WO2010007839A1 - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
WO2010007839A1
WO2010007839A1 PCT/JP2009/060221 JP2009060221W WO2010007839A1 WO 2010007839 A1 WO2010007839 A1 WO 2010007839A1 JP 2009060221 W JP2009060221 W JP 2009060221W WO 2010007839 A1 WO2010007839 A1 WO 2010007839A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
noble metal
exhaust gas
gas purifying
purifying catalyst
Prior art date
Application number
PCT/JP2009/060221
Other languages
English (en)
French (fr)
Inventor
一幸 白鳥
雅紀 中村
若松 広憲
菅 克雄
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/002,929 priority Critical patent/US8309487B2/en
Priority to EP09797767.2A priority patent/EP2311559B1/en
Priority to CN2009801275390A priority patent/CN102099111B/zh
Publication of WO2010007839A1 publication Critical patent/WO2010007839A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst suitable for a process for purifying exhaust gas discharged from an internal combustion engine, and a method for manufacturing the same.
  • alumina Al 2 Exhaust gas purifying catalysts in which noble metal particles such as platinum (Pt) are supported on a metal oxide carrier such as O 3 ) are widely used.
  • a large amount of noble metal particles is used in order to improve the durability of the noble metal particles against ambient fluctuations.
  • using a large amount of noble metal particles is not desirable from the viewpoint of protecting earth resources.
  • the particle diameter of the noble metal particles supported on the carrier may be reduced. Since the specific surface area increases as the particle diameter of the noble metal particles decreases, the amount of noble metal used for obtaining the desired catalyst purification performance can be reduced. However, if the particle diameter of the noble metal particles is small, they may be thermally aggregated (sintered) with each other due to high temperatures and long-term use, and durability may be reduced.
  • noble metal particles are supported on the first compound, the first compound supporting the noble metal particles is encapsulated in the second compound, and the first compounds supporting the noble metal are supported by the second compound.
  • An exhaust gas purification catalyst having a separated structure has been developed (Patent Document 1).
  • the noble metal particles are supported on the first compound, and the noble metal particles are physically fixed to the first compound.
  • the first compounds supported by the noble metal particles are separated from each other by the second compound, so that the first compounds supporting the noble metal are prevented from contacting and aggregating with each other.
  • the first compound supporting noble metal particles is made of an oxide containing Ce as a main component.
  • this conventional exhaust gas purifying catalyst has an air-fuel ratio (air-fuel ratio) under a condition in which a rich-lean atmosphere fluctuation periodically occurs centering on the stoichiometric air-fuel ratio (stoichiometry).
  • air-fuel ratio air-fuel ratio
  • an exhaust gas purifying catalyst comprises a noble metal, a first compound, and a second compound, and the noble metal is supported on the first compound,
  • the supported first compound is included in the second compound, and includes a unit having a structure in which the first compounds supporting the noble metal are separated from each other by the second compound, and the noble metal includes One or more selected from [Pt, Pd and Rh], the first compound is mainly composed of Ti, and the second compound is composed mainly of one or more selected from [Al and Si]. This is the gist.
  • the method for producing an exhaust gas purifying catalyst according to the present invention is a method for producing the above exhaust gas purifying catalyst, wherein the first compound in contact with the noble metal is converted into a colloid having a primary particle diameter of 100 nm or less. And a step of forming a second compound around the first compound in contact with the colloidal noble metal.
  • the method for producing an exhaust gas purifying catalyst according to the present invention is a method for producing the above exhaust gas purifying catalyst, wherein the secondary particle aggregate of the first compound is atomized and the noble metal comes into contact. Including a step of setting the secondary particle diameter of the first compound to 2 ⁇ m or less and a step of forming a second compound around the first compound in contact with the atomized noble metal. You can also
  • the exhaust gas purification catalyst according to the present invention has excellent exhaust gas purification performance when used for an engine that operates on the lean side of the stoichiometric ratio, such as a direct injection engine or a diesel engine. have.
  • the exhaust gas purification catalyst of the present invention having the above-described effects can be easily produced.
  • FIG. 1 is a schematic diagram showing a configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of an exhaust gas purifying catalyst according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example before and after aggregation of the noble metal particles 2 in one unit.
  • FIG. 4 is a graph showing the relationship between the noble metal particle diameter and the noble metal surface area.
  • FIG. 5 is a graph showing the relationship between the noble metal particle diameter and the number of noble metal atoms.
  • FIG. 6 is an explanatory diagram of an example of steps in the manufacturing method of the present invention.
  • FIG. 7 is an explanatory diagram of an example of steps in the manufacturing method of the present invention.
  • FIG. 1 is a schematic diagram of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • the exhaust gas purifying catalyst 1 shown in FIG. 1 has a noble metal particle 2 having catalytic activity, a first compound 3 that contacts the noble metal particle 2 and suppresses the movement of the noble metal particle 2, and the noble metal particle 2.
  • the second compound 4 includes the first compound 3 and suppresses the movement of the noble metal particles 2 and suppresses the aggregation of the first compound 3 due to the contact between the first compounds 3.
  • the first compound 3 carries noble metal particles 2.
  • a plurality of aggregates of the first compounds 3 carrying the noble metal particles 2 are included in the compartments separated by the second compounds 4.
  • the noble metal particles 2 and the first compound 3 are brought into contact with each other and supported, whereby the first compound 3 acts as an anchor agent for chemical bonding. Chemically inhibits the movement of particles. Moreover, the movement of the noble metal particle 2 is physically suppressed by covering the noble metal particle 2 with the first compound 3 with the second compound 4 and enclosing it. Further, by containing the noble metal particles 2 and the first compound 3 in the section separated by the second compound 4, the first compound 3 crosses the section separated by the second compound 4. Suppresses contact and aggregation.
  • the exhaust gas purifying catalyst 1 can prevent a decrease in catalytic activity due to aggregation of the noble metal particles 2 without increasing the manufacturing cost and environmental load, and the noble metal particles due to the first compound 3 can be prevented. 2 activity improvement effect can be maintained.
  • the present invention is characterized in that the first compound contains Ti as a main component.
  • the first compound contains Ti as a main component.
  • the first compound is made of an oxide containing Ce as a main component
  • the atmosphere Since a large amount of oxygen is present in the inside, there is a possibility that a nearby noble metal may be adsorbed and poisoned by excessive oxygen adsorption at a low temperature, and noble metal oxidation may be caused by excessive oxygen release at a high temperature.
  • Ti having an anchoring action, lower oxygen absorption / release capacity than Ce, and having a basic surface like Ce is used as the first compound.
  • a catalyst that is required to be purified by oxidizing the exhaust gas in an atmosphere from stoichiometric to lean while maintaining the durability improvement of the noble metal by having the structure shown in FIG. This significantly improves the oxidation performance.
  • the exhaust gas purifying catalyst of the present invention can effectively oxidize HC in exhaust gas components, especially methane, which is difficult to oxidize and purify, the performance improvement cost is large.
  • the first compound is a compound mainly composed of Ti. This is thought to be due to the suppression of
  • the precious metal is Pt
  • PtO precious metal
  • PtO 2 the state changes to the state of metal Pt, PtO, PtO 2 depending on the degree of oxidation.
  • the metal Pt has the highest oxidation performance of exhaust gas.
  • the oxidation performance decreases in the order of metal Pt ⁇ PtO ⁇ PtO 2 .
  • the inventors have clarified that the oxidation state of such a noble metal also changes in the reaction atmosphere, but also changes depending on the physical properties of the substrate supporting the noble metal particles, that is, the physical properties of the first compound in the present invention. .
  • the first compound supported is a compound containing Ti as the main component
  • Pt tends to take an electronic state close to that of metal Pt, as compared with the case where it is a compound containing Ce as the main component, and oxidation activity. Will improve. This change can be observed by XPS. From the above, in the present invention, the oxidation activity of the catalyst can be improved by using Ti as the first compound.
  • the noble metal has at least one element selected from [Pt, Pd and Rh] which has a catalytic action and is suitable for use in an exhaust gas purifying catalyst.
  • the second compound is selected from [Al and Si] as a material having heat resistance and capable of forming pores that allow the exhaust gas to reach the noble metal particles 2 included in the second compound 4.
  • a compound having one or more as a main component Specifically, Al 2 O 3 , SiO 2 , Al—Si composite oxide and the like can be applied.
  • the second compound may be a mixture of Al 2 O 3 and SiO 2 .
  • the exhaust gas purifying catalyst unit of the present invention that is, the noble metal is supported on the first compound, the first compound on which the noble metal is supported is encapsulated in the second compound, and the noble metal is supported on the first compound.
  • the unit having a structure in which the first compounds are separated from each other by the second compound preferably includes a unit in which the amount of the noble metal in the unit is 8 ⁇ 10 ⁇ 20 mol or less.
  • FIG. 2 is a schematic diagram showing an example of an exhaust gas purifying catalyst unit according to the present invention.
  • the exhaust gas purifying catalyst 1 shown in FIG. 1 includes noble metal particles 2, a first compound 3 supporting the noble metal particles 2, and a second compound 4 containing the noble metal particles 2 and the first compound 3. This point is the same as the exhaust gas purifying catalyst 1 shown in FIG.
  • the noble metal particles 2 and the first compound 3 are contained in various modes in the compartments separated by the second compound 4.
  • the unit U ⁇ b> 1 includes a single first compound 3 carrying a single noble metal particle 2. Further, in the unit U2, a plurality of first compounds 3 carrying a plurality of noble metal particles 2 are contained as aggregates (secondary particles). In the units U3 to U6, a single first compound 3 carrying a plurality of noble metal particles 2 is contained in various particle sizes.
  • Each of the units U1 to U6 of the exhaust gas purifying catalyst 1 shown in FIG. 2 is similar to the exhaust gas purifying catalyst 1 shown in FIG. It is suppressed that 1 compound 3 contacts and aggregates. Therefore, it has the same effect as the exhaust gas purifying catalyst 1 shown in FIG.
  • the unit having a structure separated by the second compound 4 preferably contains precious metal particles in an amount of 8 ⁇ 10 ⁇ 20 mol or less in total.
  • the noble metal particles 2 and the first compound 3 included in the compartments separated by the second compound 4 have various modes.
  • a plurality of noble metal particles 2 may move in these compartments due to the high temperature of the atmosphere and agglomerate with each other.
  • the precious metal particles 2 do not move to the second compound 4 due to the effect of the first compound 3 as the anchor agent in any of the units U1 to U6, and only one or more Aggregates into noble metal particles.
  • FIGS. 3 (a) and 3 (b) An example of before and after aggregation of the noble metal particles 2 in one unit is schematically shown in FIGS. 3 (a) and 3 (b).
  • FIG. 4 is a graph showing the relationship between the noble metal particle diameter and the noble metal surface area for platinum or palladium as a noble metal having catalytic activity.
  • the curves are almost the same when the noble metal is platinum and palladium, they are shown as one curve.
  • the particle diameter of the noble metal is 10 [nm] or less, the particle surface area is large and sufficient activity can be obtained, so that deterioration of the catalyst activity due to aggregation can be suppressed.
  • FIG. 5 is a graph showing the relationship between the noble metal particle diameter and the number of noble metal atoms for platinum or palladium as a noble metal having catalytic activity.
  • the curves are almost the same when the noble metal is platinum and palladium, they are shown as one curve.
  • the number of atoms when the particle diameter of the noble metal is 10 [nm] is about 48,000, and when this value is converted into the number of moles, the amount is about 8 ⁇ 10 ⁇ 20 moles or less. .
  • any of the units U1 to U6 by limiting the amount of noble metal in the unit and making it an amount of 8 ⁇ 10 ⁇ 20 mol or less, it aggregates into one in the unit. Also, it is possible to suppress the deterioration of the catalyst activity.
  • the concentration of the noble metal particles 2 of the first compound 3 is lowered, or the first compound 3 carrying the noble metal particles 2 is used.
  • the former method of lowering the supported concentration can be used for exhaust gas purification in order to maintain the performance of a predetermined exhaust gas purification catalyst. Since the volume of the honeycomb carrier coated with the catalyst has to be increased, and therefore, it is necessary to coat the honeycomb carrier with a coating amount that is usually an order of magnitude larger than that of the catalyst, it is not practical.
  • the median particle diameter of the first compound 3 is preferably 2 [ ⁇ m].
  • the particle diameter of the first compound 3 dispersed independently refers to the median diameter of the secondary particles.
  • the first compound 3 has a function as an anchor agent that contacts the noble metal particles 2 and suppresses the movement of the noble metal particles 2.
  • the anchor effect of this anchor agent is affected by the size of the first compound 3 itself.
  • the above-mentioned sufficient precious metal aggregation suppressing effect is exhibited even when a noble metal is impregnated and supported on a powdery first compound such as Ti oxide and dispersed in alumina. It is difficult.
  • the particles of the first compound 3 are obtained by a conventional pulverization method using a ball mill or the like, only a particle size of 2 to 3 [ ⁇ m] is obtained at the minimum.
  • the exhaust gas purifying catalyst in which the noble metal particles 2 are supported on the first compound 3 particles in a predetermined amount the noble metal particles 2 aggregate to several tens [nm] when used for a long time at a high temperature. Activity will deteriorate.
  • the first compound 3 contained in the compartment separated by the second compound 4 has a median diameter of 2 [ ⁇ m] or less. More preferably, the median diameter of the first compound 3 is 0.5 [ ⁇ m] or less.
  • the first compound having an average particle size of 2 [ ⁇ m] or less will be described in detail in the description of the production method described later.
  • the first compound carrying a noble metal may be made into a fine colloid. It can be obtained by appropriately applying a pulverization method using an apparatus capable of pulverizing to 2 [ ⁇ m] or less.
  • the lower limit of the median particle size of the first compound 3 is determined as the particle size of the first compound 3 that can be produced by an industrial manufacturing process, and is not particularly limited.
  • the first compound according to the present invention containing Ti as a main component is preferably an oxide containing Ti.
  • the oxide containing Ti may be an oxide in which the metal element is only Ti, that is, a Ti oxide such as TiO 2 , but is a composite oxide of Ti and a third compound.
  • the compound 3 is a compound of at least one element selected from [Ce, Zr, Ba, Mg, W, Nd and Y].
  • [Ce, Zr, Ba, Mg, W, Nd and Y] are all effective components added to the first compound of the present invention as subcomponents.
  • the first compound By adding at least one element selected from [Ce, Zr, Ba, Mg, W, Nd and Y] or a compound thereof to the first compound, it is possible to promote the adsorption of acidic substances by increasing the surface base.
  • the effect of improving the heat resistance and the like by stabilizing the crystal structure of the first compound can be obtained by adding the subcomponent element.
  • the third compound include oxides of subcomponent elements such as CeO 2 , ZrO 2 , BaO, MgO, WO 3 , Nd 2 O 3 , and Y 2 O 3 .
  • the content ratio of the third compound in the first compound is not particularly limited, but in the present invention, the first compound is mainly composed of Ti, and therefore the third compound is less than 50 mol%. It is.
  • the first compound is not limited to the composite oxide of the Ti oxide and the third compound described above, but may be a mixture of the Ti oxide and the third compound.
  • the second compound contains as a main component one or more selected from [Al and Si], and may further include one or more selected from [La, Zr, Ce, Y, and Nd].
  • [La, Zr, Ce, Y and Nd] are all effective components added to the second compound of the present invention as subcomponents.
  • the second compound is a composite oxide with one or more selected from [Al and Si]
  • specific examples of oxides of [La, Zr, Ce, Y, and Nd] as constituent elements of the composite oxide include La 2 O 3 , ZrO 2 , CeO 2 , Y 2 O 3 , Nd 2 O 3 , etc.
  • the content ratio of at least one element selected from [La, Zr, Ce, Y, and Nd] in the second compound or the compound thereof is not particularly limited, but in the present invention, the second compound is [Al And Si]], the main component being one or more selected from Si].
  • a step of supporting a noble metal on the first compound is performed.
  • the step of supporting the noble metal on the first compound can be, for example, a step of making the first compound in contact with the noble metal into a colloidal form having a primary particle diameter of 100 nm or less.
  • the secondary particle aggregate of the first compound can be atomized so that the secondary particle diameter of the first compound in contact with the noble metal is 2 ⁇ m or less.
  • This step can be a step of preparing a colloid of the first compound commercially available or separately prepared, and bringing the noble metal into contact with the colloid of the first compound. Specifically, a noble metal salt is added to and dispersed in the colloid of the first compound, and then the noble metal is brought into contact by reducing and precipitating the noble metal on the surface of the first compound using a reducing agent such as ethanol. Alternatively, the noble metal is brought into contact by adding a noble metal colloid to the colloid of the first compound.
  • the colloid of the first compound can be wrapped with the protective material for dispersion before the contact with the noble metal particles 2 or can be wrapped with the protective material for dispersion after the contact with the noble metal particles.
  • the right side of the arrow in FIG. 6 schematically shows that the protective material 7 for dispersion is formed so as to wrap the first compound 3 in contact with the noble metal particles 2.
  • the dispersion protective material 7 is, for example, a polymer compound (polymer), nitric acid, acetic acid, or the like, and can more effectively suppress the aggregation of the first compound 3 in contact with the noble metal particles 2.
  • a polymer compound polymer
  • nitric acid nitric acid
  • acetic acid or the like
  • it may be used as necessary and is not essential.
  • the first compound in contact with the noble metal is uniformly dispersed in the colloidal solution, so that the first compounds in contact with the noble metal particles are prevented from aggregating in the solution.
  • the secondary particle size of the first compound of the exhaust gas purifying catalyst manufactured through the post-process can be easily reduced to 2 ⁇ m or less in terms of median particle size.
  • the primary particle size of the colloid is preferably 100 nm or less.
  • This step is a combination of preparing a first compound having a particle size on the order of microns, crushing the first compound, and supporting a noble metal on the first compound.
  • the order of crushing the first compound and supporting the noble metal on the first compound is not particularly limited. For example, after precious metal particles are supported on the first compound, they can be crushed.
  • noble metal particles can be supported during pulverization of the first compound. Furthermore, after pulverizing the first compound, the noble metal particles can be supported.
  • an impregnation method, a spray method, a kneading method, or the like can be appropriately used.
  • the precursor salt of the noble metal or the noble metal colloid and the precursor salt of the first compound are mixed in an aqueous solution, and then the precursor salt of the first compound is insolubilized and the solvent is removed.
  • a method in which a part of the noble metal is included in the first compound by firing later may be used.
  • the first compound is crushed by using a pulverizer such as a vibrating ball mill, a planetary ball mill, a bead mill, a jet mill, etc., and using a secondary pulverization method such as wet pulverization, dry pulverization, or ultrasonic pulverization.
  • a pulverization method capable of reducing the particle diameter to 2 ⁇ m or less can be appropriately used.
  • the secondary median particle size of the first compound of the exhaust gas purifying catalyst finally obtained by the production method of the present invention can be reduced to 2 ⁇ m or less.
  • pulverization After pulverization, it can be colloided by mixing with a protective material for dispersion made of a polymer such as polyethyleneimide or polymethacrylic acid.
  • a protective material for dispersion made of a polymer such as polyethyleneimide or polymethacrylic acid.
  • This colloidalization can stabilize the fine dispersion state of the first compound carrying the noble metal.
  • This colloidalization method can also be used as appropriate, for example, by mixing with a polymer protective material.
  • the first compound on which the noble metal is supported becomes fine particles of about several tens to several hundreds of nanometers, and is included in the second compound in the subsequent steps. It is included as a fine unit. Therefore, there is little aggregation of the first compounds after durability, and a highly active catalyst can be obtained.
  • the raw material of the second compound is added to the fine first compound 3 on which the noble metal particles 2 are supported as shown on the left side of the figure.
  • the precursor 8 of the second compound is formed around the fine first compound 3 on which the noble metal particles 2 are supported.
  • the forming method may be an impregnation method or an inclusion method.
  • the water is distilled off and dried, followed by firing.
  • the precursor 8 of the second compound is changed to the second compound 4.
  • Distillation of water includes distillation of water by heating in a bat or the like, electromagnetic heating such as microwaves, vacuum drying using an evaporator, spray heating using spray drying, freeze drying using freeze drying, etc. It can be used as appropriate.
  • the exhaust gas purifying catalyst of the present invention is applied and formed on a refractory honeycomb carrier and the like, and is used for exhaust gas purification of an actual engine.
  • Catalysts of Examples 1 to 6 and Comparative Examples 1 and 2 shown in Table 1 were prepared. The production methods of these catalysts are as described below.
  • Example 1 Commercially available acicular rutile TiO 2 (primary particle size 3 [ ⁇ m]) as a raw material for the first compound is pulverized in pure water using a wet pulverizer, and then subjected to a laser scattering particle size distribution analyzer manufactured by HORIBA LA920. The measured median diameter was 200 [nm].
  • a dinitrodiamine Pt aqueous solution (Pt concentration of 8.47 [wt%]) was dispersed in the pulverized slurry containing the first compound, and stirred for about 2 hours to obtain a slurry containing the first compound in contact with Pt. .
  • boehmite slurry in which boehmite, cerium nitrate, zirconium nitrate oxide and pure water were mixed was obtained. This slurry was mixed with the slurry containing the first compound in contact with the Pt, and stirred with a high-speed stirrer.
  • the water in the slurry after stirring was distilled off to 5% or less, dried at 150 [° C.] for 12 hours, and then fired in an air stream at 400 [° C.] for 1 hour.
  • Example 2 A TiO 2 —ZrO 2 composite compound prepared by coprecipitation as the raw material of the first compound was pulverized in pure water using a wet pulverizer, and measured by a HORIBA LA920 laser scattering particle size distribution meter. The diameter was 300 [nm].
  • a dinitrodiamine Pt aqueous solution (Pt concentration of 8.47 [wt%]) is dispersed in the slurry containing the first compound after pulverization, and after stirring for about 2 hours, a PEI (polyethyleneimine) solution is further added as a protective material for dispersion. The mixture was mixed with 20 wt%, and further colloided by stirring for 2 hours.
  • boehmite slurry in which boehmite, lanthanum nitrate oxide and pure water were mixed was obtained. This slurry was mixed with the slurry containing the first compound in contact with the Pt, and stirred with a high-speed stirrer.
  • the water in the slurry after stirring was distilled off to 5% or less, dried at 150 [° C.] for 12 hours, and then fired at 400 [° C.] for 1 hour in an air stream.
  • Example 3 Disperse a dinitrodiamine Pt aqueous solution (Pt concentration 8.47 [wt%]) in commercially available titania sol (primary particle size 30 [nm]) and barium nitrate as raw materials for the first compound, and stir for about 2 hours with Pt A suspension containing the first compound contacted was obtained.
  • aluminum isopropoxide was mixed in hexylene glycol to prepare a solution dissolved in an oil bath at 120 [° C.]. In this hexylene glycol solution of aluminum isopropoxide, the suspension of the above mixture was slowly dropped in an oil bath at 80 [° C.] to form aluminum hydroxide around Pt, titania sol and barium nitrate. .
  • Example 4 The TiO 2 -CeO 2 composite compound prepared by the coprecipitation method as a raw material for the first compound was pulverized in pure water with a wet pulverizer, and the median diameter measured with a laser scattering particle size distribution analyzer manufactured by HORIBA LA920. Was 350 nm. A dinitrodiamine Pt aqueous solution (Pt concentration of 8.47 [wt%]) was dispersed in the slurry containing the first compound after pulverization, and the mixture was stirred for about 2 hours. Meanwhile, boehmite slurry in which boehmite, yttrium nitrate and pure water were mixed was obtained. This slurry was mixed with the slurry containing the first compound in contact with the Pt, and stirred with a high-speed stirrer.
  • the water in the slurry after stirring was distilled off to 5% or less, dried at 150 [° C.] for 12 hours, and then fired in an air stream at 400 [° C.] for 1 hour.
  • Example 5 Commercially available block rutile TiO 2 (primary particle size 2 [ ⁇ m]) and magnesium nitrate as raw materials for the first compound are pulverized in pure water using a wet pulverizer and made by HORIBA, a laser scattering particle size distribution analyzer. The median diameter measured by LA920 was 250 [nm]. An aqueous Pd nitrate solution (Pd concentration 20.71 [wt%]) was dispersed in the slurry containing the first compound after pulverization, and stirred for about 2 hours to obtain a slurry containing the first compound in contact with Pd.
  • Pd concentration 20.71 [wt%] aqueous Pd nitrate solution
  • boehmite slurry in which boehmite, neodymium nitrate and pure water were mixed was obtained. This slurry was mixed with the slurry containing the first compound in contact with Pd, and stirred with a high-speed stirrer.
  • the water in the slurry after stirring was distilled off to 5% or less, dried at 150 [° C.] for 12 hours, and then fired in an air stream at 400 [° C.] for 1 hour.
  • Example 6 As a raw material for the first compound, a commercially available titania sol (primary particle size 30 [nm]) and neodymium nitrate were dispersed in an aqueous Rh nitrate solution (Rh concentration 8.36 [wt%]), and stirred for about 2 hours to contact Rh. A suspension containing the first compound was obtained. On the other hand, tetraethoxysilane was mixed in hexylene glycol to prepare a solution dissolved in an oil bath at 120 [° C.].
  • Comparative Example 1 is an example in which the first compound supporting a noble metal is CeO 2 —ZrO 2 .
  • a commercially available CeO 2 —ZrO 2 composite compound (primary particle size 30 [nm]) as a raw material for the first compound is pulverized in pure water using a wet pulverizer, and the laser scattering particle size distribution meter is manufactured by HORIBA LA920. The median diameter measured in this manner was 200 [nm].
  • a dinitrodiamine Pt aqueous solution (Pt concentration of 8.47 [wt%]) was dispersed in the slurry containing the first compound after pulverization, and stirred for about 2 hours to obtain a slurry containing the first compound in contact with Pt. .
  • boehmite slurry in which boehmite, cerium nitrate, zirconium nitrate oxide and pure water were mixed was obtained. This slurry was mixed with the slurry containing the first compound in contact with the Pt, and stirred with a high-speed stirrer.
  • the water in the slurry after stirring was distilled off to 5% or less, dried at 150 [° C.] for 12 hours, and then fired in an air stream at 400 [° C.] for 1 hour.
  • Comparative Example 2 is an example of a conventional general catalyst that does not have the second compound.
  • the catalyst powders of Examples 1 to 6 have remarkably superior CH 4 conversion after the durability treatment as compared with the catalyst powders of Comparative Examples 1 and 2. This is presumably because the conversion ratio with respect to CH 4 is particularly improved because the first compound is an oxide containing Ti.
  • the exhaust gas purification catalyst of the present invention has excellent exhaust gas purification performance when used in an engine that operates on the lean side of the stoichiometric ratio, so that direct injection engines and diesel engines can be used. It can be suitably used for an engine or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 排気ガス浄化用触媒(1)は、貴金属(2)と、第1の化合物(3)と、第2の化合物(4)からなる。この貴金属(2)は、第1の化合物(3)に担持される。貴金属(2)が担持された第1の化合物(3)は、第2の化合物(4)に内包されて、貴金属(2が担持された第1の化合物(3)同士が、第2の化合物(4)により隔てられた構造のユニットを含む。貴金属(2)は、[Pt、Pd及びRh]から選ばれる1つ以上であり、第1の化合物(3)はTiを主成分とし、第2の化合物(4)は[Al及びSi]から選ばれる1つ以上を主成分とする。

Description

排気ガス浄化用触媒及びその製造方法
 本発明は、内燃機関から排出される排気ガスを浄化する処理に適用して好適な排気ガス浄化用触媒及びその製造方法に関する。
 近年、内燃機関から排出される排気ガス中に含まれる炭化水素系化合物(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害物質を除去するために、アルミナ(Al)等の金属酸化物担体に白金(Pt)等の貴金属粒子を担持した排気ガス浄化用触媒が広く利用されるようになっている。従来の排気ガス浄化用触媒では、周囲の雰囲気変動に対する貴金属粒子の耐久性を向上させるために、貴金属粒子が多量に用いられている。しかしながら、貴金属粒子を多量に用いることは地球資源保護の観点から見ると望ましくない。
 貴金属の使用量を低減するには、担体に担持された貴金属粒子の粒子径を小さくすることがある。貴金属粒子の粒子径が小さいほど、比表面積が大きくなるから、所望の触媒浄化性能を得るための貴金属の使用量は少なくて済む。しかしながら、貴金属粒子の粒子径が小さいと、高温や長時間使用により互いに熱凝集(シンタリング)をしてしまうため、耐久性が低下するおそれがある。
 そこで、貴金属粒子が第1の化合物に担持され、この貴金属粒子を担持した第1化合物が第2の化合物に内包されて、当該貴金属が担持された第1の化合物同士がこの第2の化合物により隔てられた構造を有する排気ガス浄化用触媒が開発された(特許文献1)。このような構造を有する排気ガス浄化用触媒は、貴金属粒子が第1の化合物に担持されることにより、第1の化合物に貴金属粒子が物理的に固定されることにより、貴金属粒子の移動凝集が抑制され、かつ、この貴金属粒子を担持した第1の化合物が、第2の化合物によって互いに隔てられることで、この貴金属を担持した第1の化合物が互いに接触し凝集することを抑制する。これらのことにより、貴金属粒子が耐久後に凝集することを防止して耐久性を向上させることができる。
国際公開第2007/052627号パンフレット
 特許文献1に記載された排気ガス浄化用触媒は、貴金属粒子を担持する第1の化合物が、Ceを主成分とした酸化物からなる。そのため、この従来の排気ガス浄化用触媒は、空気-燃料比率(空燃比)が理論空燃比(ストイキオメトリー)を中心としてリッチ-リーン間の雰囲気変動が周期的に起こるような条件下での排気ガスの浄化の場合には、このCeを主成分とする酸化物が有している酸素吸放出能により触媒粒子近傍の雰囲気が変動するのを緩和することができ、これにより貴金属のシンタリングの抑制、及び三元反応に必要な活性酸素の供給が適切に行われ、高い浄化性能を有する。ひいては製造コストや環境負荷を大きくすることなく、第1の化合物による貴金属粒子の活性向上効果を維持することができる。
 しかしながら、空気-燃料比率が化学量論比よりもリーン側で運転されるガソリン直噴エンジンやディーゼルエンジンに、上述の排気ガス浄化用触媒を適用した場合には、貴金属の酸化が生じ、排気ガス浄化性能が低下することがあった。
 上記課題を解決するために、本発明に係る排気ガス浄化用触媒は、貴金属と、第1の化合物と、第2の化合物からなり、この貴金属は当該第1の化合物に担持され、この貴金属が担持された第1の化合物は当該第2の化合物に内包されて、当該貴金属が担持された第1の化合物同士がこの第2の化合物により隔てられた構造のユニットを含み、かつ、この貴金属は[Pt、Pd及びRh]から選ばれる1つ以上であり、この第1の化合物はTiを主成分とし、この第2の化合物は[Al及びSi]から選ばれる1つ以上を主成分とすることを要旨とする。
 また、本発明に係る排気ガス浄化用触媒の製造方法は、上記の排気ガス浄化用触媒を製造する方法であって、貴金属が接触した第1の化合物を、1次粒子径が100nm以下のコロイド状にする工程と、次いで、コロイド状にした当該貴金属が接触した第1の化合物の周囲に、第2の化合物を形成させる工程とを含むことを要旨とする。
 また、本発明に係る排気ガス浄化用触媒の製造方法は、上記の排気ガス浄化用触媒を製造する方法であって、第1の化合物の2次粒子集合体を微粒化して、貴金属が接触した第1の化合物の2次粒子径を2μm以下にする工程と、次いで、微粒化した当該貴金属が接触した第1の化合物の周囲に、第2の化合物を形成させる工程とを含むことを要旨とすることもできる。
 本発明に係る排気ガス浄化用触媒によれば、直噴エンジンやディーゼルエンジンのように空気燃料比率が化学量論比よりもリーン側で運転するエンジンに用いた場合に、優れた排気ガス浄化性能を有している。
 本発明の排気ガス浄化用触媒の製造方法によれば、上記の効果を有する本発明の排気ガス浄化用触媒を、容易に製造することができる。
図1は、本発明の実施形態となる排気ガス浄化用触媒の構成を示す模式図である。 図2は、本発明の別の実施形態となる排気ガス浄化用触媒の構成を示す模式図である。 図3は、一つのユニットにおける貴金属粒子2の凝集前後の一例を示す模式図である。 図4は、貴金属粒子径と貴金属表面積との関係を示すグラフである。 図5は、貴金属粒子径と貴金属の原子数との関係を示すグラフである。 図6は、本発明の製造方法における工程の一例の説明図である。 図7は、本発明の製造方法における工程の一例の説明図である。
 以下、本発明の排気ガス浄化用触媒の実施形態について、図面を用いつつ説明する。
 図1は、本発明の一実施形態となる排気ガス浄化用触媒の模式図である。同図に示す排気ガス浄化用触媒1は、触媒活性を有する貴金属粒子2と、この貴金属粒子2と接触し、当該貴金属粒子2の移動を抑制する第1の化合物3と、この貴金属粒子2と第1の化合物3とを内包し、当該貴金属粒子2の移動を抑制すると共に第1の化合物3同士の接触に伴う第1の化合物3の凝集を抑制する第2の化合物4とからなる。この第1の化合物3は、貴金属粒子2を担持している。また、貴金属粒子2を担持した第1の化合物3の複数個の集合体が、第2の化合物4により隔てられた区画内に含まれている。
 このような構造の排気ガス浄化用触媒1は、貴金属粒子2と、第1の化合物3とが接触して、担持することにより第1の化合物3が化学的結合のアンカー剤として作用し、貴金属粒子の移動を化学的に抑制する。また、この貴金属粒子2を第1の化合物3とを第2の化合物4で覆い、内包する形態とすることにより、貴金属粒子2の移動を物理的に抑制する。更に、この第2の化合物4により隔てられた区画内に貴金属粒子2と第1の化合物3とを含むことにより、この第2の化合物4により隔てられた区画を越えて第1の化合物3が接触し凝集することを抑制する。これらのことから、排気ガス浄化用触媒1は、製造コストや環境負荷を大きくすることなく、貴金属粒子2の凝集による触媒活性低下を防止することができ、また、第1の化合物3による貴金属粒子2の活性向上効果を維持することができる。
 本発明は、第1の化合物が、Tiを主成分とすることを特徴の一つとしている。第1の化合物が、Ceを主成分とした酸化物よりなる従来の排気ガス浄化用触媒では、ストイキオメトリーよりもリーン側で運転されるガソリン直噴エンジン及びディーゼルエンジンに適用したときに、雰囲気中に大量の酸素が存在するため、近傍の貴金属に対し、低温時には過度の酸素吸着による吸着被毒、高温時は過度の酸素放出による貴金属酸化が生じ、性能低下が起きることがある。
 これに対して、本発明では、第1の化合物として、アンカー作用を有し、Ceと比較して酸素吸放出能が低く、かつCeと同様に表面が塩基性であるTiを用いる。このことにより、図1に示した構造を具備することで貴金属の耐久性向上を維持したままで、ストイキからリーンにかけての雰囲気下にて、排気ガスを酸化することで浄化することが求められる触媒の酸化性能が著しく向上する。特に、排気ガス成分中のHC、なかでも酸化浄化が難しいメタンを本発明の排気ガス浄化用触媒は効果的に酸化することができるため、その性能向上代は大きい。
 本発明の排気ガス浄化用触媒では、上述した触媒の酸化性能が著しく向上する理由については、必ずしも明らかではないが、第1の化合物がTiを主成分とする化合物であることによる、特に貴金属酸化の抑制によるものと考えられる。貴金属が例えばPtである場合には、酸化程度によってメタルPt、PtO、PtO2の状態に変化することが知られているが、これらの状態のなかで、メタルPt が排気ガスの酸化性能が最も高く、メタルPt→PtO→PtO2の順に酸化性能が低下する。このような貴金属の酸化状態は、反応雰囲気でも変化するが、貴金属粒子を担持する基材の物性、すなわち本発明における第1の化合物の物性によっても変化することが発明者らによって明らかとなった。特に担持する第1の化合物がCeを主成分とする酸化物である場合と比較して、Tiを主成分とする化合物である場合では、PtはメタルPtに近い電子状態を取りやすく、酸化活性が向上する。なお、この変化はXPSにより観測することが可能である。以上のことから、本発明では、Tiを第1の化合物として用いることで触媒の酸化活性を向上させることができる。
 貴金属は、触媒作用を有し、排気ガス浄化用触媒に用いられて好適な[Pt、Pd及びRh]の中から選ばれる少なくとも1つの元素とする。
 第2の化合物は、耐熱性を有し、かつ、この第2の化合物4に内包される貴金属粒子2に排気ガスを到達させる細孔を形成可能な材料として、[Al及びSi]から選ばれる1つ以上を主成分とする化合物とする。具体的には、Al2O3、SiO2、Al-Si複合酸化物などが適用できる。また第2の化合物は、Al2O3とSiO2との混合物であってもよい。
 本発明の排気ガス浄化用触媒のユニット、すなわち、貴金属は当該第1の化合物に担持され、この貴金属が担持された第1の化合物は当該第2の化合物に内包されて、当該貴金属が担持された第1の化合物同士がこの第2の化合物により隔てられた構造のユニットは、当該ユニット内の貴金属の量が、8×10-20モル以下であるユニットを含むことが好ましい。
 図2は、本発明の排気ガス浄化用触媒のユニットの例を示す模式図である。同図に示す排気ガス浄化用触媒1は、貴金属粒子2と、この貴金属粒子2を担持する第1の化合物3と、貴金属粒子2及び第1の化合物3を内包する第2の化合物4とからなる点は図1に示した排気ガス浄化用触媒1と同一である。そして第2の化合物4により隔てられた区画内に、貴金属粒子2と第1の化合物3とが種々の態様で含まれている。
 図2において、第2の化合物4により隔てられた構造のユニットのうち、ユニットU1では、単体の貴金属粒子2を担持した単体の第1の化合物3が含まれている。またユニットU2では、複数の貴金属粒子2を担持している複数個の第1の化合物3が、凝集した集合体(二次粒子)で含まれている。またユニットU3~U6では、複数の貴金属粒子2を担持している単体の第1の化合物3が、種々の粒径で含まれている。
 図2に示された排気ガス浄化用触媒1のユニットU1~U6のいずれも、図1に示した排気ガス浄化用触媒1と同様に、第2の化合物4により隔てられた区画を越えて第1の化合物3が接触し凝集することが抑制される。したがって、図1に示した排気ガス浄化用触媒1と同様の効果を有している。
 この第2の化合物4により隔てられた構造のユニット内には、貴金属粒子を合計で8×10-20モル以下の量で含有することが好ましい。図2に示したように、第2の化合物4により隔てられた区画内に含まれる貴金属粒子2と第1の化合物3とは、種々の態様がある。排気ガス浄化用触媒が実用に供されたとき、雰囲気の高温などに起因してこれらの区画内で複数個の貴金属粒子2が移動して、互いに凝集する場合がある。この場合に、貴金属粒子2は、ユニットU1~U6のいずれでも、アンカー剤としての第1の化合物3の効果によって第2の化合物4には移動せず、ユニット内でのみ一つ又は複数個の貴金属粒に凝集する。一つのユニットにおける貴金属粒子2の凝集前後の一例を模式的に図3(a)及び、(b)に示す。
 ここに、貴金属粒が一つのユニット内で凝集したとしても、凝集した貴金属粒の粒径が10[nm]以下であれば、充分な触媒活性を示し、凝集による触媒活性の劣化を抑制することができる。図4は、触媒活性を有する貴金属としての白金やパラジウムについて、貴金属粒子径と貴金属表面積との関係を示すグラフである。なお、同図では貴金属が白金の場合とパラジウムの場合と、ほぼ同じ曲線を示すので、一つの曲線として示している。同図から明らかなように、貴金属の粒子径が10[nm]以下であれば粒子表面積が大きく、十分な活性が得られるので、凝集による触媒活性の劣化を抑制することができる。
 図5は、触媒活性を有する貴金属としての白金やパラジウムについて、貴金属粒子径と貴金属の原子数との関係を示すグラフである。なお、同図では貴金属が白金の場合とパラジウムの場合と、ほぼ同じ曲線を示すので、一つの曲線として示している。同図から明らかなように、貴金属の粒子径が10[nm]であるときの原子数は約48000個であり、この値をモル数に換算すると約8×10-20モル以下の量になる。
 これらの観点から、ユニットU1~U6のいずれの態様であっても、ユニット内の貴金属量を制限し、8×10-20モル以下の量とすることで、ユニット内で1個に凝集しても、触媒活性の劣化を抑制することができる。
 ユニット内に含まれる貴金属量を8×10-20モル以下に低減する手段としては、第1の化合物3の貴金属粒子2の担持濃度を下げること、又は貴金属粒子2を担持した第1の化合物3の粒径を小さくすることの、2つの手段が存在する。本発明では、これらの手段に限定しないが、実際の触媒製造を考えた場合には、前者の担持濃度を下げる方法では、所定の排気ガス浄化触媒の性能を維持するためには排気ガス浄化用触媒をコートしたハニカム担体の容積を増やさなければならず、したがって、触媒のコート量が通常の一桁多いようなコート量をハニカム担体へコートする必要があるため、現実的ではない。
 第1の化合物3の粒径に関して、メジアン粒径は、2[μm]とすることが好ましい。本発明において、独立に分散した第1の化合物3の粒径は、二次粒子のメジアン径のことをいう。第1の化合物3は、貴金属粒子2と接触して貴金属粒子2の移動を抑制するアンカー剤としての機能を有している。このアンカー剤のアンカー効果は、第1の化合物3自身の大きさに影響を受ける。従来の排気ガス浄化用触媒のように、単に粉末状の第1の化合物、例えばTi酸化物などに貴金属を含浸担持し、アルミナ中に分散させても上記の充分な貴金属凝集抑制効果を発揮することが難しい。例えば、従来のボールミルなどによる粉砕製法によって第1の化合物3の粒子を得る場合には、最小でも2~3[μm]の粒径までしか得られない。このような最小でも2~3[μm]の粒径を有する第1の化合物3粒子を用いた排気ガス浄化用触媒であって、実際のコージェライトハニカム担体へのコート量上限及び使用貴金属量から定められる量で貴金属粒子2をこの第1の化合物3粒子に担持させた排気ガス浄化用触媒は、高温、長時間での使用により、貴金属粒子2が数十[nm]にまで凝集し、触媒活性が劣化してしまう。したがって、実際の触媒に適用する際には、第2の化合物4により隔てられた区画内に含まれる第1の化合物3が、メジアン径が2[μm]以下の粒子径であることが好ましい。より好ましい第1の化合物3のメジアン径は0.5[μm]以下である。このような平均粒子径が2[μm]以下の粒子径の第1の化合物は、後で述べる製造方法の説明で詳述するが、貴金属を担持した第1の化合物について、微細なコロイドとしたり、2[μm]以下にまで粉砕可能な装置を用いた粉砕法を適宜適用したりすることにより得られる。
 第1の化合物3のメジアン粒径の下限については、工業的な製造プロセスにより作製可能な第1の化合物3の粒径として定められ、特に限定されない。
 Tiを主成分とする本発明に係る第1の化合物は、より具体的には、Tiを含む酸化物であることが好ましい。Tiを含む酸化物は、金属元素がTiのみである酸化物、すなわちTiO2等のTi酸化物であっても良いが、Tiと第3の化合物との複合酸化物であり、かつ、この第3の化合物が、[Ce、Zr、Ba、Mg、W、Nd及びY]から選ばれる少なくとも1つの元素の化合物であることが、より好ましい。第1の化合物にはTiに加え、第3化合物を1種以上で添加することが可能である。[Ce、Zr、Ba、Mg、W、Nd及びY]は、いずれも、副成分として本発明の第1の化合物に添加して有効な成分である。第1の化合物中に、[Ce、Zr、Ba、Mg、W、Nd及びY]から選ばれる少なくとも1つの元素又はその化合物を添加することにより、表面塩基増による酸性物質の吸着促進や、これらの副成分の元素添加により第1の化合物の結晶構造安定化を図ることによる耐熱性の向上などの効果が得られる。この第3の化合物としては、例えば、CeO2、ZrO2、BaO、MgO、WO3、Nd2O3、Y2O3などの、副成分の元素の酸化物がある。また、この第3の化合物の、第1の化合物中における含有割合は、特に限定されないが、本発明では第1の化合物がTiを主成分とするのであるから、第3の化合物は50mol%未満である。
 また、第1の化合物は、上述したTi酸化物と第3の化合物との複合酸化物のみならず、Ti酸化物と第3の化合物との混合物であってもよい。
 第2の化合物は、[Al及びSi]から選ばれる1つ以上を主成分とし、更に[La、Zr、Ce、Y及びNd]から選ばれる1つ以上を含むことができる。[La、Zr、Ce、Y及びNd]は、いずれも、副成分として本発明の第2の化合物に添加して有効な成分である。第2の化合物中に、[La、Zr、Ce、Y及びNd]から選ばれる少なくとも1つの元素又はその化合物を添加することにより、表面塩基増による酸性物質の吸着促進や、これらの副成分の元素添加により第2の化合物の結晶構造安定化を図ることによる耐熱性の向上などの効果が得られる。第2の化合物に[La、Zr、Ce、Y及びNd] から選ばれる少なくとも1つの元素が添加されて、第2の化合物が[Al及びSi]から選ばれる1つ以上との複合酸化物よりなる場合に、当該複合酸化物の構成要素としての[La、Zr、Ce、Y及びNd]の酸化物の具体例としては、La2O3、ZrO2、CeO2、Y2O3、Nd2O3、などがある。また、この第2の化合物中における[La、Zr、Ce、Y及びNd] から選ばれる少なくとも1つの元素又はその化合物の含有割合は、特に限定されないが、本発明では第2の化合物が[Al及びSi]から選ばれる1つ以上を主成分とするのであるから、50mol%未満である。
 次に、本発明の排気ガス浄化用触媒の製造方法について説明する。まず、第1の化合物上に貴金属を担持させる工程を行う。この第1の化合物上に貴金属を担持させる工程は、一つの例としては、貴金属が接触した第1の化合物を、1次粒子径が100nm以下のコロイド状にする工程とすることができる。また、別の例としては、第1の化合物の2次粒子集合体を微粒化して、貴金属が接触した第1の化合物の2次粒子径を2μm以下にする工程とすることができる。
 前者の、貴金属が接触した第1の化合物を、1次粒子径が100nm以下のコロイド状にする工程について以下述べる。この工程は、第1の化合物のコロイドを、市販のもの又は別途の調製により用意し、この第1の化合物のコロイドに貴金属を接触させる工程とすることができる。具体的には、第1の化合物のコロイドに、貴金属塩を加え分散させてからエタノール等の還元剤を利用して第1の化合物の表面上に貴金属を還元析出させることにより貴金属を接触させる。又は、第1の化合物のコロイドに、貴金属コロイドを加えることにより貴金属を接触させる。
 図6に示すこの工程の説明図において、矢印より左側には、この工程によって、第1の化合物3に、貴金属粒子2が接触しているところを模式的に示している。なお、この工程では、第1の化合物のコロイドを、貴金属粒子2の接触の前に分散用保護材料で包むこともできるし、また、貴金属粒子の接触の後に分散用保護材料で包むこともできる。図6の矢印より右側には、貴金属粒子2が接触した第1の化合物3を包んで分散用保護材料7が形成されているところを模式的に示している。この分散用保護材料7は、たとえば高分子化合物(ポリマー)や硝酸や酢酸などであり、貴金属粒子2が接触した第1の化合物3の凝集をより効果的に抑制することができるが、本発明の排気ガス浄化用触媒の製造方法においては、必要に応じて使用すればよく、必須のものではない。
 上記工程により、この貴金属が接触した第1の化合物は、コロイド溶液中で均一に分散するので、貴金属粒子が接触した第1の化合物同士が、溶液中で凝集することが抑制される。これにより、後工程を経て製造された排気ガス浄化用触媒の第1の化合物の二次粒径を、メジアン粒径で2μm以下に容易にすることができる。排気ガス浄化用触媒の第1の化合物の二次粒径を、メジアン粒径で2μm以下にするためには、当該コロイドの1次粒子径が100nm以下であることが好ましい。
 次に、第1の化合物上に貴金属を担持させる工程として先に挙げたうち、後者である、第1の化合物の2次粒子集合体を微粒化して、貴金属が接触した第1の化合物の2次粒子径を2μm以下にする工程について述べる。この工程は、第1の化合物について、ミクロンオーダーの粒径を有するものを用意し、その第1の化合物を破砕することと、第1の化合物上に貴金属を担持させることとの組み合わせからなる。この第1の化合物の破砕と、第1の化合物上への貴金属の担持との順序は特に限定されない。例えば、第1の化合物上に貴金属粒子を担持させた後に、破砕することができる。また、第1の化合物を粉砕中に、貴金属粒子を担持させることもできる。更に、第1の化合物を粉砕した後に、貴金属粒子を担持させることもできる。
 この第1の化合物への貴金属粒子の担持方法は、含浸法、噴霧法、混練法などを適宜用いることが可能である。それ以外にも、貴金属の前駆体塩や貴金属コロイドと、第1の化合物の前駆体塩とを水溶液中などで混合し、しかる後に第1の化合物の前駆体塩を不溶化し、溶媒を除去した後に焼成することで、貴金属の一部を第1の化合物中に包接する方法であってもよい。
 この第1の化合物の破砕方法は、振動式ボールミル、遊星式ボールミル、ビーズミル、ジェットミルなどのような粉砕機を用いて、湿式粉砕、乾式粉砕あるいは超音波粉砕など、第1の化合物の二次粒子径を2μm以下に可能な粉砕方法を適宜用いることができる。第1の化合物を粉砕することにより、本発明の製造方法により最終的に得られた排気ガス浄化用触媒の第1の化合物の2次メジアン粒径を2μm以下とすることができる。
 粉砕後は、ポリエチレンイミド、ポリメタクリル酸などの高分子よりなる分散用保護材料と混合することでコロイド化することができる。このコロイド化により、貴金属を担持した第1の化合物の微細分散状態の安定化を図ることができる。このコロイド化の方法も、高分子保護材と混合するなど適宜用いることができる。その他にも、超音波分散などにより、次工程までの分散状態を維持することが可能である。
 上記した第1の化合物の粉砕を行うことにより、貴金属が担持された第1の化合物は、数十nmから数百nm程度の微細な粒子となり、その後の工程で第2の化合物と包接される際に微細なユニットとして包接される。そのため、耐久後の第1の化合物同士の凝集が少なく、高活性の触媒を得ることができる。
 次に、本発明の排気ガス浄化用触媒の製造方法においては、これまで説明した、第1の化合物上に貴金属を担持させる工程に次いで、微粒化した当該貴金属が接触した第1の化合物の周囲に、第2の化合物を形成させる工程を行う。
 この工程の一例を、図7の模式的な説明図を用いて説明する。同図の左側に図示されるような、貴金属粒子2が担持された微細な第1の化合物3に対して、第2の化合物の原料を加える。このことにより図7の中央に示されるように、貴金属粒子2が担持された微細な第1の化合物3の周囲に、第2の化合物の前駆体8を形成させる。形成させる方法は、含浸法でもよいし、また、包接法でもよい。次いで、図7の右側に示されるように、この第2の化合物の前駆体8が形成されたコロイド溶液の固形分を分離して、水分を留去して乾燥させ、その後に焼成することにより、第2の化合物の前駆体8を第2の化合物4にする。このようにして、本発明の排気ガス浄化用触媒が得られる。水分の留去は、バットなどでの静止状態での加熱による水分留去の他、マイクロ波などの電磁波加熱、エバポレータ等による減圧乾燥、スプレードライ等による噴霧加熱、フリーズドライ等による凍結乾燥等を適宜用いることが可能である。
 本発明の排気ガス浄化用触媒は、耐火性ハニカム担体等に塗布形成されて、実機のエンジンの排気ガス浄化に供される。
 以下、本発明を実施例に基づいて具体的に説明する。
[触媒粉末の製造方法]
 表1に示す実施例1~6及び比較例1~2の触媒を作製した。これらの触媒の製造方法は、以下に述べるとおりである。
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
 第1の化合物の原料として市販の針状ルチルTiO2(1次粒径3[μm])を、湿式粉砕機にて純水中で粉砕し、レーザ散乱式粒度分布計のHORIBA製LA920にて測定されたメジアン径が200[nm]とした。この粉砕後の第1の化合物を含むスラリ中にジニトロジアミンPt水溶液(Pt濃度8.47[wt%])を分散させ、約2時間攪拌してPtが接触した第1の化合物を含むスラリを得た。その一方でベーマイト及び硝酸セリウム、硝酸酸化ジルコニウム、純水を混合したベーマイトスラリを得た。このスラリと、先ほどのPtが接触した第1の化合物を含むスラリとを混合し、高速攪拌機にて攪拌した。
 攪拌後の当該スラリの水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子が第1の化合物のTiO2に担持され、更に第2の化合物のCe-Zr-AlOxで覆われた触媒を得た。なお、第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、5.4×10-27[mol]であった。
〔実施例2〕
 第1の化合物の原料として共沈法により調整したTiO2-ZrO2複合化合物を、湿式粉砕機にて純水中で粉砕し、レーザ散乱式粒度分布計のHORIBA製LA920にて測定されたメジアン径が300[nm]とした。この粉砕後の第1の化合物を含むスラリ中に、ジニトロジアミンPt水溶液(Pt濃度8.47[wt%])を分散させ、約2時間攪拌した後に更に分散用保護材料としてPEI(ポリエチレンイミン)を溶液中に20[wt%]混合し、更に2時間攪拌することでコロイド化した。その一方でベーマイト及び硝酸酸化ランタン、純水を混合したベーマイトスラリを得た。このスラリと、先ほどのPtが接触した第1の化合物を含むスラリとを混合し、高速攪拌機にて攪拌した。
 撹拌後の当該スラリの水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子が第1の化合物のTiO2-ZrO2複合化合物に担持され、更に第2の化合物のLa-AlOxで覆われた触媒を得た。なお、第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、1.8×10-26 [mol]であった。
〔実施例3〕
 第1の化合物の原料として市販のチタニアゾル(1次粒径30[nm])と硝酸バリウムとに、ジニトロジアミンPt水溶液(Pt濃度8.47[wt%])を分散させ、約2時間攪拌してPtが接触した第1の化合物を含む懸濁液を得た。その一方でアルミニウムイソプロポキシドをヘキシレングリコール中に混合し、120[℃]のオイルバス中で溶解させた溶液を作成した。このアルミニウムイソプロポキシドのヘキシレングリコール溶液中に、先ほどの混合物の懸濁液を80[℃]の油浴中でゆっくりと滴下し、Ptとチタニアゾル、硝酸バリウムの周囲に水酸化アルミニウムを形成した。
 この後、減圧下にて攪拌しながら油浴温度をしだいに上げ、溶媒を留去した。得られた粉末を80[℃]で6時間、更に150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子の周囲に第1の化合物のTiO2-BaO複合酸化物が存在し、更に第2の化合物のアルミナで覆われた触媒を得た。なお、第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、2.9×10-28 [mol]であった。
〔実施例4〕
 第1の化合物の原料として共沈法により調整したTiO2-CeO2複合化合物を湿式粉砕機にて純水中で粉砕し、レーザ散乱式粒度分布計のHORIBA製LA920にて測定されたメジアン径が350nmとした。この粉砕後の第1の化合物を含むスラリ中にジニトロジアミンPt水溶液(Pt濃度8.47[wt%])を分散させ、約2時間攪拌した。その一方でベーマイト及び硝酸イットリウム、純水を混合したベーマイトスラリを得た。このスラリと、先ほどのPtが接触した第1の化合物を含むスラリとを混合し、高速攪拌機にて攪拌した。
 攪拌後の当該スラリの水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子が第1の化合物のTiO2-CeO2複合化合物に担持され、更に第2の化合物のY-AlOxで覆われた触媒を得た。なお、第1の化合物及び第2の化合物。のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、1.4×10-26 [mol]であった。
〔実施例5〕
 第1の化合物の原料として市販のブロック状ルチルTiO2(1次粒径2[μm])及び硝酸マグネシウムを、湿式粉砕機にて純水中で粉砕し、レーザ散乱式粒度分布計のHORIBA製LA920にて測定されたメジアン径が250[nm]とした。この粉砕後の第1の化合物を含むスラリ中に硝酸Pd水溶液(Pd濃度20.71[wt%])を分散させ、約2時間攪拌しPdが接触した第1の化合物を含むスラリを得た。その一方でベーマイト及び硝酸ネオジム、純水を混合したベーマイトスラリを得た。このスラリと、先ほどのPdが接触した第1の化合物を含むスラリとを混合し、高速攪拌機にて攪拌した。
 攪拌後の当該スラリの水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPd粒子が第1の化合物のTiO2-MgO複合化合物に担持され、更に第2の化合物のNd-AlOxで覆われた触媒を得た。なお、第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、7.7×10-27 [mol]であった。
〔実施例6〕
 第1の化合物の原料として市販のチタニアゾル(1次粒径30[nm])と硝酸ネオジムに硝酸Rh水溶液(Rh濃度8.36[wt%])を分散させ、約2時間攪拌してRhが接触した第1の化合物を含む懸濁液を得た。その一方でテトラエトキシシランをヘキシレングリコール中に混合し、120[℃]のオイルバス中で溶解させた溶液を作成した。このテトラエトキシシラン等のヘキシレングリコール溶液中に、先ほどの混合物の懸濁液を80[℃]の油浴中でゆっくりと滴下し、Rhとチタニアゾル、硝酸ネオジムの周囲にSiO2前駆体を形成した。
 この後、減圧下にて攪拌しながら油浴温度をしだいに上げ、溶媒を留去した。得られた粉末を80[℃]で6時間、更に150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のRh粒子の周囲に第1の化合物のTiO2-Nd2O3複合酸化物が存在し、更に第2の化合物のSiO2で覆われた触媒を得た。なお、第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、1.4×10-26 [mol]であった。
〔比較例1〕
 比較例1は、貴金属を担持する第1の化合物が、CeO2-ZrO2である例である。
 第1の化合物の原料として市販のCeO2-ZrO2複合化合物(1次粒径30[nm])を湿式粉砕機にて純水中で粉砕し、レーザ散乱式粒度分布計のHORIBA製LA920にて測定されたメジアン径が200[nm]とした。この粉砕後の第1の化合物を含むスラリ中にジニトロジアミンPt水溶液(Pt濃度8.47[wt%])を分散させ、約2時間攪拌してPtが接触した第1の化合物を含むスラリを得た。その一方でベーマイト及び硝酸セリウム、硝酸酸化ジルコニウム、純水を混合したベーマイトスラリを得た。このスラリと、先ほどのPtが接触した第1の化合物を含むスラリとを混合し、高速攪拌機にて攪拌した。
 攪拌後の当該スラリの水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子が第1の化合物のCeO2-ZrO2複合化合物に担持され、更に第2の化合物のCe-Zr-AlOxで覆われた触媒を得た。第1の化合物及び第2の化合物のそれぞれにおける、混合物の各成分のモル%は表1中の値となるよう調整した。また、ユニット内の貴金属の量は、表1中の値のとおり、3.2×10-27 [mol]であった。
〔比較例2〕
 比較例2は、第2の化合物を有していない、従来の一般的な触媒の例である。
 市販のAl2O3(1次粒径3[μm])をジニトロジアミンPt水溶液(Pt濃度8.47[wt%]及び純水中に分散させ、約2時間攪拌した後、水分を5%以下まで留去し、150[℃]で12時間乾燥した後に、400[℃]で1時間空気気流下で焼成した。
 これにより貴金属のPt粒子が担体のAl2O3に担持された触媒を得た。なお、比較例2では、担体におけるアルミナのモル%は表1中の値のとおり100%であった。
[耐久条件]
 以上のようにして製造された実施例1~6及び比較例1~2の触媒粉末を、それぞれ700[℃]で5[hr] 空気気流下にて焼成を行った。
〔触媒性能評価〕
 上記の耐久処理後の各触媒について、日本ベル株式会社製の触媒反応装置TPD-1-ATを用いて、表2に示す反応ガス組成、ガス流量条件で模擬排出ガスを流通させ、400[℃]における装置入側及び出側のCH4濃度から、実施例1~6及び比較例1~2の排気ガス浄化用触媒それぞれの400[℃]におけるCH4転化率(ηCH4)[%]を算出した。なお、試料量は0.1gとし、検出器はQ-MASSにて行った。このCH4転化率の値を表1に併記する。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1~6の触媒粉末は、比較例1~2の触媒粉末と比べて、耐久処理後のCH4転化率が格段に優れている。これは、第1の化合物がTiを含む酸化物であることから、特にCH4に対する転化率が向上したものと考えられる。
 特願2008-185189号(出願日:2008年7月16日)、の全内容は、ここに援用される。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。
 本発明の排気ガス浄化用触媒は、空気燃料比率が化学量論比よりもリーン側で運転するエンジンに用いた場合に、優れた排気ガス浄化性能を有しているから、直噴エンジンやディーゼルエンジン等に好適に用いることができる。

Claims (7)

  1.  貴金属と、第1の化合物と、第2の化合物からなり、この貴金属は当該第1の化合物に担持され、この貴金属が担持された第1の化合物は当該第2の化合物に内包されて、当該貴金属が担持された第1の化合物同士がこの第2の化合物により隔てられた構造のユニットを含み、かつ、
     この貴金属は[Pt、Pd及びRh]から選ばれる1つ以上であり、この第1の化合物はTiを主成分とし、この第2の化合物は[Al及びSi]から選ばれる1つ以上を主成分とすることを特徴とする排気ガス浄化用触媒。
  2.  前記ユニット内の貴金属の量が、8×10-20モル以下であるユニットを含むことを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3.  独立して分散した前記第1の化合物のメジアン粒径が2μm以下であることを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。
  4.  前記第1の化合物は、Tiを含む酸化物であり、このTiを含む酸化物がTiと第3の化合物との複合酸化物であり、この第3の化合物が、[Ce、Zr、Ba、Mg、W、Nd及びY]から選ばれる少なくとも1つの元素の化合物であることを特徴とする請求項1~3のいずれか1項に記載の排気ガス浄化用触媒。
  5.  前記第2の化合物は、更に[La、Zr、Ce、Y及びNd]から選ばれる1つ以上を含むことを特徴とする請求項1~4のいずれか1項に記載の排気ガス浄化用触媒。
  6.  請求項1~5のいずれか1項に記載の排気ガス浄化用触媒を製造する方法であって、
     貴金属が接触した第1の化合物を、1次粒子径が100nm以下のコロイド状にする工程と、
     次いで、コロイド状にした当該貴金属が接触した第1の化合物の周囲に、第2の化合物を形成させる工程と
    を含むことを特徴とする排気ガス浄化用触媒の製造方法。
  7.  請求項1~5のいずれか1項に記載の排気ガス浄化用触媒を製造する方法であって、
     第1の化合物の2次粒子集合体を微粒化して、貴金属が接触した第1の化合物の2次粒子径を2μm以下にする工程と、
     次いで、微粒化した当該貴金属が接触した第1の化合物の周囲に、第2の化合物を形成させる工程と
    を含むことを特徴とする排気ガス浄化用触媒の製造方法。
PCT/JP2009/060221 2008-07-16 2009-06-04 排気ガス浄化用触媒及びその製造方法 WO2010007839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/002,929 US8309487B2 (en) 2008-07-16 2009-06-04 Exhaust gas purifying catalyst and method for producing the same
EP09797767.2A EP2311559B1 (en) 2008-07-16 2009-06-04 Exhaust gas purifying catalyst and method for producing the same
CN2009801275390A CN102099111B (zh) 2008-07-16 2009-06-04 废气净化用催化剂及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008185189A JP5526502B2 (ja) 2008-07-16 2008-07-16 排気ガス浄化用触媒及びその製造方法
JP2008-185189 2008-07-16

Publications (1)

Publication Number Publication Date
WO2010007839A1 true WO2010007839A1 (ja) 2010-01-21

Family

ID=41550247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060221 WO2010007839A1 (ja) 2008-07-16 2009-06-04 排気ガス浄化用触媒及びその製造方法

Country Status (5)

Country Link
US (1) US8309487B2 (ja)
EP (1) EP2311559B1 (ja)
JP (1) JP5526502B2 (ja)
CN (1) CN102099111B (ja)
WO (1) WO2010007839A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136821A1 (ja) * 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
EP2543439A4 (en) * 2010-03-02 2014-05-07 Nippon Sheet Glass Co Ltd CATALYST LOADED WITH FINE METAL PARTICLES, METHOD FOR ITS PRODUCTION AND CLEANING CATALYST

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209765B (zh) * 2010-09-15 2016-10-19 巴斯夫欧洲公司 烧结稳定的多相催化剂
JP6010325B2 (ja) * 2012-04-12 2016-10-19 日揮触媒化成株式会社 排ガス浄化用触媒および触媒担持構造体ならびにこれらの製造方法
WO2014129634A1 (ja) * 2013-02-25 2014-08-28 ユミコア日本触媒株式会社 排ガス浄化用触媒およびそれを用いた排ガス浄化方法
EP3277410A4 (en) * 2015-03-24 2019-02-20 Tecogen, Inc. CATALYST RESISTANT TO POISONS, AND SYSTEMS CONTAINING THE SAME
US9914095B1 (en) * 2017-02-08 2018-03-13 Ford Global Technologies, Llc Catalyst for automotive emissions control
WO2018223099A1 (en) * 2017-06-02 2018-12-06 University Of Connecticut Low-temperature diesel oxidation catalysts using tio2 nanowire arrays integrated on a monolithic substrate
CN108295649B (zh) * 2018-01-11 2020-12-11 湖南美源环保科技有限公司 一种有机废气净化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177787A (ja) * 2000-12-07 2002-06-25 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法
WO2007052627A1 (ja) 2005-11-01 2007-05-10 Nissan Motor Co., Ltd. 排気ガス浄化用触媒及びその製造方法
JP2007111640A (ja) * 2005-10-20 2007-05-10 Nissan Motor Co Ltd 排ガス浄化触媒
JP2007229641A (ja) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2008185189A (ja) 2007-01-31 2008-08-14 Kowa Co Ltd ロール

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102853A (en) * 1989-11-22 1992-04-07 Ford Motor Company Three-way catalyst for automotive emission control
JP4098835B2 (ja) * 1993-12-07 2008-06-11 トヨタ自動車株式会社 排気ガス浄化用触媒
JP3965711B2 (ja) * 1996-10-25 2007-08-29 株式会社日立製作所 窒素酸化物の浄化触媒及び浄化方法
US6221804B1 (en) * 1998-01-27 2001-04-24 Mazda Motor Corporation Catalyst for purifying exhaust gas and manufacturing method thereof
US6511642B1 (en) * 1999-01-12 2003-01-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous material, catalyst, method of producing the porous material and method for purifying exhaust gas
JP3643948B2 (ja) * 1999-03-15 2005-04-27 株式会社豊田中央研究所 チタニア−ジルコニア系粉末およびその製造方法
EP1166855B1 (en) * 2000-06-27 2009-06-17 ICT Co., Ltd. Exhaust gas purifying catalyst
JP3858625B2 (ja) * 2000-07-27 2006-12-20 株式会社豊田中央研究所 複合酸化物とその製造方法及び排ガス浄化用触媒とその製造方法
JP4564645B2 (ja) * 2000-11-27 2010-10-20 株式会社キャタラー 排ガス浄化用触媒
JP2002224570A (ja) * 2001-02-05 2002-08-13 Toyota Central Res & Dev Lab Inc Coシフト反応用触媒
EP1371415B1 (en) * 2001-02-19 2006-12-06 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purification of exhaust gas
DE60211260T2 (de) * 2001-08-30 2007-05-24 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute Mischoxid, Verfahren zu seiner Herstellung und Abgas Reduktions-CO-Katalysator
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
JP4228278B2 (ja) * 2002-03-19 2009-02-25 トヨタ自動車株式会社 排ガス浄化用触媒
JP3758601B2 (ja) * 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
US7037875B2 (en) * 2003-04-04 2006-05-02 Engelhard Corporation Catalyst support
JP4329432B2 (ja) * 2003-07-15 2009-09-09 トヨタ自動車株式会社 排ガス浄化用触媒
JP5217072B2 (ja) * 2003-11-14 2013-06-19 トヨタ自動車株式会社 排ガス浄化用触媒およびその製法
JP4547930B2 (ja) * 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP4547935B2 (ja) * 2004-02-24 2010-09-22 日産自動車株式会社 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
JP4513372B2 (ja) * 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
JP4513384B2 (ja) * 2004-03-31 2010-07-28 日産自動車株式会社 高耐熱性排ガス浄化用触媒及びその製造方法
CA2562556C (en) * 2004-04-27 2011-07-05 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
JP4123185B2 (ja) * 2004-04-27 2008-07-23 トヨタ自動車株式会社 金属酸化物粒子の製造方法
JP4426379B2 (ja) * 2004-05-24 2010-03-03 Tanakaホールディングス株式会社 触媒前駆体及び触媒、並びに、触媒前駆体及び触媒の製造方法
JP4918857B2 (ja) * 2004-06-11 2012-04-18 株式会社豊田中央研究所 金属酸化物ナノ多孔体、それを得るための被覆組成物、及びそれらの製造方法
US7605108B2 (en) * 2004-07-08 2009-10-20 Nissan Motor Co., Ltd. Catalyst, exhaust gas purification catalyst, and method for manufacturing same
US7229690B2 (en) * 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
US7713908B2 (en) * 2004-08-30 2010-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous composite metal oxide and method of producing the same
WO2006064684A1 (ja) * 2004-12-14 2006-06-22 Nissan Motor Co., Ltd. 触媒、排ガス浄化触媒、及び触媒の製造方法
JP5200315B2 (ja) * 2004-12-22 2013-06-05 日産自動車株式会社 排気ガス浄化触媒、及び排気ガス浄化触媒の製造方法
US7618919B2 (en) * 2005-01-28 2009-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support and method of producing the same
JP4865250B2 (ja) * 2005-04-15 2012-02-01 三菱重工業株式会社 排ガス処理用触媒の製造方法
JP4713959B2 (ja) * 2005-06-23 2011-06-29 株式会社東芝 燃料電池用担持触媒および燃料電池
US7981834B2 (en) * 2006-03-16 2011-07-19 Ict Co., Ltd. Adsorbent for hydrocarbons, catalyst for exhaust gas purification and method for exhaust gas purification
EP2022562B1 (en) * 2006-04-03 2021-06-09 Nissan Motor Company Limited Exhaust gas purifying catalyst
JP5459927B2 (ja) * 2006-07-07 2014-04-02 株式会社キャタラー 排ガス浄化用触媒
EP1952876A1 (en) * 2007-01-25 2008-08-06 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and manufacturing method thereof
US8038954B2 (en) * 2008-02-14 2011-10-18 Basf Corporation CSF with low platinum/palladium ratios
US7923108B2 (en) * 2008-05-12 2011-04-12 Consolidated Fiberglass Products Company Built-up roofing surfacing sheets and methods of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177787A (ja) * 2000-12-07 2002-06-25 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法
JP2007111640A (ja) * 2005-10-20 2007-05-10 Nissan Motor Co Ltd 排ガス浄化触媒
WO2007052627A1 (ja) 2005-11-01 2007-05-10 Nissan Motor Co., Ltd. 排気ガス浄化用触媒及びその製造方法
JP2007229641A (ja) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2008185189A (ja) 2007-01-31 2008-08-14 Kowa Co Ltd ロール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2311559A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543439A4 (en) * 2010-03-02 2014-05-07 Nippon Sheet Glass Co Ltd CATALYST LOADED WITH FINE METAL PARTICLES, METHOD FOR ITS PRODUCTION AND CLEANING CATALYST
WO2013136821A1 (ja) * 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
US9339793B2 (en) 2012-03-14 2016-05-17 N.E. Chemcat Corporation Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning

Also Published As

Publication number Publication date
US8309487B2 (en) 2012-11-13
CN102099111A (zh) 2011-06-15
JP2010022910A (ja) 2010-02-04
EP2311559A1 (en) 2011-04-20
EP2311559B1 (en) 2022-05-18
US20110111952A1 (en) 2011-05-12
JP5526502B2 (ja) 2014-06-18
CN102099111B (zh) 2013-07-10
EP2311559A4 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5147687B2 (ja) 排ガス浄化触媒及びその製造方法
JP5526502B2 (ja) 排気ガス浄化用触媒及びその製造方法
KR100989224B1 (ko) 배기 가스 정화용 촉매 및 그의 제조 방법
JP5458126B2 (ja) 排気ガス浄化用触媒及びその製造方法
EP1740307B1 (en) Metal oxide particle, production process thereof and exhaust gas purifying catalyst
KR100891579B1 (ko) 배기 가스 정화용 촉매 및 그의 제조 방법
KR100881300B1 (ko) 금속 산화물 입자의 제조 공정 및 배기 가스 정화용 촉매
JP4179299B2 (ja) 触媒担体粉末及び排ガス浄化触媒
JP7187654B2 (ja) 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒
JP2011147901A (ja) 排ガス浄化用触媒
WO2014050296A1 (ja) 白金系酸化触媒、及びそれを用いた排気ガス浄化方法
EP3421127B1 (en) Exhaust-gas purifying catalyst and manufacturing method therefor
JP2005313028A (ja) 排ガス浄化触媒及びその製造方法
WO2019167515A1 (ja) 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP6360606B1 (ja) NOx吸着材料及びその製造方法、並びにこれらを用いたNOx吸着部材及び自動車排ガス用触媒
JP5217116B2 (ja) 排ガス浄化用触媒
JP2006320863A (ja) 排ガス浄化触媒及びその製造方法
WO2022065188A1 (ja) メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法
JP4805031B2 (ja) 排ガス浄化触媒、その製造方法及び使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127539.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13002929

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797767

Country of ref document: EP