第 1の化合物 3の、より好ましい平均粒子径は、 30 [nm]以下である。図 6は、第 2の 化合物 4により隔てられた区画内に第 1の化合物 3を単体で含む、本発明に係る排気 ガス浄化用触媒の別の実施形態の模式図である。
[0026] 本発明の実施形態となる排気ガス浄化用触媒 1は、図 6に示した実施形態におい ては、貴金属粒子 (PM) 2と、貴金属粒子 2と接触し、貴金属粒子 2の移動を抑制す る第 1の化合物 (アンカー剤) 3と、貴金属粒子 2と第 1の化合物 (アンカー剤) 3を内 包し、貴金属粒子 2の移動を抑制すると共に、第 1の化合物 (アンカー剤) 3同士の接 触に伴う第 1の化合物 (アンカー剤) 3の凝集を抑制する第 2の化合物 4と、助触媒成 分として含まれている遷移金属化合物 5からなり、第 1の化合物(アンカー剤) 3の平 均粒子径は 30 [nm]以下に調製されて!、る。
[0027] すなわち、図 6に示した本発明の実施形態となる排気ガス浄ィ匕用触媒 1は、貴金属 粒子 2と第 1の化合物 (アンカー剤) 3を第 2の化合物 4で覆うことにより、貴金属粒子 2 の移動と同時に第 1の化合物 (アンカー剤) 3同士の凝集も抑制する。従って、本発 明の実施形態となる排気ガス浄化用触媒 1によれば、製造コストや環境負荷を大きく することなぐ第 1の化合物 (アンカー材) 3による貴金属粒子 2の活性向上効果を維 持することができる。
[0028] そして、第 1の化合物 3の平均粒子径が 30 [nm]以下であることにより、本実施形態 の排気ガス浄化用触媒 1は、貴金属粒子 2の凝集をいつそう抑制することができる。 第 1の化合物 3の平均粒子径の最適範囲は、 5〜15 [nm]程度である。第 1の化合物 3の平均粒子径の下限は、特に限定するものではないが、分析機器 (例えば XRD) によって第 1の化合物 3の結晶構造が同定できる大きさとして 5 [nm]以上とすること ができる。
[0029] 図 1、図 2又は図 6に示した本発明の排気ガス浄ィ匕用触媒において、貴金属粒子 2 の第 1の化合物 3への吸着エネルギーが Eaであり、貴金属粒子 2の第 2の化合物 4へ の吸着安定化エネルギーが Ebであるとき、 Eaが Ebよりも小さい値であること(Eaく Eb) が好ましい。発明者らは、第 1の化合物 3の機能としてのアンカー効果が、吸着エネ ルギ一の差に影響を受けることを発明者らは見出した。すなわち、貴金属粒子 2の第 1の化合物 3への吸着エネルギー Eaが、貴金属粒子 2の第 2の化合物 4への吸着安 定ィ匕エネルギー Ebよりも小さいことにより、貴金属粒子 2が、第 2の化合物 4に移動す るのを抑制することができ、これにより、貴金属粒子 3が凝集するのをいつそう抑制す ることがでさる。
[0030] より好ましくは、貴金属粒子 2の第 1の化合物 3への吸着エネルギー Eaと、貴金属粒 子 2の第 2の化合物 4への吸着安定化エネルギー Ebとの差(Eb— Ea)力 10.0cal/mol を超えることである。この吸着エネルギー差が lO.Ocal/molを超えることにより、貴金属 粒子 2が、第 2の化合物 4に移動するのをより確実に抑制することができ、第 1の化合 物 3の機能としてのアンカー効果力 更に発揮される。
[0031] なお、貴金属粒子 2の第 1の化合物 3への吸着安定ィ匕エネルギー Eaや、貴金属粒 子 2の第 2の化合物 3への吸着安定ィ匕エネルギー Ebは、 、ずれも密度汎関数法を用 いたシミュレーションにより算出することができる。この密度汎関数法は、多電子間の 相関効果を取り入れたハミルトニアンを導入して、結晶の電子状態を予測する方法で ある。その原理は、系の基底状態の全エネルギーを電子密度汎関数法で表すことが できるという数学的定理に基づいており、結晶の電子状態を計算する手法として信頼 性が高い。本発明の触媒構造を設計するにあたり、第 1の化合物 3及び第 2の化合 物 4への貴金属成分の吸着エネルギーの差を実際測定することは難しぐ所望の吸 着工ネルギ一が得られる組み合わせを予測するための手法が必要となる。ここで、密 度汎関数法は、酸化物等からなる第 1の化合物 3や第 2の化合物 4と触媒成分との界 面における電子状態を予測するのに適しており、実際にシミュレーション値を基に選 択した貴金属と化合物の組み合わせを基に設計した、本実施形態の触媒構造は、 貴金属の粗大化が生じず、高温耐久後も高 、浄ィ匕性能を維持することが確認されて いる。このような密度汎関数法を用いたシミュレーションのための解析ソフトウェアは 市販されており、解析ソフトの計算条件の一例として以下に示す。
[0032] プリ Zポスト: Materials studio3.2 (Accelrys社)、ソルバ: DMol3 (Accelrys社)、温度: 絶対零度、近似: GGA近似。
[0033] 次に、貴金属粒子 2と、この貴金属粒子 2を担持する第 1の化合物 3とからなる複合 粒子は、その複合粒子のサイズ (複合粒子の平均粒径) Daと、この複合粒子を内包 する第 2の化合物 4に形成されている細孔の平均細孔径 Dbとが、次の不等式 Dbく Daの関係を満たすことが好ましい。不等式 Dbく Daは、貴金属粒子 2と第 1の化合物 3とからなる複合粒子のユニットの平均粒径 Daが、第 2の化合物 4に形成されている 空隙の平均径 Daよりも大きいことを意味している。換言すれば、複合粒子のサイズ D aと平均細孔径 Dbの比で表すと、 Da/Db > 1であることが好まし!/、。 Da/Db > 1で あることにより、貴金属粒子 2と第 1の化合物 3との複合粒子が、第 2の化合物 4に形成 されている細孔を通して移動することが抑制される。したがって、第 2の化合物による 包接効果の低下が抑制される。この効果は発明者らの実験により確認されている。図 7は、複合粒子のサイズ Daと平均細孔径 Dbの比 DaZDbを横軸に、第 1の化合物と しての CeOの結晶成長比及び排気耐久試験後の貴金属粒子としての Ptの表面積
2
を縦軸にして、これらの関係を示すグラフである。図 7から、 DaZDbが 1以上である 場合に、 CeOの結晶成長比が顕著に低下し、すなわち、 CeOの焼結が少ないので
2 2
包接効果が大きぐまた、耐久試験後の Ptの表面積が大きぐすなわち、 Ptの凝集が 少な 、ので触媒活性の低下が少な 、ことが分かる。
[0034] 次に、貴金属粒子 2は {Pt, Pd, Rh}の中力も選ばれる少なくとも 1つの元素、第 1 の化合物 (アンカー剤) 3は Ceを含む酸ィ匕物が OSC能を有すると共に、貴金属粒子 2 (特に Pt)と結合を作りやすいことが知られているので、 Ceを含む酸化物、第 2の化 合物 4は { Al, Zr}の中力も選ばれる少なくとも一つの元素の酸化物であることが望ま しい。また、 Ceを含む酸化物は CeO又は Ceと Zrの複合酸化物であることが望まし
2
い。また、排気ガス浄化用触媒 1は、 Pt— CeOを Al Oで被覆したもの、又は Pt— C
2 2 3
eZrOを Al Oで被覆したもの、より好ましくは、 Pt— CeOを ZrOで被覆したもので
2 3 2 2 あるとよい。
[0035] また、本願発明の発明者らは、貴金属粒子 2の平均粒子径が 2[nm]以下である場 合、貴金属粒子 2自身の移動によって貴金属粒子 2のシンタリングが進み、逆に貴金 属粒子 2の平均粒子径が 10 [nm]以上である場合には、貴金属粒子 2と排気ガスの 反応性が著しく低下することを知見した。従って、貴金属粒子 2の平均粒子径は 2 [n m]以上 10 [nm]以下の範囲内にあることが望まし 、。
[0036] また、本願発明の発明者らは、第 1の化合物 (アンカー剤) 3と接触している貴金属 粒子 2の割合が 80 [%]以下であると、第 1の化合物 (アンカー剤) 3上に存在しない 貴金属粒子 2が 20[%]以上になる結果、貴金属粒子 2が移動することによって貴金 属粒子 2のシンタリングが進むことを知見した。従って、貴金属粒子 2の 80 [%]以上 は第 1の化合物(アンカー剤 3)に接触して 、ることが望ま 、。
[0037] また、図 6に示すように、排気ガス浄化用触媒 1の中に、 {Fe, Co, Ni, Mn}の中か ら選ばれる少なくとも 1つの元素の遷移金属化合物 (TM) 5を含有させてもよい。遷 移金属化合物 5を形成する元素は貴金属粒子 2の働きをさらに引き出す助触媒成分 となるので、このような構成によれば、特に低温活性等の触媒性能を大幅に向上させ ることがでさる。
[0038] また、第 2の化合物 4の中に Laを含有させてもよい。 Laには Al Oや ZrOの耐久
2 3 2 性を向上させる効果があるので、このような構成によれば、 Al O
2 3や ZrO
2の耐熱性を 向上させることができる。また、上記排気ガス浄化用触媒 1を含むスラリーを耐火性無 機担体にコーティングすることにより排気ガス浄ィ匕用触媒を構成してもよい。
[0039] 次に、本発明の排気ガス浄ィ匕用触媒の製造方法の実施形態について説明する。
図 8は、本発明に係る排気ガス浄化用触媒の製造方法の説明図である。同図の矢印 より左側に図示されるように、まず、第 1の化合物 3に貴金属粒子 2が接触した複合コ ロイド溶液 6を調製する第 1の工程を行う。次いで、同図の矢印より右側に図示される ように、この複合コロイド溶液 6中の貴金属粒子 2が接触した第 1の化合物 3の周囲に 第 2の化合物 4を形成させる第 2の工程を行う。
[0040] 第 1の工程では、複合コロイドを調製することが必要である。複合コロイドを調製する ことにより、複合コロイド溶液 6中で当該複合コロイドが均一に分散するので、貴金属 粒子 2が接した第 1の化合物 3同士が、溶液中で凝集することを抑制することができる
[0041] この第 1の工程では、後述するようにあらかじめ第 1の化合物 3を分散用保護材料 で包むこともできるし、また、分散用保護材料で包まなくてもよい。また、第 1の化合物 3に貴金属粒子を接触させる方法は、貴金属粒の還元処理でもよいし、また、他の方 法でもよい。
[0042] この第 1の工程の一例を、図 9の説明図を用いて説明する。図 8の矢印より左側に 図示されるように、まず第 1の化合物 3を分散用保護材料 7で包むことにより第 1の化 合物のコロイドを調製する。この分散用保護材料 7には、高分子化合物を用いること ができる。次に、図 9の矢印より右側に図示されるように、この分散用保護材料 7で包 まれた第 1の化合物 3のコロイドに貴金属を含有する溶液を接触させることにより第 1 の化合物 3に貴金属粒子 2が接触した複合コロイドを調製する。分散用保護材料 7は 、たとえば高分子化合物(ポリマー)や硝酸や酢酸などである。
[0043] この第 1の工程の別の例を、図 10の説明図を用いて説明する。図 10に示した例で は、同図の矢印より左側に図示されるように、まず、第 1の化合物 3の表面上に貴金 属粒子 2を担持させる。次に、同図の矢印より右側に図示されるように、この貴金属粒 子 2を担持させた第 1の化合物 3を、分散用保護材料 7で包むことにより第 1の化合物 3に貴金属粒子 2が接触した複合コロイドを調製する。
[0044] 第 2の工程で第 1の化合物 3の周囲に第 2の化合物 4を形成させる方法は、含浸法 でもよいし、また、包接法でもよい。
[0045] この第 2の工程の一例を、図 11の説明図を用いて説明する。同図に図示されるよう に、まず、第 1の工程を経て、分散用保護材料 7で包まれた複合コロイドを含む溶液 に、第 2の化合物の原料を加えることにより、この複合コロイドの周囲に、第 2の化合 物の前駆体 8を形成させる。次いで、この第 2の化合物の前駆体 8が形成された複合 コロイド溶液の固形分を分離して、焼成することにより、第 2の化合物の前駆体 8を第 2の化合物 4にする。
[0046] 本発明に係る排気ガス浄化用触媒の製造方法の実施形態を、より具体的に説明す る。 [0047] 上記排気ガス浄化用触媒 1は、平均粒子径 30[nm]以下の第 1の化合物 (アンカ 一剤) 3を PVP (ポリビニルピロリドン)等の高分子化合物で包むことにより第 1の化合 物(アンカー剤) 3のコロイドを調製し、第 1の化合物(アンカー剤) 3のコロイド上に平 均粒子径が 2 [nm]以上 10 [nm]以下の範囲内にある貴金属塩をエタノール等の還 元剤を利用して還元析出させることにより、第 1の化合物 (アンカー剤) 3に貴金属粒 子 2が接触したコロイド水溶液を調製することにより製造するとよい。なお、平均粒子 径 30 [nm]以下の第 1の化合物(アンカー剤) 3は、市販品を用いる、又は固相法, 液相法,気相法により調製することができる。
[0048] また、上記排気ガス浄化用触媒 1は、平均粒子径が 30[nm]以下の第 1の化合物( アンカー剤)剤 3を PVP (ポリビュルピロリドン)等の高分子化合物で包むことにより第 1の化合物 (アンカー剤) 3のコロイドを調製し、第 1の化合物 (アンカー剤) 3のコロイド 表面上に平均粒子径が 2[nm]以上 10[nm]以下の範囲内にある貴金属コロイドを 接触させることにより複合コロイド水溶液を調製することにより製造してもよい。
[0049] また、上記製造方法にお!、て、有機溶媒中に AIP (アルミニウムイソプロポキシド) や ZIP (ジルコニウムイソプロポキシド)等の第 2の化合物 4の有機塩を分散させた後、 有機溶媒中に調製されたコロイド水溶液を投入することにより有機塩を加水分解する 工程を行ってもよい。このような製造方法によれば、コロイドの周囲に酸ィ匕物を配置 することができる。
[0050] また、上記製造方法において、溶媒中に第 2の化合物 4の原料無機塩を分散させ、 溶媒中の無機塩を酸によって邂逅した後、溶媒中にコロイド水溶液を投入する工程 を行っても良い。なお、第 2の化合物 4が A1の酸ィ匕物である場合、上記原料無機塩 はべ一マイト、 Zrの酸ィ匕物である場合には、硝酸 Zrを用いることが望ましい。このよう な方法によれば、無機塩は有機塩より安価であるので、より安価にコロイドの周囲に 酸ィ匕物を配置させることができる。
[0051] 次に、本発明の排ガス浄化用触媒の製造方法の別の実施形態を説明する。これま で述べてきた排気ガス浄ィ匕用触媒の製造方法は、第 1の化合物に貴金属粒子が接 触した複合コロイド溶液を調製する工程を有していて、例えば、平均粒子径が 30nm 以下の第 1の化合物を高分子化合物で包むことにより第 1の化合物のコロイドを調製 した後、このコロイド上で貴金属塩を還元析出させることにより複合コロイド溶液を調 製等をしている。このように複合コロイド溶液を調製する理由は、一般にナノ粒子粉体 力 粉末の状態では一次粒子が凝集した二次粒子の集合体となっており、その二次 粒子の集合体を液中で第 2の化合物の前駆体と混合しても、凝集、分離してしまい、 均一に混合することが難しいからである。つまり、二次粒子を高分子化合物で包むこ とにより、コロイドィ匕し、凝集を抑制することで、第 2の化合物の前駆体と混合しても凝 集、分離することなぐ包接材としての第 2の化合物中でアンカー材としての第 1の化 合物が分散した触媒を得ることが可能である。
[0052] この高分子化合物による複合コロイドを用いることなぐ第 2の化合物の前駆体と混 合し、焼成後にアンカー材としての第 1の化合物の二次粒子が均一に分散した触媒 を得ることができる本実施形態の製造方法は平均一次粒子径 30nm以下の第 1の化 合物粒子が凝集して!/ヽる集合体を、二次粒径 300nm以下まで粉砕又は分散させる 工程と、この 300nm以下の第 1の化合物の二次粒子に貴金属粒子を担持させるェ 程と、この貴金属粒子を担持した第 1の化合物の粒子の周囲に第 2の化合物を形成 する工程とを有する。
[0053] 本実施形態では、平均一次粒子径 30nm以下の第 1の化合物粒子が凝集して、 2
/z m程度の二次粒子径になっている集合体を、二次粒径 300nm以下、より具体的 には 100〜300nm程度、一例としては 120nmにまで粉砕又は分散させる。この粉 砕又は分散は、湿式の粉砕機又は分散機を用いることができる。本実施形態に従い 、二次粒径 300nm以下に粉砕又は分散した第 1の化合物粒子は、液中で再凝集す ることなく、貴金属粒子を均一に担持することができる。また、高分子化合物からなる 保護材を用いることがなくても、第 2の化合物の前駆体と混合したときに、凝集、分離 せず、焼成後はアンカー材としての第 1の化合物の二次粒子が触媒中に均一に分散 した触媒を得ることができる。
[0054] また、高分子化合物よりなる保護材を用いて複合コロイド粒子を形成する場合には 、焼成時にこの高分子化合物が燃焼して、局所的に高温になることにより、貴金属粒 子が凝集し易くなるおそれがある。これに対して、本実施形態の製造方法によれば、 高分子化合物よりなる保護材を用いないことから、このような懸念は生じない。また、 高分子化合物は高価であるこめ、このような高分子化合物よりなる保護材を用いない ことは、コストの低減にも有利である。
[0055] 平均一次粒子径 30nm以下の第 1の化合物粒子が凝集して 、る集合体を、二次粒 径 300nm以下まで粉砕又は分散させる粉砕機又は分散機は、粒子を 300nm以下 に粉砕又は分散可能なものであれば、任意の装置を用いることができる。具体的に は、ビーズミル、高速ホモジナイザー、高圧衝突型粉砕機などである。
[0056] 粉砕機又は分散機により、粒径 300nm以下にした第 1の化合物の二次粒子に貴 金属粒子を担持させる工程は、幾つかの具体的態様がある。
[0057] 一つの具体的態様は、まず第 1の化合物粒子の集合体に、平均粒子径 30nm以下 の貴金属粒子を担持させ、次に、この貴金属が担持された第 1の化合物粒子の集合 体を、二次粒径 300nm以下まで粉砕機又は分散機により粉砕又は分散させるもの である。この粉砕又は分散により、粒径 300nm以下にした第 1の化合物の二次粒子 に貴金属粒子が担持される。この態様によって、第 1の化合物の二次粒子を、第 2の 化合物の前駆体中に均一に分散させることが可能となる。また、この工程を経て得ら れた排気ガス浄化用触媒の CO吸着率は、貴金属粒子が Ptの場合で 100[g/m2-メタ ル]以上を得ることができる。
[0058] 別の具体的態様は、平均粒子径 30nm以下の貴金属粒子を、第 1の化合物粒子 の集合体の粉砕又は分散工程中に当該第 1の化合物粒子に担持させるものである。 粉砕機又は分散機による第 1の化合物粒子の集合体の粉砕又は分散工程の途中で 、この粉砕機又は分散機内に貴金属粒子を加えることにより、粒径 300nm以下にし た第 1の化合物の二次粒子に貴金属粒子が担持される。この態様によって、粉砕機 又は分散機内で第 1の化合物が所望の二次粒径になった状態で貴金属粒子を直接 的に担持させるため、二次粒径 300nm以下の第 1の化合物の各二次粒子の表面に 、貴金属粒子が均一に担持される。その結果、触媒の活性がより向上する。また、こ の工程を経て得られた排気ガス浄ィ匕用触媒の CO吸着率は、貴金属粒子が Ptの場 合で 150[g/m2-メタル]以上を得ることができる。貴金属粒子を加えるタイミングは、粉 砕機又は分散機による第 1の化合物粒子の集合体の粉砕又は分散工程の初期段階 でも良いし、中期段階でも良いし、終期段階でも良い。所望の第 1の化合物の二次 粒径に応じて、加えるタイミングを定めればよい。
[0059] 別の具体的態様は、平均粒子径 30nm以下の貴金属粒子を、二次粒径 300nm以 下まで粉砕又は分散させた後に当該第 1の化合物の二次粒子に担持させるものであ る。粉砕又は分散を終えた粉砕機又は分散機内で、あるいは粉砕機又は分散機外 で、貴金属粒子を二次粒径 300nm以下の第 1の化合物の二次粒子に担持させる。 この態様によって、粉砕又は分散によって所望の二次粒径になった状態の第 1の化 合物に貴金属粒子の担持を行うため、この第 1の化合物の各二次粒子の表面に均 一に貴金属粒子が担持される。その結果、触媒の活性がより向上する。また、このェ 程を経て得られた排気ガス浄ィ匕用触媒の CO吸着量は、貴金属粒子が Ptの場合で 1 50[g/m2-メタル]以上を得ることができる。
[0060] (実施例)
以下、本発明を実施例に基づいて具体的に説明する。
[0061] [触媒粉末の製造方法]
始めに、以下の表 1及び表 2に示す実施例 1〜14、実施例 20〜25及び比較例 1の 触媒粉末の製造方法にっ 、て説明する。
[表 1]
Figure imgf000018_0001
第 1の化 貴金属と 耐久後の
貴金属粒 第 1の化 第 2の化 合物の平 第 1の化 貴金属
貴金属
の製法 合物 合物 均粒子径 合物との 子径
Cnm ) 接触(%) (nm;
実施例 1 Pt ; JS兀析出 Ce 02 Al203 7 95 3.5 21 .1 実施例 1 2 Pt 還元析出 Ce 02 Al203 7 96 3.4 21 .1 実施例 1 3 Pt コロイド Ce 02 Al203 7 82 3.4 21 .1 実施例 1 4 Pt コロイド Ce02 Al203 7 84 3.5 21 , 1
[0062] 〔実施例 1〕
実施例 1では、始めに、水:エタノール = 1: 1の混合溶液中に界面活性剤であるポ リビュルピロリドンを界面活性剤 Z溶媒比 =0. 15 [mol/L比]となるように混合,攪拌 した後、溶液に酢酸 Ceを加えて攪拌する。そして、攪拌完了後、溶液にアンモニアを 加えてさらに 2時間攪拌することにより Ceコロイド溶液を調製した。次に、 Ceコロイド 溶液にジニトロジァミン Pt塩を加えた後、エタノールをカ卩えて 80 [°C]まで昇温するこ とにより Pt塩を析出させる。次に、へキシレンダリコール溶液中にアルミニウムイソプロ ポキシドを溶カゝした後、溶液中に Pt塩を投入する。そして、エバポレータ中で溶液を 減圧乾燥した後、さらに 120[°C]の乾燥機中で乾燥させることにより触媒粉末を調製 する。そして最後に、 400[°C]の空気中で触媒粉末を焼成することにより実施例 1の
* Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
[0063] なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。また、 TEM観察
2
の結果、 Pt (貴金属)と CeO (第 1の化合物)の平均粒子径はそれぞれ 2. 3及び 7[n
2
m]であった。また、 Ptと CeOの接触率は 95 [%]であった。なお、本実施例と以下に
2
示す実施例及び比較例においては、接触率は、 TEM— EDXを利用して 50点の E DXスポット(5 [nm])それぞれについてスポット内部に存在する貴金属と第 1の化合 物の比を測定し、測定結果力も縦軸 Pt[atom%]及び横軸 Ce[atom%]の直線の傾きを 求めることにより算出した。具体的には、 Ptが 3 [atom%] , Ceが 10[atom%]である場合 、 Ptと Ceが 100[%]接触していれば傾きは 3Z10となるので、直線の傾きが 2Z10 である場合には接触率は 67[%] (= {0. 2/0. 3} X 100)となる。
[0064] 更に、この粉末のアルミナ部分の平均細孔径を測定するため、 Pt/CeO部を抜!、て
2
、同様の調製処理を行い、得られた粉末の平均細孔径は、 6.2應であった。したがつ て、本実施例の粉末のアルミナ部の平均細孔径も同様の数値と考える。
[0065] 〔実施例 2〕
実施例 2では、界面活性剤 Z溶媒比 =0. 07[mol/L比]とした以外は上記実施例 1 と同様の処理を行うことにより、実施例 2の Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 2. 4及び 28 [nm]で
2
あった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0066] 〔実施例 3〕
実施例 3では、界面活性剤 Z溶媒比 =0. 35 [mol/L比]とした以外は上記実施例 1 と同様の処理を行うことにより、実施例 3の Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 2. 4[nm]及び l [nm
2
]以下であった。また、 Ptと CeOの接触率は 96 [%]であった。
2
[0067] 〔実施例 4〕
実施例 4では、実施例 1にお 、て 120 [°C]の乾燥機中で乾燥させることにより調製 された触媒粉末を再度水とエタノールの混合溶液中に投入した後、溶液中にジ-ト ロジァミン Pt塩を投入する。そして、溶液を 80 [°C]まで昇温することにより Ptを析出さ せた後、 400[°C]の空気中で焼成することにより実施例 4の Pt, CeO /Al O触媒
2 2 3 粉末を調製した。なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。
2
また、エタノールをカ卩えて溶液を 80 [°C]まで昇温することにより調製された Pt量と溶 液を 80 [°C]まで昇温する工程とにより調製された Pt量の比は 8 : 2であった。また、 T EM観察の結果、 Ptと CeOの平均粒子径はそれぞれ 2. 4及び 7 [nm]であった。ま
2
た、 Ptと CeOの接触率は 82 [%]であった。
2
[0068] 〔実施例 5〕
実施例 5では、エタノールを加えて溶液を 80 [°C]まで昇温することにより調製され た Pt量と溶液を 80 [°C]まで昇温する工程とにより調製された Pt量の比を 7 : 3とした 以外は実施例 4と同様の処理を行うことにより、実施例 5の Pt, CeO /Al O触媒粉
2 2 3 末を調製した。なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 2. 4
2
及び 7 [nm]であった。また、 Ptと CeOの接触率は 75 [%]であった。
2
[0069] 〔実施例 6〕 実施例 6では、酢酸 Ceを酢酸 Ce :酢酸 Zr= 2 : 1の混合塩に変更した以外は実施 例 1と同様の処理を行うことにより、実施例 6の Pt, Ce-Zr-O /Al O触媒粉末を
2 3
調製した。なお、この触媒粉末では、 Ptと Ce— Zr— Oの平均粒子径はそれぞれ 2. 3及び 11 [nm]であった。また、 Ptと Ce— Zr— Oの接触率は 93 [%]であった。
[0070] 〔実施例 7〕
実施例 7では、アルミニウムイソプロポキシドをジルコニウムイソプロポキシドに変更 した以外は実施例 1と同様の処理を行うことにより実施例 7の Pt, CeO /ZrO触媒
2 2 粉末を調製した。なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 2.
2
2及び 7 [nm]であった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0071] 〔実施例 8〕
実施例 8では、へキシレンダリコール溶液中に Pt塩を投入した後にさらに酢酸 Laを 加えた以外は実施例 1と同様の処理を行うことにより、実施例 8の Pt, CeO /Al O
2 2 3
+ La触媒粉末を調製した。なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%) ,
2
La— Al O (3wt%)であった。また、 Ptと CeOの平均粒子径はそれぞれ 2· 3及び 7[
2 3 2
nm]であった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0072] 〔実施例 9〕
実施例 9では、アルミニウムイソプロポキシドをジルコニウムイソプロポキシドに変更 した以外は実施例 8と同様の処理を行うことにより実施例 9の Pt, CeO /ZrO +La
2 2 触媒粉末を調製した。なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%) , ZrO
2 2
+La (3wt%)であった。また、 Ptと CeOの平均粒子径はそれぞれ 2· 2及び 7[nm]で
2
あった。また、 Ptと CeOの接触率は 92 [%]であった。
2
[0073] 〔実施例 10〕
実施例 10では、ジニトロジァミン Pt塩を硝酸 Pd塩に変更した以外は実施例 1と同 様の処理を行うことにより実施例 10の Pd, CeO /Al O触媒粉末を調製した。なお
2 2 3
、この触媒粉末では、 Pdと CeOの平均粒子径はそれぞれ 3. 5及び 7 [nm]であった
2
。また、 Pdと CeOの接触率は 91 [%]であった。
2
[0074] 〔実施例 11〕
実施例 11では、ジニトロジァミン Pt塩を硝酸 Rh塩に変更した以外は実施例 1と同 様の処理を行うことにより実施例 11の Rh, CeO /ZrO触媒粉末を調製した。なお
2 2
、この触媒粉末では、 Rhと CeOの平均粒子径はそれぞれ 2. 1及び 7[nm]であった
2
。また、 Rhと CeOの接触率は 92 [%]であった。
2
[0075] 〔実施例 20〕
実施例 20では、界面活性剤 Z溶媒比 =0. 04[mol/L比]とした以外は上記実施例 1と同様の処理を行うことにより、実施例 20の Pt, CeO 触媒粉末を調製した
2 ZA1 O
2 3
。なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 2. 3及び 35 [nm]
2
であった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0076] 〔実施例 21〕
実施例 21では、 Pt塩を析出させる際にエタノールを入れない以外は上記実施例 1 と同様の処理を行うことにより、実施例 21の Pt, CeO 末を調製した。
2 ZA1 O触媒粉
2 3
なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 1. 5 [nm]以下及び 7
2
[nm]であった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0077] 〔実施例 22〕
実施例 22では、 Ceコロイド溶液の調製の代わりに市販のセリアコロイドゾル水溶液 を用い、貴金属析出工程を行わない以外は上記実施例 1と同様の処理を行うことに より、実施例 22の Pt, CeO た。なお、この触媒粉末では
2 ZA1 O触媒粉末を調製し
2 3
、 Ptと CeOの平均粒子径はそれぞれ 1· 5 [nm]以下及び 48 [nm]であった。また、
2
Ptと CeOの接触率は 95 [%]であった。
2
[0078] 〔実施例 23〕
実施例 23では、平均粒子径が 50nmの市販のナノセリア粉末に、ジニトロジァミン P t水溶液を含浸担持し、一旦乾燥、焼成後、 Pt (0. 3%) Zセリア粉末を得た。得られ た粉末を一旦、イオン交換水に投入し、超音波を照射し、懸濁させながら、界面活性 剤として、ポリビニルピロリドンを投入し、均一になるまで、攪拌混合を行った。このよう にして、セリアの平均粒子径が、 50nmの粉末分散コロイド溶液を得た。一方、所定量 のべ一マイト粉末と、硝酸セリウム、酢酸および、イオン交換水をロータリーエバポレ ータに付属のナス型フラスコに投入し、一旦攪拌した後、上記コロイド溶液を滴下し た。その後、ナス型フラスコをオイルバスにセットし、 80°Cで、真空乾燥させた。その 後、 400°Cまで、徐々に昇温した後、 1時間、空気気流中で焼成して、実施例 23の 触媒粉末を得た。なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 1.
2
5 [nm]以下及び 50[nm]であった。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0079] 〔実施例 24〕
実施例 24では、ボールミルにて粉砕した平均粒子径 2. 5 μ mの CeOを、溶液に
2
加えた Ceコロイド溶液を調製し、還元処理を経な 、で Ptを担持させた以外は上記実 施例 1と同様の処理を行うことにより、実施例 24の Pt, CeO
2 ZA1 O触媒粉末を調 2 3
製した。なお、この触媒粉末では、 Ptと CeOの平均粒子径はそれぞれ 1. 5 [nm]以
2
下及び 2500 [nm]であった。また、 Ptと CeOの接触率は 82 [%]であった。
2
[0080] 〔実施例 25〕
実施例 25では、界面活性剤 Z溶媒比 =0. 0015 01/し比]として調製したじ6コロ イド溶液に、貴金属担持濃度を 3. 0%とし、還元処理を経ないで Ptを担持させた以 外は上記実施例 1と同様の処理を行うことにより、実施例 25の Pt, CeO
2 ZA1 O触 2 3 媒粉末を調製した。なお、この触媒粉末では、 Ptと CeOの
2 平均粒子径はそれぞれ 1
. 5 [nm]以下及び 500 [nm]であった。また、 Ptと CeOの接触率は 73 [%]であった
2
[0081] 〔比較例 1〕
比較例 1では、活性アルミナに硝酸 Ce水溶液を含浸担持し、 120°Cで乾燥後、 40 0°Cで空気気流中 1時間焼成することで、 CeO担持アルミナ粉末を得た。この粉末
2
に更にジニトロジァミン Pt水溶液を含浸担持し、比較例 1の触媒粉末を得た。この粉 末の; Pt量は 0. 3wt%、 CeO量は 10%である。なお、この触媒粉末では、 Ptと Ce
2
Oの平均粒子径はそれぞれ 1. 5 [nm]以下及び 600 [nm]であった。また、 Ptと Ce
2
oの接触率は 11 [%]であった。
2
[0082] 〔実施例 12〕
実施例 12では、始めに、水:エタノール = 1: 1の混合溶液中に界面活性剤である ポリビュルピロリドンを界面活性剤 Z溶媒比 =0. 15 [mol/L比]となるように混合,攪 拌した後、溶液に酢酸 Ceを加えて攪拌する。そして、攪拌完了後、溶液にアンモ- ァを加えてさらに 2時間攪拌することにより Ceコロイド溶液を調製した。次に、 Ceコロ イド溶液にジニトロジァミン Pt塩をカ卩えた後、エタノールをカ卩えて 80 [°C]まで昇温す ることにより Pt塩を析出させる。次に、水中にベーマイトを分散させた後、酢酸を投入 することにより pH= 4とした状態でベーマイトを邂逅させる。そして、ベーマイトが邂逅 した水中に Pt塩を投入した後、 120[°C]の乾燥機中で乾燥させることにより触媒粉 末を調製する。そして最後に、 400[°C]の空気中で触媒粉末を焼成することにより実 施例 12の Pt, CeO ZA1 O触媒粉末を調製した。なお、この触媒粉末の組成は Pt
2 2 3
(0.3wt%) , CeO (10%)であった。また、 Ptと CeOの平均粒子径はそれぞれ 2· 4及
2 2
び 7 [nm]であった。また、 Ptと CeOの接触率は 96 [%]であった。
2
[0083] 〔実施例 13〕
実施例 13では、始めに、水:エタノール = 1: 1の混合溶液中に界面活性剤である ポリビュルピロリドンを界面活性剤 Z溶媒比 =0. 15 [mol/L比]となるように混合,攪 拌した後、溶液に酢酸 Ceを加えて攪拌する。そして、攪拌完了後、溶液にアンモ- ァをカ卩えてさらに 2時間攪拌することにより Ceコロイド溶液を調製し、さらに Ceコロイド 溶液に平均粒子径 2 [nm]の Ptコロイドをカ卩えることにより Pt塩を析出させた。次に、 へキシレンダリコール溶液中にアルミニウムイソプロボキシドを溶力した後、溶液中に Pt塩を投入する。そして、エバポレータ中で溶液を減圧乾燥した後、さら〖こ 120[°C] の乾燥機中で乾燥させることにより触媒粉末を調製する。そして最後に、 400[°C]の 空気中で触媒粉末を焼成することにより実施例 13の Pt, CeO ZA1 O触媒粉末を
2 2 3
調製した。なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。また、 Pt
2
と CeOの平均粒子径はそれぞれ 2· 2及び 7 [nm]であった。また、 Ptと CeOの接触
2 2 率は 82[%]であった。
[0084] 〔実施例 14〕
実施例 14では、始めに、水:エタノール = 1: 1の混合溶液中に界面活性剤である ポリビュルピロリドンを界面活性剤 Z溶媒比 =0. 15 [mol/L比]となるように混合,攪 拌した後、溶液に酢酸 Ceを加えて攪拌する。そして、攪拌完了後、溶液にアンモ- ァをカ卩えてさらに 2時間攪拌することにより Ceコロイド溶液を調製し、さらに Ceコロイド 溶液に平均粒子径 2 [nm]の Ptコロイドをカ卩える。次に、水中にベーマイトを分散させ た後、酢酸を投入することにより pH=4とした状態でベーマイトを邂逅させた。そして 、ベーマイトが邂逅した水中に Pt塩を投入した後、 120[°C]の乾燥機中で乾燥させ ることにより触媒粉末を調製する。そして最後に、 400[°C]の空気中で触媒粉末を焼 成することにより実施例 12の Pt, CeO ZA1 O触媒粉末を調製した。なお、この触
2 2 3
媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。なお、この触媒粉末では、 Ptと
2
CeOの平均粒子径はそれぞれ 2· 2及び 7 [nm]であった。また、 Ptと CeOの接触
2 2 率は 84[%]であった。
[0085] 気ガス浄化用触媒の製造方法]
次に、実施例 1及び比較例 1の触媒粉末を用 、た排気ガス浄ィ匕用触媒の実施例 1 5〜19、比較例 2について説明する。
[0086] 〔実施例 15〕
実施例 15では、実施例 1の触媒粉末 180[g] ,アルミナゾル 20[g] ,水 290[g] , 及び硝酸 10 [g]を磁性ボールミルに投入し、混合粉砕することにより触媒スラリーを 調製した。そして、触媒スラリーをコーデヱライトモノリス担体 (0. 12L, 400セル)に 付着させ、空気流によってセル内の余剰スラリーを取り除き、 130 [°C]で乾燥させた 後、 400[°C]で 1時間焼成することにより、コート層 100[gZL]の実施例 15の排気ガ ス浄化用触媒を調製した。
[0087] 〔実施例 16〕
実施例 16では、実施例 15の触媒に硝酸 Feを含浸することにより実施例 16の排気 ガス浄化用触媒を調製した。
[0088] 〔実施例 17〕
実施例 17では、硝酸 Feを硝酸 Coに変更した以外は実施例 16と同様の処理を行う ことにより実施例 17の排気ガス浄ィ匕用触媒を調製した。
[0089] 〔実施例 18〕
実施例 18では、硝酸 Feを硝酸 Niに変更した以外は実施例 16と同様の処理を行う ことにより実施例 18の排気ガス浄ィ匕用触媒を調製した。
[0090] 〔実施例 19〕
実施例 19では、硝酸 Feを硝酸 Mnに変更した以外は実施例 16と同様の処理を行 うことにより実施例 19の排気ガス浄ィ匕用触媒を調製した。 [0091] 〔比較例 2〕
比較例 2では、実施例 1の触媒粉末の代わりに比較例 1の触媒粉末を用いた以外 は実施例 15と同様の処理を行うことにより比較例 2の排気ガス浄ィ匕用触媒を調製し た。
[0092] 〔実施例 26〕
実施例 26では、始めに、水:エタノール = 1: 1の混合溶液中に界面活性剤である ポリビュルピロリドンを界面活性剤 Z溶媒比 =0. 15 [mol/L比]となるように混合,攪 拌した後、溶液に酢酸 Ceを加えて攪拌する。そして、攪拌完了後、溶液にアンモ- ァを加えてさらに 2時間攪拌することにより Ceコロイド溶液を調製した。次に、 Ceコロ イド溶液にジニトロジァミン Pt塩をカ卩えた後、エタノールをカ卩えて 80 [°C]まで昇温す ることにより Pt塩を析出させる。
[0093] 一方、ベーマイトを分散させた水溶液中に、上記コロイド溶液を投入する。そして、 エバポレータ中で溶液を減圧乾燥した後、さらに 120 [°C]の乾燥機中で乾燥させる ことにより触媒粉末を調製する。そして最後に、 400[°C]の空気中で触媒粉末を焼 成することにより実施例 26の Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
[0094] なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。この触媒粉末で
2
は、 Ptと CeOの平均粒子径はそれぞれ 1· 5 [nm]以下及び 50[nm]であった。また
2
、 Ptと CeOの接触率は 94 [%]であった。また、 TEM観察の結果、 Pt (貴金属)と Ce
2
O (化合物 A)の平均粒子径はそれぞれ 2· 3及び 7 [nm]であった。また、 Ptと CeO
2 2 の接触率は 95 [%]であった。
[0095] 更に、この粉末のアルミナ部分の平均細孔径を測定するため、 Pt/CeO部を抜いて
2
、同様の調製処理を行い、得られた粉末の平均細孔径は、 20.6nmであった。従って 、本実施例の粉末のアルミナ部の平均細孔径も同様の数値と考える。
[0096] 〔実施例 27〕
実施例 27では、平均粒子径が lOlnmの市販のナノセリア粉末に、ジニトロジァミン Pt水溶液を含浸担持し、一旦乾燥、焼成後、 Pt (0. 3%) Zセリア粉末を得た。得ら れた粉末を一旦、イオン交換水に投入し、超音波を照射し、懸濁させながら、界面活 性剤として、ポリビニルピロリドンを投入し、均一になるまで、攪拌混合を行った。この ようにして、セリアの平均粒子径カ lOlnmの粉末分散コロイド溶液を得た。
[0097] 一方、ベーマイトを分散させた水溶液中に、上記コロイド溶液を投入する。そして、 エバポレータ中で溶液を減圧乾燥した後、さらに 120 [°C]の乾燥機中で乾燥させる ことにより触媒粉末を調製する。そして最後に、 400[°C]の空気中で触媒粉末を焼 成することにより実施例 27の Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
[0098] なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。また、 TEM観察
2
の結果、 Ptと CeOの平均粒子径はそれぞれ 1· 5 [nm]以下及び 101 [nm]であった
2
。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0099] 更に、この粉末のアルミナ部分の平均細孔径を測定するため、 Pt/CeO部を抜!、て
2
、同様の調製処理を行い、得られた粉末の平均細孔径は、 6.2nmであった。従って、 本実施例の粉末のアルミナ部の平均細孔径も同様の数値と考える。
[0100] 〔実施例 28〕
実施例 28では、平均粒子径が lOlnmの市販のナノセリア粉末に、ジニトロジァミン Pt水溶液を含浸担持し、一旦乾燥、焼成後、 Pt (0. 3%) Zセリア粉末を得た。得ら れた粉末を一旦、イオン交換水に投入し、超音波を照射し、懸濁させながら、界面活 性剤として、ポリビニルピロリドンを投入し、均一になるまで、攪拌混合を行った。この ようにして、セリアの平均粒子径カ lOlnmの粉末分散コロイド溶液を得た。
[0101] 一方、ベーマイトを分散させた水溶液中に、上記コロイド溶液を投入する。そして、 エバポレータ中で溶液を減圧乾燥した後、さらに 120 [°C]の乾燥機中で乾燥させる ことにより触媒粉末を調製する。そして最後に、 400[°C]の空気中で触媒粉末を焼 成することにより実施例 28の Pt, CeO ZA1 O触媒粉末を調製した。
2 2 3
[0102] なお、この触媒粉末の組成は Pt (0.3wt%), CeO (10%)であった。また、 TEM観察
2
の結果、 Ptと CeOの平均粒子径はそれぞれ 1· 5 [nm]以下及び 101 [nm]であった
2
。また、 Ptと CeOの接触率は 94 [%]であった。
2
[0103] 更に、この粉末のアルミナ部分の平均細孔径を測定するため、 Pt/CeO部を抜いて
2
、同様の調製処理を行い、得られた粉末の平均細孔径は、 20.6nmであった。従って 、本実施例の粉末のアルミナ部の平均細孔径も同様の数値と考える。
[0104] 〔実施例 29〕 実施例 29は、排気ガス浄ィ匕用触媒を製造するにあたり、第 1の化合物の二次粒子 の集合体を、分散機を用いて分散させることにより、複合コロイド溶液を調製すること なく製造した例であり、なかでも、貴金属粒子を第 1の化合物の二次粒子の集合体に 担持させた後に、分散機により分散させた例である。
[0105] まず、 Pt粒子を第 1の化合物である CeOの微細二次粒子に担持させるために、 Ce
2
-Zr-0化合物粉末を水中に分散させ、ジニトロジァミン Pt硝酸酸性溶液を滴下し 、攪拌した。次いで、蒸発乾固の後に 400°Cで 1時間の空気気流中で焼成した。焼成 された粉末は、貴金属粒子と第 1の化合物の二次粒子の集合体であり、平均粒径は 2 μ mであつ 7こ。
[0106] 得られた粉末を市販のビーズミル (ビーズ径 0.3mm)によって分散させ、平均粒径を 120nmとした。
[0107] 分散させた二次粒子を含むスラリと、予め硝酸溶液で開謬したベーマイトスラリとを 混合し、ホモジナイザ等で強力に攪拌した。攪拌後のスラリをスプレードライ等により 乾燥させた。
[0108] 乾燥させた粉末を 550°Cで 3時間、空気気流中で焼成し PtZCeO /A120触媒を得
2 3 た。
[0109] 〔実施例 30〕
実施例 30は、実施例 29と同様に、排気ガス浄ィ匕用触媒を製造するにあたり、第 1 の化合物の二次粒子の集合体を、分散機を用いて分散させることにより、複合コロイ ド溶液を調製することなく製造した例であり、なかでも、第 1の化合物の二次粒子の集 合体を分散させた後に、貴金属粒子を担持させた例である。
[0110] まず、 Ce— Zr— 0化合物粉末を水中に分散させ、市販のビーズミル (ビーズ径 0.3 mm)にて 120nm程度に分散させた。次に、このビーズミル内にジニトロジァミン Pt硝酸 酸性溶液を滴下し、さらに分散を行った。
[0111] 分散させた二次粒子を含むスラリと、予め硝酸溶液で開謬したベーマイトスラリとを 混合し、ホモジナイザ等で強力に攪拌した。攪拌後のスラリをスプレードライ等により 乾燥させた。
[0112] 乾燥させた粉末を 550°Cで 3時間、空気気流中で焼成し PtZCeO /A120触媒を得 た。
[0113] 〔実施例 31〕
実施例 31は、実施例 30と同様に、排気ガス浄ィ匕用触媒を製造するにあたり、第 1 の化合物の二次粒子の集合体を、分散機を用いて分散させることにより、複合コロイ ド溶液を調製することなく製造した例であり、また、第 1の化合物の二次粒子の集合 体を分散させた後に、貴金属粒子を担持させた例である。かつ、この貴金属粒子の 担持を、分散機外で行った例である。
[0114] まず、 Ce— Zr— 0化合物粉末を水中に分散させ、市販のビーズミル (ビーズ径 0.3 mm)にて 120nm程度に分散させた。分散させたのち、スラリをビーカに移し攪拌を続 けた。このビーカにジニトロジァミン Pt硝酸酸性溶液を滴下し、さらに攪拌を続けた。
[0115] 分散させた二次粒子を含むスラリと、予め硝酸溶液で開謬したベーマイトスラリとを 混合し、ホモジナイザ等で強力に攪拌した。攪拌後のスラリをスプレードライ等により 乾燥させた。
[0116] 乾燥させた粉末を 550°Cで 3時間、空気気流中で焼成し PtZCeO /A120触媒を得
2 3 た。
[0117] 〔実施例 32〕
実施例 32は、実施例 29と同様に、排気ガス浄ィ匕用触媒を製造するにあたり、第 1 の化合物の二次粒子の集合体を、分散機を用いて分散させることにより、複合コロイ ド溶液を調製することなく製造した例であり、なかでも、第 1の化合物の二次粒子の集 合体を分散させる前に、貴金属粒子を分散機に加えて、分散機内で第 1の化合物を 分散させながら貴金属粒子を担持させた例である。
[0118] まず、 Zr— La— 0化合物粉末を水中に分散させ、市販のビーズミル(ビーズ径 0.3m m)に投入した。また、ジニトロジァミン Pt硝酸酸性溶液を同様にビーズミルに加え、ビ ーズミル内で分 120nm程度に分散を行った。
[0119] 分散させた二次粒子を含むスラリと、予め硝酸溶液で開謬したベーマイトスラリとを 混合し、ホモジナイザ等で強力に攪拌した。攪拌後のスラリをスプレードライ等により 乾燥させた。
[0120] 乾燥させた粉末を 550°Cで 3時間、空気気流中で焼成し PtZCeO /A120触媒を得 た。
[0121] [耐久試験]
次に、実施例 1〜32及び比較例 1〜2の排気ガス浄ィ匕用触媒それぞれについて、 耐久試験を行った結果を説明する。
[0122] 〔試験方法〕
上記実施例 1〜14、実施例 20〜25、実施例 29〜32及び比較例 1の触媒粉末に ついては、 900 [°C]の大気雰囲気炉中で触媒粉末を 3時間焼成する耐久試験を行 い、耐久試験後の貴金属粒子の平均粒子径を TEMを用いて測定した。また、実施 例 15〜19、実施例 26〜28及び比較例 2の排気ガス浄ィ匕用触媒については、排気 量 3500 [cc]のエンジンの排気系に実施例 15〜 19及び比較例 2の排気ガス浄化用 触媒を装着し、入口温度を 800 [°C]として 30時間エンジンを稼働させる耐久試験を 行った後、排気ガス浄化用触媒を模擬排気ガス流通装置に組み込み、以下の表 3に 示す組成の模擬排気ガスを流通させ、 400 [°C]における入口側及び出口側の HC 濃度から実施例 15〜 19及び比較例 2の排気ガス浄化用触媒それぞれの 400 [°C] における HC浄ィ匕率( r? HC) [%]を算出した。
[表 3] ガス組成 ス卜ィキ
z値(-) 1.000
A/F (-) 14.5
NO(ppm) 1000
CO(%) 0.6
H2(%) 0.2
o2 (%) 0.6
C02 (%) 13.9
HC (ppmC) 1665
H20(%) 10
N2 〈/、'ランス) 残部
SV=6万 h—1
[0123] 〔試験結果〕
上記耐久試験の結果を表 1, 2及び表 4に示す。 [表 4]
Figure imgf000031_0001
[0124] 表 1, 2から明らかなように、比較例 1の触媒粉末では、耐久試験前後で貴金属の平 均粒子径が大きく変化 (増力!])しているのに対して、実施例 1〜14、実施例 20〜25 の触媒粉末では、耐久試験前後で貴金属の平均粒子径は大きく変化していない。ま た、表 4から明らかなように、比較例 2の排気ガス浄化用触媒では、耐久試験残後で HC転ィ匕率が大幅に低下して 、るのに対して、実施例 15〜 19の排気ガス浄ィ匕用触 媒では、耐久試験前後で HC転ィ匕率は大幅に低下していない。このことから、本実施 例の触媒粉末及び排気ガス浄化用触媒によれば、第 1の化合物による貴金属粒子 の活性向上効果を維持できることが知見される。
[0125] また、実施例 5の触媒粉末のように第 1の化合物と接触している貴金属の割合が 80
[%]以下であると、他の実施例と比較して貴金属のシンタリングが進んでいる。このこ とから、第 1の化合物による貴金属の活性向上効果をより維持するためには、貴金属 の 80 [%]以上は第 1の化合物に接触して 、ることが望まし 、ことがわかる。
[0126] また、実施例 16〜19の排気ガス浄化用触媒のように排気ガス浄化用触媒の中に { Fe, Co, Ni, Mn}の中から選ばれる少なくとも 1つの元素の化合物を含有させた場 合には、実施例 15の排気ガス浄ィ匕用触媒のように含有させない場合と比較して耐久 試験前後の HC転ィ匕率の低下率が低い。このことから、第 1の化合物による貴金属の 活性向上効果をより維持するためには、排気ガス浄化用触媒の中に {Fe, Co, Ni, Mn}の中力 選ばれる少なくとも 1つの元素の化合物を含有させることが望まし 、こと がわカゝる。 [0127] また、実施例 8及び実施例 9の触媒粉末のように第 2の化合物の中に Laを含有させ た場合には、させな!/、場合と比較して耐久試験前後の貴金属粒子径の変化量が小 さい。このことから、第 1の化合物による貴金属の活性向上効果をより維持するために は、第 2の化合物の中に Laを含有させた方がょ 、ことがわかる。
[0128] また、実施例 15、実施例 26〜28について、貴金属粒子を担持した第 1の化合物 の複合粒子の平均粒径 Daと、第 2の化合物に形成されている細孔の平均細孔径 Db と、この複合粒子のサイズ Daと平均細孔径 Dbの比と、耐久試験後の第 2の化合物の 結晶成長性と、 r? HCとを調べた。
[0129] 二次粒子の平均細孔径の測定は、島津製作所製の ASAP2120を用いた。前処理と して 300°Cに加熱して脱ガス処理し、 1 μ mHgになるまで真空脱気して吸着水を除 去した。また、測定とは、 N吸着法により行った。
2
[0130] また、結晶成長性の測定は、耐久試験前後のサンプルをそれぞれ XRDにより測定 し、各々の CeO
2の結晶子の径について、結晶成長 = (耐久試験後の結晶子径) Z( 初期結晶子径)の式により算出した。装置はマックスサイエンス社製の X線回折装置 ( MXP18VAHF)、測定条件は、 X線波長が CuK 、連続法により、 5° 〜90° 測定 範囲で、サンプリング間隔 0.02、スキャン速度 4° Zmin、電圧 40kV、電流 300m A、発散スリット 1.0° 、散乱スリット 1.0° 、受光スリット 0.3mmで行った。
[0131] これらの測定結果を表 5に示す。
[表 5] 耐久後
第二の化合物
貴金属担持 の
第二の化合物の
第一の化合物粒 平均細孔径 Da/Db (-) η HC(%) 結晶成長(一)
径(nm);Da (nm
; Db
実施例 15 7.0 6.2 1.1 3.9 75 実施例 26 7.0 20.6 0.3 20.6 52 実施例 27 101 6.2 16.3 1.4 65 実施例 28 101 20.6 4.9 1.6 67 比較例 2 2500 6.2 403.2 1.1 32 [0132] 表 5から、実施例 15及び実施例 26〜28はいずれも、比較例 2と比較して、 r? HCに 優れていることがわかる。なかでも、 Da/Dbの比が 10以上である実施例 15、実施 例 27及び実施例 28は、第 1の化合物の移動及び凝集が抑制されることから、第 2の 化合物の結晶成長性が小さぐより優れた排ガス浄ィ匕特性を有している。
[0133] 次に、実施例 29〜32に従って製造された排気ガス浄ィ匕用触媒の初期粒子径と、 耐久試験後の貴金属粒子の粒子径について測定した結果を表 6に示す。
[表 6]
Figure imgf000033_0001
[0134] 表 6から、実施例 29〜32に従って製造された排気ガス浄ィ匕用触媒についても、耐 久試験後の貴金属粒子の粒径が小さぐつまり、凝集が抑制されている。この結果、 優れた排気ガスの浄ィ匕性能を具備して 、る。
[0135] また、実施例 29〜32に従って製造された排気ガス浄ィ匕用触媒について、 CO吸着 量の測定を行い、実施例 29については吸着量が 100[g/m2-メタル]以上、実施例 30 〜32については 150[g/m2-メタル]以上であることが確認された。この CO吸着量の 測定結果から、実施例 29〜32の排気ガス浄化用触媒は、貴金属粒子が、第 1の化 合物上に分散して担持されていて、すなわち、凝集が抑制されていることが判明した
[0136] なお、この CO吸着量の測定は、装置として日本ベル株式会社の、 BEL-METAL-3 を用い、前処理条件として、まず Heが 100%のガス気流中、 10°CZ分で 400°Cまで 昇温し、次いで 400°Cにおいて、 O力 100%のガス気流中、 15分間酸化処理し、次 いで、 Heが 100%のガスにて 5分間パージし、次いで 400°Cにおいて、 H力 0%で
2 残部が Heのガス気流中、 15分間還元処理し、次いで Heが 100%のガス気流中、 5 0°Cまで降温させた。 CO吸着量測定として、 COが 10%で残部が Heのガスをパルス 的に流入させ、 Ptの場合には単位吸着量 (cm3Zg) =総吸着量 Z試料重量から、 C O吸着量 (g/m2-メタル) =単位吸着量 X 214. 94ZPt担持量 (wt%)として求めたも のである。
以上、本発明者らによってなされた発明を適用した実施の形態について説明した 力 この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は 限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされ る他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは 勿論であることを付けカ卩えておく。

Claims

請求の範囲
[1] 貴金属粒子と、
前記貴金属粒子と接触し、当該貴金属粒子の移動を抑制する第 1の化合物と、 前記貴金属粒子と前記第 1の化合物を内包し、貴金属粒子の移動を抑制すると共 に第 1の化合物同士の接触に伴う第 1の化合物の凝集を抑制する第 2の化合物とか らなり、
前記第 1の化合物は、前記貴金属粒子を担持し、かつ、この貴金属粒子を担持し た第 1の化合物の単体又は集合体を、前記第 2の化合物により隔てられた区画内に 含むことを特徴とする排気ガス浄化用触媒。
[2] 貴金属粒子と、
前記貴金属粒子と接触し、当該貴金属粒子の移動を抑制する第 1の化合物と、 前記貴金属粒子と前記第 1の化合物を内包し、貴金属粒子の移動を抑制すると共 に第 1の化合物同士の接触に伴う第 1の化合物の凝集を抑制する第 2の化合物とか らなり、
前記第 1の化合物は、前記貴金属粒子を担持し、かつ、この貴金属粒子を担持し た第 1の化合物の単体又は集合体を、前記第 2の化合物により隔てられた区画内に 含み、この区画内に前記貴金属粒子を合計で 8 X 10_2モル以下の量で含有するこ とを特徴する排気ガス浄化用触媒。
[3] 前記第 2の化合物により隔てられた区画内に含まれる前記第 1の化合物の粒子径 ifi2 ix m以下であることを特徴する請求項 1又は 2に記載の排気ガス浄ィ匕用触媒。
[4] 前記第 2の化合物により隔てられた区画内に含まれる前記第 1の化合物の平均粒 子径が 50nm以下であることを特徴する請求項 1又は 2に記載の排気ガス浄ィ匕用触 媒。
[5] 貴金属粒子と、
前記貴金属粒子と接触し、当該貴金属粒子の移動を抑制する第 1の化合物と、 前記貴金属粒子と前記第 1の化合物を内包し、貴金属粒子の移動を抑制すると共 に第 1の化合物同士の接触に伴う第 1の化合物の凝集を抑制する第 2の化合物とか らなり、 前記第 1の化合物の平均粒子径は 30nm以下であること
を特徴とする排気ガス浄化用触媒。
[6] 密度汎関数法を用いたシミュレーションによる、貴金属の前記第 1の化合物への吸 着安定ィ匕エネルギー Eaと、貴金属の前記第 2の化合物への吸着安定ィ匕エネルギー
Ebと力 Eaく Ebであることを特徴とする請求項 1乃至請求項 5のうち、いずれか 1項に 記載の排気ガス浄化用触媒。
[7] 前記吸着安定ィ匕エネルギー Eaと、吸着安定ィ匕エネルギー Ebと力 Eb-Ea> 10.0ca
1/molであることを特徴とする請求項 6記載の排気ガス浄ィ匕用触媒。
[8] 前記貴金属粒子及び前記第 1の化合物からなる複合粒子のサイズ Daと、前記第 2 の化合物の平均細孔径 Dbと力 Db< Daであることを特徴とする請求項 1乃至 7のう ち、いずれか 1項に記載の排気ガス浄化用触媒。
[9] 前記貴金属粒子は {Pt, Pd, Rh}の中力 選ばれる少なくとも 1つの元素力 なり、 前記第 1の化合物は Ceを含む酸ィ匕物からなり、前記第 2の化合物は {Al, Zr}の中か ら選ばれる少なくとも一つの元素の酸ィ匕物力 なることを特徴とする請求項 1乃至請 求項 8のうち、いずれか 1項に記載の排気ガス浄化用触媒。
[10] 前記第 1の化合物の平均粒子径は 5nm以上 30nm以下の範囲内にあることを特徴 とする請求項 5乃至請求項 9のうち、いずれか 1項に記載の排気ガス浄ィ匕用触媒。
[11] 前記貴金属粒子の平均粒子径は 2nm以上 lOnm以下の範囲内にあることを特徴 とする請求項 5乃至請求項 10のうち、いずれか 1項に記載の排気ガス浄ィ匕用触媒。
[12] 前記貴金属粒子の 80%以上は前記第 1の化合物と接触していることを特徴とする 請求項 5乃至請求項 11のうち、いずれか 1項に記載の排気ガス浄ィ匕用触媒。
[13] 前記 Ceを含む酸ィ匕物は CeOであることを特徴とする請求項 9乃至請求項 12のう
2
ち、いずれか 1項に記載の排気ガス浄化用触媒。
[14] 前記 Ceを含む酸化物は Ceと Zrの複合酸化物であることを特徴とする請求項 8乃至 請求項 12のうち、いずれか 1項に記載の排気ガス浄ィ匕用触媒。
[15] 前記貴金属粒子は Ptであることを特徴とする請求項 1乃至請求項 14のうち、いず れか 1項に記載の排気ガス浄化用触媒。
[16] {Fe, Co, Ni, Mn}の中力 選ばれる少なくとも 1つの元素の化合物を含むことを 特徴とする請求項 1乃至請求項 15のうち、いずれか 1項に記載の排気ガス浄ィ匕用触 媒。
[17] 前記第 2の化合物は Laを含むことを特徴とする請求項 1乃至請求項 16のうち、い ずれか 1項に記載の排気ガス浄化用触媒。
[18] 請求項 1乃至請求項 17のうち、いずれか 1項に記載の排気ガス浄化用触媒を含む スラリーを耐火性無機担体にコーティングすることにより形成されたことを特徴とする 排気ガス浄化用触媒。
[19] 第 1の化合物に貴金属粒子が接触した複合コロイド溶液を調製する第 1の工程と、 この複合コロイド溶液中の貴金属粒子が接触した第 1の化合物の周囲に第 2の化 合物を形成させる第 2の工程と
を有することを特徴とする排気ガス浄化用触媒の製造方法。
[20] 前記第 1の工程が、前記第 1の化合物を分散用保護材料で包むことにより第 1の化 合物のコロイドを調製した後、この第 1の化合物のコロイドに貴金属を含有する溶液を 接触させることにより第 1の化合物に貴金属粒子が接触した複合コロイドを調製する 工程を有することを特徴とする請求項 19に記載の排気ガス浄化用触媒の製造方法。
[21] 前記第 1の工程が、前記第 1の化合物の表面上に前記貴金属の粒子を担持させた 後、この貴金属の粒子を担持させた前記第 1の化合物を分散用保護材料で包むこと により第 1の化合物に貴金属粒子が接触した複合コロイドを調製する工程を有するこ とを特徴とする請求項 19に記載の排気ガス浄化用触媒の製造方法。
[22] 前記第 2の工程が、前記複合コロイドの周囲に、前記第 2の化合物の前駆体を形成 させる工程を有することを特徴とする請求項 19乃至請求項 21のうち、いずれか 1項 に記載の排気ガス浄化用触媒の製造方法。
[23] 平均粒子径が 30nm以下の前記第 1の化合物を高分子化合物で包むことにより第
1の化合物のコロイドを調製する工程と、
前記第 1の化合物のコロイド上に平均粒子径が 2nm以上 1 Onm以下の範囲内にあ る貴金属塩を析出させることにより、前記第 1の化合物に貴金属粒子が接触したコロ イド水溶液を調製する工程と
を有することを特徴とする排気ガス浄化用触媒の製造方法。
[24] 平均粒子径が 30nm以下の第 1の化合物を高分子化合物で包むことにより第 1の 化合物のコロイドを調製する工程と、
前記第 1の化合物のコロイド上に平均粒子径が 2nm以上 1 Onm以下の範囲内にあ る貴金属コロイドを接触させることにより複合コロイド水溶液を調製する工程と を有することを特徴とする排気ガス浄化用触媒の製造方法。
[25] 有機溶媒中に前記第 2の化合物の原料有機塩を分散させる工程と、
前記有機溶媒中に前記コロイド水溶液を投入することにより前記第 2の化合物の原 料有機塩を加水分解する工程と
を有することを特徴とする請求項 23又は請求項 24に記載の排気ガス浄化用触媒 の製造方法。
[26] 溶媒中に前記第 2の化合物の原料無機塩を分散させる工程と、
前記溶媒中の無機塩を酸によって邂逅した後、溶媒中に前記コロイド水溶液を投 入する工程と
を有することを特徴とする請求項 23又は請求項 24に記載の排気ガス浄化用触媒 の製造方法。
[27] 平均一次粒子径 30nm以下の第 1の化合物粒子が凝集して ヽる集合体を、二次粒 径 300nm以下まで粉砕又は分散させる工程と、
この 300nm以下の第 1の化合物の二次粒子に貴金属粒子を担持させる工程と、 この貴金属粒子を担持した第 1の化合物の粒子の周囲に第 2の化合物を形成する 工程と
を有することを特徴とする排ガス浄化用触媒の製造方法。
[28] 前記 300nm以下の第 1の化合物の二次粒子に貴金属粒子を担持させる工程は、 平均粒子径 30nm以下の貴金属粒子が担持された第 1の化合物粒子の集合体を、 二次粒径 300nm以下まで粉砕又は分散させるものであることを特徴とする請求項 2 7に記載の排気ガス浄化用触媒の製造方法。
[29] 前記 300nm以下の第 1の化合物の二次粒子に貴金属粒子を担持させる工程は、 平均粒子径 30nm以下の貴金属粒子を、第 1の化合物粒子の集合体の粉砕又は分 散工程中に当該第 1の化合物粒子に担持させるものであることを特徴とする請求項 2 7に記載の排気ガス浄化用触媒の製造方法。
前記 300nm以下の第 1の化合物の二次粒子に貴金属粒子を担持させる工程は、 平均粒子径 30nm以下の貴金属粒子を、二次粒径 300nm以下まで粉砕又は分散 させた後に当該第 1の化合物の二次粒子に担持させるものであることを特徴とする請 求項 27に記載の排気ガス浄化用触媒の製造方法。
PCT/JP2006/321696 2005-11-01 2006-10-31 排気ガス浄化用触媒及びその製造方法 WO2007052627A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/084,382 US8404611B2 (en) 2005-11-01 2006-10-31 Exhaust gas purifying catalyst and production method thereof
EP06822625.7A EP1955765B1 (en) 2005-11-01 2006-10-31 Process for producing a catalyst for exhaust-gas purification
CN200680041213.2A CN101400441B (zh) 2005-11-01 2006-10-31 废气净化用催化剂及其制造方法
JP2007542740A JP4562776B2 (ja) 2005-11-01 2006-10-31 排気ガス浄化用触媒
US13/770,344 US9073044B2 (en) 2005-11-01 2013-02-19 Exhaust gas purifying catalyst and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005318370 2005-11-01
JP2005-318370 2005-11-01
JP2006-045790 2006-02-22
JP2006045790 2006-02-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/084,382 A-371-Of-International US8404611B2 (en) 2005-11-01 2006-10-31 Exhaust gas purifying catalyst and production method thereof
US13/770,344 Division US9073044B2 (en) 2005-11-01 2013-02-19 Exhaust gas purifying catalyst and production method thereof

Publications (1)

Publication Number Publication Date
WO2007052627A1 true WO2007052627A1 (ja) 2007-05-10

Family

ID=38005779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321696 WO2007052627A1 (ja) 2005-11-01 2006-10-31 排気ガス浄化用触媒及びその製造方法

Country Status (6)

Country Link
US (2) US8404611B2 (ja)
EP (2) EP1955765B1 (ja)
JP (5) JP4562776B2 (ja)
KR (1) KR100989269B1 (ja)
CN (1) CN101400441B (ja)
WO (1) WO2007052627A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001765A1 (ja) 2008-07-04 2010-01-07 日産自動車株式会社 排気ガス浄化用触媒
JP2010005617A (ja) * 2005-11-01 2010-01-14 Nissan Motor Co Ltd 内燃機関用排気ガス浄化システム
WO2010007839A1 (ja) 2008-07-16 2010-01-21 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
WO2010013574A1 (ja) 2008-07-31 2010-02-04 日産自動車株式会社 排気ガス浄化触媒
WO2010023919A1 (ja) * 2008-08-27 2010-03-04 株式会社アイシーティー 排気ガス浄化用触媒及びこれを用いた排気ガス浄化方法
EP2213372A1 (en) * 2007-11-08 2010-08-04 Nissan Motor Co., Ltd. Method for producing noble metal-loaded powder, noble metal-loaded powder and exhaust gas purification catalyst
WO2010101223A1 (ja) 2009-03-04 2010-09-10 日産自動車株式会社 排気ガス浄化触媒及びその製造方法
JP2010227931A (ja) * 2009-03-06 2010-10-14 Ict:Kk 排気ガス浄化用触媒及びその製造方法、並びに排気ガス浄化方法
JP2013513483A (ja) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド ナノ活性材料の移動度が抑制された触媒を形成する方法
US8683787B2 (en) 2009-11-17 2014-04-01 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
JP2018510053A (ja) * 2015-01-29 2018-04-12 ビーエーエスエフ コーポレーション 自動車排ガス処理用白金族金属(pgm)触媒
JP2020500097A (ja) * 2016-10-12 2020-01-09 ビーエーエスエフ コーポレーション 触媒物品

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
JP4881758B2 (ja) * 2006-04-28 2012-02-22 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
JP2008188542A (ja) 2007-02-06 2008-08-21 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒、その製造方法および排ガス処理方法
US7977276B2 (en) * 2007-04-12 2011-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing the same
JP5661989B2 (ja) * 2007-04-20 2015-01-28 日産自動車株式会社 高耐熱性触媒及びその製造方法
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US20110143930A1 (en) * 2009-12-15 2011-06-16 SDCmaterials, Inc. Tunable size of nano-active material on nano-support
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
WO2013028575A1 (en) 2011-08-19 2013-02-28 Sdc Materials Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JP6015336B2 (ja) * 2012-10-18 2016-10-26 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
WO2015061482A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
CA2926133A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
WO2015143225A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems
JP7119256B2 (ja) * 2017-07-05 2022-08-17 地方独立行政法人東京都立産業技術研究センター Voc処理用触媒の製造方法、voc処理方法及びvoc処理用触媒
KR102322704B1 (ko) * 2018-09-27 2021-11-04 (주)엘엑스하우시스 배기가스 정화용 촉매
CN111185155B (zh) * 2018-11-14 2021-08-31 中国科学院大连化学物理研究所 一种负载-包覆型贵金属催化剂及其制备和应用
GB201901560D0 (en) * 2019-02-05 2019-03-27 Magnesium Elektron Ltd Zirconium based dispersion for use in coating filters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015097A (ja) * 1998-06-30 2000-01-18 Toyota Motor Corp 触媒の製造方法
JP2005111336A (ja) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd 耐熱性触媒およびその製造方法
JP2005185969A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 高耐熱性触媒及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309272A (ja) * 1992-05-08 1993-11-22 Mitsubishi Heavy Ind Ltd 酸化触媒の製造方法
JP3371531B2 (ja) * 1994-04-20 2003-01-27 株式会社豊田中央研究所 触媒の製造方法
JPH08131830A (ja) 1994-11-07 1996-05-28 Toyota Motor Corp 排ガス浄化用触媒
JPH08309183A (ja) * 1995-05-18 1996-11-26 Babcock Hitachi Kk 高耐熱性触媒およびその製造方法
GB9824152D0 (en) * 1998-11-05 1998-12-30 Univ Warwick New product
JP3861647B2 (ja) 2001-10-09 2006-12-20 トヨタ自動車株式会社 排ガス浄化用触媒
JP3855266B2 (ja) * 2001-11-01 2006-12-06 日産自動車株式会社 排気ガス浄化用触媒
US7341976B2 (en) * 2002-10-16 2008-03-11 Conocophillips Company Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using
AU2003292768A1 (en) * 2002-12-26 2004-07-22 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
EP1479651B2 (en) * 2003-05-21 2017-07-19 Toyota Jidosha Kabushiki Kaisha Method for production of porous composite oxide
JP4196745B2 (ja) 2003-06-12 2008-12-17 トヨタ自動車株式会社 排ガス浄化用触媒
JP4175186B2 (ja) 2003-06-12 2008-11-05 トヨタ自動車株式会社 排ガス浄化用触媒とその製造方法
JP4193601B2 (ja) * 2003-06-12 2008-12-10 トヨタ自動車株式会社 排ガス浄化用触媒
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
JP4296908B2 (ja) * 2003-11-21 2009-07-15 株式会社デンソー 触媒体およびその製造方法
JP3855994B2 (ja) 2003-12-25 2006-12-13 日産自動車株式会社 触媒及びその製造方法
JP3912377B2 (ja) * 2003-12-25 2007-05-09 日産自動車株式会社 排ガス浄化用触媒粉末の製造方法
JP4562776B2 (ja) 2005-11-01 2010-10-13 日産自動車株式会社 排気ガス浄化用触媒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015097A (ja) * 1998-06-30 2000-01-18 Toyota Motor Corp 触媒の製造方法
JP2005111336A (ja) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd 耐熱性触媒およびその製造方法
JP2005185969A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 高耐熱性触媒及びその製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005617A (ja) * 2005-11-01 2010-01-14 Nissan Motor Co Ltd 内燃機関用排気ガス浄化システム
US9073044B2 (en) 2005-11-01 2015-07-07 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and production method thereof
US8404611B2 (en) 2005-11-01 2013-03-26 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and production method thereof
EP2213372A1 (en) * 2007-11-08 2010-08-04 Nissan Motor Co., Ltd. Method for producing noble metal-loaded powder, noble metal-loaded powder and exhaust gas purification catalyst
EP2213372A4 (en) * 2007-11-08 2014-07-23 Nissan Motor METHOD FOR PRODUCING PRECIOUS METAL-LOADED POWDER, PRECIOUS METAL-LOADED POWDER, AND EMISSION CONTROL CATALYST
US8455390B2 (en) 2008-07-04 2013-06-04 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst
WO2010001765A1 (ja) 2008-07-04 2010-01-07 日産自動車株式会社 排気ガス浄化用触媒
EP2308595A4 (en) * 2008-07-04 2016-01-27 Nissan Motor EMISSION CONTROL CATALYST
WO2010007839A1 (ja) 2008-07-16 2010-01-21 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
JP2010022910A (ja) * 2008-07-16 2010-02-04 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
US8309487B2 (en) 2008-07-16 2012-11-13 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for producing the same
US8609578B2 (en) 2008-07-31 2013-12-17 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst
WO2010013574A1 (ja) 2008-07-31 2010-02-04 日産自動車株式会社 排気ガス浄化触媒
JP5447377B2 (ja) * 2008-07-31 2014-03-19 日産自動車株式会社 排気ガス浄化触媒
WO2010023919A1 (ja) * 2008-08-27 2010-03-04 株式会社アイシーティー 排気ガス浄化用触媒及びこれを用いた排気ガス浄化方法
KR101588484B1 (ko) 2008-08-27 2016-01-25 유미코어 쇼쿠바이 재팬 컴퍼니 리미티드 배기가스 정화용 촉매 및 이것을 이용한 배기가스 정화방법
CN105935590A (zh) * 2008-08-27 2016-09-14 优美科催化剂日本有限公司 废气净化用催化剂以及使用此催化剂的废气净化方法
US8465711B2 (en) 2008-08-27 2013-06-18 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
KR20110050676A (ko) * 2008-08-27 2011-05-16 아이씨티 코., 엘티디. 배기가스 정화용 촉매 및 이것을 이용한 배기가스 정화방법
US8486853B2 (en) 2009-03-04 2013-07-16 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
WO2010101223A1 (ja) 2009-03-04 2010-09-10 日産自動車株式会社 排気ガス浄化触媒及びその製造方法
CN102341172A (zh) * 2009-03-04 2012-02-01 日产自动车株式会社 废气净化催化剂及其制造方法
JP2016013552A (ja) * 2009-03-06 2016-01-28 ユミコア日本触媒株式会社 排気ガス浄化用触媒及びその製造方法、並びに排気ガス浄化方法
JP2010227931A (ja) * 2009-03-06 2010-10-14 Ict:Kk 排気ガス浄化用触媒及びその製造方法、並びに排気ガス浄化方法
US8683787B2 (en) 2009-11-17 2014-04-01 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for manufacturing the same
JP2013513483A (ja) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド ナノ活性材料の移動度が抑制された触媒を形成する方法
JP2018510053A (ja) * 2015-01-29 2018-04-12 ビーエーエスエフ コーポレーション 自動車排ガス処理用白金族金属(pgm)触媒
JP2020500097A (ja) * 2016-10-12 2020-01-09 ビーエーエスエフ コーポレーション 触媒物品

Also Published As

Publication number Publication date
US20130157844A1 (en) 2013-06-20
US20090111688A1 (en) 2009-04-30
CN101400441A (zh) 2009-04-01
KR20080068898A (ko) 2008-07-24
JP2010005617A (ja) 2010-01-14
EP3308846A1 (en) 2018-04-18
JPWO2007052627A1 (ja) 2009-04-30
JP5792853B2 (ja) 2015-10-14
JP2013052391A (ja) 2013-03-21
EP1955765A1 (en) 2008-08-13
JP5346740B2 (ja) 2013-11-20
JP4562776B2 (ja) 2010-10-13
EP1955765A4 (en) 2012-10-17
JP2010155244A (ja) 2010-07-15
US8404611B2 (en) 2013-03-26
EP1955765B1 (en) 2020-12-30
JP5613219B2 (ja) 2014-10-22
US9073044B2 (en) 2015-07-07
CN101400441B (zh) 2014-12-31
JP2014144458A (ja) 2014-08-14
KR100989269B1 (ko) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5792853B2 (ja) 排気ガス浄化用触媒の製造方法
KR100989224B1 (ko) 배기 가스 정화용 촉매 및 그의 제조 방법
JP5348135B2 (ja) 排気ガス浄化用触媒
RU2730496C2 (ru) Содержащие родий катализаторы для обработки автомобильных выхлопов
JP5041103B2 (ja) 排ガス浄化用触媒及びその製造方法
JP4971918B2 (ja) 排気ガス浄化用触媒及びその製造方法
WO2007119658A1 (ja) 排ガス浄化触媒及びその製造方法
JP4265561B2 (ja) 自動車の排ガス浄化用触媒体
JP4677931B2 (ja) 排気ガス浄化触媒
JP2007313493A (ja) 排気ガス浄化用触媒及びその製造方法
JP6272303B2 (ja) 硫酸バリウムを含むアルミナ材料とその製造方法、それを用いた排気ガス浄化用触媒
JP2007144290A (ja) 排ガス浄化触媒及び排ガス浄化触媒の製造方法
WO2014024312A1 (ja) 排ガス浄化用触媒およびその製造方法
JPH08229394A (ja) 酸化物担持触媒担体の製造方法
JP5104009B2 (ja) 排気ガス浄化触媒及びその製造方法
JP5831083B2 (ja) 排ガス浄化用触媒及びその製造方法
JP2007029779A (ja) 排ガス浄化触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041213.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542740

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12084382

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822625

Country of ref document: EP