WO2014017493A1 - ワクチン - Google Patents

ワクチン Download PDF

Info

Publication number
WO2014017493A1
WO2014017493A1 PCT/JP2013/069935 JP2013069935W WO2014017493A1 WO 2014017493 A1 WO2014017493 A1 WO 2014017493A1 JP 2013069935 W JP2013069935 W JP 2013069935W WO 2014017493 A1 WO2014017493 A1 WO 2014017493A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
nucleic acid
protein
acid sequence
gene
Prior art date
Application number
PCT/JP2013/069935
Other languages
English (en)
French (fr)
Other versions
WO2014017493A9 (ja
Inventor
和道 黒田
繁夫 杉田
国昭 根路銘
令子 根路銘
Original Assignee
有限会社生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社生物資源研究所 filed Critical 有限会社生物資源研究所
Priority to JP2014526942A priority Critical patent/JP6205359B2/ja
Priority to EP13822848.1A priority patent/EP2876161B1/en
Priority to US14/413,700 priority patent/US9555094B2/en
Publication of WO2014017493A1 publication Critical patent/WO2014017493A1/ja
Publication of WO2014017493A9 publication Critical patent/WO2014017493A9/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0335Genetically modified worms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/70Invertebrates
    • A01K2227/703Worms, e.g. Caenorhabdities elegans
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/00041Use of virus, viral particle or viral elements as a vector
    • C12N2710/00043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32111Aphthovirus, e.g. footandmouth disease virus
    • C12N2770/32134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/026Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a baculovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a nucleic acid for vaccine, a vector containing the nucleic acid, Bombyx mori containing the vector, and a method for producing a vaccine using them.
  • HA hemagglutinin
  • NA neuraminidase
  • hepatitis C virus not only causes acute hepatitis symptoms due to its infection, but also plays a major negative role in the development of chronic hepatitis, subsequent cirrhosis, and subsequent development of liver cancer.
  • viral hepatitis There are two types of viral hepatitis: those that spread by oral infection and those that are transmitted through blood. The latter is represented by hepatitis B virus and hepatitis C virus.
  • vaccines have become available for hepatitis B virus, but for hepatitis C, although there has been significant progress in chemotherapy, there is no definitive treatment effective for all virus strains. Despite vigorous research, the current situation is that there are no vaccines available for practical use.
  • the causative virus of Japanese encephalitis was a virus isolated in Japan in 1935, and many patients occurred in Japan at that time. After that, vaccination started in 1954, the number of patients decreased dramatically, and 10 or less patients have been reported annually since 1992. However, the virus has not disappeared from Japan.
  • Japanese encephalitis virus is thought to infect humans from pigs through mosquitoes, but even today, many pig sera in Japan are positive for anti-Japanese encephalitis virus antibodies. Also, if you look overseas, 35,000-50,000 patients occur annually, mainly in Asia, of which 10,000-15,000 die, and it is important to take measures. Infectious diseases.
  • the vaccine currently used in Japan was inoculated in 2009 and is said to have fewer side effects than previous vaccines. However, in 2012, two deaths after vaccination were reported. Considering the above situation, it is clear that the rapid development of an inexpensive vaccine with few side effects is necessary.
  • Japan is an exceptionally rare country with no rabies, along with the UK, Australia, New Zealand, Taiwan, Sweden, etc. There are outbreaks in other countries, with 30,000-50,000 deaths annually. Rabies virus can propagate in many wild animals, and immunity to wild animals is necessary to completely prevent rabies. Live vaccines using recombinant vaccinia virus have gained attention and are attracting attention. However, although no problems have been reported at present, the possibility that the introduction of live vaccines into nature will produce unpredictable results cannot be denied. Development of a cheap and effective oral inactivated vaccine is desired.
  • West Nile virus was first isolated in 1935 in Kenya. This viral infection ring is established between birds and mosquitoes, and sometimes mosquitoes infect humans. The rate of symptoms in infected humans is about 80%, but about 1 out of every 150 patients presents with severe encephalitis and meningitis, and 3-15% of severe patients die. Until the epidemic in New York occurred in the summer of 1999, the Western Hemisphere was not invaded. Since then, almost all of the United States has been infected, and there are concerns about invasion of Japan. In the US, between 1999 and 2012, 36,500 patients were confirmed and 1,500 people died. Mosquitoes that already exist in Japan are also considered to be able to carry the virus, and it is not strange to be able to invade Japan at any time. There is a need for the development of an effective vaccine as soon as possible.
  • the fertilized eggs of 10-11 days old are traditionally used for the production of influenza vaccines.
  • Advances in science and technology today have made it possible to produce cultured cells in MDCK or VERO.
  • Of particular interest is the ability to produce the desired protein for influenza vaccine in yeast or silkworm (Bombux moly) individuals or in the cultured cells of Bonbux moly by genetic manipulation techniques using various vectors. It has become.
  • the present inventors succeeded in producing a large amount of H5 avian influenza virus HA protein in Bombux Mori.
  • HA hemagglutinin
  • H5N1 A / HK / 483/97 influenza RNA virus isolated from humans in Hong Kong in 1997, and this was cloned into an Escherichia coli plasmid.
  • DNA encoding HA protein for influenza vaccine production was further recombined into a baculovirus transfer vector to produce vaccine protein.
  • the hemagglutination activity (HA activity) of the recombinant baculovirus-infected Bombus mori produced by this method showed a value of 8,192 on the fifth day of infection.
  • the virus liquid produced from one growing chicken egg is approximately 10 ml
  • the total HA activity is 10,240.
  • the average value of total HA activity in 15 ml of HA protein solution produced by one Bombux Mori was 122,800, and the production ratio was about 12 times as high. This is the expression efficiency according to the conventional technology in which HA of natural highly pathogenic avian influenza virus was produced with a baculovirus vector without changing the design of DNA.
  • an object of the present invention is to provide a nucleic acid for a vaccine, a vector containing the nucleic acid, a Bombux Mori containing the vector, and a method for producing a vaccine using them.
  • the present inventors have intensively studied, for the first time, that by using a codon-optimized nucleic acid sequence for expression in Bombux Mori, the titer of the vaccine protein produced by Bombux Mori is significantly increased.
  • the headline and the present invention were completed.
  • the present invention is as follows: [1] a nucleic acid comprising a nucleic acid sequence of the virus codon-optimized for expression in Bombyx Mori to produce a vaccine against the virus in Bombyx Mori [2] The nucleic acid according to [1], wherein the virus is selected from the group consisting of influenza virus, hepatitis C virus, Japanese encephalitis virus, rabies virus, West Nile virus, MERS coronavirus, and foot-and-mouth disease virus, [3] The nucleic acid according to [2], wherein the virus is an influenza A virus, [4] The nucleic acid according to [3], wherein the virus is selected from the group consisting of H5 type and H7 type, [5] The nucleic acid according to [4], wherein the nucleic acid sequence encodes the HA protein of influenza virus, [6] The nucleic acid according to [5], wherein the nucleic acid sequence has an attenuated gene modification, [7] The nucleic acid according to [1
  • nucleic acid according to [2], wherein the virus is hepatitis C virus
  • the nucleic acid according to [10], wherein the nucleic acid sequence is SEQ ID NO: 15, [12]
  • a method for producing the vaccine according to [19] A vaccine comprising the polypeptide according to [16] or produced according to the production method according to [17] or [18], for vaccination of an animal against viral infection, [20]
  • a method for inoculating an animal with a vaccine against viral infection comprising the polypeptide according to [16] or effective according to the production method according to [17] or [18]
  • Administering an amount to said animal [23] A method for inducing an immune response against a virus in an animal, comprising the polypeptide according to [16], or an effective amount of a vaccine produced by the production method according to [17] or [18] Is administered to said animal.
  • nucleic acid for vaccine a nucleic acid for vaccine, a vector containing the nucleic acid, Bombux Mori containing the vector, and a method for producing a vaccine using them are provided.
  • FIG. 3 shows an optimized codon correspondence table based on the most frequently used gene codons shown in FIG. Serine (S) is UCA and its complementary strand is TGA, which is a stop codon. Therefore, the complementary strand of serine serves as a stop codon and no large frame appears in the complementary strand.
  • the correspondence between the avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown. Based on the base sequence of HA gene of highly pathogenic avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1), optimization of FLAG tag at C-terminus, codon usage of Bombux Mori cells The base sequence of the synthetic gene was determined. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown.
  • N1> ⁇ is one large coding frame, but in other frames, there are many bars that stick out below, and even if expressed, a large protein cannot be made.
  • N1 ⁇ , N2 ⁇ and N3 ⁇ from the fourth to the top from the bottom are the results of analyzing the coding frame of the complementary strand. Even if any frame is expressed, a large protein cannot be made.
  • the alignment of the codon optimized HA gene DNA sequence and the HA gene cDNA sequence of avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) is shown.
  • Query indicates a codon-optimized HA gene DNA sequence (coding region sequence excluding FLAG TAG), and Sbjct indicates avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) (HA coding region sequence). Parts having the same sequence are indicated by *, and-indicates a gap. Although the homology is very low at 77%, it is designed to express the same amino acid sequence except that the highly toxic sequence is modified and deleted. The alignment between the codon optimized HA gene DNA sequence and the avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) virus HA gene cDNA sequence is shown.
  • Query indicates a codon-optimized HA gene DNA sequence (coding region sequence excluding FLAG TAG), and Sbjct indicates avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) (HA coding region sequence). Parts having the same sequence are indicated by *, and-indicates a gap. Although the homology is very low at 77%, it is designed to express the same amino acid sequence except that the highly toxic sequence is modified and deleted.
  • the expression confirmation by Western blotting of the HA protein from the codon-optimized HA gene of avian influenza virus A / chicken / tufted duck / Fukushima / 16/2011 (H5N1) produced using Bombux Mori is shown.
  • FIG. 6 shows the HI activity of various HI antibodies against various influenza viruses in chickens by HA solution prepared using pBm-8HA. Reacted extensively with natural viruses. The HA activity of each fraction of the sucrose density gradient is shown. The HA activity was distributed at a lower density position than the position where the natural virus settled. The electron microscope image in a sucrose density gradient fraction is shown. Many virus-like particles having a diameter of 60 to 120 nm were observed.
  • the correspondence between the avian influenza virus A / chicken / Sukabumi / 2008 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown. Based on the base sequence of the HA gene of avian influenza virus A / chicken / Sukabumi / 2008 (H5N1), considering the introduction of the FLAG tag at the C-terminal and the optimization of codon usage in Bombux Mori cells, the base sequence of the synthetic gene Designed. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the avian influenza virus A / chicken / Sukabumi / 2008 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown.
  • the base sequence of the synthetic gene Based on the base sequence of the HA gene of avian influenza virus A / chicken / Sukabumi / 2008 (H5N1), considering the introduction of the FLAG tag at the C-terminal and the optimization of codon usage in Bombux Mori cells, the base sequence of the synthetic gene Designed. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the avian influenza virus A / chicken / Sukabumi / 2008 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown. The box indicates the attenuated site.
  • the base sequence of the synthetic gene Based on the base sequence of the HA gene of avian influenza virus A / chicken / Sukabumi / 2008 (H5N1), considering the introduction of the FLAG tag at the C-terminal and the optimization of codon usage in Bombux Mori cells, the base sequence of the synthetic gene Designed. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the avian influenza virus A / chicken / Sukabumi / 2008 (H5N1) codon optimized HA gene DNA sequence and amino acid sequence is shown. A surrounding line shows a FLAG tag.
  • Sukabumi Codon-optimized HA gene-infected Bombus mori. Arrows indicate specific bands.
  • Core protein DNA sequence 1 to 573, E1 protein: 574 to 1149, E3 protein: 1150 to 2238, FLAG tag: 2239 to 2262.
  • Core protein DNA sequence 1 to 573, E1 protein: 574 to 1149, E3 protein: 1150 to 2238, FLAG tag: 2239 to 2262.
  • Core protein DNA sequence 1 to 573, E1 protein: 574 to 1149, E3 protein: 1150 to 2238, FLAG tag: 2239 to 2262.
  • the correspondence between the hepatitis C virus codon optimized Core-E1-E2 fusion protein DNA sequence and amino acid sequence is shown.
  • Core protein DNA sequence 1 to 573, E1 protein: 574 to 1149, E3 protein: 1150 to 2238, FLAG tag: 2239 to 2262.
  • the correspondence between the hepatitis C virus codon optimized Core-E1-E2 fusion protein DNA sequence and amino acid sequence is shown.
  • Core protein DNA sequence 1 to 573, E1 protein: 574 to 1149, E3 protein: 1150 to 2238, FLAG tag: 2239 to 2262.
  • the confirmation of expression by Western blotting of the Core-E1-E2 fusion protein from the Hepatitis C virus codon-optimized Core-E1-E2 fusion protein gene produced using Bombux Mori is shown. Marker: molecular weight marker. Control: Non-infectious Bonbux Mori. HCV: Codon-optimized Core-E1-E2 fusion protein gene-infected Bonbux Mori. Arrows indicate specific bands. The expression confirmation by Western blotting of Core-E1-E2 fusion protein produced using Bombux Mori is shown.
  • the correspondence between the avian influenza virus A / Shanghai / 02/2013 codon optimized HA gene DNA sequence and amino acid sequence is shown. Based on the base sequence of the HA gene of avian influenza virus A / Shanghai / 02/2013 (H7N9), considering the introduction of the FLAG tag at the C-terminal and the optimization of codon usage of Bombux Mori cells, the base sequence of the synthetic gene Designed. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the avian influenza virus A / Shanghai / 02/2013 codon optimized HA gene DNA sequence and amino acid sequence is shown. The box indicates the expected mutation.
  • the base sequence of the synthetic gene Designed.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the avian influenza virus A / Shanghai / 02/2013 codon optimized HA gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene Designed.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the avian influenza virus A / Shanghai / 02/2013 codon optimized HA gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the correspondence between the Japanese encephalitis virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene Designed.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • PreM / M protein DNA sequence 1 to 501; E protein: 502 to 2001; FLAG tag: 2002 to 2025.
  • the correspondence between the Japanese encephalitis virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • PreM protein gene M protein gene, and E protein gene, considering the introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells, the base sequence of the synthetic gene Designed.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • PreM / M protein DNA sequence 1 to 501; E protein: 502 to 2001; FLAG tag: 2002 to 2025.
  • the correspondence between the Japanese encephalitis virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • PreM protein gene Based on the base sequences of the Japanese encephalitis virus PreM protein gene, M protein gene, and E protein gene, considering the introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells, the base sequence of the synthetic gene Designed. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • PreM / M protein DNA sequence 1 to 501; E protein: 502 to 2001; FLAG tag: 2002 to 2025.
  • the correspondence between the Japanese encephalitis virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • PreM protein gene DNA sequence 1 to 501; E protein: 502 to 2001; FLAG tag: 2002 to 2025.
  • FIG. 6 shows expression confirmation by Western blotting of PreM-ME fusion protein from Japanese encephalitis virus codon-optimized PreM-ME fusion protein gene produced using Bombux Mori. Marker: molecular weight marker. Control: Non-infectious Bonbux Mori.
  • JEV Codon-optimized PreM-ME fusion protein gene-infected Bombux Mori. Arrows indicate specific bands.
  • the correspondence between the rabies virus codon optimized G protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the rabies virus codon optimized G protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the rabies virus codon optimized G protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the rabies virus codon optimized G protein gene DNA sequence and amino acid sequence is shown.
  • a surrounding line shows a FLAG tag.
  • the base sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminal and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the West Nile virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the West Nile virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the West Nile virus codon optimized PreM-ME fusion protein gene DNA sequence and amino acid sequence is shown. Based on the nucleotide sequence of the E protein gene of West Nile virus, the nucleotide sequence of the synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells. The amino acid sequence predicted from the base sequence of the synthetic gene is also shown. The correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • S protein spike glycoprotein
  • the nucleotide sequence of a synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of a synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of the S protein gene of MERS coronavirus was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of a synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • the nucleotide sequence of a synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the MERS coronavirus codon optimized spike glycoprotein (S protein) gene DNA sequence and amino acid sequence is shown.
  • S protein spike glycoprotein
  • the nucleotide sequence of a synthetic gene was designed in consideration of introduction of a FLAG tag at the C-terminus and optimization of codon usage of Bombux Mori cells.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the correspondence between the foot-and-mouth disease virus codon optimized VP4-VP2-VP3-VP1-2A-3C fusion protein gene DNA sequence and amino acid sequence is shown.
  • nucleotide sequences of VP4, VP2, VP3, VP1, 2A, and 3C protein genes of foot-and-mouth disease virus considering the introduction of the FLAG tag at the N-terminal and the optimization of codon usage of Bombux Mori cells, the nucleotide sequence of the synthetic gene Designed.
  • the amino acid sequence predicted from the base sequence of the synthetic gene is also shown.
  • the nucleic acid according to the present invention includes a viral nucleic acid sequence that is codon optimized for expression in Bombux Mori.
  • the codon optimization uses a correspondence table (FIG. 2) of amino acid sequences and gene sequences created based on Bombus Mori's codon usage (FIG. 1) to replace the target nucleic acid sequence.
  • the Ser sequence is UCA (most frequently used in Bombux Mori), and the complementary strand is used.
  • UCA most frequently used in Bombux Mori
  • the virus targeted by the vaccine according to the present invention is not particularly limited, and examples thereof include influenza virus hepatitis C virus, Japanese encephalitis virus, rabies virus, West Nile virus, MERS coronavirus, and foot-and-mouth disease virus.
  • influenza viruses influenza A virus is preferable, and H5 and H7 types are more preferable.
  • genotype 1a, 1b, 2a, 2b or 3a is preferred.
  • the viral nucleic acid sequence according to the present invention encodes any viral protein as long as it can serve as a vaccine.
  • the viral nucleic acid sequence preferably encodes the HA protein.
  • the viral nucleic acid sequence preferably encodes a core protein, an E1 protein, an E2 protein, or a combination thereof.
  • the viral nucleic acid sequence preferably encodes a PreM protein, M protein, and / or E protein.
  • the viral nucleic acid sequence preferably encodes a G protein.
  • the viral nucleic acid sequence preferably encodes a PreM protein, M protein and / or E protein.
  • the viral nucleic acid sequence preferably encodes a spike glycoprotein (S protein).
  • the nucleic acid sequence of the virus preferably encodes a VP4, VP2, VP3, VP1, 2A, and / or 3C protein.
  • the nucleic acid sequence of the virus according to the present invention may have an attenuated gene modification. Attenuation can be accomplished by any modification known to those skilled in the art. For example, in the case of the HA protein of influenza virus, the sequence of the cleavage site that joins HA1 and HA2 molecules that control pathogenicity is modified. In one embodiment, the amino acid sequence represented by SEQ ID NO: 7 is substituted with the amino acid sequence represented by SEQ ID NO: 8 in the HA protein.
  • the nucleic acid according to the present invention is preferably a nucleic acid comprising or consisting of the nucleic acid sequence of SEQ ID NO: 4, 12, 15, 18, 21, 24, 27, 30, or 33.
  • the vaccine is produced by Bombux Mori.
  • the vaccine production method using Bombux Mori can be performed using any method known to those skilled in the art.
  • the nucleic acid of the present invention is introduced into Bombux Mori and the viral protein encoded by the nucleic acid sequence of the virus is expressed.
  • the method for introducing a nucleic acid is not particularly limited, and for example, it is carried out by inoculating a Bombax mori with a recombinant baculovirus containing the nucleic acid of the present invention.
  • the present invention is a vector comprising a nucleic acid according to the present invention.
  • the vector of the present invention is any vector capable of expressing a protein encoded by a nucleic acid.
  • the vector of the present invention may be directly introduced into Bombux Mori.
  • the vector of the present invention is a baculovirus transfer vector.
  • the present invention is a recombinant baculovirus produced using the vector according to the present invention.
  • the method of producing a recombinant baculovirus can be performed using any method known to those skilled in the art.
  • the recombinant baculovirus of the present invention can be produced by simultaneously introducing the vector of the present invention and DNA extracted from baculovirus into Bombux Mori cells.
  • the present invention is a Bombux Mori containing a nucleic acid, vector, or recombinant baculovirus according to the present invention.
  • the vector or the recombinant baculovirus may exist independently of the genome of Bonbux Mori, or is incorporated into the genome of Bonbucus Mori. Also good.
  • the present invention is a polypeptide consisting of an amino acid sequence encoded by a nucleic acid according to the present invention.
  • the present invention is a method for producing a vaccine using a nucleic acid, a vector, a recombinant baculovirus, or Bombux Mori according to the present invention.
  • the method for producing a vaccine according to the present invention comprises the following steps: 1) a step of obtaining a nucleic acid or vector according to the present invention 2) a step of introducing the nucleic acid, vector or recombinant baculovirus according to the present invention into Bombux Mori; and 3) a step of recovering a protein from Bombux Mori. .
  • Introduction of the nucleic acid, vector or recombinant baculovirus of the present invention into Bombux Mori can be performed using any method known to those skilled in the art. Preferably, it can be introduced using baculovirus. There is no particular limitation on the timing of introduction of the nucleic acid, vector, or recombinant baculovirus of the present invention into Bombux Mori. Preferably, the introduction period is the last stage.
  • Bombux Mori is homogenized in an isotonic buffer solution, and then recovered using an immobilized red blood cell or a sialic acid column (fetuin column).
  • the present invention is a polypeptide according to the present invention or a vaccine produced according to the production method of the present invention for vaccination of animals against viral infection.
  • the vaccine of the present invention has a virus-like particle structure.
  • the virus-like particle structure is closely related to the virus particle in the form of densely arranged HA spikes on the surface of the particle having a diameter of around 50 to 150 nm, but it is naturally non-pathogenic.
  • the virus-like particle structure is spherical with spikes.
  • the virus-like particle has a particle size of 60 nm to 120 nm. An example of the virus-like particle structure of the present invention is shown in FIG.
  • the present invention provides a method for inoculating an animal with a vaccine against viral infection, comprising an effective amount of a vaccine comprising a polypeptide according to the present invention or produced according to a production method according to the present invention. Is administered to said animal.
  • the present invention provides a method for inducing an immune response against a virus in an animal, comprising a polypeptide according to the invention or produced by a production method according to the invention.
  • a method comprising administering an amount to said animal.
  • the animal according to the present invention refers to any animal that can acquire sufficient humoral immunity or cellular immunity against the virus by vaccination.
  • the animal according to the present invention is a vertebrate, more preferably a human, bird, pig, or horse. Most preferably, it is a human.
  • An effective amount of vaccine refers to an amount sufficient to achieve a biological effect such as inducing sufficient humoral immunity or cellular immunity against the virus.
  • Administration methods also include inhalation, intranasal, oral, parenteral (eg, intradermal, intramuscular, intravenous, intraperitoneal, and subcutaneous administration). The effective amount and method of administration may depend on the age, sex, condition, weight of the human being administered.
  • influenza vaccine in general, a vaccine containing 15 ⁇ g or more of HA protein per strain in 1 ml, 0.25 ml subcutaneously for those who are 6 months or older and younger than 3 years, and those who are 3 years old or older and younger than 13 years Inject 0.5 ml subcutaneously twice, approximately 2-4 weeks apart. For those 13 years and older, 0.5 ml is injected subcutaneously once, or twice at approximately 1 to 4 week intervals.
  • Example 1 Design of DNA for development of influenza vaccine suitable for production in Bombux Mori based on HA gene information of avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1)
  • amino acid sequence (SEQ ID NO: 2) of the hemagglutinin (HA) protein of avian influenza virus A / tufted duck / Fukushima / 16/2011 (H5N1) is obtained from Genbank (URL: http: //www.ncbi.nlm.nih. gov / genbank /) Accession No. Predicted from the gene sequence registered in BAK24078 (SEQ ID NO: 1).
  • Arg-Glu- Arg is presumed to be related to a highly pathogenic - Arg - Lys - Arg sequence (SEQ ID NO: 7) Arg-Glu- Thr - Arg sequence (SEQ ID NO: 8) And a FLAG tag sequence (SEQ ID NO: 5) consisting of Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys was added to the C-terminus, and the attenuated HA protein amino acid sequence (SEQ ID NO: 3) was added. Designed.
  • the resulting Bonbux-Mori cocoon emulsion was sonicated with a sonicator (UR-20P, manufactured by Tommy Seiko) for 5 minutes, and fixed chicken erythrocytes were added thereto to recover HA protein. Furthermore, it was possible to purify to 95% or more at the protein level by purifying with DEAE ion exchange chromatography. Expression of the purified protein was confirmed by Western blotting (primary antibody: anti-FLAG mouse monoclonal antibody, secondary antibody: anti-mouse IgG rabbit polyclonal antibody). As shown in FIG. 6, a band was confirmed around 65 kDa.
  • Influenza viruses have the property of agglutinating when mixed with erythrocytes of various animals, which is called hemagglutination, where hemagglutinin (HA) on the surface of the virus binds to the glycans of the erythrocytes. By making large aggregates by cross-linking erythrocytes. By using this property, the virus concentration (HA activity) contained in the stock solution can be calculated by investigating how far the virus aggregates when serially diluted, so it is used for quantification of influenza virus.
  • HA activity hemagglutinin
  • HA value as the HA aggregation activity is expressed by the magnification of the dilution point before the day circle is formed.
  • the obtained HA protein solution was evaluated under the above conditions.
  • the HA activity was 2,097,152.
  • This value of the amount of HA activity of one recombinant Bombus mori was expressed in 1998 by the highly pathogenic avian influenza virus A / HK / 483/97 (H5N1) HA gene derived from humans. It is about 11.4 times the HA activity of 307,160 of one Bonbux Mori at the time, and an extraordinary amount of HA activity of about 340 times the HA activity 10,240 produced from one growing chicken egg It will be an increase.
  • Chicken immunization with HA protein solution Chickens were immunized using the above HA protein solution. Chickens were inoculated with leg muscles twice at 16-day intervals with 0.5 ml of HA protein solution with HA activity adjusted between 4,096 and 8,192. Blood samples were collected from chickens at 33 days, 40 days, 47 days, and 50 days after the first inoculation.
  • HI activity erythrocyte aggregation inhibitory activity of each chicken serum was examined by the following method. First, using a 96-well plate, a 1/2 serial dilution series of serum containing 25 ⁇ l of each well was prepared. Next, 25 ⁇ l of the HA protein (prepared to 8 HA with PBS) was added to each well. After allowing the plate to stand at room temperature for 30 minutes, 50 ⁇ l of 0.5% / PBS chicken erythrocytes were added to each well.
  • HI activity against various influenza viruses was examined using chicken serum 40 days after the first inoculation. HI activity was measured under the same conditions as described above using each virus of A / chiken / Legok / 2004 (H5N1) and A / chiken / West Java / 2009 (H5N1). The results are shown in FIG. Chicken serum showed HI activity against all viruses.
  • Fractionation of HA protein solution by sucrose density gradient The HA protein solution was fractionated by a sucrose density gradient method. The HA activity of each fraction was examined by the same method as described above. The result is shown in FIG. Fraction 4 which has a buoyant density of 1.18 g / l of the native virus showed no HA activity. On the other hand, HA activity was observed in fractions 7 to 9 showing a smaller floating density.
  • FIG. 1 A virus particle-like structure having a spherical shape with spikes and a particle size of 60 nm to 120 nm was observed. Natural viruses have a spherical shape of 60 to 150 nm, an elongated fibrous shape of 100 to 1000 nm, and a circular shape of 80 to 200 nm in principle. On the other hand, as shown in FIG.
  • the HA protein derived from Bombus mori shows various forms as in the case of the natural virus, the spherical one is 60 to 150 nm, the fibrous one is about 200 nm, and the circular one is 60 to 150 nm. This study revealed for the first time that it was shaped. This morphological feature is considered to be reflected in the strong immunity of HA protein that has not been seen so far.
  • the activity level of the HA protein of avian influenza virus A / tufted duck / Fukushima / 16/2011 increased due to Bonbux Mori's changes in DNA design based on genetic information. It is thought that the genetic manipulation of the synthetic DNA based on it worked beneficially. Furthermore, since the target gene was highly expressed using the bud stage of Bombus mori, it is considered that the obtained vaccine exhibited a virus particle-like structure. In this way, with the background of genetic information, new vaccine production methods utilizing DNA design changes and synthesis are expected to be used in multiple fields in the future. In conclusion, the first of the significance of vaccine production using Bonbux Mori using the redesigned DNA is to produce a vaccine amount of 340 developing chicken eggs in one of the Bumbux Mori pupae. It is.
  • Example 2 Design of DNA for development of influenza vaccine suitable for production in Bombus Mori based on HA gene information of avian influenza virus A / chicken / Sukabumi / 2008 (H5N1)
  • Viruses often mutate with time, including humans and animals, so anxiety remains with the avian influenza virus A / tufted duck / Fukushima / 16/2011 strain alone. Therefore, based on the amino acid sequence information (SEQ ID NO: 9) predicted from the HA gene sequence (SEQ ID NO: 9) of the avian influenza virus A / chicken / Sukabumi / 2008 (H5N1) isolated in Indonesia in 2008, Example 1 and Similarly, a vaccine development DNA for influenza virus was designed (SEQ ID NO: 12), and the corresponding amino acid sequence (SEQ ID NO: 11) is shown in Fig. 10. Similar to Example 1, the baculovirus recombination containing the development DNA was performed.
  • the body was ingested into a Bombyx Mori sputum to synthesize and recover the HA protein, and expression was confirmed by Western blotting (Fig. 11) .As a result of evaluating the HA activity, the amount of HA activity per head was 419, 430.
  • Example 3 Design of DNA for hepatitis C virus vaccine development suitable for production in Bombux Mori
  • the particle structure of hepatitis C virus is covered with a lipid layer containing E1 and E2 glycoproteins, and a protein called a nuclear protein or core protein and a viral gene are contained inside the particle.
  • E1 protein and E2 protein play an important role for the virus to initiate infection, and conversely, E1 protein and E2 protein are also infection-protecting antigens, and thus vaccine proteins It also has important functions.
  • a test vaccine was made with E1 protein and E2 protein, and the effect of chimpanzee was mild but the effect of mild infection was insufficient. However, in order to expect a more sufficient preventive effect, higher concentrations of E1 protein and E2 protein are required.
  • Nucleotide sequence design of codon-optimized Core-E1-E2 fusion protein gene Therefore, in order to develop a hepatitis C virus vaccine, the present inventors have developed the hepatitis C virus core protein-E1 protein-E2 protein We designed genetic information for the expression of fusion proteins.
  • the fusion protein was designed here because it was expected that a virus particle-like protein could be synthesized by simultaneous expression.
  • the FLAG tag sequence (SEQ ID NO: 5) is added to the amino acid sequence (SEQ ID NO: 13) from the Core protein to the E1 protein and E2 protein in the amino acid sequence of the HCV gene registered in Genbank under Accession No. ACK28185.
  • FIG. 12 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • Reference Example 1 Avian influenza virus A / Shanghai / 2/2013 (H7N9) Based on HA gene information of influenza virus, design of DNA for development of influenza vaccine suitable for production in Bombux Mori
  • Example 15 the recombinant baculovirus containing the above-mentioned DNA for development was ingested into Bombyx moly sputum, and HA protein was synthesized and recovered to confirm expression (FIG. 15). The HA activity is evaluated in the same manner as in Example 1.
  • Reference Example 2 Design of DNA for development of Japanese encephalitis virus vaccine suitable for production in Bombux Mori
  • Japanese encephalitis virus is an encephalitis virus mainly transmitted by Culex mosquitoes and is currently prevalent in Southeast Asia, India and China. In order to prevent this, a mouse brain infected with the same virus has been used as a vaccine. Recently, a virus for a vaccine in a cultured cell has been cultured. However, new vaccine development is required in order to enhance the immunity of vaccines, reduce side effects, and reduce production costs, and there are great expectations for quality improvement.
  • Japanese encephalitis virus codon optimized PreM-ME fusion protein gene nucleic acid sequence design Therefore, in order to develop a Japanese encephalitis virus vaccine, the present inventors designed gene information for E protein expression of Japanese encephalitis virus did.
  • the FLAG tag sequence (SEQ ID NO: 5) is added to the amino acid sequence (SEQ ID NO: 19) from the preM protein in the amino acid sequence registered in Genbank under Accession No. ABQ52691 to the M protein and E protein.
  • the amino acid sequence of the Japanese encephalitis virus PreM-ME fusion protein that was the basis of the design was obtained (SEQ ID NO: 20).
  • FIG. 16 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • Reference Example 3 Design of DNA for the development of a rabies virus vaccine suitable for production in Bombux Mori
  • Rabies virus is distributed on a global scale, causing many death hazards, and there is an international demand for the development of an effective, safe, and inexpensive vaccine, but it is not progressing slowly. Therefore, if a vaccine with strong immunity, safety and low cost is developed, the needs are considered to be global.
  • Currently used vaccines are derived from the brains of rabbits, goats and mice, and in addition, human diploid cells and chicken embryo cells are used.
  • Nucleic acid sequence design of rabies virus codon optimized G protein gene Therefore, the present inventors design gene information for G protein expression of rabies virus in order to develop a rabies virus vaccine.
  • the FLAG tag sequence (SEQ ID NO: 5) was added to the amino acid sequence registered in Genbank under Accession No. ABX46657 (SEQ ID NO: 22) to obtain the amino acid sequence of the rabies virus G protein that serves as the basis for nucleic acid design. (SEQ ID NO: 23).
  • the nucleic acid sequence of the rabies virus codon optimized G protein was designed in the same manner as in Example 1 (SEQ ID NO: 24).
  • FIG. 18 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • Reference Example 4 Design of DNA for development of West Nile virus vaccine suitable for production in Bombus mori
  • West Nile virus has spread to the United States, Eastern Europe, and Europe, and is likely to be transmitted to Japan in the near future. In addition to the Carterica ecosystem, it is transmitted from this cycle to humans and to horses. There is no vaccine available yet, but the development of this vaccine is urgent worldwide. Research and development of vaccines is actively conducted in the United States and Europe, but has not been successful. Therefore, if West Nile fever vaccine can be produced in large quantities at low cost, it can be used worldwide.
  • FIG. 19 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • Example 2 West Nile virus codon-optimized E protein gene-introduced baculovirus infection
  • pBm-8wnvpMME is used to obtain a baculovirus recombinant, which is inoculated into Bonbux Mori cocoons to obtain Bonbux Mori mulberry emulsion .
  • Nucleic acid sequence design of MERS coronavirus codon optimized spike glycoprotein (S protein) gene We design genetic information for S protein expression of MERS coronavirus in order to develop a MERS coronavirus vaccine.
  • the FLAG tag sequence (SEQ ID NO: 5) is added to the amino acid sequence (SEQ ID NO: 28) registered in Genbank under Accession No. AGN52936 to obtain the amino acid sequence of West Nile virus E protein that serves as the basis for nucleic acid design. (SEQ ID NO: 29).
  • the nucleic acid sequence of the MERS coronavirus codon optimized S protein was designed in the same manner as in Example 1 (SEQ ID NO: 30).
  • FIG. 20 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • Foot-and-Mouth Disease Virus Codon-Optimized VP4-VP2-VP3-VP1-2A-3C Fusion Protein Gene Nucleic Acid Sequence Design
  • VP4-VP2-VP3-VP1-2A to develop a foot-and-mouth disease virus vaccine
  • genetic information for -3C fusion protein expression First, the amino acid sequences of VP4, Vp2, VP1, 2A, and 3C proteins in the amino acid sequence predicted from the nucleic acid sequence registered in Genbank under Accession No. HV940030 were linked from the N-terminal side to the C-terminal side.
  • a FLAG tag sequence (SEQ ID NO: 5) was added to the amino acid sequence (SEQ ID NO: 31) to obtain an amino acid sequence of a foot-and-mouth disease virus serving as a basis for nucleic acid design (SEQ ID NO: 32).
  • SEQ ID NO: 32 Based on the amino acid sequence of this foot-and-mouth disease virus VP4-VP2-VP3-VP1-2A-3C fusion protein, in the same manner as in Example 1, the foot-and-mouth disease virus codon-optimized VP4-VP2-VP3-VP1-2A-3C fusion protein
  • a nucleic acid sequence was designed (SEQ ID NO: 33).
  • FIG. 21 shows the correspondence between the nucleic acid sequence and amino acid sequence of the designed chimeric synthetic DNA.
  • the nucleic acid according to the present invention has the following remarkable effects: 1) Dangerous virus-derived proteins can be obtained by using artificially synthesized DNA without handling dangerous viruses. (P4 and P3 facilities are not required and dangerous viruses are not handled, so there is no possibility that the virus will leak to the outside if it infects humans or adheres to clothes.) 2) Ability to design amino acid sequences with low pathogenicity from the beginning based on bioinformatics. 3) Ability to predict and design future amino acid mutations from the beginning by bioinformatics and evolutionary analysis. 4) The gene sequence is obtained from the amino acid sequence. In the amino acid sequence, for example, in the HA protein, except for the highly toxic site and the FLAG tag, it is exactly the same as the original amino acid sequence.
  • the artificially synthesized nucleic acid of the present invention based on a nucleic acid sequence design that is codon-optimized for expression in Bombux Mori is useful for mass production of vaccines as described above.
  • SEQ ID NO: 1 A / tufted duck / Fukushima / 16/2011 (H5N1) HA gene DNA sequence of avian influenza virus
  • SEQ ID NO: 2 A / tufted duck / Fukushima / 16/2011 (H5N1) HA amino acid sequence of avian influenza virus No.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Pulmonology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Animal Husbandry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、ワクチン用のボンビュクス・モリにおける発現にコドン最適化された核酸、該核酸を含むベクター、該ベクターを含むボンビュクス・モリ(Bombyx mori)およびそれらを利用するワクチンの生産方法に関する。

Description

ワクチン
 本発明は、ワクチン用の核酸、該核酸を含むベクター、該ベクターを含むボンビュクス・モリ(Bombyx mori)およびそれらを利用するワクチンの生産方法に関する。
 現在、ヒト領域でのワクチン対策が緊急の課題となっている。例えばインフルエンザについては以下の問題が生じている:インフルエンザウイルス粒子の表面にはヘマグルチニン(HA)とノイラミニダーゼ(NA)のタンパク質が存在しているが、HAサブタイプは16種、そしてNAのサブタイプは9種が存在していて、トリの世界にはその全てのサブタイプが存在している。その中でも、多数のトリを殺す強毒(強病原性)ウイルスはH5とH7のサブタイプに限られている。H5のサブタイプをもつ強毒ウイルスによるインフルエンザは、1961年、ウミ鳥のアジサシで大流行して南アフリカで初めて発見された。それ以来、1983~1984年にかけ米国で大流行し、さらに、1997年に香港のニワトリとヒトで流行し、それ以降、世界各地で流行してきた。その予防の為、ヒトとニワトリに用いる全粒子不活化ワクチンが既に開発されている。さらに、トリで強毒性を発揮するH7ウイルスも、1927年以来、世界の各地で流行している。特に、オランダでは1980年代後半にヒトで多くの被害者を出し、2003年にもH7N7ウイルスが家禽に流行した後、89人の感染者が確認され、1人が死亡した。その後の調査により、感染した家禽に接触したヒトの59%が抗体陽性であり、最低でも1,000人が感染したと推定されている。さらに、2013年の3月から中国で発生したトリインフルエンザはヒトにも伝播し、その原因はH7N9型の弱毒株であることが明らかにされた。
 またC型肝炎ウイルスはその感染により急性肝炎症状を惹起するだけでなく、慢性肝炎、それに続く肝硬変の発生や、その後の肝臓癌の進展にも大きな負の役割を演じている。ウイルス性肝炎には経口感染により感染が広がるものと血液を介して感染するものとの2種があり、後者はB型肝炎ウイルスやC型肝炎ウイルスによって代表される。近年、B型肝炎ウイルスに関しては、ワクチンが利用できるようになったが、C型肝炎については化学療法の進歩は著しいものの、全てのウイルス株に有効な決定的な治療法はなく、文明国を中心に精力的な研究が進められているものの、未だ実用に供されるワクチンは全く無いのが現状である。
 日本脳炎の原因ウイルスは、1935年に日本で分離されたウイルスであり、当時は日本においても多くの患者が発生していた。その後、1954年からワクチン接種が開始され、劇的に患者は減少し、平成4年以降年間10名以下の患者が報告されている状況である。ただし、日本からウイルスが消えた訳ではない。日本脳炎ウイルスはブタからカを介してヒトに感染すると考えられているが、現在でも日本国内の多くのブタの血清は抗日本脳炎ウイルス抗体陽性である。また、海外に目を転じれば、アジアを中心に年間35,000-50,000人の患者が発生し、その内10,000-15,000人が亡くなっており、対策を必要とする重要な感染症である。現在日本で用いられているワクチンは、2009年に接種が開始されたものであり、それ以前のワクチンに比較し副作用が少ないとされている。しかしながら、2012年にもワクチン接種後の2例の死亡が報告されている。以上の状況を考慮すれば、安価で副作用の少ないワクチンの早急な開発が必要であることは明らかである。
 日本は、イギリス、オーストラリア、ニュージーランド、台湾、スウェーデン等と共に、例外的に狂犬病の発生が見られない国である。他の諸国では発生があり、年間30,000-50,000人の死亡者がある。狂犬病ウイルスは、多くの野生動物中で増殖が可能であり、狂犬病を完全に防ぐには野生動物への免疫の導入が必要である。組み換え体ワクシニアウイルスを用いた生ワクチンが成果を得、注目を集めている。しかしながら、現在のところ問題は報告されていないものの、広く自然界への生ワクチンの導入が予測できない結果を生む可能性は否定できない。安く有効な経口不活化ワクチンの開発が望まれる。
 西ナイルウイルスは1935年ウガンダで初めて分離された。このウイルスの感染環はトリとカの間で成立しており、時として、カによりヒトが感染する。感染したヒトが症状を示す率は80%程度であるが、発症患者の150人に1人程度の割合で重篤な脳炎、髄膜炎症状を示し、重症患者の3-15%が亡くなる。1999年の夏にニューヨークでの流行が起こるまで、西半球に侵入することはなかった。その後ほぼ米国全土で感染患者が見られる状況となっており、日本への侵入が危惧される。米国では、1999-2012年の間に、36,500の患者が確認され、1,500人が亡くなっている。日本に既に存在するカもウイルスの伝播を担い得るとされており、いつ日本に侵入があってもおかしくない状況である。早急な有効なワクチンの開発が求められている。
WO2007/046439
Maeda, S. et al., Nature (1985) 315, 592-594
 このような状況に在って、例えば未だにインフルエンザワクチンの生産には、伝統的に10~11日齢の発育受精卵が使用されている。今日の科学技術の進歩により、培養細胞のMDCKあるいはVEROでの生産も可能になってきた。特に注目されるのは、様々なベクターを用いた遺伝子操作技術で、目的とするインフルエンザワクチン用タンパク質を、酵母やカイコ(ボンビュクス・モリ)の個体、あるいはボンビュクス・モリの培養細胞で生産できるようになってきたことである。本発明者らは、1998年にH5のトリインフルエンザウイルスのHAタンパク質をボンビュクス・モリで大量に生産することに成功した。その時には、1997年に香港でヒトから分離されたA/HK/483/97(H5N1)インフルエンザRNAウイルスから、ヘマグルチニン(HA)タンパク質をコードするDNAを逆転写し、これを大腸菌のプラスミドにクローニングした遺伝子を用いた。インフルエンザワクチン生産用のHAタンパク質をコードするDNAを、さらにバキュロウイルスのトランスファーベクターに組換え、ワクチン用タンパク質の生産を実施した。
 この方法で作出した組換えバキュロウイルス感染ボンビュクス・モリの赤血球凝集活性(HA活性)は、感染5日目で8,192の値を示した。その結果、発育鶏卵で産生されるワクチン用ウイルスのHA活性が、一般的には1,024であることと比較した場合、1個の発育鶏卵から産生されるウイルス液はほぼ10mlであり、その総HA活性は10,240となる。一方、ボンビュクス・モリ1頭で産生されるHAタンパク質溶液15ml中の総HA活性の平均値は122,800という値になり、その生産比は、およそ12倍の高さということになった。これが、天然の高病原性トリインフルエンザウイルスのHAを、DNAを設計変更することなくバキュロウイルスベクターで産生した、これまでの技術による発現効率である。
 発育鶏卵によるワクチンの生産は、ワクチンに用いる種ウイルスを扱うためにP3施設など大規模な施設を必要とし、抗原性を変えずに安全な種ウイルスにするためにはコストが高いこと、また、安全にワクチンを生産するためには感染性のあるウイルスを安全に取り扱う施設を作る必要があり設備的にも生産という面でもコストが高いこと、卵アレルギーの原因となること、大量の卵を必要とすること、鶏卵で増やすためには、時として抗原性に変化を与えてしまうこと、また、有効成分だけのコンポーネントワクチンの製造が困難であること、といった種々の問題がある。他方、これまでのボンビュクス・モリによるワクチン生産技術は、界面活性剤を加えての精製が必要であった。
 このように、これまでの発育鶏卵を使用するワクチン生産の技術には、コスト、生産量の限界があり、さらに、有効成分のHAだけでの生産には、コストと精製技術の大きな問題がある。これを乗り越えるためには、新たなHAタンパク質の量産技術が必要である。
 よって、本発明の課題は、ワクチン用の核酸、該核酸を含むベクター、該ベクターを含むボンビュクス・モリおよびそれらを利用するワクチンの生産方法を提供することである。
 本発明者らは、鋭意研究したところ、ボンビュクス・モリにおける発現にコドン最適化された核酸配列を用いることにより、ボンビュクス・モリにより生産されるワクチン用タンパク質の力価が著しく増大することを、初めて見出し、本発明を完成させた。
 すなわち、本発明は以下のとおりである:
[1]ウイルスに対するワクチンをボンビュクス・モリ(Bombyx mori)で産生するための、ボンビュクス・モリにおける発現にコドン最適化された該ウイルスの核酸配列を含む核酸、
[2]ウイルスが、インフルエンザウイルス、C型肝炎ウイルス、日本脳炎ウイルス、狂犬病ウイルス、西ナイルウイルス、MERSコロナウイルス、および口蹄疫ウイルスからなる群より選択される、[1]に記載の核酸、
[3]ウイルスが、A型インフルエンザウイルスである、[2]に記載の核酸、
[4]ウイルスが、H5型およびH7型からなる群より選択される、[3]に記載の核酸、
[5]核酸配列が、インフルエンザウイルスのHAタンパク質をコードする、[4]に記載の核酸、
[6]核酸配列が、弱毒化遺伝子改変を有する、[5]に記載の核酸、
[7]核酸配列が、配列番号4、配列番号12、配列番号18からなる群より選択される核酸配列である、[1]~[6]のいずれかに記載の核酸、
[8]ウイルスが、C型肝炎ウイルスである、[2]に記載の核酸、
[9]核酸配列が、C型肝炎ウイルスのE1タンパク質、E2タンパク質および/または核タンパク質をコードする、[8]に記載の核酸、
[10]核酸配列が、C型肝炎ウイルスのE1タンパク質、E2タンパク質および核タンパク質をコードする、[8]に記載の核酸、
[11]核酸配列が、配列番号15である、[10]に記載の核酸、
[12]核酸配列が、配列番号4、12、15、18、21、24、27、30、または33である、[2]に記載の核酸、
[13][1]~[12]のいずれかに記載の核酸を含む、ベクター、
[14][13]に記載のベクターを用いて産生された組み換え体バキュロウイルス、
[15][1]~[12]のいずれかに記載の核酸、[13]に記載のベクター、または[14]に記載の組み換え体バキュロウイルスを含む、ボンビュクス・モリ、
[16][1]~[12]のいずれかに記載の核酸がコードするアミノ酸配列からなる、ポリペプチド、
[17][1]~[12]のいずれかに記載の核酸、[13]に記載のベクター、[14]に記載の組み換え体バキュロウイルス、または[15]に記載のボンビュクス・モリを使用する、ワクチンの生産方法、
[18]以下の工程:
1)[1]~[12]のいずれかに記載の核酸、[13]に記載のベクター、または[14]に記載の組み換え体バキュロウイルスを得る工程
2)[1]~[12]のいずれかに記載の核酸、[13]に記載のベクター、または[14]に記載の組み換え体バキュロウイルスをボンビュクス・モリに導入する工程;および
3)ボンビュクス・モリからタンパク質を回収する工程
を含む、[17]に記載のワクチンの生産方法、
[19]ウイルスの感染に対する、動物のワクチン接種のための、[16]に記載のポリペプチドを含むか、または[17]もしくは[18]に記載の生産方法に従って生産される、ワクチン、
[20]ウイルス様粒子構造である、[19]に記載のワクチン、
[21]ウイルス様粒子構造の直径が50nm~150nmである、[20]に記載のワクチン、
[22]ウイルスの感染に対するワクチンを、動物に接種する方法であって、[16]に記載のポリペプチドを含むかまたは[17]もしくは[18]に記載の生産方法に従って生産されるワクチンの有効量を、前記動物に投与することを含む方法、
[23]ウイルスに対する免疫応答を、動物に誘導する方法であって、[16]に記載のポリペプチドを含むかまたは[17]もしくは[18]に記載の生産方法により生産されるワクチンの有効量を、前記動物に投与することを含む方法
である。
 本発明により、より力価の高い、ワクチン用の核酸、該核酸を含むベクター、該ベクターを含むボンビュクス・モリおよびそれらを利用するワクチンの生産方法が提供される。
ボンビュクス・モリ(学名:Bombyx mori)におけるコドン使用頻度を示す。ボンビュクス・モリの1180のコーディング領域(CDS)中の450043コドン中の使用頻度を調べた表である。それぞれのコドンの1000個当たりの出現頻度を示す。括弧内の数字は、出現総数を示す。太字で示したところが、各アミノ酸に対するもっとも使用頻度の高い遺伝子コドンであることを示す。 図1で示した最も使用頻度の高い遺伝子コドンを元にした最適化したコドン対応表を示す。セリン(S)はUCAであり、その相補鎖はTGAであり、終止コドンである。そのため、セリンの相補鎖は終止コドンとなり、相補鎖に大きなフレームが出現することはない。 トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。高病原性トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子の塩基配列に基づき、弱毒化、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を決定した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。高病原性トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子の塩基配列に基づき、弱毒化、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を決定した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線は弱毒化部位を示す。高病原性トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子の塩基配列に基づき、弱毒化、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を決定した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。高病原性トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子の塩基配列に基づき、弱毒化、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を決定した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 合成したワクチン用HAタンパク質をコードする遺伝子のコーディングフレームの解析の結果である。下からN1>-、N2>-、N3>-は、それぞれプラス鎖を3つのコーディングフレームを解析した結果である。上にあるバーは、開始コドンであるATGの位置を示し、下につきだしたバーは、終止コドン(TAA、TAG、TGA)の場所を示す。N1>-のみが1つの大きなコーディングフレームとなるが、他のフレームでは、下につきだしたバーが多く、仮に発現したとしても大きなタンパク質を作ることは出来ない。下から4番目から一番上までのN1<-、N2<-、N3<-は、相補鎖のコーディングフレームを解析した結果である。いずれのフレームも、仮に、発現したとしても大きなタンパク質を作ることは出来ない。 コドン最適化HA遺伝子DNA配列とトリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子cDNA配列とのアラインメントを示す。Queryはコドン最適化HA遺伝子DNA配列(FLAG TAGを除くコーディング領域の配列)、SbjctはトリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)(HAのコーディング領域配列)を示す。配列が同じ部分は*で示し、-はギャップを示している。相同性は77%と非常に低くなっているが、強毒性配列を改変し、削除した以外は、同じアミノ酸配列を発現するように設計されている。 コドン最適化HA遺伝子DNA配列とトリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1) ウイルスのHA遺伝子cDNA配列とのアラインメントを示す。Queryはコドン最適化HA遺伝子DNA配列(FLAG TAGを除くコーディング領域の配列)、SbjctはトリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)(HAのコーディング領域配列)を示す。配列が同じ部分は*で示し、-はギャップを示している。相同性は77%と非常に低くなっているが、強毒性配列を改変し、削除した以外は、同じアミノ酸配列を発現するように設計されている。 ボンビュクス・モリを用いて生産したトリインフルエンザウイルスA/chicken/tufted duck/Fukushima/16/2011(H5N1)のコドン最適化HA遺伝子からのHAタンパク質のウェスタンブロッティングによる発現確認を示す。Marker:分子量マーカー。Control:非感染ボンビュクス・モリ。Fukushima:コドン最適化HA遺伝子感染ボンビュクス・モリ。矢印は、特異的バンドを示す。 pBm-8HAを用いて作成したHA溶液によるニワトリにおけるHI抗体の種々のインフルエンザウイルスに対するHI活性を示す。天然のウイルスと幅広く反応した。 ショ糖密度勾配の各分画のHA活性を示す。天然のウイルスの沈降位置よりも低密度の位置にHA活性が分布していた。 ショ糖密度勾配分画中の電子顕微鏡像を示す。直径60~120nmのウイルス様粒子が多数観察された。 トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線は弱毒化部位を示す。トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 ボンビュクス・モリを用いて生産したトリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のコドン最適化HA遺伝子からのHAタンパク質のウェスタンブロッティングによる発現確認を示す。Marker:分子量マーカー。Control:非感染ボンビュクス・モリ。Sukabumi:コドン最適化HA遺伝子感染ボンビュクス・モリ。矢印は、特異的バンドを示す。 C型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質DNA配列とアミノ酸配列の対応を示す。コアタンパク質:DNA配列1位~573位、E1タンパク質:574位~1149位、E3タンパク質:1150位~2238位、FLAGタグ:2239位~2262位。 C型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質DNA配列とアミノ酸配列の対応を示す。コアタンパク質:DNA配列1位~573位、E1タンパク質:574位~1149位、E3タンパク質:1150位~2238位、FLAGタグ:2239位~2262位。 C型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質DNA配列とアミノ酸配列の対応を示す。コアタンパク質:DNA配列1位~573位、E1タンパク質:574位~1149位、E3タンパク質:1150位~2238位、FLAGタグ:2239位~2262位。 C型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質DNA配列とアミノ酸配列の対応を示す。コアタンパク質:DNA配列1位~573位、E1タンパク質:574位~1149位、E3タンパク質:1150位~2238位、FLAGタグ:2239位~2262位。 C型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質DNA配列とアミノ酸配列の対応を示す。コアタンパク質:DNA配列1位~573位、E1タンパク質:574位~1149位、E3タンパク質:1150位~2238位、FLAGタグ:2239位~2262位。 ボンビュクス・モリを用いて生産したC型肝炎ウイルスコドン最適化Core-E1-E2融合タンパク質遺伝子からのCore-E1-E2融合タンパク質のウェスタンブロッティングによる発現確認を示す。Marker:分子量マーカー。Control:非感染ボンビュクス・モリ。HCV:コドン最適化Core-E1-E2融合タンパク質遺伝子感染ボンビュクス・モリ。矢印は、特異的バンドを示す。ボンビュクス・モリを用いて生産したCore-E1-E2融合タンパク質のウェスタンブロッティングによる発現確認を示す。 トリインフルエンザウイルスA/Shanghai/02/2013コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。トリインフルエンザウイルスA/Shanghai/02/2013(H7N9)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/Shanghai/02/2013コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線は予測される変異を示す。トリインフルエンザウイルスA/Shanghai/02/2013(H7N9)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/Shanghai/02/2013コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。トリインフルエンザウイルスA/Shanghai/02/2013(H7N9)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 トリインフルエンザウイルスA/Shanghai/02/2013コドン最適化HA遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。トリインフルエンザウイルスA/Shanghai/02/2013(H7N9)のHA遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 ボンビュクス・モリを用いて生産したトリインフルエンザウイルスA/Shanghai/02/2013のコドン最適化HA遺伝子からのHAタンパク質のウェスタンブロッティングによる発現確認を示す。Marker:分子量マーカー。Control:非感染ボンビュクス・モリ。H7N9:コドン最適化HA遺伝子感染ボンビュクス・モリ。矢印は、特異的バンドを示す。 日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。日本脳炎ウイルスのPreMタンパク質遺伝子、Mタンパク質遺伝子、Eタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。PreM/Mタンパク質:DNA配列1位~501位、Eタンパク質:502位~2001位、FLAGタグ:2002位~2025位。 日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。日本脳炎ウイルスのPreMタンパク質遺伝子、Mタンパク質遺伝子、Eタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。PreM/Mタンパク質:DNA配列1位~501位、Eタンパク質:502位~2001位、FLAGタグ:2002位~2025位。 日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。日本脳炎ウイルスのPreMタンパク質遺伝子、Mタンパク質遺伝子、Eタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。PreM/Mタンパク質:DNA配列1位~501位、Eタンパク質:502位~2001位、FLAGタグ:2002位~2025位。 日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。日本脳炎ウイルスのPreMタンパク質遺伝子、Mタンパク質遺伝子、Eタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。PreM/Mタンパク質:DNA配列1位~501位、Eタンパク質:502位~2001位、FLAGタグ:2002位~2025位。 ボンビュクス・モリを用いて生産した日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子からのPreM-M-E融合タンパク質のウェスタンブロッティングによる発現確認を示す。Marker:分子量マーカー。Control:非感染ボンビュクス・モリ。JEV:コドン最適化PreM-M-E融合タンパク質遺伝子感染ボンビュクス・モリ。矢印は、特異的バンドを示す。 狂犬病ウイルスコドン最適化Gタンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。狂犬病ウイルスのGタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 狂犬病ウイルスコドン最適化Gタンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。狂犬病ウイルスのGタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 狂犬病ウイルスコドン最適化Gタンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。狂犬病ウイルスのGタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 狂犬病ウイルスコドン最適化Gタンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。囲み線はFLAGタグを示す。狂犬病ウイルスのGタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。西ナイルウイルスのEタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。西ナイルウイルスのEタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。西ナイルウイルスのEタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子DNA配列とアミノ酸配列の対応を示す。MERSコロナウイルスのSタンパク質遺伝子の塩基配列に基づき、C末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。口蹄疫ウイルスのVP4、VP2、VP3、VP1、2A、3Cタンパク質遺伝子の塩基配列に基づき、N末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。口蹄疫ウイルスのVP4、VP2、VP3、VP1、2A、3Cタンパク質遺伝子の塩基配列に基づき、N末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。口蹄疫ウイルスのVP4、VP2、VP3、VP1、2A、3Cタンパク質遺伝子の塩基配列に基づき、N末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。口蹄疫ウイルスのVP4、VP2、VP3、VP1、2A、3Cタンパク質遺伝子の塩基配列に基づき、N末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。 口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列とアミノ酸配列の対応を示す。口蹄疫ウイルスのVP4、VP2、VP3、VP1、2A、3Cタンパク質遺伝子の塩基配列に基づき、N末端へのFLAGタグ導入、ボンビュクス・モリ細胞のコドン使用頻度の最適化を考慮し、合成遺伝子の塩基配列を設計した。合成遺伝子の塩基配列から予想されるアミノ酸配列を併記した。
 本発明に係る核酸は、ボンビュクス・モリにおける発現にコドン最適化されているウイルスの核酸配列を含む。コドン最適化は、具体的には、ボンビュクス・モリのcodon usage (図1)をもとに作成したアミノ酸配列と遺伝子配列の対応表(図2)を用い、対象となる核酸配列を置換する。この対応表において、相補鎖に長いコーディングフレームが出来ることで思わぬ副産物が合成されるのを防ぐため、Serの配列は、UCA(最もボンビュクス・モリでの使用頻度も高い)を用い、相補鎖に多くのUGA(終止コドン)が生じるように設計されている。
 本発明に係るワクチンが対象とするウイルスは、特に限定されないが、例えばインフルエンザウイルスC型肝炎ウイルス、日本脳炎ウイルス、狂犬病ウイルス、西ナイルウイルス、MERSコロナウイルス、口蹄疫ウイルスがあげられる。インフルエンザウイルスにおいては、A型インフルエンザウイルスが好ましく、更にH5型およびH7型が好ましい。C型肝炎ウイルスにおいては、ジェノタイプ1a、1b、2a、2b、または3aが好ましい。
 本発明に係るウイルスの核酸配列は、ワクチンとなり得る限り、ウイルスの任意のタンパク質をコードする。インフルエンザウイルスの場合は、ウイルスの核酸配列は、好ましくは、HAタンパク質をコードする。C型肝炎ウイルスの場合は、ウイルスの核酸配列は、好ましくは核(Core)タンパク質、E1タンパク質、E2タンパク質、またはその組み合わせをコードする。日本脳炎ウイルスの場合は、ウイルスの核酸配列は、好ましくはPreMタンパク質、Mタンパク質、および/またはEタンパク質をコードする。狂犬病ウイルスの場合は、ウイルスの核酸配列は、好ましくはGタンパク質をコードする。西ナイルウイルスの場合は、ウイルスの核酸配列は、好ましくはPreMタンパク質、Mタンパク質および/またはEタンパク質をコードする。MERSコロナウイルスの場合は、ウイルスの核酸配列は、好ましくはスパイク糖タンパク質(Sタンパク質)をコードする。口蹄疫ウイルスの場合は、ウイルスの核酸配列は、好ましくはVP4、VP2、VP3、VP1、2A、および/または3Cタンパク質をコードする。
 本発明に係るウイルスの核酸配列は、弱毒化遺伝子改変を有していても良い。弱毒化は、当業者に公知の任意の改変によって行い得る。例えばインフルエンザウイルスのHAタンパク質の場合、病原性を支配するHA1とHA2分子を接合する開裂部位の配列を改変する。一つの態様では、HAタンパク質において配列番号7で示されるアミノ酸配列を配列番号8で示されるアミノ酸配列に置換する。
 従って、本発明に係る核酸は、好ましくは配列番号4、12、15、18、21、24、27、30、または33の核酸配列を含むまたはからなる核酸である。
 本発明において、ワクチンはボンビュクス・モリで産生される。ボンビュクス・モリを用いたワクチン産生方法は、本技術分野における当業者に周知の任意の方法を利用して行うことができる。具体的には、ボンビュクス・モリに本発明の核酸を導入して、該ウイルスの核酸配列がコードするウイルスタンパク質を発現させる。核酸の導入方法は、特に限定されないが、例えば、本発明の核酸を含む組み換え体バキュロウイルスをボンビュクス・モリに接種することによって行う。
 従って、1つの実施態様において、本発明は、本発明に係る核酸を含むベクターである。本発明のベクターは、核酸がコードするタンパク質が発現することができる任意のベクターである。本発明のベクターは、ボンビュクス・モリに直接導入されてもよい。好ましくは、本発明のベクターは、バキュロウイルス用トランスファーベクターである。
 また、1つの実施態様において、本発明は、上記本発明に係るベクターを用いて産生された組み換え体バキュロウイルスである。組み換え体バキュロウイルスの産生の方法は、本技術分野における当業者に周知の任意の方法を利用して行うことができる。1つの実施態様において、本発明組み換え体のバキュロウイルスは、本発明のベクターとバキュロウイルスより抽出したDNAとをボンビュクス・モリ細胞に同時に導入することにより、産生することができる。
 従って1つの実施態様において、本発明は、本発明に係る核酸、ベクター、または組み換え体バキュロウイルスを含むボンビュクス・モリである。ベクターまたは組み換え体バキュロウイルスを含む様式に特に制限はなく、ベクターまたは組み換え体バキュロウイルスがボンビュクス・モリのゲノムとは独立して存在していても良いし、ボンビュクス・モリのゲノムに組み込まれていても良い。
 1つの実施態様において、本発明は、本発明に係る核酸がコードするアミノ酸配列からなるポリペプチドである。
 1つの実施態様において、本発明は、本発明に係る核酸、ベクター、組み換え体バキュロウイルス、またはボンビュクス・モリを使用する、ワクチン生産方法である。
 1つの実施態様において、本発明に係るワクチンの生産方法は、以下の工程:
1)本発明に係る核酸またはベクターを得る工程
2)本発明に係る核酸、ベクター、または組み換え体バキュロウイルスをボンビュクス・モリに導入する工程;および
3)ボンビュクス・モリからタンパク質を回収する工程
を含む。
 ボンビュクス・モリへの本発明の核酸、ベクター、または組み換え体バキュロウイルスの導入は、本技術分野における当業者に周知の任意の方法を利用して行うことができる。好ましくは、バキュロウイルスを用いて導入することができる。本発明の核酸、ベクター、または組み換え体バキュロウイルスのボンビュクス・モリへの導入時期は特に限定はされない。好ましくは、導入時期は、蛹期である。
 ボンビュクス・モリからのタンパク質の回収は、本技術分野における当業者に周知の任意の方法を用いることができる。例えば、HAタンパク質であれば、ボンビュクス・モリを等張緩衝溶液中にホモゲナイズ後、固定化赤血球あるいはシアル酸カラム(フェツインカラム)を用いて回収する。
 1つの実施態様において、本発明は、ウイルスの感染に対する、動物のワクチン接種のための、本発明に係るポリペプチドまたは本発明の生産方法に従って生産されるワクチンである。
 1つの実施態様において、本発明のワクチンは、ウイルス様粒子構造である。ウイルス様粒子構造とは、50~150nm前後の直径を有する粒子の表面に明瞭なHAスパイクが密に配置し、形態的にウイルス粒子に酷似しているが、当然のことながら、非病原性である構造を指す。好ましくは、ウイルス様粒子構造は、スパイクをもつ球状である。好ましくは、ウイルス様粒子の粒子径は60nm~120nmである。本発明のウイルス様粒子構造の例を、図9に示す。
 1つの実施態様において、本発明は、ウイルスの感染に対するワクチンを、動物に接種する方法であって、本発明に係るポリペプチドを含むかまたは本発明に係る生産方法に従って生産されるワクチンの有効量を、前記動物に投与することを含む方法である。
 1つの実施態様において、本発明は、ウイルスに対する免疫応答を、動物に誘導する方法であって、本発明に係るポリペプチドを含むかまたは本発明に係る記載の生産方法により生産されるワクチンの有効量を、前記動物に投与することを含む方法である。
 本発明に係る動物は、ワクチンを接種することによりウイルスに対する十分な体液性免疫または細胞性免疫を獲得することが出来る任意の動物を指す。好ましくは、本発明に係る動物は、脊椎動物であり、より好ましくはヒト、トリ、ブタ、ウマである。最も好ましくは、ヒトである。
 ワクチンの有効量は、ウイルスに対する十分な体液性免疫または細胞性免疫を誘発するなどの生物学的効果を達成するのに十分な量をいう。また、投与方法は、吸入、鼻腔内、経口、非経口(例えば皮内、筋肉内、静脈内、腹腔内、および皮下投与)の投与が含まれる。有効量および投与方法は、投与されるヒトの年齢、性別、状態、体重に依存してよい。例えばインフルエンザワクチンの場合、一般には、1ml中に一株あたり15μg以上のHAタンパク質を含むワクチンを、6ヶ月以上3歳未満の者には0.25mlを皮下に、3歳以上13歳未満の者には0.5mlを皮下に、およそ2~4週間の間隔をおいて2回注射する。13歳以上の者については、0.5mlを皮下に、1回、又は、およそ1~4週間の間隔をおいて2回注射する。
 以下に、具体的な実験例をあげて本発明をさらに詳しく説明する。
実施例1:トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子情報に基づく、ボンビュクス・モリで産生するのに適したインフルエンザワクチン開発用DNAの設計
コドン最適化HA遺伝子の核酸配列設計
 2011年に野生のカモで発見された高病原性トリインフルエンザウイルス A/tufted duck/Fukushima/16/2011(H5N1)のHA遺伝子情報を次のように設計変更した。
 まず、トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011(H5N1)のヘマグルチニン(HA)タンパク質のアミノ酸配列(配列番号2)を、Genbank(URL: http://www.ncbi.nlm.nih.gov/genbank/)にAccession No.BAK24078で登録されている遺伝子配列(配列番号1)より予測した。
 次に、予測したアミノ酸配列中の、高病原性に関連すると推定されるArg-Glu-ArgArgLysArg配列(配列番号7)をArg-Glu-ThrArg配列(配列番号8)に置換し、さらにC末端にAsp-Tyr-Lys-Asp-Asp-Asp-Asp-LysからなるFLAGタグ配列(配列番号5)を付加して、弱毒化HAタンパク質アミノ酸配列(配列番号3)を設計した。
 ボンビュクス・モリを用いたタンパク質発現の向上を目的として、コドン最適化を行った。かずさDNA研究所が提供するCodon Usage Databaseから得られるボンビュクス・モリのcodon usage (URL: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=7091)(図1)をもとに、作成されたアミノ酸配列と遺伝子配列の対応表(図2)を作成した。この対応表において、相補鎖に長いコーディングフレームが出来ることで思わぬ副産物が合成されるのを防ぐため、Serの配列は、UCA(最もボンビュクス・モリでの使用頻度も高い)を用い、相補鎖に多くのUGA(終止コドン)が生じるように設計した。設計後の遺伝子配列(配列番号4)と対応するアミノ酸配列を、図3に示す。発現したいタンパク質以外には、大きなコーディングフレームが出来ないことを確認した(図4)。
コドン最適化HA遺伝子の合成およびベクターの構築
 上記設計したコドン最適化HA遺伝子の配列情報を基に、DNAの全合成をタカラバイオ株式会社に依頼した。合成したコドン最適化HA遺伝子DNAをトランスファーベクターであるpBm-8(バキュロテクノロジー社製)にIn-Fusion法(クロンテック社)を用いて挿入し、pBm-8HAを作製した。
コドン最適化HA遺伝子導入バキュロウイルスのボンビュクス・モリへの感染および乳剤の作製
 pBm-8HAとバキュロウイルスより抽出したDNAとをボンビュクス・モリ細胞に同時に導入することにより、細胞上清中にワクチン生産用の組換え体バキュロウイルスを得た。この組換え体バキュロウイルスを、ボンビュクス・モリの蛹に接種した。すなわち、ウイルス力価1×10pfu/ml以上のウイルス原液を昆虫細胞用培地 TC-100で10倍に希釈した。この希釈液50μlを脱皮2日目のボンビュクス・モリの蛹腹部に注射により接種し、その後、蛹を26℃のインキュベーターで飼育した。72時間後、氷上で蛹をハサミにより半分に切り開き中腸をピンセットで取り除いた後、ポッター型ホモジナイザーを用い、フェニールチオ尿酸含有PBS中で破砕乳化した。乳化液にPBSを50mlになるように加え、さらに最終0.01%になるようホルマリンを5μl加えてボンビュクス・モリの蛹乳剤を得た。
HAタンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤をソニケーター(UR-20P、トミー精工製)で5分間超音波処理し、これに固定ニワトリ赤血球を加えてHAタンパク質を回収した。さらにDEAEイオン交換クロマトグラフで精製することにより、タンパク質レベルで、95%以上に精製することができた。精製タンパク質を、ウェスタンブロッティング(1次抗体:抗FLAGマウスモノクローナル抗体、2次抗体:抗マウスIgGウサギポリクローナル抗体)により発現を確認した。図6に示す様に、65kDa付近にバンドが確認された。
HA活性の評価
 インフルエンザウイルスは様々な動物の赤血球と混和すると凝集する性質があり、これは赤血球凝集反応と呼ばれ、ウイルス表面のヘマグルチニン(Haemagglutinin:HA)が赤血球の糖鎖と結合し、複数の赤血球同士を架橋させて大きな凝集体を作ることによる。この性質を利用して、ウイルスを階段希釈したときにどこまで凝集するかを調べることで、原液に含まれるウイルス濃度(HA活性)を算出できるため、インフルエンザウイルスの定量に用いられる。具体的には、96穴のマイクロプレートを用いて、被検体50μlをPBS(リン酸緩衝生理食塩水)50μlで階段希釈した後に、0.5%に調整したニワトリ赤血球を等量加えてよく混和し、30分~60分間室温に静置する。被検体にHA活性があれば赤血球と凝集塊を形成するが、ウイルスが存在しない場合は、凝集塊ができず、プレートの底に日の丸のように沈んでしまう。この日の丸が形成される前の希釈点の倍率を以て、HA凝集活性としてのHA価を表現する。
評価の結果
 得られたHAタンパク質溶液を上記条件で評価した。その結果、HA活性は2,097,152のHA活性を示した。その結果、30頭のボンビュクス・モリ蛹で産生された総HA活性は、2,097,152×50ml=104,857,600となり、蛹1頭当たりのHA活性量は3,495,253となった。組換え体のボンビュクス・モリ1頭のHA活性量のこの値は、1998年にヒト由来の高病原性トリインフルエンザウイルスA/HK/483/97(H5N1)のHA遺伝子をボンビュクス・モリで発現させた時のボンビュクス・モリ1頭の307,160のHA活性のおよそ11.4倍となり、さらに1個の発育鶏卵から産生されるHA活性10,240の、およそ340倍という驚異的なHA活性量の増大ということになる。
HAタンパク質溶液によるニワトリの免疫化
 上記のHAタンパク質溶液を用いて、ニワトリを免疫化した。HA活性を4,096~8,192の間に調整した0.5mlのHAタンパク質溶液を、16日間隔で2回、ニワトリに脚部筋肉接種した。初回接種から33日後、40日後、47日後、および50日後にニワトリから5mlずつ採血した。
免疫化ニワトリにより産生された抗体のHI活性評価
 上記ニワトリ血液をそれぞれ、室温で放置し、その後室温で遠心分離することにより、ニワトリ血清を得た。各々のニワトリ血清の赤血球凝集抑制活性(HI活性)を、以下の方法で検討した。まず、96ウェルプレートを用い、各ウェル25μlを含む、血清の1/2段階希釈列を作製した。次に、各ウェルに25μlの上記HAタンパク質(PBSで8HAに調製したもの)を加えた。プレートを室温で30分間静置後、0.5%/PBSのニワトリ赤血球50μlを各ウェルに加えた。1時間後に、赤血球凝集パターンを観察し、赤血球の凝集がみられる最大の希釈倍率を、HI活性値とした。初回接種後33日後の血清は、8,192のHI活性を示した。
種々のインフルエンザウイルスに対するHI活性の評価
 また、初回接種40日後のニワトリ血清を用いて、種々のインフルエンザウイルスに対するHI活性の有無を検討した。A/chicken/Legok/2004(H5N1)、A/chicken/West Java/2009(H5N1)の各ウイルスを用いて、上記と同様の条件でHI活性を測定した。結果を図7に示す。ニワトリ血清は、全てのウイルスに対して、HI活性を示した。
ショ糖密度勾配によるHAタンパク質溶液の分画
 また、HAタンパク質溶液を、ショ糖密度勾配法により分画した。各分画液のHA活性を、上記と同様の方法で検討した。その結果を図8に示す。天然のウイルスの1.18g/lの浮遊密度である分画4はHA活性を示さなかった。一方、より小さい浮遊密度を示す分画7~9において、HA活性が認められた。
電子顕微鏡によるHAタンパク質溶液分画の観察
 上記のショ糖密度勾配の分画7を、電子顕微鏡で観察した。その結果を図9に示す。スパイクを有する球形で、粒子径が60nm~120nmであるウイルス粒子様構造が認められた。天然のウイルスは、原則として60~150nmの球形、100~1000nmの細長い繊維状、又、80~200nmの環状の形態をしている。これに対し、ボンビュクス・モリ由来のHAタンパク質は図10に示すように、天然ウイルス同様に多彩な形態を示し、球形のものは60~150nm、繊維状が200nm前後、そして環状が60~150nmの形をしていることが本研究で初めて明らかになった。この形態学特徴が、HAタンパク質の、これまでに見られなかった上記強い免疫力に反映されていると考えられる。
 このように、トリインフルエンザウイルスA/tufted duck/Fukushima/16/2011のHAタンパク質の活性量がボンビュクス・モリの蛹で高くなったのは、遺伝情報を背景にしたDNAの設計変更と、これに基づく合成DNAの遺伝子操作が有益に働いた為ではないかと考えられる。更に、ボンビュクス・モリの蛹期を用いて目的遺伝子が高発現したために、得られたワクチンがウイルス粒子様構造を示したと考えられる。このように、遺伝情報を背景にして、DNAの設計変更と合成を利用した新しいワクチンの製造法は、今後、多領域で利用されていくものと考えられる。
 結論としては、この度の、設計変更をしたDNAによる、ボンビュクス・モリを利用したワクチン生産の意義の第一は、ボンビュクス・モリの蛹1頭で、発育鶏卵340個分のワクチン量を生産することである。
実施例2:トリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子情報に基づく、ボンビュクス・モリで産生するのに適したインフルエンザワクチン開発用DNAの設計
 ウイルスは、ヒトも動物も含めて時間の経過に伴って変異することが多いので、先に述べたトリインフルエンザウイルスA/tufted duck/Fukushima/16/2011株のDNA単独では不安が残る。そこで、インドネシアで2008年に分離されたトリインフルエンザウイルスA/chicken/Sukabumi/2008(H5N1)のHA遺伝子配列(配列番号9)より予測されたアミノ酸配列情報(配列番号10に基づき、実施例1と同様にインフルエンザウイルス用ワクチン開発用DNAを設計した(配列番号12)。対応するアミノ酸配列(配列番号11)を、図10に示す。実施例1と同様に、上記開発用DNAを含むバキュロウイルス組み替え体を、ボンビュクス・モリの蛹に摂取してHAタンパク質を合成・回収し、ウェスタンブロットにより発現を確認した(図11)。HA活性を評価したところ、蛹1頭当たりのHA活性量は419,430となった。
実施例3:ボンビュクス・モリで産生するのに適したC型肝炎ウイルスワクチン開発用DNAの設計
 C型肝炎ウイルスの粒子構造は、E1とE2糖タンパク質を含む脂質層で覆われていて、粒子の内部には核タンパク質、又は、コアタンパク質と呼ばれているタンパク質とウイルス遺伝子が納められている。ウイルスが感染を開始するためには、これらE1タンパク質とE2タンパク質が重要な役割を果たしていることが明らかになっており、逆に、E1タンパク質とE2タンパク質は感染防御抗原でもあり、従ってワクチン用タンパクとしても大事な機能をもっている。実際、E1タンパク質とE2タンパク質で試験ワクチンを作り、チンパンジーでの予防効果で、不十分ながら軽度の感染予防効果のあったことも報告されている。ただ、もっと十分な予防効果を期待するためには、より高濃度のE1タンパク質とE2タンパク質が必要である。
コドン最適化Core-E1-E2融合タンパク質遺伝子の核酸配列設計
 そこで、本発明者らは、C型肝炎ウイルスワクチンを開発するために、C型肝炎ウイルスの核(Core)タンパク質-E1タンパク質-E2タンパク質の融合タンパク質発現のための遺伝子情報を設計した。ここで融合タンパク質を設計したのは、同時に発現させることによりウイルス粒子様タンパク質が合成できることを期待したからであった。まず、GenbankにAccession No.ACK28185で登録されているHCV遺伝子のアミノ酸配列中の、Coreタンパク質から、E1タンパク質、E2タンパク質までのアミノ酸配列(配列番号13)に、FLAGタグ配列(配列番号5)を付加して、核酸設計の基となる融合タンパク質のアミノ酸配列を得た(配列番号14)。この融合タンパク質のアミノ酸配列を基に、実施例1と同様にして、コドン最適化Core-E1-E2融合タンパク質の核酸配列を設計した(配列番号15)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図12に示す。
コドン最適化Core-E1-E2融合タンパク質遺伝子のDNA合成およびベクターの構築
 設計したコドン最適化Core-E1-E2融合タンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8Core-E1-E2を作成した。
コドン最適化Core-E1-E2融合タンパク質遺伝子導入バキュロウイルスの感染
 実施例1と同様にしてpBm-8Core-E1-E2を用いてバキュロウイルス組み換え体を得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得た。
Core-E1-E2融合タンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤をソニケーター(UR-20P、トミー精工製)で5分間超音波処理後、蔗糖密度勾配遠心法(蔗糖濃度10-50%、100,000G、24時間)により、Core-E1-E2融合タンパク質を精製した。精製したCore-E1-E2融合タンパク質を実施例1と同様にウェスタンブロッティングによって発現を確認した。図13に示す様に、60kDa付近にバンドが確認された。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
結果の考察
 Core-E1-E2融合タンパク質が連結して発現したとすると83kダルトン以上の分子量を示すことが予想され、従って60kダルトンの分子サイズは Core-E1-E2が細胞内でプロテアーゼによるプロセッシングを受け成熟したE2が合成されたことが示唆された。この事実は、紛れもなくDNAで設計したワクチン用タンパク質が寸分の違いもなく産生されたことを示すもので、タンパクのバンドの濃さから見ても、C型肝炎用ワクチンが効率よく合成されたことが示唆された。
参考例1:トリインフルエンザウイルスA/Shanghai/2/2013(H7N9)インフルエンザウイルスのHA遺伝子情報に基づく、ボンビュクス・モリで産生するのに適したインフルエンザワクチン開発用DNAの設計
 GISAIDにAccession No.EPI439502で登録されている中国で2013年に分離されたトリインフルエンザウイルスA/Shanghai/2/2010(H7N9)のHA遺伝子配列のアミノ酸配列情報(配列番号16)に基づき実施例1と同様にインフルエンザウイルス用ワクチン開発用DNAを設計した(配列番号18)。対応するアミノ酸配列(配列番号17)を、図14に示す。H7N9インフルエンザウイルスによるインフルエンザがヒトにおいて大流行する時に、HAタンパク質の199番目のGluがAspに、234番目のGlyがAspに変異していることが予測されるので、当該変異を導入してある。実施例1と同様に、上記開発用DNAを含むバキュロウイルス組み替え体を、ボンビュクス・モリの蛹に摂取してHAタンパク質を合成・回収し、発現を確認した(図15)。実施例1と同様にして、そのHA活性を評価する。
参考例2:ボンビュクス・モリで産生するのに適した日本脳炎ウイルスワクチン開発用DNAの設計
 日本脳炎ウイルスは、主としてコガタアカイエカによって媒介される脳炎ウイルスで、現在は東南アジアやインド、中国地域で流行している。それを予防するため、ワクチンは同ウイルスに感染させたマウス脳が使用されてきたが、最近では培養細胞でのワクチン用ウイルスが培養されている。しかし、ワクチンの免疫力強化、副作用の削減、生産コストの低下を求めて新しいワクチン開発が求められ、品質の向上に大きな期待が寄せられている。
日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子の核酸配列設計
 そこで、本発明者らは、日本脳炎ウイルスワクチンを開発するために、日本脳炎ウイルスのEタンパク質発現のための遺伝子情報を設計した。まず、GenbankにAccession No.ABQ52691で登録されているアミノ酸配列中のpreMタンパク質から、Mタンパク質、Eタンパク質までのアミノ酸配列(配列番号19)にFLAGタグ配列(配列番号5)を付加して、核酸設計の基となる日本脳炎ウイルスPreM-M-E融合タンパク質のアミノ酸配列を得た(配列番号20)。この日本脳炎ウイルスPreM-M-E融合タンパク質のアミノ酸配列を基に、実施例1と同様にして、日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質の核酸配列を設計した(配列番号21)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図16に示す。
日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子のDNA合成およびベクターの構築
 設計した日本脳炎コドン最適化PreM-M-E融合タンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8JevpMMEを作成する。
日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子導入バキュロウイルスによる感染
 実施例1と同様にしてpBm-8JevpMMEを用いて組み換え体バキュロウイルスを得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得る。
日本脳炎ウイルスPreM-M-E融合タンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤を実施例3と同様に超音波処理し、精製する。精製した日本脳炎ウイルスEタンパク質を実施例3と同様にウェスタンブロッティングによって発現を確認した(図17)。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
参考例3:ボンビュクス・モリで産生するのに適した狂犬病ウイルスワクチン開発用DNAの設計
 狂犬病ウイルスは地球規模に分布し、多くの死亡危害が発生し、有効で安全な、そして安価なワクチン開発が国際的に求められているが、遅々として進んでいないのが現状である。そこで、もし、免疫力が強く、安全で、安価なワクチンが開発されれば、そのニーズは地球規模であると考える。現在使用されているワクチンは、ウサギやヤギ、マウスの脳由来のもので、それに加え、ヒト二倍体細胞、ニワトリ胚細胞が使用されている。今後のワクチン開発は、供給量とコストの面で安価で使用できるコンポーネントワクチンの開発が望まれ、ボンビュクス・モリの利用によるコンポーネントワクチンの開発が成功すれば、その利用は世界的な規模になると考えられる。
狂犬病ウイルスコドン最適化Gタンパク質遺伝子の核酸配列設計
 そこで、本発明者らは、狂犬病ウイルスワクチンを開発するために、狂犬病ウイルスのGタンパク質発現のための遺伝子情報を設計する。まず、GenbankにAccession No.ABX46657で登録されているアミノ酸配列(配列番号22)にFLAGタグ配列(配列番号5)を付加して、核酸設計の基となる狂犬病ウイルスGタンパク質のアミノ酸配列を得た(配列番号23)。この狂犬病ウイルスGタンパク質のアミノ酸配列を基に、実施例1と同様にして、狂犬病ウイルスコドン最適化Gタンパク質の核酸配列を設計した(配列番号24)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図18に示す。
狂犬病ウイルスコドン最適化Gタンパク質遺伝子のDNA合成およびベクターの構築
 設計した狂犬病ウイルスコドン最適化Gタンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8rvGを作成する。
狂犬病ウイルスコドン最適化Gタンパク質遺伝子導入バキュロウイルスによる感染の感染
 実施例1と同様にしてpBm-8rvGを用いてバキュロウイルス組み換え体を得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得る。
狂犬病ウイルスGタンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤を実施例3と同様に超音波処理し生成する。精製した狂犬病ウイルスGタンパク質を実施例3と同様にウェスタンブロッティングによって発現を確認する。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
参考例4:ボンビュクス・モリで産生するのに適した西ナイルウイルスワクチン開発用DNAの設計
 西ナイルウイルスは、アメリカ、東欧やヨーロッパに広がり、近い将来、日本への伝播も危惧されている。カ-トリ-カの生態系に加え、このサイクルからヒトへ、あるいはウマにも伝播していく。未だ利用できるワクチンは無いが、このワクチン開発は世界的に急がれている。ワクチンの研究開発は、アメリカやヨーロッパでも盛んに行われているが、未だ成功していない。そこで、西ナイル熱ワクチンを、安価で大量に生産できれば、世界的に利用できる。
西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子の核酸配列設計
 そこで、本発明者らは、西ナイルウイルスワクチンを開発するために、西ナイルウイルスのPreM-M-E融合タンパク質発現のための遺伝子情報を設計する。まず、GenbankにAccession No.AAT95390で登録されているアミノ酸配列中のpreMタンパク質から、Mタンパク質、Eタンパク質までのアミノ酸配列(配列番号25)にFLAGタグ配列(配列番号5)を付加して、核酸設計の基となる西ナイルウイルスPreM-M-E融合タンパク質のアミノ酸配列を得た(配列番号26)。この西ナイルウイルスPreM-M-E融合タンパク質のアミノ酸配列を基に、実施例1と同様にして、西ナイルウイルスコドン最適化PreM-M-E融合タンパク質の核酸配列を設計した(配列番号27)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図19に示す。
西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子のDNA合成およびベクターの構築
 設計した西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8wnvpMMEを作成する。
西ナイルウイルスコドン最適化Eタンパク質遺伝子導入バキュロウイルスの感染
 実施例1と同様にしてpBm-8wnvpMMEを用いてバキュロウイルス組み換え体を得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得る。
西ナイルウイルスPreM-M-E融合タンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤を実施例3と同様に超音波処理し生成した。精製した西ナイルウイルスPreM-M-E融合タンパク質を実施例3と同様にウェスタンブロッティングによって発現を確認する。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
参考例5:ボンビュクス・モリで産生するのに適したMERSコロナウイルスワクチン開発用DNAの設計
MERSコロナウイルスコドン最適化スパイク糖タンパク質(Sタンパク質)遺伝子の核酸配列設計
 本発明者らは、MERSコロナウイルスワクチンを開発するために、MERSコロナウイルスのSタンパク質発現のための遺伝子情報を設計する。まず、GenbankにAccession No.AGN52936で登録されているアミノ酸配列(配列番号28)にFLAGタグ配列(配列番号5)を付加して、核酸設計の基となる西ナイルウイルスEタンパク質のアミノ酸配列を得た(配列番号29)。このMERSコロナウイルスSタンパク質のアミノ酸配列を基に、実施例1と同様にして、MERSコロナウイルスコドン最適化Sタンパク質の核酸配列を設計した(配列番号30)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図20に示す。
MERSコロナウイルスコドン最適化Sタンパク質遺伝子のDNA合成およびベクターの構築
 設計したMERSコロナウイルスコドン最適化Sタンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8mcvSを作成する。
MERSコロナウイルスコドン最適化Sタンパク質遺伝子導入バキュロウイルスの感染
 実施例1と同様にしてpBm-8mcvSを用いてバキュロウイルス組み換え体を得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得る。
MERSコロナウイルスSタンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤を実施例3と同様に超音波処理し生成した。精製したMERSコロナウイルスSタンパク質を実施例3と同様にウェスタンブロッティングによって発現を確認する。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
参考例6:ボンビュクス・モリで産生するのに適した口蹄疫ウイルスワクチン開発用DNAの設計
口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子の核酸配列設計
 本発明者らは、口蹄疫ウイルスワクチンを開発するために、口蹄疫ウイルスのVP4-VP2-VP3-VP1-2A-3C融合タンパク質発現のための遺伝子情報を設計する。まず、GenbankにAccession No.HV940030で登録されている核酸配列から予想される、アミノ酸配列中のVP4、Vp2、VP1、2A、3Cタンパク質のアミノ酸配列をN末端側からC末端側にむけて結合したアミノ酸配列(配列番号31)にFLAGタグ配列(配列番号5)を付加して、核酸設計の基となる口蹄疫ウイルスのアミノ酸配列を得た(配列番号32)。この口蹄疫ウイルスVP4-VP2-VP3-VP1-2A-3C融合タンパク質のアミノ酸配列を基に、実施例1と同様にして、口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質の核酸配列を設計した(配列番号33)。設計したキメラ合成DNAの核酸配列とアミノ酸配列の対応を図21に示す。
口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子のDNA合成およびベクターの構築
 設計した口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子の核酸配列を基に、実施例1と同様に全長遺伝子DNAを合成し、pBm-8ベクターに挿入し、pBM-8fmdvPを作成する。
口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子導入バキュロウイルスの感染
 実施例1と同様にしてpBm-8fmdvPを用いてバキュロウイルス組み換え体を得、ボンビュクス・モリの蛹に接種し、ボンビュクス・モリ蛹乳剤を得る。
口蹄疫ウイルスVP4-VP2-VP3-VP1-2A-3C融合タンパク質の回収および発現確認
 得られたボンビュクス・モリの蛹乳剤を実施例3と同様に超音波処理し生成した。精製した口蹄疫ウイルスVP4-VP2-VP3-VP1-2A-3C融合タンパク質を実施例3と同様にウェスタンブロッティングによって発現を確認する。
活性の評価
 タンパクの生産量より、免疫反応が予想でき、これによって産生された抗体による中和試験での効果を推定する。
 本発明に係る核酸は、以下の顕著な効果を有する:
1)危険なウイルスを取り扱うことなく、人工合成したDNAを用いることで危険なウイルス由来のタンパク質も得られる。(P4やP3施設を必要とせず、危険なウイルスを取り扱わないので、ウイルスが人に感染したり衣服に付着したりすることで外部に漏れ出る可能性は無く、安全である)。
2)最初から、バイオインフォマティクスに基づき、病原性の低いアミノ酸配列を設計できること。
3)最初から、バイオインフォマティクスおよび進化解析により、将来のアミノ酸変異を予測し設計できること。
4)アミノ酸配列より遺伝子配列を求めており、アミノ酸配列では、例えばHAタンパク質においては、強毒部位とFLAGタグを除いては、元のアミノ酸配列と全く同じであるが、遺伝子配列にすると、そのホモロジーは77%に過ぎない(例えば図5参照)ため、ウイルス遺伝子とは容易に区別が可能である。
5)C末にFLAGタグ配列をつけているため、万一、ウイルスが細胞に感染したとしても、ウイルスのRNPあるいはM1タンパクと相互作用することはないので安全性が高い。
6)ボンビュクス・モリ細胞に最適化したCodon Usageを用いて遺伝子配列を人工的に設計し、ベクターに組み込んでいるため、ボンビュクス・モリ細胞での発現量が、ウイルス遺伝子由来の配列を用いたものより顕著に高い発現量となり、かつ、抗原性は元のウイルスと全く同じである。
7)ボンビュクス・モリ細胞を用いているため、糖鎖構造は複雑でなく、糖鎖による抗原性のマスキング作用は非常に弱い。そのため、ワクチンとしての抗体価上昇は、鶏卵で増殖させたウイルス由来の精製HAタンパク質の340倍の活性量と、遥かに高い結果となった。
8)FLAGタグを用いることで、発現の確認や精製が容易となる。
 このように本願の新しい技術により、ボンビュクス・モリでワクチンを作ることは、より短期間で量産できる上に、低コストで有効成分だけのコンポートワクチンを作ることが出来る。また、同時に卵アレルギーの問題も解決することが可能となる。さらに、発育鶏卵で高度増殖用種ウイルスを作る為の時間を大幅に節約できる、等の優位性が明白である。
 本発明の、ボンビュクス・モリにおける発現にコドン最適化された核酸配列設計に基づく人工合成した核酸は、上記で述べたように、ワクチンを大量に生産するのに有用である。
配列番号1:A/tufted duck/Fukushima/16/2011(H5N1) トリインフルエンザウイルスのHA遺伝子DNA配列
配列番号2:A/tufted duck/Fukushima/16/2011(H5N1) トリインフルエンザウイルスのHAアミノ酸配列
配列番号3:A/tufted duck/Fukushima/16/2011(H5N1)トリインフルエンザウイルスの改変HAアミノ酸配列
配列番号4:A/tufted duck/Fukushima/16/2011(H5N1)トリインフルエンザウイルスのコドン最適化HA遺伝子DNA配列
配列番号5:FLAGタグアミノ酸配列
配列番号6:FLAGタグDNA配列
配列番号7:高病原性アミノ酸配列
配列番号8:低病原性アミノ酸配列
配列番号9:A/chicken/Sukabumi/2008(H5N1)トリインフルエンザウイルスのHA遺伝子DNA配列
配列番号10:A/chicken/Sukabumi/2008(H5N1)トリインフルエンザウイルスのHAアミノ酸配列
配列番号11:A/chicken/Sukabumi/2008(H5N1)トリインフルエンザウイルスの改変HAアミノ酸配列
配列番号12:A/chicken/Sukabumi/2008(H5N1)トリインフルエンザウイルスのコドン最適化HA遺伝子DNA配列
配列番号13:C型肝炎ウイルスのCore-E1-E2融合タンパク質アミノ酸配列
配列番号14:C型肝炎ウイルスの改変Core-E1-E2融合タンパク質アミノ酸配列
配列番号15:C型肝炎ウイルスのコドン最適化Core-E1-E2遺伝子DNA配列
配列番号16:A/Shanghai/02/2013(H7N9)インフルエンザウイルスのHAアミノ酸配列
配列番号17:A/Shanghai/02/2013(H7N9)インフルエンザウイルスの改変HAアミノ酸配
配列番号18:A/Shanghai/02/2013(H7N9)インフルエンザウイルスのコドン最適化HA遺伝子DNA配列
配列番号19:日本脳炎ウイルスのPreM-M-E融合タンパク質アミノ酸配列
配列番号20:日本脳炎ウイルスのPreM-M-E融合タンパク質+FLAGタグアミノ酸配列
配列番号21:日本脳炎ウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列
配列番号22:狂犬病ウイルスのGタンパク質アミノ酸配列
配列番号23:狂犬病ウイルスのGタンパク質+FLAGタグアミノ酸配列
配列番号24:狂犬病ウイルスコドン最適化Gタンパク質遺伝子DNA配列
配列番号25:西ナイルウイルスのPreM-M-E融合タンパク質アミノ酸配列
配列番号26:西ナイルウイルスのPreM-M-E融合タンパク質+FLAGタグアミノ酸配列
配列番号27:西ナイルウイルスコドン最適化PreM-M-E融合タンパク質遺伝子DNA配列
配列番号28:MERSコロナウイルスのSタンパク質アミノ酸配列
配列番号29:MERSコロナウイルスのSタンパク質+FLAGタグアミノ酸配列
配列番号30:MERSコロナウイルスコドン最適化Sタンパク質遺伝子DNA配列
配列番号31:口蹄疫ウイルスのVP4-VP2-VP3-VP1-2A-3C融合タンパク質アミノ酸配列
配列番号32:口蹄疫ウイルスのVP4-VP2-VP3-VP1-2A-3C融合タンパク質+FLAGタグアミノ酸配列
配列番号33:口蹄疫ウイルスコドン最適化VP4-VP2-VP3-VP1-2A-3C融合タンパク質遺伝子DNA配列

Claims (21)

  1.  ウイルスに対するワクチンをボンビュクス・モリ(Bombyx mori)で産生するための、ボンビュクス・モリにおける発現にコドン最適化された該ウイルスの核酸配列を含む核酸。
  2.  ウイルスが、インフルエンザウイルス、C型肝炎ウイルス、日本脳炎ウイルス、狂犬病ウイルス、西ナイルウイルス、MERSコロナウイルス、および口蹄疫ウイルスからなる群より選択される、請求項1に記載の核酸。
  3.  ウイルスが、A型インフルエンザウイルスである、請求項2に記載の核酸。
  4.  ウイルスが、H5型およびH7型からなる群より選択される、請求項3に記載の核酸。
  5.  核酸配列が、インフルエンザウイルスのHAタンパク質をコードする、請求項4に記載の核酸。
  6.  核酸配列が、弱毒化遺伝子改変を有する、請求項5に記載の核酸。
  7.  核酸配列が、配列番号4、配列番号12、配列番号18からなる群より選択される核酸配列である、請求項1~6のいずれか一項に記載の核酸。
  8.  ウイルスが、C型肝炎ウイルスである、請求項2に記載の核酸。
  9.  核酸配列が、C型肝炎ウイルスのE1タンパク質、E2タンパク質および/または核タンパク質をコードする、請求項8に記載の核酸。
  10.  核酸配列が、C型肝炎ウイルスのE1タンパク質、E2タンパク質および核タンパク質をコードする、請求項8に記載の核酸。
  11.  核酸配列が、配列番号15である、請求項10に記載の核酸。
  12.  核酸配列が、配列番号4、12、15、18、21、24、27、30、または33である、請求項2に記載の核酸。
  13.  請求項1~12のいずれか一項に記載の核酸を含む、ベクター。
  14.  請求項13に記載のベクターを用いて産生された組み換え体バキュロウイルス。
  15.  請求項1~12のいずれか一項に記載の核酸、請求項13に記載のベクター、または請求項14に記載の組み換え体バキュロウイルスを含む、ボンビュクス・モリ。
  16.  請求項1~12のいずれか一項に記載の核酸がコードするアミノ酸配列からなる、ポリペプチド。
  17.  請求項1~12のいずれか一項に記載の核酸、請求項13に記載のベクター、請求項14に記載の組み換え体バキュロウイルス、または請求項15に記載のボンビュクス・モリを使用する、ワクチンの生産方法。
  18.  以下の工程:
    1)請求項1~12のいずれか一項に記載の核酸、請求項13に記載のベクター、または請求項14に記載の組み換え体バキュロウイルスを得る工程
    2)請求項1~12のいずれか一項に記載の核酸、請求項13に記載のベクター、または請求項14に記載の組み換え体バキュロウイルスをボンビュクス・モリに導入する工程;および
    3)ボンビュクス・モリからタンパク質を回収する工程
    を含む、請求項17に記載のワクチンの生産方法。
  19.  ウイルスの感染に対する、動物のワクチン接種のための、請求項16に記載のポリペプチドを含むか、または請求項17もしくは18に記載の生産方法に従って生産される、ワクチン。
  20.  ウイルス様粒子構造である、請求項19に記載のワクチン。
  21.  ウイルス様粒子構造の直径が50nm~150nmである、請求項20に記載のワクチン。
PCT/JP2013/069935 2012-07-23 2013-07-23 ワクチン WO2014017493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014526942A JP6205359B2 (ja) 2012-07-23 2013-07-23 ワクチン
EP13822848.1A EP2876161B1 (en) 2012-07-23 2013-07-23 Vaccine
US14/413,700 US9555094B2 (en) 2012-07-23 2013-07-23 Isolated nucleic acid for the production of a vaccine against virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012162413 2012-07-23
JP2012-162413 2012-07-23

Publications (2)

Publication Number Publication Date
WO2014017493A1 true WO2014017493A1 (ja) 2014-01-30
WO2014017493A9 WO2014017493A9 (ja) 2014-12-04

Family

ID=49997302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069935 WO2014017493A1 (ja) 2012-07-23 2013-07-23 ワクチン

Country Status (4)

Country Link
US (1) US9555094B2 (ja)
EP (1) EP2876161B1 (ja)
JP (1) JP6205359B2 (ja)
WO (1) WO2014017493A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119291A1 (ja) * 2014-02-10 2015-08-13 有限会社生物資源研究所 ウイルス様粒子
WO2016179099A1 (en) * 2015-05-04 2016-11-10 Epivax, Inc. Modified h7 hemagluttinin glycoprotein of the influenza a/shanghai/2/2013 h7 sequence
JP2017513501A (ja) * 2014-04-25 2017-06-01 ジェネトン 高ビリルビン血症の処置
EP3626827A1 (en) * 2013-03-28 2020-03-25 Medicago Inc. Influenza virus-like particle production in plants
WO2021002355A1 (ja) 2019-07-03 2021-01-07 アイリス株式会社 インフルエンザウイルス感染症を治療するための医薬組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390878B2 (en) 2011-09-30 2022-07-19 Medicago Inc. Increasing protein yield in plants
SI2760882T1 (sl) 2011-09-30 2023-10-30 Medicago Inc. Povečanje količine virusom podobnih delcev v rastlinah
EP2876161B1 (en) * 2012-07-23 2018-12-05 The Institute of Biological Resources Vaccine
WO2014045254A2 (en) * 2012-09-23 2014-03-27 Erasmus University Medical Center Rotterdam Human betacoronavirus lineage c and identification of n-terminal dipeptidyl peptidase as its virus receptor
AU2014354797C1 (en) * 2013-11-29 2018-02-01 Inovio Pharmaceuticals, Inc. MERS-CoV vaccine
EP3092309B1 (en) 2014-01-10 2021-02-24 Medicago Inc. Cpmv enhancer elements
CN114432435B (zh) * 2022-01-25 2024-05-17 苏州大学 一种基于多角体纳米结构的SARS-Cov-2疫苗及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108480A (ja) * 1989-09-20 1991-05-08 Kokuritsu Yobou Eisei Kenkyusho Ha蛋白の製造法
JP2000230931A (ja) * 1998-12-07 2000-08-22 Katakura Industries Co Ltd 家畜インフルエンザウイルスに対する抗体の検出方法およびこれに用いるキット
WO2005068495A1 (ja) * 2004-01-13 2005-07-28 Toray Industries, Inc. クモ糸タンパク質を含む絹糸および該絹糸を産生するカイコ
WO2007046439A1 (ja) 2005-10-18 2007-04-26 National Institute Of Agrobiological Sciences 抗体を産生するトランスジェニックカイコとその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547871A (en) * 1993-01-25 1996-08-20 American Cyanamid Company Heterologous signal sequences for secretion of insect controlling proteins
JP2010500034A (ja) * 2006-08-09 2010-01-07 メッドイミューン バクシーンズ,インコーポレイティド インフルエンザ赤血球凝集素変異体およびノイラミニダーゼ変異体
CN102304529B (zh) 2011-08-31 2013-12-25 中国农业科学院生物技术研究所 一种兔出血热病毒空衣壳抗原的制备方法
CN102321634B (zh) 2011-08-31 2014-02-12 中国农业科学院生物技术研究所 一种水貂肠炎细小病毒空衣壳抗原粒子的制备方法
EP2876161B1 (en) * 2012-07-23 2018-12-05 The Institute of Biological Resources Vaccine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108480A (ja) * 1989-09-20 1991-05-08 Kokuritsu Yobou Eisei Kenkyusho Ha蛋白の製造法
JP2000230931A (ja) * 1998-12-07 2000-08-22 Katakura Industries Co Ltd 家畜インフルエンザウイルスに対する抗体の検出方法およびこれに用いるキット
WO2005068495A1 (ja) * 2004-01-13 2005-07-28 Toray Industries, Inc. クモ糸タンパク質を含む絹糸および該絹糸を産生するカイコ
WO2007046439A1 (ja) 2005-10-18 2007-04-26 National Institute Of Agrobiological Sciences 抗体を産生するトランスジェニックカイコとその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUNIAKI NEROME: "Kaiko ni Okeru Influenza Vaccine no Seisan to sono Riyoho", JAPANESE JOURNAL OF BACTERIOLOGY, vol. 46, no. 1, 1991, pages 71, XP055188905 *
MAEDA, S. ET AL., NATURE, vol. 315, 1985, pages 592 - 594
See also references of EP2876161A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626827A1 (en) * 2013-03-28 2020-03-25 Medicago Inc. Influenza virus-like particle production in plants
WO2015119291A1 (ja) * 2014-02-10 2015-08-13 有限会社生物資源研究所 ウイルス様粒子
JPWO2015119291A1 (ja) * 2014-02-10 2017-03-30 有限会社生物資源研究所 ウイルス様粒子
JP2017513501A (ja) * 2014-04-25 2017-06-01 ジェネトン 高ビリルビン血症の処置
WO2016179099A1 (en) * 2015-05-04 2016-11-10 Epivax, Inc. Modified h7 hemagluttinin glycoprotein of the influenza a/shanghai/2/2013 h7 sequence
CN107921097A (zh) * 2015-05-04 2018-04-17 埃皮瓦克斯公司 流感a/shanghai/2/2013 h7序列的改性h7血凝素糖蛋白
JP2018515074A (ja) * 2015-05-04 2018-06-14 エピバックス インコーポレーテッド インフルエンザa/上海/2/2013 h7配列の改変h7赤血球凝集素糖タンパク質
US10286063B2 (en) 2015-05-04 2019-05-14 Epivax, Inc. Modified H7 hemagglutinin glycoprotein of the Influenza A/Shanghai/2/2013 H7 sequence
AU2016258929B2 (en) * 2015-05-04 2020-10-08 Epivax, Inc. Modified H7 hemagluttinin glycoprotein of the influenza A/Shanghai/2/2013 H7 sequence
WO2021002355A1 (ja) 2019-07-03 2021-01-07 アイリス株式会社 インフルエンザウイルス感染症を治療するための医薬組成物

Also Published As

Publication number Publication date
EP2876161A4 (en) 2016-03-23
EP2876161B1 (en) 2018-12-05
JPWO2014017493A1 (ja) 2016-07-11
EP2876161A1 (en) 2015-05-27
US9555094B2 (en) 2017-01-31
US20150140103A1 (en) 2015-05-21
JP6205359B2 (ja) 2017-09-27
WO2014017493A9 (ja) 2014-12-04

Similar Documents

Publication Publication Date Title
JP6205359B2 (ja) ワクチン
CN111592602B (zh) 一种β冠状病毒抗原、其制备方法和应用
KR101782451B1 (ko) 인간 엔테로바이러스에 대한 백신
EP1996711B1 (en) Novel plant virus particles and methods of inactivation thereof
CN102574897B (zh) 嵌合蛋白
KR20150043516A (ko) 프라젤린 융합 단백질 및 사용 방법
TWI695842B (zh) 類黃熱病毒粒子
TW200914043A (en) PRRSV GP5 based compositions and methods
JP7382634B2 (ja) 交差免疫抗原ワクチン及びその調製方法
JP2023511444A (ja) 安定化されたnaを有する組換えインフルエンザウイルス
WO2011014416A2 (en) High yield yellow fever virus strain with increased propagation in cells
WO2019163781A1 (ja) エンテロウイルスワクチン
WO2015119291A1 (ja) ウイルス様粒子
RU2358981C2 (ru) Универсальная вакцина против вируса гриппа птиц
WO2006009011A1 (ja) コロナウイルススパイクs1融合蛋白及びその発現ベクター
CN114717205A (zh) 一种冠状病毒RBDdm变异体及其应用
KR20150139528A (ko) 피코르나바이러스 단백질의 증가된 발현
CN113827714A (zh) 一种h7n9亚型禽流感病毒样颗粒疫苗制剂及制备和应用
CN108676078B (zh) 引起坦布苏病毒抗体依赖增强作用的抗原的应用
CN1563088A (zh) 一种抗流行性感冒特异性复合IgY及其新型制剂
TWI359867B (en) Iridovirus vaccine
JP6432896B2 (ja) 日本脳炎ウイルス用ワクチン及び、その製造方法
TW201139668A (en) Method for producing recombinant virus
CN114409802B (zh) 禽流感病毒三聚体亚单位疫苗及其应用
CN115894713B (zh) 异源三聚体化融合蛋白、组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526942

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14413700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500908

Country of ref document: ID

Ref document number: 2013822848

Country of ref document: EP