WO2007026946A1 - ハイブリッド自動車およびその制御方法 - Google Patents

ハイブリッド自動車およびその制御方法 Download PDF

Info

Publication number
WO2007026946A1
WO2007026946A1 PCT/JP2006/317686 JP2006317686W WO2007026946A1 WO 2007026946 A1 WO2007026946 A1 WO 2007026946A1 JP 2006317686 W JP2006317686 W JP 2006317686W WO 2007026946 A1 WO2007026946 A1 WO 2007026946A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mode
power source
storage device
travel mode
Prior art date
Application number
PCT/JP2006/317686
Other languages
English (en)
French (fr)
Inventor
Hichirosai Oyobe
Makoto Nakamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06797562.3A priority Critical patent/EP1920985B1/en
Priority to CN2006800318751A priority patent/CN101253089B/zh
Priority to US11/919,501 priority patent/US7847495B2/en
Publication of WO2007026946A1 publication Critical patent/WO2007026946A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/32Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/476Regeneration of particle filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a hybrid vehicle, and more particularly, to a hybrid vehicle capable of traveling by switching between a hybrid mode in which a plurality of power sources are driven and an electric travel mode in which only the power from a power generation device is used.
  • Hybrid vehicles have attracted a great deal of attention due to environmental issues.
  • Hybrid vehicles are vehicles equipped with multiple power sources.
  • hybrid vehicles that use power storage devices (batteries, capacitors, etc.) and motors as power sources have already been put into practical use.
  • Fuel cell vehicles equipped with a fuel cell as a power source are also attracting attention.
  • vehicles equipped with power storage devices such as batteries and capacitors as power sources also have multiple power sources. This is a hybrid vehicle equipped with a power source. s
  • hybrid vehicle having an external charging function for charging a power storage device using an external power source is known.
  • hybrid vehicles with an external charging function for example, if the power storage device can be charged from a commercial power source for home use, the number of times that the user has to go to the refueling station for fuel supply is reduced. can get.
  • Japanese Laid-Open Patent Publication No. 8-15 4 30 7 discloses a hybrid vehicle having a charging function for charging a power storage device from the outside of the vehicle.
  • This hybrid vehicle includes a battery that can be charged by an external charger, an electric motor that drives a wheel by electric power from a battery, a control means that controls the operation of the electric motor, and a direct or direct drive for driving the wheel.
  • An internal combustion engine that is used indirectly; and a travel time-related amount calculating means that calculates an amount related to the travel time after the battery is charged by an external charger.
  • control The control means limits the output of the electric motor when the travel time related quantity calculated by the travel time related quantity calculation means reaches a predetermined amount.
  • the output of the electric motor is limited if the vehicle runs for a long time without external charging, and the output of the electric motor is necessarily limited if the vehicle continues to run while using fuel by the internal combustion engine. So the driver is prompted to perform external charging. Therefore, according to this hybrid vehicle, the dependence on the internal combustion engine can be reduced.
  • the hybrid vehicle disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-15 4 30 7 restricts the operation of the internal combustion engine.
  • the electric travel mode (EV mode) will be the main driving mode that uses only the power from the power storage device. It is expected that the operating frequency of power sources (such as internal combustion engines and fuel cells) will decrease.
  • problems such as being unable to maintain a good state or delaying the discovery of an abnormality may occur.
  • a non-operating state of an internal combustion engine may occur for a long time. If it continues, the condition of the internal combustion engine will worsen, and it may lead to a serious failure by delaying the discovery of the abnormality.
  • the EV mode when the EV mode is mainly used, it may be possible for a user to enjoy driving while driving other power sources (for example, driving while driving an internal combustion engine). Disclosure of the invention
  • an object of the present invention is to provide a hybrid vehicle capable of forcibly operating a power source that has been operated less frequently.
  • the hybrid vehicle includes the first and second power sources, the first travel mode (EV mode) in which the second power source is stopped, and the first and second power sources.
  • the second driving mode hybrid mode (HV mode)
  • HV mode hybrid mode
  • a control unit for controlling the second power source, and an input device for switching the traveling mode to the second traveling mode during traveling in the first traveling mode.
  • the traveling mode is switched from the first traveling mode to the second traveling mode. Instead, the second power source is driven.
  • the driver can appropriately maintain the state of the second power source by appropriately operating the input device. It can also be detected early if an abnormality occurs in the second power source. Furthermore, it can meet the user's desire to enjoy driving with the second power source.
  • the first power source includes a first rotating electrical machine and a power storage device that supplies power to the first rotating electrical machine.
  • the second power source includes an internal combustion engine.
  • the first travel mode is an electric travel mode (EV mode) in which the internal combustion engine is stopped and the first rotating electrical machine is driven to travel
  • the second travel mode is the drive of the first rotating electrical machine and the internal combustion engine.
  • EV mode electric travel mode
  • HV mode hybrid mode
  • the state of the internal combustion engine can be kept good. It can also be detected early when an abnormality occurs in the internal combustion engine. In addition, it can meet the demands of users who want to enjoy driving with an internal combustion engine.
  • the first power source includes a rotating electrical machine and a power storage device capable of supplying electric power to the rotating electrical machine.
  • the second power source includes a fuel cell that can supply electric power to the rotating electrical machine.
  • the first travel mode is an electric travel mode (EV mode) in which the fuel cell is stopped and the rotating electrical machine is driven using the electric power from the power storage device.
  • the second travel mode is a fuel cell and This is a hybrid mode (HV mode) in which the rotating electrical machine is driven using electric power from the power storage device.
  • the state of the fuel cell can be kept good. It can also be detected early when an abnormality occurs in the fuel cell.
  • the hybrid vehicle further includes a power input unit for receiving power supplied from outside the vehicle and charging the power storage device.
  • the power storage device can be charged from the power input unit using an electric power sample outside the vehicle, the chance of traveling in the electric travel mode (EV mode) can be further increased. It is possible to reduce fuel consumption by the power source.
  • an input device that can switch from the electric travel mode to the hybrid mode (HV mode) is provided where the above-mentioned problem due to the prolonged non-operation time of the second power source becomes more prominent. Therefore, the second power source can be driven appropriately. Therefore, according to this hybrid vehicle, it is possible to prevent the second power source from being in a non-operating state for a long period of time while suppressing fuel consumption by the second power source.
  • the hybrid vehicle includes a timing unit that counts the non-operation time of the second power source, and a notification unit that prompts the driver to operate the input device when the non-operation time exceeds the first predetermined time. Further prepare.
  • the driver when the non-operating time of the second power source becomes equal to or longer than the first predetermined time, the driver is prompted to operate the input device by the notification unit, so that the driver can operate the input device. Forgetfulness is prevented. Therefore, according to the hybrid vehicle, it is possible to prevent the second power source from being inactive for a long time.
  • control unit sets the travel mode to the first travel mode (EV mode) when the non-operation time of the second power source is equal to or longer than the second predetermined time longer than the first predetermined time.
  • EV mode first travel mode
  • HV mode second driving mode
  • the control mode is changed from the first driving mode to the second driving mode by the control unit. And the second power source is driven. Therefore, according to this hybrid vehicle, it is possible to reliably prevent the second power source from remaining in a non-operating state for a long time. More preferably, when the operating time of the second power source is shorter than the third predetermined time, the time measuring unit counts the non-operating time on the assumption that the non-operating state of the second power source is continuing.
  • the second power source can only be used for a short period of time that can contribute to maintaining the state of the second power source in good condition and revealing the abnormality occurring in the second power source.
  • the second power source is considered to be inactive even if the second power source actually operates. Therefore, according to this hybrid vehicle, it is possible to appropriately notify the driver of the timing at which the second power source should be driven.
  • the hybrid vehicle further includes a detection unit that detects a remaining energy level of the second power source.
  • the control unit stops switching from the first travel mode (EV mode) to the second travel mode (HV mode).
  • control unit does not switch from the first travel mode to the second travel mode when the remaining energy of the second power source is small. The situation where the second power source is driven despite the small amount is avoided. Therefore, according to this hybrid vehicle, unnecessary switching of the driving mode can be prevented.
  • the hybrid vehicle can generate electric power using an electric power input unit for receiving electric power applied from the outside of the vehicle to charge the electric storage device and an output of the internal combustion engine, and supply the generated electric power to the electric storage device
  • a second rotary electric machine for receiving electric power applied from the outside of the vehicle to charge the electric storage device and an output of the internal combustion engine, and supply the generated electric power to the electric storage device
  • a second rotary electric machine for receiving electric power applied from the outside of the vehicle to charge the electric storage device and an output of the internal combustion engine, and supply the generated electric power to the electric storage device
  • the first and second rotating electric machines include first and second three-phase coils as stator coils, respectively.
  • the power input unit includes a first terminal connected to the neutral point of the first three-phase coil and a second terminal connected to the neutral point of the second three-phase coil.
  • the inverter control unit controls the first and second inverters so that AC power applied between the first and second terminals is converted into DC power and supplied to the power storage device.
  • the second power source can be driven by switching to the second travel mode (HV mode) while traveling in the first travel mode (EV mode).
  • the state of the power source of 2 can be kept good. It can also be detected early if an abnormality occurs in the second power source. Furthermore, it can meet the user's desire to enjoy driving with the second power source.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a functional block diagram of the control device shown in FIG.
  • FIG. 3 is a functional block diagram of the converter control unit shown in FIG.
  • FIG. 4 is a functional block diagram of the first and second inverter control units shown in FIG.
  • FIG. 5 is a simplified diagram of the block diagram of FIG.
  • FIG. 6 is a diagram showing the control state of the transistor during charging.
  • FIG. 7 is a flowchart showing the control structure of the program related to the determination of charging start by the control device shown in FIG.
  • FIG. 8 is a diagram showing a normal change in S OC of the power storage device shown in FIG.
  • FIG. 9 is a diagram illustrating a change in S OC of the power storage device when traveling in the EV mode continues.
  • FIG. 10 is a flowchart showing the control structure of the program related to the operation of the HV mode transition switch shown in FIG.
  • FIG. 11 is a flowchart showing a control structure of a program related to control when the driver does not turn on the HV mode transition switch.
  • Fig. 1 2 shows the control structure of the program for counting the engine stop time It is a flowchart which shows. '
  • FIG. 13 is a diagram showing a change in the SOC of the power storage device when the travel mode is forcibly switched from the EV mode to the HV mode.
  • FIG. 14 is a schematic block diagram of a hybrid vehicle according to Embodiment 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • hybrid vehicle 100 includes power storage device B, boost converter 10, inverters 20 and 30, power supply lines PL 1 and PL 2, ground line SL, and U-phase lines UL l and UL. 2, V-phase lines VL 1 and VL 2, W-phase lines WL 1 and WL 2, motor generators MG 1 and MG 2, engine 4, fuel tank 58, power distribution mechanism 3, and wheels 2 Prepare.
  • the engine 4 receives power from the fuel tank 58 and generates power.
  • the fuel tank 58 supplies fuel to the engine 4.
  • the fuel tank 58 detects the remaining amount of fuel and outputs a signal FUEL indicating the remaining amount of fuel to the control device 60 described later.
  • the power distribution mechanism 3 is a mechanism that is coupled to the engine 4 and the motor generators MG1 and MG2 and distributes power between them.
  • a planetary gear mechanism having three rotation shafts of a sun gear, a planetary carrier, and a ring gear can be used. These three rotating shafts are connected to the rotating shafts of engine 4 and motor generators MG1 and MG2, respectively.
  • the engine 4 and the motor generators MG 1 and MG 2 can be mechanically connected to the power distribution mechanism 3 by making the rotor of the motor generator MG 1 hollow and passing the crankshaft of the engine 4 through the center thereof.
  • the rotating shaft of motor generator MG 2 is coupled to wheel 2 by a reduction gear and an operation gear (not shown).
  • the motor A speed reducer for the rotating shaft of the MG 2 may be further incorporated.
  • Motor generator MG 1 operates as a generator driven by engine 4 and is incorporated in hybrid vehicle 100 as an electric motor that can start engine 4, and motor generator MG 2 It is installed in hybrid vehicles as a motor that drives wheels 2 as drive wheels.
  • Motor generators MG 1 and MG 2 are three-phase AC motors, for example, three-phase AC synchronous motors.
  • Motor generator MG 1 includes, as a stator coil, a three-phase coil including U-phase coil / rail Ul, V-phase coil V 1 and W-phase coil W 1.
  • Motor generator MG 2 includes a three-phase coil consisting of U-phase coil U 2, V-phase coil V 2 and W-phase coil W 2 as a stator coil.
  • Motor generator MG 1 generates a three-phase AC voltage using the output of engine 4, and outputs the generated three-phase AC voltage to inverter 20. Motor generator MG 1 generates driving force by the three-phase AC voltage received from inverter 20 and starts engine 4.
  • Motor generator MG 2 generates vehicle driving torque by the three-phase AC voltage received from inverter 30. Motor generator MG 2 generates a three-phase AC voltage and outputs it to inverter 30 during regenerative braking of the vehicle.
  • the power storage device B is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as nickel metal hydride ion. Power storage device B outputs DC power to boost converter 10. In addition, power storage device B is charged by the DC voltage output from boost converter 10. Note that a large-capacity capacitor may be used as the power storage device B.
  • Boost converter 10 includes a reactor, npn transistors Q 1 and Q 2, and diodes D l and D 2.
  • One end of the rear tuttle L is connected to the power supply line PL 1 and the other end is connected to the connection point of the npn transistors Q 1 and Q 2.
  • the n P n- type transistors Q 1 and Q 2 are connected in series between the power supply line PL 2 and the ground line SL, and receive the signal PWC from the control device 60 as a base.
  • the collector side collects Diodes D1 and D2 are connected to each other so that current flows to the inverter side.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MO SFET A power switching element such as a metal oxide semiconductor field-effect transistor can be used.
  • Inverter 20 includes a U-phase arm 22, a V-phase arm 24, and a W-phase arm 26.
  • U-phase arm 22, V-phase arm 24 and W-phase arm 26 are connected in parallel between power line P L 2 and ground line S L.
  • U-phase arm 2 2 includes npn-type transistors Q 1 1 and Q 1 2 connected in series
  • V-phase arm 2 4 includes npn-type transistors Q 1 3 and Q 1 4 connected in series
  • W-phase arm 26 includes npn transistors Q 1 5 and Q 1 6 connected in series. Between the collector emitters of the npn transistors Q 1 1 to Q 16, diodes D 1 1 to D 16 that flow current from the emitter side to the collector side are respectively connected. And the connection point of each npn-type transistor in each phase arm is different from the neutral point N 1 of each phase coil of motor generator MG 1 via U, V, W phase lines UL 1, VL 1, WL 1 Each is connected to the coil end.
  • Inverter 30 includes U-phase arm 3 2, V-phase arm 3 4, and W-phase arm 3 6.
  • U-phase arm 3 2, V-phase arm 3 4, and W-phase arm 3 6 are connected in parallel between power supply line P L 2 and ground line S L.
  • U-phase arm 3 2 includes npn transistors Q 2 1 and Q 2 2 connected in series
  • V-phase arm 3 4 includes an npn transistor Q 2 3 and Q 2 4 connected in series
  • the W-phase arm 36 includes npn transistors Q 2 5 and Q 2 6 connected in series. Between the collector and emitter of each npn-type transistor Q 2 1 to Q 26, diodes D 21 to D 26 that flow current from the emitter side to the collector side are respectively connected. Also in inverter 30, the connection point of each npn transistor in each phase arm is in each phase coil of motor generator MG 2 via U, V, W phase lines UL 2, VL 2, WL 2. It is connected to the coil end different from the sex point N2.
  • Hybrid vehicle 100 further includes capacitors C 1 and C 2, relay circuit 40, connector 50, HV mode transition switch 52, control device 60, AC lines ACL l and ACL 2, and voltage sensors 71 to 74. And current sensors 80 and 8 2.
  • Capacitor C 1 is connected between power supply line P L 1 and ground line S L to reduce the influence on power storage device B and boost converter 10 due to voltage fluctuation. Voltage V L between power line PL 1 and ground line S L is measured by voltage sensor 73.
  • Capacitor C 2 is connected between power supply line PL 2 and ground line S L to reduce the influence on inverters 20 and 30 and boost converter 10 due to voltage fluctuations. Voltage VH between line PL 2 and ground line SL is measured by voltage sensor 72.
  • Boost converter 10 boosts a DC voltage supplied from power storage device B via power supply line PL1, and outputs the boosted voltage to power supply line PL2. More specifically, the boosting comparator 10 accumulates the current that flows according to the switching operation of the npn transistor Q2 as magnetic field energy in the rear tuttle L based on the signal PWC from the control device 60, and accumulates the accumulated current. The boosting operation is performed by discharging the generated energy by flowing current to the power supply line PL 2 through the diode D 1 in synchronization with the timing when the npn transistor Q 2 is turned off.
  • Boost converter 10 steps down DC voltage received from one or both of inverters 20 and 30 via power line PL 2 to voltage level of power storage device B based on signal PWC from control device 60.
  • inverter 20 Based on signal PWM1 from control device 60, inverter 20 converts the DC voltage supplied from power supply line PL2 into a three-phase AC voltage to drive motor generator MG1.
  • motor generator MG 1 is driven so as to generate torque specified by torque command value TR 1.
  • Inverter 20 receives the output from engine 4 and converts the three-phase AC voltage generated by motor generator MG 1 into a DC voltage based on signal PWM1 from controller 60. Output to line PL 2.
  • Inverter 30 converts a DC voltage supplied from power supply line PL 2 into a three-phase AC voltage based on signal PWM2 from control device 60, and drives motor generator MG2. As a result, motor generator MG 2 is driven to generate torque specified by torque command value TR 2. Further, the inverter 30 converts the three-phase AC voltage generated by the motor generator MG 2 in response to the rotational force from the drive shaft to the DC voltage based on the signal P WM 2 from the control device 60 during the regenerative braking of the vehicle. Then, the converted DC voltage is output to the power supply line PL2.
  • regenerative braking refers to braking with regenerative power generation when the driver of the hybrid vehicle 100 is operated, or turning off the acceleration pedal while driving, although the foot brake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating regenerative power.
  • the relay circuit 40 includes relays RY1 and RY2.
  • the relays RY1 and RY2 for example, a mechanical contact relay can be used, but a semiconductor relay may be used.
  • Relay RY1 is provided between AC line ACL 1 and connector 50, and is turned ON / OFF according to signal CNTL from control device 60.
  • Relay RY2 is provided between AC line ACL 2 and connector 50, and is turned ON / OFF according to signal CNTL from control device 60.
  • the relay circuit 40 connects / disconnects the AC lines ACL 1 and ACL 2 to / from the connector 50 in accordance with the signal CNTL from the control device 60. That is, when the relay circuit 40 receives an H (logic high) level signal CNTL from the control device 60, the relay circuit 40 electrically connects the AC lines ACL 1 and ACL 2 to the connector 50, and from the control device 60 to the L ( When logic low level signal CNTL is received, AC lines ACL 1 and ACL 2 are electrically disconnected from connector 50.
  • Connector 50 includes first and second terminals (not shown) for receiving AC power from commercial power source 55 outside the vehicle.
  • the first and second terminals are connected to relays RY1 and RY2 of relay circuit 40, respectively.
  • the line voltage V AC of the AC lines ACL 1 and ACL 2 is measured by the voltage sensor 74, and the measured value is transmitted to the control device 60.
  • HV mode transition switch 52 allows the driver to switch to driving mode while driving in EV mode. This switch is used to switch from EV mode to HV mode.
  • the EV mode is a traveling mode in which the engine 4 and the motor generator MG1 are stopped and the electric storage is performed using the power storage device B and the motor generator MG2 as power sources.
  • the HV mode is a travel mode in which the engine 4 and the motor generator MG1 are driven and the engine 4, the power storage device B, and the motor generator MG2 are used as power sources.
  • the HV mode transition switch 52 outputs an H level signal to the control device 60 when turned on by the driver. Also, the HV mode transition switch 52 is configured to be lit, and is lit in response to a lighting command from the control device 60.
  • Voltage sensor 71 detects voltage VB of power storage device B and outputs the detected voltage VB to control device 60.
  • Voltage sensor 73 detects the voltage across capacitor C 1, that is, the input voltage VL of boost converter 10, and outputs the detected voltage VL to control device 60.
  • the voltage sensor 72 detects the voltage across the capacitor C 2, that is, the output voltage VH of the boost converter 10 (corresponding to the input voltage of the inverters 20 and 30; the same shall apply hereinafter) and detects the detected voltage VH. Output to control device 60.
  • Current sensor 80 detects motor current MCRT 1 flowing through motor generator MG 1 and outputs the detected motor current MCRT 1 to control device 60.
  • Current sensor 82 detects motor current MCRT 2 flowing in motor generator MG 2 and outputs the detected motor current MCRT 2 to control device 60.
  • the control device 60 is composed of a motor generator MG1, MG2 torque command values TR1, TR2 and motor rotation speed MRN1, MRN2, voltage VL from the voltage sensor 73, which are output from an HV—ECU (Electronic Control Unit) (not shown). Then, based on voltage VH from voltage sensor 72, signal PWC for driving boost converter 10 is generated, and the generated signal PWC is output to boost converter 10.
  • HV—ECU Electronic Control Unit
  • Control device 60 generates signal PWM1 for driving motor generator MG 1 based on voltage VH, motor current MCRT 1 of motor generator MG 1 and torque command value TR 1, and generates the generated signal PWM1. Imba Output to data 20. Further, control device 60 generates signal PWM 2 for driving motor generator MG 2 based on voltage VH, motor current MCRT 2 of motor generator MG 2 and torque command value TR 2, and generates the generated signal PWM 2. Output signal PWM2 to inverter 30.
  • control device 60 has neutral points N1, N of the motor generators MG1, MG2 based on a signal IG from an ignition key (or an ignition switch, not shown) and the SOC of the power storage device B.
  • Signals PWM1 and PWM2 for controlling inverters 20 and 30 are generated so that AC power from commercial power supply 55 given between 2 is converted into DC power and power storage device B is charged.
  • control device 60 determines whether or not charging is possible from the outside of the vehicle based on the SOC of power storage device B, and when it is determined that charging is possible, outputs H level signal CNTL to relay circuit 40. On the other hand, when control device 60 determines that power storage device B is almost fully charged and cannot be charged, control device 60 outputs L level signal CNTL to relay circuit 40, and signal IG indicates a stopped state. If this happens, stop inverters 20 and 30.
  • control device 60 when the control device 60 receives an H level signal from the HV mode transition switch 52 while traveling in the EV mode, the control device 60 changes the traveling mode from the EV mode to the HV mode under a predetermined condition by a method described later. Transition. Specifically, control device 60 starts engine 4 that has been stopped, and performs hybrid travel using engine 4 and motor generator MG 2 as power sources.
  • the control device 60 turns on the HV mode transition switch 52 under a predetermined condition and turns on the EV mode according to a method described later. Encourage the driver to switch from to HV mode. Then, when the HV mode transition switch 52 is not operated by the driver even when the HV mode transition switch 52 is turned on, the control device 60 forcibly shifts the traveling mode from the EV mode to the HV mode.
  • FIG. 2 is a functional block diagram of the control device 60 shown in FIG.
  • control device 60 includes a converter control unit 61, a first inverter control unit 62, a second inverter control unit 63, and an AC input control unit 64.
  • Converter control unit 61 generates a signal PWC for turning ON / OFF npn transistors Q 1 and Q 2 of boost converter 10 based on voltage VB, voltage VH, torque command values TR 1 and TR 2, and motor rotation speeds MRNl and MRN 2.
  • the generated signal PWC is output to the boost converter 10.
  • the first inverter control unit 62 generates a signal P WM 1 for turning on and off the nn-type transistors Ql 1 to Q16 of the inverter 20 based on the torque command value TR 1 of the motor generator MG 1, the motor current MCRT 1 and the voltage VH. And the generated signal PWM1 is output to the inverter 20.
  • Second inverter control unit 63 generates a signal PWM2 for turning ON / OFF npn transistors Q21 to Q26 of inverter 30 based on torque command value TR 2 of motor generator MG 2, motor current MCRT 2 and voltage VH.
  • the generated signal PWM 2 is output to the inverter 30.
  • AC input control unit 64 determines the driving state of motor generators MG 1 and MG 2 based on torque command values TR 1 and TR 2 and motor rotational speeds MR Nl and MRN 2, and outputs signal IG and power storage device B SO C Based on the above, the two inverters 20 and 30 are coordinated to convert the AC voltage applied to the connector 50 into DC and boost the voltage to charge the power storage device B.
  • AC input control unit 64 determines that drive state of motor generators MG 1 and MG 2 is in a stopped state and that the ignition key is rotated to the FF position based on signal IG. Then, if the SOC of power storage device B is lower than a predetermined level, a charging operation is performed. Specifically, AC input control unit 64 outputs relays RY1 and RY2 by outputting H level signal CNTL to relay circuit 40. Then, if there is an input of voltage VAC, AC input control unit 64 generates control signal C TL 1 according to this and controls inverters 20 and 30 in a coordinated manner. The AC voltage applied to 0 is converted to DC and boosted to charge power storage device B.
  • AC input control unit 64 determines that motor generators MG 1 and MG 2 are in the drive state or the ignition key is turned to the ON position based on signal IG, and power storage device B If the SOC is higher than the specified level, the charging operation is not performed. Specifically, AC input control unit 64 outputs relay signal RY1 and RY2 by outputting L level signal CNTL to relay circuit 40, generates control signal CTL0, and generates boost converter 10 and inverters 20 and 30. To perform normal operation during vehicle operation.
  • FIG. 3 is a functional block diagram of converter control unit 61 shown in FIG.
  • converter control unit 61 includes an inverter input voltage command calculation unit 1 12, a feedback voltage command calculation unit 1 14, a duty ratio calculation unit 1 16, and a PW M signal conversion unit 1 18. .
  • the inverter input voltage command calculation unit 1 12 calculates the optimum value (target value) of the inverter input voltage, that is, the voltage command VH—com, based on the torque command values TR 1 and TR 2 and the motor speed MRN1 and MRN 2. Then, the calculated voltage command VH—com is output to the feedback voltage command calculation unit 114.
  • the feedback voltage command calculation unit 1 14 is based on the output voltage VH of the boost converter 10 detected by the voltage sensor 72 and the voltage command VH—com from the inverter input voltage command calculation unit 1 1 2. Calculates feedback voltage command VH—com _f b for controlling output voltage VH to voltage command VH—com, and outputs the calculated feedback voltage command VH—com — fb to duty ratio calculation unit 1 1 6 .
  • the duty ratio calculation unit 1 16 Based on the voltage VB from the voltage sensor 71 and the feedback voltage command V H_c om_f b from the feedback voltage command calculation unit 114, the duty ratio calculation unit 1 16 converts the output voltage VH of the boost converter 10 to the voltage command VH— Calculate the duty ratio to control c om and output the calculated duty ratio to PWM signal converter 118.
  • the PWM signal converter 118 receives the duty received from the duty ratio calculator 1 16.
  • the PWM (Pulse Width Modulation) signal is generated to turn on and off the np n-type transistors Ql and Q2 of the boost converter 10 based on the key ratio, and the generated PWM signal is used as the signal PWC for the npn type of the boost converter 10 Output to transistors Ql and Q2.
  • n pn transistor Q 2 in the lower arm of boost converter 10 increases the power storage in reactor L, so that a higher voltage output can be obtained.
  • increasing the ON duty of the upper arm npn transistor Q1 reduces the voltage on the power line PL2. Therefore, the voltage of power supply line PL 2 can be controlled to an arbitrary voltage equal to or higher than the output voltage of power storage device B by controlling the duty ratio of n pn transistors Q 1 and Q 2.
  • the P WM signal conversion unit 118 sets the npn transistor Q 1 to the conductive state regardless of the output of the duty ratio calculation unit 116, and sets the np n type transistor Q2 to the conductive state. Non-conducting state. As a result, a charging current can flow from power supply line PL2 toward power supply line PL1.
  • FIG. 4 is a functional block diagram of the first and second inverter control units 62 and 63 shown in FIG. Referring to FIG. 4, each of first and second inverter control units 62 and 63 includes a motor control phase voltage calculation unit 120 and a PWM signal conversion unit 122.
  • the motor control phase voltage calculation unit 120 receives the input voltage VH of the inverters 20 and 30 from the voltage sensor 72 and receives the motor current MCRT 1 (or MCRT2) flowing in each phase of the motor generator MG1 (or MG2) as the current sensor 80 ( Or 8 Receive from 2) and receive torque command value R1 (or TR2) from HV—ECU. Then, based on these input values, motor control phase voltage calculation unit 120 calculates a voltage to be applied to each phase coil of motor generator MG1 (or MG2), and outputs the calculated phase coil voltage to a PWM signal. Output to the converter 122.
  • the P WM signal conversion unit 122 When receiving the control signal CTL 0 from the AC input control unit 64, the P WM signal conversion unit 122 is based on each phase coil voltage command received from the motor control phase voltage calculation unit 120.
  • PWM 1— 0 (a type of signal PW Ml) that turns on / off each npn transistor Q 11 to Q 16 (or Q 21 to 'Q 26) of inverter 20 (or 30) (or PWM2 — 0 (a type of signal PWM2)) and the generated signal PWM1—0 (or PWM2—0) to each np n-type transistor Ql 1 to Q16 (or ⁇ Output to 321 to ⁇ 326).
  • each npn transistor Q 11 to Q 16 (or Q 21 to Q 26) is switching-controlled, and the motor generator MG 1 (or MG2) force S is output so that the commanded torque is output. Or the current flowing in each phase of MG2) is controlled. As a result, a motor torque corresponding to the torque command value TR 1 (or TR 2) is output.
  • the P WM signal conversion unit 122 receives the control signal CTL 1 from the U phase arm 22 of the inverter 20 (or 30) regardless of the output of the motor control phase voltage calculation unit 120.
  • npn transistors Q11 to Q16 are turned ON and OFF so that AC current of the same phase flows through V phase arm 24 (or 3 4) and W phase arm 26 (or 36)
  • PWM1— 1 a type of signal PWM1
  • PWM2—1 a type of signal PWM2
  • the inverters 20 and 30 are coordinated to convert the AC voltage VAC into a DC charging voltage.
  • FIG. 5 is a simplified diagram of the block diagram of FIG.
  • the U-phase arm of inverters 20 and 30 in FIG. 1 is shown as a representative.
  • the U-phase coil is representative. Is shown.
  • a typical explanation for the U phase is that the same phase current flows through each phase coil, so the other two-phase circuits behave the same as the U phase. As can be seen from FIG.
  • each of the set of U-phase coil U1 and U-phase arm 22 and the set of U-phase coil U2 and U-phase arm 32 has the same configuration as that of boost converter 10. Therefore, for example, it is possible not only to convert an AC voltage of 10 OV to a DC voltage, but also to convert it to a charging voltage of about 20 OV if it is further boosted.
  • FIG. 6 is a diagram showing the control state of the transistor during charging.
  • boost converter 10 has an npn transistor. Transistor Q 1 is turned on, and npn transistor Q 2 is turned off. As a result, boost converter 10 can flow a charging current from power supply line PL 2 toward power supply line P L 1.
  • the npn transistor Q12 is switched with a cycle and a duty ratio corresponding to the voltage VAC, and the npn transistor Q11 is in the OFF state or in synchronization with the conduction of the diode D11.
  • the switching state is controlled to be conducted.
  • the npn transistor Q21 is turned off and the npn transistor Q22 is controlled to the ON state.
  • npn transistor Q11 may be turned on in synchronization with the conduction period of the diode D11. The step-up ratio is determined based on the values of voltage VAC and voltage VH, and the switching period and duty ratio of npn transistor Q12 are determined.
  • boost converter 10 can pass a charging current from power supply line PL2 toward power supply line PL1.
  • the npn transistor Q 22 is switched with a period and a duty ratio corresponding to the voltage VAC, and the npn transistor Q 21 is turned on in synchronization with the OF F state or the conduction of the diode D 21. Controlled to the switching state.
  • the npn transistor Q11 is turned off and the npn transistor Q12 is controlled to be turned on.
  • the npn transistor Q21 may be turned on in synchronization with the conduction period of the diode D21. At this time, the step-up ratio is obtained based on the values of the voltage VAC and the voltage VH, and the switching period and the duty ratio of the n n-type transistor Q 22 are determined.
  • FIG. 7 is a flowchart showing a control structure of a program related to determination of charging start by control device 60 shown in FIG. The process of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
  • control device 60 determines whether or not the ignition key has been turned to the OFF position based on signal IG from the ignition key (step S1). If control device 60 determines that the ignition key has not been turned to the OFF position (NO in step S1), it is inappropriate to connect the charging cable to the vehicle and perform charging, and therefore to step S6. Processing proceeds and control is transferred to the main routine.
  • step S1 it is determined that the ignition key has been turned to the OFF position. (YES in step S1), it is determined that charging is appropriate, and the process proceeds to step S2.
  • step S2 relays RY1 and RY2 are controlled from the non-conductive state to the conductive state, and voltage VAC is measured by voltage sensor 74. If no AC voltage is observed, it is considered that the charging cap / re is not connected to the socket of the connector 50. Therefore, the process proceeds to step S6 without performing the charging process, and the control is transferred to the main routine. Moved.
  • step S3 it is determined whether or not the SOC of power storage device B is smaller than a threshold value S t h (F) indicating a fully charged state.
  • step S4 If S 0 C ⁇ S t'h (F) of power storage device B is satisfied, the process proceeds to step S4 because charging is possible.
  • control device 60 charges power storage device B by cooperatively controlling the two inverters.
  • step S5 a charge stop process is performed. Specifically, inverters 20 and 30 are stopped, relays RY1 and RY2 are opened, and AC power input to hybrid vehicle 1 ° 0 is blocked. Then, the process proceeds to step S6, and the control is returned to the main routine.
  • FIG. 8 shows a normal change in SOC of power storage device B shown in FIG.
  • the vertical axis represents SOC of power storage device B
  • the horizontal axis represents elapsed time.
  • S o represents the control target of S0 C of power storage device B.
  • traveling of hybrid vehicle 100 is started at time t 0 from power storage device B being fully charged. Until SOC of power storage device B reaches control target So at time t1, engine 4 and motor generator MG1 are stopped, and motor generator MG2 is driven using the power stored in power storage device B. Drive in EV mode.
  • FIG. 9 is a diagram illustrating a change in S OC of power storage device B when traveling in the EV mode is continued.
  • traveling of hybrid vehicle 100 starts at time t O from power storage device B being fully charged.
  • the traveling of the hybrid vehicle 100 is completed before SOC reaches the control target S0, and the power storage device B is charged between times t2 and t3.
  • traveling of hybrid vehicle 100 starts again from the state where power storage device B is fully charged.
  • the running mode is not changed from the EV mode to the HV mode, and the vehicle starts running again in the EV mode after charging.
  • a vehicle utilization method becomes more prominent as the storage device B has a larger capacity. Then, the engine 4 is hardly started, and it becomes difficult to keep the engine 4 in a good state as described above.
  • the problem that the abnormality detection is delayed occurs.
  • the driver in order to prevent the above-mentioned adverse effects due to the decrease in the frequency of starting engine 4, the driver can change the driving mode from the EV mode to the HV mode while driving in the EV mode. It is made to be able to.
  • FIG. 10 is a flowchart showing the control structure of the program related to the operation of the HV mode transition switch 52 shown in FIG. It should be noted that the processing shown in this flowchart is also called and executed from the main route every certain time or every time a predetermined condition is satisfied.
  • control device 60 determines whether or not the ignition key has been rotated to the 0N position on the basis of signal IG from the ignition key (step S 1 0). If the control device 60 determines that the ignition key has not been rotated to the “N” position (NO in step S 10), it ends a series of processing and returns control to the main routine (step S 60). . If it is determined in step S10 that the ignition key has been turned to the ON position (YES in step S10), the controller 60 determines whether or not the vehicle is currently traveling in the EV mode (step S20). . If control device 60 determines that the vehicle is not traveling in the EV mode (NO in step S20), it ends the series of processes and returns control to the main routine (step S60).
  • step S 20 If it is determined in step S 20 that the vehicle is traveling in the EV mode (step S 20), If it is determined in step S 20 that the vehicle is traveling in the EV mode (step S 20),
  • control device 60 determines whether or not HV mode transition switch 52 is turned on by the driver based on the signal from HV mode transition switch 52 (step S30). When the control device 60 determines that the signal from the HV mode transition switch 52 is at the L level and the HV mode transition switch 52 is not turned on (NO in step S30), the control device 60 terminates the series of processing. Control is returned to the routine (step S60).
  • control device 60 determines that the signal from the HV mode transition switch 52 is at the H level and the HV mode transition switch 52 is turned on by the driver (YES in step S30)
  • the control device 60 starts from the fuel tank 58. It is determined whether or not the value indicated by the signal FUEL is equal to or greater than a threshold value R th indicating a decrease in the remaining fuel amount (step S40).
  • R th a threshold value indicating a decrease in the remaining fuel amount
  • control device 60 shifts the travel mode from EV mode to HV mode (step S50). ) Specifically, the control device
  • Fig. 11 is a flowchart showing the control structure of the program related to the control when the HV mode transition switch 52 is not turned on by the driver. The processing shown in this flowchart is also called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
  • step S 110 and S 120 are the same as the processes in steps S 10 and S 20 shown in FIG. If it is determined in step S 120 that the vehicle is traveling in the EV mode (YES in step S 120), the control device 60 calculates the stop time ⁇ s of the engine 4 (step S 1 30). Specifically, the control device 60 counts the time from the operation stop time of the engine 4 by a timer (not shown). The operation stop time of engine 4 may be stored, and the stop time ⁇ T s may be calculated based on the current time and the operation stop time of engine 4.
  • control device 60 determines whether or not the stop time ⁇ T s of the engine 4 is equal to or longer than a preset threshold time T t h 1 (step S 140). If control device 60 determines that stop time ⁇ s is shorter than threshold time T th 1 (NO in step S 140), it ends a series of processing and returns control to the main routine (step S 1 9 0).
  • step S 140 determines whether or not the value indicated by the fuel tank 58 force and the signal FUEL is equal to or greater than the threshold value R th (step S 150). If control device 60 determines that the value of signal FUEL is smaller than threshold value R th (NO in step S 150), control device 60 does not shift to the HV mode for driving engine 4. That is, the control device 60 invalidates the ON operation of the HV mode transition switch 52, and the control is returned to the main routine (step S 1 90).
  • step S 150 If it is determined in step S 150 that the value of signal FUEL is equal to or greater than the threshold value R th (YES in step S 150), controller 60 issues a lighting command to HV mode transition switch 52. Output (Step S 1 6 0). Then H V mode transition switch 5 2 Power S lights up, prompting the driver to switch to HV mode.
  • the control device 60 determines whether or not the stop time ⁇ T s of the engine 4 is equal to or longer than a preset threshold time T t h 2 (step S 1 7 0).
  • This threshold time T th 2 is longer than the threshold time T th 1 for outputting the lighting command to the HV mode transition switch 52, and the operation is performed even though the HV mode transition switch 52 is lit. This is the time for forcibly shifting the running mode from EV mode to HV mode when the operator does not turn on the HV mode transition switch 52.
  • the control device 60 determines that the stop time ⁇ s is shorter than the threshold time T th 2 (NO in step S 1 70), the series of processing ends, and control is returned to the main routine. (Step S 1 90).
  • control device 60 changes the running mode to EV mode.
  • the mode is forcibly shifted from HV mode to HV mode (step S 1 80).
  • the engine 4 also operates as a power source for the hybrid vehicle 100.
  • the control device 60 ends a series of processes, and the control is returned to the main routine (step S 1 90).
  • the engine 4 when the engine 4 is in a non-operating state for a long time, it is possible to maintain the state of the engine 4 well and to detect an abnormality of the engine 4 at an early stage. In order to achieve this, the engine 4 is driven with the travel mode set to the HV mode. However, even if the engine 4 operates, if the operation time is short, the operation can maintain the above-mentioned purpose, that is, the state of the engine 4 well and detect the abnormality of the engine 4 at an early stage. I can't contribute to doing it. Therefore, even if the engine 4 operates, if the operation time is shorter than a preset threshold time, the engine 4 is continuously regarded as being in a non-operating state.
  • control device 60 determines whether or not engine 4 is operating (step S210). If control device 60 determines that engine 4 is stopped (NO in step S210), it ends a series of processing and returns control to the main routine (step S250).
  • step S210 If it is determined in step S210 that the engine 4 is operating (YES in step S210), the control device 60 calculates the operation fl interval ⁇ o of the engine 4 (step S220). Specifically, the control device 60 counts the time from the operation start time of the engine 4 by a timer (not shown). The operation start time of engine 4 may be stored, and the operation time ⁇ o may be calculated based on the current time and the operation start time of engine 4.
  • control device 60 determines whether or not the operation time ⁇ o of the engine 4 is equal to or longer than a preset threshold time T th h 3 (step S 230). If control device 60 determines that operation time ⁇ To is shorter than threshold time T th 3 (NO in step S230), it terminates a series of processes without resetting engine 4 stop time ⁇ s to zero. Then, control is returned to the main routine (step S 25 0). That is, in this case, the stop time ⁇ ⁇ s of the engine 4 is continuously counted.
  • step S 230 determines whether the operation time ⁇ is greater than or equal to the threshold time T th 3 (YES in step S 230).
  • the control device 60 sets the stop time ⁇ T s of engine 4 to 0. Reset (Step S240).
  • FIG. 13 is a diagram illustrating a change in SOC of power storage device B when the travel mode is forcibly switched from EV mode to HV mode. Note that the case where the driving mode is forcibly switched includes the case where it is switched by the HV mode transition switch 52 and the case where it is forcibly switched by the control device 60 by the processing shown in FIG.
  • the vertical axis represents the SOC of power storage device B
  • the horizontal axis represents the elapsed time. Then, at time t o, it is assumed that traveling of hybrid vehicle 100 starts from power storage device B being fully charged.
  • the driver makes a transition to HV mode.
  • the switch 5 2 is turned on or the driving mode is forcibly switched from the EV mode to the HV mode by the control device 60, the engine 4 is started and the output of the engine 4 is used for the driving force of the vehicle.
  • Motor generator MG 1 generates electricity. That is, after time t 5, traveling is performed in the HV mode in which the power storage device and motor generator MG 2 and engine 4 are used as power sources.
  • the driving mode is switched from the EV mode to the HV mode at the time t5 and the engine 4 is started, for example, if the engine 4 is operated for the above threshold time T th 3 or more, the operation is repeated.
  • the drive mode may be switched to the EV mode.
  • the engine 4 can be driven by switching to the HV mode while traveling in the EV mode, the state of the engine 4 can be kept good. It can also be detected early when an abnormality occurs in the engine 4. Furthermore, it is possible to respond to the user's desire to enjoy driving with the engine 4 running.
  • FIG. 14 is a schematic block diagram of a hybrid vehicle according to the second embodiment of the present invention.
  • hybrid vehicle 10 OA includes power storage device B, boost converter 10, fuel cell 90, hydrogen tank 9 2, inverter 30, motor generator MG 2, and wheels 2, HV mode transition switch 5 2, control device 6 OA, and capacitors C 1 and C 2.
  • the fuel cell 90 is a DC power generation battery that obtains electric energy from chemical reaction energy generated by a chemical reaction between hydrogen supplied from the hydrogen tank 92 and an oxidant.
  • the fuel cell 90 is connected to the power line P L 2 and the ground line S L and supplies the generated DC power to the power line P L 2.
  • the power supply is composed of the power storage device B and the fuel cell 90 in a hybrid configuration.
  • the hybrid vehicle 10 OA according to the second embodiment has the same configuration as that of the hybrid vehicle 100 according to the first embodiment, except that a power source composed of the engine 4 and the motor generator MG 1 is used as a power source composed of the fuel cell 90. It can also be seen as a replacement for the source.
  • the hydrogen tank 92 supplies hydrogen to the fuel cell 90.
  • the hydrogen tank 92 detects the remaining amount of hydrogen and outputs a signal FUEL indicating the remaining amount of hydrogen (for example, a signal corresponding to the pressure in the hydrogen tank 92) to the control device 6OA.
  • Control device 6 O A generates a signal PWC for driving boost converter 10, and outputs the generated signal PWC to boost converter 10.
  • Control device 60 A generates a signal PWM 2 for driving motor generator MG 2, and outputs the generated signal P WM 2 to inverter 30.
  • the controller 6 O A shifts the traveling mode from the EV mode to the HV mode.
  • the EV mode is a travel mode that travels using only the power storage device B as a power source
  • the HV mode is a travel that travels using the power storage device B and the fuel cell 90 as power sources. Mode.
  • control device 6 OA indicates that the remaining amount of hydrogen in the hydrogen tank 92 is reduced based on the signal FUEL from the hydrogen tank 92. If it is determined that the threshold value is less than Rth, the ON operation from switch HV mode 52 is invalidated and the transition from EV mode to HV mode is not performed.
  • the control device 6 OA lights up the HV mode switch 52 and switches the driver from the EV mode to the HV mode. Prompt.
  • the control device 6 O A forcibly shifts the traveling mode from the EV mode to the HV mode.
  • the control device 6OA does not shift from the EV mode to the HV mode when it is determined that the remaining amount of hydrogen in the hydrogen tank 92 is less than the threshold value Rth.
  • the fuel cell 90 can be operated by switching to the HV mode while traveling in the EV mode, the state of the fuel cell 90 is improved. Can keep. It can also be detected early when an abnormality occurs in the fuel cell 90.
  • the HV mode transition switch 5 2 is Not only as an input device for switching the driving mode, but also functions as a notification unit that prompts the driver to perform an input operation by lighting in response to a lighting command from the control devices 60, 6OA.
  • a notification unit may be provided separately. For example, notification by a sound device or display on the operation panel may be performed.
  • AC power from commercial power source 55 is applied between neutral points N 1 and N 2 of motor generators MG 1 and MG 2, and motor generators MG 1 and MG 2 Power storage device B is charged using each phase coil and inverters 20 and 30.
  • the present invention is also applied to a hybrid vehicle equipped with a separate external charging device (AC / DC converter) inside or outside the vehicle. Can do.
  • AC / DC converter AC / DC converter
  • motor generator MG 2 and power storage device B form the “first power source” in the present invention
  • each of engine 4 and fuel cell 90 is the “second power source” in the present invention.
  • the control devices 60, 6OA correspond to the “control unit” in the present invention
  • the HV mode transition switch 52 corresponds to the “input device” and the “notification unit” in the present invention.
  • motor generator MG 2 corresponds to “first rotating electrical machine” and “rotating electrical machine” in the present invention
  • engine 4 corresponds to “internal combustion engine” in the present invention.
  • step S 1 30 executed by the control device 60 corresponds to the process executed by the “timer” in the present invention, and the fuel tank 58 and the hydrogen tank 92 are This corresponds to the “detector” in this invention.
  • connector 50 corresponds to “power input unit” in the present invention
  • motor generator MG 1 corresponds to “second rotating electrical machine” in the present invention.
  • the inverters 20 and 30 correspond to the “second inverter” and the “first inverter” in the present invention, respectively, and the first and second inverter control units 6 2 and 6 3 and AC input control unit 6 4 form an “inverter control unit” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

明細書 ハイプリッド自動車およびその制御方法 技術分野
この発明は、 ハイブリッド自動車に関し、 特に、 複数の動力源を駆動させて走 行するハイプリッドモードと罄電装置からの電力のみを用いて走行する電気走行 モードとを切換えて走行可能なハイプリッド自動車に関する。 背景技術
近年、 環境問題などを背景にハイブリッド自動車 (Hybrid Vehicle) が大きく 注目されている。 ハイブリッド自動車は、 複数の動力源を搭載した自動車であり、 従来のエンジンに加えて蓄電装置 (バッテリやキャパシタなど) とモータとを動 力源とするハイプリッド自動車が既に実用化されている。
また、 動力源として燃料電池 (Fuel Cell) を搭載する燃料電池車も注目され ているが、 燃料電池に加えてパッテリやキャパシタなどの蓄電装置も電源として 搭載した自動車も、 広い意味で複数の動力源を搭載したハイプリッド自動車であ る。 s
—方、 外部電源を用いて蓄電装置を充電する外部充電機能を備えたハイプリッ ド自動車が知られている。 外部充電機能を備えたハイプリッド自動車によれば、 たとえば家庭用の商用電源から蓄電装置の充電を行なうことができれば、 燃料補 給のために補給スタンドに行かなければならない回数が減るといったメリットな どが得られる。
特開平 8— 1 5 4 3 0 7号公報は、 車両外部から蓄電装置への充電機能を備え たハイブリッド自動車を開示する。 このハイブリッド自動車は、 外部充電器によ り充電し得るバッテ'リと、 バッテリからの電力により車輪を駆動する電動機と、 電動機の作動を制御する制御手段と、 車輪の駆動のために直接的または間接的に 使用される内燃機関と、 外部充電器によりバッテリの充電が行なわれてからの走 行時間に関係する量を算出する走行時間関係量算出手段とを備える。 そして、 制 御手段は、 走行時間関係量算出手段によって算出された走行時間関係量が所定量 に達すると、 電動機の出力を制限する。
このハイプリッド自動車においては、 外部充電を行なわないで長時間走行する と電動機の出力が制限され、 必然的に内燃機関により燃料を使用しながらの走行 を続けると電動機の出力が制限されることになるので、 ドライバは、 外部充電を 行なうように促される。 したがって、 このハイブリッド自動車によれば、 内燃機 関への依存度を低減させることができる。
上記の特開平 8— 1 5 4 3 0 7号公報に開示されるハイブリッド自動車は、 内 燃機関の動作を制限するものである。 また、 その他のハイブリッド自動車におい ても、 今後蓄電装置が大容量化し、 さらに外部充電機能まで設けられると、 蓄電 装置からの電力のみで走行する電気走行モード (E Vモード) が主となり、 その 他の動力源 (内燃機関や燃料電池など) の動作頻度が少なくなることが予想され る。
しかしながら、 動作頻度の少ない動力源においては、 状態を良好に保つことが できなくなったり、 異常の発見が遅れる可能 1"生があるといった問題が発生する。 たとえば、 内燃機関の非動作状態が長期間継続すると、 内燃機関の状態は悪化す るし、 また、 異常の発見が遅れることにより重故障に至る可能性がある。
また、 E Vモードが主となると、 その他の動力源を駆動しての走り (たとえば 内燃機関を駆動させての走り) を楽しみたいという利用者の要望が出てくること も考えられる。 発明の開示
そこで、 この発明は、 かかる課題を解決するためになされたものであり、 その 目的は、 動作頻度が少なくなつた動力源を強制的に動作させることができるハイ プリッド自動車を提供することである。
この発明によれば、 ハイブリッド自動車は、 第 1および第 2の動力源と、 第 2 の動力源を停止させて走行する第 1の走行モード (E Vモード) と第 1および第 2の動力源を用いて走行する第 2の走行モード (ハイブリッドモード (HVモー ド) ) とを切換可能であり、 選択した第 1または第 2の走行モードに応じて第 1 および第 2の動力源を制御する制御部と、 第 1の走行モードで走行中に走行モー ドを第 2の走行モードに切換えるための入力装置とを備える。
この発明によるハイプリッド自動車においては、 第 1の走行モードで走行して いても、 運転者により入力装置の操作がなされると、 走行モードが第 1の走行モ ードから第 2の走行モードに切換わり、 第 2の動力源が駆動される。
したがって、 この発明によるハイブリッド自動車によれば、 運転者が入力装置 を適宜操作することにより、 第 2の動力源の状態を良好に保つことができる。 ま た、 第 2の動力源に異常が発生した場合に早期に発見し得る。 さらに、 第 2の動 力源を駆動しての走りを楽しみたいという利用者の要望にも応えることができる。 好ましくは、 第 1の動力源は、 第 1の回転電機および第 1の回転電機に電力を 供給する蓄電装置を含む。 第 2の動力源は、 内燃機関を含む。 第 1の走行モード は、 内燃機関を停止させ第 1の回転電機を駆動させて走行する電気走行モード (E Vモード) であり、 第 2の走行モードは、 第 1の回転電機および内燃機関を 駆動させて走行するハイブリッドモード (HVモード) である。
このハイブリッド自動車においては、 電気走行モードで走行していても、 運転 者により入力装置の操作がなされると、 走行モードが電気走行モードからハイブ リツドモードに切換わり、 内燃機関が駆動される。 したがって、 このハイブリツ ド自動車によれば、 内燃機関の状態を良好に保つことができる。 また、 内燃機関 に異常が発生した場合に早期に発見し得る。 さらに、 内燃機関を駆動しての走り を楽しみたいという利用者の要望にも応えることができる。
また、 好ましくは、 第 1の動力源は、 回転電機および回転電機に電力を供給可 能な蓄電装置を含む。 第 2の動力源は、 回転電機に電力を供給可能な燃料電池を 含む。 第 1の走行モードは、 燃料電池を停止させ蓄電装置からの電力を用いて回 転電機を駆動させて走行する電気走行モード (E Vモード) であり.、 第 2の走行 モードは、 燃料電池および蓄電装置からの電力を用いて回転電機を駆動させて走 行するハイブリッドモード (HVモード) である。
このハイブリッド自動車においては、 電気走行モードで走行していても、 運転 者により入力装置の操作がなされると、 走行モードが電気走行モードからハイブ リツドモードに切換わり、 燃料電池からの電力が回転電機に供給される。 したが つて、 このハイブリッド自動車によれば、 燃料電池の状態を良好に保つことがで きる。 また、 燃料電池に異常が発生した場合に早期に発見し得る。
好ましくは、 ハイブリッド自動車は、 車両外部から与えられる電力を受けて蓄 電装置を充電するための電力入力部をさらに備える。
このハイブリッド自動車においては、 車両外部の電¾¾を用いて電力入力部から 蓄電装置を充電することができるので、 電気走行モード (E Vモード) で走行す る機会をより多くすることができ、 第 2の動力源による燃料消費を抑えることが できる。 しかしながら、 一方で、 第 2の動力源の非動作時間が長期間化すること による上述した問題がより顕著になるところ、 電気走行モードからハイプリッド モード (HVモード) に切換可能な入力装置が備えられるので、 第 2の動力源を 適宜駆動させることができる。 したがって、 このハイブリッド自動車によれば、 第 2の動力源による燃料消費を抑えつつ、 第 2の動力源が長期間非動作状態にお かれることを防止することができる。
好ましくは、 ハイブリッド自動車は、 第 2の動力源の非動作時間を計時する計 時部と、 非動作時間が第 1の所定時間以上になると、 入力装置の操作を運転者に 促す報知部とをさらに備える。
このハイプリッド自動車においては、 第 2の動力源の非動作時間が第 1の所定 時間以上になると、 運転者は報知部により入力装置の操作を促されるので、 入力 装置を操作することを運転者が失念することが防止される。 したがって、 このハ イブリッド自動車によれば、 第 2の動力源が長期間非動作状態におかれることを 防止することができる。
さらに好ましくは、 制御部は、 第 2の動力源の非動作時間が第 1の所定時間よ りも長い第 2の所定時間以上になると、 走行モードを第 1の走行モード (E Vモ ード) から第 2の走行モード (HVモード) に切換える。
このハイブリッド自動車においては、 第 2の動力源の非動作時間が第 1の所定 時間よりも長い第 2の所定時間以上になると、 制御部により走行モードが第 1の 走行モードから第 2の走行モードに強制的に切換えられ、 第 2の動力源が駆動さ れる。 したがって、 このハイブリッド自動車によれば、 第 2の動力源が長期間非 動作状態におかれることを確実に防止することができる。 さらに好ましくは、 計時部は、 第 2の動力源の動作時間が第 3の所定時間より も短いとき、 第 2の動力源の非動作状態が継続しているものとして非動作時間を 計時する。
このハイプリッド自動車においては、 第 2の動力源の状態を良好に保つことや 第 2の動力源に発生している異常を顕在化させることに貢献し得ないような短時 間しか第 2の動力源が動作していないときは、 第 2の動力源が実際に動作しても 第 2の動力源は非動作状態であるとみなされる。 したがって、 このハイブリッド 自動車によれば、 第 2の動力源を駆動させるべきタイミングを適切に運転者に報 知することができる。
好ましくは、 ハイプリッド自動車は、 第 2の動力源のエネルギー残量を検出す る検出部をさらに備える。 制御部は、 エネルギー残量が所定量よりも少ないとき、 第 1の走行モード (E Vモード) から第 2の走行モード (HVモード) への切換 を中止する。
このハイブリッド自動車においては、 制御部は、 第 2の動力源のエネルギー残 量が少ない場合、 第 1の走行モードから第 2の走行モードへの切換を行なわない ので、 第 2の動力源のエネルギー残量が少ないにも拘わらず第 2の動力源が駆動 される事態が回避される。 したがって、 このハイブリッド自動車によれば、 不必 要な走行モードの切換を防止することができる。
好ましくは、 ハイブリッド自動車は、 車両外部から与えられる電力を受けて蓄 電装置を充電するための電力入力部と、 内燃機関の出力を用いて発電し、 その発 電した電力を蓄電装置に供給可能な第 2の回転電機と、 第 1および第 2の回転電 機にそれぞれ対応して設けられる第 1およぴ第 2のィンバータと、 第 1および第 2のィンバータを制御するィンパータ制御部とをさらに備える。 第 1および第 2 の回転電機は、 それぞれ第 1および第 2の 3相コイルをステータコイルとして含 む。 電力入力部は、 第 1の 3相コイルの中性点に接続される第 1の端子と、 第 2 の 3相コイルの中性点に接続される第 2の端子とを含む。 ィンバータ制御部は、 第 1および第 2の端子間に与えられる交流電力が直流電力に変換されて蓄電装置 に与えられるように第 1および第 2のィンバータを制御する。
このハイブリッド自動車においては、 第 1および第 2の回転電機と、 それらに それぞれ対応して設けられる第 1および第 2のィンバータと、 ィンバータ制御部 とを用いることによって、 外部から蓄電装置への充電が実現される。 したがって、 このハイブリッド自動車によれば、 外部充電装置を別途備える必要がなく、 車両 の小型化、 および軽量化による燃費向上を実現することができる。
以上のように、 この発明によれば、 第 1の走行モード (E Vモード) で走行中 に第 2の走行モード (HVモード) に切換えて第 2の動力源を駆動できるように したので、 第 2の動力源の状態を良好に保つことができる。 また、 第 2の動力源 に異常が発生した場合に早期に発見し得る。 さらに、 第 2の動力源を駆動しての 走りを楽しみたいという利用者の要望にも応えることができる。 図面の簡単な説明
図 1は、 この発明の実施の形態 1によるハイプリッド自動車の全体プロック図 である。
図 2は、 図 1に示す制御装置の機能プロック図である。
図 3は、 図 2に示すコンバータ制御部の機能ブロック図である。
図 4は、 図 2に示す第 1および第 2のインバータ制御部の機能プロック図であ る。
図 5は、 図 1のブロック図を充電に関する部分に簡略化して示した図である。 図 6は、 充電時のトランジスタの制御状態を示す図である。
図 7は、 図 1に示す制御装置による充電開始の判断に関するプログラムの制御 構造を示すフローチヤ一トである。
図 8は、 図 1に示す蓄電装置の S O Cの通常の変化を示す図である。
図 9は、 E Vモードでの走行が連続する場合の蓄電装置の S O Cの変化を示す 図である。
図 1 0は、 図 1に示す HVモード移行スィツチの操作に関するプログラムの制 御構造を示すフローチヤ一トである。
図 1 1は、 運転者により HVモード移行スィツチのオン操作がなされない場合 の制御に関するプログラムの制御構造を示すフローチャートである。
図 1 2は、 エンジンの停止時間のカウント処理に関するプログラムの制御構造 を示すフローチャートである。 '
図 13は、 走行モードが EVモードから HVモードに強制的に切換えられたと きの蓄電装置の S O Cの変化を示す図である。
図 14は、 この発明の実施の形態 2によるハイプリッド自動車の概略ブロック 図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 な お、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1]
図 1は、 この発明の実施の形態 1によるハイブリツド自動車の全体プロック図 である。 図 1を参照して、 ハイブリッド自動車 100は、 蓄電装置 Bと、 昇圧コ ンバータ 10と、 インバータ 20, 30と、 電源ライン PL 1, PL 2と、 接地 ライン SLと、 U相ライン UL l, UL 2と、 V相ライン VL 1, VL 2と、 W 相ライン WL 1, WL 2と、 モータジェネレータ MG 1, MG2と、 エンジン 4 と、 燃料タンク 58と、 動力分配機構 3と、 車輪 2とを備える。
エンジン 4は、 燃料タンク 58から燃料の供給を受けて動力を発生する。 燃料 タンク 58は、 エンジン 4へ燃料を供給する。 また、 燃科タンク 58は、 燃料の 残量を検出し、 燃料残量を示す信号 FUELを後述の制御装置 60へ出力する。 動力分配機構 3は、 エンジン 4とモータジェネレータ MG 1, MG2とに結合 されてこれらの間で動力を分配する機構である。 たとえば、 動力分配機構 3とし ては、 サンギヤ、 プラネタリキヤリャ、 リングギヤの 3つの回転軸を有する遊星 歯車機構を用いることができる。 この 3つの回転軸がエンジン 4、 モータジエネ レータ MG1, MG 2の各回転軸にそれぞれ接続される。 たとえば、 モータジェ ネレータ MG 1のロータを中空としてその中心にエンジン 4のクランク軸を通す ことで動力分配機構 3にエンジン 4とモータジェネレータ MG 1, MG 2とを機 械的に接続することができる。
なお、 モータジェネレータ MG 2の回転軸は、 図示されない減速ギヤや作動ギ ャによって車輪 2に結合されている。 また、 動力分配機構 3の内部にモータジェ ネレータ MG 2の回転軸に対する減速機をさらに組み込んでもよい。
そして、 モータジェネレータ MG 1は、 エンジン 4によって駆動される発電機 として動作し、 かつ、 エンジン 4の始動を行ない得る電動機として動作するもの としてハイブリッド自動車 1 0 0に組み込まれ、 モータジェネレータ MG 2は、 駆動輪である車輪 2を駆動する電動機としてハイプリッド自動車 1 0 0に組み込 まれる。
モータジェネレータ MG 1, MG 2は、 3相交流電動機であり、 たとえば、 3 相交流同期電動機である。 モータジェネレータ MG 1は、 U相コィ/レ U l、 V相 コイル V 1および W相コイル W 1からなる 3相コイルをステータコイルとして含 む。 モータジェネレータ MG 2は、 U相コイル U 2、 V相コイル V 2および W相 コイル W 2からなる 3相コイルをステータコイルとして含む。
そして、 モータジェネレータ MG 1は、 エンジン 4の出力を用いて 3相交流電 圧を発生し、 その発生した 3相交流電圧をインバータ 2 0へ出力する。 また、 モ ータジェネレータ MG 1は、 インバータ 2 0から受ける 3相交流電圧によって駆 動力を発生し、 エンジン 4の始動を行なう。
モータジェネレータ MG 2は、 インバータ 3 0から受ける 3相交流電圧によつ て車両の駆動トルクを発生する。 また、 モータジェネレータ MG 2は、 車両の回 生制動時、 3相交流電圧を発生してィンバータ 3 0へ出力する。
蓄電装置 Bは、 充放電可能な直流電源であり、 たとえば、 ニッケル水素ゃリチ ゥムイオン等の二次電池からなる。 蓄電装置 Bは、 直流電力を昇圧コンバータ 1 0へ出力する。 また、 蓄電装置 Bは、 昇圧コンバータ 1 0から出力される直流電 圧によって充電される。 なお、 蓄電装置 Bとして、 大容量のキャパシタを用いて もよい。
昇圧コンバータ 1 0は、 リアクトル と、 n p n型トランジスタ Q 1 , Q 2と. ダイオード D l , D 2とを含む。 リアタトル Lの一端は電源ライン P L 1に接続 され、 n p n型トランジスタ Q 1, Q 2の接続点に他端が接続される。 n P n型 トランジスタ Q 1 , Q 2は、 電源ライン P L 2と接地ライン S Lとの間に直列に 接続され、 制御装置 6 0からの信号 PWCをベースに受ける。 そして、 各 n p n 型トランジスタ Q l , Q 2のコレクタ一ェミッタ間には、 ェミッタ側からコレク タ側へ電流を流すようにダイォード D 1, D 2がそれぞれ接続される。
なお、 上記の n p n型トランジスタおよび以下の本明細書中の n p η型トラン ジスタとして、 たとえば、 I G B T (Insulated Gate Bipolar Transistor) を 用いることができ、 また、 n p n型トランジスタに代えて、 パワー MO S F E T (metal oxide semiconductor field-effect transistor) 等の電力ス ッチン グ素子を用いることができる。
インバータ 2 0は、 U相アーム 2 2、 V相アーム 2 4および W相アーム 2 6を 含む。 U相アーム 2 2、 V相アーム 2 4および W相アーム 2 6は、 電源ライン P L 2と接地ライン S Lとの間に並列に接続される。
U相アーム 2 2は、 直列に接続された n p n型トランジスタ Q 1 1, Q 1 2を 含み、 V相アーム 2 4は、 直列に接続された n p n型トランジスタ Q 1 3, Q 1 4を含み、 W相アーム 2 6は、 直列に接続された n p n型トランジスタ Q 1 5 , Q 1 6を含む。 各 n p n型トランジスタ Q 1 1〜Q 1 6のコレクターェミッタ間 には、 ェミツタ側からコレクタ側へ電流を流すダイオード D 1 1〜D 1 6がそれ ぞれ接続される。 そして、 各相アームにおける各 n p n型トランジスタの接続点 は、 U, V, W各相ライン U L 1, V L 1, WL 1を介してモータジェネレータ MG 1の各相コイルの中性点 N 1と異なるコイル端にそれぞれ接続される。 インバータ 3 0は、 U相アーム 3 2、 V相アーム 3 4および W相アーム 3 6を 含む。 U相アーム 3 2、 V相アーム 3 4および W相アーム 3 6は、 電源ライン P L 2と接地ライン S Lとの間に並列に接続される。
U相アーム 3 2は、 直列に接続された n p n型トランジスタ Q 2 1 , Q 2 2を 含み、 V相アーム 3 4は、 直列に接続された; n p n型トランジスタ Q 2 3, Q 2 4を含み、 W相アーム 3 6は、 直列に接続された n p n型トランジスタ Q 2 5 , Q 2 6を含む。 各 n p n型トランジスタ Q 2 1〜Q 2 6のコレクタ一エミッタ間 には、 ェミツタ側からコレクタ側へ電流を流すダイォード D 2 1〜D 2 6がそれ ぞれ接続される。 そして、 インバータ 3 0においても、 各相アームにおける各 n p n型トランジスタの接続点は、 U, V, W各相ライン U L 2, V L 2 , WL 2 を介してモータジェネレータ MG 2の各相コイルの中性点 N 2と異なるコイル端 にそれぞれ接続される。 ハイブリッド自動車 100は、 さらに、 コンデンサ C l, C 2と、 リレー回路 40と、 コネクタ 50と、 HVモード移行スィツチ 52と、 制御装置 60と、 A Cライン ACL l, ACL 2と、 電圧センサ 71〜74と、 電流センサ 80, 8 2とを備える。
コンデンサ C 1は、 電源ライン P L 1と接地ライン S Lとの間に接続され、 電 圧変動に起因する蓄電装置 Bおよび昇圧コンバータ 10への影響を低減する。 電 源ライン PL 1と接地ライン S Lとの間の電圧 V Lは、 電圧センサ 73で測定さ れる。
コンデンサ C 2は、 電源ライン PL 2と接地ライン S Lとの間に接続され、 電 圧変動に起因するインバータ 20, 30および昇圧コンバータ 10への影響を低 減する。 電¾^、ライン PL 2と接地ライン SLとの間の電圧 VHは、 電圧センサ 7 2で測定される。
昇圧コンバータ 10は、 蓄電装置 Bから電源ライン PL 1を介して供給される 直流電圧を昇圧して電源ライン PL 2へ出力する。 より具体的には、 昇圧コンパ ータ 10は、 制御装置 60からの信号 PWCに基づいて、 n p n型トランジスタ Q2のスィッチング動作に応じて流れる電流をリアタトル Lに磁場エネルギーと して蓄積し、 その蓄積したエネルギーを np n型トランジスタ Q 2が OFFされ たタイミングに同期してダイォード D 1を介して電源ライン P L 2へ電流を流す ことによつて放出することにより昇圧動作を行なう。
また、 昇圧コンバータ 10は、 制御装置 60からの信号 PWCに基づいて、 電 源ライン PL 2を介してインバータ 20および 30めいずれか一方または両方か ら受ける直流電圧を蓄電装置 Bの電圧レベルに降圧して蓄電装置 Bを充電する。 インバータ 20は、 制御装置 60からの信号 PWM1に基づいて、 電¾§ライン PL 2から供給される直流電圧を 3相交流電圧に変換してモータジェネレータ M G1を駆動する。 これにより、 モータジェネレータ MG 1は、 トルク指令値 TR 1によって指定されたトルクを発生するように駆動される。 また、 インバータ 2 0は、 エンジン 4からの出力を受けてモータジェネレータ MG 1が発電した 3相 交流電圧を制御装置 60からの信号 PWM1に基づいて直流電圧に変換し、 その 変換した直流電圧を電源ライン PL 2へ出力する。 インバータ 30は、 制御装置 60からの信号 PWM2に基づいて、 電源ライン PL 2から供給される直流電圧を 3相交流電圧に変換してモータジェネレータ M G 2を駆動する。 これにより、 モータジェネレータ MG 2は、 トルク指令値 TR 2によって指定されたトルクを発生するように駆動される。 また、 インバータ 3 0は、 車両の回生制動時、 駆動軸からの回転力を受けてモータジェネレータ MG 2が発電した 3相交流電圧を制御装置 60からの信号 P WM 2に基づいて直流電 圧に変換し、 その変換した直流電圧を電源ライン PL 2へ出力する。
なお、 ここで言う回生制動とは、 ハイブリツド自動車 100の運転者によるフ ットブレーキ操作があった場合の回生発電を伴なう制動や、 フットブレーキを操 作しないものの、 走行中にァクセノレペダルを OFFすることで回生発電をさせな がら車両を減速 (または加速の中止) させることを含む。
リ レー回路 40は、 リ レー RY1, RY2を含む。 リ レー RY1, RY2とし ては、 たとえば、 機械的な接点リレーを用いることができるが、 半導体リレーを 用いてもよい。 リレー RY1は、 ACライン ACL 1とコネクタ 50との間に設 けられ、 制御装置 60からの信号 CNTLに応じて ONZOFFされる。 リレー RY2は、 ACライン ACL 2とコネクタ 50との間に設けられ、 制御装置 60 からの信号 CNTLに応じて ON/OFFされる。
このリ レー回路 40は、 制御装置 60からの信号 CNTLに応じて、 ACライ ン ACL l, ACL 2とコネクタ 50との接続/切離しを行なう。 すなわち、 リ レー回路 40は、 制御装置 60から H (論理ハイ) レベルの信号 CNTLを受け ると、 ACライン ACL 1, ACL 2をコネクタ 50と電気的に接続し、 制御装 置 60から L (論理ロー) レベルの信号 CNTLを受けると、 ACライン ACL 1, AC L 2をコネクタ 50から電気的に切離す。
コネクタ 50は、 車両外部の商用電源、 55からの交流電力を受けるための図示 されない第 1および第 2の端子を含む。 第 1および第 2の端子は、 それぞれリ レ 一回路 40のリレー RY 1, RY2に接続される。 ACライン ACL l, ACL 2の線間電圧 V A Cは、 電圧センサ 74で測定され、 測定値が制御装置 60に送 信される。
HVモード移行スィツチ 52は、 E Vモードで走行中に運転者が走行モードを EVモードから HVモードに切換えるためのスィッチである。 ここで、 EVモー ドとは、 エンジン 4およびモータジェネレータ MG 1を停止させ蓄電装置 Bおよ びモータジェネレータ MG 2を動力源として電気走行する走行モードである。 一 方、 HVモードとは、 エンジン 4およびモータジェネレータ MG 1を駆動させ、 エンジン 4と蓄電装置 Bおよびモ タジェネレータ MG 2とを動力源として走行 する走行モードである。
そして、 HVモード移行スィッチ 52は、 運転者によりオン操作されると、 H レべ ^ /レの信号を制御装置 60へ出力する。 また、 HVモード移行スィッチ 52は. 点灯可能な構成となっており、 制御装置 60からの点灯指令に応じて点灯する。 電圧センサ 71は、 蓄電装置 Bの電圧 VBを検出し、 その検出した電圧 VBを 制御装置 60へ出力する。 電圧センサ 73は、 コンデンサ C 1の両端の電圧、 す なわち、 昇圧コンバータ 10の入力電圧 VLを検出し、 その検出した電圧 VLを 制御装置 60へ出力する。 電圧センサ 72は、 コンデンサ C 2の両端の電圧、 す なわち、 昇圧コンバータ 10の出力電圧 VH (インバータ 20, 30の入力電圧 に相当する。 以下同じ。 ) を検出し、 その検出した電圧 VHを制御装置 60へ出 力する。
電流センサ 80は、 モータジェネレータ MG 1に流れるモータ電流 MCRT 1 を検出し、 その検出したモータ電流 MCRT 1を制御装置 60へ出力する。 電流 センサ 82は、 モータジェネレータ MG 2に流れるモータ電流 MCRT 2を検出 し、 その検出したモータ電流 MCRT 2を制御装置 60へ出力する。
制御装置 60は、 図示されない HV— ECU (Electronic Control Unit) か ら出力されるモータジェネレータ MG 1, MG2のトルク指令値 TR 1, TR 2 およびモータ回転数 MRNl, MRN2、 電圧センサ 73からの電圧 VL、 なら びに電圧センサ 72からの電圧 VHに基づいて、 昇圧コンバータ 10を駆動する ための信号 PWCを生成し、 その生成した信号 PWCを昇圧コンバータ 10へ出 力する。
また、 制御装置 60は、 電圧 VHならびにモータジェネレータ MG 1のモータ 電流 MCRT 1およびトルク指令値 TR 1に基づいて、 モータジェネレータ MG 1を駆動するための信号 PWM1を生成し、 その生成した信号 PWM1をインバ ータ 20へ出力する。 さらに、 制御装置 60は、 電圧 VHならびにモータジエネ レータ MG 2のモータ電流 MCRT 2およびトルク指令値 TR 2に基づいて、 モ ータジェネレータ MG 2を駆動するための信号 PWM 2を生成し、 その生成した 信号 PWM2をィンバータ 30へ出力する。
ここで、 制御装置 60は、 図示されないイグニッションキー (またはィグニッ シヨンスィッチ、 以下同じ。 ) からの信号 I Gおよび蓄電装置 Bの SOCに基づ いて、 モータジェネレータ MG 1, MG2の中性点N1, N 2間に与えられる商 用電源 55からの交流電力を直流電力に変換して蓄電装置 Bの充電が行なわれる ように、 インバータ 20, 30を制御するための信号 PWM1, PWM2を生成 する。
さらに、 制御装置 60は、 蓄電装置 Bの SOCに基づいて、 車外から充電可能 か否かを判定し、 充電可能と判定したときは、 Hレベルの信号 C NT Lをリレー 回路 40へ出力する。 一方、 制御装置 60は、 蓄電装置 Bがほぼ満充電状態であ り、 充電可能でないと判定したときは、 Lレベルの信号 CNTLをリ レー回路 4 0へ出力し、 信号 I Gが停止状態を示す場合にはインバータ 20および 30を停 止させる。
また、 さらに、 制御装置 60は、 E Vモードで走行中に HVモード移行スィッ チ 52から Hレベルの信号を受けると、 後述する方法により、 所定の条件のもと 走行モードを EVモードから HVモードへ移行する。 具体的には、 制御装置 60 は、 停止させていたエンジン 4を始動させ、 エンジン 4およびモータジエネレー タ MG 2を動力源とするハイブリッド走行を行なわせる。
また、 さらに、 制御装置 60は、 エンジン 4の非動作時間が予め設定された所 定時間を超えると、 後述する方法により、 所定の条件のもと HVモード移行スィ ツチ 52を点灯させて EVモードから HVモードへの移行を運転者に促す。 そし て、 制御装置 60は、 HVモード移行スィツチ 52を点灯させても運転者により HVモード移行スィッチ 52が操作されない'ときは、 走行モードを EVモードか ら HVモードへ強制的に移行する。
次に、 制御装置 60による昇圧コンバータ 10およびインバータ 20, 30の 制御、 ならびに商用電源 55からの充電制御について説明する。 以下の図 2〜図 7では、 これらの制御に関する部分のみを抽出して説明が行なわれ、 制御装置 6 0による走行モードの移行制御に関しては、 図 8以降で説明する。
図 2は、 図 1に示した制御装置 60の機能ブロック図である。 図 2を参照して. 制御装置 60は、 コンバータ制御部 61と、 第 1のィンバータ制御部 62と、 第 2のィンバータ制御部 63と、 AC入力制御部 64とを含む。 コンバータ制御部 61は、 電圧 VB、 電圧 VH、 トルク指令値 TR 1, TR2、 およびモータ回転 数 MRNl, MRN 2に基づいて昇圧コンバータ 10の n p n型トランジスタ Q 1, Q2を ONZOFFするための信号 PWCを生成し、 その生成した信号 PW Cを昇圧コンバータ 10へ出力する。
第 1のインバータ制御部 62は、 モータジェネレータ MG 1のトルク指令値 T R 1およびモータ電流 MCRT 1ならびに電圧 VHに基づいてインバータ 20の n n型トランジスタ Ql 1〜Q16を ONZO F Fするための信号 P WM 1を 生成し、 その生成した信号 PWM1をインバータ 20へ出力する。
第 2のインバータ制御部 63は、 モータジェネレータ MG 2のトルク指令値 T R 2およびモータ電流 MCRT 2ならびに電圧 VHに基づいてインバータ 30の np n型トランジスタ Q21〜Q26を ON/O F Fするための信号 PWM2を 生成し、 その生成した信号 PWM 2をインバータ 30へ出力する。
AC入力制御部 64は、 トルク指令値 TR 1, TR 2およびモータ回転数 MR Nl, MRN 2に基づいてモータジェネレータ MG 1, MG 2の駆動状態を判定 し、 信号 I Gおよび蓄電装置 Bの SO Cに基づいて、 2つのインバータ 20, 3 0を協調制御してコネクタ 50に与えられる交流電圧を直流に変換するとともに 昇圧し、 蓄電装置 Bへの充電を行なう。
そして、 AC入力制御部 64は、 モータジェネレータ MG 1, MG2の駆動状 態が停止状態であり、 かつ、 信号 I Gに基づいてィダニッションキーが〇 F F位 置に回動されていると判断すると、 蓄電装置 Bの SO Cが所定レベルよりも低け れば充電動作を行なう。 具体的には、 A C入力制御部 64は、 Hレベルの信号 C NTLをリレー回路 40へ出力することによってリレー RY 1, RY2を導通さ せる。 そして、 AC入力制御部 64は、 電圧 VACの入力があればこれに応じて 制御信号 C TL 1を生成し、 ィンバータ 20, 30を協調制御して、 コネクタ 5 0に与えられる交流電圧を直流に変換するとともに昇圧させ、 蓄電装置 Bへの充 電を行なわせる。
一方、 AC入力制御部 64は、 モータジェネレータ MG 1, MG 2が駆動状態 であるかまたは信号 I Gに基づいてイダ二ッションキーが ON位置に回動されて いると判断した場合、 および、 蓄電装置 Bの SO Cが所定レべノレよりも高い場合 には、 充電動作を行なわない。 具体的には、 AC入力制御部 64は、 Lレベルの 信号 CNTLをリレー回路 40へ出力することによってリレー RY1, RY2を 開放させ、 制御信号 CTL0を生成して昇圧コンバータ 10およびインバータ 2 0, 30に車両運転時の通常動作を行なわせる。
図 3は、 図 2に示したコンバータ制御部 61の機能ブロック図である。 図 3を 参照して、 コンバータ制御部 61は、 インパータ入力電圧指令演算部 1 12と、 フィードバック電圧指令演算部 1 14と、 デューティー比演算部 1 16と、 PW M信号変換部 1 18とを含む。
ィンバータ入力電圧指令演算部 1 12は、 トルク指令値 T R 1, T R 2および モータ回転数 MRN1, MR N 2に基づいてインバータ入力電圧の最適値 (目標 値) 、 すなわち電圧指令 VH— c omを演算し、 その演算した電圧指令 VH— c omをフィードバック電圧指令演算部 1 14へ出力する。
フィードバック電圧指令演算部 1 14は、 電圧センサ 72によつて検出される 昇圧コンバータ 10の出力電圧 VHと、 インバータ入力電圧指令演算部 1 1 2か らの電圧指令 VH— c omとに基づいて、 出力電圧 VHを電圧指令 VH— c o m に制御するためのフィードバック電圧指令 VH—c om__f bを演算し、 その演 算したフィードバック電圧指令 VH—c om— f bをデューティー比演算部 1 1 6へ出力する。
デューティー比演算部 1 16は、 電圧センサ 71からの電圧 VBと、 フィード バック電圧指令演算部 114からのフィードバック電圧指令 V H_c om_f b とに基づいて、 昇圧コンバータ 10の出力電圧 VHを電圧指令 VH— c omに制 御するためのデューティー比を演算し、 その演算したデューティー比を PWM信 号変換部 1 18へ出力する。
PWM信号変換部 118は、 デューティー比演算部 1 16から受けたデューテ ィー比に基づいて昇圧コンバータ 10の np n型トランジスタ Ql,. Q2を ON ZOFFするための PWM (Pulse Width Modulation) 信号を生成し、 その生成 した PWM信号を信号 PWCとして昇圧コンバータ 10の n p n型トランジスタ Ql, Q 2へ出力する。
なお、 昇圧コンバータ 10の下アームの n p n型トランジスタ Q 2の ONデュ 一ティーを大きくすることによりリアクトル Lにおける電力蓄積が大きくなるた め、 より高電圧の出力を得ることができる。 一方、 上アームの n p n型トランジ スタ Q 1の ONデューティーを大きくすることにより電源ライン PL 2の電圧が 下がる。 そこで、 n p n型トランジスタ Q 1, Q 2のデューティー比を制御する ことで、 電源ライン PL 2の電圧を蓄電装置 Bの出力電圧以上の任意の電圧に制 御することができる。
さらに、 P WM信号変換部 118は、 制御信号 C TL 1が活性化しているとき は、 デューティー比演算部 116の出力に拘わらず、 n p n型トランジスタ Q 1 を導通状態とし、 np n型トランジスタ Q2を非導通状態とする。 これにより、 電源ライン PL 2から電源ライン PL 1に向けて充電電流を流すことが可能とな る。
図 4は、 図 2に示した第 1および第 2のィンバータ制御部 62, 63の機能ブ ロック図である。 図 4を参照して、 第 1および第 2のインバータ制御部 62, 6 3の各々は、 モータ制御用相電圧演算部 120と、 P WM信号変換部 122とを 含む。
モータ制御用相電圧演算部 120は、 インバータ 20, 30の入力電圧 VHを 電圧センサ 72から受け、 モータジェネレータ MG1 (または MG2) の各相に 流れるモータ電流 MCRT 1 (または MCRT2) を電流センサ 80 (または 8 2) から受け、 トルク指令値丁 R1 (または TR2) を HV— ECUから受ける。 そして、 モータ制御用相電圧演算部 120は、 これらの入力値に基づいて、 モー タジェネレータ MG1 (または MG2) の各相コイルに印加する電圧を演算し、 その演算した各相コイル電圧を PWM信号変換部 122へ出力する。
P WM信号変換部 122は、 A C入力制御部 64から制御信号 C T L 0を受け ると、 モータ制御用相電圧演算部 120から受ける各相コイル電圧指令に基づい て、 実際にインバータ 20 (または 30) の各 n p n型トランジスタ Q 11〜Q 16 (または Q 21〜'Q 26) を O N/O F Fする信号 P WM 1— 0 (信号 PW Mlの一種) (または PWM2— 0 (信号 PWM2の一種) ) を生成し、 その生 成した信号 PWM1—0 (または PWM2— 0) をインパ一タ 20 (または 3 0) の各 np n型トランジスタ Ql 1〜Q16 (または<321〜<326) へ出力 する。
このようにして、 各 n p n型トランジスタ Q 11〜Q 16 (または Q 21〜Q 26) がスイッチング制御され、 モータジェネレータ MG1 (または MG2) 力 S 指令されたトルクを出力するようにモータジェネレータ MG 1 (または MG2) の各相に流す電流が制御される。 その結果、 トルク指令値 TR 1 (または TR 2) に応じたモータトルクが出力される。
また、 P WM信号変換部 122は、 AC入力制御部 64から制御信号 C T L 1 を受けると、 モータ制御用相電圧演算部 120の出力に拘わらず、 インバータ 2 0 (または 30) の U相アーム 22 (または 32) 、 V相アーム 24 (または 3 4) および W相アーム 26 (または 36) に同位相の交流電流を流すように n p n型トランジスタ Q 11〜Q 16 (または Q21~Q26) を ONZOFFする 信号 PWM1— 1 (信号 PWM1の一種) (または PWM2—1 (信号 PWM2 の一種) ) を生成し、 その生成した信号 PWM 1—1 (または PWM2— 1) を インバータ 20 (または 30) の n p n型トランジスタ Q 11〜Q 16 (または Q 21〜Q 26) へ出力する。
U, V, Wの各相コイルに同位相の交流電流が流れる場合には、 モータジエネ レータ MG1, MG 2には回転トルクは発生しない。 そしてインバータ 20およ び 30が協調制御されることにより交流の電圧 VACが直流の充電電圧に変換さ れる。
次に、 ハイブリッド自動車 100において車外の商用電源 55 (電圧レベルを 交流電圧 VACとする。 ) 力 ら直流の充電電圧を発生する方法について説明する。 図 5は、 図 1のプロック図を充電に関する部分に簡略化して示した図である。 図 5では、 図 1のインバータ 20および 30のうちの U相アームが代表として示 されている。 またモータジェネレータの 3相コイルのうち U相コイルが代表とし て示されている。 U相について代表的に説明すれば各相コイルには同相の電流が 流されるので、 他の 2相の回路も U相と同じ動きをする。 図 5からわかるように. U相コイル U1と U相アーム 22の組、 および U相コイル U 2と U相アーム 32 の組の各々は、 昇圧コンバータ 10と同様な構成となっている。 したがって、 た とえば 10 OVの交流電圧を直流電圧に変換するだけでなく、 さらに昇圧してた とえば 20 OV程度の充電電圧に変換することも可能である。
図 6は、 充電時のトランジスタの制御状態を示す図である。 図 5, 図 6を参照 して、 まず、 電圧 VAC>0すなわち ACライン ACL 1の電圧 VIが ACライ ン AC L 2の電圧 V 2よりも高い場合には、 昇圧コンバータ 10の np n型トラ ンジスタ Q 1は ON状態とされ、 n p n型トランジスタ Q 2は OFF状態とされ る。 これにより、 昇圧コンバータ 10は、 電源ライン PL 2から電源ライン P L 1に向けて充電電流を流すことができるようになる。
そして、 第 1のインバータ (インバータ 20) では、 n p n型トランジスタ Q 12が電圧 VACに応じた周期およびデューティー比でスィツチングされ、 n p n型トランジスタ Q 11は OFF状態またはダイオード D 1 1の導通に同期して 導通されるスイッチング状態に制御される。 このとき、 第 2のインバータ (イン バータ 30) では、 n p n型トランジスタ Q 21は OFF状態とされ、 n p n型 トランジスタ Q 22は O N状態に制御される。
電圧 VAC> 0ならば、 n p n型トランジスタ Q 12の ON状態において電流 がコイル U l→n p n型トランジスタ Q 12→ダィォ一ド D 22→コイル U 2の 経路で流れる。 このとき、 コイル Ul, U 2に蓄積されたエネルギーは np n型 トランジスタ Q12が OFF状態となると放出され、 ダイオード D l 1を経由し て電流が電源ライン PL 2に流される。 ダイオード D l 1による損失を低減させ るためにダイオード D 1 1の導通期間に同期させて n p n型トランジスタ Q 1 1 を導通させてもよい。 電圧 VACおよび電圧 VHの値に基づいて昇圧比が求めら れ、 n p n型トランジスタ Q 12のスィツチングの周期およびデューティー比が 定められる。
次に、 電圧 VACく 0すなわち ACライン ACL 1の電圧 V 1が ACライン A CL 2の電圧 V2よりも低い場合には、 昇圧コンバータの n p n型トランジスタ Qlは ON状態とされ、 n p n型トランジスタ Q 2は OFF状態とされる。 これ により、 昇圧コンバータ 10は、 電源ライン PL 2から電源ライン PL 1に向け て充電電流を流すことができるようになる。
そして第 2のインバータでは、 n p n型トランジスタ Q 22が電圧 VACに応 じた周期およびデューティー比でスイッチングされ、 n p n型トランジスタ Q 2 1は OF F状態またはダイォード D 21の導通に同期して導通されるスィッチン グ状態に制御される。 このとき、 第 1のインバータでは、 np n型トランジスタ Q 11は OFF状態とされ、 n p n型トランジスタ Q 12は ON状態に制御され る。
電圧 VACく 0ならば、 n p n型トランジスタ Q 22の ON状態において電流 がコイル U2→n p n型トランジスタ Q 22→ダイォード D 12→コイル U 1の 経路で流れる。 このとき、 コイル Ul, U 2に蓄積されたエネルギーは n p n型 トランジスタ Q 22が OFF状態となると放出され、 ダイオード D 21を経由し て電流が電源ライン PL 2に流される。 ダイオード D 21による損失を低減させ るためにダイオード D 21の導通期間に同期させて np n型トランジスタ Q 21 を導通させてもよい。 このときも電圧 VACおよび電圧 VHの値に基づいて昇圧 比が求められ、 n n型トランジスタ Q 22のスィツチングの周期およびデュー ティー比が定められる。
図 7は、 図 1に示した制御装置 60による充電開始の判断に関するプログラム の制御構造を示すフローチャートである。 このフローチャートの処理は、 一定時 間毎または所定の条件が成立するごとにメインルーチンから呼び出されて実行さ れる。
図 7を参照して、 制御装置 60は、 イグニッションキーからの信号 I Gに基づ いて、 イグニッションキーが OFF位置に回動されたか否かを判定する (ステツ プ S 1) 。 制御装置 60は、 イグニッションキーが OFF位置に回動されていな いと判定すると (ステップ S 1において NO) 、 充電ケーブルを車両に接続して 充電を行なわせるのは不適切であるのでステップ S 6へ処理を進め、 制御はメイ ンルーチンに移される。
ステップ S 1においてィグニッションキーが O F F位置に回動されたと判定さ れると (ステップ S 1において YES) 、 充電を行なうのに適切であると判断さ れ、 ステップ S 2に処理が進む。 ステップ S 2では、 リレー RY1および RY2 が非導通状態から導通状態に制御され、 電圧センサ 74によって電圧 VACが測 定される。 そして、 交流電圧が観測されない場合には、 充電ケープ/レがコネクタ 50のソケットに接続されていないと考えられるため、 充電処理を行なわずにス テツプ S 6に処理が進み、 制御はメインルーチンに移される。
一方、 ステップ S 2において電圧 VACとして交流電圧が観測されると、 処理 はステップ S 3に進む。 ステップ S 3では、 蓄電装置 Bの SOCが満充電状態を 表すしきい値 S t h (F) より小さいか否かが判断される。
蓄電装置 Bの S〇C<S t'h (F) が成立すれば充電可能状態であるため処理 はステップ S 4に進む。 ステップ S 4では、 制御装置 60は、 2つのインバータ を協調制御して蓄電装置 Bに充電を行なう。
ステップ S 3において蓄電装置 Bの SOCく S t h (F) が成立しないときは 蓄電装置 Bは満充電状態であるので充電を行なう必要がなく、 ステップ S 5に処 理が進む。 ステップ S 5では、 充電停止処理が行なわれる。 具体的には、 インバ ータ 20, 30は停止され、 リレー RY1, RY 2は開放されて交流電力のハイ プリッド自動車 1◦ 0への入力は遮断される。 そして、 処理はステップ S 6に進 み、 制御はメインルーチンに戻される。
次に、 制御装置 60による走行モードの移行制御について説明する。
図 8は、 図 1に示した蓄電装置 Bの SO Cの通常の変化を示す図である。 図 8 を参照して、 縦軸は蓄電装置 Bの SO Cを表わし、 横軸は経過時間を表わす。 ま た、 S oは、 蓄電装置 Bの S〇 Cの制御目標を示す。
時刻 t 0において、 蓄電装置 Bが満充電の状態からハイプリッド自動車 100 の走行が開始されたとする。 時刻 t 1において蓄電装置 Bの SOCが制御目標 S oに至るまでは、 エンジン 4およびモータジェネレータ MG 1は停止され、 蓄電 装置 Bに蓄えられている電力を用いてモータジエネレータ MG 2を駆動して走行 する E Vモードで走行が行なわれる。
時刻 t 1を経過し、 蓄電装置 Bの S O Cが制御目標 S oを下回ると、 エンジン 4が始動し、 エンジン 4の出力を用いて車両の駆動力を得るとともにモータジェ ネレータ MG 1により発電が行なわれ、 蓄電装置 Bの S O Cが制御目標 S oに制 御される。 すなわち、 時刻 t 1を経過すると、 蓄電装置 Bおよびモータジエネレ ータ MG 2とエンジン 4とを動力源として走行する HVモードで走行が行なわれ る。
図 9は、 E Vモードでの走行が連続する場合の蓄電装置 Bの S O Cの変化を示 す図である。 図 9を参照して、 時刻 t Oにおいて、 蓄電装置 Bが満充電の状態か らハイプリッド自動車 1 0 0の走行が開始されたとする。 時刻 t 2において、 S O Cが制御目標 S oに至るまでにハイブリツド自動車 1 0 0の走行が終了し、 時 刻 t 2〜 t 3の間に蓄電装置 Bの充電が行なわれる。 そして、 時刻 t 4において、 再び蓄電装置 Bが満充電の状態からハイプリッド自動車 1 0 0の走行が開始され る。
この場合、 走行モードが E Vモードから HVモードへ移行することなく、 充電 後、 再び E Vモードで走行が開始される。 このような車両の利用方法は、 蓄電装 置 Bが大容量化するほど顕著になる。 そうすると、 エンジン 4はほとんど起動さ れなくなり、 上述のようにエンジン 4を良好な状態に維持することが困難になる。 また、 エンジン 4に異常が発生している場合にその異常検出が遅れるという問題 も発生する。
そこで、 この実施の形態 1では、 エンジン 4の起動頻度が減少することによる 上記のような弊害を防止するため、 E Vモードで走行中に運転者が走行モードを E Vモードから HVモードに移行することができるようにしたものである。
図 1 0は、 図 1に示した HVモード移行スィッチ 5 2の操作に関するプロダラ ムの制御構造を示すフローチャートである。 なお、 このフローチャートに示され る処理も、 一定時間ごとまたは所定の条件が成立するごとにメインノレーチンから 呼出されて実行される。
図 1 0を参照して、 制御装置 6 0は、 ィダニッションキー'からの信号 I Gに基 づいて、 イグニッションキーが〇N位置に回動されたか否かを判定する (ステツ プ S 1 0 ) 。 制御装置 6 0は、 イグニッションキーが〇N位置に回動されていな いと判定すると (ステップ S 1 0において N O) 、 一連の処理を終了し、 メイン ルーチンに制御が戻される (ステップ S 6 0 ) 。 ステップ S 10においてイグニッションキーが ON位置に回動されたと判定さ れると (ステップ S 10において YES) 、 制御装置 60は、 現在 EVモードで 走行中であるか否かを判定する (ステップ S 20) 。 制御装置 60は、 EVモー ドで走行中でないと判定すると (ステップ S 20において NO) 、 一連の処理を 終了し、 メインルーチンに制御が戻される (ステップ S 60) 。
ステップ S 20において EVモードで走行中であると判定されると (ステップ
520において YES) 、 制御装置 60は、 HVモード移行スィッチ 52からの 信号に基づいて、 運転者により HVモード移行スィツチ 52がオン操作されたか 否かを判定する (ステップ S 30) 。 制御装置 60は、 HVモード移行スィッチ 52からの信号が Lレベルであり、 HVモード移行スィッチ 52のオン操作はさ れていないと判定すると (ステップ S 30において NO) 、 一連の処理を終了し メインルーチンに制御が戻される (ステップ S 60) 。
一方、 制御装置 60は、 H Vモード移行スィツチ 52カゝらの信号が Hレベルで あり、 運転者により HVモード移行スィツチ 52がオン操作されたと判定すると (ステップ S 30において YES) 、 燃料タンク 58からの信号 FUELによつ て示される値が燃料残量の低下を示すしきい値 R t h以上であるか否かを判定す る (ステップ S 40) 。 制御装置 60は、 信号 FUELの値がしきい値 R t hよ りも小さいと判定すると (ステップ S 40において NO) 、 エンジン 4のエネノレ ギ一源である燃料タンク 58の燃料が少ないことから、 エンジン 4を駆動させて 走行する HVモードへの移行を行なわない。 すなわち、 制御装置 60は、 HVモ 一ド移行スィツチ 52のオン操作を無効とし、 メインルーチンに制御が戻される (ステップ S 60) 。
ステップ S 40において信号 FUELの値がしきい値 R t h以上であると判定 されると (ステップ S 40において YES) 、 制御装置 60は、 走行モードを E Vモードから HVモードに移行する (ステップ S 50) 。 具体的には、 制御装置
60は、 インバータ 20へ信号 PWM 2を出力し、 インバータ 20によりェンジ ン 4の始動を行なう。 これにより、 エンジン 4もハイブリッド自動車 100の動 力源として動作する。 その後、 制御装置 60は、 一連の処理を終了し、 メインル 一チンに制御が戻される (ステップ S 60) 。 図 1 1は、 運転者により HVモード移行スィツチ 5 2のオン操作がなされない 場合の制御に関するプログラムの制御構造を示すフローチヤ一トである。 なお、 このフローチャートに示される処理も、 一定時間ごとまたは所定の条件が成立す るごとにメインルーチンから呼出されて実行される。
図 1 1を参照して、 ステップ S 1 10および S 1 20における処理は、 それぞ れ図 10に示したステップ S 1 0および S 20における処理と同様である。 そし て、 ステップ S 1 20において EVモードで走行中であると判定されると (ステ ップ S 1 20において YE S) 、 制御装置 60は、 エンジン 4の停止時間 ΔΤ s を算出する (ステップ S 1 30) 。 具体的には、 制御装置 6 0は、 図示されない タイマーによってエンジン 4の動作停止時刻からの時間をカウントする。 なお、 エンジン 4の動作停止時刻を記憶し、 現在時刻とエンジン 4の動作停止時刻とに 基づいて停止時間 Λ T sを算出してもよい。
そして、 制御装置 60は、 エンジン 4の停止時間 Δ T sが予め設定されたしき い時間 T t h 1以上であるか否かを判定する (ステップ S 140) 。 制御装置 6 0は、 停止時間 ΔΤ sがしきい時間 T t h 1よりも短いと判定すると (ステップ S 140において NO) 、 一連の処理を終了し、 メインルーチンに制御が戻され る (ステップ S 1 9 0) 。
一方、 ステップ S 1 40において停止時間 ΔΤ sがしきい時間 T t h 1以上で あると判定されると (ステップ S 140において YE S) 、 すなわちエンジン 4 が長期間動作していないと判定されると、 制御装置 6 0は、 燃料タンク 5 8力、ら の信号 FUELによって示される値がしきい値 R t h以上であるか否かを判定す る (ステップ S 1 50) 。 制御装置 60は、 信号 FUELの値がしきい値 R t h よりも小さいと判定すると (ステップ S 1 50において NO) 、 エンジン 4を駆 動する HVモードへの移行を行なわない。 すなわち、 制御装置 60は、 HVモー ド移行スィッチ 5 2のオン操作を無効とし、 メインルーチンに制御が戻される (ステップ S 1 90) 。
ステップ S 1 50において信号 FUELの値がしきい値 R t h以上であると判 定されると (ステップ S 1 50において YE S) 、 制御装置 6 0は、 HVモード 移行スィッチ 5 2へ点灯指令を出力する (ステップ S 1 6 0) 。 そうすると、 H Vモード移行スィツチ 5 2力 S点灯し、 運転者に対して HVモードへの移行が促さ れる。
次いで、 制御装置 6 0は、 エンジン 4の停止時間 Δ T sが予め設定されたしき い時間 T t h 2以上であるか否かを判定する (ステップ S 1 7 0 ) 。 このしきい 時間 T t h 2は、 HVモード移行スィツチ 5 2へ点灯指令を出力するためのしき い時間 T t h 1よりも長く、 HVモード移行スィッチ 5 2が点灯しているにも拘 わらず運転者により H Vモード移行スィツチ 5 2のオン操作がされない場合に走 行モードを E Vモードから HVモードへ強制的に移行するための時間である。 制 御装置 6 0は、 停止時間 Δ Τ sがしきい時間 T t h 2よりも短いと判定すると (ステップ S 1 7 0において N O) 、 一連の処理を終了し、 メインルーチンに制 御が戻される (ステップ S 1 9 0 ) 。
一方、 ステップ S 1 7 0において停止時間 Δ Τ sがしきい時間 T t h 2以上で あると判定されると (ステップ S 1 7 0において Y E S ) 、 制御装置 6 0は、 走 行モードを E Vモードから HVモードに強制的に移行する (ステップ S 1 8 0 ) 。 これにより、 エンジン 4もハイブリッド自動車 1 0 0の動力源として動作する。 その後、 制御装置 6 0は、 一連の処理を終了し、 メインルーチンに制御が戻され る (ステップ S 1 9 0 ) 。
この実施の形態 1においては、 エンジン 4が長期間非動作状態であると、 ェン ジン 4の状態を良好に維持するために、 およびエンジン 4の異常を早期に検出す ることができるようにするために、 走行モードを HVモードとしてエンジン 4を 駆動させる。 しかしながら、 エンジン 4が動作しても、 その動作時間が短いとき は、 その動作は、 上記目的すなわちエンジン 4の状態を良好に維持することおよ びエンジン 4の異常を早期に検出することができるようにすることに寄与し得な レ、。 そこで、 エンジン 4が動作しても、 その動作時間が予め設定されたしきい時 間よりも短ければ、 エンジン 4は継続して非動作状態であるとみなすこととする。 図 1 2は、 エンジン 4の停止時間 Δ Τ sのカウント処理に関するプログラムの 制御構造を示すフローチャートである。 なお、 このフローチャートに示される処 理も、 一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼出 されて実行される。 図 12を参照して、 制御装置 60は、 エンジン 4が動作中であるか否かを判定 する (ステップ S 210) 。 制御装置 60は、 エンジン 4が停止していると判定 すると (ステップ S 210において NO) 、 一連の処理を終了し、 メインルーチ ンに制御が戻される (ステップ S 250) 。
ステップ S 210においてエンジン 4が動作中であると判定されると (ステツ プ S 210において YE S) 、 制御装置 60は、 エンジン 4の動作 fl寺間 ΔΤ oを 算出する (ステップ S 220) 。 具体的には、 制御装置 60は、 図示されないタ イマ一によつてエンジン 4の動作開始時刻からの時間をカウントする。 なお、 ェ ンジン 4の動作開始時刻を記憶し、 現在時刻とエンジン 4の動作開始時刻とに基 づいて動作時間 ΔΤ oを算出してもよい。
そして、 制御装置 60は、 エンジン 4の動作時間 ΔΤ oが予め設定されたしき い時間 T t h 3以上であるか否かを判定する (ステップ S 230) 。 制御装置 6 0は、 動作時間 Δ Toがしきい時間 T t h 3よりも短いと判定すると (ステップ S 230において NO) 、 エンジン 4の停止時間 ΔΤ sを 0にリセットすること なく一連の処理を終了し、 メインルーチンに制御が戻される (ステップ S 25 0) 。 すなわち、 この場合は、 エンジン 4の停止時間 ΔΤ sのカウントが継続さ れる。
一方、 ステップ S 230において動作時間 ΔΤοがしきい時間 T t h 3以上で あると判定されると (ステップ S 230において YE S) 、 制御装置 60は、 ェ ンジン 4の停止時間 Δ T sを 0にリセットする (ステップ S 240) 。
図 13は、 走行モードが EVモードから HVモードに強制的に切換えられたと きの蓄電装置 Bの SOCの変化を示す図である。 なお、 走行モードが強制的に切 換えられる場合には、 HVモード移行スィッチ 52により切換えられる場合と、 図 1 1に示す処理により制御装置 60によって強制的に切換えられる場合とを含 む。
図 13を参照して、 縦軸は蓄電装置 Bの SOCを表わし、 横軸は経過時間を表 わす。 そして、 時刻 t oにおいて、 蓄電装置 Bが満充電の状態からハイブリッド 自動車 100の走行が開始されたとする。
時刻 t 5において、 EVモードで走行中に、 運転者により HVモード移行スィ ツチ 5 2がオン操作され、 または制御装置 6 0により強制的に走行モードが E V モードから HVモードに切換えられると、 エンジン 4が始動し、 エンジン 4の出 力が車両の駆動力に用いられるとともにモータジエネレータ MG 1により発電が 行なわれる。 すなわち、 時刻 t 5以降は、 蓄電装置 およびモータジェネレータ MG 2とエンジン 4とを動力源として走行する HVモードで走行が行なわれる。 なお、 特に囱示しないが、 時刻 t 5において走行モードが E Vモードから HV モードに切換えられ、 エンジン 4が始動した後、 たとえば上記のしきい時間 T t h 3以上エンジン 4が動作すれば、 再ぴ走行モードを E Vモードに切換えるよう にしてもよい。
以上のように、 この実施の形態 1によれば、 E Vモードで走行中に HVモード に切換えてエンジン 4を駆動できるようにしたので、 エンジン 4の状態を良好に 保つことができる。 また、 エンジン 4に異常が発生した場合に早期に発見し得る。 さらに、 エンジン 4を駆動しての走りを楽しみたいという利用者の要望にも応え ることができる。
[実施の形態 2 ]
図 1 4は、 この発明の実施の形態 2によるハイブリツド自動車の概略プロック 図である。 図 1 4を参照して、 ハイブリッド自動車 1 0 O Aは、 蓄電装置 Bと、 昇圧コンバータ 1 0と、 燃料電池 9 0と、 水素タンク 9 2と、 ィンバータ 3 0と、 モータジェネレータ MG 2と、 車輪 2と、 HVモード移行スィッチ 5 2と、 制御 装置 6 O Aと、 コンデンサ C l, C 2とを備える。
燃料電池 9 0は、 水素タンク 9 2から供給される水素と酸化剤との化学反応に よって発生する化学反応エネルギーから電気エネルギーを得る直流電力発電電池 である。 燃料電池 9 0は、 電源ライン P L 2および接地ライン S Lに接続され、 発生した直流電力を電源ライン P L 2に供給する。
すなわち、 このハイブリッド自動車 1 0 O Aは、 蓄電装置 Bと燃料電池 9 0と により電源がハイプリッド構成されている。 この実施の形態 2によるハイプリッ ド自動車 1 0 O Aは、 実施の形態 1におけるハイブリッド自動車 1 0 0の構成に おいて、 エンジン 4およびモータジェネレータ MG 1からなる動力源、を燃料電池 9 0からなる動力源に置換えたものとみることもできる。 水素タンク 9 2は、 燃料電池 9 0へ水素を供給する。 また、 水素タンク 9 2は. 水素の残量を検出し、 水素の残量を示す信号 F U E L (たとえば水素タンク 9 2 内の圧力に応じた信号) を制御装置 6 O Aへ出力する。
制御装置 6 O Aは、 昇圧コンバータ 1 0を駆動するための信号 PWCを生成し その生成した信号 PWCを昇圧コンバータ 1 0へ出力する。 また、 制御装置 6 0 Aは、 モータジエネレ^"タ MG 2を駆動するための信号 PWM 2を生成し、 その 生成した信号 P WM 2をインバータ 3 0へ出力する。
さらに、 制御装置 6 O Aは、 E Vモードで走行中に HVモード移行スィツチ 5 2から Hレベルの信号を受けると、 走行モードを E Vモードから HVモードへ移 行する。 ここで、 この実施の形態 2においては、 E Vモードとは、 蓄電装置 Bの みを電源として走行する走行モードであり、 HVモードとは、 蓄電装置 Bおよび 燃料電池 9 0を電源として走行する走行モードである。
但し、 制御装置 6 O Aは、 実施の形態 1における制御装置 6 0と同様に、 水素 タンク 9 2からの信号 F U E Lに基づいて、 水素タンク 9 2の水素残量がその残 量の低下を示すしきい値 R t hよりも少ないと判定したときは、 HVモード移行 スィッチ 5 2からのオン操作を無効とし、 E Vモードから HVモードへの移行を 行なわない。
また、 さらに、 制御装置 6 O Aは、 燃料電池 9 0の非動作時間が予め設定され た所定時間を超えると、 HVモード移行スィツチ 5 2を点灯させて E Vモードか ら HVモードへ移行を運転者に促す。 そして、 制御装置 6 O Aは、 HVモード移 行スィツチ 5 2を点灯させても運転者により HVモード移行スィツチ 5 2が操作 されないときは、 走行モードを E Vモードから HVモードへ強制的に移行する。 なお、 この場合も、 制御装置 6 O Aは、 水素タンク 9 2の水素残量がしきい値 R t hよりも少ないと判定したときは、 E Vモードから HVモードへの移行を行 なわない。
以上のように、 この実施の形態 2によれば、 E Vモードで走行中に HVモード に切換えて燃料電池 9 0を動作させることができるようにしたので、 燃科電池 9 0の状態を良好に保つことができる。 また、 燃料電池 9 0に異常が発生した場合 に早期に発見し得る。
なお、 上記の各実施の形態 1, 2においては、 HVモード移行スィッチ 5 2は. 走行モードを切換えるための入力装置としてだけでなく、 制御装置 6 0 , 6 O A からの点灯指令に応じて点灯することにより運転者に入力操作を促す報知部とし ても機能するものとしたが、 報知部を別途設けてもよい。 たとえば、 音声装置に よる報知や、 運転パネルなどにディスプレイ表示を行なってもよい。
また、 上記の実施の形態 1においては、 モータジェネレータ MG 1 , MG 2の 中性点 N l, N 2間に商用電?原 5 5からの交流電力を与え、 モータジェネレータ MG 1 , MG 2の各相コイルおよびインバータ 2 0, 3 0を用いて蓄電装置 Bを 充電するものとしたが、 車両の内部または外部に別途外部充電装置 (A C/D C コンバータ) を備えるハイブリッド自動車にもこの発明は適用し得る。 ただし、 上記の実施の形態 1によれば、 別途外部充電装置を備える必要がないので、 低コ スト化および車両の軽量化が図られる。
なお、 上記において、 モータジェネレータ MG 2および蓄電装置 Bは、 この発 明における 「第 1の動力源」 を形成し、 エンジン 4および燃料電池 9 0の各々は、 この発明における 「第 2の動力源」 に対応する。 また、 制御装置 6 0, 6 O Aは、 この発明における 「制御部」 に対応し、 HVモード移行スィッチ 5 2は、 この発 明における 「入力装置」 および 「報知部」 に対応する。 さらに、 モータジエネレ ータ MG 2は、 この発明における 「第 1の回転電機」 および 「回転電機」 に対応 し、 エンジン 4は、 この発明における 「内燃機関」 に対応する。 また、 さらに、 制御装置 6 0により実行されるステップ S 1 3 0の処理は、 この発明における - 「計時部」 により実行される処理に対応し、 燃料タンク 5 8およぴ水素タンク 9 2は、 この発明における 「検出部」 に対応する。 また、 さらに、 コネクタ 5 0は、 この発明における 「電力入力部」 に対応し、 モータジェネレータ MG 1は、 この 発明における 「第 2の回転電機」 に対応する。 また、 さらに、 インバータ 2 0, 3 0は、 それぞれこの発明における 「第 2のインバータ」 および 「第 1のインバ ータ」 に対応し、 第 1およぴ第 2のインバータ制御部 6 2, 6 3および A C入力 制御部 6 4は、 この発明における 「インバータ制御部」 を形成する。
今回開示された実施の形態は、 すべての点で例示であつて制限的なものではな いと考えられるべきである。 本宪明の範囲は、 上記した実施の形態の説明ではな くて請求の範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれることが意図される。

Claims

請求の範囲
1 . 第 1および第 2の動力源と、
前記第 2の動力源を停止させて走行する第 1の走行モードと前記第 1および第 2の動力源を用いて走行する第 2の走行モードとを切換可能であり、 選択した前 記第 1または第 2の走行モードに応じて前記第 1および第 2の動力 ¾1を制御する 制御手段と、
前記第 1の走行モードで走行中に走行モードを前記第 2の走行モードに切換え るための入力装置とを備えるハイプリッド自動車。
2 . 前記第 1の動力源は、 第 1の回転電機および前記第 1の回転電機に電力を供 給する蓄電装置を含み、
前記第 2の動力源は、 内燃機関を含み、
前記第 1の走行モードは、 前記内燃機関を停止させ前記第 1の回転電機を駆動 させて走行する電気走行モードであり、
前記第 2の走行モードは、 前記第 1の回転電機および前記内燃機関を駆動させ て走行するハイプリッドモードである、 請求の範囲第 1項に記載のハイブリッド 自動車。
3 . 車両外部から与えられる電力を受けて前記蓄電装置を充電するための電力入 力部をさらに備える、 請求の範囲第 2項に記載のハイプリッド自動車。
4 . 前記内燃機関の出力を用いて発電し、 その発電した電力を前記蓄電装置に供 給可能な第 2の回転電機と、
前記第 1および第 2の回転電機にそれぞれ対応して設けられる第 1およぴ第 2 のィンバータと、
前記第 1および第 2のィンバータを制御するインバータ制御手段とをさらに備 え、
前記第 1およぴ第 2の回転電機は、 それぞれ第 1および第 2の 3相コイルをス テータコイルとして含み、
前記電力入力部は、
前記第 1の 3相コイルの中性点に接続される第 1の端子と、 前記第 2の 3相コイルの中性点に接続される第 2の端子とを含み、
前記ィンバータ制御手段は、 前記第 1および第 2の端子間に与えられる交流電 力が直流電力に変換されて前記蓄電装置に与えられるように前記第 1および第 2 のインバータを制御する、 請求の範囲第 3項に記載のハイプリッド自動車。
5 . 前記第 1の動力源は、 回転電機および前記回転電機に電力を供給可能な蓄電 装置を含み、
前記第 2の動力源は、 前記回転電機に電力を供給可能な燃料電池を含み、 前記第 1の走行モードは、 前記燃料電池を停止させ前記蓄電装置からの電力を 用いて前記回転電機を駆動させて走行する電気走行モードであり、
前記第 2の走行モードは、 前記燃料電池および前記蓄電装置からの電力を用い て前記回転電機を駆動させて走行するハイプリッドモードである、 請求の範囲第
1項に記載のハイプリッド自動車。
6 . 前記第 2の動力源の非動作時間を計時する計時手段と、
前記非動作時間が第 1の所定時間以上になると、 前記入力装置の操作を運転者 に促す報知手段とをさらに備える、 請求の範囲第 1項に記載のハイプリッド自動 車。
7 . 前記制御手段は、 前記第 2の動力源の非動作時間が前記第 1の所定時間より も長い第 2の所定時間以上になると、 走行モードを前記第 1の走行モードから前 記第 2の走行モードに切換える、 請求の範囲第 6項に記載のハイプリッド自動車。
8 . 前記計時手段は、 前記第 2の動力源の動作時間が第 3の所定時間よりも短い とき、 前記第 2の動力源の非動作状態が継続しているものとして前記非動作時間 を計時する、 請求の範囲第 6項に記載のハイブリッド自動車。
9 . 前記第 2の動力源のエネルギー残量を検出する検出手段をさらに備え、
' 前記制御手段は、 前記エネルギー残量が所定量よりも少ないとき、 前記第 1の 走行モードから前記第 2の走行モードへの切換を中止する、 請求の範囲第 1項に 記載のハイプリッド自動車。
1 0 . 第 1および第 2の動力源を備えるハイプリッド自動車の制御方法であって、 前記ハイプリッド自動車は、 前記第 2の動力源を停止させて走行する第 1の走 行モードまたは前記第 1および第 2の動力源を用いて走行する第 2の走行モード で走行可能であり、
前記制御方法は、
前記第 1の走行モードで走行中か否かを判定する第 1のステップと、 前記第 1の走行モードで走行中であると判定されたとき、 前記第 2の走行モー ドへ走行モードを切換えるための入力装置が運転者によって操作されたか否かを 判定する第 2のステップと、
前記入力装置が操作されたと判定されたとき、 前記第 1の走行モードから前記 第 2の走行モードへ走行モードを切換える第 3のステップとを含む、 ハイブリッ ド自動車の制御方法。
1 1 . 前記第 2の動力源の非動作時間を計時する第 4のステップと、
前記非動作時間が第 1の所定時間以上になると、 前記入力装置の操作を運転者 に促す第 5のステップとをさらに含む、 請求の範囲第 1 0項に記載の制御方法。
1 2 . 前記第 2の動力源の非動作時間が前記第 1の所定時間よりも長い第 2の所 定時間以上になると、 走行モードを前記第 1の走行モードから前記第 2の走行モ ードに切換える第 6のステップをさらに含む、 、 請求の範囲第 1 1項に記載の制 御方法。
1 3 . 前記第 4のステップは、 前記第 2の動力源の動作時間が第 3の所定時間よ りも短いとき、 前記第 2の動力源の非動作状態が継続しているものとして前記非 動作時閒を計時する、 請求の範囲第 1 1項に記載の制御方法。
1 4 . 前記第 2の動力源のエネルギー残量を検出する第 7のステップと、 前記エネルギー残量が所定量よりも少ないとき、 前記第 1の走行モードから前 記第 2の走行モードへの切換を中止する第 8のステップとをさらに含む、 請求の 範囲第 1 0項に記載の制御方法。
1 5 . 前記第 1の動力源は、 第 1の回転電機および前記第 1の回転電機に電力を 供給する蓄電装置を含み、
前記第 2の動力源は、 内燃機関を含み、
前記ハイプリッド自動車は、
車両外部から与えられる電力を受けて前記蓄電装置を充電するための電力入力 部と、 前記内燃機関の出力を用いて発電し、 その発電した電力を前記蓄電装置に供給 可能な第 2の回転電機と、
前記第 1および第 2の回転電機にそれぞれ対応して設けられる第 1および第 2 のインバータとをさらに備え、
前記第 1および第 2の回転電機は、 それぞれ第 1および第 2の 3相コイルをス テータコイルとして含み、
前記電力入力部は、
前記第 1の 3相コイルの中性点に接続される第 1の端子と、
前記第 2の 3相コイルの中性点に接続される第 2の端子とを含み、
前記制御方法は、 前記第 1および第 2の端子間に与えられる交流電力が直流電 力に変換されて前記蓄電装置に与えられるように前記第 1および第 2のィンバー タを制御する第 9のステップをさらに含む、 請求の範囲第 1 0項に記載の制御方 法。
PCT/JP2006/317686 2005-09-01 2006-08-30 ハイブリッド自動車およびその制御方法 WO2007026946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06797562.3A EP1920985B1 (en) 2005-09-01 2006-08-30 Hybrid automobile and method of controlling the same
CN2006800318751A CN101253089B (zh) 2005-09-01 2006-08-30 混合动力车辆及其控制方法
US11/919,501 US7847495B2 (en) 2005-09-01 2006-08-30 Hybrid vehicle and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-253476 2005-09-01
JP2005253476A JP4517984B2 (ja) 2005-09-01 2005-09-01 ハイブリッド自動車

Publications (1)

Publication Number Publication Date
WO2007026946A1 true WO2007026946A1 (ja) 2007-03-08

Family

ID=37809024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317686 WO2007026946A1 (ja) 2005-09-01 2006-08-30 ハイブリッド自動車およびその制御方法

Country Status (5)

Country Link
US (1) US7847495B2 (ja)
EP (1) EP1920985B1 (ja)
JP (1) JP4517984B2 (ja)
CN (1) CN101253089B (ja)
WO (1) WO2007026946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
WO2011050344A2 (en) 2009-10-23 2011-04-28 Mannkind Corporation Cancer immunotherapy and method of treatment

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
JP4191689B2 (ja) * 2005-02-25 2008-12-03 三菱重工業株式会社 インバータ装置
JP4940234B2 (ja) * 2006-05-15 2012-05-30 三菱電機株式会社 電気車の制御装置
JP4211831B2 (ja) * 2006-09-14 2009-01-21 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
DE102006044814A1 (de) * 2006-09-22 2008-04-03 Bayerische Motoren Werke Ag Kraftfahrzeug
JP4645602B2 (ja) * 2006-10-04 2011-03-09 トヨタ自動車株式会社 車両の駆動装置
JP4245626B2 (ja) * 2006-10-11 2009-03-25 トヨタ自動車株式会社 車両およびその制御方法
JP4165602B2 (ja) * 2007-01-12 2008-10-15 トヨタ自動車株式会社 車両およびその制御方法
JP4270305B2 (ja) * 2007-05-30 2009-05-27 トヨタ自動車株式会社 ハイブリッド車両
JP4293266B2 (ja) * 2007-05-31 2009-07-08 トヨタ自動車株式会社 ハイブリッド車
JP4910917B2 (ja) * 2007-07-04 2012-04-04 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
FR2923422B1 (fr) * 2007-11-14 2010-05-14 Renault Sas Procede de controle du freinage recuperatif d'un vehicule comprenant au moins un moteur electrique
JP4424428B2 (ja) * 2008-03-18 2010-03-03 トヨタ自動車株式会社 電動機駆動制御装置、それを備えた車両および電動機駆動制御方法
USRE47647E1 (en) 2008-04-26 2019-10-15 Timothy Domes Pneumatic mechanical power source
JP5187005B2 (ja) * 2008-06-04 2013-04-24 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
US7980342B2 (en) 2008-06-27 2011-07-19 Ford Global Technologies, Llc Plug-in hybrid electric vehicle
JP5141417B2 (ja) * 2008-07-22 2013-02-13 トヨタ自動車株式会社 蓄電装置充放電制御システム
WO2010044132A1 (ja) * 2008-10-14 2010-04-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置および制御方法
WO2010050038A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP4888600B2 (ja) * 2008-10-31 2012-02-29 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の制御方法
WO2010050044A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP5099229B2 (ja) 2008-10-31 2012-12-19 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
WO2010070761A1 (ja) * 2008-12-19 2010-06-24 トヨタ自動車株式会社 ハイブリッド車両
WO2010073309A1 (ja) 2008-12-22 2010-07-01 トヨタ自動車株式会社 ハイブリッド車両
WO2010100736A1 (ja) * 2009-03-05 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の充放電制御システムおよびその制御方法
US9296289B2 (en) * 2009-04-27 2016-03-29 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
FR2944768B1 (fr) * 2009-04-28 2016-08-05 Peugeot Citroen Automobiles Sa Procede d'alimentation d'un groupe motopropulseur hybride.
WO2010137119A1 (ja) * 2009-05-26 2010-12-02 トヨタ自動車株式会社 ハイブリッド自動車およびその走行モードの設定方法
US8177006B2 (en) 2009-05-28 2012-05-15 Ford Global Technologies, Llc Plug-in hybrid electric vehicle
CN102458906B (zh) 2009-06-10 2014-03-12 丰田自动车株式会社 混合动力车辆及其控制方法
JP5434381B2 (ja) * 2009-08-31 2014-03-05 株式会社デンソー 車載電動機の駆動装置
US8768599B2 (en) * 2009-09-16 2014-07-01 GM Global Technology Operations LLC System and method for engine and fuel system maintenance
US8712619B2 (en) 2009-11-17 2014-04-29 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
US8498137B2 (en) * 2009-12-11 2013-07-30 Magna International, Inc. Boost multilevel inverter system
WO2011077528A1 (ja) * 2009-12-24 2011-06-30 トヨタ自動車株式会社 起電力装置
JP5062288B2 (ja) * 2010-04-20 2012-10-31 トヨタ自動車株式会社 エンジンの始動装置
US9162664B2 (en) 2010-05-05 2015-10-20 Ford Global Technologies, Inc. Vehicle and method for controlling an electric machine and/or engine therein
JP5093300B2 (ja) * 2010-06-15 2012-12-12 トヨタ自動車株式会社 車両制御システム
US8860348B2 (en) * 2010-09-02 2014-10-14 GM Global Technology Operations LLC Method and apparatus for controlling a high-voltage battery connection for hybrid powertrain system
WO2012101735A1 (ja) * 2011-01-24 2012-08-02 トヨタ自動車株式会社 ハイブリッド車両
WO2012101797A1 (ja) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 車両および車両の制御方法
US8447505B2 (en) * 2011-02-17 2013-05-21 Ford Global Technologies, Llc Method and system for extending an operating range of a motor vehicle
US9079586B2 (en) * 2011-02-17 2015-07-14 Ford Global Technologies, Llc Method and system for extending an operating range of a motor vehicle
CN102166948A (zh) * 2011-03-21 2011-08-31 浙江吉利汽车研究院有限公司 一种串联插电式混合动力汽车的动力系统
KR20140062507A (ko) * 2011-09-05 2014-05-23 혼다 기켄 고교 가부시키가이샤 하이브리드 차량의 제어 장치 및 제어 방법
JP2013095406A (ja) 2011-11-07 2013-05-20 Toyota Motor Corp ハイブリッドシステムの制御装置
MY167157A (en) * 2012-01-19 2018-08-13 Nissan Motor Control device and control method for hybrid drive vehicle
JP5609898B2 (ja) * 2012-01-26 2014-10-22 トヨタ自動車株式会社 走行制御装置
JP5622053B2 (ja) * 2012-02-09 2014-11-12 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP5522329B1 (ja) * 2012-09-11 2014-06-18 中西金属工業株式会社 垂直搬送機を含む駆動系の駆動制御装置
JP5614661B2 (ja) 2012-10-09 2014-10-29 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6015693B2 (ja) * 2014-03-07 2016-10-26 株式会社デンソー 制御装置、および、これを用いた電動パワーステアリング装置
JP5961233B2 (ja) * 2014-09-29 2016-08-02 富士重工業株式会社 車両の制御装置及び車両
JP6380089B2 (ja) * 2014-12-25 2018-08-29 株式会社デンソー 電子制御装置
US20160339839A1 (en) * 2015-05-20 2016-11-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control unit for electrically driven vehicle
JP6344345B2 (ja) * 2015-09-11 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
JP2018131040A (ja) * 2017-02-15 2018-08-23 株式会社Subaru 車両用制御装置
CN108258945B (zh) * 2018-01-19 2021-04-27 长安大学 一种双永磁同步电机九开关逆变器及其控制方法
KR102565333B1 (ko) * 2018-12-12 2023-08-16 현대자동차주식회사 모터 구동 시스템을 이용한 충전 시스템의 제어 장치
DE102019205757A1 (de) * 2019-04-23 2020-10-29 Zf Friedrichshafen Ag Getriebeanordnung für ein Kraftfahrzeug und Verfahren zur Montage einer Getriebeanordnung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165309A (ja) * 1992-11-26 1994-06-10 Nissan Motor Co Ltd ハイブリッド式電気自動車
JPH06187595A (ja) * 1992-12-18 1994-07-08 Aqueous Res:Kk ハイブリッド型車両
WO1996001193A1 (en) 1992-09-21 1996-01-18 Severinsky Alex J Hybrid vehicle
JPH08126121A (ja) * 1994-10-19 1996-05-17 Toyota Motor Corp 電気自動車の車載充電装置
JPH08154307A (ja) * 1994-11-29 1996-06-11 Mitsubishi Motors Corp 燃料使用制限式ハイブリッド電気自動車
JPH1028302A (ja) * 1996-07-10 1998-01-27 Toyota Motor Corp ハイブリッド車両
US5815824A (en) 1995-03-06 1998-09-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Navigation system for electric automobile
JPH11164402A (ja) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd ハイブリッド車両の制御装置及び制御方法
US6428444B1 (en) 1999-09-06 2002-08-06 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling a vehicle and a method of controlling the vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211133B2 (ja) 1994-09-27 2001-09-25 スズキ株式会社 シリーズ・ハイブリッド車両の駆動制御装置
US6116363A (en) * 1995-05-31 2000-09-12 Frank Transportation Technology, Llc Fuel consumption control for charge depletion hybrid electric vehicles
US5841201A (en) * 1996-02-29 1998-11-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system having a drive mode using both engine and electric motor
JP3190887B2 (ja) * 1997-07-03 2001-07-23 日野自動車株式会社 ハイブリッド自動車
JP3527861B2 (ja) * 1999-04-01 2004-05-17 三菱ふそうトラック・バス株式会社 ハイブリッド電気自動車の発電制御装置
JP2001231109A (ja) * 2000-02-17 2001-08-24 Toyota Motor Corp 運転状態報知装置およびこれを備える燃料電池搭載車両
US6464608B2 (en) * 2001-02-08 2002-10-15 New Venture Gear Inc. Transfer case for hybrid vehicle
US6648785B2 (en) * 2001-12-05 2003-11-18 New Venture Gear, Inc. Transfer case for hybrid vehicle
US6589128B2 (en) * 2001-11-02 2003-07-08 New Ventures Gear, Inc. On-demand two-speed transfer case for four-wheel drive hybrid vehicle
JP4048766B2 (ja) * 2001-12-11 2008-02-20 トヨタ車体株式会社 ハイブリッド車両
CN1215947C (zh) * 2002-12-09 2005-08-24 北京交通大学 并联式混合动力电动汽车多能源动力总成控制器
JP2004330924A (ja) * 2003-05-08 2004-11-25 Nissan Motor Co Ltd ハイブリッド車の運転モード遷移制御装置
EP1615325B1 (en) * 2004-07-07 2015-04-22 Nissan Motor Co., Ltd. Power conversion and vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001193A1 (en) 1992-09-21 1996-01-18 Severinsky Alex J Hybrid vehicle
JPH06165309A (ja) * 1992-11-26 1994-06-10 Nissan Motor Co Ltd ハイブリッド式電気自動車
JPH06187595A (ja) * 1992-12-18 1994-07-08 Aqueous Res:Kk ハイブリッド型車両
JPH08126121A (ja) * 1994-10-19 1996-05-17 Toyota Motor Corp 電気自動車の車載充電装置
JPH08154307A (ja) * 1994-11-29 1996-06-11 Mitsubishi Motors Corp 燃料使用制限式ハイブリッド電気自動車
US5815824A (en) 1995-03-06 1998-09-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Navigation system for electric automobile
JPH1028302A (ja) * 1996-07-10 1998-01-27 Toyota Motor Corp ハイブリッド車両
JPH11164402A (ja) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd ハイブリッド車両の制御装置及び制御方法
US6428444B1 (en) 1999-09-06 2002-08-06 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling a vehicle and a method of controlling the vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1920985A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
CN101687507A (zh) * 2007-07-12 2010-03-31 丰田自动车株式会社 混合动力车辆及混合动力车辆的控制方法
EP2168828A4 (en) * 2007-07-12 2011-06-22 Toyota Motor Co Ltd HYBRID VEHICLE AND CONTROL PROCESS FOR A HYBRID VEHICLE
US8428803B2 (en) 2007-07-12 2013-04-23 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
EP2722243A1 (en) * 2007-07-12 2014-04-23 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
USRE47625E1 (en) 2007-07-12 2019-10-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
WO2011050344A2 (en) 2009-10-23 2011-04-28 Mannkind Corporation Cancer immunotherapy and method of treatment

Also Published As

Publication number Publication date
US7847495B2 (en) 2010-12-07
JP4517984B2 (ja) 2010-08-04
EP1920985A4 (en) 2009-12-16
CN101253089B (zh) 2011-09-07
US20090058326A1 (en) 2009-03-05
JP2007062639A (ja) 2007-03-15
EP1920985B1 (en) 2015-07-22
CN101253089A (zh) 2008-08-27
EP1920985A1 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2007026946A1 (ja) ハイブリッド自動車およびその制御方法
JP4412260B2 (ja) ハイブリッド自動車
US8222866B2 (en) Electrically-powered vehicle
US7486034B2 (en) Power supply device for vehicle and method of controlling the same
WO2007026941A1 (ja) ハイブリッド自動車およびその制御方法
JP4682740B2 (ja) 車両の電源装置
EP2202872B1 (en) Power supply device and vehicle including the same, control method for power supply device, and computer-readable recording medium having program for causing computer to execute that control method recorded thereon
WO2007018107A1 (ja) 車両の電源装置およびその制御方法
WO2007029473A1 (ja) 車両、車両の電源装置および電流検知装置
WO2007043500A1 (ja) ハイブリッド自動車およびその制御方法
US8620503B2 (en) Hybrid vehicle
WO2010026801A1 (ja) 車両、車両の制御方法および制御装置
JP5062288B2 (ja) エンジンの始動装置
WO2007026947A1 (ja) 電動車両およびその制御方法
US9026286B2 (en) Hybrid plug-in vehicle control device
WO2007142165A1 (ja) 車両駆動システムおよびそれを備える車両
WO2006014016A1 (ja) 確実にモータの駆動が可能なモータ駆動装置
KR20090122244A (ko) 하이브리드 차량
JP2007062589A (ja) ハイブリッド型車両
JP4412270B2 (ja) 電力出力装置およびそれを備えた車両
JP2007062642A (ja) ハイブリッド自動車
JP4706383B2 (ja) 車両の電源装置
JP2007325474A (ja) 車両駆動システムおよび車両
JP2011083072A (ja) 電気システム
JP5621264B2 (ja) 車両の電気システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031875.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11919501

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006797562

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE