WO2007046439A1 - 抗体を産生するトランスジェニックカイコとその製造方法 - Google Patents

抗体を産生するトランスジェニックカイコとその製造方法 Download PDF

Info

Publication number
WO2007046439A1
WO2007046439A1 PCT/JP2006/320775 JP2006320775W WO2007046439A1 WO 2007046439 A1 WO2007046439 A1 WO 2007046439A1 JP 2006320775 W JP2006320775 W JP 2006320775W WO 2007046439 A1 WO2007046439 A1 WO 2007046439A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
dna encoding
protein
recombinant antibody
transgenic silkworm
Prior art date
Application number
PCT/JP2006/320775
Other languages
English (en)
French (fr)
Inventor
Toshiki Tamura
Isao Kobayashi
Toshio Kanda
Keiro Uchino
Katsuhiro Katayama
Tatsuya Ohashi
Iwao Kiyokawa
Hisae Arai
Noriyuki Funahashi
Original Assignee
National Institute Of Agrobiological Sciences
Nitto Boseki Co., Ltd.
Unitech Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiological Sciences, Nitto Boseki Co., Ltd., Unitech Co., Ltd filed Critical National Institute Of Agrobiological Sciences
Priority to JP2007541022A priority Critical patent/JPWO2007046439A1/ja
Priority to KR1020087011688A priority patent/KR101323563B1/ko
Priority to EP06811968A priority patent/EP1947180B1/en
Priority to US12/090,702 priority patent/US8952215B2/en
Priority to CN2006800476581A priority patent/CN101331228B/zh
Publication of WO2007046439A1 publication Critical patent/WO2007046439A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0335Genetically modified worms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/04Silkworms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/70Invertebrates
    • A01K2227/703Worms, e.g. Caenorhabdities elegans
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible

Definitions

  • the present invention relates to a method for producing a recombinant antibody using a silkworm, which is capable of producing a large amount of an antibody close to an antibody produced by a mammal.
  • the present invention also relates to a transgenic silkworm that produces the recombinant antibody.
  • Silkworms have an organ called a silk gland and have the ability to produce a maximum of 0.5 g of protein per animal.
  • recombinant silkworm production technology has been developed, and the introduction of foreign genes and the control of expression of introduced genes have progressed. It has become possible to produce proteins. Since silkworms are eukaryotes, they can produce proteins close to mammals compared to microorganisms and plants such as E. coli. Moreover, clean breeding using artificial feed is possible, and large-scale breeding at the level of tens of thousands can be easily performed.
  • Patent Document 1 JP 2006-137739 Shungo Tamura, Hideaki Setsutsu, Isao Kobayashi, Katsura Kojima, Toshio Kanda, Keiro Uchino (2005) Protein production method using silkworm-specific silk gland specific gene expression system Application date: March 15, 2005 Applicant: National Institute of Agrobiological Resources
  • Non-Patent Document 1 Toshiaki Tamura (1999) Transformation of silkworm using transposon. Abstract of the 7th Insect Function Research Meeting, plO-22.
  • Non-Patent Document 4 Toshiaki Tamura (2000) Transgenic Silkworm: Current Status and Prospects. Nissay 69, 1-12
  • Non-Patent Document 5 Toshiaki Tamura (2000) Introduction of Useful Genes in Silkworm Development. Breeding Symposium Report: Development of developmental engineering techniques in animal and plant molecular breeding.
  • Non-Patent Document 6 Tamura, T., Quan, GX, Kanda, T., and Kuwabara, N. (2001) Trans genie silkworm research in Japan: Recent progress and luture. Proceeding of Joint International Symposium of p23-29. Insect COE Research Program and Insect Factory Research Project.p77- 82.
  • Non-Patent Document 7 Imamura, M., Nakai, J., Inoue, S., Quan, G- X., Kanda T., and Tamur a, T. (2003) Targeted gene expression using the Gal4 / UAS system in the silkworm B ombyx mori. Genetics, 165, 1329-1340.
  • Non-Patent Document 8 Toshiaki Tamura (2004) Development and prospects of production system of useful substances using recombinant silkworm, Bioindustry 20 (3), 28-35.
  • Non-Patent Literature 9 Toshiaki Tamura, Keiro Uchino, Toshio Kanda, Isao Kobayashi, Katsura Kojima (2004) Creation of an expression system for the central silk gland specific gene using the GAL4 / UAS system of yeast. , P51.
  • Non-Patent Document 10 Toshiaki Tamura (2004) A method for producing transgene silkworms has been established! Expected to produce fibers with new functions; Chemistry and Biology 42, 634-635.
  • Non-Patent Document 12 Katsumi Ueda (2004) Frontier of antibody engineering. Pl22. CM Ichiichi Publishing, Tokyo
  • the present invention has been made in view of such a situation, and the problem to be solved by the present invention is a method for producing a large amount of a recombinant antibody similar to an antibody produced by a mammal using a recombinant silkworm. Is to provide.
  • the antibody was produced in the silk gland.
  • the amount of the reaction product with the antigen increases as the amount of the silk gland extract increases, and it has activity as an antibody. And that was a part of it.
  • the present invention relates to a method for producing a recombinant protein in silkworm silk, and provides the following [1] to [49].
  • a method for producing a recombinant antibody comprising the following steps (a) and (b):
  • Transgenic silkworm power The method according to [2], which is a transgenic silkworm having the DNA described in (i) and (ii) below;
  • Transgenic silkworm power The method according to [2], which is produced by crossing the transgenic silkworm described in (i) and (ii) below;
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of a promoter of a DNA encoding a protein specifically expressed in the silk gland
  • a recombinant antibody having a signal sequence [9] A recombinant antibody having a signal sequence.
  • the antibody according to [9] which is a full-length antibody or a low-molecular antibody.
  • Antigens are transferrin, CRP, IgG, IgA, IgM, IgD, IgE, albumin, prealbumin, complement C3, complement C4, ⁇ -l microglobulin, -2 microglobulin, AFP, CA 19- 9, CA15-3, PSA, apolipoprotein, tumor necrosis factor, interleukin, interferon, osteopontin, HBs antigen, RF, HCG, collagen, Hb, HbAlc, HC V antibody, troponin, myoglobin, FDP, CEA, c- The scFv antibody according to [10], which is erbB-2 or haptoglobin.
  • nucleotide sequence described in any one of SEQ ID NOs: 2, 20, and 28 as a signal sequence the nucleotide sequence described in SEQ ID NO: 5 as VH, the nucleotide sequence described in SEQ ID NO: 8 as a linker, A DNA encoding an scFv antibody, which comprises the nucleotide sequence set forth in SEQ ID NO: 11 as VL.
  • nucleotide sequence described in any one of SEQ ID NOS: 1, 20, and 28 as a signal sequence the nucleotide sequence described in SEQ ID NO: 4 as VH, the nucleotide sequence described in SEQ ID NO: 7 as a linker, A DNA encoding an scFv antibody, which comprises the nucleotide sequence set forth in SEQ ID NO: 10 as VL.
  • [12] A vector having DNA according to any one of [11] to [117].
  • a silkworm egg having a DNA promoter encoding a recombinant antibody having a promoter of a DNA encoding a protein expressed specifically in the silk gland and a signal sequence directly or indirectly controlled by the promoter is produced.
  • Transgenic silkworm power The method according to [15], which is a transgenic silkworm having a DNA according to (i) and (ii) below:
  • Transgenic silkworm power The method according to [15], which is produced by crossing the transgenic silkworm described in (i) and (ii) below;
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of the transcription control factor.
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a signal sequence, wherein the transgenic silkworm secretes the recombinant antibody.
  • Transgenic silkworm having a DNA promoter encoding a recombinant antibody having a promoter of a DNA encoding a protein specifically expressed in the silk gland and the promoter directly or indirectly controlled by the promoter A transgenic silkworm that secretes the recombinant antibody into the silk gland.
  • DNA encoding a transcriptional regulatory factor operably linked downstream of the promoter of the DNA encoding a protein specifically expressed in the silk gland (i) DNA encoding a recombinant antibody having a signal sequence operably linked downstream of the target promoter of the transcription control factor.
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of a promoter of a DNA encoding a protein specifically expressed in the silk gland
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of the transcription control factor.
  • [29] Promoter power of DNA encoding a protein specifically expressed in the silk gland
  • the transgenic silkworm according to [27] which is a promoter of DNA encoding fibroin protein.
  • [29 1] Promoter power of DNA encoding a hive mouth in protein The following (a) or (b), the transgenic silkworm according to [29];
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of a transcriptional regulatory factor.
  • Transgenic silkworm power The method according to [32], which is a transgenic silkworm having a DNA according to (i) and (ii) below:
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of the transcription control factor.
  • the transcriptional regulatory factor is GAL4 and the target promoter is UAS [33] or [34] The method described in 1.
  • Transgenic silkworm power The method according to [36], which is a transgenic silkworm having a DNA according to (i) and (ii) below:
  • Transgenic silkworm power The method according to [36], which is produced by crossing the transgenic silkworm described in (i) and (ii) below:
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of the promoter of the DNA encoding the cytoplasmic actin protein
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of the transcription control factor.
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of the promoter of the DNA encoding the cytoplasmic actin protein
  • a transgenic silkworm having a DNA encoding a recombinant antibody having a functionally linked signal sequence downstream of a target promoter of the transcription control factor.
  • a method for measuring the amount of transferrin in a living body comprising the following steps (a) and (b):
  • a diagnostic agent for diabetic nephropathy comprising as an active ingredient an antibody produced by the method according to any of [76] to [79-1].
  • a reagent for evaluating nutritional status comprising the antibody produced by the method according to any one of [50] to [57-1] or [76] to [79-1] as an active ingredient.
  • a method for producing a recombinant antibody comprising the following steps (a) and (b):
  • a method for producing a recombinant antibody comprising the following steps (a) and (b):
  • Transgenic silkworm power The method according to [51], which is a transgenic silkworm having the DNA according to (i) and (ii) below:
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of a promoter of a DNA encoding a protein specifically expressed in the silk gland
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • a method for producing a transgenic silkworm that secretes the recombinant antibody comprising a step of producing a silkworm egg having DNA encoding a recombinant antibody.
  • a method for producing a transgenic silkworm comprising the step of producing a silkworm egg having DNA, wherein the recombinant antibody is secreted into a silk gland.
  • Transgenic silkworm power The method according to [59], which is a transgenic silkworm having a DNA according to (i) and (ii) below: (i) DNA encoding a transcriptional regulatory factor operably linked downstream of the promoter of the DNA encoding a protein specifically expressed in the silk gland,
  • Transgenic silkworm power The method according to [59], which is produced by crossing the transgenic silkworm described in (i) and (ii) below;
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • the promoter according to [63] which is a promoter of a DNA encoding a protein expressed specifically in the silk gland, which is a promoter of a DNA encoding sericin 1 protein or sericin 2 protein.
  • [65] Promoter power of DNA encoding a protein expressed specifically in the silk gland The method according to [63], which is a promoter of DNA encoding broin protein.
  • [65-1] Promoter power of DNA encoding a five mouth in protein The method according to [65], which is the following (a) or (b):
  • a transgenic silkworm having a DNA encoding a recombinant antibody, which secretes the recombinant antibody.
  • transgenic silkworm according to [67] which is produced by mating the transgenic silkworm according to the following (i) and (ii):
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of a promoter of a DNA encoding a protein specifically expressed in the silk gland
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • transgenic silkworm according to any one of [67] to [70], wherein the silk gland is a middle silk gland or a posterior silk gland.
  • Transgenic silkworm according to [71] which is a promoter of DNA encoding sericin 1 protein or sericin 2 protein that encodes a protein specifically expressed in the silk gland.
  • a transgenic silkworm having DNA encoding a recombinant antibody operably linked downstream of a target promoter of a transcriptional regulatory factor.
  • a method for producing a recombinant antibody comprising the following steps (a) and (b):
  • Transgenic silkworm power The method according to [76], which is a transgenic silkworm having a DNA according to (i) and (ii) below:
  • Transgenic silkworm power The method according to [76], which is produced by crossing the transgenic silkworm described in (i) and (ii) below:
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of the promoter of the DNA encoding the cytoplasmic actin protein
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • Transgenic silkworm power The method according to [80], which is a transgenic silkworm having a DNA according to (i) and (ii) below: (i) DNA encoding a transcriptional regulator functionally linked downstream of the promoter of DNA encoding cytoplasmic actin protein,
  • Transgenic silkworm power The method according to [80], which is produced by crossing the transgenic silkworm described in (i) and (ii) below;
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of the promoter of the DNA encoding the cytoplasmic actin protein
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • a transgenic silkworm comprising a DNA promoter encoding a cytoplasmic actin protein and a DNA encoding a recombinant antibody whose expression is controlled directly or indirectly by the promoter, A transgenic silkworm that secretes the recombinant antibody into the fat pad.
  • transgenic silkworm having a DNA encoding a functionally linked transcriptional regulator downstream of the promoter of the DNA encoding the cytoplasmic actin protein
  • a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of the transcription control factor.
  • FIG. 1 A diagram showing the structure of a vector pUASFvaTf for producing a recombinant silkworm and its construction procedure.
  • FIG. 2 A diagram showing the production of antibody-expressing silkworms by crossing the SerlGAL4 line and the UASFvaT family.
  • FIG. 3 Stereofluorescence micrographs of individuals with GAL4 gene and individuals with UAS.
  • FIG. 4 is a photograph showing confirmation of transcription of the FvaTf gene in a hybrid strain by RT_PCR.
  • FIG. 5 is a photograph showing identification of an antibody protein by Western blotting.
  • FIG. 6 is a graph showing the results of measuring the activity of recombinant antibodies against antigens by ELISA.
  • FIG. 11 Stereofluorescence micrographs of individuals with GAL4 gene and individuals with UAS.
  • FIG. 12 is a photograph showing confirmation of transcription of IgL gene and IgH gene in a hybrid strain by RT-PCR.
  • FIG. 13 is a photograph showing that the recombinant antibody expressed by the hybrid strain has IgG1 and immunogenicity appa as the L chain.
  • the recombinant antibody is produced in a silk gland of a silkworm. That is, the present invention relates to a method for producing a recombinant antibody, comprising the following steps (a) and (b).
  • the present invention also relates to a method for producing a recombinant antibody comprising the following steps (a) and (b).
  • transgene having a DNA encoding a recombinant antibody having a promoter for a DNA encoding a protein expressed specifically in the silk gland and a signal sequence whose expression is controlled directly or indirectly by the promoter.
  • transgenic silkworm of the present invention In the step of producing the transgenic silkworm of the present invention, first, a DNA promoter that encodes a protein that is expressed specifically in the silk gland, and the expression is directly or indirectly controlled by the promoter.
  • a transgenic silkworm that secretes the recombinant antibody into the silk gland is selected from the produced silkworms that have produced the egg strength.
  • selection of a transgenic silkworm can be performed using a selection marker.
  • a selection marker in the present invention a marker generally used by those skilled in the art, for example, a fluorescent protein such as CFP, GFP, YFP, DsRed and the like can be used.
  • CFP, GFP, YFP, DsRed and the like can be used.
  • transgenic silkworms can be detected simply by observing with a stereoscopic fluorescence microscope.
  • the fluorescent colors are different, a plurality of markers can be used simultaneously.
  • Antibodies that can be produced by the method of the present invention include both full-length antibodies (such as whole antibodies such as whole IgG) and low molecular weight antibodies.
  • the origin of the full-length antibody is not particularly limited.
  • the isotype of the antibody is not limited.
  • the full-length antibody of the present invention has constant regions such as complement-dependent cytotoxic activity and An antibody comprising a constant region having antibody-dependent cytotoxic activity and a variable region recognizing an antigen as shown in FIG.
  • the low molecular weight antibody of the present invention is not particularly limited as long as it comprises an antibody fragment lacking a part of the full-length antibody and has an ability to bind to an antigen.
  • the antibody fragment of the present invention is not particularly limited as long as it is a part of a full-length antibody, but preferably contains a heavy chain variable region (VH) or Z and a light chain variable region (VL).
  • VH heavy chain variable region
  • VL light chain variable region
  • the amino acid sequence of VH or VL may be substituted, deleted, added and Z or inserted.
  • a part of VH or / and VL may be deleted.
  • the variable region may be chimerized or humanized.
  • the antibody fragment include Fab, Fab ′, F (ab ′) 2, Fv and the like.
  • Specific examples of the low molecular weight antibody include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (.single cnain Fv), Diabody, sc (Fv-2, singie chain (Fv) 2 ) And so on.
  • Particularly preferred low molecular weight antibodies in the present invention are scFv antibodies.
  • the "Fv” fragment is the smallest antibody fragment and contains a complete antigen recognition site and a binding site.
  • the “Fv” fragment is a dimer (VH-VL dimer) in which one VH and VL are strongly linked by a non-covalent bond.
  • Three complementarity determining regions (CDRs) of each variable region interact to form an antigen binding site on the surface of the VH-VL dimer.
  • Six CDRs confer antigen binding sites on the antibody.
  • one variable region or half of an Fv containing only three CDRs specific to the antigen
  • VH and VL are not particularly limited to the above arrangement, and may be arranged in any order.
  • the following arrangements can be given.
  • the scFv antibody of the present invention one VH and one VL are arranged in the order of VH and VL ([VH] linker [VL]) from the N-terminal side of the single-chain polypeptide. Antibodies characterized by this are preferred.
  • the scFv of the present invention exhibits a particularly high antibody activity as compared with full-length antibodies and other low molecular weight antibodies.
  • any peptide linker that can be introduced by genetic engineering or a synthetic compound linker for example, disclosed in Protein Engineering, 9 (3), 299-305, 1996.
  • a peptide linker is preferable.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose. Usually, 1 to 100 amino acids, preferably 3 to 50 amino acids, more preferably 5 to 30 Amino acids, particularly preferably 12 to 18 amino acids (for example, 15 amino acids).
  • Examples of the linker in the present invention include a linker containing the amino acid sequence described in SEQ ID NO: 9.
  • preferred embodiments of the recombinant antibody of the present invention include human antibodies, mouse antibodies, humanized antibodies, chimeric antibodies, and modified antibodies such as antibodies other than human and mouse.
  • a chimeric antibody is an antibody produced by combining sequences derived from different animals.
  • the antibody comprises a mouse antibody heavy chain and light chain variable region and a human antibody heavy chain and light chain constant region.
  • Such as an antibody is an antibody.
  • a chimeric antibody can be prepared by a known method. For example, DNA encoding an antibody V region and DNA encoding a human antibody C region are ligated, incorporated into an expression vector, and introduced into a host. It is obtained by making it produce.
  • a humanized antibody is also referred to as a reshaped human antibody, which is a complementarity determining region (CDR) of a non-human mammal such as a mouse antibody.
  • CDR complementarity determining region
  • the gene is transplanted into a region, and a general gene recombination technique is also known (see European Patent Application Publication No. EP 125023, WO 96/02576).
  • mouse antibody CDR and a human antibody framework region (framework region;
  • the framework region of the human antibody to be linked via CDR is selected such that the complementarity determining region forms a favorable antigen binding site. If necessary, the amino acid of the framework region in the variable region of the antibody may be substituted so that the complementarity-determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, K. etal., CancerRes (1993) 53, 851 -856).
  • the constant regions of the chimeric antibody and humanized antibody are those of a human antibody.
  • C ⁇ 1, C ⁇ 2, C ⁇ 3, C ⁇ 4 are used for the H chain, and C ⁇ is used for the L chain.
  • C ⁇ can be used.
  • the human antibody constant region may be modified to improve the stability of the antibody or its production.
  • variable region e.g, FR
  • constant region amino acids in the variable region (eg, FR) or constant region may be substituted with other amino acids.
  • the origin of the variable region in the chimeric antibody or the CDR in the humanized antibody is not particularly limited, and may be derived from any animal. For example, it is possible to use sequences such as mouse antibody, rat antibody, rabbit antibody, and rata antibody. In the present invention, the present invention is not limited to this! /, But a mouse antibody is preferable as an antibody.
  • the antigen to which the antibody (full-length antibody, small molecule antibody) produced according to the present invention binds is not particularly limited.
  • a person skilled in the art can design an antibody that binds to the target antigen using a well-known technique.
  • the present invention thus relates to a method for producing an antibody designed to bind to a desired antigen by known techniques.
  • the present invention also relates to an antibody produced by the method.
  • an antibody that binds to CEA can also be mentioned as an example of another embodiment of the antibody provided in the present invention.
  • CEA is now widely used as a tumor marker.
  • the tumor marker spectrum is expressed not only in gastrointestinal tumors such as gastric cancer and esophageal cancer but also in various organs such as respiratory circulatory tumors such as lung cancer. Therefore, antibodies that bind to CEA are useful for detecting tumor recurrence and for monitoring the course of treatment.
  • an antibody that binds to c-erbB-2 can also be mentioned.
  • c-erbB-2 is expressed in tumor cells of young glandular gland tissue.
  • Antibodies that bind to this are useful for detecting tumors histopathologically.
  • bonded with haptoglobin can also be mentioned.
  • Haptoglobin is a kind of protein secreted into the liver power blood. This protein binds to free hemoglobin. Therefore, antibodies that bind to haptoglobin are useful for measuring haptoglobin in plasma.
  • Antibodies produced by the present invention include, for example, CRP, IgG, IgA, IgM, IgD, IgE, albumin, prealbumin, complement C3, complement C4, ⁇ -l microglobulin, -2 microglobulin, AFP, CA 19-9, CA15-3, PSA, apolipoprotein, tumor necrosis factor, interleukin, interferon, osteopontin, HBs antigen, RF, HCG, collagen, Hb, HbAlc, HCV antibody, troponin, myoglobin, antibody against FDP
  • CRP CRP
  • IgG IgA
  • IgM prealbumin
  • complement C3, complement C4 ⁇ -l microglobulin
  • -2 microglobulin AFP
  • CA 19-9 CA15-3
  • PSA apolipoprotein
  • tumor necrosis factor tumor necrosis factor
  • interleukin interferon
  • osteopontin osteopontin
  • HBs antigen RF
  • an antibody that binds to a desired antigen by appropriately changing the variable region or hypervariable region of the H chain or L chain of the antibody that binds to human transferrin described in the Examples.
  • a secretion signal (signal sequence) in order to maintain the activity of the produced recombinant antibody or to promote secretion and increase the amount recovered.
  • Secreted and integral membrane proteins must pass through the lipid bilayer after being synthesized on the endoplasmic reticulum membrane-bound ribosome.
  • the signal sequence is It is an amino acid residue that exists at the N-terminus of a protein.
  • the signal sequence in the present invention is not particularly limited as long as it has the above function.
  • An example is a signal sequence derived from an animal.
  • the signal sequence derived from an animal antibody is mentioned. Examples of animals include humans, mice, rats, rabbits, donkeys, goats, horses, birds, dogs, cats, yeasts, and insects.
  • acid phosphatase a side sequence of acid phosphatase can be mentioned.
  • the origin of acid phosphatase is not particularly limited, and examples include acid phosphatase derived from humans, mice, rats, rabbits, donkeys, goats, horses, birds, dogs, cats, yeasts, and insects.
  • the signal sequence is a human acid phosphatase side sequence, a mouse immunoglobulin L chain ⁇ signal sequence, and a mouse IgGl signal sequence. .
  • the signal sequence is a human acid phosphatase side sequence, a mouse immunoglobulin L chain ⁇ signal sequence, and a mouse IgGl signal sequence.
  • the signal sequence of U-human acid phosphatase that is preferred in the present invention includes a protein comprising the amino acid sequence set forth in SEQ ID NO: 3.
  • a preferred murine immunoglobulin L chain ⁇ signal sequence in the present invention includes a protein comprising the amino acid sequence of SEQ ID NO: 21.
  • a preferred mouse IgGl signal sequence in the present invention includes a protein comprising the amino acid sequence set forth in SEQ ID NO: 29.
  • the signal sequence in the present invention is not limited to this, but is preferably bound to the N-terminus of the recombinant antibody.
  • the present invention / Is particularly preferred! /
  • scFv-type mouse antibody strength having a signal sequence of human acid phosphatase that binds to Transferrin is particularly preferable as the antibody of the present invention.
  • Such an antibody is an antibody comprising the amino acid sequence set forth in SEQ ID NO: 15.
  • amino acid sequence described in SEQ ID NO: 15 one or more amino acids are substituted, deleted, added, and Z or inserted, and have the same activity as the antibody comprising the amino acid sequence described in SEQ ID NO: 15.
  • Antibodies having these are also preferred as the antibodies of the present invention.
  • the antibody binds to Transferrin or CEA, c-erbB-2, and haptoglobin, and has an L chain having a mouse immunoglobulin L chain ⁇ signal sequence and a mouse IgGl signal sequence.
  • antibodies containing heavy chains are an antibody comprising an L chain having the amino acid sequence set forth in SEQ ID NO: 49 and an H chain having the amino acid sequence set forth in SEQ ID NO: 51.
  • amino acid sequence shown in SEQ ID NO: 49 one or more amino acids are substituted, deleted, added, and Z or inserted, and have the same activity as the antibody comprising the amino acid sequence shown in SEQ ID NO: 49.
  • An antibody containing an H chain having an equivalent activity is also particularly preferred as the antibody of the present invention.
  • a preferred embodiment of the DNA encoding the scFv mouse antibody having a human acid phosphatase signal sequence that binds to Transferrin is a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 13, more preferably SEQ ID NO: 14. It is done. In addition, one or more amino acids are replaced, deleted, added, and Z or inserted in the base sequence described in SEQ ID NO: 13 (more preferably SEQ ID NO: 14). No .: DNA encoding a protein having the same function as the DNA described in 14).
  • the nucleotide sequence set forth in SEQ ID NO: 48 is used as a preferred embodiment of the DNA encoding the L chain of the antibody that binds to Transferrin and having the signal sequence of mouse immunoglobulin L chain ⁇ .
  • one or more amino acids are substituted, deleted, added, and Z or inserted in the nucleotide sequence set forth in SEQ ID NO: 48.
  • the DNA encoding the antibody (preferably an antibody having a signal sequence) in the present invention preferably has a codon converted to an insect type in designing the DNA.
  • a codon converted to an insect type in designing the DNA By converting codons into insects, it is possible to increase the amount of recombinant antibody expressed.
  • the base sequence before codon conversion of the signal sequence is SEQ ID NO: 1
  • the base sequence after codon conversion is SEQ ID NO: 2. It was shown to.
  • the base sequence before codon conversion of the H chain variable region (VH) is SEQ ID NO: 4
  • the base sequence after codon conversion is SEQ ID NO: 5
  • the base sequence of the L chain variable region (VL) before codon conversion is SEQ ID NO: 10
  • the base sequence after codon conversion is SEQ ID NO: 11
  • the base sequence of the linker sequence is SEQ ID NO: 7
  • the base sequence after codon conversion is SEQ ID NO: 8
  • the full-length base sequence before codon conversion is shown in SEQ ID NO: 13, and the base sequence after codon conversion is shown in SEQ ID NO: 14.
  • the codons in the antibody H chain and L chain regions were converted from those of vertebrate mice to those used in insects. More specifically, in the present invention, the codon of scF V-type mouse antibody against human Transferrin was adapted to a codon frequently used in Spodoptera frugipeda, a related species of Spodoptera frugipeda, the same insect as the silkworm. In addition, codons were used in the Spodoptera frugiperda as part of the scFv antibody linker.
  • the DNA encoding the antibody of the present invention includes DNA obtained by converting at least one of these codons.
  • DNA whose codon has been converted to an insect type is also included.
  • the antibody produced by the method of the present invention is not limited at all as long as it is produced by the method of the present invention, and may or may not have a signal sequence. That is, the antibody produced by the method for producing an antibody of the present invention includes both an antibody having a signal sequence and an antibody having a signal sequence.
  • Examples of the silkworm egg having a DNA promoter encoding a protein that specifically expresses a silk gland and a recombinant antibody whose expression is directly controlled by the promoter in the present invention include, for example, silk thread.
  • Such silkworm eggs are produced by introducing into a silkworm egg DNA functionally linked to the DNA encoding the recombinant antibody downstream of the promoter of the DNA encoding the protein specifically expressed in the silk gland. it can.
  • the DNA preferably has a signal sequence to promote antibody secretion and increase the recovery amount. Specific embodiments of the signal sequence are as described above. .
  • Examples of the combination of the transcriptional regulatory factor and the target sequence include GAL4 and UAS, and TetR and TRE.
  • GAL4 and UAS, or TetR and TRE the expression site, timing, and amount of the target gene can be precisely controlled, and can be easily expressed in many tissues. Moreover, even if the gene to be expressed is a lethal gene, a strain can be created.
  • DNA is introduced into silkworm eggs by, for example, a method in which transposon is injected into a silkworm early egg as a vector (Tamura, T., Thibert, C, Royer, C, Kanda, T., Abraham). , E., Kamba, M., Komoto, N., Thomas, J.-L., Mauchamp, B., Chavancy, G., Snirk, P. Fraser, M., Prud Subscribe, J.-C. and Couble, P., 2000, Nature Biotechnology 18, 81-84).
  • the above DNA is inserted between the inverted terminal repeats of a transposon (Handler AM, McCombs SD, Fraser MJ, Saul SH. (1998) Proc. Natl.
  • PiggyBac is preferable as a transposon in the present invention, but is not limited to this, and marinas, minos, and the like can also be used (Shimizu, K., Kamba, M., etc.). , bonobe, H., Kanda, T., Klinakis, AG, bavakis, C. and Tamura, T. (200 0) Insect Mol. Biol, 9, 277—281; Wang W, Swevers L, Iatrou K. (2000 ) Insect Mol Biol 9 (2): 145-55) o
  • the upstream region and downstream region of the DNA consisting of the base sequence described in SEQ ID NO: 16 or 17 can be found in literature (Okamoto, H., Ishikawa, E. and Suzuki, Y. (1982) Structural analysis of sencin genes. Homologies with fibroin g ene in the 5 'flanking nucleotide sequences. J Biol Chem, 257, 15192— 15199., Garel , A., Deleage, G.
  • the reporter gene is not particularly limited as long as its expression is detectable.
  • the CAT gene, lacZ gene, luciferase gene, j8 Examples thereof include a dase gene (GUS) and a GFP gene.
  • the expression level of the reporter gene can be measured by methods known to those skilled in the art depending on the type of the reporter gene. For example, when the reporter gene is a CAT gene, the expression level of the reporter gene can be measured by detecting the chloramphee-chol acetylene by the gene product.
  • the reporter gene is a lacZ gene
  • the catalytic expression of the gene expression product By detecting the fluorescence of the fluorescent compound, and in the case of the ⁇ -clo-dase gene (GUS), Glucuron (ICN) luminescence or 5-bromo-4
  • GUS ⁇ -clo-dase gene
  • ICN Glucuron
  • 5-bromo-4 By detecting the color of -black mouth- 3-indolyl- 13 -dark mouth (X-G1 uc), and if it is a GFP gene, GFP protein
  • the expression level of the reporter gene can be measured.
  • examples of the promoter of DNA encoding a protein specifically expressed in the posterior silk gland according to the present invention include a promoter of DNA encoding a hive mouth in L chain protein.
  • examples of the DNA promoter encoding the hive mouth in protein include DNA containing the nucleotide sequence set forth in SEQ ID NO: 18.
  • DNA comprising the base sequence described in SEQ ID NO: 18 includes DNA comprising the base sequence described in SEQ ID NO: 18, and DNA comprising the upstream region and downstream region of DNA comprising the base sequence described in SEQ ID NO: 18. However, it is not limited to these.
  • the upstream region and downstream region of DNA consisting of the base sequence described in SEQ ID NO: 18 are described in the literature (KIKUCHI, Y., K. MORI, S. SUZU KI, K. YAMAGUCHI and S. MIZUNO, 1992 Structure of the Bombyx mori fibroin li ght—chain—encoding gene: upstream sequence elements common to the light and hea vy chain. Gene 110: 151-158.).
  • the promoter of the DNA encoding the protein specifically expressed in the posterior silk gland according to the present invention is structurally similar to the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 18 and is SEQ ID NO: : DNA having the same or improved promoter activity as the DNA comprising the nucleotide sequence described in 18. These promoters can be adjusted by the method described above.
  • the method for producing a recombinant antibody of the present invention includes a step of recovering an antibody synthesized in the silkworm.
  • the synthesized antibody is secreted to the middle or posterior silk gland in an active state without being insolubilized. Therefore, the recombinant antibody can recover the middle silk gland or posterior silk gland force.
  • As a method for recovering the strength of the recombinant silk gland or posterior silk gland for example, dissect silkworms in the spitting stage and remove the middle silk gland or posterior silk gland in 20 mM Tris-HCl pH 7.4.
  • the recombinant antibody in the silk gland can be recovered by scratching the silk gland with tweezers or a scalpel.
  • Nd-s D is more preferable, but Nd-s D is preferred, but whether the cause of the suppression of the production of the protein that constitutes the silk thread is artificial or not, and mutations that occur in nature Regardless of whether or not the force depends on the silkworm, any silkworm in which the production of the protein constituting the silk thread is suppressed may be used.
  • silkworm is a silkworm well known to those skilled in the art as sericin silkworm.
  • sericin silkworms By using sericin silkworms, mass production of recombinant antibodies in the middle silk gland becomes possible, and purification of antibodies synthesized from DNA encoding recombinant antibodies introduced into the chromosome becomes easy. In addition, when producing recombinant antibodies in the posterior silk gland, it is preferable to use sericin silkworms in terms of production.
  • a silkworm having the property of producing non-dormant eggs and a silkworm having the property of producing dormant eggs can be used.
  • a dormant egg means an egg in which embryonic development stops temporarily after spawning
  • a non-diapause egg means an egg in which embryonic development does not stop after laying eggs and larvae hatch.
  • non-dormant eggs are laid and DNA is introduced into the non-dormant eggs.
  • methods for producing non-dormant eggs include, for example, in Gumma, culturing dormant eggs at 15 ° C to 21 ° C to allow non-dormant eggs to lay down on adults generated from the dormant eggs, Preferably, dormant eggs are cultured at 16 ° C. to 20 ° C. so that adults generated from the dormant eggs can produce non-dormant eggs, more preferably dormant eggs are cultured at 18 ° C. And a method of allowing the adults generated from the dormant eggs to lay non-dormant eggs, most preferably dormant eggs.
  • Examples thereof include a method in which larvae produced from the dormant eggs are cultivated at 18 ° C. in full light and non-dormant eggs are produced by the grown adults.
  • the non-dormant eggs are laid on the adults generated from the dormant eggs by culturing the dormant eggs at 18 ° C.
  • This method includes raising the larvae in full light and allowing the grown adults to lay non-dormant eggs.
  • Eggs can be cultured, for example, by placing them in an incubator at 18 ° C to 25 ° C or in a constant temperature room. Larvae are raised artificially in a breeding room at 20 ° C to 29 ° C. Can be done using feed.
  • the above-mentioned dormant egg culture of the present invention can be carried out by those skilled in the art according to a general silkworm egg culture method.
  • the culture is performed according to the method described in “Ministry of Education (1978) Soybean Manufacture. Ppl93, Jikkyo Publishing Co., Tokyo”.
  • breeding of silkworm larvae in the present invention can be performed by those skilled in the art by a well-known method.
  • breeding is performed according to the method described in “Ministry of Education (1978) Soybean Manufacture. Ppl93, Jikkyo Publisher, Tokyo”.
  • a laid egg is a non-dormant egg can be determined by the color of the egg.
  • dormant eggs are colored dark brown and non-dormant eggs are yellowish white. Therefore, in the present invention, an egg laid is determined to be a non-dormant egg if it is not dark brown, more preferably yellowish white.
  • the method for introducing DNA into silkworm eggs in the present invention is not limited to this method.
  • the hole can also be inserted into the egg so that the insertion angle of the DNA injection tube is substantially perpendicular to the ventral side surface of the egg.
  • the eggshell can be pierced by a method using a needle.
  • the material and strength of the needle are not particularly limited.
  • the needle in the present invention usually refers to a rod-like needle with a sharp tip, but is not limited to this shape, and the overall shape is not particularly limited as long as it can make a hole in the eggshell.
  • a pyramidal material with a sharp tip or a triangular pyramid-shaped material with a sharp tip is also included in the “needle” of the present invention.
  • a tungsten needle can be preferably used.
  • the thickness (diameter) of the needle of the present invention is usually 2 to 20 ⁇ m, preferably 5 to 10 ⁇ m, as long as it can open a hole through which a later-described canopy can pass. m.
  • a method of chemically making a hole in an eggshell for example, a method of making a hole using a chemical (such as hypochlorous acid) can be mentioned.
  • the position where the hole is formed is not particularly limited as long as the insertion angle with respect to the side surface on the ventral side of the egg when the tube for DNA injection is inserted can be made substantially vertical.
  • it is preferably the ventral side surface or the opposite side, more preferably the ventral side surface, and even more preferably the middle portion of the egg on the ventral side surface slightly from the rear end.
  • a physical or chemical hole is formed in the silkworm egg, and a tube for DNA injection is inserted on the ventral side surface of the egg.
  • the hole is inserted into the egg so that it is almost perpendicular to the egg, and the step of injecting DNA is performed using a manipulator in which a needle and a tube for DNA injection are integrated.
  • a manipulator in which a needle and a tube for DNA injection are integrated.
  • the present invention is preferably implemented using an apparatus having a modulator as one of the components.
  • Examples of such devices include a dissecting microscope, an illuminating device, a movable stage, a coarse motion manipulator fixed to the microscope with a metal tool, a micromanipulator attached to the manipulator, and DNA injection.
  • Injector force to adjust the air pressure of the configured.
  • the pressure used for the indicator is also supplied with a nitrogen cylinder force, and the pressure switch can be turned on by a foot switch.
  • the injection is performed on an egg fixed on a substrate such as a glass slide, and the position of the egg is determined by a movable stage.
  • the glass capillary of the micro-uplet is operated by an operation unit connected by four tubes.
  • the actual procedure is to determine the position of the tungsten needle with respect to the egg using a coarse motion manipulator, and then use the stage lever to move the egg horizontally to make a hole.
  • the glass capillary must be inserted perpendicular to the ventral side of the egg. Insert the foot switch, inject DNA, and operate the lever to pull the capillary from the egg. Close the hole with instant adhesive and protect it with an incubator of constant temperature and humidity.
  • the apparatus used in the present invention preferably includes the apparatus described in Japanese Patent No. 1654050 or an apparatus obtained by improving the apparatus.
  • a silkworm egg used for introduction of DNA is fixed to a substrate.
  • a force capable of using a slide glass, a plastic plate or the like is not particularly limited.
  • the number of silkworm eggs fixed to the substrate is not particularly limited.
  • the direction of fixing the silkworm eggs to the substrate is preferably such that the orientation of the dorsal belly is constant.
  • the silkworm eggs of the present invention can be fixed to the substrate by, for example, laying eggs on a commercially available mount (rose seed mount) coated with water-based glue and removing the eggs with water on the mount. Next, the wet eggs are aligned on the substrate and air-dried. The eggs are preferably fixed on the slide drum with the direction of the eggs aligned. In addition, the egg is fixed to the base. It is also possible to use an adhesive or the like.
  • a silkworm egg has been introduced with DNA is determined by, for example, extracting the injected DNA from the egg again and! J ⁇ (Nagaraju, J., Kanda, T., Yukuhiro, ⁇ ., Chavancy, u., Tamura, T. and Couble, P. (1996) Attempt of transgenesis of the silkworm (Bombyx mori L) by e gg- injection of foreign DNA.Appl. Entomol. ZooL, 31, 589-598) Transformal expression of chimeric CAT genes injected (Omura, T., Kanda, T., Takiya, S., Okano, K. and Mae kawa, H. (1990). Transient expression of chimeric CAT genes injected) into early embryos of the domesticated silkworm, Bombyx mori. Jpn. J. Genet., 65, 401-410).
  • a pharmaceutical composition can also be produced by mixing the recombinant antibody recovered in the method of the present invention and a pharmaceutically acceptable carrier.
  • the carrier include surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffering agents, suspending agents, isotonic agents, binders, disintegrating agents, lubricants, Examples thereof include fluidity promoters and flavoring agents, but are not limited thereto, and other conventional carriers can be used as appropriate.
  • Specific examples include light anhydrous carboxylic acid, lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polybulassetal jetylaminoacetate, polybulu
  • Examples include pyrrolidone, gelatin, medium-chain fatty acid triglyceride, polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethylcellulose, corn starch, and inorganic salts.
  • the recombinant antibody is produced in a fat body of a silkworm. That is, the present invention relates to a method for producing a recombinant antibody, comprising the following steps (a) and (b).
  • transgenic silkworm having a DNA promoter encoding a cytoplasmic actin protein and a DNA encoding a recombinant antibody whose expression is directly or indirectly controlled by the promoter; A step of producing a transgenic silkworm that secretes the recombinant antibody into a fat pad.
  • the present invention also relates to a method for producing a recombinant antibody comprising the following steps (a) and (b):
  • transgenic silkworm having a DNA encoding a recombinant antibody having a promoter of a DNA encoding a cytoplasmic actin protein and a signal sequence whose expression is directly or indirectly controlled by the promoter.
  • transgenic silkworm of the present invention In the step of producing the transgenic silkworm of the present invention, first, a DNA promoter encoding a cytoplasmic protein protein and a recombinant antibody whose expression is controlled directly or indirectly by the promoter are encoded. Silkworm eggs with DNA are produced. Next, a transgenic silkworm that secretes the recombinant antibody into the fat pad is selected from the produced silkworms that have produced the egg power. Transgenic silkworms can be selected by the method described above.
  • a silkworm egg having a DNA promoter encoding a cytoplasmic actin protein and a DNA encoding a recombinant antibody whose expression is directly controlled by the promoter for example, a cytoplasmic actin protein is used.
  • a power egg having a DNA functionally linked to the DNA encoding the recombinant antibody downstream of the promoter of the encoding DNA is used.
  • Such a silkworm egg can be produced by introducing into a silkworm egg a DNA functionally linked to a DNA encoding a recombinant antibody downstream of a DNA promoter encoding a cytoplasmic actin protein.
  • a silkworm egg having a DNA promoter encoding a cytoplasmic actin protein in the present invention and a DNA encoding a recombinant antibody protein whose expression is indirectly controlled by the promoter for example, (i ) A DNA to which a transcriptional regulatory factor DNA is operably linked downstream of the promoter of the DNA encoding the cytoplasmic actin protein; and (ii) a recombinant antibody downstream of the target promoter of the transcriptional regulatory factor.
  • Silkworm eggs having DNA to which the DNA to be loaded is functionally bound.
  • the definition of “functionally coupled” is as described above. Examples of the combination of the transcription regulatory factor and the target sequence include those described above.
  • DNA can also be introduced into silkworm eggs by the method described above.
  • baculovirus vectors Yamakawa, Hayashi et al "1999, enes Dev l ⁇ : o 11-516).
  • Examples of the promoter of the DNA encoding the cytoplasmic actin protein include DNA comprising the base sequence set forth in SEQ ID NO: 19.
  • DNA containing the nucleotide sequence set forth in SEQ ID NO: 19 includes DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 19 and upstream and downstream regions of DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 19 Examples thereof include, but are not limited to, DNA.
  • the promoter of the DNA encoding the cytoplasmic actin protein in the present invention is structurally similar to the DNA comprising the base sequence set forth in SEQ ID NO: 19, and SEQ ID NO: 19 Examples also include DNA having the same or improved promoter activity as the DNA containing the described nucleotide sequence. These promoters can also be adjusted by the method described above.
  • the upstream region and downstream region of DNA consisting of the base sequence described in SEQ ID NO: 19 can be found in the literature (MANGE, A., E. JULIEN, JC PRUDHOMME and P. COUBLE, 1 997 A strong inhibitory element down-regulates SRE— stimulated Transcription of the A3 cytoplasmic actin gene of Bombyx mori. J Mol Biol 265: 266-274.).
  • transgenic silkworm DNA (i) above
  • GAL4 gene downstream of the promoter of the DNA encoding cytoplasmic actin.
  • Specific modes and methods for producing transgenic silkworms that have also developed silkworm egg strength are described in the literature (IMAMURA, M., J. NAKAI, S. INOUE, GX QUAN, T. KANDA et al., 2003 Targeted gene expression using the GAL4 / UAS system in the silkworm Bom byx mori. Genetics 165: 1329-1340.).
  • the recombinant antibody produced by the above method can be recovered from, for example, fat pad. Recovering the recombinant antibody from the fat pad is known to those skilled in the art, for example, removing the fat pad from the larvae and homogenizing it with a buffer for protein extraction or secreting it into the fat pad. This can be done by separating body fluids.
  • the antibody produced by the method of the present invention is not limited at all as long as it is produced by the method of the present invention, and may or may not have a signal sequence. That is, the antibody produced by the method for producing an antibody of the present invention includes both an antibody having a signal sequence and an antibody having a signal sequence.
  • the present invention also relates to DNA encoding a recombinant antibody.
  • the present invention more preferably relates to DNA encoding a recombinant antibody having a signal sequence. More specifically, the present invention relates to DNA encoding scFv antibody having human acid phosphatase.
  • DNA include the DNA described in SEQ ID NO: 13 or the DNA described in SEQ ID NO: 14.
  • a protein encoded by a nucleic acid that is hybridized with a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 13 or 14 under stringent conditions, and comprising a protein comprising the amino acid sequence set forth in SEQ ID NO: 15 For example, DN A, which encodes a functionally equivalent protein.
  • the present invention further relates to a DNA encoding an antibody comprising an L chain having a signal sequence of murine immunoglobulin L chain ⁇ and an H chain having a signal sequence of mouse IgG1.
  • Examples of the DNA encoding the L chain having the signal sequence of mouse immunoglobulin L chain ⁇ include the DNA shown in SEQ ID NO: 48.
  • the nucleotide sequence set forth in SEQ ID NO: 48 is included.
  • the DNA encoding the H chain having the signal sequence of mouse IgGl includes the DNA described in SEQ ID NO: 50.
  • a protein encoded by a nucleic acid that hybridizes under stringent conditions with a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 50, wherein the protein comprises the amino acid sequence set forth in SEQ ID NO: 50 Examples include DNA that encodes functionally equivalent proteins
  • the present invention provides a vector containing a DNA encoding a recombinant antibody and a transformed cell.
  • the present invention also provides a vector containing a DNA encoding a recombinant antibody having a signal sequence, and a transformed cell.
  • the vector used in the present invention is not particularly limited, and examples thereof include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script.
  • pGEM-T, pDIRECT, pT7 and the like can be mentioned.
  • An expression vector is particularly useful when a vector is used for the purpose of producing the antibody of the present invention.
  • an expression vector for example, when the host is E. coli such as JM109, DH5a, HB101, XL1-Blue, etc.
  • a promoter such as lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASE B J. (1992) 6, 2422-2427), araB promoter (Better et al., Science (1988) 240, 1041-1 043), or a T7 promoter is essential.
  • Examples of such a vector include pGEX-5X-1 (manufactured by Pharmacia), “QIAexpress system” (manufactured by Qiagen), pEGFP, or pET in addition to the above vectors.
  • the vector preferably contains a signal sequence for polypeptide secretion.
  • a signal sequence for polypeptide secretion the pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379) may be used when it is produced in the periplasm of E. coli.
  • Introduction of a vector into a host cell can be performed, for example, using a salt calcium method or an electoral position method.
  • vectors for producing the antibody of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen)) and pEGF-BOS (Nucleic Acids.
  • insect cell-derived expression vector for example, “Bac-to- BAC baculovairus expression system” (Gibco BRL), pBacP AK8), plant-derived Expression vectors (eg, ⁇ 1, pMH2), animal virus-derived expression vectors (eg, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (eg, pZIPneo), yeast-derived expression vectors (eg, “Pichia Expression Kit (Invitrogen), pNVll, SP-Q01), expression vectors derived from Bacillus subtilis (for example, pPL608, pK 50), and the like.
  • Bacillus subtilis for example, pPL608, pK 50
  • promoters necessary for expression in cells such as SV40 promoter (Mulligan et al., Nature (1979) 277 108), MMLV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc. are essential, and are selected for transformation into cells. It is more preferable to have a gene for this purpose (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)). Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • DNA encoding a recombinant antibody into cells can be carried out by those skilled in the art by a known method, for example, electroporation (elect mouth polarization method).
  • the present invention also relates to a transgenic silkworm having a DNA encoding a recombinant antibody and secreting the recombinant antibody.
  • the present invention relates to a transgenic silkworm that secretes a recombinant antibody into a silk gland.
  • DNA encoding a functionally linked transcriptional regulator downstream of a DNA promoter that encodes a protein specifically expressed in the silk gland and (ii) the target promoter of the transcriptional regulatory factor.
  • transgenic silkworms with DNA encoding functionally linked recombinant antibodies, or expressed specifically in the silk gland
  • a transgenic silkworm having a DNA operably linked to a DNA encoding a recombinant antibody downstream of a promoter of the DNA encoding the protein.
  • the present invention encodes a recombinant antibody whose expression is directly or indirectly controlled by a DNA promoter encoding a protein specifically expressed in the silk gland.
  • the DNA has a signal sequence to promote antibody secretion and increase the amount recovered.
  • Specific embodiments of the signal sequence are as described above.
  • the present invention is a transgenic silkworm comprising a promoter of a DNA encoding a cytoplasmic actin protein and a DNA encoding a recombinant antibody whose expression is controlled directly or indirectly by the promoter.
  • the present invention relates to a transgenic silkworm that secretes a recombinant antibody into the fat pad. Specifically, (i) a DNA encoding a functionally bound transcriptional regulator downstream of a promoter of a DNA encoding a cytoplasmic actin protein, and (ii) a downstream of a target promoter of the transcriptional regulatory factor.
  • the DNA encoding the recombinant antibody is functionally bound downstream of the promoter of a transgenic silkworm having a DNA encoding a functionally linked recombinant antibody or a DNA encoding a cytoplasmic actin protein.
  • a transgenic silkworm having DNA is provided.
  • DNA encoding a recombinant antibody whose expression is directly or indirectly controlled by a promoter of DNA encoding cytoplasmic actin protein promotes the secretion of the antibody and increases the amount recovered. It is preferable to have a signal sequence. Specific embodiments of the signal sequence are as described above.
  • transgenic silkworms can be prepared by the method described above. Further, the state of the transgenic silkworm of the present invention is not particularly limited, and may be, for example, an egg state. By using the transgenic silkworm of the present invention, a desired recombinant antibody can be produced in large quantities.
  • the present invention also provides a transgenic silkworm having a DNA encoding a recombinant antibody operably linked downstream of a target promoter of a transcriptional regulatory factor.
  • a target promoter of a transcriptional regulatory factor examples include those described above.
  • Such silkworms can be used for the production of transgenic silkworms having the DNAs of (i) and (ii) above and for the production of their eggs.
  • it encodes a recombinant antibody whose expression is directly or indirectly controlled by a DNA promoter encoding a protein specifically expressed in the silk gland.
  • DNA has a signal sequence to promote antibody secretion and increase the recovery amount! /.
  • Specific embodiments of the signal sequence are as described above.
  • the present invention provides a kite spun by the transgenic silkworm of the present invention.
  • a kite is useful as a kite containing a large amount of the target recombinant antibody.
  • the present invention also provides a silk thread produced by the silkworm, which contains a recombinant antibody.
  • a silk fabric containing the silk thread of the present invention for example, a silk fabric containing a recombinant antibody can be produced by a known technique.
  • the present invention also provides such a silk fabric.
  • the present invention also provides DNA for use in the method of the present invention.
  • DNA include (a) DNA encoding a functionally linked transcriptional regulator downstream of the DNA promoter encoding sericin or hive mouth-in, and (b) the target of the transcriptional regulatory factor. Downstream of the promoter, DNA encoding the recombinant antibody functionally bound, (c) DNA encoding the recombinant antibody downstream of the promoter of DNA encoding sericin or hive mouth in Bound DNA, etc. may be mentioned, and these kits may be provided as a combination force.
  • the present invention also provides a vector in which the DNAs (a) to (c) are inserted between the inverted terminal repeats of the transposon.
  • kits comprising a vector (helper vector) having the vector and a DNA encoding a transposon transferase is provided.
  • DNA encoding a recombinant antibody operably linked downstream of the target promoter of the transcription control factor In addition, DNA operably linked to DNA encoding a recombinant antibody downstream of the promoter of DNA encoding sericin or hive mouth-in has a signal sequence to promote antibody secretion and increase the amount recovered. It is preferable. Specific embodiments of the signal sequence are as described above.
  • the present invention relates to a diagnostic agent for diabetic nephropathy and a reagent for evaluating nutritional status, which contains a recombinant anti-transferrin antibody obtained by the method for producing an antibody of the present invention as an active ingredient.
  • Recombinant anti-tiger obtained by the method for producing an antibody of the present invention The spherin antibody includes both an antibody having a signal sequence and an antibody having no signal sequence. When a signal sequence is used, preferred examples thereof are as described above.
  • the anti-transferrin antibody of the present invention includes both full-length antibodies and low molecular weight antibodies.
  • Specific examples of full-length antibodies include the amino acid sequence described in any of SEQ ID NOs: 3, 21, and 29 as a signal sequence, the amino acid sequence described in SEQ ID NO: 23 as a light chain variable region, and a J ⁇ segment.
  • amino acid sequence set forth in SEQ ID NO: 25 the L chain having the amino acid sequence set forth in SEQ ID NO: 27 as the kappa chain constant region, and any of SEQ ID NOs: 3, 21, and 29 as a signal sequence
  • low molecular weight antibody examples include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv, Diabody, sc (Fv) 2
  • a particularly preferred low molecular weight antibody in the present invention is an scFv antibody, wherein a signal sequence, VL, linker, and VH are single chain poly (FV) 2).
  • the peptides are preferably arranged in this order starting from the N-terminus of the peptide, and the specific embodiments of VL, linker and VH are as shown in SEQ ID NOs: 6, 9, and 12.
  • a particularly preferred anti-transferrin antibody in the invention is an scFv antibody having a human acid phosphatase signal sequence comprising the amino acid sequence set forth in SEQ ID NO: 15.
  • the present invention relates to a method for measuring the amount of transferrin in a biological sample obtained by subject strength.
  • Transferrin is a protein with a molecular weight of 79,000 in blood and urine, and is an important indicator of iron metabolism and hematopoiesis. Since the amount of transferrin in the living body reflects diseases such as the extinguishers and kidneys and pathophysiology such as tumors and inflammation, the disease can be diagnosed by measuring the amount of transferrin. .
  • transferrin A biological sample is obtained from the subject who wants to measure the amount of the blood. Then, the biological sample is brought into contact with the anti-transferrin antibody of the present invention.
  • the biological sample in the measurement method of the present invention is not particularly limited, and examples thereof include blood (serum) and urine. Preferred embodiments of the antibody in the measurement method of the present invention are as described above.
  • the binding between transferrin and antibody in the biological sample is detected.
  • the binding between transferrin and the antibody is not limited to these, but can be performed by methods well known to those skilled in the art, such as ELISA and EIA.
  • the measurement method of the present invention is characterized in that the amount of transferrin in the sample is measured by detecting the binding of the transferrin and the antibody in the biological sample. That is, if no transferrin-antibody binding is detected, it is determined that transferrin is not present in the biological sample. On the contrary, if the binding between the transferrin and the antibody is detected, it is determined that the transferrin is present in the biological sample. Moreover, those skilled in the art can determine the amount of transferrin in a biological sample according to the degree of binding between transferrin and antibody to be detected. Thus, in the measurement of the amount of transferrin in the present invention, not only the presence or absence of transferrin in a biological sample, but also the amount of transferrin in the biological sample can be quantified according to the degree of binding. included.
  • the measured amount of transferrin is used in a biological sample derived from a subject who is apparently suffering from diabetic nephropathy. It may be compared with the amount of transferrin. As a result of comparison, if the amount of transferrin is similar to that in a biological sample of a subject who is clearly affected by diabetic nephropathy, the subject who provided the biological sample has diabetic nephropathy. It is determined that The Here, the same level includes not only the case where the amount of transferrin is completely the same, but also the case where the amount is substantially the same. Whether or not they are substantially the same can be appropriately determined by those skilled in the art depending on the condition of the subject and other characteristics. Examples of documents describing such judgment criteria include the following.
  • the present invention also relates to a method for evaluating the nutritional status of a subject.
  • the method for assessing nutritional status of the present invention when the amount of transferrin in a subject is reduced compared to a normal control, the risk of malnutrition is high or suffering from a nutritional disorder. It is determined that In the present invention, the greater the degree of decrease in the amount of transferrin, the higher the risk of malnutrition, or a serious malnutrition.
  • a person skilled in the art can determine the degree of malnutrition risk from the subject's risk of malnutrition from the degree of decrease in the amount of transferrin. For example, a subject is determined to be suffering from a severe nutritional disorder if no transphosphorin is detected in the subject or is equal to substantially not detected.
  • the amount of transferrin in a biological sample is measured.
  • the measured amount of transferrin is then compared with a normal control. To do.
  • Measurement of the amount of transferrin in a biological sample can be performed according to the method described above.
  • the method for assessing nutritional status in the invention is based on a combination of clinical examination, physical measurement, dietary surveys, etc., and comprehensively assesses and determines the nutritional status of an individual or a specific group (Nutrition Assessment ("Clinical Assessment” It can be used in “Nutrition” Extra Issue No. 99-5, “Practical Nutrition Assessment.”
  • the subject can be any individual, any By implementing the method for assessing nutritional status of the present invention, it is possible to measure the nutritional status of an individual or a population as described above.
  • the method for evaluating the nutritional state of the present invention may be performed on a subject who is hospitalized. For example, the measured value of transferrin in a sample derived from a hospitalized subject Compared with the measured value of transferrin in the normal state of the subject (considering it if there is a range of variation) The subject is determined to be at high risk of malnutrition or suffering from a malnutrition.
  • the antibody produced by the production method of the present invention may not contain an antibody other than the target antibody in the recombinant antibody extract. For this reason, it is possible to accurately measure only the antibody that has reacted with the target antigen, which has a low possibility of cross-reaction.
  • the method for measuring the amount of transferrin in the biological sample of the present invention the method for diagnosing diabetic nephropathy, and the method for evaluating the nutritional state, the amount of transferrin can be accurately measured. .
  • the plasmid vector pUASFvaTf (Fig. 1) was prepared to produce scFv type antibody (scF V type anti transferrin ant3 ⁇ 4ody: aTl) of mouse anti-human transferrin antibody that reacts with human Transferrin in recombinant silkworm.
  • This vector for the production of recombinant silkworms was inserted between the inverted terminal repeat of the antibody protein gene FvaT fused with the promoter UAS that promotes gene expression in the presence of the transcriptional regulator GAL4 of the yeast and the transposon piggyBac. is there.
  • the scFv-type anti-human Transferrin antibody was designed as follows. A structure in which an antibody heavy chain variable region (VH), then a flexible linker peptide (Linker), and an antibody light chain variable region (VL) are linked downstream of the secretory signal sequence of human acid phosphatase. The DNA that has it was designed. As the amino acid sequence of VH-Linker-VL, a known sequence was used including the linkage of each gene. Table 2 shows the base sequence (before and after codon conversion) of the scFv antibody gene used in this experiment, and the relationship between the generated amino acid sequence and the sequence number. The gene codon was converted to a codon suitable for insect expression (pUC57 / FvaTf).
  • the gene plasmid in the GAL4 / UAS system was constructed according to the procedure shown in Fig. 1, i.e. pU in the donor vector pBluescript II / UAS-SV40 digested with the restriction enzyme Bin I. C57 / FvaT et al. Introduced FvaT fragment digested with restriction enzyme Spe I (pBluescript II / UAS-FvaTf—SV40UTR).
  • this plasmid vector has a green fluorescent protein gene 3XP3GFP having a promoter that promotes expression in embryonic monocular or pupal compound eyes or nerve-derived tissues as a marker gene for identifying recombinant silkworms.
  • RT-PCR was performed as follows. As mentioned above, individuals with both GAL4 / UAS genes are bred, and the middle silk gland is removed from the silkworms on the 5th instar 0th, 5th instar 1st, and 5th instar 2nd silkworms. did. Similarly, as a negative control, silk glands were extracted from silkworms on day 0 of the 5th instar silk of the SerlGAL4 lineage that did not have UASFvaTf ⁇ . Subsequently, the extracted middle silk gland was transferred to a glass homogenizer (WHEATON), and total RNA was extracted using ISOGEN (Nitsubon Gene).
  • WHEATON glass homogenizer
  • RNA was prepared to 50 ⁇ g / 20 ⁇ 1 with DPEC water, and reverse transcription into cDNA was performed using First-strand cDNA Synthesis Kit (Amersham Biosciences) according to the package insert. The following PCR was performed using this reverse transcript as a saddle type.
  • 10 X PCR buffer supplied with KODplus (Toyobo) 5 ⁇ 1, 150 ⁇ primer (SEQ ID NO: 16), 150 ⁇ primer (SEQ ID NO: 17), ImM MgSO, 0.2 mM dNTPs, 2
  • Each reagent is added so that the unit is KODplus, the total volume is 50 1, and a cycle of 94 ° C for 2 min, 94 ° C for 15 sec, 62 ° C for 15 sec, 72 ° C for 30 sec is performed in the eppendori3 ⁇ 4i DNA thermal cycler. 3
  • the extension reaction was performed 5 times and 72 ° C lmin once.
  • the plasmid vector pUASFvaTf ⁇ was used as a positive PCR control.
  • the activity of the recombinant antibody against the antigen by ELISA was measured according to the following procedure. Ser 1 GAL4 / UASFvaT and non-UASFvaT Serf GAL4 strain 5th spawning Day 0 Silkworms were extracted from silkworms on day 0, and 1 ml of Tris buffer (20 mM Tris-HC1 pH 7.4) was added per 200 mg of extracted tissue. I was accompanied. This was pulverized with a glass homogenizer and further centrifuged at 14000 rpm for 20 minutes, and the supernatant was diluted 5 times (40 mg / ml) and 10 times (10 mg / ml) with Tris buffer.
  • ELISA measurement samples were used as ELISA measurement samples.
  • a sample for ELISA measurement was prepared in the same manner for SerlGAL4 strain silkworms. 100 L of the ELISA measurement sample prepared above was dispensed onto a microtiter plate (NUNK) previously sensitized with Transferrin (Biogenes is) at 100 ⁇ g / well and shaken at room temperature for 2 hours.
  • NUNK microtiter plate
  • the plasmid prepared by the above method and the helper plasmid pA3PIG (Tamura et al., 2000) encoding the transferase gene are injected together into about 1000 early silkworm eggs, and the next generation embryos are monocular.
  • the expression of GFP was examined. As a result, as shown in Table 3, individuals expressing GFP appeared in the 2nd section.
  • a plasmid vector pBacN / lox p UASIgL UASIgH (Figs. 7-9) was prepared in order to produce IgG mouse anti-human Transferrin antibodies that react with human Transferrin in recombinant silkworms.
  • the vector for the production of this recombinant silkworm is the transposon between the inverted terminal repeats of piggyBac and the L and H chains of the antibody protein gene fused with the promoter UAS that promotes gene expression in the presence of the yeast transcriptional regulator GAL4. Inserted in
  • the L chain of the IgG mouse anti-human Transferrin antibody was designed as follows. First, the L chain of the antibody links the L ⁇ chain variable region of the anti-human Transferrin antibody, then the mouse L chain J segment, and the mouse L ⁇ chain constant region downstream of the signal peptide of the mouse immunoglobulin L chain ⁇ . A DNA having a ligated structure (IgL) was designed. Subsequently, the heavy chain of the IgG type mouse anti-human Transferrin antibody is located downstream of the mouse IgGl signal peptide, followed by the heavy chain variable region of the anti-human Transferrin antibody, then the heavy chain constant region 1 (CH1) of mouse IgGl, mouse IgGl.
  • IgL A DNA having a ligated structure
  • IgH DNA having a structure (IgH) in which the hinge region of mouse IgG1, H chain constant region 2 (CH2) of mouse IgG1, and H chain constant region 3 (CH3) of mouse IgG1 were linked.
  • the IgG class antibody subclass designed in this experiment is IgGl
  • the ⁇ chain has antigenicity
  • the amino acid sequences of the L chain and the cocoon chain are linked to known sequences. Table 5 shows the base sequence of the gene used here and the relationship between the amino acid sequence generated from the base sequence and the sequence number.
  • VL Light chain variable region
  • VH H chain variable region SEQ ID NO: 30 SEQ ID NO: 31 Mouse complete CH1: constant region domain SEQ ID NO: 32 SEQ ID NO: 33 full length chain H: hinge region SEQ ID NO: 34 SEQ ID NO: 35 constant region CH2: constant region domain SEQ ID NO: 36 SEQ ID NO: 37
  • the gene plasmid in the GAL4 / UAS system was constructed according to the procedures shown in FIGS. That is, an IgL fragment digested with restriction enzyme Nhe I was inserted from pUC57 / IgL into donor vector pBluescript II UAS-SV40 digested with restriction enzyme Bin I to obtain pBluescript II / UAS IgL SV40.
  • the UAS IgL SV40UTR fragment digested with the restriction enzyme Spe I was inserted from the pBluescript II / UAS IgL SV40 into the plasmid vector pBacN / lox p digested with the restriction enzyme Bin I to obtain pBacN / lox p UAS IgL SV40 ( ( Figure 7).
  • an IgH fragment deleted with restriction enzyme Nhe I was inserted from pUC57 / IgH into donor vector PDNR / UAS-SV40 digested with restriction enzyme Bin I to obtain pDNR / UAS IgH SV40 (FIG. 8).
  • This plasmid vector has a green fluorescent protein 3xP3GFP having a promoter that promotes expression in embryonic monocular and pupal compound eyes and nerve-derived tissues as a marker gene for identifying recombinant silkworms.
  • a green fluorescent protein 3xP3GFP having a promoter that promotes expression in embryonic monocular and pupal compound eyes and nerve-derived tissues as a marker gene for identifying recombinant silkworms.
  • RT-PCR was performed as follows. As described above, individuals with both GAL4 / UAS genes were bred, and the middle silk gland was removed from silkworms just before the 5th inception period. Subsequently, the extracted middle silk gland was transferred to a glass homogenizer (WHEATON), and total RNA was extracted using ISOGEN (-Bobbon Jean). This total RNA was prepared to 50 ⁇ g / 20 ⁇ 1 with DEPEC water, and reverse transcription into cDNA was performed using First-strand cDNA Synthesis kit (GE Healthcare Bioscience) according to the package insert. Using this reverse transcript as a saddle type, IgL, IgH, GAL4, and intracellular actin were subjected to the following PCR using the primer combinations shown in Table 6.
  • TaKaRa Ex Taq Hot Start Version Use the 10 X PCR knocker attached to TaKaRa Ex Taq Hot Start Version (Takara Bio) at 5 ⁇ 1, 100 ⁇ ⁇ Forward primer (Table 6), 100 ⁇ Reverse primer, 6), 0.2 M dNTP, 2.5 units TaKaRa Ex Taq Hot Start Version Add each reagent to make a total volume of 50 ⁇ 1, 94 ° C for 2 min, 94 ° C for 15 sec, 60 ° C for 15 sec in eppendorff soil thermal cycler The elongation reaction at 72 ° C lmin was carried out 40 times at a cycle of 72 ° C for 30 seconds.
  • the IgG type mouse antibody was detected as follows. The next-generation eggs on the 6th day after spawning obtained by crossing the SerlGAL4 / 3xP3DsRed strain with the UA SIgL-UASIgH strain were observed with a stereoscopic fluorescence microscope to identify GAL4 / UAS individuals (Fig. 11). Only individuals with both genes The silk glands of silkworms at the 5th instar stage were removed, and the proteins of the silk glands were extracted with 20 mM Tris-HCl pH7.4 (Tris buffer). The antibody was detected from this protein solution using Mouse Monoclonal Antibody Isotyping Kit (GE Healthcare Bioscience).
  • a typing stick was immersed in a protein solution from which silkworm silk gland strength was also extracted, and shaken at room temperature for 18 hours.
  • Peroxidase labeled anti-mouse antibody was added and shaken at room temperature for 6 hours. Subsequently, after performing a washing operation, the band was soaked in a substrate solution.
  • a method for producing a recombinant antibody using a silkworm is provided. Insects do not have antibody molecules. Therefore, an advantage of producing a recombinant antibody using silkworms is that there is no possibility that an antibody other than the target antibody is contained in the recombinant antibody extract. This means that unlike mammals such as mice, it is not necessary to create knockout individuals. When cultured cells derived from mammals are used, there is a possibility that the purified recombinant antibody produced contains antibodies derived from animal cells. This causes a cross-reaction and hinders accurate measurement of the antigen.
  • Recombinant antibodies derived from silkworms can accurately measure only antibodies that have reacted with the target antigen, which is unlikely to cause cross-reactions.
  • a large amount of antibody can be produced by using silkworms.
  • the present invention is particularly useful in the field of pharmaceuticals and diagnostics where a large amount of highly specific antibodies are required.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Insects & Arthropods (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 絹糸腺特異的に発現するタンパク質をコードするDNAのプロモーター、及び該プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードするDNAを有するトランスジェニックカイコであって、該組換え抗体を絹糸腺に分泌するトランスジェニックカイコを作成した。該トランスジェニックカイコの絹糸腺から産生された組換え抗体は、活性を有することが確認された。

Description

明 細 書
抗体を産生するトランスジエニックカイコとその製造方法
技術分野
[0001] 本発明は、哺乳類が作る抗体に近 、抗体を大量に生産することが可能な、カイコを 利用した組換え抗体の製造方法に関する。本発明はまた、該組換え抗体を産生する トランスジェニックカイコに関する。
背景技術
[0002] 近年、医薬品や診断薬の分野にお!ヽて、病気の治療や診断に特異性の高!ヽ抗体 が大量に必要とされている。抗体は一般に、マウスゃラット、ゥサギ等の哺乳動物を 用いて作られるが、近年、微生物や哺乳類の細胞、組換え動物、組換え植物などに よる抗体の生産が行われるようになつてきた。組換え抗体には、同じ品質のものを大 量に作れる、ウィルス等の病気が持ち込まれないため安全、等の特徴があり、今後重 要性が増すと考えられて 、る。
[0003] しかしその一方で、問題点も多く抱えている。たとえば、大腸菌等の微生物におい ては抗体の一部のみしか生産されず、また、作られた抗体自体も糖鎖やリン酸化が 不十分なため、医療品や診断薬用途としては十分に適切であるとは言えない。さらに 、ヒトの抗体は一般に、大腸菌などで作った場合は不溶ィ匕することが知られている。 そのため、精製にあたっては、 SDS等の変性剤でタンパク質を可溶ィ匕させる工程や、 溶液中の変性剤を透析などで徐々に取り除きタンパク質としての活性を取り戻させる 工程が必要である。
[0004] また、哺乳類の細胞を用いると生産コストが高くなるため、大量生産は困難な状況 である。そのため、組換え動物や植物などを用いた抗体生産が試みられているが、い ずれも研究段階に止まっている。他の真核生物の細胞などを用いた場合でも、細胞 の外に分泌させるため、特殊なシグナルが必要である。
[0005] カイコは絹糸腺という器官を有し、一匹当たり最大で 0.5gのタンパク質を作る能力が ある。近年、組み換えカイコの作出技術が開発され、外来遺伝子の導入法や導入遺 伝子の発現制御法の開発が進んだため、絹糸腺で導入遺伝子を発現させ、組換え タンパク質を生産することが可能になってきた。カイコは真核生物であるため、大腸菌 等の微生物や植物と比較すると、哺乳類に近い型のタンパク質を作ることが出来る。 また、人工飼料を用いた清浄飼育が可能で、数万頭レベルの大量飼育を容易に行う ことが出来る。
特許文献 1 :特開 2006-137739 田村俊榭,瀬筒秀榭,小林功,小島桂,神田俊男, 内野恵郎 (2005)カイコ中部絹糸腺特異的遺伝子発現系を利用したタンパク質の製 造方法. 出願日:2005年 3月 15日 .出願人:農業生物資源研究所
非特許文献 1:田村俊榭(1999)トランスポソンを利用した形質転換カイコの作出方法. 第 7回昆虫機能研究会講演要旨、 plO-22.
特 §午文献 2 : Tamura, T., Thibert, C, Royer ,C, Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J.-L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M ., Prudhomme, J.-C. and Couble, P. (2000) A piggyBac element-derived vector effi ciently promotes germ-line transformation in the silkworm Bombyx mori L. Nature B iotechnology 18, 81 - 84.
非特許文献 3 : Tomita M, M. H., Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K., (2003) Transgenic silkworms produce recombi nant human type III procollagen in cocoons. Nat Biotechnol 21, 52—56
非特許文献 4 :田村俊榭 (2000)トランスジエニックカイコ:現状と展望.日蚕雑 69、 1-12 非特許文献 5 :田村俊榭 (2000)カイコ発生における有用遺伝子導入.第 21回基礎育 種シンポジウム報告:動植物分子育種における発生工学的手法の展開。 p23-29. 非特許文献 6 : Tamura, T., Quan, G.X., Kanda, T., and Kuwabara, N. (2001) Trans genie silkworm research in Japan: Recent progress and luture. Proceeding of Joint In ternational Symposium of Insect COE Research Program and Insect Factory Researc h Project. p77- 82.
非特許文献 7 : Imamura, M., Nakai, J., Inoue, S., Quan, G- X., Kanda T., and Tamur a, T. (2003) Targeted gene expression using the Gal4/UAS system in the silkworm B ombyx mori. Genetics, 165, 1329 - 1340. 非特許文献 8 :田村俊榭 (2004)組換え体カイコを利用した有用物質の生産系の開発 とその展望.バイオインダストリ一 20 (3)、 28-35.
非特許文献 9:田村俊榭 ·内野恵郎 ·神田俊男 ·小林功 ·小島桂 (2004)酵母の GAL4/ UAS系を利用した中部絹糸腺特異的遺伝子の発現系の作出. 日蚕講要 74、 p51. 非特許文献 10 :田村俊榭 (2004)トランスジヱニックカイコ作出法が確立!新しい機能 をもつ繊維の生産に期待.化学と生物 42, 634-635.
非特許文献 11:田村俊榭 (2004)トランスジヱニックカイコの作出と有用物質の生産. バイオ口ジクス:生体由来物質を用いた製品開発 (高分子学会編) PP45-68.
非特許文献 12 :植田克美(2004)抗体エンジニアリングの最前線. pl22.シーエムシ 一出版、東京
特 S干文献 13 : 1· Kiyokawa, I. Kobayashi, K. Uchino, H. Sezutsu, T. Kanda, T. Tam ura, T. Miura, T. Ohashi, K. Katayama (2006) Production of hexokinase and anti-hu man transferrin antibody for clinical diagnostic reagent using transgenic silkworm. A bstract of 7th International Workshop on the Molecular Biology and Genetics of the Lepidoptera,p94.
発明の開示
発明が解決しょうとする課題
[0006] このように、組換え抗体の重要性が増して 、るにもかかわらず、組換え抗体の製造 には数多くの課題がある。本発明はこのような状況を鑑みてなされたものであり、本発 明が解決しょうとする課題は、組換えカイコを利用して、哺乳類が作る抗体に近い組 換え抗体を大量に製造する方法を提供することである。
課題を解決するための手段
[0007] 本発明者らは、上記の課題を解決するために鋭意研究を行った。具体的には、絹 糸腺特異的に発現する遺伝子の上流をプロモーター領域として用い、これを GAL4 遺伝子の上流に挿入した。さらに、組換えカイコ作出用のベクタープラスミドにこの融 合遺伝子を挿入した。組換えカイコの作出は Tamuraら (2000)の方法によって行った 。得られた糸且換えカイコを、 Imamuraら(2003)の方法で作出された GAL4の標的配列 UASの下流に Transferrinと反応する scFv型抗体遺伝子をもつ UASFvaT係統と交配 した。交配によって得られた組換えカイコの吐糸期の絹糸腺力 抽出したサンプルに ついて、ウェスタンプロテツティングを行った結果、絹糸腺において抗体が生産され ていることが確認された。また、同じように得られた抽出サンプルを抗原と反応させた 結果、絹糸腺抽出物の量が増加するに伴って抗原との反応物の量が増加し、抗体と しての活性を有して 、ることが分力つた。
すなわち本発明は、カイコの絹糸線における組換えタンパク質の製造方法に関し、 以下の〔1〕〜〔49〕を提供するものである。
〔 1〕以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)シグナル配列を有する組換え抗体をコードする DNAが導入されたトランスジェ-ッ クカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔2〕以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御されるシグナル配列を有する組換 え抗体をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を 絹糸腺に分泌するトランスジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔3〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジェ ニックカイコである、〔2〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔4〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔2〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔5〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔3〕又は〔4〕に記 載の方法。
〔6〕絹糸腺が中部絹糸腺又は後部絹糸腺である〔2〕〜〔5〕 、ずれかに記載の方 法。
〔7〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシ ン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、〔6〕 に記載の方法。
〔7— 1〕セリシン 1タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b) である、〔7〕に記載の方法;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
[7- 2]セリシン 2タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b) である、〔7〕に記載の方法;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔8〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブ 口インタンパク質をコードする DNAのプロモーターである、〔6〕に記載の方法。
〔8— 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は( b)である、〔8〕に記載の方法;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔9〕シグナル配列を有する組換え抗体。
〔9 1〕シグナル配列が動物由来である、〔9〕に記載の抗体。
〔9 2〕シグナル配列が動物抗体由来である、〔9〕に記載の抗体。 [9 - 3]シグナル配列がヒト酸性フォスファターゼのシグナル配列、マウスィムノグロブ リン L鎖 κのシグナル配列、またはマウス IgGlのシグナル配列である、〔9〕に記載の 抗体。
〔10〕全長抗体または低分子抗体である、〔9〕に記載の抗体。
〔10— 1〕低分子化抗体が scFv型抗体である、〔10〕に記載の抗体。
〔10— 2〕一本鎖ポリペプチドの N末端側を基点として、シグナル配列、 VH、リンカ一
、 VL、又はシグナル配列、 VL、リンカ一、 VHの順に並んでいることを特徴とする、〔1
0 - 1]に記載の scFv型抗体。
〔10— 3〕抗原がトランスフェリン、 CRP、 IgG、 IgA、 IgM、 IgD、 IgE、アルブミン、プレア ルブミン、補体 C3、補体 C4、 α -lマイクログロブリン、 - 2マイクログロブリン、 AFP、 CA 19-9、 CA15-3、 PSA、アポリポプロテイン、腫瘍壊死因子、インターロイキン、イン ターフェロン、ォステオポンチン、 HBs抗原、 RF、 HCG、コラーゲン、 Hb、 HbAlc、 HC V抗体、トロポニン、ミオグロビン、 FDP、 CEA、 c- erbB- 2、 haptoglobinである、〔10〕に 記載の scFv型抗体。
〔10— 4〕VH、リンカ一、 VLがそれぞれ、配列番号: 6、 9、 12に記載のアミノ酸配列を 含む、〔10— 3〕に記載の scFv型抗体。
〔10— 5〕シグナル配列が配列番号: 3、 21、および 29のいずれかに記載のアミノ酸 配列を含む、〔10— 3〕に記載の scFv型抗体。
〔10— 6〕配列番号: 15に記載のアミノ酸配列を含む、 scFv型抗体。
〔10— 7〕シグナル配列として配列番号: 3、 21、および 29のいずれかに記載のァミノ 酸配列を有する L鎖、及び、シグナル配列として配列番号: 3、 21、および 29のいず れかに記載のアミノ酸配列を有する H鎖を含む抗体。
〔10— 8〕シグナル配列として配列番号: 3、 21、および 29のいずれかに記載のァミノ 酸配列、 L鎖可変領域として配列番号: 23に記載のアミノ酸配列、 J κセグメントとして 配列番号: 25に記載のアミノ酸配列、 κ鎖定常領域として配列番号: 27に記載のァ ミノ酸配列を有する L鎖、及び、シグナル配列として配列番号: 3、 21、および 29のい ずれかに記載のアミノ酸配列、 H鎖可変領域として配列番号: 31に記載のアミノ酸配 列、 CH1として配列番号: 33に記載のアミノ酸配列、ヒンジ領域として配列番号: 35 に記載のアミノ酸配列、 CH2として配列番号: 37に記載のアミノ酸配列、 CH3として配 列番号: 39に記載のアミノ酸配列を有する H鎖を含む抗体。
〔10— 9〕配列番号: 49に記載のアミノ酸配列を有する L鎖、および、配列番号: 51に 記載のアミノ酸配列を有する H鎖を含む抗体。
〔11〕〔9〕〜〔10— 9〕のいずれかに記載の抗体をコードする DNA。
〔11 1〕シグナル配列として配列番号: 2、 20、および 28のいずれかに記載の塩基 配列、 VHとして配列番号: 5に記載の塩基配列、リンカ一として配列番号: 8に記載の 塩基配列、 VLとして配列番号: 11に記載の塩基配列を含む、 scFv型抗体をコードす る DNA。
〔11 2〕シグナル配列として配列番号: 1、 20、および 28のいずれかに記載の塩基 配列、 VHとして配列番号: 4に記載の塩基配列、リンカ一として配列番号: 7に記載の 塩基配列、 VLとして配列番号: 10に記載の塩基配列を含む、 scFv型抗体をコードす る DNA。
〔11 3〕配列番号: 14に記載の塩基配列を含む、 scFv型抗体をコードする DNA。 〔11 4〕配列番号: 13に記載の塩基配列を含む、 scFv型抗体をコードする DNA。 〔11 5〕シグナル配列として配列番号: 1、 2、 20、および 28のいずれかに記載の塩 基配列を有する DNAであって抗体 L鎖をコードする DNA、及び、シグナル配列として 配列番号: 1、 2、 20、および 28のいずれかに記載の塩基配列を有する DNAであつ て抗体 H鎖をコードする DNA、を含む DNA。
〔11 6〕シグナル配列として配列番号: 1、 2、 20、および 28のいずれかに記載の塩 基配列、 L鎖可変領域として配列番号: 22に記載の塩基配列、 J κセグメントとして配 列番号: 24に記載の塩基配列、 κ鎖定常領域として配列番号: 26に記載の塩基配 列を有する DNAであって抗体 L鎖をコードする DNA、及び、シグナル配列として配列 番号: 1、 2、 20、および 28のいずれかに記載の塩基配列、 H鎖可変領域として配列 番号: 30に記載の塩基配列、 CH1として配列番号: 32に記載の塩基配列、ヒンジ領 域として配列番号: 34に記載の塩基配列、 CH2として配列番号: 36に記載の塩基配 列列、 CH3として配列番号: 38に記載の塩基配列を有する DNAであって抗体 H鎖を コードする DNA、を含む DNA。 [11 - 7]抗体 L鎖として配列番号: 48に記載の塩基配列を有する DNA、および、抗 体 H鎖として配列番号: 50に記載の塩基配列を有する DNA、を含む DNA。
〔 12〕〔 11〕〜〔 11 7〕の!、ずれかに記載の DNAを有するベクター。
〔13〕〔12〕に記載のベクターを保持する細胞。
〔14〕シグナル配列を有する組換え抗体をコードする DNAを有するカイコ卵を製造す る工程を含む、該組換え抗体を分泌するトランスジエニックカイコの製造方法。
[15]絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該 プロモーターによって直接的又は間接的に発現制御されるシグナル配列を有する組 換え抗体をコードする DNAを有するカイコ卵を製造する工程を含む、該組換え抗体 を絹糸腺に分泌するトランスジエニックカイコの製造方法。
〔16〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔15〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔17〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔15〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔18〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔16〕又は〔17〕 に記載の方法。
〔19〕絹糸腺が中部絹糸腺又は後部絹糸腺である〔15〕〜〔18〕のいずれかに記載 の方法。
〔20〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリ シン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、〔1 9〕に記載の方法。
〔20— 1〕セリシン 1タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、〔20〕に記載の方法;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
[20- 2]セリシン 2タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、〔20〕に記載の方法;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
〔21〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フィ ブロインタンパク質をコードする DNAのプロモーターである、〔19〕に記載の方法。
[21 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は (b)である、〔21〕に記載の方法;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
〔22〕シグナル配列を有する組換え抗体をコードする DNAを有するトランスジヱニック カイコであって、該組換え抗体を分泌するトランスジエニックカイコ。
〔23〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該 プロモーターによって直接的又は間接的に発現制御されるシグナル配列を有する組 換え抗体をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体 を絹糸腺に分泌するトランスジエニックカイコ。
〔24〕以下の(i)及び (ii)に記載の DNAを有する、〔23〕に記載のトランスジエニック力 ィコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、 (ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔25〕以下の (i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造さ れる、〔23〕に記載のトランスジエニックカイコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔26〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔24〕又は〔25〕 に記載のトランスジエニックカイコ。
[27]絹糸腺が中部絹糸腺又は後部絹糸腺である〔23〕〜〔26〕の 、ずれかに記載 のトランスジエニックカイコ。
〔28〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリ シン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、〔2 7]に記載のトランスジエニックカイコ。
[28 1〕セリシン 1タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、〔28〕に記載のトランスジエニックカイコ;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
[28 2〕セリシン 2タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、〔28〕に記載のトランスジエニックカイコ;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔29〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フィ ブロインタンパク質をコードする DNAのプロモーターである、〔27〕に記載のトランスジ エニックカイコ。 [29 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は (b)である、〔29〕に記載のトランスジエニックカイコ;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔30〕転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔31〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔30〕に記載の トランスジエニックカイコ。
〔32〕以下の (a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体 をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を脂肪体 に分泌するトランスジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔33〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔32〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔34〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔32〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔35〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔33〕又は〔34〕 に記載の方法。
〔35— 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔35〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔36〕細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体 をコードする DNAを有するカイコ卵を製造する工程を含む、該組換え抗体を脂肪体 に分泌するトランスジエニックカイコの製造方法。
〔37〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔36〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔38〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔36〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔39〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔37〕又は〔38〕 に記載の方法。
〔39— 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔39〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔40〕細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体 をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を脂肪体 に分泌するトランスジエニックカイコ。
〔41〕以下の(i)及び (ii)に記載の DNAを有する、〔40〕に記載のトランスジエニック力 ィコ;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
〔42〕以下の (i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造さ れる、〔40〕に記載のトランスジエニックカイコ;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
〔43〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔41〕又は〔42〕 に記載のトランスジエニックカイコ。
〔43— 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔43〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔44〕以下の(a)及び (b)の工程を含む、生体中のトランスフェリンの量を測定する方 法;
(a)〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35— 1〕、 [50]〜〔57— 1〕もしくは〔76〕〜〔79— 1〕のいずれかに記載の方法によって製 造された抗体と、被検者由来の生体試料を接触させる工程、
(b)生体試料中のトランスフェリンと抗体の結合を検出する工程。
〔45〕正常である対照と比較してトランスフェリンの量が多いときに、糖尿病性腎症に 罹患している、又は罹患リスクが高いと判定されることを特徴とする、以下の(a)及び ( b)の工程を含む、糖尿病性腎症を診断する方法;
(a)〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35— 1〕、 [50]〜〔57— 1〕もしくは〔76〕〜〔79— 1〕のいずれかに記載の方法によって製 造された抗体と、被検者カゝら得た生体試料を接触させる工程、
(b)生体試料中のトランスフェリンと結合した抗体を検出する工程。
〔46〕糖尿病性腎症に罹患していることが明らかな対照と比較してトランスフェリンの 量が同程度であるときに、糖尿病性腎症に罹患している、又は罹患リスクが高いと判 定されることを特徴とする、以下の (a)及び (b)の工程を含む、糖尿病性腎症を診断 する方法;
(a)〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35— 1〕、 [50]〜〔57— 1〕もしくは〔76〕〜〔79— 1〕のいずれかに記載の方法によって製 造された抗体と、被検者カゝら得た生体試料を接触させる工程、
(b)生体試料中のトランスフェリンと結合した抗体を検出する工程。
〔47〕正常である対照と比較してトランスフェリンの量が少ないときに、栄養障害のリス クが高い、または栄養障害に陥っていると判定されることを特徴とする、以下の (a)及 び (b)の工程を含む、栄養状態を評価する方法;
(a)〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35— 1〕、 [50]〜〔57— 1〕もしくは〔76〕〜〔79— 1〕のいずれかに記載の方法によって製 造された抗体と、被検者カゝら得た生体試料を接触させる工程、
(b)生体試料中のトランスフェリンと結合した抗体を検出する工程。
〔48〕〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35 1〕、〔50〕〜〔57— 1〕もしくは〔76〕〜〔79— 1〕のいずれかに記載の方法によって 製造された抗体を有効成分として含有する、糖尿病性腎症の診断薬。
〔49〕〔9〕〜〔10— 9〕のいずれかに記載の抗体、又は、〔1〕〜〔8— 1〕、〔32〕〜〔35 1〕、〔50〕〜〔57— 1〕もしくは〔76〕〜 [79- 1]のいずれかに記載の方法によって 製造された抗体を有効成分として含有する、栄養状態を評価するための試薬。
〔50〕以下の (a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)組換え抗体をコードする DNAが導入されたトランスジエニックカイコを製造するェ 程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔51〕以下の (a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御される組換え抗体をコードする DN Aを有するトランスジエニックカイコであって、該組換え抗体を絹糸腺に分泌するトラン スジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔52〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔51〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔53〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔51〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔54〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔52〕又は〔53〕 に記載の方法。
[55]絹糸腺が中部絹糸腺又は後部絹糸腺である〔51〕〜〔54〕の 、ずれかに記載 の方法。 〔56〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリ シン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、〔5 5]に記載の方法。
〔56— 1〕セリシン 1タンパク質をコードする DNAのプロモーターが、以下の(a)又は(b )である、〔56〕に記載の方法;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
〔56— 2〕セリシン 2タンパク質をコードする DNAのプロモーターが、以下の(a)又は(b )である、〔56〕に記載の方法;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
〔57〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フィ ブロインタンパク質をコードする DNAのプロモーターである、〔55〕に記載の方法。
[57- 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は (b)である、〔57〕に記載の方法;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付加 、及び Z又は挿入された塩基配列を含む DNA。
[58]組換え抗体をコードする DNAを有するカイコ卵を製造する工程を含む、該組換 え抗体を分泌するトランスジエニックカイコの製造方法。
[59]絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該 プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードする
DNAを有するカイコ卵を製造する工程を含む、該組換え抗体を絹糸腺に分泌するト ランスジェニックカイコの製造方法。
〔60〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔59〕に記載の方法; (i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔61〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔59〕に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔62〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔60〕又は〔61〕 に記載の方法。
〔63〕絹糸腺が中部絹糸腺又は後部絹糸腺である〔59〕〜〔62〕の 、ずれかに記載 の方法。
〔64〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリ シン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである〔63 〕に記載の方法。
〔64— 1〕セリシン 1タンパク質をコードする DNAのプロモーターが、以下の(a)又は(b )である、〔64〕に記載の方法;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
[64- 2]セリシン 2タンパク質をコードする DNAのプロモーターが、以下の(a)又は(b )である、〔64〕に記載の方法;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔65〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フィ ブロインタンパク質をコードする DNAのプロモーターである、〔63〕に記載の方法。 〔65— 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は (b)である、〔65〕に記載の方法;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔66〕組換え抗体をコードする DNAを有するトランスジエニックカイコであって、該組換 え抗体を分泌するトランスジエニックカイコ。
〔67〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該 プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードする
DNAを有するトランスジエニックカイコであって、該組換え抗体を絹糸腺に分泌するト ランスジエニックカイコ。
〔68〕以下の(i)及び (ii)に記載の DNAを有する、 [67]に記載のトランスジエニック力 ィコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔69〕以下の (i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造さ れる、〔67〕に記載のトランスジエニックカイコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔70〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔68〕又は〔69〕 に記載のトランスジエニックカイコ。
〔71〕絹糸腺が中部絹糸腺又は後部絹糸腺である〔67〕〜〔70〕の 、ずれかに記載 のトランスジエニックカイコ。 〔72〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリ シン 1タンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、〔7 1〕に記載のトランスジエニックカイコ。
[72- 1]セリシン 1タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、 [72]に記載のトランスジエニックカイコ;
(a)配列番号: 16に記載の塩基配列を含む DNA、
(b)配列番号: 16に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
[72- 2]セリシン 2タンパク質をコードする DNAのプロモーター力 以下の(a)又は(b )である、 [72]に記載のトランスジエニックカイコ;
(a)配列番号: 17に記載の塩基配列を含む DNA、
(b)配列番号: 17に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔73〕絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フィ ブロインタンパク質をコードする DNAのプロモーターである、〔71〕に記載のトランスジ エニックカイコ。
[73 1〕フイブ口インタンパク質をコードする DNAのプロモーター力 以下の(a)又は (b)である、〔73〕に記載のトランスジエニックカイコ;
(a)配列番号: 18に記載の塩基配列を含む DNA、
(b)配列番号: 18に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔74〕転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔75〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔74〕に記載の トランスジエニックカイコ。
〔76〕以下の (a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るトランスジエニックカイコであって、該組換え抗体を脂肪体に分泌するトランスジェ- ックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
〔77〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔76〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔78〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔76〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔79〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔77〕又は〔78〕 に記載の方法。
[79 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔79〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔80〕細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るカイコ卵を製造する工程を含む、該組換え抗体を脂肪体に分泌するトランスジヱ- ックカイコの製造方法。
〔81〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジ ヱニックカイコである、〔80〕に記載の方法; (i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔82〕トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコ を交配させることで製造される、〔80〕に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔83〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔81〕又は〔82〕 に記載の方法。
〔83— 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔83〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔84〕細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るトランスジエニックカイコであって、該組換え抗体を脂肪体に分泌するトランスジェ- ックカイコ。
〔85〕以下の(i)及び (ii)に記載の DNAを有する、〔84〕に記載のトランスジエニック力 ィコ;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNA。
〔86〕以下の (i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造さ れる、〔84〕に記載のトランスジエニックカイコ;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体を コードする DNAを有するトランスジエニックカイコ。
〔87〕転写制御因子が GAL4であり、標的プロモーターが UASである、〔85〕又は〔86〕 に記載のトランスジエニックカイコ。
〔87— 1〕細胞質ァクチンタンパク質をコードする DNAのプロモーター力 以下の(a) 又は (b)である、〔87〕に記載の方法;
(a)配列番号: 19に記載の塩基配列を含む DNA、
(b)配列番号: 19に記載の塩基配列において 1又は複数の塩基が置換、欠失、付カロ 、及び Z又は挿入された塩基配列を含む DNA。
〔88〕〔1〕〜〔8— 1〕、〔32〕〜〔35— 1〕、〔50〕〜〔57— 1〕もしくは〔76〕〜〔87— 1〕の いずれかに記載の方法によって製造された抗体。
図面の簡単な説明
[図 1]組換えカイコ作出のためのベクター pUASFvaTfの構造及びその構築手順を示 す図である。
[図 2]SerlGAL4系統と UASFvaT係統の交配による抗体発現カイコの作出を示す図 である。
[図 3]GAL4遺伝子を持つ個体と UASを持つ個体の実体蛍光顕微鏡写真である。
[図 4]RT_PCRによる交雑系統における FvaTf遺伝子の転写確認を示す写真である。
[図 5]ウェスタンブロッテイングによる抗体タンパク質の同定を示す写真である。
[図 6]ELISAによる組換え抗体の抗原に対する活性の測定結果を示す図である。
[図 7]組換えカイコ作出のための抗体遺伝子の L鎖をコードするプラスミドベクター pBa cN/lox p UASIgL SV40の構造及びその構築手順を示す図である。
[図 8]組換えカイコ作出のための抗体遺伝子の H鎖をコードするプラスミドベクター pD
NA/UAS IgH SV40の構造及びその構築手順を示す図である。
[図 9]抗体遺伝子組換えカイコ作出のためのベクター pBacN/lox p UASIgH UASIgH の構造及びその構築手順を示す図である。
[図 10]SerlGAL4系統と UASIgL-UASIgH系統の交配による抗体発現カイコの作出を 示す図である。
[図 11]GAL4遺伝子を持つ個体と UASを持つ個体の実体蛍光顕微鏡写真である。
[図 12]RT-PCRによる交雑系統における IgL遺伝子及び IgH遺伝子の転写確認を示 す写真である。
[図 13]交雑系統が発現した組換え抗体が IgGlかつ L鎖としての免疫原性力 appaで あることを示す写真である。
[図 14]ELISAによる組換え抗体の抗原に対する活性の測定結果を示す図である。 発明を実施するための最良の形態
[0010] 本発明は、カイコを利用した組換え抗体の製造方法に関する。本発明は、本発明 者ら力 組換えカイコの体内において活性を有する抗体を産生させることに成功した ことに基づく。すなわち本発明は、以下の(a)及び (b)の工程を含む、組換え抗体の 製造方法を提供する。
(a)組換え抗体をコードする DNAが導入されたトランスジヱニックカイコを製造するェ 程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
また本発明は、以下の (a)及び (b)の工程を含む、組換え抗体の製造方法を提供 する。
(a)シグナル配列を有する組換え抗体をコードする DNAが導入されたトランスジェ-ッ クカイコを製造する工程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[0011] 本発明の組換え抗体の製造方法の 1つの具体的な態様にお!、ては、組換え抗体 は、カイコの絹糸腺において産生されることを特徴とする。すなわち本発明は、以下 の(a)及び (b)の工程を含む、組換え抗体の製造方法に関する。
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御される組換え抗体をコードする DN Aを有するトランスジエニックカイコであって、該組換え抗体を絹糸腺に分泌するトラン スジエニックカイコを製造する工程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
また本発明は、以下の (a)及び (b)の工程を含む、組換え抗体の製造方法に関す る。
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御されるシグナル配列を有する組換 え抗体をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を 絹糸腺に分泌するトランスジエニックカイコを製造する工程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[0012] 本発明のトランスジエニックカイコを製造する工程においては、まず、絹糸腺特異的 に発現するタンパク質をコードする DNAのプロモーター、及び該プロモーターによつ て直接的又は間接的に発現制御される組換え抗体 (好ましくはシグナル配列を有す る組換え抗体)をコードする DNAを有するカイコ卵を製造する。次いで、製造された力 ィコ卵力 生じたカイコの中から、該組換え抗体を絹糸腺に分泌するトランスジェ-ッ クカイコを選択する。
[0013] 本発明において、トランスジエニックカイコを選択するには、例えば、選択マーカー を用いて行うことができる。本発明における選択マーカーとしては、当業者において 一般的に使用されるマーカー、例えば、 CFP、 GFP、 YFP、 DsRed等の蛍光タンパク 質を使用することができる。これらのマーカーを用いることにより、実体蛍光顕微鏡で 観察するだけでトランスジエニックカイコを検出することができる。また、蛍光色が異な るので、複数のマーカーを同時に使用することもできる。
[0014] 本発明の方法によって製造することが可能である抗体には、全長抗体 (whole antib ody、例えば whole IgG等)および低分子化された抗体の両方が含まれる。本発明に おいて、全長抗体の由来は特に限定されず、例えばヒト、マウス、ラット、ゥサギ、ロバ 、ャギ、ゥマ、トリ、ィヌ、ネコなどに由来する抗体を製造することが可能である。また抗 体の isotypeも限定されず、例えばヒトの場合、 IgGl、 IgG2、 IgG3、 IgG4、 IgAl、 IgA2、 I gD、 IgE、 IgMの isotypeの抗体を製造することが可能である。本発明の全長抗体は、 実施例および図 13に示すように、定常領域、例えば、補体依存性細胞障害活性や 抗体依存性細胞障害活性を持つ定常領域、及び図 14に示すように抗原を認識する 可変領域とを含む抗体である。
[0015] 一方本発明の低分子化抗体は、全長抗体の一部分が欠損している抗体断片を含 み、抗原への結合能を有していれば特に限定されない。本発明の抗体断片は、全長 抗体の一部分であれば特に限定されな 、が、重鎖可変領域 (VH)又は Z及び軽鎖 可変領域 (VL)を含んでいることが好ましい。 VH又は VLのアミノ酸配列は、置換、欠 失、付加及び Z又は挿入がされていてもよい。さらに抗原への結合能を有する限り、 VH又は/及び VLの一部を欠損させてもよい。又、可変領域はキメラ化ゃヒト化されて いてもよい。抗体断片の具体例としては、例えば、 Fab、 Fab'、 F(ab')2、 Fvなどを挙げ ることができる。また、低分子化抗体の具体例としては、例えば、 Fab, Fab'、 F(ab')2、 Fv、 scFv (.single cnain Fv)、 Diabody、 sc(Fvノ 2、singie chain (Fv)2)などを举けること力 できる。本発明において特に好ましい低分子化抗体は、 scFv抗体である。
[0016] ここで、「Fv」断片は最小の抗体断片であり、完全な抗原認識部位と結合部位を含 む。「Fv」断片は 1つの VH及び VLが非共有結合により強く連結されたダイマー (VH- VLダイマー)である。各可変領域の 3つの相補鎖決定領域(complementarity determi ning region ; CDR)が相互作用し、 VH-VLダイマーの表面に抗原結合部位を形成す る。 6つの CDRが抗体に抗原結合部位を付与している。しかしながら、 1つの可変領 域 (又は、抗原に特異的な 3つの CDRのみを含む Fvの半分)であっても、全結合部位 よりも親和性は低いが、抗原を認識し、結合する能力を有する。
[0017] scFvには、抗体の VH及び VLが含まれ、これらの領域は単一のポリペプチド鎖中に 存在する。一般に、 Fvポリペプチドはさらに VH及び VLの間にポリペプチドリンカ一を 含んでおり、これにより scFvは、抗原結合のために必要な構造を形成することができ る、 scFvの総説につ ヽて ίま、 Pluckthun『The Pharmacology of Monoclonal Antibodies 』Vol.l l3 (Rosenburg and Moore ed (Springer Verlag, New York) pp.269- 315, 1994) を参照)。本発明におけるリンカ一は、その両端に連結された抗体可変領域の発現を 阻害するものでなければ特に限定されな 、。
[0018] VHと VLの順序は特に上記配置に限定されず、どのような順序で並べられていても ょ 、。例えば以下のような配置を挙げることができる。 N末端-シグナル配列- [VH] -リンカ一- [VL] -C末端
N末端-シグナル配列- [VL] -リンカ一- [VH] -C末端
[0019] 本発明の scFv抗体は、 1つの VH及び 1つの VLが、一本鎖ポリペプチドの N末端側 を基点として VH、 VL ( [VH]リンカ一 [VL] )の順に並んで 、ることを特徴とする抗体が 好ましい。本発明の scFvは、全長抗体や他の低分子化抗体と比較して、特に高い抗 体活性を示す。
[0020] 抗体の可変領域を結合するリンカ一としては、遺伝子工学により導入し得る任意の ペプチドリンカ一、又は合成化合物リンカ一(例えば、 Protein Engineering, 9(3), 299 -305, 1996に開示されるリンカ一等)を用いることができる力 本発明においてはぺプ チドリンカーが好ましい。ペプチドリンカ一の長さは特に限定されず、 目的に応じて当 業者が適宜選択することが可能である力 通常、 1〜100アミノ酸、好ましくは 3〜50ァ ミノ酸、更に好ましくは 5〜30アミノ酸、特に好ましくは 12〜18アミノ酸 (例えば、 15アミ ノ酸)である。本発明におけるリンカ一としては、例えば、配列番号: 9に記載のァミノ 酸配列を含むリンカ一が挙げられる。
[0021] また、本発明の組換え抗体の好ま 、態様として、ヒト抗体、マウス抗体、ヒト化抗体 、キメラ抗体又はヒト及びマウス以外の抗体等の改変抗体が挙げられる。
[0022] キメラ抗体は、異なる動物由来の配列を組み合わせて作製される抗体であり、例え ば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる 抗体などである。キメラ抗体の作製は公知の方法を用いて行うことができ、例えば、抗 体 V領域をコードする DNAとヒト抗体 C領域をコードする DNAとを連結し、これを発現 ベクターに組み込んで宿主に導入し産生させることにより得られる。
[0023] ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称され、これは、ヒト以外の哺乳動物、 例えばマウス抗体の相補性決定領域(CDR; complementarity determining region)を ヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法 も知られている(欧州特許出願公開番号 EP 125023号公報、 WO 96/02576号公報 参照)。
[0024] 具体的には、マウス抗体の CDRとヒト抗体のフレームワーク領域(framework region;
FR)とを連結するように設計した DNA配列を、 CDR及び FR両方の末端領域にオーバ 一ラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして 用いて PCR法により合成する (W098/13388号公報に記載の方法を参照)。
[0025] CDRを介して連結されるヒト抗体のフレームワーク領域は、相補性決定領域が良好 な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補 性決定領域が適切な抗原結合部位を形成するように、抗体の可変領域におけるフレ ームワーク領域のアミノ酸を置換してもよい(Sato, K.etal., CancerRes. (1993) 53, 851 -856)。
[0026] キメラ抗体及びヒト化抗体の定常領域には、ヒト抗体のものが使用され、例えば H鎖 では、 C γ 1、 C γ 2、 C γ 3、 C γ 4を、 L鎖では C κ、 C λを使用することができる。また 、抗体又はその産生の安定性を改善するために、ヒト抗体定常領域を修飾してもよい
[0027] 一般的に、キメラ抗体は、ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来 の定常領域とからなる。一方、ヒト化抗体は、ヒト以外の哺乳動物由来抗体の相補性 決定領域と、ヒト抗体由来のフレームワーク領域及び定常領域とからなる。
[0028] なお、キメラ抗体やヒト化抗体を作製した後に、可変領域 (例えば、 FR)や定常領域 中のアミノ酸を他のアミノ酸で置換等してもょ 、。
[0029] キメラ抗体における可変領域、又はヒト化抗体における CDRの由来は特に限定され ず、どのような動物由来でもよい。例えば、マウス抗体、ラット抗体、ゥサギ抗体、ラタ ダ抗体などの配列を用いることが可能である。本発明においては、これに限定するも のではな!/、が、好まし 、抗体としてマウス抗体が挙げられる。
[0030] 本発明にお ヽて製造される抗体 (全長抗体、低分子抗体)が結合する抗原も、特に 限定されるものではない。当業者であれば、周知の技術を用いて目的の抗原に結合 する抗体を設計することが出来る。本発明は、このように、周知の技術によって所望 の抗原に結合するよう設計された抗体を製造する方法に関する。また、該方法によつ て製造される抗体に関する。
[0031] なお本発明においては、 1つの例として、ヒト Transferrinに結合する抗体を製造した 。 scFv型抗ヒト Transferrin抗体の H鎖可変領域のアミノ酸配列を配列番号: 6に、 scFv 型抗ヒト Transferrin抗体の L鎖可変領域のアミノ酸配列を配列番号: 12に示した。ま た、 IgGl抗体の H鎖可変領域のアミノ酸配列を配列番号: 31に、 L鎖可変領域のアミ ノ酸配列を配列番号: 23に示した。このような抗体は、後述するように、例えば糖尿病 性腎症の診断薬、生体中のトランスフェリンの量の測定、栄養アセスメントの評価など の疾患の診断などの用途に用いることが出来る。
[0032] 一方、本発明において提供される抗体の他の態様の 1つの例として、 CEA(carcinoe mbryonic antigen)に結合する抗体を挙げることも出来る。 CEAは今日、広く腫瘍マー カーとして用いられている。腫瘍マーカースペクトルは胃癌、食道癌などの消化器系 腫瘍のみならず、肺癌などの呼吸器循環器系腫瘍など多様な臓器に発現する。従つ て CEAに結合する抗体は、腫瘍再発の発見や治療経過観察に有用である。その他 に、 c-erbB- 2に結合する抗体を挙げることもできる。 c- erbB- 2は幼若ィ匕した腺組織の 腫瘍細胞に発現する。これに結合する抗体は病理組織学的に腫瘍を検出するのに 有用である。また、 haptoglobinに結合する抗体を挙げることもできる。 haptoglobinは肝 臓力 血液中に分泌される蛋白質の一種である。この蛋白質は、遊離状態のへモグ ロビンと結合する。よって haptoglobinと結合する抗体は血漿中 haptoglobinの測定に 有用である。本発明で作製される抗体は、例えば CRP、 IgG、 IgA、 IgM、 IgD、 IgE、ァ ルブミン、プレアルブミン、補体 C3、補体 C4、 α -lマイクログロブリン、 - 2マイクログ ロブリン、 AFP、 CA 19-9、 CA15- 3、 PSA、アポリポプロテイン、腫瘍壊死因子、インタ 一ロイキン、インターフェロン、ォステオポンチン、 HBs抗原、 RF、 HCG、コラーゲン、 Hb、 HbAlc、 HCV抗体、トロポニン、ミオグロビン、 FDPに対する抗体が挙げられるが 、ここに挙げるものだけでなぐ医療の分野に応用できる物質と結合する抗体であれ ば特に制限はされない。さらに、蛋白質に結合する抗体に限られず、環境ホルモン など低分子化合物に対する抗体も含まれる。実施例に記載のヒト Transferrinに結合 する抗体の H鎖または L鎖の可変領域や超可変領域を適宜変更することによって、所 望の抗原に結合する抗体を作成することが可能である。
[0033] なお本発明においては、産生される組換え抗体の活性を保持するためまたは分泌 を促進し回収量を多くするために分泌シグナル (シグナル配列)を用いることが好まし い。分泌タンパク質や膜内在性タンパク質は、小胞体膜結合性のリボソーム上で合 成された後に、脂質二重層を通り抜けなければならない。シグナル配列とは、この時 に必要な、タンパク質の N末端に存在するアミノ酸残基である。
[0034] 本発明におけるシグナル配列は、上記機能を有する配列であれば特に限定される ものではない。一例としては、例えば、動物由来のシグナル配列が挙げられる。また、 動物抗体由来のシグナル配列が挙げられる。ここで動物としては、ヒト、マウス、ラット 、ゥサギ、ロバ、ャギ、ゥマ、トリ、ィヌ、ネコ、酵母、昆虫が挙げられる。
また本発明の好ましいシグナル配列として、例えば、酸性フォスファタ一ゼのシダナ ル配列を挙げることも出来る。酸性フォスファターゼの由来は特に制限されず、例え ばヒト、マウス、ラット、ゥサギ、ロバ、ャギ、ゥマ、トリ、ィヌ、ネコ、酵母、昆虫由来の酸 性フォスファターゼが挙げられる。
[0035] 本発明にお!/、て特に好まし!/、シグナル配列は、ヒト酸性フォスファタ一ゼのシダナ ル配列、マウスィムノグロブリン L鎖 κのシグナル配列、およびマウス IgGlのシグナル 配列である。これらのシグナル配列を用いることにより、発現した組換え抗体の絹糸 腺内腔への移行を促進させることができる。このように本発明においては、シグナル 配列を用いることが好まし 、。
[0036] シグナル配列を使用する場合、本発明にお ヽて好ま Uヽヒト酸性フォスファターゼ のシグナル配列として、配列番号: 3に記載のアミノ酸配列を含むタンパク質が挙げら れる。また、本発明において好ましいマウスィムノグロブリン L鎖 κのシグナル配列とし て、配列番号: 21に記載のアミノ酸配列を含むタンパク質が挙げられる。さらに、本発 明において好ましいマウス IgGlのシグナル配列として、配列番号: 29に記載のァミノ 酸配列を含むタンパク質が挙げられる。また、配列番号: 3、 21、および 29のいずれ かに記載のタンパク質と同等の活性を有するものであれば、配列番号: 3、 21、およ び 29のいずれかに記載のアミノ酸配列において、 1又は複数のアミノ酸が置換、欠 失、付加、及び Z又は挿入されていてもよい。ここで「機能的に同等」とは、対象とな るタンパク質が配列番号: 3、 21、および 29のいずれかに記載のアミノ酸配列力 な るタンパク質と同様の生物学的あるいは生化学的活性を有することを指す。
[0037] 本発明におけるシグナル配列は、これに制限されるものではな 、が、組換え抗体の N末端に結合して ヽることが好ま ヽ。
[0038] 以上より、本発明にお!/、て特に好まし!/、抗体の態様として、 Transferrin又は CEA、 c -erbB-2、 haptoglobinに結合する抗体であって、ヒト酸性フォスファターゼ、マウスィム ノグロブリン L鎖 κ、またはマウス IgGlのシグナル配列を有する抗体が挙げられる。そ の中でも特に、 Transferrinに結合するヒト酸性フォスファターゼのシグナル配列を有 する scFv型マウス抗体力 本発明の抗体として特に好ましい。このような抗体は、配 列番号: 15に記載のアミノ酸配列を含む抗体である。また、配列番号: 15に記載のァ ミノ酸配列において 1又は複数のアミノ酸が置換、欠失、付加、及び Z又は挿入され 、配列番号: 15に記載のアミノ酸配列を含む抗体と同等の活性を有する抗体も、本 発明の抗体として好ましい。
また本発明においては、 Transferrin又は CEA、 c-erbB-2、 haptoglobinに結合する 抗体であって、マウスィムノグロブリン L鎖 κのシグナル配列を有する L鎖、および、マ ウス IgGlのシグナル配列を有する H鎖を含む抗体も特に好ま 、。このような抗体は 、配列番号: 49に記載のアミノ酸配列を有する L鎖、および、配列番号: 51に記載の アミノ酸配列を有する H鎖を含む抗体である。また、配列番号: 49に記載のアミノ酸配 列において 1又は複数のアミノ酸が置換、欠失、付加、及び Z又は挿入され、配列番 号: 49に記載のアミノ酸配列を含む抗体と同等の活性を有する L鎖、および、配列番 号: 51に記載のアミノ酸配列において 1又は複数のアミノ酸が置換、欠失、付加、及 び Z又は挿入され、配列番号: 51に記載のアミノ酸配列を含む抗体と同等の活性を 有する H鎖を含む抗体も、本発明の抗体として特に好ま ヽ。
また、 Transferrinに結合するヒト酸性フォスファターゼのシグナル配列を有する scFv 型マウス抗体をコードする DNAの好ましい態様としては、配列番号: 13、より好ましく は配列番号: 14に記載の塩基配列を含む DNAが挙げられる。また、配列番号: 13 ( より好ましくは配列番号: 14)に記載の塩基配列において 1又は複数のアミノ酸が置 換、欠失、付加、及び Z又は挿入され、配列番号: 13 (より好ましくは配列番号: 14) に記載の DNAと同等の機能を有するタンパク質をコードする DNAが挙げられる。 また、 Transferrinに結合する抗体の L鎖をコードする DNAであって、マウスィムノグロ ブリン L鎖 κのシグナル配列を有する L鎖をコードする DNAの好ましい態様としては、 配列番号: 48に記載の塩基配列を有する DNAが挙げられる。また、配列番号: 48に 記載の塩基配列において 1又は複数のアミノ酸が置換、欠失、付加、及び Z又は挿 入され、配列番号: 48に記載の DNAと同等の機能を有する DNAが挙げられる。
さらに、 Transferrinに結合する抗体の H鎖をコードする DNAであって、マウス IgGlの シグナル配列を有する H鎖をコードする DNAの好ましい態様としては、配列番号: 50 に記載の塩基配列を有する DNAが挙げられる。また、配列番号: 50に記載の塩基配 列において 1又は複数のアミノ酸が置換、欠失、付加、及び Z又は挿入され、配列番 号: 50に記載の DNAと同等の機能を有する DNAが挙げられる。
[0040] 本発明における抗体 (好ましくはシグナル配列を有する抗体)をコードする DNAは、 該 DNAを設計するにあたり、コドンを昆虫型に変換することが好ましい。コドンを昆虫 型に変換することにより、組換え抗体の発現量を増カロさせることが可能となる。例とし て、ヒト酸性フォスファターゼのシグナル配列を有する scFv型マウス抗体の場合にお いて、シグナル配列のコドン変換前の塩基配列を配列番号: 1に、コドン変換後の塩 基配列を配列番号: 2に示した。同様に、 H鎖可変領域 (VH)のコドン変換前の塩基 配列を配列番号: 4に、コドン変換後の塩基配列を配列番号 : 5に、 L鎖可変領域 (VL )のコドン変換前の塩基配列を配列番号: 10に、コドン変換後の塩基配列を配列番 号: 11に、リンカ一配列の塩基配列を配列番号: 7に、コドン変換後の塩基配列を配 列番号 : 8に、抗体全長のコドン変換前の塩基配列を配列番号:13に、コドン変換後 の塩基配列を配列番号: 14に示した。
[0041] 本発明におけるヒトの Transferrinに対する scFv型マウス抗体においては、抗体の H 鎖と L鎖の領域のコドンを脊椎動物であるマウスのそれから、昆虫で使用されている それに変換した。より具体的には、本発明においては、ヒトの Transferrinに対する scF V型マウス抗体のコドンをカイコと同じ昆虫であるハスモンョトウの近縁種 Spodoptera fr ugiperdaにおいて使用頻度の高いコドンへ適合ィ匕した。さらに scFv型抗体のリンカ一 部分にも Spodoptera frugiperdaにお!/、て使用頻度の高!、コドンを用いた。
[0042] より具体的には、本発明においては、ヒト及びマウス由来のコドン並びにリンカ一部 分のコドンにおいて、表 1に記載の通り、全部で 153アミノ酸に対応するコドンをノヽスモ ンョトウの近縁種 Spodoptera frugiperdaで使用頻度の高!、コドンへ変換した(変換前 の配列は配列番号: 13、変換後の配列は配列番号: 14に対応する。なお、表 1中「ls tコドン」とは、コドンの 1つ目の塩基が配列番号: 13の塩基配列において何番目の塩 基に該当するかを意味する。例えば、 1stコドン「13」とあるのは、配列番号: 13の 13〜 15番目の塩基で構成されるコドンが変換されて 、る(この場合、 15番目の Gが Cに変 換されている)ことを意味する)。本発明の抗体をコードする DNAは、これらのコドンの 変換のうち、少なくとも 1つのコドンの変換を行った DNAが含まれる。また本発明にお いては、ショウジヨウバエ、カイコ、ミツバチ等で使用頻度の高いコドンへ変換すること も可能であり、これらの昆虫において使用頻度の高いコドンに変換された DNAもまた 、本発明に含まれる。これらの昆虫において使用頻度の高いコドンは周知である。こ のように本発明にお 、ては、ヒト酸性フォスファターゼのシグナル配列を有する scFv 型マウス抗体をコードする DNAを設計するにあたり、コドンが昆虫型に変換された DN Aも含まれる。
[表 1]
1st 1 st 1 st
変換刖 変換後アミノ酸 変換前 変換後アミノ酸 変換前 変換後アミノ酸 コドン コドン コドン
13 ACG ACC T 274 AGA CGT R 556 TAT TAC Y
16 GCG GCT A 280 ACA ACC T 559 AGT TCC s
34 GCC GCT A 304 CAG CAA Q 565 AAT AAC N
37 TTG CTG し 307 TTG CTG し 568 CAA CAG Q
40 TTG CTC し 313 TCT TCC S 580 TTG CTG し
43 CTA CTG し 319 ACT ACC T 583 GCC GCT A
58 CTC CTG し 322 ACT ACC T 592 CAG CAA Q
61 GAG GAA E 325 GAG GAA E 595 CAG CAA Q
64 GTC GTG V 328 GAC GAT D 601 CCA CCC P
67 CAG CAA Q 331 ACA ACC T 604 GGG GGT G
73 CAG CAA Q 334 GCC GCT A 610 TCT TCC S
76 GAG GAA E 337 ACA ACC T 613 CCT CCC P
79 TCG TCC S 340 TAT TAC Y 616 AAA AAG K
82 GGA GGT G 346 TGT TGC c 622 CTG CTC し
85 CCT CCC P 349 GCA GCT A 625 ATT ATC I
88 GAC GAT D 352 AGG CGT R 634 GCA GCT A
100 CCT CCC P 367 CCT CCC P 640 ACT ACC T
103 TCT TCC S 373 TAT TAC Y 643 AGG CGT R
106 CAG CAA Q 385 TAT TAC Y 649 TCT TCC S
109 TCA TCC S 391 GGC GGT G 652 GGG GGT G
112 CTT CTG し 397 GGG GGT G 655 GTC GTG V
115 TCA TCO S 403 ACG ACC T 658 CCT CCC P
118 CTC CTG し 406 GTC GTG V 664 CGC CGT R
127 ACT ACC T 418 TCA TCC s 670 ACA ACC T
130 GTC GTG V 421 GGT GGC G 673 GGC GGT G
133 ACT ACC T 424 GGA GGC G 676 AGT TCC S
136 GGC GGT G 430 GGT GGC G 679 GGA GGT G
151 AGT TCC S 433 TCA TCC S 682 TCT TCC S
157 TAT TAC Y 439 GGA GGT G 685 GGG GGT G
160 AGC TCC s 448 TCT TCC S 688 ACA ACC T
172 ATT ATC I 451 GGC GGT G 691 GAT GAC D
175 CGG AGG R 457 GGC GGT G 697 ACT ACC T
181 I I I TTC F 460 GGA GGT G 700 CTC CTG し
184 CCA CCC P 463 TCG TCC S 709 AGC TCC s
187 GAA GAG E 466 GAC GAT D 712 AGT TCC s
193 AAA AAG 469 ATT ATC I 724 GAA GAG E
199 GAA GAG E 472 GAG GAA E 733 TCA TCC S
208 GGC GGT G 475 CTC CTG し 736 GTT GTG V
214 ATA ATC I 481 CAG CAA Q 739 TAT TAC Y
223 AGT TCC S 484 TCT TCC S 745 TGT TGC c
229 GCC GCT A 487 CCA CCC P 754 TAT TAC Y
232 ACT ACC T 496 CTA CTG し 757 TAT TAC Y
241 AGC TCC s 505 TCA TCC S 760 AGC TCC s
244 CCA CCC P 508 GTT GTG V 763 TAT TAC Y
247 TCT TCC s 51 1 GGA GGT G 766 CCT CCC P
250 CTC CTG し 520 GTT GTG V 772 ACG ACC T
253 AAA AAG K 523 ACT ACC T 778 GGC GGT G
256 AGT TCC s 541 AGT TCC s 781 TCG TCC S
259 CGA CGT R 547 AGC TCC s 784 GGC GGT G
265 TCT TCC S 550 CTT CTG し 796 GAA GAG E
271 ACT ACC T 553 TTA CTC し 802 AAA AAG K [0044] 本発明にお ヽては、上記組換え抗体は絹糸腺に分泌される。絹糸腺とはカイコの 体内に 2本 1組として存在する器官であり、絹糸タンパク質の合成器官である。絹糸 腺は後部絹糸腺、中部絹糸腺、前部絹糸腺に分けられ、絹タンパク質の合成は後部 絹糸腺及び中部絹糸腺にて行われる。本発明において好ましい絹糸腺は、中部絹 糸腺及び後部絹糸腺である。
なお、本発明の方法によって製造される抗体は、本発明の方法によって製造される 限りなんら限定されず、シグナル配列を有していても、有していなくてもよい。即ち、 本発明の抗体の製造方法によって製造される抗体には、シグナル配列を有して 、る 抗体、シグナル配列を有して 、な 、抗体の両方が含まれる。
[0045] 本発明における絹糸腺特異的に発現するタンパク質をコードする DNAのプロモー ター、及び該プロモーターによって直接的に発現制御される組換え抗体をコードする DNAを有するカイコ卵としては、例えば、絹糸腺特異的に発現するタンパク質をコー ドする DNAのプロモーターの下流に、組換え抗体をコードする DNAが機能的に結合 した DNAを有するカイコ卵が挙げられる。このようなカイコ卵は、絹糸腺特異的に発 現するタンパク質をコードする DNAのプロモーターの下流に、組換え抗体をコードす る DNAが機能的に結合した DNAをカイコ卵に導入することで製造できる。
[0046] また、本発明における絹糸腺特異的に発現するタンパク質をコードする DNAのプロ モーター、及び該プロモーターによって間接的に発現制御される組換え抗体タンパ ク質をコードする DNAを有するカイコ卵としては、例えば、(i)絹糸腺特異的に発現す るタンパク質をコードする DNAのプロモーターの下流に、転写制御因子をコードする DNAが機能的に結合した DNA、及び (ii)該転写制御因子の標的プロモーターの下 流に、組換え抗体をコードする DNAが機能的に結合した DNA、を有するカイコ卵が 挙げられる。
なお本発明においては、絹糸腺特異的に発現するタンパク質をコードする DNAの プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードする
DNAは、抗体の分泌を促進し回収量を多くするためシグナル配列を有するものが好 ましい。シグナル配列の具体的な態様は、上述の通りである。。
[0047] 上記「機能的に結合した」とは、プロモーターに転写制御因子が結合することにより 、プロモーターの下流に存在する DNAの発現が誘導されるように、該プロモーターと 該 DNAとが結合していることをいう。従って、該 DNAが他の遺伝子と結合しており、他 の遺伝子産物との融合タンパク質を形成する場合であっても、該プロモーターに転 写制御因子が結合することによって、該融合タンパク質の発現が誘導されるものであ れば、上記「機能的に結合した」の意に含まれる。
[0048] 上記転写制御因子と標的配列の組み合わせとしては、 GAL4と UAS、 TetRと TREな どが挙げられる。 GAL4と UAS、又は TetRと TREを用いること〖こより、目的とする遺伝子 の発現部位や時期、量を正確に制御でき、多くの組織で容易に発現させることがで きる。また、発現させる遺伝子が致死性の遺伝子でも系統の作出が可能である。
[0049] 上記カイコ卵を製造する方法としては、種々の方法を選択できる。例えば、上記 (i) 及び(ii)の DNAを別々のカイコ卵に導入する。両方の DNAを有するカイコ卵は、それ ぞれの DNAが導入されたカイコ卵から生じたトランスジエニックカイコ同士を交配させ ることで得ることができる。この場合、転写制御因子により、発現する組織、時期、量 などを決めることができるため、発現させたい遺伝子を導入した系統と交配することに より、多くの系統を作ることなぐ各組織や時期、量などを変えることができる利点があ る。また、目的遺伝子を発現させた場合、不妊になる場合でも実験が可能である。さ らに、単独のプロモーターを使った場合より、導入遺伝子からの生産物の量が増える という利点もある。また、上記 (i)及び (ii)の DNAを有するカイコ卵は、片方の DNAが 導入されたトランスジエニックカイコが産卵した卵に、もう片方の DNAを人為的に導入 することで得ることもできる。また、上記 (i)の DNAと上記 (ii)の DNAを、同じ卵に導入 することによつても、両方の DNAを有するカイコ卵を得ることが出来る(Imamura, M., Nakai, J., Inoue, S., Quan, G.- X., Kanda, T. and Tamura, T. (2003) Targeted gene e xpression using the GAL4/UAS system in the silkworm Bombyx mori. Fourth Intern ational Workshop on Transgenesis and Genomics of Invertegrate Organisms, Asilom ar, P53.)。
[0050] カイコ卵への DNAの導入は、例えば、カイコの発生初期卵へ、トランスポゾンをべク ターとして注射する方法(Tamura, T., Thibert, C, Royer ,C, Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J.-L., Mauchamp, B., Chavancy, G., Snirk, P. , Fraser, M., Prudhomme, J.-C. and Couble, P., 2000, Nature Biotechnology 18, 81 -84)に従って行うことができる。例えば、トランスポゾンの逆位末端反復配列(Handler AM, McCombs SD, Fraser MJ, Saul SH. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (1 3) :7520-5)の間に上記 DNAを挿入したベクターとともに、トランスポゾン転移酵素をコ ードする DNAを有するベクター(ヘルパーベクター)をカイコ卵に導入する。ヘルパー ベクターとしては、 pHA3PIG (Tamura, T., Thibert, C, Royer ,C, Kanda, T., Abrah am, E., Kamba, M., Komoto, N., Thomas, J.— L., Mauchamp, B., Chavancy, G., Shir k, P., Fraser, M., Prudhomme, J.-C. and Couble, P., 2000, Nature Biotechnology 1 8, 81-84)が挙げられる力 これに限定されるものではない。
[0051] 本発明におけるトランスポゾンとしては、 piggyBacが好ましいが、これに限定されるも のではなぐマリーナ(mariner)、ミノス(minos)等を用いることもできる(Shimizu, K., K amba, M., bonobe, H., Kanda, T., Klinakis, A. G., bavakis, C. and Tamura, T. (200 0) Insect Mol. Biol, 9, 277—281; Wang W, Swevers L, Iatrou K. (2000) Insect Mol Biol 9 (2) :145-55) o
[0052] また、本発明では、バキュロウィルスベクターを使用することによりトランスジエニック カイコを作出することも可能である(Yamao, M., N. Katayama, H. Nakazawa, M. Yam akawa, Y. Hayashi et al., 1999, Genes Dev 13: 511-516)。
[0053] また本発明における絹糸腺特異的に発現するタンパク質をコードする DNAのプロモ 一ターとしては、中部絹糸腺においては、例えばセリシン 1タンパク質又はセリシン 2タ ンパク質をコードする DNAのプロモーターが挙げられる。セリシン 1タンパク質又はセ リシン 2タンパク質をコードする DNAのプロモーターとしては、配列番号: 16又は 17に 記載の塩基配列を含む DNAが挙げられる。配列番号: 16又は 17に記載の塩基配列 を含む DNAとしては、配列番号: 16又は 17に記載の塩基配列力 なる DNA、配列番 号: 16又は 17に記載の塩基配列力 なる DNAの上流域や下流域を含む DNAなどを 挙げることができるが、これらに限定されるものではない。配列番号: 16又は 17に記 載の塩基配列からなる DNAの上流域や下流域は、文献(Okamoto, H., Ishikawa, E. and Suzuki, Y. (1982) Structural analysis of sencin genes. Homologies with fibroin g ene in the 5' flanking nucleotide sequences. J Biol Chem, 257, 15192— 15199.、 Garel , A., Deleage, G. and Prudhomme, J.C. (1997) Structure and organization of the Bo mbyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser IB cDNA. Insect Biochem Mol Biol, 27, 469—477.、 Michaille, J.J., Garel, A. and Pr udhomme, J.C. (1990) Cloning and characterization of the highly polymorphic Ser2 g ene of Bombyx mori. Gene, 86, 177- 184.)に開示されている。
[0054] また、本発明における中部絹糸腺特異的に発現するタンパク質をコードする DNAの プロモーターとしては、配列番号: 16又は 17に記載の塩基配列を含む DNAと構造的 に類似しており、かつ、配列番号: 16又は 17に記載の塩基配列を含む DNAと同等あ るいは改善されたプロモーター活性能を持つ DNAも挙げられる。このような DNAとし ては、例えば、配列番号: 16又は 17に記載の塩基配列において 1又は複数の塩基 が置換、欠失、付加、及び Z又は挿入された塩基配列を含む DNAが例示できる。該 DNAは、ハイブリダィゼーシヨン技術やポリメラーゼ連鎖反応(PCR)技術、 site-direct ed mutagenesis法、 DNA合成等の方法により調製することが可能である。調製された DNAがプロモーター活性を有する力否かは、当業者においてはレポーター遺伝子を 用いた周知のレポーターアツセィ等により検討することが可能である。
[0055] 該レポーター遺伝子としては、その発現が検出可能なものであれば特に制限され ず、例えば、当業者において一般的に使用される CAT遺伝子、 lacZ遺伝子、ルシフ エラーゼ遺伝子、 j8 -ダルク口-ダーゼ遺伝子 (GUS)及び GFP遺伝子等を挙げること ができる。レポーター遺伝子の発現レベルは、該レポーター遺伝子の種類に応じて、 当業者に公知の方法により測定することができる。例えば、レポーター遺伝子が CAT 遺伝子である場合には、該遺伝子産物によるクロラムフエ-コールのァセチルイ匕を検 出することによって、レポーター遺伝子の発現レベルを測定することができる。レポ一 ター遺伝子が lacZ遺伝子である場合には、該遺伝子発現産物の触媒作用による色 素化合物の発色を検出することにより、また、ルシフェラーゼ遺伝子である場合には、 該遺伝子発現産物の触媒作用による蛍光化合物の蛍光を検出することにより、また、 β -クロ-ダーゼ遺伝子 (GUS)である場合には、該遺伝子発現産物の触媒作用によ る Glucuron (ICN社)の発光や 5-ブロモ -4-クロ口- 3-インドリル- 13 -ダルク口-ド(X- G1 uc)の発色を検出することにより、さらに、 GFP遺伝子である場合には、 GFPタンパク 質による蛍光を検出することにより、レポーター遺伝子の発現レベルを測定すること ができる。
[0056] 一方、本発明における後部絹糸腺特異的に発現するタンパク質をコードする DNA のプロモーターとしては、例えばフイブ口イン L鎖タンパク質をコードする DNAのプロモ 一ターが挙げられる。フイブ口インタンパク質をコードする DNAのプロモーターとして は、配列番号: 18に記載の塩基配列を含む DNAが挙げられる。配列番号: 18に記 載の塩基配列を含む DNAとしては、配列番号: 18に記載の塩基配列からなる DNA、 配列番号: 18に記載の塩基配列からなる DNAの上流域や下流域を含む DNAなどを 挙げることができるが、これらに限定されるものではない。配列番号: 18に記載の塩 基配列からなる DNAの上流域や下流域は、文献(KIKUCHI, Y., K. MORI, S. SUZU KI, K. YAMAGUCHI and S. MIZUNO, 1992 Structure of the Bombyx mori fibroin li ght— chain— encoding gene: upstream sequence elements common to the light and hea vy chain. Gene 110: 151-158.)に開示されている。
[0057] また、本発明における後部絹糸腺特異的に発現するタンパク質をコードする DNAの プロモーターとして、配列番号: 18に記載の塩基配列を含む DNAと構造的に類似し ており、かつ、配列番号: 18に記載の塩基配列を含む DNAと同等あるいは改善され たプロモーター活性能を持つ DNAも挙げられる。これらのプロモーターは、上述の方 法により調整することが可能である。
[0058] 本発明の組換え抗体の製造方法は、カイコ体内で合成された抗体を回収する工程 を含む。合成された抗体は、不溶化せずに、活性のある状態で、中部絹糸腺又は後 部絹糸腺に分泌される。従って、組換え抗体は、中部絹糸腺又は後部絹糸腺力 回 収することが可能である。組換え抗体を中部絹糸腺又は後部絹糸腺力 回収する方 法としては、例えば、吐糸期になったカイコを解剖し、中部絹糸腺又は後部絹糸腺を 20mM Tris-HCl pH7.4中に摘出し、絹糸腺をピンセットやメスで傷をいれる事により 絹糸腺中の組換え抗体を回収できる。
[0059] また、本発明の組換え抗体は、例えば、トランスジエニックカイコが吐糸した繭から 回収することも可能である。回収方法としては、当業者に周知の方法、例えば、繭を 6 0%LiSCNで溶かし、 20mMTris、 5M ureaで透析することによって回収する方法(Inoue, S., Tsuda, H., Tanaka, H., Magoshi, Y and Mizuno (2001) Sericologia 4, 157-163. )を使用することができる。また、その他のタンパク質回収法としては、例えば界面活 性剤を用いる方法や水溶液で溶かす方法等が可能である。
[0060] また、本発明におけるカイコとしては、特に制限はな!/、が、組換え抗体の大量生産 のためには、フイブ口インタンパク質などの絹糸を構成するタンパク質をコードする DN A領域 (コード領域、プロモーター領域、非翻訳領域を含む)の変異によって、絹糸を 構成するタンパク質の生産が抑制されて 、るカイコを用いることが好ま 、。このよう なカイコとしては、絹糸を構成するタンパク質をコードする DNA領域の変異によって 絹糸を構成するタンパク質の生産が抑制されている突然変異系統のカイコ、好ましく は該変異によって絹糸を構成するタンパク質の生産が抑制されている裸蛹系統の力 ィコ、より好ましくは Nd-sDが挙げられるが、絹糸を構成するタンパク質の生産抑制の 原因が、人為的か否か、また、自然界において生じた変異に依存する力否かに関わ らず、絹糸を構成するタンパク質の生産が抑制されているカイコであればよい。
[0061] このようなカイコの 1つの態様は、セリシン蚕として当業者には周知のカイコである。
セリシン蚕を利用することによって、中部絹糸腺における組換え抗体の大量生産が 可能となり、染色体に導入された組み換え抗体をコードする DNAから合成される抗体 の精製も容易になる。また、後部絹糸腺において組換え抗体を産生させる際にも、生 産量の点でセリシン蚕を用いることが好まし 、。
[0062] また、本発明におけるカイコとしては、非休眠卵を産下する性質を有するカイコ、休 眠卵を産下する性質を有するカイコ(例えば実用品種であるぐんま、 200、春嶺、鐘 月、錦秋、鐘和等)を使用することができる。ここで、休眠卵とは産卵後胚発生が一時 的に停止する卵を言い、非休眠卵とは産卵後胚発生が停止せず、幼虫が孵化する 卵を言う。
[0063] 休眠卵を産下する性質を有するカイコを用いる場合は、非休眠卵を産下させ、該非 休眠卵に DNAを導入する。非休眠卵を産下させる方法としては、例えばぐんまにお いては、休眠卵を 15°C〜21°Cで培養することで該休眠卵から生じた成虫に非休眠卵 を産下させる方法、好ましくは休眠卵を 16°C〜20°Cで培養することで該休眠卵から 生じた成虫に非休眠卵を産下させる方法、より好ましくは休眠卵を 18°Cで培養するこ とで該休眠卵から生じた成虫に非休眠卵を産下させる方法、最も好ましくは休眠卵を
18°Cで培養することで該休眠卵から生じた幼虫を全明で飼育し、生育した成虫に非 休眠卵を産下させる方法を挙げることができる。また、 200においては、休眠卵を 15 °C〜21°Cで培養することで該休眠卵から生じた成虫に非休眠卵を産下させる方法、 好ましくは休眠卵を 16°C〜20°Cで培養することで該休眠卵から生じた成虫に非休眠 卵を産下させる方法、より好ましくは休眠卵を 18°Cで培養することで該休眠卵から生 じた成虫に非休眠卵を産下させる方法、又は休眠卵から生じた幼虫を全明で飼育し 、生育した成虫に非休眠卵を産下させる方法、最も好ましくは休眠卵を 25°Cで培養 することで該休眠卵から生じた幼虫を全明で飼育し、生育した成虫に非休眠卵を産 下させる方法が挙げられる。
[0064] 卵の培養は、例えば、 18°C〜25°Cのインキュベーター、又は定温の部屋に入れるこ とによって行うことができ、幼虫の飼育は 20°C〜29°Cの飼育室で人工飼料を用いて 行うことができる。
[0065] 本発明の上記休眠卵の培養は、当業者においては、一般的なカイコ卵の培養法に 従って行うことができる。例えば、「文部省(1978)蚕種製造. ppl93、実教出版社、東 京」に記載の方法に従って培養を行う。また、本発明におけるカイコ幼虫の飼育は、 当業者においては、周知の方法によって行うことができる。例えば、「文部省(1978) 蚕種製造. ppl93、実教出版社、東京」に記載の方法に従って飼育を行う。
[0066] 本発明にお 、て、産卵された卵が非休眠卵である力否かは、卵の色で判定するこ とができる。一般に、休眠卵は濃い茶褐色に着色し、非休眠卵は黄白色であることが 知られている。よって、本発明においては、濃い茶褐色ではないこと、より好ましくは 黄白色であることをもって産卵された卵が非休眠卵であると判定する。
[0067] 以下、カイコ卵への DNAの導入方法の具体例を記す力 本発明におけるカイコ卵 への DNAの導入方法は、この方法に限定されるものでない。例えば、カイコ卵へ DNA 注入用の管を使用して直接卵内へ DNAを導入することが可能であるが、好ま 、態 様としては、前もって物理的又は化学的に卵殻に穴を空け、該穴から DNAを導入す る。この際、 DNA注入用の管を挿入角度が該卵の腹側の側面に対してほぼ垂直とな るように該穴カも卵内に挿入することができる。 [0068] 本発明において、物理的に卵殻に穴を空ける方法としては、例えば針、微小レーザ 一等を用いて穴を空ける方法が挙げられる。好適には針を用いた方法によって卵殻 に穴を空けることができる。該針は、カイコの卵殻に穴を空けることができるものであ れば、その針の材質、強度等は、特に制限されない。なお、本発明における針とは、 通常、先端が尖った棒状の針を指すが、この形状に限定されず、卵殻に穴を空ける ことができるものであれば、全体の形状は特に制限されない。例えば、先端の尖った ピラミッド型の物質、又は先端の尖った三角錐の形状の物質もまた、本発明の「針」に 含まれる。本発明においては、タングステン針を好適に使用することができる。本発 明の針の太さ(直径)は、後述のキヤビラリ一が通過可能な穴を空けることができる程 度の太さであればよぐ通常 2〜20 μ m、好ましくは 5〜10 μ mである。一方、化学的に 卵殻に穴を空ける方法としては、例えば薬品 (次亜塩素酸等)等を用いて穴を空ける 方法が挙げられる。
[0069] 本発明において、穴を空ける位置としては、該穴カも DNA注入用の管を挿入した場 合に卵の腹側の側面に対する挿入角度を、ほぼ垂直にできる位置ならば特に制限 はな 、が、好ましくは腹側の側面又はその反対側であり、より好ましくは腹側の側面 であり、よりさらに好ましくは卵の腹側側面のやや後端よりの中央部である。
[0070] 本発明において、「ほぼ垂直」とは、 70° 〜120° を意味し、好ましくは 80° 〜90° を意味する。本発明において、「将来的に生殖細胞になる位置」としては、通常、卵 の腹側の卵表に近い位置(通常、卵表力 0.01mm〜0.05mmの位置)であり、好ましく は、卵の腹側中央の卵表に近い位置でやや後極よりの位置である。
[0071] 本発明の DNA注入用の管は、その管の材質、強度、内径等は特に制限されないが 、 DNA注入用の管を挿入する前に、物理的又は化学的に卵殻に穴を空ける場合は、 空けられた穴を通過できる太さ(外径)であることが好ましい。本発明の DNA注入用の 管としては、例えば、ガラスキヤビラリ一等を挙げることができる。
[0072] 本発明の DNAの導入方法において、好ましい態様としては、上記のカイコ卵に物 理的又は化学的に穴を空け、 DNA注入用の管を挿入角度が該卵の腹側の側面に 対してほぼ垂直となるように該穴カも卵内に挿入し、 DNAを注入する工程を、針と DN A注入用の管が一体型となったマ-ュピュレーターを使用して行う。通常、該マ-ュピ ュレーターを構成要素の 1つとする装置を使用して本発明は好適に実施される。
[0073] このような装置としては、解剖顕微鏡、照明装置、可動式のステージ、顕微鏡に金 具で固定した粗動マ-ュピュレーター、このマ-ュピュレーターに付けたマイクロマ- ュピュレーター、 DNAを注射するための空気圧を調整するインジェクター力 構成さ れている。インジヱクタ一に用いる圧力は窒素ボンべ力も供給され、圧力のスィッチは フットスィッチによっていれることができる。注射はガラススライド等の基板上に固定し た卵に対して行い、卵の位置は移動式のステージによって決める。また、マイクロマ -ュピユレ一ターのガラスキヤビラリ一は 4本のチューブで繋がれた操作部によって操 作する。実際の手順は、卵に対するタングステン針の位置を粗動マ-ュピュレーター で決め、ステージのレバーで水平方向に卵を動力し穴を空ける。続いて、マイクロマ -ュピユレ一ターの操作部のレバーを操作して、穴の位置にガラスキヤピラリーの先 端を誘導し、再びステージのレバーによりキヤピラリーを卵に挿入する。この場合、卵 の腹側の側面に対し垂直にガラスキヤピラリーが挿入される必要がある。フットスイツ チを入れ DNAを注射し、レバーを操作して卵からキヤピラリーを抜く。空けた穴を瞬間 接着剤等でふさぎ、一定の温度及び、一定の湿度のインキュベーターで保護する。 本発明に使用される装置としては、好適には、特許第 1654050号に記載の装置又は 該装置を改良した装置が挙げられる。
[0074] また、本発明の態様においては、 DNAの導入に用いるカイコ卵が基板に固定され ていることが好ましい。本発明の基板として、例えば、スライドグラス、プラスチック板 等を用いることができる力 これらに特に制限されない。本発明の上記態様において は、カイコ卵内の将来的に生殖細胞になる位置に正確に DNAを注射するために、卵 の方向を揃えて固定することが望ましい。また、上記態様においては、基板へ固定す るカイコ卵の数には、特に制限はない。また、複数個のカイコ卵を用いる場合、カイコ 卵を基板へ固定する方向性としては、好ましくは背腹の向きが一定となるような方向 である。本発明の上記カイコ卵の基板への固定は、例えば、水性の糊をあら力じめ塗 布した市販の台紙 (バラ種台紙)の上に産卵させ、台紙に水をカ卩えて卵をはがし、次 いで濡れた状態の卵を基板に整列させ、風乾することによって行う。卵はスライドダラ ス上に卵の方向を揃えて固定することが好ましい。また、卵の基盤への固定は両面テ ープゃ接着剤等を用いることによつても可能である。
[0075] カイコ卵に DNAが導入されたカゝ否かは、例えば、注射した DNAを卵から再度抽出し て !J疋する方法 (Nagaraju, J., Kanda, T., Yukuhiro, Κ., Chavancy, u., Tamura, T. and Couble, P. (1996) Attempt of transgenesis of the silkworm (Bombyx mori L) by e gg- injection of foreign DNA. Appl. Entomol. ZooL, 31, 589- 598)や、注射した DNA の卵内での発現を見る方法(Tamura, T., Kanda, T., Takiya, S., Okano, K. and Mae kawa, H. (1990) . Transient expression of chimeric CAT genes injected into early e mbryos of the domesticated silkworm, Bombyx mori. Jpn. J. Genet., 65, 401- 410)等 によって確認することができる。
[0076] また、本発明の方法において回収された組換え抗体と医薬上許容される担体とを 混合することで、医薬組成物を製造することもできる。該担体としては、例えば界面活 性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結 合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるが、これらに制限され ず、その他常用の担体を適宜使用することができる。具体的には、軽質無水ケィ酸、 乳糖、結晶セルロース、マン-トール、デンプン、カルメロースカルシウム、カルメロ一 スナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリ ビュルァセタールジェチルァミノアセテート、ポリビュルピロリドン、ゼラチン、中鎖脂 肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油 60、白糖、カルボキシメチルセ ルロース、コーンスターチ、無機塩類等を挙げることができる。
[0077] 本発明の組換え抗体の製造方法の別の具体的な態様にお!、ては、組換え抗体は 、カイコの脂肪体において産生されることを特徴とする。すなわち本発明は、以下の( a)及び (b)の工程を含む、組換え抗体の製造方法に関する。
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るトランスジエニックカイコであって、該組換え抗体を脂肪体に分泌するトランスジェ- ックカイコを製造する工程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
また本発明は、以下の (a)及び (b)の工程を含む、組換え抗体の製造方法に関す る。
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体 をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を脂肪体 に分泌するトランスジエニックカイコを製造する工程。
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[0078] 本発明のトランスジエニックカイコを製造する工程においては、まず、細胞質ァクチ ンタンパク質をコードする DNAのプロモーター、及び該プロモーターによって直接的 又は間接的に発現制御される組換え抗体をコードする DNAを有するカイコ卵を製造 する。次いで、製造されたカイコ卵力 生じたカイコの中から、該組換え抗体を脂肪 体に分泌するトランスジエニックカイコを選択する。トランスジエニックカイコの選択は、 上述の方法によって行うことが出来る。
[0079] 本発明における細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び 該プロモーターによって直接的に発現制御される組換え抗体をコードする DNAを有 するカイコ卵としては、例えば、細胞質ァクチンタンパク質をコードする DNAのプロモ 一ターの下流に、組換え抗体をコードする DNAが機能的に結合した DNAを有する力 ィコ卵が挙げられる。このようなカイコ卵は、細胞質ァクチンタンパク質をコードする D NAのプロモーターの下流に、組換え抗体をコードする DNAが機能的に結合した DNA をカイコ卵に導入することで製造できる。
[0080] また、本発明における細胞質ァクチンタンパク質をコードする DNAのプロモーター、 及び該プロモーターによって間接的に発現制御される組換え抗体タンパク質をコー ドする DNAを有するカイコ卵としては、例えば、(i)細胞質ァクチンタンパク質をコード する DNAのプロモーターの下流に、転写制御因子をコードする DNAが機能的に結合 した DNA、及び (ii)該転写制御因子の標的プロモーターの下流に、組換え抗体をコ ードする DNAが機能的に結合した DNA、を有するカイコ卵が挙げられる。「機能的に 結合した」の定義は、上述の通りである。また、転写制御因子と標的配列の組み合わ せも、上述のものが挙げられる。
[0081] カイコ卵の製造は上述の方法によって行うことが可能である。例えば、上記 (i)及び (ii)の DNAを別々のカイコ卵に導入する。両方の DNAを有するカイコ卵は、それぞれ の DNAが導入されたカイコ卵から生じたトランスジエニックカイコ同士を交配させること で得ることができる。また、上記 (i)及び (ii)の DNAを有するカイコ卵は、片方の DNA が導入されたトランスジエニックカイコが産卵した卵に、もう片方の DNAを人為的に導 入することで得ることが出来る。さら〖こは、上記 (i)の DNAと上記 (ii)の DNAを、同じ卵 に導入することによつても、両方の DNAを有するカイコ卵を得ることが出来る。
[0082] カイコ卵への DNAの導入も、上述の方法によって行うことが出来る。また、カイコの 脂肪体において組換え抗体を産生する場合においても、バキュロウィルスベクターを 使用することによりトランスジエニックカイコを作出することも可能である(Yamao, M., N . Katayama, H. Nakazawa, M. Yamakawa, Hayashi et al" 1999, enes Dev l^: o 11-516)。
[0083] 上記細胞質ァクチンタンパク質をコードする DNAのプロモーターとしては、配列番 号: 19に記載の塩基配列を含む DNAが挙げられる。配列番号: 19に記載の塩基配 列を含む DNAとしては、配列番号: 19に記載の塩基配列からなる DNA、配列番号: 1 9に記載の塩基配列からなる DNAの上流域や下流域を含む DNAなどを挙げることが できるが、これらに限定されるものではない。
[0084] また、本発明における細胞質ァクチンタンパク質をコードする DNAのプロモーターと して、配列番号: 19に記載の塩基配列を含む DNAと構造的に類似しており、かつ、 配列番号: 19に記載の塩基配列を含む DNAと同等あるいは改善されたプロモーター 活性能を持つ DNAも挙げられる。これらのプロモーターもまた、上述の方法により調 整することが可能である。配列番号: 19に記載の塩基配列からなる DNAの上流域や 下流域は、文献(MANGE, A., E. JULIEN, J. C. PRUDHOMME and P. COUBLE, 1 997 A strong inhibitory element down-regulates SRE— stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J Mol Biol 265: 266—274.)に開示されて いる。
[0085] 上記転写制御因子と標的配列の組み合わせは、上述のものを使用することが可能 である。なお、細胞質ァクチンをコードする DNAのプロモーターの下流に GAL4遺伝 子を繋 、だものをカイコゲノムに挿入したトランスジエニックカイコ(上記 (i)の DNAを 有するカイコ卵力も作出されたトランスジ ニックカイコ)の具体的な態様および作出 方法は、文献(IMAMURA, M., J. NAKAI, S. INOUE, G. X. QUAN, T. KANDA et al ., 2003 Targeted gene expression using the GAL4/UAS system in the silkworm Bom byx mori. Genetics 165: 1329- 1340.)に開示されている。
なお本発明においては、細胞質ァクチンタンパク質をコードする DNAのプロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAは、シ グナル配列を有することが好ましい。シグナル配列の具体的な態様は、上述の通りで ある。
[0086] 上記の方法によって産生される組換え抗体は、例えば脂肪体から回収することが 出来る。脂肪体からの組換え抗体の回収は、当業者であれば公知の方法、例えば幼 虫体内から脂肪体を摘出し、タンパク質抽出のための緩衝液でホモジェナイズするこ とや脂肪体力 体液に分泌させ、体液を分取することによって行うことが可能である。 なお、本発明の方法によって製造される抗体は、本発明の方法によって製造される 限りなんら限定されず、シグナル配列を有していても、有していなくてもよい。即ち、 本発明の抗体の製造方法によって製造される抗体には、シグナル配列を有して 、る 抗体、シグナル配列を有して 、な 、抗体の両方が含まれる。
[0087] 本発明はまた、組換え抗体をコードする DNAに関する。本発明はさらに好ましくは、 シグナル配列を有する組換え抗体をコードする DNAに関する。より具体的には、ヒト の酸性フォスファターゼを有する scFv抗体をコードする DNAに関する。このような DNA としては、配列番号: 13に記載の DNA又は配列番号: 14に記載の DNAが挙げられる 。さらに、配列番号: 13又は 14に記載の塩基配列を含む DNAとストリンジヱントな条 件下でノ、イブリダィズする核酸によりコードされるタンパク質であって、配列番号: 15 に記載のアミノ酸配列を含むタンパク質と機能的に同等なタンパク質をコードする DN Aが挙げられる。
本発明はさらに、マウスィムノグロブリン L鎖 κのシグナル配列を有する L鎖およびマ ウス IgGlのシグナル配列を有する H鎖を含む抗体をコードする DNAに関する。マウス ィムノグロブリン L鎖 κのシグナル配列を有する L鎖をコードする DNAとしては、配列 番号: 48に記載の DNAが挙げられる。さらに、配列番号: 48に記載の塩基配列を含 む DNAとストリンジェントな条件下でノヽイブリダィズする核酸によりコードされるタンパ ク質であって、配列番号: 48に記載のアミノ酸配列を含むタンパク質と機能的に同等 なタンパク質をコードする DNAが挙げられる。一方、マウス IgGlのシグナル配列を有 する H鎖をコードする DNAとしては、配列番号: 50に記載の DNAが挙げられる。さらに 、配列番号: 50に記載の塩基配列を含む DNAとストリンジェントな条件下でノ、イブリ ダイズする核酸によりコードされるタンパク質であって、配列番号: 50に記載のァミノ 酸配列を含むタンパク質と機能的に同等なタンパク質をコードする DNAが挙げられる
[0088] 本発明は、組換え抗体をコードする DNAを含むベクターならびに形質転換細胞を 提供する。また本発明は、シグナル配列を有する組換え抗体をコードする DNAを含 むベクターならびに形質転換細胞を提供する。本発明において使用されるベクター としては、特に制限されるものではないが、例えば、 M13系ベクター、 pUC系ベクター 、 pBR322、 pBluescript、 pCR-Script等が挙げられる。また、 cDNAのサブクロー-ング 、切り出しを目的とした場合、上記ベクターの他に、例えば、 pGEM- T、 pDIRECT、 pT 7等が挙げられる。本発明の抗体を生産する目的においてベクターを使用する場合 には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主を JM1 09、 DH5 a、 HB101、 XL1- Blue等の大腸菌とした場合においては、ベクターが大腸 菌で増幅されるような上記特徴を持つほかに、大腸菌で効率よく発現できるようなプ 口モーター、例えば、 lacZプロモーター(Wardら, Nature (1989) 341, 544-546 ;FASE B J. (1992) 6, 2422- 2427)、 araBプロモーター(Betterら, Science (1988) 240, 1041-1 043 )、又は T7プロモーター等を持っていることが不可欠である。このようなベクターと しては、上記ベクターの他に pGEX- 5X- 1 (フアルマシア社製)、「QIAexpress system] (キアゲン社製)、 pEGFP、又は pET等が挙げられる。
[0089] また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれて 、ることが 好ましい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリブラズムに 産生させる場合、 pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379) を使用すればよい。宿主細胞へのベクターの導入は、例えば塩ィ匕カルシウム法、ェ レクト口ポレーシヨン法を用いて行うことができる。 [0090] 大腸菌以外にも、例えば、本発明の抗体を製造するためのベクターとしては、哺乳 動物由来の発現ベクター(例えば、 pcDNA3 (インビトロゲン社製)や、 pEGF- BOS (Nu cleic Acids. Res.1990, 18(17),p5322)、 pEF、 pCDM8 )、昆虫細胞由来の発現べクタ 一 (例えば「Bac— to— BAC baculovairus expression system」 (ギブコ BRL社製)、 pBacP AK8)、植物由来の発現ベクター(例えば ρΜΗ1、 pMH2)、動物ウィルス由来の発現 ベクター(例えば、 pHSV、 pMV、 pAdexLcw )、レトロウイルス由来の発現ベクター(例 えば、 pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(インビ トロゲン社製)、 pNVll、 SP- Q01)、枯草菌由来の発現ベクター(例えば、 pPL608、 pK ΤΗ50)等が挙げられる。
[0091] CHO細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合には 、細胞内で発現させるために必要なプロモーター、例えば SV40プロモーター(Mulliga nら, Nature (1979) 277, 108)、 MMLV-LTRプロモーター、 EF1 αプロモーター(Mizu shimaら, Nucleic Acids Res. (1990) 18, 5322)、 CMVプロモーター等を持っていること が不可欠であり、細胞への形質転換を選抜するための遺伝子 (例えば、薬剤 (ネオマ イシン、 G418等)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい 。このような特性を有するベクターとしては、例えば、 pMAM、 pDR2、 pBK-RSV、 pBK- CMV、 pOPRSV、 pOP13等が挙げられる。
[0092] 組換え抗体をコードする DNAの細胞への導入は、当業者においては、公知の方法 、例えば電気穿孔法 (エレクト口ポーレーシヨン法)などにより実施することができる。
[0093] また、本発明は、組換え抗体をコードする DNAを有するトランスジエニックカイコであ つて、該組換え抗体を分泌するトランスジエニックカイコに関する。具体的には、絹糸 腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るトランスジエニックカイコであって、組換え抗体を絹糸腺に分泌するトランスジェ-ッ クカイコに関する。もしくは、(i)絹糸腺特異的に発現するタンパク質をコードする DN Aのプロモーターの下流に、機能的に結合した転写制御因子をコードする DNA、及 び (ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗 体をコードする DNAを有するトランスジヱニックカイコ、又は絹糸腺特異的に発現する タンパク質をコードする DNAのプロモーターの下流に、組換え抗体をコードする DNA が機能的に結合した DNAを有するトランスジエニックカイコを提供する。
なお本発明においては、絹糸腺特異的に発現するタンパク質をコードする DNAの プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードする
DNAは、抗体の分泌を促進し回収量を多くするためシグナル配列を有して 、ることが 好まし 、。シグナル配列の具体的な態様は上述の通りである。
[0094] さらに本発明は、細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び 該プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードす る DNAを有するトランスジヱニックカイコであって、組換え抗体を脂肪体に分泌するト ランスジエニックカイコに関する。具体的には、(i)細胞質ァクチンタンパク質をコード する DNAのプロモーターの下流に、機能的に結合した転写制御因子をコードする DN A、及び (ii)該転写制御因子の標的プロモーターの下流に、機能的に結合した組換 え抗体をコードする DNAを有するトランスジエニックカイコ、又は細胞質ァクチンタン パク質をコードする DNAのプロモーターの下流に、組換え抗体をコードする DNAが機 能的に結合した DNAを有するトランスジエニックカイコを提供する。
なお本発明においては、細胞質ァクチンタンパク質をコードする DNAのプロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAは、抗 体の分泌を促進し回収量を多くするためシグナル配列を有して 、ることが好ま 、。 シグナル配列の具体的な態様は上述の通りである。
[0095] これらのトランスジエニックカイコは、上述の方法によって作成することが出来る。ま た本発明のトランスジエニックカイコの状態に特に制限はなぐ例えば卵の状態であ つてもよい。本発明のトランスジエニックカイコを使用することで、 目的の組換え抗体を 大量に生産することができる。
[0096] また、本発明は、転写制御因子の標的プロモーターの下流に、機能的に結合した 組換え抗体をコードする DNAを有するトランスジヱニックカイコも提供する。転写制御 因子、標的プロモーターとしては、上述のものが挙げられる。このようなカイコは、上 記 (i)及び (ii)の DNAを有するトランスジヱニックカイコの製造や、その卵の製造に利 用できる。 なお本発明においては、絹糸腺特異的に発現するタンパク質をコードする DNAの プロモーターによって直接的又は間接的に発現制御される組換え抗体をコードする
DNAは、抗体の分泌を促進し回収量を多くするため、シグナル配列を有していること が好まし!/、。シグナル配列の具体的な態様は上述の通りである。
[0097] さらに、本発明は、本発明のトランスジエニックカイコによって吐糸された繭を提供す る。このような繭は、目的の組換え抗体を大量に含有する繭として有用である。また、 本発明は、該繭カゝら製造される絹糸であって、組換え抗体を含む絹糸を提供する。 また、公知の手法により、本発明の絹糸を含有する絹織物、例えば組換え抗体を含 有する絹織物を作製することができる。本発明はこのような絹織物も提供するもので ある。
[0098] また、本発明は、本発明の方法に用いるための DNAを提供する。このような DNAと しては、(a)セリシン又はフイブ口インをコードする DNAのプロモーターの下流に、機 能的に結合した転写制御因子をコードする DNA、 (b)該転写制御因子の標的プロモ 一ターの下流に、機能的に結合した組換え抗体をコードする DNA、(c)セリシン又は フイブ口インをコードする DNAのプロモーターの下流に、組換え抗体をコードする DN Aが機能的に結合した DNA、などが挙げられ、これらの組み合わせ力 なるキットとし て提供してもよい。また、本発明は、トランスポゾンの逆位末端反復配列の間に、 (a) 〜(c)の DNAを挿入したベクターを提供する。さらに、該ベクターとトランスポゾン転移 酵素をコードする DNAを有するベクター(ヘルパーベクター)を含むキットを提供する なお、転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体 をコードする DNA、及び、セリシン又はフイブ口インをコードする DNAのプロモーター の下流に、組換え抗体をコードする DNAが機能的に結合した DNAは、抗体の分泌を 促進し回収量を多くするため、シグナル配列を有していることが好ましい。シグナル 配列の具体的な態様は、上述の通りである。
[0099] さらに本発明は、本発明の抗体の製造方法によって得られる組換え抗トランスフェリ ン抗体を有効成分として含有する、糖尿病性腎症の診断薬および栄養状態を評価 するための試薬に関する。本発明の抗体の製造方法によって得られる組換え抗トラ ンスフェリン抗体には、シグナル配列を有している抗体と、有していない抗体の両方 が含まれる。シグナル配列を使用した場合、その好ましい例は上述の通りである。
[0100] また、本発明の抗トランスフェリン抗体には全長抗体及び低分子化抗体の両方が 含まれる。全長抗体の具体例としては、シグナル配列として配列番号: 3、 21、および 29のいずれかに記載のアミノ酸配列、 L鎖可変領域として配列番号: 23に記載のアミ ノ酸配列、 J κセグメントとして配列番号: 25に記載のアミノ酸配列、 κ鎖定常領域と して配列番号: 27に記載のアミノ酸配列を有する L鎖、及び、シグナル配列として配 列番号: 3、 21、および 29のいずれかに記載のアミノ酸配列、 H鎖可変領域として配 列番号: 31に記載のアミノ酸配列、 CH1として配列番号: 33に記載のアミノ酸配列、 ヒンジ領域として配列番号: 35に記載のアミノ酸配列、 CH2として配列番号: 37に記 載のアミノ酸配列、 CH3として配列番号: 39に記載のアミノ酸配列を有する H鎖を含 む抗体が挙げられる。より具体的には、配列番号: 49に記載のアミノ酸配列を有する L鎖、および、配列番号: 51に記載のアミノ酸配列を有する H鎖を含む抗体が挙げら れる。
[0101] 一方低分子化抗体の具体例としては、上述したように、例えば、 Fab, Fab'、 F(ab')2 、 Fv、 scFv (single chain Fvノ、 Diabody、 sc(Fv)2 (single chain (Fv)2)なと 挙げること ができる。本発明において特に好ましい低分子化抗体は、 scFv抗体である。 scFv抗 体において、シグナル配列、 VL、リンカ一、 VHは、一本鎖ポリペプチドの N末端を基 点として、この順番に並んでいることが好ましい。 VL、リンカ一、 VHの具体的な態様 はそれぞれ、配列番号: 6、 9、 12に示す通りである。したがって、本発明において特 に好ましい抗トランスフェリン抗体は、配列番号: 15に記載のアミノ酸配列を含む、ヒト 酸性フォスファターゼのシグナル配列を有する scFv抗体である。
[0102] さらに本発明は、被験者力 得た生体試料中におけるトランスフェリンの量を測定 する方法に関する。トランスフェリンは血液や尿などに含まれる分子量 79, 000の蛋 白質であり、鉄代謝と造血の重要な指標である。生体中のトランスフ リンの量は、消 ィ匕器、腎臓などの疾患ならびに腫瘍や炎症などの病態生理を反映するため、トランス フェリンの量を測定すれば、それらの疾患の診断を行うことが出来る。
[0103] 本発明の生体試料中のトランスフェリンの測定方法においては、まず、トランスフェリ ンの量を測定したい被検者カゝら生体試料を得る。そして、該生体試料と本発明の抗ト ランスフヱリン抗体を接触させる。本発明の測定方法における生体試料は特に制限さ れるものではないが、例えば、血液 (血清)、尿などが挙げられる。本発明の測定方法 において好ましい抗体の態様は上述の通りである。本発明の測定においては、次に 、生体試料中のトランスフェリンと抗体との結合を検出する。トランスフェリンと抗体との 結合は、これらに限定されるものではないが、例えば ELISA法や EIA法など、当業者 に周知の方法によって行うことが出来る。本発明の測定方法は、生体試料中のトラン スフエリンと抗体の結合を検出することによって、該試料中のトランスフェリンの量を測 定することを特徴とする。すなわち、トランスフェリンと抗体の結合が全く検出されなけ れば、該生体試料中にはトランスフェリンが存在していないと判定される。逆に、トラン スフエリンと抗体との結合が検出されれば、該生体試料中にトランスフェリンが存在し ていると判定される。また、当業者であれば、検出されるトランスフェリンと抗体との結 合の程度に応じて、生体試料中のトランスフェリンの量を判定することが可能である。 このように、本発明におけるトランスフェリンの量の測定には、生体試料中のトランスフ エリンの有無の測定のみならず、結合の程度に応じて生体試料中のトランスフ リン の量を定量ィ匕することも含まれる。
[0104] 本発明はさらに、糖尿病性腎症を診断する方法に関する。本発明の診断方法にお いては、まず、上述したトランスフェリンの量を測定する方法に記載された方法に従い 、生体試料中のトランスフェリンの量を測定する。次に、測定されたトランスフェリンの 量を、糖尿病性腎症に罹患していないことが明らかな被験者に由来する生体試料中 のトランスフェリンの量と比較する。正常である対照と比較して、測定されたトランスフ エリンの量が多いときに、該生体試料を提供した被験者が糖尿病性腎症に罹患して いる、又は将来糖尿病性腎症に罹患するリスクが高いと判定される。
[0105] また、本発明の糖尿病性腎症を診断する方法においては、測定されたトランスフエ リンの量を、糖尿病性腎症に罹患していることが明らかな被験者に由来する生体試 料におけるトランスフェリンの量と比較してもよい。比較の結果、トランスフェリンの量 が糖尿病性腎症に罹患していることが明らかな被験者の生体試料中のそれと同程度 であれば、該生体試料を提供した被験者が糖尿病性腎症に罹患して ヽると判定され る。ここで同程度とは、トランスフェリンの量が完全に同一である場合のみならず、実 質的に同一である場合も含まれる。実質的に同一であるか否かは、当業者であれば 、被験者の病状やその他の特徴に応じて適宜判断することが可能である。このような 判定の基準が記載された文献の例としては、例えば以下のものが挙げられる。
山口哲司:日本臨床、 53 (増刊号)、 227— 229 (1995)
安藤康雄:ホルモンと臨床、 42 (6)、 91 95 (1994)
今野稔:医学と薬学、 32 (3)、 555— 565 (1994)
石橋不可止:糖尿病、 35 (12)、 949 954 (1992)
青木芳和:臨床病理レビュー 特集第 127号, 12-16, (2003,10)
櫻林郁之介 山田俊幸他:月刊 Medical Technology別冊臨床検査項辞典, (2003) 東高志 五嶋博道他: Medical Technology Vol30 906- 911 No8 (2002.8)
[0106] 本発明の糖尿病性腎症を診断する方法は、それ単独で用いても、他の様々な糖尿 病性腎症の診断方法と組み合わせて、補助的に用いてもよい。他の様々な糖尿病 性腎症の診断方法と組み合わせて用いることによって、糖尿病性腎症の診断をより 確実、かつ効果的に行うことが可能となる。このように、本発明の糖尿病性腎症の診 断方法によって得られる所見は、糖尿病性腎症の患者に特有な様々な臨床的所見 とともに、総合的に用いられることが好ましい。
[0107] 本発明はまた、被験者の栄養状態を評価する方法に関する。本発明の栄養状態を 評価する方法にぉ 、ては、被験者のトランスフェリンの量が正常である対照と比較し て減少しているときに、栄養障害のリスクが高い、または栄養障害に罹患していると判 定される。本発明においては、トランスフェリンの量の減少の程度が著しければ著し いほど、栄養障害のリスクが高い、または重篤な栄養障害に罹患していると判定され る。当業者であれば、トランスフェリンの量の減少の程度から、被験者の栄養障害のリ スクゃ栄養障害の程度を判定することが可能である。例えば、被験者においてトラン スフヱリンが全く検出されない、又は実質的に検出されないに等しい場合は、被験者 が重篤な栄養障害に罹患していると判定される。
[0108] 本発明の栄養状態を評価する方法においても、まず、生体試料中のトランスフェリ ンの量を測定する。次に、測定されたトランスフ リンの量を、正常である対照と比較 する。生体試料中のトランスフェリンの量の測定は、上述の方法に従って行うことが可 能である。また、栄養障害のリスクが高いか否か、または栄養障害に罹患しているか 否かの判定もまた、上述したように、当業者が通常採用する基準に従って行うことが 可能である。
[0109] 発明における栄養状態を評価する方法は、臨床診查、身体計測、食事調査などと 組み合わせて、総合的に、個人あるいは特定集団の栄養状態を評価,判定すること( 栄養アセスメント(「臨床栄養」臨時増刊号第 99卷 5号、「実践栄養アセスメント)」に使 用することが可能である。本発明の栄養状態を評価する方法において、被験者は、 任意の個人であっても任意の集団であってもよい。本発明の栄養状態を評価する方 法を実施することによって、個人又は集団の栄養状態を測定することが可能となる。 上述したように、当業者であれば、測定された結果から被験者の栄養障害の有無ま たは程度を判定することが可能である。なお、本発明において栄養障害とは、特定の 、あるいは数種の栄養素が欠乏した状態、過剰となった状態、または栄養素相互の バランスが崩れた状態を意味する。
[0110] 本発明の栄養状態を評価する方法の実施の一例として、例えば、入院中である被 験者に対して、本発明の栄養状態を評価する方法を実施することが挙げられる。例 えば、入院中である被験者に由来する試料中のトランスフェリンの測定値力 該被験 者個人の正常時におけるトランスフェリンの測定値 (ある変動幅を有している場合は それを考慮して)と比較して減少している場合に、該被験者は栄養障害のリスクが高 V、、または栄養障害に罹患して 、ると判定することが可能である。
[0111] 本発明の製造方法によって産生される抗体は、組換え抗体抽出物に目的の抗体 以外の抗体が含まれる可能性がない。このため、交差反応が起きる可能性が低ぐ 目的とする抗原と反応した抗体のみを正確に測定することが可能となる。このように、 本発明の生体試料中のトランスフェリンの量を測定する方法、糖尿病性腎症の診断 する方法、栄養状態を評価する方法においては、トランスフェリンの量を正確に測定 することが可能である。
なお本明細書において引用されたすベての先行技術文献は、参照として本明細書 に組み入れられる。 実施例
[0112] 以下、本発明を実施例によりさらに具体的に説明するが本発明はこれら実施例に 制限されるものではない。
〔実施例 1〕
材料および方法
1.プラスミドベクターの構築
本研究ではヒト Transferrinと反応するマウス抗ヒト Transferrin抗体の scFv型抗体 (scF V型 anti transferrin ant¾ody:以下 aTl)を組換えカイコで生産するため、プラスミドべク ター pUASFvaTf (図 1)を作成した。この組み換えカイコ作出のためのベクターは、酵 母の転写制御因子 GAL4の存在下で遺伝子発現を促すプロモーター UASと融合した 抗体タンパク質遺伝子 FvaT 、トランスポゾン piggyBacの逆位末端反復配列の間に 挿入したものである。
[0113] scFv型抗ヒト Transferrin抗体は、以下のように設計した。ヒトの酸性フォスファタ一 ゼの分泌性シグナル配列の下流に抗体の H鎖可変領域 (VH)、次いでフレキシブル のあるリンカ一ペプチド (Linker)、そして抗体の L鎖可変領域 (VL)を連結した構造を 有する DNAを設計した。 VH- Linker-VLのアミノ酸配列は、各遺伝子のつながりも含 め、公知の配列を使用した。本実験で使用した scFv型抗体の遺伝子の塩基配列(コ ドン変換前後)ならびに該塩基配列力 生成されるアミノ酸配列と配列番号の関係は 、表 2に示すとおりである。なお、遺伝子コドンは、昆虫での発現に適したコドンに変 換した(pUC57/FvaTf)。
[0114] [表 2]
Figure imgf000056_0001
GAL4/UASシステムにおける遺伝子プラスミドは、図 1に示す手順によって構築した すなわち、制限酵素 Bin Iで消化したドナーベクター pBluescript II/UAS-SV40に pU C57/FvaT ら制限酵素 Spe Iで消化した FvaT ラグメントを揷入した(pBluescript II /UAS - FvaTf— SV40UTR)。
[0116] この遺伝子を目的部位に発現させるため、既に系統化されている SerlGAL4/3XP3 DsRed系統のカイコ(田村ら、 2004)を用いた。この組み換えカイコでは中部絹糸腺で のみ GAL4遺伝子が発現し、 UASに制御される導入遺伝子を発現させることが確認さ れている(田村ら、 2004) o導入した抗体遺伝子を発現させるため、得られた抗体遺 伝子を持つ UASFvaT係統を上記の GAL4系統と交配した(図 2)。
[0117] なお、本プラスミドベクターは組換えカイコを同定するためのマーカー遺伝子として 、胚の単眼や蛾の複眼、神経由来の組織での発現を促すプロモーターを持つ緑色 蛍光タンパク質遺伝子 3XP3GFPを有している(Horn, C, and E. A. Wimmer, (2000) Dev Genes Evol 210: 630— 637;Murizio et al.(1994) Protein Science,3: 1476— 1484)。
[0118] 2. ウェスタンブロッテイング
ウェスタンブロッテイングは次のようにして行った。 SerlGAL4/3XP3DsRed系統と UA SFvaTr系統を交配して得られた次世代の産卵後 6日目の卵を実体蛍光顕微鏡で観 察し、 GAL4/UAS個体を同定した(図 3)。両方の遺伝子を持つ個体のみ飼育し、 5令 吐糸 0日目、 5令吐糸 1日目、 5令吐糸 2日目のカイコから絹糸腺を摘出し、細胞層を 2%ドデシル硫酸リチウム 5mM EDTA 50mM Tris- HC1 pH7.4で蛋白質を抽出した。 同様に、陰性コントロールとして UASFvaTl^持たない SerlGAL4系統の 5令吐糸 0日 目のカイコについても絹糸腺を摘出し蛋白質を抽出した。この抽出試料 2容に対し S DSサンプルバッファー(6% SDS、 24%グリセロール、 12% 2-メルカプトエタノール、 0.1% BPB)を 1容カロえ、 SuperSep 5- 20% (和光純薬工業社)にて SDS- PAGE後、以下のよう にウェスタンブロットを行った。 SDS- PAGE終了後、 PVDF膜 (ミリポア社製)に 0.8mA/c m2、 1時間通電することにより蛋白質を転写し、ブロックエース(大日本製薬社)を用 いてブロッキングを行った。これを PBS- T(0.05% Tween、 150mM NaCl、 lOmMリン酸 ノ ッファー、 pH7.4)で洗浄した後、ゥサギ抗マウス Ig-HRP標識抗体 (アマシャムバイ ォサイエンス社)をブロックエースで 100倍希釈した溶液を作製し、 6時間室温で振とう した。ゥサギ抗マウス Ig- HRP標識抗体反応後、上述と同様の洗浄操作を行い、 POD ィムノスティンセット (和光純薬工業社)で検出した。 [0119] 3. RT-PCR
RT-PCRは以下のように行った。上述した通り、 GAL4/UASの両方の遺伝子を持つ 個体を飼育し、 5令吐糸 0日目、 5令吐糸 1日目、 5令吐糸 2日目のカイコから中部絹 糸腺を摘出した。同様に、陰性コントロールとして UASFvaTf^持たない SerlGAL4系 統の 5令吐糸 0日目のカイコについても絹糸腺を摘出した。続いて摘出した中部絹糸 腺をガラスホモジナイザー(WHEATON社)へ移し、 ISOGEN (二ツボンジーン社)を用 いて total RNAを抽出した。この total RNAを DPEC水で 50 μ g/20 μ 1に調製し、 First- s trand cDNA Synthesis Kit (アマシャムバイオサイエンス社)を使用し、添付文書に従 つて cDNAへの逆転写を行った。この逆転写産物を铸型として以下の PCRを行った。 KODplus (東洋紡社)に添付の 10 X PCRバッファーを 5 μ 1、 150 μ Μのプライマー(配 列番号: 16)、 150 μ Μのプライマー(配列番号: 17)、 ImM MgSO、 0.2mM dNTPs、 2
4
単位 KODplusとなるように各試薬をカ卩え、全量 50 1とし、 eppendori¾iの DNAサーマ ルサイクラ一にて 94°C 2min 1回、 94°C 15sec、 62°C 15sec、 72°C 30secのサイクルを 3 5回、 72°C lmin 1回の伸長反応を行った。また PCRの陽性コントロールにはプラスミド ベクター pUASFvaTf^铸型に用 、た。
[0120] 4.組換え抗体の活性測定
ELISA (Enzyme- Linked Immunosorbent Assay)による組換え抗体の抗原に対する 活性の測定は以下の手順で行つた。 Ser 1 GAL4/UASFvaT係統と UASFvaT 持たな い SerlGAL4系統の 5令吐糸 0日目のカイコから中部絹糸腺を摘出し、摘出した組織 200mg当たり lmlの Trisバッファー(20mM Tris- HC1 pH7.4)を添カロした。これをガラス ホモジナイザーで粉砕し、さらに 14000rpm 20分間の遠心後、上清を Trisバッファー で 5倍 (40mg/ml)と 10倍 (10mg/ml)に希釈した。これら及び無希釈の試料 (原倍; 200m g/ml)を ELISA測定用試料とした。また、陰性コントロールとして SerlGAL4系統のカイ コにつ 、ても同様の操作で ELISA測定用試料を調製した。予め Transferrin (Biogenes is社)を 100 μ g/wellで感作したマイクロタイタープレート (ヌンク社)に上記で作製した ELISA測定用試料の 100 L分注し、室温で 2時間、振とうさせた。次いで、 ELISA測 定用試料を wellから捨て 200 Lの PBS-Tで wellを 3回洗浄し、予めゥサギ抗マウス Ig- HRP標識抗体を PBS (150mM NaCl、 lOmMリン酸バッファー、 pH7.4)で 100倍希釈し た溶液を wellに 100 L分注し、室温で 6時間、振とうさせた。続いて洗浄操作を行い 1 00 /z Lの 3, 3 ' , 5, 5,ーテトラメチルベンジジン(日本ロシュ社)を加え発色させた。 3, 3' , 5, 5,-テトラメチルベンジジンを加えてから正確に 3分後に 1N硫酸を 100 し分 注し、発色を停止させた。発色停止後、モデル 550マイクロプレートリーダー(BioRad )にて 450nmの吸光度を測定した。
[0121] 結果および考察
上記の方法で作製したプラスミドと、転移酵素遺伝子をコードするへルパープラスミ ド pA3PIG (Tamura et al., 2000)を一緒に約 1000粒の発生初期のカイコ卵に注射し、 次世代の胚の単眼における GFPの発現を調べた。その結果、表 3に示したように、 2 蛾区において GFPを発現する個体が出現した。
[0122] [表 3] ベクタ— n 注射卵数 探卵蛾数 pBac UAS USN 1 960 98 2
[0123] これらの組換えカイコを飼育した結果、 1系統についてのみ系統化するのに成功し た。得られた UASFvaTf/3XP3GFP系統を SerlGAL4/3XP3DsRed系統と交配し、次世 代における各蛍光タンパク質遺伝子を持つ個体の分離比を表 4に示した。
[0124] [表 4]
マ一力一
DsRed GFP DsRed/GFP 陰性 陽性個体数 ― 51 ^ 59 54 63
分離比(%) 22.4 25.9 23.7 27.7
[0125] この値はいずれの遺伝子もへテロにもつ個体同士を交配した場合の理論値と一致 すること力ゝら、両方の遺伝子は別の染色体上に挿入されており、それぞれ独立遺伝 することが分かった。この場合、 3XP3GFPや 3XP3DsReD並びに両方の遺伝子を持 つ組み換えカイコは図 3に示したように胚期にお ヽて、実体蛍光顕微鏡で観察すると 単眼や神経由来の組織が蛍光を持つことから、容易に同定することができた。 [0126] 次に、この様にして 3XP3GFP及び 3XP3DsRed遺伝子を持つ個体を UASFvTrと Serl GAL4遺伝子の両方を持つ個体として飼育し、吐糸期の幼虫の中部絹糸腺力 抽出 したサンプルのウェスタンブロテツティングを行った。その結果、図 5に示したように、 絹糸腺にぉ 、て抗体が生産されて 、ることが確認された。また同じように得られた抽 出を抗体反応させた結果、図 6に示したように絹糸腺抽出物の量が増加するに伴つ て抗原との反応物の量が増加し、抗体としての活性を有して 、ることが分力つた。
[0127] ウェスタンブロッテイングと同様に吐糸期の中部絹糸腺から total RNAを抽出し、 RT - PCRを行った。その結果、図 4に示すように 5令 5日で最も導入遺伝子の転写が多く 、経時的に転写が抑えられていく様が分力つた。従って、 5令 5日目に遺伝子の転写 が活発となり、次いで吐糸期に蛋白質に翻訳され中部絹糸腺に存在する事が明らか となった。
[0128] 〔実施例 2〕
材料および方法
1.プラスミドベクターの構築
本研究では、ヒト Transferrinと反応する IgG型マウス抗ヒト Transferrin抗体を組換え カイコで生産するため、プラスミドベクター pBacN/lox p UASIgL UASIgH (図 7〜9)を 作製した。この組換えカイコ作出のためのベクターは、酵母の転写制御因子 GAL4の 存在下で遺伝子発現を促すプロモーター UASと融合した抗体タンパク質遺伝子の L 鎖および H鎖をトランスポゾン piggyBacの逆位末端反復配列の間に挿入したものであ る。
[0129] IgG型マウス抗ヒト Transferrin抗体の L鎖は、以下のように設計した。先ず、抗体の L 鎖はマウスのィムノグロブリン L鎖 κのシグナルペプチドの下流に抗ヒト Transferrin抗 体の L κ鎖可変領域、次いでマウスの L鎖 Jセグメント、マウスの L κ鎖定常領域を連 結した構造 (IgL)を有する DNAを設計した。続いて、 IgG型マウス抗ヒト Transferrin抗 体の H鎖は、マウスの IgGlのシグナルペプチドの下流に抗ヒト Transferrin抗体の H鎖 可変領域、次いでマウス IgGlの H鎖定常領域 1 (CH1)、マウス IgGlのヒンジ領域、マ ウス IgGlの H鎖定常領域 2 (CH2)、マウス IgGlの H鎖定常領域 3 (CH3)を連結した構 造 (IgH)を有する DNAを設計した。本実験で設計した IgG型抗体のサブクラスは IgGl で、かつ κ鎖の抗原性を有し、 L鎖および Η鎖のアミノ酸配列は公知の配列を連結し た。ここで使用した遺伝子の塩基配列ならびに該塩基配列から生成されるアミノ酸配 列と配列番号の関係は、表 5に示す通りである。
[表 5] 塩基配列 アミノ酸配列
L鎖 シグナル配列 配列番号 20 配列番号 21
L鎖可変領域 (VL) 配列番号 22 配列番号 23
JKセグメント 配列番号 24 配列番号 25 κ鎖定常領域 配列番号 26 配列番号 27 シグナル配列 配列番号 28 配列番号 29
H鎖可変領域 (VH) 配列番号 30 配列番号 31 マウス完 CH1 :定常領域ドメイン 配列番号 32 配列番号 33 全長 鎖 H: ヒンジ領域 配列番号 34 配列番号 35 定常領域 CH2 :定常領域ドメイン 配列番号 36 配列番号 37
CH3 :定常領域ドメイン 配列番号 38 配列番号 39
[0131] 2.プラスミドベクターの構築
GAL4/UASシステムにおける遺伝子プラスミドは、図 7〜9に示す手順によって構築 した。すなわち、制限酵素 Bin Iで消化したドナーベクター pBluescript II UAS-SV40へ pUC57/IgLから制限酵素 Nhe Iで消化した IgLフラグメントを挿入し、 pBluescript II/U AS IgL SV40を得た。次いで、制限酵素 Bin Iで消化したプラスミドベクター pBacN/lox pへ pBluescript II/UAS IgL SV40から制限酵素 Spe Iで消化した UAS IgL SV40UTRフ ラグメントを挿入し、 pBacN/ lox p UAS IgL SV40を得た(図 7)。また、制限酵素 Bin I で消化したドナーベクター PDNR/UAS-SV40へ pUC57/IgHから制限酵素 Nhe Iで消 化した IgHフラグメントを挿入し、 pDNR/UAS IgH SV40を得た(図 8)。次いで、 Cre Re combinaseを用いて UAS IgH SV40UTRフラグメントを pBacN/lox p UAS IgL SV40へ 挿入した(図 9 :pBacN/loxp UASIgL UASIgH)。
[0132] 3.組換えタンパク質発現系統の榭立
この遺伝子を目的部位に発現させるため、既に系統化されている SerlGAL4/3xP3 DsRed系統のカイコ(田村ら、 2004)を用いた。この組換えカイコでは中部絹糸腺での み GAL4遺伝子が発現し、 UASに制御される導入遺伝子を発現させることが確認され ている(田村ら、 2004) o導入した IgG型抗ヒト Transferrin抗体を発現させるため、得ら れた IgG型抗ヒト Transferrin抗体遺伝子を持つ UASIgL- UASIgH系統を上記の GAL4 系統と交配した (図 10)。
[0133] なお、本プラスミドベクターは組換えカイコを同定するためのマーカー遺伝子として 、胚の単眼や蛾の複眼、神経由来の組織での発現を促すプロモーターを持つ緑色 蛍光タンパク質 3xP3GFPを有している(Horn, C, and E. A. Wimmer, (2000) Dev Ge nes Evol 210: 630-637; Murizio et al. (1994) Protein Science, 3:1476-1484)
[0134] 4. RT-PCR
RT-PCRは以下のように行った。上述した通り、 GAL4/UASの両方の遺伝子を持つ 個体を飼育し、 5令吐糸期直前のカイコから中部絹糸腺を摘出した。続いて摘出した 中部絹糸腺をガラスホモジナイザー(WHEATON社)へ移し、 ISOGEN (-ッボンジー ン社)を用いて total RNAを抽出した。この total RNAを DEPEC水で 50 μ g/20 μ 1に調 製し、 First- strand cDNA Synthesis kit (GEヘルスケアバイオサイエンス社)を使用し 、添付文書に従って cDNAへの逆転写を行った。この逆転写産物を铸型として、表 6 に示すプライマーの組み合わせで IgL、 IgH、 GAL4、細胞内ァクチンについて以下の PCRを行った。 TaKaRa Ex Taq Hot Start Version (タカラバイオ社)に添付の 10 X PC Rノ ッファーを 5 μ 1、 100 μ Μの Forward primer (表 6)、 100 μ Μの Reverse primer、 6 )、 0.2 M dNTP、 2.5単位 TaKaRa Ex Taq Hot Start Versionとなるように各試薬を加 え、全量 50 μ 1とし、 eppendorff土のサーマルサイクラ一にて、 94°C 2min 1回、 94°C 15 sec、 60°C 15sec、 72°C 30secのサイクルを 40回、 72°C lminの伸長反応を行った。
[0135] [表 6]
プライマ一 IgL IgH GAL4 ァクチン
Forward primer 配列番号: 40 配列番号: 42 配列番号: 44 配列番号: 46 Reverse primer ―配列番号: 41 配列番号: 43 —配列番号: 45 配列番号: 47
[0136] 5. IgGl型抗体の検出
IgG型マウス抗体の検出は次のようにして行った。 SerlGAL4/3xP3DsRed系統と UA SIgL-UASIgH系統を交配して得られた次世代の産卵後 6日目の卵を実体蛍光顕微 鏡で観察し、 GAL4/UAS個体を同定した(図 11)。両方の遺伝子を持つ個体のみを 飼育し、 5令吐糸期のカイコ力 絹糸腺を摘出し、 20mM Tris-HCl pH7.4 (Trisバッフ ァー)で絹糸腺のタンパク質を抽出した。このタンパク質溶液について、 Mouse Mono clonal Antibody Isotyping Kit (GEヘルスケアバイオサイエンス社)を用いて抗体を検 出した。具体的にはカイコの絹糸腺力も抽出したタンパク質溶液に Typing stickを浸 し、室温で 18時間振とうした。次いで、添付文書の通り洗浄操作後、 Peroxidase label ed anti-mouse antibodyをカ卩え、室温で 6時間振とうした。続いて、洗浄操作を行った 後、基質溶液に浸しバンドを確認した。
[0137] 6.組換え抗体の抗原との反応性試験
ELISA (Enzyme- Linked Immunosorbent Assay)による組換え IgG型抗体の抗原に対 する反応性の測定は以下の手順で行った。 SerlGAL4/UASIgL-UASIgH系統と UASI gL-UASIgHを持たない SerlGAL4系統の吐糸期のカイコから中部絹糸腺を摘出し、 3 mlの Trisバッファーを添カ卩した。これをガラスホモジナイザーで粉砕し、さらに 12000rp m 20分間の遠心後、上清を中部絹糸腺抽出試料の原液とした。この原液を Trisバッ ファーで 2倍と 4倍に希釈した。これら及び無希釈の試料 (原液)を ELISA測定用試料 とした。また、陰性コントロールとして SerlGAL4系統のカイコについても同様の操作 で ELISA測定用試料を調製した。なお、 SerlGAL4/UASIgL- UASIgH系統及び SerlG AL4系統の原液試料について、 Bradford法(Quick Startプロテインアツセィ染色液: BIO- RAD社)でタンパク質を定量した(表 7)。
[0138] 予め Transferrin (Biogenesis社)を 1 μ g/wellで感作したマイクロタイタープレート(ヌ ンク社)に上記で作製した ELISA測定用試料の 100 1を分注し、室温で 3時間、振とう させた。次いで、 ELISA測定用試料^ wellから捨て 200 1の PBS-Tで wellを 3回洗浄し た。続いて、パーォキシダーゼ標識抗マウスィムノグロブリン'ャギポリクローナル抗 体 (ダコ社)の 100 μ 1を分注し、室温で 4時間、振とうさせた後、 200 μ 1の PBS- Τで well を 5回洗浄した。 3, 3' , 5, 5' —テトラメチルベンジジン(日本ロシュ)を加え発色させ た。 3, 3' , 5, 5'—テトラメチルベンジジンをカ卩えて力も正確に 4分後に 1N硫酸を 100 μ L分注し、発色を停止させた。発色停止後、モデル 550マイクロプレートリーダー(Bi oRad社)にて 450nmの吸光度を測定した。
[0139] [表 7] SerlGAL4/UASIgレ UASIgH コント口一ル タンノ ク量 0.39 0.97
(mg ml) および
上記の方法で作製したプラスミドと、転移酵素遺伝子をコードするへルパープラスミ ド pA3PIG (Tamura et al., 2000)を一緒に約 700粒の発生初期のカイコ卵に注射し、 次世代の胚の単眼における GFPの発現を調べた。その結果、表 8に示したように、 7 蛾区において GFPを発現する個体が出現した。
[0140] [表 8]
ベクター n ―注射卵数 探卵蛾数 一組換え体蛾区数 pBacN/lox p UASIgL UASIgH 1 684 214 7
[0141] これらの組換えカイコ^!司育した結果、 3系統について系統化する事に成功した。さ らに系統化された UASIgL-IgH系統の中から 1系統を SerlGAL4系統と交配し、次世 代における各蛍光タンパク質遺伝子を持つ個体の分離比を表 9に示した。
[0142] [表 9]
マーカー
DsRed GFP DsRed/GFP 陰性 陽性個体数 73 69 64 61 分離比 (%) 27.3 25.8 24.0 22.8 この値はいずれの遺伝子もへテロにもつ個体同士を交配した場合の理論値と一致 すること力ゝら、両方の遺伝子は別の染色体上に挿入されており、それぞれ独立遺伝 することがわかった。この場合、 3xP3GFPや 3xP3DsRed並びに両方の遺伝子を持つ 組換えカイコは図 11に示したように初期胚にお 、て、実体蛍光顕微鏡で観察すると 単眼や神経由来組織が蛍光を持つことから、容易に同定することができた。
[0143] 次に、この様にして 3xP3GFP及び 3xP3DsRed遺伝子を持つ個体を UASIgL UASIgH 遺伝子と SerlGAL4遺伝子の両方を持つ個体として飼育し、吐糸期の幼虫の絹糸腺 から抽出したサンプルに IgGl型抗体が含まれるかを Mouse Monoclonal Antibody Iso typing Kitで確認を行った。その結果、図 13に示す通り、絹糸腺において、 κ鎖を 持つマウス IgGl型抗体が生産されていることが明ら力となった。また、同様にこの絹 糸腺力も抽出したサンプルを抗原と反応させたところ、図 14に示すように、組換え力 ィコが生産した組換えタンパク質が抗体として作用することが明らかになった。
[0144] IgGl型抗体の検出と同様に、中部絹糸腺から total RNAを抽出し、 RT-PCRを行つ た。その結果、図 12に示す通り、抗体の L鎖および H鎖の両方の遺伝子が転写され ている事が分かった。
産業上の利用可能性
[0145] 本発明によって、カイコを利用した組換え抗体の製造方法が提供された。昆虫は抗 体分子を有さない。従って、カイコを利用して組換え抗体を製造する利点として、組 換え抗体の抽出物に目的の抗体以外の抗体が含まれる可能性が無いことが挙げら れる。このことは、マウス等の哺乳動物と異なり、ノックアウト個体を作成する必要がな いことを意味する。哺乳動物由来の培養細胞等を用いた場合、製造される組換え抗 体の精製品に動物細胞由来の抗体が含まれる可能性がある。これは交叉反応の原 因となり、抗原の正確な量の測定を妨げる。カイコ由来の組換え抗体では交差反応 が起きる可能性が低ぐ目的とする抗原と反応した抗体だけを正確に測定することが 可能となる。また、カイコを利用することによって、大量の抗体を製造することが可能と なる。本発明は、特異性の高い抗体が大量に必要とされる、医薬品や診断薬の分野 において特に有用である。

Claims

請求の範囲
[1] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)シグナル配列を有する組換え抗体をコードする DNAが導入されたトランスジェ-ッ クカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[2] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御されるシグナル配列を有する組換 え抗体をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を 絹糸腺に分泌するトランスジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[3] トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジェ- ックカイコである、請求項 2に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[4] トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコを交 配させることで製造される、請求項 2に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[5] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 3又は 4に記 載の方法。
[6] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 2〜5のいずれかに記載の方法
[7] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 6 に記載の方法。
[8] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 6に記載の方法。
[9] シグナル配列を有する組換え抗体。
[10] 全長抗体または低分子抗体である、請求項 9に記載の抗体。
[11] 請求項 9又は 10に記載の抗体をコードする DNA。
[12] 請求項 11に記載の DNAを有するベクター。
[13] 請求項 12に記載のベクターを保持する細胞。
[14] シグナル配列を有する組換え抗体をコードする DNAを有するカイコ卵を製造するェ 程を含む、該組換え抗体を分泌するトランスジエニックカイコの製造方法。
[15] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プロ モーターによって直接的又は間接的に発現制御されるシグナル配列を有する組換え 抗体をコードする DNAを有するカイコ卵を製造する工程を含む、該組換え抗体を絹 糸腺に分泌するトランスジエニックカイコの製造方法。
[16] トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジェ- ックカイコである、請求項 15に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[17] トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコを交 配させることで製造される、請求項 15に記載の方法;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[18] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 16又は 17に 記載の方法。
[19] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 15〜18のいずれかに記載の方 法。
[20] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 19 に記載の方法。
[21] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 19に記載の方法。
[22] シグナル配列を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ であって、該組換え抗体を分泌するトランスジエニックカイコ。
[23] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プロ モーターによって直接的又は間接的に発現制御されるシグナル配列を有する組換え 抗体をコードする DNAを有するトランスジエニックカイコであって、該組換え抗体を絹 糸腺に分泌するトランスジエニックカイコ。
[24] 以下の(i)及び (ii)に記載の DNAを有する、請求項 23に記載のトランスジエニック力 ィコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[25] 以下の(i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造される、 請求項 23に記載のトランスジエニックカイコ;
(i)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーターの下流に、 機能的に結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[26] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 24又は 25に 記載のトランスジエニックカイコ。
[27] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 23〜26のいずれかに記載のト ランスジエニックカイコ。
[28] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 27 に記載のトランスジエニックカイコ。
[29] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 27に記載のトランスジ エニックカイコ。
[30] 転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列を有 する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[31] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 30に記載のト ランスジエニックカイコ。
[32] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体 をコードする DNAを有するトランスジヱニックカイコであって、該組換え抗体を脂肪体 に分泌するトランスジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[33] トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジェ- ックカイコである、請求項 32に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[34] トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコを交 配させることで製造される、請求項 32に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、 (ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[35] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 33又は 34に 記載の方法。
[36] 細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモーターに よって直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体をコー ドする DNAを有するカイコ卵を製造する工程を含む、該組換え抗体を脂肪体に分泌 するトランスジエニックカイコの製造方法。
[37] トランスジエニックカイコ力 以下の(i)及び (ii)に記載の DNAを有するトランスジェ- ックカイコである、請求項 36に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[38] トランスジエニックカイコ力 以下の(i)及び (ii)に記載のトランスジエニックカイコを交 配させることで製造される、請求項 36に記載の方法;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[39] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 37又は 38に 記載の方法。
[40] 細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモーターに よって直接的又は間接的に発現制御されるシグナル配列を有する組換え抗体をコー ドする DNAを有するトランスジヱニックカイコであって、該組換え抗体を脂肪体に分泌 するトランスジエニックカイコ。
[41] 以下の(i)及び (ii)に記載の DNAを有する、請求項 40に記載のトランスジエニック力 ィコ; (i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNA、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNA。
[42] 以下の(i)及び (ii)に記載のトランスジエニックカイコを交配させることで製造される、 請求項 40に記載のトランスジエニックカイコ;
(i)細胞質ァクチンタンパク質をコードする DNAのプロモーターの下流に、機能的に 結合した転写制御因子をコードする DNAを有するトランスジエニックカイコ、
(ii)該転写制御因子の標的プロモーターの下流に、機能的に結合したシグナル配列 を有する組換え抗体をコードする DNAを有するトランスジヱニックカイコ。
[43] 転写制御因子が GAL4であり、標的プロモーターが UASである、請求項 41又は 42に 記載のトランスジエニックカイコ。
[44] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)組換え抗体をコードする DNAが導入されたトランスジヱニックカイコを製造するェ 程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[45] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プ 口モーターによって直接的又は間接的に発現制御される組換え抗体をコードする DN Aを有するトランスジエニックカイコであって、該組換え抗体を絹糸腺に分泌するトラン スジエニックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[46] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 45に記載の方法。
[47] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 46 に記載の方法。
[48] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 46に記載の方法。
[49] 組換え抗体をコードする DNAを有するカイコ卵を製造する工程を含む、該組換え抗 体を分泌するトランスジエニックカイコの製造方法。
[50] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プロ モーターによって直接的又は間接的に発現制御される組換え抗体をコードする DNA を有するカイコ卵を製造する工程を含む、該組換え抗体を絹糸腺に分泌するトランス ジエニックカイコの製造方法。
[51] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 50に記載の方法。
[52] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 51 に記載の方法。
[53] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 51に記載の方法。
[54] 組換え抗体をコードする DNAを有するトランスジエニックカイコであって、該組換え抗 体を分泌するトランスジエニックカイコ。
[55] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター、及び該プロ モーターによって直接的又は間接的に発現制御される組換え抗体をコードする DNA を有するトランスジエニックカイコであって、該組換え抗体を絹糸腺に分泌するトラン スジエニックカイコ。
[56] 絹糸腺が中部絹糸腺又は後部絹糸腺である請求項 55に記載のトランスジ ニック力 ィコ。
[57] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 セリシン 1タ ンパク質又はセリシン 2タンパク質をコードする DNAのプロモーターである、請求項 56 に記載のトランスジエニックカイコ。
[58] 絹糸腺特異的に発現するタンパク質をコードする DNAのプロモーター力 フイブロイ ンタンパク質をコードする DNAのプロモーターである、請求項 56に記載のトランスジ エニックカイコ。
[59] 転写制御因子の標的プロモーターの下流に、機能的に結合した組換え抗体をコード する DNAを有するトランスジエニックカイコ。
[60] 以下の(a)及び (b)の工程を含む、組換え抗体の製造方法;
(a)細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモータ 一によつて直接的又は間接的に発現制御される組換え抗体をコードする DNAを有す るトランスジエニックカイコであって、該組換え抗体を脂肪体に分泌するトランスジェ- ックカイコを製造する工程、
(b)製造されたトランスジエニックカイコから、該組換え抗体を回収する工程。
[61] 細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモーターに よって直接的又は間接的に発現制御される組換え抗体をコードする DNAを有する力 ィコ卵を製造する工程を含む、該組換え抗体を脂肪体に分泌するトランスジエニック カイコの製造方法。
[62] 細胞質ァクチンタンパク質をコードする DNAのプロモーター、及び該プロモーターに よって直接的又は間接的に発現制御される組換え抗体をコードする DNAを有するト ランスジェニックカイコであって、該組換え抗体を脂肪体に分泌するトランスジェニック カイコ。
[63] 請求項 1〜8、 32〜35、 44〜48、もしく ίま 60の!/、ずれ力に記載の方法によって製造 された抗体。
PCT/JP2006/320775 2005-10-18 2006-10-18 抗体を産生するトランスジェニックカイコとその製造方法 WO2007046439A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007541022A JPWO2007046439A1 (ja) 2005-10-18 2006-10-18 抗体を産生するトランスジェニックカイコとその製造方法
KR1020087011688A KR101323563B1 (ko) 2005-10-18 2006-10-18 항체를 생산하는 트랜스제닉 누에와 그의 제조방법
EP06811968A EP1947180B1 (en) 2005-10-18 2006-10-18 Antibody producing transgenic silkworms and method for producing the same
US12/090,702 US8952215B2 (en) 2005-10-18 2006-10-18 Antibody-producing transgenic silkworms and methods for producing the same
CN2006800476581A CN101331228B (zh) 2005-10-18 2006-10-18 产生抗体的转基因家蚕及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-302906 2005-10-18
JP2005302906 2005-10-18

Publications (1)

Publication Number Publication Date
WO2007046439A1 true WO2007046439A1 (ja) 2007-04-26

Family

ID=37962532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320775 WO2007046439A1 (ja) 2005-10-18 2006-10-18 抗体を産生するトランスジェニックカイコとその製造方法

Country Status (6)

Country Link
US (1) US8952215B2 (ja)
EP (1) EP1947180B1 (ja)
JP (2) JPWO2007046439A1 (ja)
KR (1) KR101323563B1 (ja)
CN (1) CN101331228B (ja)
WO (1) WO2007046439A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067612A (ja) * 2006-09-12 2008-03-27 Hiroshima Industrial Promotion Organization 機能的な抗体分子を生産するトランスジェニックカイコ
JP2009225781A (ja) * 2008-02-29 2009-10-08 Neosilk Co Ltd カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法
WO2009150858A1 (ja) * 2008-06-13 2009-12-17 株式会社ネオシルク カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法
JP2010528634A (ja) * 2007-06-04 2010-08-26 ロンザ・バイオロジクス・ピーエルシー 高効率の分泌性シグナル配列を有する哺乳類発現ベクター
WO2011046097A1 (ja) * 2009-10-13 2011-04-21 日東紡績株式会社 T細胞非依存性抗原に対するIgG型抗体の製造方法、T細胞非依存性抗原に対するIgG型抗体を産生する遺伝子組換えカイコおよびその製造方法
WO2011155358A1 (ja) * 2010-06-11 2011-12-15 日東紡績株式会社 5量体crpの製造方法、5量体crpを製造する遺伝子組換えカイコとその製造方法、単量体イヌcrpをコードするdna及びそのdnaを含む発現ベクター
JP2012239436A (ja) * 2011-05-20 2012-12-10 National Institute Of Agrobiological Sciences 一本鎖抗体の製造方法
US8426674B2 (en) 2006-12-28 2013-04-23 Nitto Boseki Co., Ltd. Method for production of TRACP5b
WO2014017493A1 (ja) 2012-07-23 2014-01-30 有限会社生物資源研究所 ワクチン
WO2014104269A1 (ja) * 2012-12-25 2014-07-03 独立行政法人農業生物資源研究所 後部絹糸腺遺伝子発現ユニット及びそれを有する遺伝子組換え絹糸虫
JP2014180246A (ja) * 2013-03-19 2014-09-29 Kazusa Dna Research Institute 抗イヌIgEモノクローナル抗体並びに抗イヌIgEモノクローナル抗体の重鎖可変領域及び軽鎖可変領域
US9359416B2 (en) 2010-06-11 2016-06-07 Nitto Boseki Co., Ltd. DNA encoding canine monomeric CRP and expression vector containing the DNA
WO2016125885A1 (ja) * 2015-02-06 2016-08-11 国立研究開発法人農業生物資源研究所 細胞死誘導ベクター及びそれを有する部位特異的細胞死誘導カイコ系統
JP2018193375A (ja) * 2013-03-12 2018-12-06 国立研究開発法人農業・食品産業技術総合研究機構 融合タンパク質を含むシルク繊維及び該シルク繊維の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323563B1 (ko) 2005-10-18 2013-10-29 니토 보세키 가부시기가이샤 항체를 생산하는 트랜스제닉 누에와 그의 제조방법
CN102187845B (zh) * 2010-03-05 2013-06-05 中国科学院上海生命科学研究院 一种提高蚕丝产量的转基因方法
JP5691052B2 (ja) * 2010-09-10 2015-04-01 岡本株式会社 組換え生物及び組換え生物により作られるタンパク質
SI2692865T1 (sl) * 2012-07-30 2015-03-31 Nbe-Therapeutics Llc Technology Parc Basel S transpozicijo posredovana identifikacija specifičnih vezavnih ali funkcionalnih proteinov
WO2015006337A2 (en) 2013-07-08 2015-01-15 Nanjingjinsirui Science & Technology Biology Corporation Compositions and methods for increasing protein half-life in a serum
CN113897370A (zh) * 2021-10-29 2022-01-07 郑州轻工业大学 家蚕BmTRPM基因及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1654050A (en) 1927-01-15 1927-12-27 Economy Dispenser Corp Dispensing device
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
JP2002315580A (ja) * 2001-04-18 2002-10-29 Japan Science & Technology Corp ヒト・コラーゲンを産生する形質転換カイコ
JP2003512051A (ja) * 1999-10-19 2003-04-02 マイノス バイオシステムズ リミテッド タンパク質生産系
JP2004081199A (ja) * 2002-06-25 2004-03-18 Sekisui Chem Co Ltd 組換え抗体の製造方法
JP2005095063A (ja) * 2003-09-25 2005-04-14 National Institute Of Agrobiological Sciences カイコ絹糸腺細胞から絹糸腺内腔への移行活性を有するタンパク質からシグナル領域が除去されたタンパク質の製造方法
JP2006137739A (ja) 2004-09-27 2006-06-01 National Institute Of Agrobiological Sciences カイコ中部絹糸腺特異的遺伝子発現系を利用したタンパク質の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9022543D0 (en) * 1990-10-17 1990-11-28 Wellcome Found Antibody production
EP2275541B1 (en) 1999-04-09 2016-03-23 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
AU2003211765B2 (en) * 2002-03-06 2007-11-01 National Institute Of Agrobiological Sciences Process for producing physiologically active protein using genetically modified silkworm
JP5468719B2 (ja) * 2002-08-13 2014-04-09 株式会社カネカ レトロウイルスベクターによる遺伝子導入鳥類での遺伝子発現法およびそれによって得られる遺伝子導入烏類
JP2004135528A (ja) 2002-10-16 2004-05-13 National Institute Of Agrobiological Sciences カイコを利用したタンパク質の製造方法
KR100570422B1 (ko) 2003-10-16 2006-04-11 한미약품 주식회사 대장균 분비서열을 이용하여 항체 단편을 분비·생산하는 발현벡터 및 이를 이용하여 항체 단편을 대량 생산하는 방법
JP4271122B2 (ja) 2004-10-15 2009-06-03 財団法人 ひろしま産業振興機構 カイコでの組換えタンパク質製造のためのポリヌクレオチド
KR101323563B1 (ko) 2005-10-18 2013-10-29 니토 보세키 가부시기가이샤 항체를 생산하는 트랜스제닉 누에와 그의 제조방법
DE102006026591B4 (de) * 2006-05-31 2008-09-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Isolierung von Kollagen aus kollagenhaltigem Gewebe
JP4965302B2 (ja) 2007-03-26 2012-07-04 東洋紡績株式会社 抗体の安定化方法
WO2009150858A1 (ja) 2008-06-13 2009-12-17 株式会社ネオシルク カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1654050A (en) 1927-01-15 1927-12-27 Economy Dispenser Corp Dispensing device
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
JP2003512051A (ja) * 1999-10-19 2003-04-02 マイノス バイオシステムズ リミテッド タンパク質生産系
JP2002315580A (ja) * 2001-04-18 2002-10-29 Japan Science & Technology Corp ヒト・コラーゲンを産生する形質転換カイコ
JP2004081199A (ja) * 2002-06-25 2004-03-18 Sekisui Chem Co Ltd 組換え抗体の製造方法
JP2005095063A (ja) * 2003-09-25 2005-04-14 National Institute Of Agrobiological Sciences カイコ絹糸腺細胞から絹糸腺内腔への移行活性を有するタンパク質からシグナル領域が除去されたタンパク質の製造方法
JP2006137739A (ja) 2004-09-27 2006-06-01 National Institute Of Agrobiological Sciences カイコ中部絹糸腺特異的遺伝子発現系を利用したタンパク質の製造方法

Non-Patent Citations (51)

* Cited by examiner, † Cited by third party
Title
1992, FASEB J., vol. 6, pages 2422 - 2427
ANDO, Y, HORUMON TO RINSHO (CLINICAL ENDOCRINOLOGY, vol. 42, no. 6, 1994, pages 91 - 95
AOKI, Y, RINSHO YAKURI REVIEW (REVIEWS IN CLINICAL PHARMACOLOGY, no. 127, October 2003 (2003-10-01), pages 12 - 16
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
GAREL, A.; DELEAGE, G.; PRUDHOMME, J. C.: "Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA", INSECT BIOCHEM. MOL. BIOL., vol. 27, 1997, pages 469 - 477
HANDLER AM ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 95, no. 13, 1998, pages 7520 - 5
HIGASHI, T.; GOTO, H., MEDICAL TECHNOLOGY, vol. 30, no. 8, August 2002 (2002-08-01), pages 906 - 911
HORN, C.; E. A. WIMMER, DEV. GENES EVOL., vol. 210, 2000, pages 630 - 637
IMAMURA, M. ET AL.: "Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori", FOURTH INTERNATIONAL WORKSHOP ON TRANSGENESIS AND GENOMICS OF INVERTEGRATE ORGANISMS, 2003, pages 53
IMAMURA, M. ET AL.: "Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori", GENETICS, vol. 165, 2003, pages 1329 - 1340
INOUE, S. ET AL., SERICOLOGIA, vol. 4, 2001, pages 157 - 163
ISHIBASHI, F., TONYOBYO (DIABETES, vol. 35, no. 12, 1992, pages 949 - 954
KAGAKU; SEIBUTSU, CHEMISTRY AND BIOLOGY, vol. 42, pages 634 - 635
KIKUCHI, Y. ET AL.: "Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain", GENE, vol. 110, 1992, pages 151 - 158
KIYOKAWA, I. ET AL.: "Production of hexokinase and anti-human transferrin antibody for clinical diagnostic reagent using transgenic silkworm", ABSTRACTS OF THE 7TH INTERNATIONAL WORKSHOP ON THE MOLECULAR BIOLOGY AND GENETICS OF THE, 2006, pages 94
KONNO, M, IGAKU TO YAKUGAKU, vol. 32, no. 3, 1994, pages 555 - 565
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MANGE, A. ET AL.: "A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori", J. MOL. BIOL., vol. 265, 1997, pages 266 - 274
MICHAILLE, J. J.; GAREL, A.; PRUDHOMME, J. C.: "Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori", GENE, vol. 86, 1990, pages 177 - 184
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MONBUSHO, SANSHU SEIZO (PRODUCTION OF SILKWORM VARIETIES, 1978, pages 193
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
MURIZIO ET AL., PROTEIN SCIENCE, vol. 3, 1994, pages 1476 - 1484
NAGARAJU, J. ET AL.: "Attempt of transgenesis of the silkworm (Bombyx mori L) by egg-injection of foreign DNA", APPL. ENTOMOL. ZOOL., vol. 31, 1996, pages 589 - 598
NUCLEIC ACIDS RES., vol. 18, no. 17, 1990, pages 5322
OKAMOTO, H.; ISHIKAWA, E.; SUZUKI, Y.: "Structural analysis of sericin genes. Homologies with fibroin gene in the 5' flanking nucleotide sequences", J. BIOL. CHEM., vol. 257, 1982, pages 15192 - 15199
PLUCKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER VERLAG, pages: 269 - 315
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
RINSHO EIYO: "Clinical Nutrition", vol. 99
SAKURABAYASHI, I.; YAMADA, T.: "Gekkan (Monthly) Medical Technology", 2003
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
See also references of EP1947180A4 *
SHIMIZU, K. ET AL., INSECT MOL. BIOL., vol. 9, 2000, pages 277 - 281
TAMURA T. ET AL.: "Method of protein production using a silkworm middle silk gland-specific gene expression system", NATIONAL INSTITUTE OF AGROBIOLOGICAL SCIENCES, 15 March 2005 (2005-03-15)
TAMURA T. ET AL.: "Methods for producing transformed silkworms using a transposon", ABSTRACTS OF THE 7TH WORKSHOP ON INSECT FUNCTION, 1999, pages 10 - 22
TAMURA T.: "Introduction of useful genes in silkworm development", REPORTS OF THE 21ST SYMPOSIUM ON BASIC BREEDING: ADVANCEMENT OF DEVELOPMENTAL ENGINEERING IN MOLECULAR BREEDING OF ANIMALS AND PLANTS, 2000, pages 23 - 29
TAMURA T.: "Transgenic silkworms: Current status and prospects", J. SERICUL. SCI. JAPAN, vol. 69, 2000, pages 1 - 12
TAMURA, T. ET AL., NATURE BIOTECHNOLOGY, vol. 18, 2000, pages 81 - 84
TAMURA, T. ET AL.: "A piggyBac element-derived vector efficiently promotes germ-line transformation in the silkworm Bombyx mori L", NATURE BIOTECHNOLOGY, vol. 18, 2000, pages 81 - 84
TAMURA, T. ET AL.: "Production of a middle silk gland-specific gene expression system that uses the yeast GAL4/UAS system", ABSTRACTS OF THE MEETING OF THE JAPANESE SOCIETY OF SERICULTURAL SCIENCE74, 2004, pages 51
TAMURA, T. ET AL.: "Transgenic silkworm research in Japan: Recent progress and future", PROCEEDING OF JOINT INTERNATIONAL SYMPOSIUM OF INSECT COE RESEARCH PROGRAM AND INSECT FACTORY RESEARCH PROJECT, 2001, pages 77 - 82
TAMURA, T. ET AL.: "Transient expression of chimeric CAT genes injected into early embryos of the domesticated silkworm, Bombyx mori", JPN. J. GENET., vol. 65, 1990, pages 401 - 410
TAMURA, T.: "Biologics: Development of products using biological substances", 2004, article "Production of transgenic silkworms and useful substances", pages: 45 - 68
TAMURA, T.: "Development and prospect of a production system for useful substances using transgenic silkworms", BIO INDUSTRY, vol. 20, no. 3, 2004, pages 28 - 35
TOMITA M, M. H. ET AL.: "Transgenic silkworms produce recombinant human type III procollagen in cocoons", NAT BIOTECHNOL, vol. 21, 2003, pages 52 - 56
UEDA, K.: "The forefront of antibody engineering", 2004, CMC PUBLISHING, article "The forefront of antibody engineering", pages: 122
WANG W; SWEVERS L; IATROU K., INSECT MOL BIOL, vol. 9, no. 2, 2000, pages 145 - 55
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
YAMAGUCHI, T., NIPPON RINSHO, vol. 53, 1995, pages 227 - 229
YAMAO, M. ET AL., GENES DEV, vol. 13, 1999, pages 511 - 516
YAMAO, M. ET AL., GENES DEV., vol. 13, 1999, pages 511 - 516

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067612A (ja) * 2006-09-12 2008-03-27 Hiroshima Industrial Promotion Organization 機能的な抗体分子を生産するトランスジェニックカイコ
US8426674B2 (en) 2006-12-28 2013-04-23 Nitto Boseki Co., Ltd. Method for production of TRACP5b
JP2010528634A (ja) * 2007-06-04 2010-08-26 ロンザ・バイオロジクス・ピーエルシー 高効率の分泌性シグナル配列を有する哺乳類発現ベクター
JP2014012024A (ja) * 2008-02-29 2014-01-23 Meneki Seibutsu Kenkyusho:Kk カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法
JP2009225781A (ja) * 2008-02-29 2009-10-08 Neosilk Co Ltd カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法
WO2009150858A1 (ja) * 2008-06-13 2009-12-17 株式会社ネオシルク カイコを用いた糖鎖構造に特徴を有する糖蛋白質の製造方法
WO2011046097A1 (ja) * 2009-10-13 2011-04-21 日東紡績株式会社 T細胞非依存性抗原に対するIgG型抗体の製造方法、T細胞非依存性抗原に対するIgG型抗体を産生する遺伝子組換えカイコおよびその製造方法
JP5679217B2 (ja) * 2009-10-13 2015-03-04 日東紡績株式会社 T細胞非依存性抗原に対するIgG型抗体の製造方法、T細胞非依存性抗原に対するIgG型抗体を産生する遺伝子組換えカイコおよびその製造方法
US9359416B2 (en) 2010-06-11 2016-06-07 Nitto Boseki Co., Ltd. DNA encoding canine monomeric CRP and expression vector containing the DNA
US8865966B2 (en) 2010-06-11 2014-10-21 Nitto Boseki Co., Ltd. Pentameric CRP-producing transgenic silkworm
JP5924649B2 (ja) * 2010-06-11 2016-05-25 日東紡績株式会社 5量体crpの製造方法、5量体crpを製造する遺伝子組換えカイコとその製造方法、単量体イヌcrpをコードするdna及びそのdnaを含む発現ベクター
WO2011155358A1 (ja) * 2010-06-11 2011-12-15 日東紡績株式会社 5量体crpの製造方法、5量体crpを製造する遺伝子組換えカイコとその製造方法、単量体イヌcrpをコードするdna及びそのdnaを含む発現ベクター
JP2012239436A (ja) * 2011-05-20 2012-12-10 National Institute Of Agrobiological Sciences 一本鎖抗体の製造方法
WO2014017493A1 (ja) 2012-07-23 2014-01-30 有限会社生物資源研究所 ワクチン
US9555094B2 (en) 2012-07-23 2017-01-31 The Institute Of Biological Resources Isolated nucleic acid for the production of a vaccine against virus
WO2014104269A1 (ja) * 2012-12-25 2014-07-03 独立行政法人農業生物資源研究所 後部絹糸腺遺伝子発現ユニット及びそれを有する遺伝子組換え絹糸虫
JPWO2014104269A1 (ja) * 2012-12-25 2017-01-19 国立研究開発法人農業・食品産業技術総合研究機構 後部絹糸腺遺伝子発現ユニット及びそれを有する遺伝子組換え絹糸虫
JP2018193375A (ja) * 2013-03-12 2018-12-06 国立研究開発法人農業・食品産業技術総合研究機構 融合タンパク質を含むシルク繊維及び該シルク繊維の製造方法
JP2014180246A (ja) * 2013-03-19 2014-09-29 Kazusa Dna Research Institute 抗イヌIgEモノクローナル抗体並びに抗イヌIgEモノクローナル抗体の重鎖可変領域及び軽鎖可変領域
WO2016125885A1 (ja) * 2015-02-06 2016-08-11 国立研究開発法人農業生物資源研究所 細胞死誘導ベクター及びそれを有する部位特異的細胞死誘導カイコ系統
JP2016144416A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業生物資源研究所 細胞死誘導ベクター及びそれを有する部位特異的細胞死誘導カイコ系統

Also Published As

Publication number Publication date
EP1947180A1 (en) 2008-07-23
CN101331228A (zh) 2008-12-24
KR101323563B1 (ko) 2013-10-29
EP1947180A4 (en) 2009-04-15
US20110021757A1 (en) 2011-01-27
EP1947180B1 (en) 2012-12-05
JP5760273B2 (ja) 2015-08-05
JPWO2007046439A1 (ja) 2009-04-23
US8952215B2 (en) 2015-02-10
CN101331228B (zh) 2013-07-17
JP2013230155A (ja) 2013-11-14
KR20080083111A (ko) 2008-09-16

Similar Documents

Publication Publication Date Title
JP5760273B2 (ja) 抗体を産生するトランスジェニックカイコとその製造方法
US20220201993A1 (en) Mice that make heavy chain antibodies
US20180282761A1 (en) Chimaeric Surrogate Light Chains (SLC) Comprising Human VpreB
JP5087625B2 (ja) 非ヒトトランスジェニック動物におけるヒトまたはヒト化免疫グロブリンの発現強化
HUE029785T2 (en) Common mouse light chain
Pohajdak et al. Production of transgenic tilapia with Brockmann bodies secreting [desThrB30] human insulin
US20170218336A1 (en) Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
GB2495083A (en) Human VpreB and chimaeric surrogate light chains in transgenic non-human vertebrates
AU2017261477B2 (en) Mice that make heavy chain antibodies

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047658.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007541022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811968

Country of ref document: EP

Ref document number: 1020087011688

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12090702

Country of ref document: US